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Comprendre les bases génétiques de la variation phénotypique responsable de pathologies 

dans les populations humaines est actuellement l'un des objectifs majeurs de la génétique 

humaine. Les travaux de recherche menés au cours des dernières années nous ont permis de 

comprendre que les variations du nombre de copies du génome constituent un facteur de 

risque important dans l'apparition de problèmes neuro développementaux chez l’humain et 

par conséquent la manifestation de troubles neuropsychiatriques.  

 

 

I. Les modifications génomiques, une source de variabilité 

phénotypique 
 

Les modifications génétiques ont favorisé l'évolution humaine depuis des millions d'années 

et contribuent à la variabilité entre les populations. Cependant, certaines altérations de 

l’architecture génétique sont impliquées dans diverses pathologies. Initialement, les études 

d'association génétique à partir de variables phénotypiques pathologiques étaient basées 

sur des altérations génétiques facilement identifiables. Parmi elles, on retrouve les 

aneuploïdies, les variations structurales visibles au microscope et les polymorphismes 

nucléotidiques (SNPs, pour « Single Nucleotide Polymorphismes ») identifiables grâce à des 

techniques bien connues, comme le séquençage par amplification en chaîne par polymérase. 

La compréhension de ces associations fut facilitée par la validation de millions de SNP par le 

projet International HapMap (pour « Haplotype Map ») (Consortium, 2003; Consortium, 

2005; McCarroll et al., 2006).  

          Cependant, le développement de nouvelles techniques d’analyses génétique a permis 

d'améliorer la détection de nouvelles variations structurelles comme le montre la figure 1. 

Spécifiquement la technologie de puce d’hybridation génomique comparative (aCGH pour 

« Array Comparative Genomic Hybridization ») (Albertson et Pinkel, 2003; Barrett et al., 

2004; Jong et al., 2004; Vissers et al., 2003), ainsi que le révolutionnaire séquençage de 

nouvelle génération (NGS pour « Next-Generation Sequencing ») (Fromel et al., 2012; 

Handsaker et al., 2011) permettent la détection et l’étude des variations du nombre de 

copies du génome (CNVs pour « Copy Number Variations »). Ces réarrangements structuraux 

englobent une fraction génomique supérieure aux SNPs et représentent la proportion 

majeure du polymorphisme génétique et de la variabilité humaine (Conrad et al., 2010; 

Craddock et al., 2010; Feuk et al., 2006; Redon et al., 2006). Les preuves indiquent que ces 

variantes structurelles peuvent comprendre des millions de nucléotides d’hétérogénéité au 

sein de chaque génome et sont susceptibles d’apporter une contribution importante à la 

diversité humaine et à la susceptibilité aux maladies à cause d’une influence directe ou 

indirecte sur le dosage génétique. 
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Figure 1 : Augmentation du nombre des variations génétiques référencées dans les bases de données de 

génétique humaine 

Le graphique montre l’augmentation des polymorphismes identifiés grâce au développement des techniques 

aCGH, SNParray et le révolutionnaire séquençage de nouvelle génération à partir de 2008 (Tiré de McDonald et 

al., 2014). 

 

 

          Les CNVs constituent des polymorphismes au niveau de la structure chromosomique 

associés à la perte ou le gain de segments génomiques de taille variant de quelques dizaines 

de pairs de bases (pb) à plusieurs mégabases (Mb). Ces réarrangements génétiques incluent 

les délétions, les duplications, les triplications, les insertions et les translocations et ils 

peuvent être classés en deux catégories principales : récurrents et non-récurrents. 

 

 

II. Les études de génétique humaine  
 

Au début des années 2000, les premières études sur la proportion et la distribution des CNVs 

sur la population normale furent réalisées en considérant la pertinence des variations 

structurelles de type CNVs dans la génétique et l’identité humaine. 

La première étude de la distribution des CNVs sur le génome de 20 personnes sans 

pathologies utilisant la technique aCGH révéla un total de 221 variations du nombre de 

copies représentant 76 loci uniques (Sebat et al., 2004). En moyenne, les individus 

présentaient un déséquilibre génomique de 11 CNVs avec une longueur moyenne de 465 

Kilobases (kb). En outre, les gènes compris dans les intervalles de ces CNVs étaient impliqués 

dans la fonction neurologique, la régulation de la croissance cellulaire, la régulation du 

métabolisme et certaines maladies. Au cours de cette même période, une autre étude 

aboutit à l’identification de 255 loci dans le génome humain contenant des déséquilibres 

génomiques entre 55 individus non apparentés (Iafrate et al., 2004). De plus, il est 

intéressant de noter que 25,5% des CNVs récurrentes identifiées furent assignées aux 

régions chevauchant des segments dupliqués (SDs) précédemment reconnus.  

          Les SDs ou LCRs (« Low Copy Repeat ») sont des fractions de séquence d’ADN d’une 

taille généralement comprise entre 10 et 300 kb placées sur plus d’un site du génome avec 

une identité de séquence supérieure à 90% (Bailey et al., 2002; Eichler, 2001). Ces segments 

d’ADN prédisposent à l’apparition des CNVs par l’événement de recombinaison homologue 

non-allélique (NAHR, pour « Non-Allelic Homologous Recombination »). La NAHR est un 

mécanisme qui génère des variations structurelles à partir de l’entrecroisement inégal entre 
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des régions d’homologie ayant une identité de séquence élevée, comme les SDs. Ce 

mécanisme aboutit à différents réarrangements structuraux (Liu et al., 2012) en fonction de 

l’orientation des SDs (directe ou indirecte) et du type de recombinaison (en cis : intra-

chromatide  ou en trans : inter-chromosomique et intra-chromosomique) (Figure 2). 

 

 

 

Figure 2 : Mécanisme NAHR et variations structurales de l’ADN récurrents 

a. L’entrecroisement en trans entre SDs d’orientation directe génère des réarrangements de type 

délétion et duplication réciproque. L’entrecroisement en cis entre des SDs d’orientation indirecte 

induit une inversion. 

b. La recombinaison entre SDs d’orientation directe conduit à des délétions et duplications par 

l’entrecroisement inter-chromosomique, intra-chromosomique et intra-chromatide. Le NAHR entre 

SDs d’orientation inversée de chromatides sœurs aboutit à la formation d’un isochromosome (Adapté 

de Liu et al., 2012).  

 

 

Un an plus tard, l’évaluation du rôle des segments dupliqués dans la variabilité 

génétique des 47 individus sains représentant des populations de 4 continents, a révélé un 

enrichissement de CNVs sur les intervalles génétiques délimitées par des SDs (Sharp et al., 

2005). Cette recherche a confirmé l’implication de ces séquences dans la médiation de la 

variabilité humaine et elle suggère que la considération des SDs pourrait améliorer de 

manière significative la détermination des réarrangements à grande échelle. 

En 2006, une autre étude a utilisé des données de l’analyse génotypique de ~1,3 

millions de SNPs provenant de 60 trios du consortium international HapMap (Consortium, 

2003) pour l’identification des délétions (Conrad et al., 2006). Les résultats ont identifié par 

aCGH un total de 586 loci  associés à des délétions dans une ou plusieurs familles. 

Notamment, il a été estimé que chaque individu présentait entre 30 et 50 délétions 

supérieures à 5 kb à l'état hétérozygote, totalisant entre 550 et 750 kb de séquence 

euchromatique sur leur génome. Les délétions détectées couvraient un total de 267 gènes 

connus et prévus. En général, ces régions étaient relativement pauvres en gènes. Ceci est 

compatible  avec l'action de purification de la sélection contre les délétions. De plus le 

a 

b 
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chromosome X des individus présentait un léger déficit du nombre de délétions pouvant 

refléter une pression de sélection par rapport aux hommes. 

La même année, la première carte de la distribution globale des CNVs du génome 

humain fut réalisée par l'analyse de l’ADN de 270 individus de quatre populations 

d'ascendance européenne, africaine et asiatique (collection HapMap). Cette étude a ciblé les 

CNVs par la combinaison des techniques aCGH et SNParray (Consortium, 2005; Redon et al., 

2006). 12% du génome de ces populations correspondait à des variables génomiques 

englobant des gènes, des locus associés à des syndromes du développement, des éléments 

fonctionnels et des SDs. Ces études signalent l’importance de la considération et 

l’identification des CNVs pour l’étude des maladies. 

          L’amélioration de la résolution de la détection des CNVs obtenue à partir des 

évolutions technologiques a permis récemment la création de cartes de distribution des 

CNVs plus réelles. Une étude inédite menée en 2010 a utilisé la technique aCGH incluant 42 

millions de sondes (56 pb d’espacement moyen) pour l’identification de CNVs dont 70% des 

loci associés n'avaient pas été détectés dans les études précédentes. Il fut révélé également 

l'impact fonctionnel pathogène exacerbé des délétions par rapport aux autres CNVs, dont 

moins de 10% chevauchent des régions codantes (Conrad et al., 2010). Finalement 

l’amélioration du séquençage des CNVs grâce à la résolution des nucléotides a facilité 

l’analyse de leur origine et de leur impact fonctionnel (Mills et al., 2011). 

 

 

III. Les études d’association aux traits phénotypiques 
 

Les études d’association génétique permettent de déterminer si une altération génétique 

peut être considérée comme un élément déclencheur de l’apparition d’un ou plusieurs traits 

phénotypiques, fondamentalement des syndromes d’une pathologie complexe. L’objectif 

principal de ces études est d’analyser si la fréquence allélique d’un marqueur génétique 

diffère entre un groupe d’individus présentant un phénotype particulier et un groupe témoin 

d’individus sains. Bien que les études d’association offrent une grande résolution pour la 

détection de polymorphismes, un grand nombre d’échantillons est requis afin d’éviter des 

faux positifs (Risch et Merikangas, 1996). Au cours des dernières années, notre 

compréhension de la variation du nombre de copies dans le génome humain et sa relation 

avec certaines maladies a rapidement évolué. Depuis 2005, l’étude d’association 

pangénomique (GWAS, pour « Genome-Wide Association Study ») a permis de découvrir que 

de nombreux CNVs et SNPs sont liés aux désordres neurodéveloppementaux qui affectent 

au fonctionnement cérébral cognitif, neurologique ou psychiatrique (Figure 3). L'absence de 

cas bien définis et de groupes témoins, la taille insuffisante de l'échantillon, le contrôle pour 

les tests multiples et le contrôle pour la stratification de la population sont des limitations 

courants associées à ces études (Pearson et al., 2008). En plus, la grande diversité de 

réponses individuelles ou de mécanismes compensatoires à un état pathologique annule et 

masque des gènes potentiels ou des variantes causales associées à une maladie (Santolini et 

al., 2018). Pour cette raison, toutes ces limitations sont considérées par les chercheurs dans 

des recherches récentes. 
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Figure 3 : Atlas du génome complet des CNVs et des SNPs significatifs identifiés par GWAS 

Cette représentation est utilisée pour représenter la coexistence de SNPs, qui ont été associés à certains états 

cliniques ou phénotypes et à des CNVs communs ou pathologiques. Les SNPs significatifs ont été obtenus à 

partir du catalogue GWAS publié par le National Human Genome Research Institute, les CNVs courants ont été 

acquis à partir de la base de données en ligne des variantes génomiques et les CNVs pathogènes ont été acquis 

à partir de la base de données UCSC (https://genome.ucsc.edu).  

a. ~ 10% des SNPs significatifs (2.042 sur 20.726) identifiés par GWAS sont co-localisés avec les CNVs 

communs observés dans seulement 4,2% du génome humain. La hauteur de chaque rayonnement 

représentait la fréquence de chaque SNP ou CNV.  

b. La plupart des SNPs significatifs (99,69%) identifiés par GWAS sont co-localisés avec les CNVs associées 

avec des pathologies, alors que les CNVs pathogènes ont été observées dans 97,63% du génome 

humain (Tiré de Liu et al., 2018). 

 

 

IV. Le chromosome 16 humain 
 

Le travail de recherche présenté dans ce manuscrit se focalise sur les variations du nombre 

de copies incluant le locus 16p11.2, une région d’environ 600 kb sur le bras court du 

chromosome humain numéro 16.  

          Le chromosome 16 est une structure métacentrique de petite taille appartenant au 

groupe E qui englobe 90,4 Mb avec un grand nombre de répétitions et de variations 

structurales localisées principalement sur l'hétérochromatine centromérique (Figure 4) 

(Redaelli et al., 2019; Scherer, 2010). Cet élément présente une densité génétique élevée 

(Fatakia et al., 2016). A l'intérieur, il existe 2260 gènes selon la base de données biologiques 

VEGA pour « Vertebrate and Genome Annotation » et 2006 gènes conformément aux 

données du NCBI pour « National Center for Biotechnology Information »). Ce chromosome 

contient également plusieurs gènes paralogues analogues à l’immunoglobine, un type de 

gène qui subit des duplications suivies de mutations aléatoires en tant que méthode 

évolutive, car ils jouent un rôle dans l’adaptation aux antigènes potentiels. En outre, 

curieusement, 9,89% du chromosome 16 est constitué de segments dupliqués (SDs) (identité 

a b 
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de séquence ≥ 90% et longueur ≥ 1 kb), l’un des plus hauts niveaux de séquences dupliquées 

en segments parmi les autosomes humains et un pourcentage similaire correspond à l'ADN 

non séquencé de ce chromosome (Martin et al., 2004). Par conséquence, cette architecture 

complexe conduit à une forte instabilité et à une prédisposition aux mécanismes de 

réarrangement récurrent. L’étude des CNVs associées à ce chromosome a démontré que ces 

variations augmentent la susceptibilité de manifester des maladies développementales 

(Niarchou et al., 2018). 

 

 

Figure 4 : Carte génomique des loci associés aux CNVs sur le chromosome 16 

Le coté supérieur du chromosome inclut les CNVs identifiées aboutissant au gain du matériel génétique, alors 

que la partie inférieure du chromosome inclut les CNVs associées à la perte des segments génomiques  (Adapté 

de Redaelli et al., 2019). 

 

 

V. Les CNVs de la région chromosomique 16p11.2 
 

L’intervalle génétique 16p11.2 se localise dans la zone péricentromérique du chromosome 

mentionné précédemment, une région enrichie en SDs (Liu et al., 2012) prédisposant 

directement à l’apparition des CNVs par le mécanisme de recombinaison homologue non-

allélique.  

          Les variations structurelles les plus fréquemment identifiées de la région 16p11.2 sont 

la délétion et la duplication générées par l’entrecroisement entre SDs proximaux 

d’orientation directe au niveau des points de cassure BP (pour « Breakpoint ») 4 et 5 (Figure 

5). Les 34 gènes de cet intervalle génique sont : BOLA2, SLX1B, SULT1A4, SPN, QPRT, 

C16orf54, ZG16, KIF22, MAZ, PRT2, PAGR1, MVP, CPIPT, CIPT-AS, SEZ6L2, ASPHD1, KCTD13, 

TMEM219, TAOK2, HIRIP3, INO80E, DOC2A, C16orf92, FAM57B, ALDOA, PPP4C, TBX6, YPEL3, 

GDPD3, MAPK3, CORO1A, BOLA2B, SLX1A, SULT1A3 (Zufferey et al., 2012).  
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Figure 5 : Le locus 16p11.2 

a. Représentation du locus 16p11.2 ainsi que les différents SDs présents sur la région prédisposant à 

l’apparition des CNVs cliniques par NAHR. Les réarrangements récurrents de l’intervalle sont 

schématisés par des bandes bordeaux.  

b. Les réarrangements de la région délimitée par les points de cassure BP4 et BP5 d’une taille de 600 kb 

comprenant 34 gènes sont fréquemment identifiés et associés aux troubles du développement. Les 

positions génomiques proviennent du « browser hg18/NCB136 » (Adapté de Zufferey et al., 2012). 

 

 

VI. Des CNVs 16p11.2 aux phénotypes associés 
 

 

1. Les syndromes 16p11.2 
 

Les résultats des études d’association pangénomique mettent en évidence la grande 

complexité des désordres neuropsychiatriques. Son étiologie implique fondamentalement 

des facteurs génétiques incluant une multitude de variations de pénétrance incomplète. 

Néanmoins, ces analyses signalèrent l’effet pathogène des larges délétions. Des nombreuses 

différences alléliques aboutissant à l’haplo-insuffisance mais aussi la surexpression des 

gènes impliqués dans le neurodéveloppement peuvent augmenter la possibilité de 

manifester de nombreuses conditions neuropsychiatriques. 

          En particulier, les réarrangements de la région chromosomique 16p11.2 plus 

fréquemment identifiés, la délétion et la duplication réciproque entre les points de cassure 

BP4 et BP5 supposent un facteur de risque important pour le diagnostic des désordres 

neurodéveloppementaux (Chawner et al., 2019; Cooper et al., 2011; Grayton et al., 2012). 

Ces CNVs atteignent une prévalence dans la population de 1/1500 (Jacquemont et al., 2011). 

a 

b 
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Environ 71 % des délétions de la région se produisent de novo alors que la plupart des 

duplications 16p11.2 (70%) sont héréditaires (D’Angelo et al., 2016). Ce fait est compatible 

avec la notion selon laquelle la délétion de 16p11.2 a un impact plus important sur le 

fonctionnement, entraînant une réduction de la fécondité (Rosenfeld et al., 2010). Les deux 

réarrangements concernent entre 1 et 1,5% des patients atteints de la déficience 

intellectuelle (ID pour Intellectual Disability) (Cooper et al., 2001; Weiss et al., 2008) et les 

troubles du spectre autistique (ASD pour « Autism Spectrum Disorder »). En plus, ces 

variations structurelles de l’ADN ont été également associées à des autres désordres 

neuropsychiatriques, des anomalies de la taille de la tête ainsi que des altérations de l’indice 

de la masse corporelle (BMI pour « Body Mass Index »), comme nous allons le développer 

par la suite. 

 

 

2. Phénotypes cliniques 
 

Les variations du nombre de copies de la région BP4-BP5 furent initialement identifiées chez 

les patients avec une déficience intellectuelle et des troubles du spectre autistique. La 

déficience intellectuelle est une altération du développement de l'être humain caractérisée 

par des limitations significatives du fonctionnement intellectuel et des comportements 

d'adaptation avec un quotient intellectuel égal ou inférieur à 70 (Chelly et al., 2006). La 

prévalence dans la population atteint 1 à 3% et ce trouble présente une prédominance chez 

l’homme avec un sex-ratio 2 : 1 hommes : femmes (Ropers et al., 2008). Alors que les 

troubles du spectre autistique incluent un ensemble très variable d’anomalies 

comportementales caractérisées par une diminution des interactions sociales, des déficits de 

communication verbale et non verbale, ainsi que la stéréotypie.  La prévalence dans la 

population augmente avec les années en raison de l’amélioration des techniques de 

diagnostic et atteint 1% (Lai et al., 2014) avec une prédominance profonde chez les hommes 

avec un ratio 4 : 1 homme : femme (Scott et al., 2002).  

En 2007 l’étude menée par Sebat et al., identifia une personne porteuse de la 

délétion entre 118 patients en ségrégation avec l’ASD. Un an plus tard, une étude similaire 

qui recueille des données d’une population de 180 patients identifia deux porteurs de cette 

CNV (Kumar et al., 2008). La même année, deux autres études indépendantes ont signalé 

non seulement la délétion de la région, mais aussi la duplication réciproque à une fréquence 

similaire de 1% entre les patients étudiés avec ASD (Marshall et al., 2008;  Weiss et al., 

2008). 

          Des cas de sujets porteurs des microdélétions de 16p11.2 ont été rapportés également 

en absence d’autisme. En 2006 Rosenberg et al., a signalé la délétion chez un patient 

présentant un retard mental léger, un retard de la parole grave et une dysmorphie faciale. 

Un an plus tard, une autre étude a identifié la délétion sur des jumeaux monozygotes 

présentant un retard mental léger, un dysmorphisme léger, un trouble convulsif et une 

maladie de la valve aortique (Ghebranious et al., 2007) sans une symptomatologie 

autistique. En 2009, l’analyse de Bijlsma et al., de 4284 patients atteints de retard mental 

et/ou d’anomalies congénitales multiples, a détecté 22 personnes avec des délétions sur la 
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région 16p11.2 BP4-BP5. Une autre étude plus récente réalisée à partir de l’analyse de 55 

sujets porteurs de la délétion et 153 personnes familiales témoins a montré que les patients 

porteurs présentaient des taux élevés de troubles psychiatriques et du développement. Les 

résultats ont révélé une diminution des quotients intellectuels à grande échelle (FSIQ pour 

« Full-Scale Intelligence Quotients ») chez les porteurs par rapport aux témoins (Figure 6). En 

2011, la délétion ainsi que la duplication ont été également associées à la déficience 

intellectuelle dans une analyse des échantillons de 15.767 enfants présentant une déficience 

intellectuelle et diverses anomalies congénitales (Cooper et al., 2011). 

 

 

 

Figure 6 : Distribution des mesures du quotient intellectuel chez les porteurs de la délétion de la région 

16p11.2 et les témoins familiaux 

Le graphique montre une réduction de deux écarts-types chez les porteurs 16p11.2 (barres roses) par rapport 

aux témoins familiaux (barres violettes). La ligne pointillée représente la valeur limite de la déficience 

intellectuelle (Tiré de Hanson et al., 2015). 

 

 

Cependant, bien que l’effet de la duplication sur la capacité cognitive soit similaire à 

celui généré par la délétion, la duplication est associée à une expressivité phénotypique 

significativement plus variable car des sous-groupes avec des effets graves ou légers ne sont 

observés que pour la duplication. Ces résultats suggèrent que des facteurs génétiques et 

familiaux supplémentaires contribuent à cette variabilité (D’Angelo et al., 2016).                               

En addition de ces deux désordres neuropsychiatriques, la duplication 16p11.2 BP4-

BP5 est également associée à la schizophrénie et à d’autres troubles neuro-

développementaux. La schizophrénie est un trouble mental sévère et chronique appartenant 

à la classe des troubles psychotiques caractérisé par des hallucinations, un déficit cognitif, et 

un trouble du comportement évoluant entre des phases aigües alternées et des phases quasi 

asymptomatiques (Sullivan et al., 2003) avec une prévalence dans la population de 0,4 à 

0,7% (Saha et al., 2005). En 2008, deux porteurs de la duplication dans un groupe de 150 

patients avec des symptômes schizophrènes furent identifiés par Walsh et al. L’année 

suivante, une étude a associé la micro-duplication avec un risque accru du diagnostic de la 

schizophrénie (McCarthy et al., 2009). Dans la même étude, une méta-analyse de données 
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de GWAS pour de nombreux désordres psychiatriques a permis l’association de la 

duplication 16p11.2 à l’autisme, la schizophrénie mais aussi le trouble bipolaire alors que la 

délétion de la région était associée à l’autisme et aux désordres du développement. En plus, 

des différences de la taille du crâne furent observées entre les patients porteurs de la 

délétion par rapport aux patients porteurs de la duplication. 

Les variations structurales de la région 16p11.2 BP4-BP5 sont également liées à 

l’épilepsie. L’épilepsie est un désordre neuropsychiatrique présentant une  prévalence qui 

varie selon les études, mais concerne généralement entre 0,4 et 1% des habitants (Swinkels 

et al., 2005). Comme nous l’avons mentionné précédemment, dans l’étude réalisée en 2007 

par Ghebranious et al., la délétion 16p11.2 fut associée à l’épilepsie chez des jumeaux 

monozygotes présentant une déficience intellectuelle, une anomalie de la valve aortique et 

des crises épileptiques. Plus récemment il a été montré que 24% d’un total de 285 patients 

porteurs de la délétion présentait des crises épileptiques (Zufferey et al., 2012). La 

duplication réciproque a été associée avec l’Épilepsie généralisée idiopathique (IGE pour 

« Idiopathic Generalized Epilepsy ») dans une étude menée en 2010 (Bedoyan et al., 2010). 

Quatre ans plus tard, cette variation génétique a été également associée à l'épilepsie 

Rolandique (Reinthaler et al., 2014). 

          Les déficits de la parole et de la communication peuvent avoir un impact important sur 

l'apprentissage et le développement des patients. Au cours de la dernière décennie le 

phénotype du syndrome de la micro délétion 16p11.2 BP4-BP5 a été étendu pour inclure des 

retards et troubles de la parole et du langage (Hanson et al., 2015), atteignant 71% du 

diagnostic chez personnes porteurs de ce réarrangement. La délétion a été également 

associée à l’apraxie du langage chez les enfants (CAS pour « Childhood Apraxia of Speech »), 

rare, sévère et persistante (Figure 7) (Fedorenko et al., 2016; Laffin et al., 2012; Mei et al., 

2017; Raca et al., 2013). Mais ce n’est qu’en 2018 qu’il a été démontré une association 

directe de ces déficiences de la parole et du langage à des anomalies dans des régions 

cérébrales. En particulier, des individus porteurs de la délétion 16p11.2 atteints des troubles 

de la parole ont présenté des anomalies corticales focales (Blackmon et al., 2018).  
 

 

 

Figure 7 : Prévalence des troubles de la production de la parole chez 55 patients porteurs de la délétion 

16p11.2 

Le graphique à secteurs représente le pourcentage de troubles de la parole diagnostique chez un total de 55 

patients porteurs du réarrangement 16p11.2 (Tiré de Mei et al., 2017). 
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          Récemment, une étude a été proposée pour évaluer la nature et la prévalence de la 

psychopathologie associée aux CNVs 16p11.2 en comparant des enfants porteurs de la 

délétion et de la duplication avec des témoins familiaux (Figure 8). Les enfants porteurs de la 

délétion présentaient une fréquence plus élevée de troubles psychiatriques en général, de 

troubles du déficit de l'attention avec hyperactivité (ADHD pour « Attention-Deficit 

Hyperactivity Disorder ») et de troubles du spectre autistique (ASD) que les témoins. Alors 

que les enfants porteurs de la duplication présentaient une fréquence plus élevée de 

diagnostics psychiatriques en général et d’ADHD que les témoins. La comparaison des deux 

groupes de CNVs indiquait une fréquence plus élevée d’ADHD associée à la duplication qu’à 

la délétion ainsi qu'une fréquence plus élevée de troubles psychiatriques et de symptômes 

psychotiques (PS pour « Psychotic Symptoms ») en général. Cependant, aucune différence 

n'a été trouvée entre les porteurs de délétion et de la duplication dans la prévalence des 

ASD ni ID (Niarchou et al., 2019). 

 

 

 

Figure 8 : Fréquence des diagnostics psychiatriques, des symptômes psychotiques et de la déficience 

intellectuelle chez les enfants porteurs de la délétion et la duplication 16p11.2  

Les acronymes signifient : ADHD pour « Attention Deficit Hyperactivity Disorder », ASD pour « Autism Spectrum 

Disorder », ID pour « Intellectual Disability », ODD/CD pour « Oppositional Defiant Disorder/Conduct 

Disorder », PS pour « Psychotic Symptons ». La couleur bleue représente les patients porteurs de la délétion 

alors que la couleur verte représente les patients porteurs de la duplication. Les tonalités plus claires 

représentent les témoins familiaux pour chaque CNVs. (Tiré de Niarchou et al., 2019). 

 

 

La caractérisation clinique en 2010 de 27 patients porteurs de la délétion 16p11.2 

BP4-BP5 et 18 patients porteurs de la duplication réciproque révéla pour les deux 

réarrangements des cas récurrents de retard psychomoteur, d’épilepsie, d’anomalies 

congénitales et des désordres comportementaux par rapport à l’activité. Cette observation 

confirme l'interconnexion entre des différentes conditions neuropsychiatriques.  
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          De plus, dans cette même étude des phénotypes du volume crânien ont été rapportés 

également de manière opposée pour les deux CNVs. Les porteurs de la délétion ont été 

caractérisés avec de la macrocéphalie alors que la duplication a été liée avec de la 

microcéphalie (Figure 9). Une diminution de la taille des patients porteurs de la délétion a 

été également observée (Shinawi et al., 2010).  

 

 

 

Figure 9 : Patients porteurs de réarrangements de la région 16p11.2 BP4-BP5 

a-d.  Patients porteurs de la délétion 16p11.2 présentant un phénotype de macrocéphalie. 

e-h.  Patients porteurs de la duplication 16p11.2 présentant un phénotype de microcéphalie (Adapté 

de Shinawi et al., 2010). 

 

 

          En plus des désordres neuropsychiatriques  décrits et des phénotypes de la taille de la 

tête, les CNVs de l’intervalle génétique 16p11.2 engendrent également des altérations 

profondes du BMI « Body Mass Index » des patients. Initialement, la délétion fut liée à 

l’obésité. En 2010 une étude réalisée sur 312 patients présentant une obésité associée au 

retard  développemental a identifié par aCGH neuf (2,9%) patients porteurs d’une délétion 

16p11.2 (Walter et al., 2010). Une autre analyse parallèle récapitulée dans la même étude a 

été menée à partir de 3947 patients présentant un retard développemental mais sans 

sélection du phénotype d’obésité. Vintgt-deux (0,6%) cas porteurs d’une délétion similaire 

ont été identifiés par aCGH et SNP-CGH, ceci étant une proportion significativement 

inférieure à la cohorte qui comprenait exclusivement des sujets obèses. En outre, l'analyse 

des données cliniques disponibles sur 22 nouveaux porteurs a révélé qu'en plus des troubles 

neuropsychologiques et les troubles du comportement, comprenant l'hyperphagie chez 9 

personnes, la délétion était associée à l'obésité chez l’adulte avec un phénotype plus 

variable durant l'enfance. En parallèle l’analyse des auteurs des données de GWAS de 16053 

sujets incluant des cas d’obésité / obésité morbide et des témoins a permis à l’identification 

de dix-neuf porteurs. 

a b c d 

e f g h 
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          En 2011 la duplication 16p11.2 fut associée à des altérations du BMI. En particulier, 

une étude phénotypique a utilisé des mesures de la taille, de la masse, du BMI et du volume 

crânien de 106 porteurs de la duplication comparés aux données de référence d’une 

population de sexe et âge similaires. Sur le total, onze patients présentaient un 

comportement restrictif et sélectif de l’alimentation. Les résultats  montraient une réduction 

de la taille de la tête ainsi qu’une réduction du BMI et de la masse corporelle liées à la 

duplication de la région (Jacquemont et al., 2011). 

Une autre étude a permis d’analyser le comportement alimentaire, les traits cognitifs 

et leurs relations avec le BMI chez les porteurs des CNVs 16p11.2. Cette étude a démontré 

que la réponse anormale à la satiété contribue fortement au déséquilibre énergétique chez 

les porteurs de la délétion 16p11.2. Une altération de la sensation de satiété chez les enfants 

précède à l'augmentation du BMI observée à l'adolescence (Maillard et al., 2016). En 2017 

une analyse a été menée par Macé et al., afin d’augmenter le nombre d'associations 

robustes entre les CNVs rares et les traits humains complexes à partir d’une méta-analyse de 

données de GWAS. L’association des réarrangements de la région au phénotype miroir du 

BMI a été confirmée. En 2018, un patient porteur de la délétion de la région 16p11.2 BP4-

BP5 a été identifié grâce à la technique CMA « Chromosomal Microarray Analysis » sur 279 

patients présentant le phénotype de l'obésité (D’Angelo et al., 2018).  Une autre étude 

menée plus récemment a montré que les CNVs détectés sur la région 16p11.2 peuvent 

expliquer le phénotype de la déficience intellectuelle et / ou de l'autisme avec une altération 

grave du BMI de 1,6% de la cohorte analysée (680 enfants). Cette recherche démontre la 

prévalence élevée de cette étiologie. De plus, cette même étude suggère également que le 

gène KCTD13 parmi l’ensemble des gènes OMIM (Base de données génétique « Online 

Mendelian Inheritance in Man ») identifiés dans la région chromosomique est 

éventuellement responsable du phénotype du BMI observé (Gimeno-Ferrer et al., 2019). 

          En global, les délétions et duplications de la région chromosomique 16p11.2 BP4-BP5 

sont considérées comme étant un facteur de risque dans l’apparition des désordres 

neurodéveloppementaux incluant l’ASD, l’ID, l’épilepsie, l’ASDH, les troubles du langage, la 

schizophrénie et les troubles bipolaires. Ces réarrangements ont été également liés aux 

phénotypes du volume crânien et le BMI de manière opposée : la macrocéphalie et l’obésité 

pour la délétion et la microcéphalie et l’insuffisance pondérale pour la duplication suggérant 

que la région 16p11.2 pourrait contenir des gènes sensibles au dosage génétique 

responsables des phénotypes associés à ces mutations. Cependant l’interprétation clinique 

du locus 16p11.2 est problématique à cause de plusieurs raisons. Premièrement, les CNVs 

associées à cette région sont rares et il est généralement nécessaire d’analyser des 

échantillons extrêmement volumineux. En deuxième lieu, l’identification des gènes présents 

dans l’intervalle génétique responsables des phénotypes observés est toujours un défi à 

cause de la grande densité génétique de la région, spécifiquement 34 gènes codants pour 

~600 kb. Finalement, on observe souvent des variations considérables de l’expressivité 

phénotypique, ainsi une même lésion génétique peut déclencher différents troubles ou 

anomalies.  
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3. Le biais sexuel dans les troubles neurodéveloppementaux  
 

Les troubles neurodéveloppementaux tels que l'autisme et les déficiences intellectuelles 

présentent une différence de fréquence de diagnostique entre les sexes et sont plus 

fréquents chez les hommes (Scott et al., 2002; Gillberg et al., 2006; Ropers et al., 2008). 

Diverses hypothèses ont été proposées afin d’expliquer ce biais sexuel chez l’humain. Parmi 

elles, nous voudrions souligner la théorie « Empathie-Systématisation », selon laquelle les 

différences psychologiques sexuelles reflètent un renforcement de la systématisation chez le 

mâle et un renforcement de l’empathie chez la femelle. Et dans le cadre des ASD, cette 

théorie a une extension dénommée « cerveau mâle extrême » selon laquelle les individus 

sont caractérisés par des déficiences de l’empathie avec une systématisation intacte ou 

augmentée (Baron-Cohen et al., 2005). Une constatation clé qui appuie cette prédiction est 

que les garçons ont en moyenne une taille cérébrale plus grande que les filles (Gilmore et al., 

2007) et que les enfants autistes présentent un cerveau encore plus grand (Courchesne et 

al., 2011). Deux mécanismes plausibles pouvant donner lieu à un dimorphisme sexuel, une 

hyper-masculinisation et / ou à l'absence de dimorphisme sexuel typique au niveau du 

cerveau, de la cognition et du comportement sont les effets de la testostérone fœtale sur les 

domaines sociaux et des facteurs génétiques liés au chromosome X ou au chromosome Y 

(Baron-Cohen et al., 2011). 

          En 2015 une étude a connecté les données cliniques incluant les indications du 

diagnostic et l’historique familial, avec les données génomiques de divers CNVs chez 32.155 

personnes présentant des traits autistes et des caractères d’ID afin d’évaluer 

systématiquement ce biais. Les résultats de cette analyse montrent un rapport 1,3 : 1 

homme : femme entre les individus autistes et un rapport 1,6 : 1 homme : femme parmi les 

individus avec l’ID portant la délétion 16p11.2 (Figure 10) (Polyak et al., 2015). 

 

 

 

Figure 10 : Rapport femelle : mâle pour les patients atteints d'autisme ou d’ID / DD (« Developmental 

Disabilities ») porteurs des CNVs spécifiques 

Les graphiques représentent le pourcentage de cases de femelles (gris) et de mâles (blanc) porteurs des CNVs 

génétiques avec l’autisme (gauche) ou l’ID /DD (droite). Les CNVs pour la duplication et délétion 16p11.2 sont 

signalés en rouge (Tiré de Polyak et al., 2015). 

a b 



INTRODUCTION GENERALE 

15 

 

4. Anomalies cérébrales associées aux CNVs 16p11.2 
 

Le phénotype du volume crânien lié à la délétion ou à la duplication de la région 

chromosomique BP4-BP5 de ~600 kb a suggéré aux chercheurs que ces réarrangements 

pourraient avoir également un effet pathogène sur la morphologie du cerveau. 

En 2014, une analyse clinique d'un groupe constitué de 25 porteurs de la délétion, 17 

porteurs de la duplication et 62 témoins d’âge similaire a montré l’apparition des 

phénotypes opposés de la taille cérébrale chez les porteurs des deux réarrangements. 

Spécifiquement, la délétion fut associée à une augmentation de la taille du cerveau alors que 

la duplication fut associée à une diminution de la taille cérébrale. Ces phénotypes étaient 

étendus à partir des mesures globales du volume intracrânien et des mesures 

compartimentales de la matière grise et de la substance blanche des structures sous-

corticales incluant l'hippocampe et le cervelet. Quantitativement, l'effet le plus important a 

été retrouvé sur le thalamus, bien que les résultats collectifs suggèrent un effet généralisé. 

De plus, il a été détecté un effet important du dosage génétique de la région 16p11.2 pour 

les mesures de la matière grise présente dans la surface corticale (Qureshi et al., 2014). 

En 2015, une autre analyse a été menée dans le but d’étudier les structures 

anatomiques cérébrales et les mécanismes cellulaires responsables des troubles 

neuropsychiatriques associés aux réarrangements 16p11.2. Cette approche de neuro-

imagerie a vérifié la corrélation négative entre le nombre de copies génomiques de la région 

16p11.2 et le volume de matière grise (GM pour « Gray Matter ») ainsi que l’intégrité de la 

substance blanche (WM pour « White Matter ») dans les régions cortico-souscorticales 

(Figure 11). Ces zones affectées sont impliquées dans le système de récompense, le langage 

et la cognition sociale (Maillard et al., 2015). 

          En 2016, Steinman et al., ont réalisé une étude de caractérisation neurologique à partir 

d’une grande cohorte formée par 136 porteurs de la délétion 16p11.2 BP4-BP5 et 110 

porteurs de la duplication réciproque. Le phénotype associé à la délétion englobait une 

augmentation de la taille de la tête / macrocéphalie ainsi qu’une malformation de 

l’amygdale cérébelleuse (la malformation de Chiari I).  Alors que le phénotype associé à la 

duplication correspondait à une diminution de la taille de la tête / microcéphalie, des 

anomalies volumétriques de la substance blanche et du corps calleux cérébral ainsi qu’une 

hypertrophie ventriculaire. En outre, des malformations corporelles et des troubles neuro 

psychiatriques tels que l’épilepsie ou des anomalies d’articulation, ont été retrouvés chez les 

patients porteurs des deux réarrangements. 
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Figure 11 : Effets des variations du nombre de copies de la région chromosomique 16p11.2 sur le volume 

cérébral local et certaines régions du cerveau 

Les résultats des analyses « Voxel-based Whole-brain General Linear » montrent : 

a. Une corrélation négative entre le dosage des gènes de la région (DEL > CTRL > DUP) et le volume de la 

GM dans le striatum ventral, le thalamus, la région temporale supérieure, le gyrus fusiforme, le 

précuneus, le cortex insulaire et la scissure calcarine bilatéralement ainsi que la région occipitale 

droite. 

b. Une corrélation positive entre le nombre de copies de la région (DEL < CTRL < DUP) et le volume de la 

GM dans le gyrus temporal moyen et les lobules cérébelleux. 

c. L’effet négatif du dosage génétique de la région sur le volume de la WM dans les projections fronto-

striatales et certaines régions du thalamus. 

d. L’absence d’altérations du volume de la WM à cause de l’effet positif du dosage génétique du locus 

16p11.2.Les barres de couleur représentent les scores T. DEL : individus porteurs de la délétion; CTRL : 

individus témoin intrafamiliaux ; DUP : patients porteurs de la duplication. GM : matière grise; WM : 

substance blanche (Adapté de Maillard et al., 2015). 

 

Dans une étude postérieure, une analyse a été réalisée à partir de la technique 

d’imagerie par résonance magnétique (MRI pour « Magnetic Resonance Imaging ») sur deux 

cohortes porteuses des CNVs 16p11.2 avec des témoins familiaux ou non apparentés, 

comprenant un total de 361 participants. Les résultats montraient une corrélation négative 

entre le nombre de copies de l’intervalle génétique et la taille du cortex insulaire (délétion > 

témoin > duplication). En plus, des autres régions étaient affectées par ces réarrangements. 

En particulier, les auteurs ont retrouvé des altérations dans la taille de la scissure calcarine, 

du gyrus temporal transverse (délétion > témoin), du gyrus temporal moyen et supérieur 

(délétion < témoin), du noyau caudé et de l’hippocampe (duplication < témoin). Cependant, 

dans cette étude les auteurs ne pouvaient pas démontrer la corrélation entre ces altérations 

de l'anatomie du cerveau et la présence de troubles neuropsychiatriques. Cette recherche 

suggère que la combinaison d'autres facteurs pourrait être fondamentale pour le 

développement de ces troubles (Martin-Brevet et al., 2018). 

          Néanmoins une étude récente a proposé une hypothèse selon laquelle la 

neurophysiologie anormale du cortex décrite précédemment pour l’haplo-insuffisance des 

gènes de la région pourrait être liée à certains troubles du comportement associés à la 

délétion. Cette analyse a été menée à partir d’images magnéto-encéphalographiques. Les 

résultats montraient une augmentation de l'activité du réseau du cortex sensorimoteur chez 

a b 

c d 
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les porteurs de la délétion par rapport aux individus avec un développement typique et aux 

porteurs de la duplication. Les auteurs ont démontré que cette hyperactivité neurale était le 

résultat d’une augmentation de la modulation des oscillations bêta associée à des 

altérations de la parole et du contrôle moteur manuel (Hinkley et al., 2019). 

 

 

VII. L’intervalle génétique 16p11.2 BP4-BP5 
 

 

1. Des études du transcriptome humain 
 

Jusqu'à ce point du manuscrit, nous avons décrit l'association pertinente des CNVs 16p11.2 à 

divers troubles neurodéveloppementaux et certains phénotypes anatomiques. Cependant, il 

est également essentiel d'expliquer l’impact de ces variations structurelles sur l'expression 

des gènes de la région. Cette connaissance nous permettra d'identifier des gènes candidats 

responsables des phénotypes observés et de comprendre l'impact fonctionnel des variations 

structurelles 16p11.2 sur le neuro-développement des patients affectés.  

Afin de découvrir quels gènes sont dérégulés à l'intérieur ou à proximité de la région 

16p11.2 ou s'il existe une signature d'expression commune pour les réarrangements 

16p11.2, plusieurs recherches ont été menées. En particulier, une étude a utilisé 

l’intégration de l'expression et les données génomiques des lymphoblastes (en substitution 

du tissu cérébral très rare) de patients porteurs de la délétion et la duplication (Luo et al., 

2012). L’analyse a montré une corrélation positive significative entre le niveau d'expression 

génétique et le nombre de copies de la région. De plus, les résultats ont signalé des gènes  

présentant des altérations plus consistantes. Spécifiquement, il s’agit des loci KCTD13 

(« Potassium Channel Tetramerisation Domain Containing 13 »), ALDOA (« Aldolase A, 

Fructose-bisphosphate ») et MAZ (« MYC-Associated Zinc Finger Protein »). Ces gènes sont 

impliqués dans le métabolisme synaptique, la libération de neurotransmetteurs et la 

différenciation neuronale. En outre, la même étude a démontré une corrélation significative 

entre le volume crânien et l'expression de plusieurs gènes de la région chromosomique. 

TAOK2 est l’un de ces loci qui a montré la plus grande corrélation. Ce gène interagit avec une 

voie impliquée dans le contrôle de la survie, la prolifération et la différenciation des cellules 

composant le système nerveux central et périphérique. 

          En 2014, une autre étude a confirmé la variation de l'expression de tous les gènes de la 

région en fonction du nombre de copies d'ADN, en absence des preuves de compensation du 

dosage. Cette analyse a utilisé le séquençage de l'ARN des lignées de lymphoblastes de 34 

membres de 7 familles porteurs des CNVs 16p11.2 avec les ASD et du cortex cérébral de 

modèles murins. Les auteurs ont suggéré également que l'altération de l’expression 

génétique de la région 16p11.2 perturbe des autres gènes impliqués dans des voies de 

signalisation associées aux ASD. Cette perturbation pourrait apparaître à cause d’une 

combinaison d'effets régulateurs indirects et directs sur l'architecture nucléaire. La 

recherche suggère un chevauchement des mécanismes cellulaires causant de la 

pathogenèse (Blumenthal et al., 2014). 
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Une étude plus récente a évalué l’effet du dosage des gènes du locus 16p11.2 sur 

l’expression génétique du profil transcriptomique des cellules lymphoblastoïdes (Kusenda et 

al., 2015). Bien que l’effet des changements du dosage génétique de la région ne soit pas 

très évident dans cette lignée cellulaire, ce type de cellules a été sélectionné en raison de la 

facilité d'obtention d’échantillons de sang. L’analyse a été menée à partir de patients 

porteurs de la délétion (6), la duplication (15) et des témoins (15). En plus de la confirmation 

de la corrélation entre le nombre de copies et l’expression génétique, les auteurs ont 

constaté les effets du dosage génétique les plus importants pour les gènes HIRIP3, KIF22 et 

KCTD13 et la corrélation relative entre l’expression génétique et le phénotype avec la tête la 

plus grande pour SULT1A3 / 4, IMAA et KCTD13. 

          L’implication de plusieurs gènes dans les phénotypes liés aux réarrangements 16p11.2 

est cohérente avec une publication récente qui démontre la modulation des anomalies du 

développement neurologique associées à la délétion de 16p11.2 par des interactions entre 

les gènes de la région sur le modèle de Drosophila melanogaster (Iyer et al., 2018). 

          Toutes les études citées démontrent une corrélation entre le nombre de copies de 

l’intervalle génétique 16p11.2 BP4-BP5 et l'expression des gènes de la région et certaines 

recherches remarquent la présence des gènes candidats à partir de l’analyse du 

transcriptome des cellules lymphoblastoïdes. Cependant, l’ampliation de la recherche à 

partir des études utilisant directement des cellules neuronales ou des modèles animaux est 

nécessaire afin d’élucider les voies de signalisation qui influencent le développement du 

cerveau affecté par cette altération génétique. 

 

 

2. Gènes de la région 
 

Afin de comprendre comment les modifications de l'expression génétique de l'intervalle 

16p11.2 déclenchent des troubles neurocognitifs chez l'homme, il est nécessaire de 

connaître la fonction des gènes présents dans la région. Dans cette partie du manuscrit, nous 

nous centrerons sur la description des gènes candidats connue à partir des résultats des 

études génétiques chez l’humain, les modèles animaux et des études réalisées à partir des 

cultures cellulaires. 

Le gène QPRT (« Quinolinate Phosphoribosyltransferase ») code pour une enzyme 

liée au métabolisme du tryptophane qui utilise le quinolinate comme substrat. Le 

quinolinate est un intermédiaire dans la voie de synthèse de novo du nicotinamide adénine 

dinucléotide (NAD) à partir du tryptophane (la voie de la kynurénine). Cette molécule agit 

comme une excitotoxine endogène puissante grâce à l’hyperstimulation du récepteur N-

méthyl D-aspartate dans les neurones (Guillemin et al., 2007). L'élévation des niveaux de 

quinolinate dans le cerveau humain pourrait être considérée comme responsable de la 

pathogenèse des troubles neurodégénératifs et des crises épileptiques (Nemeth et al., 

2005). En outre, la réduction de QPRT provoque une altération de la différentiation 

neuronale in vitro des cellules SH-SY5Y affectant la complexité des néurites. Cette protéine 

contrôle également la régulation des gènes et des réseaux génétiques impliqués dans le 
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développement du cortex préfrontal dorsolatéral, de l'hippocampe et de l'amygdale, 

précédemment associé aux ASD (Haslinger et al., 2018). 

          Le gène KIF22 (« Kinesin-like DNA-binding Protein ») code pour un moteur moléculaire 

de liaison aux microtubules et à l'ADN, important pour l'alignement (Santamaria et al., 2008) 

et le compactage (Ohsugi et al., 2008) des chromosomes pendant la division cellulaire. Bien 

que KIF22 n'a jamais été associé aux troubles neurodéveloppementaux, ce gène pourrait 

être nécessaire pour la formation de progéniteurs neuraux (Blaker-Lee et al., 2012). 

Le produit du gène MAZ (« Myc-associated Zinc Finger Protein ») renforce l'activité 

des sous-unités de type 1 du récepteur NMDA au cours de la différenciation neuronale 

(Okamoto et al., 2002). 

Le gène PRRT2 (« Proline-rich Transmembrane Protein 2 ») code pour une protéine 

transmembranaire associée à la suppression de la croissance cellulaire. De plus, cette 

molécule interagit avec la protéine SNAP25 impliquée dans la fusion de vésicules 

synaptiques et la libération de neurotransmetteurs (Jarvis et Zamponi, 2005). En outre, 

certaines études ont suggéré une implication du gène dans la modulation fonctionnelle de 

canaux ioniques et son association aux phénotypes épileptiques (Chen et al., 2011, Lee et al., 

2012; Michetti et al. 2017; Vlaskamp et al., 2019). 

Le gène MVP (« Major Vault Protein ») code pour le composant majeur du complexe 

Vault.  Cette structure de ribonucléoprotéines à multi-sous-unités est impliquée dans le 

transport nucléo-cytoplasmique de l’ARN. De plus, MVP est une protéine d'échafaudage qui 

régule partiellement la voie MAPK / ERK grâce à l’interaction avec Shp2 (Berger et al., 2009; 

Kolli et al., 2004).  La voie de signalisation ERK a un rôle important dans la prolifération 

cellulaire et ce mécanisme se trouve impliqué dans les fonctions neuronales, comprenant la 

plasticité synaptique et la consolidation de la mémoire à long terme (Sweatt et al., 2004). 

L’haplo-insuffisance du gène MVP provoque une activation excessive de la voie ERK / MAPK. 

Cette hyperactivation est associée à des anomalies de la corticogenèse dues à des 

altérations de la dynamique du cycle cellulaire de la population des progéniteurs neuraux 

(Pucilowska et al., 2015). Pourtant, il est probable que plusieurs gènes de la région 16p11.2 

convergent sur la voie ERK. A ce jour, l’implication du gène MVP dans les mécanismes 

pathophysiologiques affectés dans les syndromes 16p11.2 reste encore inconnue. 

Le gène SEZ6L2 (« Seizure related 6 homolog (mouse)-Like2 ») code pour une 

protéine de membrane type 1 qui contient les domaines du complément C1r / C1s, Uegf et 

Bmp1 (CUB) et le domaine de la protéine de contrôle du complément (CCP) (Miyazaki et al., 

2006). Les protéines contenant ces domaines constituent une famille de protéines capables 

de moduler la localisation ou la fonction des récepteurs des neurotransmetteurs (Nakayama 

et al., 2011). SEZ6L2 est l'une des sous-unités auxiliaires du récepteur AMPA et agit comme 

une protéine d'échafaudage pour lier GluR1 à Adducin (ADD). De plus, la surexpression de 

Sez6l2 régule positivement la phosphorylation d'ADD, alors que sa régulation négative 

empêche la phosphorylation d'ADD, en suggérant que Sez6l2 module la transduction du 

signal AMPA-ADD (Yaguchi et al., 2017). SEZ6L2 sert également de récepteur qui permet le 

tri de la cathepsine D en endosomes et le clivage protéolytique de SEZ6L2 par la cathepsine 

D pourrait être impliqué dans la modulation de la différenciation neuronale (Boonen  et al., 

2016). Ce locus a été considéré comme un gène candidat pour les ASD en raison de son 
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niveau élevé d'expression dans le cerveau, spécifiquement dans l'hippocampe, le cortex 

cérébelleux, l’amygdale et le thalamus et à cause de l’importante identité de séquence avec 

le gène SRPX2 (pour « Sushi-repeat-containing protein, X-linked »), dont les mutations 

provoquent de l'épilepsie et des troubles du langage (Roll et al., 2006). En outre, le SNP 

R386H du gène est associé aux ASD (Kumar et al., 2009). 

KCTD13 (« Potassium Channel Tetramerization Domain containin 13 ») est l’un des 

gènes de l’intervalle dont nous disposons plus d’information. Il code pour la protéine PDIP1 

(pour « Polymerase Delta-Interacting Protein 1 ») interagissant avec PCNA (pour 

« Proliferating Cell Nuclear Antigen ») qui est le facteur de processivité de l’ADN polymérase 

delta. PCNA est impliqué dans la régulation du cycle cellulaire durant la neuro-genèse en 

régulant la réplication de l'ADN (He et al., 2001). Ce gène a été identifié comme le principal 

responsable de l’apparition d’anomalies neuro-anatomiques similaires aux humains chez le 

poisson zèbre (Golzio et al., 2012). En plus, ces résultats soulignent l’importance de Kctd13 

pour la prolifération cellulaire des neurones dans les cerveaux de poisson zèbre et de souris 

en développement. Cependant, contrairement à ces études, des autres recherches plus 

récentes n'ont pas détecté ce phénotype chez le poisson zèbre ni chez la souris lorsque le 

locus Kctd13 a été inactivé sur ces modèles animaux (Escamilla et al., 2017). De nouvelles 

analyses chez la souris indiquent que des modifications du dosage de Kctd13 et des gènes 

Mvp ou Lat (pour « Linker for Activation of T cell »)  pourraient avoir des effets épistatiques 

sur le volume de l’hippocampe et le striatum (Arbogast et al., 2019).  

Une autre étude pertinente a identifié KCTD13 comme un adaptateur de la protéine Cullin-3 

permettant l’ubiquitination et la dégradation de la protéine RHOA, une petite protéine 

GTPase régulatrice du cytosquelette d'actine et essentielle dans le développement neuronal 

et la fonction synaptique (Figure 12) (Chen et al., 2009; Gladwyn‐Ng et al., 2016; Lin et al., 

2015).  
 

 

Figure 12. La voie KCTD13-Cul3-RHOA 

Hypothèse proposée selon laquelle la voie de signalisation RHOA / ROCK pourrait être affectée par des 

modifications de la formation du complexe Cul3-KCTD13 chez des individus porteurs des CNVs 16p11.2. 

L’altération des niveaux de RHOA par une diminution ou une augmentation des niveaux de KCTD13 chez les 

individus porteurs de la délétion (gauche) ou duplication (droite) peut avoir des conséquences fonctionnelles 

opposées pendant le développement du cerveau provoquant des phénotypes du volume crânien (Adapté de 

Lin et al., 2015). 
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          La protéine RHOA intervient dans l'activation de la kinase Rho (ROCK), ce qui entraîne 

la phosphorylation de la sous-unité de liaison de la myosine MYPT-1 (« Myosin phosphatase 

target subunit 1 ») de la phosphatase MLCP (« Myosin-light-chain phosphatase »), ce qui la 

rend inactive, préservant ainsi la phosphorylation de MLC (« Myosin Light Chain ») et 

maintenant les contractions musculaires (Figure 13) (Wirth., 2010). Dans les cellules 

neuronales RHOA contrôle la dynamique du cytosquelette en modulant ainsi la plasticité 

synaptique. 

 

 

 
 

Figure 13. Voie de signalisation ROCK / RHOA dans les cellules du muscle lisse  

 

Le contrôle du cytosquelette d’actine des cellules musculaires lisses est principalement déterminé par le niveau 

de phosphorylation de MLC, régulé par les deux enzymes myosine : MLCK et MLCP. MLCP est contrôlée par 

l’activation de la voie RHOA / ROCK (Adapté de Wirth., 2010). 

 

          La perturbation des niveaux de RHOA à cause de l’inactivation de Kctd13 entraîne la 

perte d’épines dendritiques et une réduction de la transmission synaptique dans 

l’hippocampe d’un modèle de souris (Figure14) (Escamilla et al., 2017). Cependant, l’analyse 

d’un autre modèle de souris a montré des altérations de la densité des épines dendritiques 

et des déficits de mémoire de reconnaissance associés à l’inactivation du gène, mais 

l’absence de changements détectables dans les niveaux d'expression de RHOA. Pourtant, les 

analyses d'ARN-seq des profils d'expression génique du cortex et de l'hippocampe de ce 

modèle ont révélé des voies de signalisation altérées essentielles au développement 

neurologique comprenant la formation synaptique (Arbogast et al., 2019). Le rôle mécaniste 

de RHOA dans les syndromes 16p11.2 reste toujours à explorer. 

 

 

 

 

MLC 

MLC 

MLCK 
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Figure 14. Effet de l'inactivation du gène Kctd13 sur la longueur dendritique, la ramification et la densité de 

l’épine dendritique des neurones pyramidaux CA1 

a. Représentation des tracés dendritiques des neurones pyramidaux chez les souris témoins (WT), 

déficients pour Kctd13 hétérozygotes (HET) et déficients pour Kctd13 homozygotes (KO). La barre 

d'échelle équivaut à 50 μm. 

b. Images neuronales de la technique de Golgi ; La barre d'échelle équivaut à 2 μm (Adapté de Escamilla 

et al., 2017). 

 

 

Le gène TAOK2 (« Thousand-And-One-amino acid Kinase 2 ») code pour une protéine 

kinase sérine / thréonine qui active les molécules MAPK, des protéines kinases activées par 

le mitogène (Moore et al., 2000) et régule la transcription génétique. Le produit de TAOK2 

interagit avec Neuropilin 1, impliqué dans le guidage axonal et l’arborisation dendritique 

(Chen et al., 2014) et il est impliqué dans l'assemblage synaptique et la signalisation 

(Betancur et al., 2009). De plus, son implication  a été démontrée dans la formation 

dendritique à partir du contrôle de l’activation de la protéine JNK 1 (« c-Jun N-terminal 

kinase 1 ») dans des cultures neuronales de souris où le gène a été réprimé ou surexprimé 

(de Anda et al., 2012). Des études récentes sur des modèles murins ont montré que 

l’altération de l’activité de TAOK2 entraîne des troubles de la cognition, de l'anxiété et des 

interactions sociales. Ce modèle présentait également des phénotypes de la taille du 

cerveau et de la connectivité neuronale dans plusieurs régions, des altérations dans la 

stratification corticale, des altérations dans la formation des dendrites et de la synapse et 

une réduction de la neurotransmission excitatrice. En plus, l’inactivation du gène était 

associée à une réduction de l’activation de RHOA et l’amélioration pharmacologique de 

l'activité de RHOA normalisait les phénotypes synaptiques (Richter et al., 2019). Ces résultats 

montrent l’implication d’un autre gène de la région 16p11.2 dans la régulation de la voie de 

signalisation RHOA / ROCK. 

          Le produit du gène DOC2A (« Double C2-like domains Alpha ») est une protéine 

cytoplasmique principalement exprimée dans le cerveau qui se lie à des phospholipides en 

présence de calcium (Kojima et al., 1996). Il est impliqué dans la libération de 

neurotransmetteurs et dans le développement du système nerveux, la transmission 

synaptique, l'exocytose des vésicules de sécrétion et le transport cellulaire (Duncan et al. 

2000; Groffen et al., 2006). Bien que le rôle de DOC2A dans l'épilepsie et le développement 

humain ne soit pas clair, les souris porteuses de la délétion du gène présentent des 

 a 
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altérations de la transmission synaptique et des déficits d'apprentissage et de 

comportement (Sakaguchi et al., 1999). 

Le gène ALDOA code pour une enzyme glycolytique qui catalyse la conversion du 

fructose-1,6-bisphosphate en glycéraldéhyde-3-phosphate et dihydroxyacétone phosphate. 

Ce rôle est essentiel pour la glycolyse et l’équilibre énergétique, ce qui est important pour le 

métabolisme synaptique et la libération des neurotransmetteurs (Pellerin et al., 2010). 

Plusieurs autres fonctions ont été attribuées à ALDOA, notamment l'inhibition de la 

phospholipase D2, la liaison au cytosquelette et l'activité RNase (Canete-Soler et al., 2005; 

Kim et al., 2002; Kusakabe et al., 1997). ALDOA est également un régulateur partiel de la 

voie de signalisation MAPK / ERK (von Kriegsheim et al., 2009). En outre, un cas présentant 

un retard mental (Beutler et al., 1973), et un autre patient avec une microcéphalie et un 

retard de langage (Kreuder et al., 1996) ont été associés à des mutations ponctuelles et à 

une activité réduite de l'ALDOA. De plus, l'expression d'ALDOA est régulée positivement dans 

le cortex des personnes atteintes de schizophrénie et de dépression (Beasley et al., 2006). 

ALDOA a été identifié comme partenaire de liaison de la protéine SHANK3 associée aux ASD 

grâce à une étude d'interactions protéiques (Sakai et al., 2011), ainsi que dans le cadre d'une 

étude impliquant des complexes de signalisation postsynaptiques à l'ASD (Kirov et al., 2012). 

Le gène TB6X (« T-box 6 gene ») code pour un facteur de transcription impliqué dans 

la formation du mésoderme (Papapetrou et al., 1999; Takemoto et al., 2011; Yasuhiko et al., 

2008). Les études de génétique humaine ont impliqué ce gène dans le phénotype des 

malformations vertébrales associées à la délétion 16p11.2 (Shen et al., 2011 ; Shimojima et 

al., 2009) ainsi que dans la syringomyélie associée aux deux réarrangements 16p11.2. En 

plus, le modèle murin homozygote pour l'allèle mutant de Tbx6 est inviable et ses embryons 

sont dépourvus de somites du tronc, ils ont des malformations de la queue et des tubes 

neuronaux pliés (Chapman et Papaioannou, 1998). Une autre analyse a montré que Tbx6 est 

associé à des fusions des côtes, des fusions de la colonne vertébrale et à des irrégularités du 

corps vertébral chez les souris homozygotes (Watabe-Rudolph et al., 2002). 

          Le gène MAPK3 (« Mitogen-Activated Kinase 3 ») ou ERK1 (« Extracellular signal-

Regulated Kinase 1 ») code pour une protéine sérine / thréonine kinase impliquée dans la 

voie Ras / MAPK. Cette voie de signalisation est contrôlée partiellement par les gènes de la 

région ALDOA, MVP et TAOK2 et est impliquée dans l’angiogenèse, la régulation, la 

différentiation, la migration, la prolifération et la survie cellulaire. Certains modèles animaux 

nous ont apporté des informations sur le rôle de cette voie de signalisation dans le 

développement neurologique. Précisément, à partir du modèle de la souris il a été démontré 

l'exigence de cette voie pour la formation du néocortex et les effets généraux sur 

l’excitabilité corticale des neurones pyramidaux. Un autre modèle murin pour la délétion de 

la région entière 16p11.2 a montré une signalisation ERK accrue pouvant contribuer à la 

cytoarchitecture corticale anormale, la taille cérébrale plus petite, le comportement anormal 

de type anxieux et l’hyperactivité associés à ce modèle (Pucilowska et al., 2015). En outre, il 

a été suggéré un rolê essentiel de la protéine MAPK3 dans la formation correcte de 

l’architecture synaptique en régulant le ciblage précis des axones présynaptiques sur les 

cibles post-synaptiques appropriées dans les jonctions neuromusculaires larvaires de 
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Drosophile. Cette étape peut être modifiée de manière significative dans le cas de l’ASD 

(Park et al., 2017). 

          Comme nous avons mentionné précédemment l’étude et la compréhension des 

syndromes 16p11.2 est encore complexe et incomplète à cause de la grande variabilité 

phénotypique de pénétrance incomplète que l’on trouve entre les patients affectés ainsi que 

la grande densité génétique de la région. La plupart des gènes décrits dans cette partie du 

manuscrit sont exprimés dans le cerveau et ont un rôle potentiel dans le développement 

neurologique. Bien qu'aucune mutation spécifique de la plupart de ces gènes n’ait été 

associée à une pathologie humaine, une petite délétion de 118 kb comprenant les gènes 

MVP, CDIPT, SEZ6L2, ASPH1 et KCTD13 a été identifiée dans une famille de trois générations 

en ségrégation avec l’ASD (Crepel et al., 2011). Cette étude signale le rôle potentiel clé de 

ces 5 gènes dans le développement de ce trouble neuropsychiatrique associée aux 

syndromes 16p11.2 BP4-BP5. 

 

 

VIII. La modélisation des CNVs 16p11.2 BP4-BP5 
 

 

1. Les modèles murins 
 

En parallèle aux études de génétique humaine les modèles animaux ont été développés afin 

de faciliter la compréhension de la relation entre le génotype et le phénotype. L'utilisation 

de souris comme organismes modèles pour l’étude de la biologie humaine est basée sur les 

similitudes du point du vue génétique, moléculaire et physiologique entre les deux espèces. 

Dans le cadre génétique, plus de 90% du génome humain et du génome murin peuvent être 

divisés en régions correspondantes de synténie conservées (segments d’ADN pour lesquels 

la séquence génique du plus récent ancêtre commun est conservée entre deux espèces) et 

environ 80% des gènes de la souris ont leur séquence génétique homologue dans le génome 

humain (Waterson et al., 2002). Dans le contexte comportemental, ces rongeurs 

développent des comportements d'anxiété, d'apprentissage et de mémoire, des instincts 

sociaux ainsi que des autres réactions émotionnelles. Cette caractéristique a encouragé son 

utilisation dans des études visant à imiter les réponses comportementales humaines dans 

des conditions physiologiques ou pathologiques associées à des troubles 

neuropsychiatriques. Dans ces études, des lignées pures et consanguines sont souvent 

utilisées, c’est-à-dire des modèles de souris homozygotes à tous les locus de leur génome. Ce 

fond génétique permet d’obtenir une reproductibilité d’un animal à l’autre et évite des 

altérations à cause des différences génétiques. En plus, il est essentiel de maintenir les 

conditions environnementales  strictement contrôles afin d’éviter que le comportement des 

animaux puisse être altéré. 

L’édition du matériel génétique murin pour générer des délétions et des duplications 

d’une taille variable nous a permis la modélisation des syndromes de variations du nombre 

de copies génétiques (Brault et al., 2006). En outre, les modèles de souris permettent 

d’étudier l'action d'un gène particulier dans la biochimie et la physiologie d'un organisme à 
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travers des techniques comme l’insertion de cassettes de piégeage (Skarnes et al., 2011) ou 

des techniques plus récentes telles que CRISPR / Cas9 (Birling et al., 2017). De plus, 

l’inactivation génétique permet la compréhension de mécanismes biomoléculaires 

déclencheurs des phénotypes spécifiques et le développement des futures thérapies 

précliniques pouvant être utilisées chez l'homme et contribuer à améliorer la vie des 

patients. 

Des autres modèles animaux ont été également générés et développés parce qu’ils 

présentent certaines avantages par rapport à la souris comme dans le cas particulier de 

l’espèce du rat. En ce qui concerne au domaine comportemental pour l’étude des désordres 

du neuro développement, les rats sont plus intelligents que les souris et performent mieux 

dans les tests d'apprentissage, de mémoire et de dépendance (Ellenbroek et Youn, 2016). 

Les rats présentent également un instinct social plus important que les souris, ce qui permet 

d’évaluer des troubles du comportement et l’interaction sociale associés aux traits 

autistiques humains. Ces rongeurs présentaient aussi des comportements sophistiqués très 

surprenants tels que l'empathie. En outre, les rats sont plus dociles, ce qui facilite leur 

manipulation et évite leur stress. De plus, ils ont une taille plus grande ce qui facilite les 

chirurgies et permet d'obtenir de plus grands volumes d'échantillons. 

La publication du génome de rat en 2004 (Gibbs et al. 2004) et la disponibilité d’outils 

d'édition de gènes ont permis la création de quelques modèles de rats transgéniques, 

principalement destinés à la recherche en neurobiologie. En 2017, une étude sur le 

syndrome de Phelan-McDermid (Harony-Nicolas et al. 2017) associé à des traits autistiques, 

de graves retards de langage, des déficits de l'attention et une déficience intellectuelle en 

présence d’une mutation du gène SHANK-3 a utilisé un modèle de rat déficient pour la 

protéine SHANK-3. Cette recherche a permis le développement d’un traitement pour les 

patients atteints de ce syndrome à base d'ocytocine. 

          Effectivement, la modélisation murine des principaux syndromes des CNVs associés à 

l’ID, l’ASD et des autres désordres neuropsychiatriques ont abouti à l’observation des 

altérations cognitives et du comportement associées à la symptomatique humaine et offrent 

des perspectives très importantes pour la santé humaine. 

 

 

2. Les modèles de souris pour les réarrangements 16p11.2 
 

La région de synténie 16p11.2 BP4-BP5 a été retrouvée sur le chromosome 7F3 de la souris 

(Figure16). Les premiers modèles de souris des réarrangements 16p11.2 BP4-BP5 porteurs 

de la délétion et la duplication de la région Slx1b-Sept1 ont été caractérisés en 2011 afin de 

vérifier si la région 16p11.2 contient des gènes sensibles au dosage génétique responsables 

des phénotypes observés (Horev et al., 2011). L’analyse comportementale de ces rongeurs 

maintenus sur un fond hybride B6N129Sv porteurs de la délétion a révélé un faible taux de 

survie, un faible poids corporel, une hyperactivité dans la cage d’hébergement ainsi que 

dans les tests de champs ouvert et l’activité circadienne, une stéréotypie d’escalade et une 

descente inhabituelle du plafond de la cage chez certains individus (Brunner et al, 2015; 

Horev et al, 2011). Ces souris ont montré également des déficits dans le test de 
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conditionnement à la peur, le test d'évitement passif et la reconnaissance d’objet. 

Cependant, une sociabilité normale et une préférence pour la nouveauté sociale ont été 

observées chez ces souris dans le test de préférence sociale à trois chambres (Brunner et al, 

2015; Pucilowska et al, 2015; Tian et al, 2015). Alors que la caractérisation des animaux 

porteurs de la duplication a révélé uniquement une hypoactivité locomotrice en test 

d’activité circadienne. Les auteurs ont également observé des augmentations du volume de 

certaines régions cérébrales pour les animaux porteurs de la délétion et des observations 

opposées pour les porteurs de la duplication (Horev et al., 2011). L’intervalle Slx1b-Sept1 

ciblé inclut 4 gènes (Cd2bp2, Tbc1d10b, Mylpf et Sept1) qui ne sont pas associés à la région 

de synténie humaine 16p11.2 BP4-BP5. Ceci induit donc un biais dans la modélisation de la 

pathologie humaine.  

 

 

 

Figure 15. Les modèles de souris pour les réarrangements 16p11.2 

Dans la partie supérieure de l’image on trouve l’intervalle génétique 16p11.2 BP4-BP5 associé à la pathologie 

humaine. Dans la partie inférieure de la figure on trouve la région de synténie placée dans la région 7F3 du 

chromosome de la souris ainsi que les modèles de souris pour les CNVs 16p11.2 développés dans les études 

précédentes (Adapté de Arbogast et al., 2016). 

 

 

          En 2014 un deuxième modèle de souris pour la délétion de la région 16p11.2 Coro1a-

Spn sur un fond hybride B6N129Mo a été créé (Portmann et al., 2014). Sa caractérisation a 

montré des altérations neuronales et volumétriques des ganglions de la base, un faible taux 

de survie, un poids corporel faible, ainsi que des phénotypes comportementaux incluant une 

hyperactivité locomotrice, un déficit dans la mémoire de reconnaissance d’objets et la 

mémoire de reconnaissance de localisation d’objets et une incapacité à nager dans la piscine 

de Morris. Les comportements sociaux étaient normaux à la fois dans le test de sociabilité à 

trois chambres et dans le test d’interactions sociales réciproques juvéniles. Cependant, ce 

modèle montrait des altérations dans les interactions sociales réciproques entre mâles et 

femelles et les vocalisations ultrasonores ainsi que l’absence de réponse à des stimulus 

sonores (Portmann et al, 2014; Yang et al, 2015). Pourtant les auteurs ont indiqué que les 

 
Arbogast et al 2016 
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animaux mutants présentaient une surdité sévère d’origine indéterminée qui pourrait 

affecter aux phénotypes observés. 

          Finalement, des modèles pour la délétion et duplication de la région 16p11.2 Sult1a1-

Spn, correspondant à la région synténique BP4-BP5 humaine, ont été créés par notre 

laboratoire en 2016 (Arbogast et al., 2016). L’analyse de ces modèles a montré une 

diminution du pois et de l’adipogenèse, une hyperactivité locomotrice, une présence de 

comportements répétitifs et un déficit de la mémoire de reconnaissance d’objets chez les 

souris porteuses de la délétion. Par contre, les souris porteuses de la duplication ont montré 

des phénotypes opposés incluant une augmentation du poids et de l’adipogenèse, une 

hypoactivité locomotrice et une amélioration de la mémoire de reconnaissance d’objets. Des 

déficits de l’interaction sociale ont été aussi identifiés pour la délétion et la duplication sur 

un fond hybride B6NC3B (Table1).  

 

 

       
       

       

       
  

 
Mâle-femelle     

       
       

 

Tableau 1: Carte récapitulative comportementale des phénotypes observés sur les modèles de souris portant 

des délétions et des duplications des intervalles génétiques Slx1b-Sept1, Coro1a-Spn, et Sult1a1-Spn sur des 

fonds génétiques hybrides et consanguins 

Les carrés verts indiquent la présence d’un phénotype significativement supérieur chez les mutants par rapport 

aux animaux témoins. Les carrés rouges indiquent un phénotype significativement inférieur chez les mutants 

par rapport aux souris témoins. Les carrés gris indiquent l’absence d’anomalies. Finalement, les carrés blancs 

indiquent que le phénotype n’a pas été analysé. (Adapté de Arbogast et al., 2016). 

 

 

IX. Projet de recherche 
 

Le travail de recherche exposé dans ce manuscrit vise à comprendre et atténuer les 

conséquences de la délétion et de la duplication de la région 16p11.2. Ainsi nous avons 

entrepris cinq études présentées en différents chapitres afin  d’identifier des gènes 

candidats et des mécanismes moléculaires impliqués dans la physiopathologie, dans le but 

ultime de développer des stratégies thérapeutiques pour aider à améliorer les capacités 

cognitives et les relations sociales des patients. Nous avons focalisé notre attention sur une 

plus petite délétion de 118-kb englobant cinq gènes de la région MVP, CDIPT, SEZ6L2, 

ASPHD1 et KCTD13 qui avait été identifiée dans une famille de trois générations avec l’ASD 
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(Crepel et al., 2011), mettant en évidence un rôle clé de ces cinq gènes dans les 

caractéristiques neuro psychiatriques associées. Dans ces recherches nous avons utilisé deux 

modèles animaux différents: la souris et le rat. 

 

Grâce aux études précédentes décrites dans les sections antérieures, actuellement nous 

avons pu acquérir des connaissances très utiles par rapport à certains gènes de l’intervalle 

génétique 16p11.2. Afin d’identifier des mécanismes impliqués dans le développement 

neural comme étant des déterminants potentiels des phénotypes associés aux CNVs 

16p11.2, nous avons développé deux approches pharmacologiques.  

 

La première étude de ces approches pharmacologiques inclut l’inhibition pharmacologique 

de la voie de signalisation RHOA / ROCK dépendante de l’interaction entre KCTD13 et CULLIN 

sur les modèles Kctd13+/- et 16p11.2 Del/+ (Arbogast et al., 2016). La connaissance des 

fonctions importantes de la voie de signalisation de RHOA GTPase, a permis de proposer que 

des variations du dosage de KCTD13, comme résultat des réarrangements de la région 

chromosomique 16p11.2 BP4-BP5, ont un impact fonctionnel dans la morphogenèse du 

cerveau et la migration cellulaire, à cause de la dérégulation de la voie RHOA / ROCK. Cette 

hypothèse a été confirmée grâce aux résultats récents qui montrent une réduction de la 

transmission synaptique dans l'hippocampe de souris déficientes pour Kctd13, comme 

conséquence de l’augmentation de la protéine RHOA (Escamilla et al., 2018). Cependant, le 

rôle mécaniste de RHOA dans les syndromes 16p11.2 reste toujours incompris. Pour cette 

raison nous avons décidé d’évaluer l'implication de la voie RHOA, régulée par KCTD13, dans 

les phénotypes associés aux syndromes 16p11.2. Avec cet objectif, nous avons étudié les 

effets thérapeutiques de l’inactivation de la voie de signalisation RHOA / ROCK par 

l’administration chronique de la drogue fasudil (HA1077), un inhibiteur de la protéine kinase 

Rho (ROCK) sur le modèle de souris porteur de la délétion du gène Kctd13, ainsi que sur le 

modèle correspondant à la délétion de la région complète 16p11.2 BP4-BP5. 

Cette étude est présentée sous la forme d’un manuscrit intitulé: « Targeting the RHOA 

pathway through fasudil treatment improve learning and memory phenotypes in Kctd13 and 

16p11.2 deletion mouse models » ; Sandra MARTIN LORENZO, Marie Christine BIRLING, 

Claire CHEVALIER, Yann HERAULT. 

 

La deuxième approche pharmacologique inclut une étude multicentrique de validation de 

l’effet de l’arbaclofen sur le modèle 16p11.2 Del/+. Avant cette recherche, il a été suggéré la 

possibilité d'un certain chevauchement entre les mécanismes de la physiopathologie du 

syndrome de la microdélétion 16p11.2 et du syndrome de l'X fragile (Tian et al., 2015). Des 

améliorations dans la symptomatologie associée au syndrome de l'X fragile et l’autisme 

idiopathique, ont été observées après un traitement chronique avec la drogue arbaclofen, 

un agoniste sélectif du récepteur GABA-β (Henderson et al., 2012; Veenstra-VanderWeele et 

al., 2017). Ces données soulèvent la possibilité intrigante que l’arbaclofen puisse être 

bénéfique pour le syndrome de délétion 16p11.2.  Nous avons donc décidé de participer à 

une étude multicentrique avec 3 laboratoires indépendants travaillant sur 3 modèles 
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différents de la délétion 16p11.2 pour confirmer l’action de l’arbaclofen sur le 

comportement et l’apprentissage. 

Cette étude n’est pas présentée dans ce travail de recherche car les résultats des 3 

laboratoires sont en cours de regroupement sous la forme d’un manuscrit. 

 

Ensuite, le modèle de souris a été également utilisé pour continuer à décrypter le rôle de 

certains gènes de la région 16p11.2 dans les phénotypes comportementaux associés à la 

délétion de l’intervalle génétique. Nous avons étudié particulièrement deux gènes 

candidates de la région MVP-KCTD13: Mvp et Sez6l2. 

A cette fin nous avons sélectionné des mutations nulles affectant chacun des 2 gènes chez la 

souris sur un fond génétique pure. Ensuite, nous avons conduit une étude phénotypique de 

l’impact de ces mutations à l’état hétérozygote sur des animaux de 12 semaines. Notre 

analyse est basée sur les phénotypes observés chez les souris mâles porteuses de la délétion 

16p11.2 Sult1a1-Spn (Arbogast et al., 2016) correspondant à la région synténique BP4-BP5 

humaine. Le protocole de caractérisation comportementale a évalué l'activité, le 

comportement répétitif et les phénotypes d'apprentissage et de mémoire. Cette recherche 

nous permettra de comprendre l’implication de ces loci dans l’apparition des anomalies 

cognitives à cause de ce réarrangement génétique. Notre étude permettra également de 

cibler les mécanismes moléculaires régulés directement ou indirectement par ces gènes 

associés aux désordres neuropsychiatriques et aux anomalies congénitales identifiées chez 

les patients. 

 

Le prochain chapitre décrit la modélisation des syndromes de variation du nombre de copies 

de la région 16p11.2 chez le rat. Afin de générer un modèle des réarrangements 16p11.2 

plus relevant pour l'autisme, nous avons développé des modèles de délétion et de 

duplication de la région homologue à l'intervalle génétique humain 16p11.2 chez le rat, un 

animal plus sociable que la souris.  Les gènes de la région 16p11.2 BP4-BP5 sont hautement 

conservés sur le chromosome 1 du rat.  

Ces modèles de rats ont été créés sur la lignée hybride Sprague-Dawley (SD) non consanguin, 

afin de mieux comprendre la variabilité (pénétrance et expressivité) des phénotypes associés 

à ces syndromes chez les patients. Pour déchiffrer plus en détail les fonctions cognitives 

spécifiques et les traits autistiques sur les modèles de rat 16p11.2, nous avons mené une 

caractérisation phénotypique chez le mâle et la femelle à partir d’un protocole basé sur les 

tests où les modèles de souris montraient des phénotypes robustes: l’augmentation de 

l'activité dans le test de champ ouvert, les déficits dans la mémoire de reconnaissance et 

l'interaction sociale.  

Cette étude est présentée sous la forme d’un manuscrit intitulé « Sexual dimorphism in rat 

models of 16p11.2 deletion and duplication syndromes » ; Sandra MARTIN LORENZO, Valérie 

NALESSO, Séverine MENORET, Jean-Paul CONCORDET, Ignacio ANEGO, Yann HERAULT. 

 

En parallèle nous avons contribué avec nos modèles de rat, à une analyse phénotypique 

multi-espèces des malformations craniofaciales induites par les CNVs de la région 16p11.2. 

Cet étude est également présentée sous la forme d’un manuscrit accepté pour le journal « 
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Cell Reports » : intitulé: « Oligogenic effects of 16p11.2 copy number variation on 

craniofacial development» ; Yuqi QIU, Thomas ARBOGAST, Sandra MARTIN LORENZO, 

Hongying LI, Shih C. TANG, Ellen RICHARDSON, Oanh HONG, Shawn CHO, Omar SHANTA, 

Timothy PANG, Christina CORSELLO, Curtis K. DEUTSCH, Claire CHEVALIER, Erica E. DAVIS, 

Lilia M. IAKOUCHEVA, Yann HERAULT, Nicholas KATSANIS, Karen MESSER, Jonathan SEBAT. 

 

La grande différence d’expressivité phénotypique observée entre le sexe masculin et le sexe 

féminin sur le modèle de rat nous a motivé à évaluer la modélisation de la délétion de la 

région 16p11.2 pour le sexe féminin chez la souris. La dernière partie de ce travail de 

recherche décrit la caractérisation comportementale du modèle de souris Del/+ 16p11.2 

BP4-BP5 Sult1a1-Spn chez la femelle afin de vérifier la robustesse des phénotypes associés à 

la modélisation de la délétion 16p11.2 pour les 2 sexes. Considérant le biais sexuel par 

rapport aux désordres neurocognitifs associés aux réarrangements 16p11.2 chez l´humain 

ainsi que les différences entre les sexes dans l’impact de la délétion sur la signalisation 

intracellulaire dans le cerveau et les phénotypes d’apprentissage chez la souris (Grissom et 

al., 2017), nous avons développé un protocole de caractérisation pour ce sexe. Ce protocole 

est basé sur les phénotypes observés chez les souris mâles porteurs de la délétion 16p11.2 

Sult1a1-Spn. Le modèle féminin sur un fond consanguin B6N a été analysé pour les 

phénotypes de l’activité locomotrice en champ ouvert, l’activité circadienne, la présence des 

comportements répétitifs et la mémoire de reconnaissance d’objets. 
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Introduction 
 

Malgré les progrès accomplis par rapport à la compréhension de la corrélation entre les 

modifications génétiques 16p11.2 et les anomalies phénotypiques chez les patients affectés 

et les organismes modèles, certaines questions restent à élucider. En particulier, les régions 

spécifiques du cerveau, les périodes de développement, le rôle spécifique de chaque gène et 

leur implication individuelle dans les désordres associés aux CNVs 16p11.2, ainsi que les 

voies de signalisation impactées par ces réarrangements restent inconnus. 

Les systèmes modèles du poisson zèbre et de la souris sont présentés  comme une 

aide  pour comprendre les contributions individuelles des nombreux gènes présents dans la 

région 16p11.2 aux syndromes de délétion / duplication du locus. Spécifiquement, les 

résultats de la modification individuelle de l’expression de chacun des gènes chez des 

embryons de poisson zèbre ont identifié un seul gène, KCTD13, capable d'induire des 

phénotypes anatomiques observés chez l’humain (Golzio et al., 2012). 

L'importance de KCTD13 pour la prolifération cellulaire a été confirmée dans des 

cerveaux des souris en développement. Contrairement à ces études, des autres recherches 

n'ont pas détecté d'augmentation de la taille du cerveau ou de la neurogenèse chez la souris 

ou le poisson zèbre lorsque le locus Kctd13 entier a été supprimé sur ces modèles animaux 

(Escamilla et al., 2017). La différence entre ces deux lignes de données peut être due à des 

mécanismes de compensation différents entre la technique d’invalidation du gène et la 

suppression génétique, des différences phénotypiques possibles entre l'inactivation de 

Kctd13 dans seulement un sous-ensemble de progéniteurs neuronaux et la suppression 

génétique complète du locus, ou bien des contributions d'autres gènes situés à l’intérieur ou 

ailleurs de l’intervalle 16p11.2. 

          Des études récentes suggèrent que des modifications dans le dosage de Kctd13 et des 

gènes Lat ou Mvp, placé aussi dans la région 16p11.2, pourraient avoir des effets 

épistatiques sur la taille du cerveau (Arbogast et al., 2019). 

Avant ce travail de recherche, il a été rapporté que la protéine KCTD13 interagit 

physiquement avec la protéine CULLIN3 dans la couche corticale interne quatre chez 

l’humain. Cette union forme un complexe qui permet l’ubiquitination et la régulation des 

niveaux de la protéine RHOA (Lin et al., 2015). RHOA est une petite GTPase qui intervient 

dans l'activation de la kinase Rho (ROCK), ce qui entraîne la phosphorylation de la sous-unité 

de liaison de la myosine MYPT-1 (« Myosin phosphatase target subunit 1 ») de la 

phosphatase MLCP (« Myosin-light-chain phosphatase »), ce qui la rend inactive, préservant 

ainsi la phosphorylation de MLC (« Myosin Light  Chain ») et maintenant les contractions 

musculaires (Wirth., 2010). La connaissance des fonctions importantes de la voie de 

signalisation de RHOA GTPase, ont permis de proposer que des variations du dosage de 

KCTD13, résultantes des réarrangements de la région 16p11.2 BP4-BP5, ont un impact 

fonctionnel dans la morphogenèse du cerveau et la migration cellulaire, à cause de la 

dérégulation de la voie RHOA / ROCK. Cette hypothèse a été confirmée grâce à des études 
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récentes qui montrent la perte d’épines dendritiques et la réduction de la transmission 

synaptique dans la région CA1 de l'hippocampe des souris déficientes pour Kctd13, comme 

conséquence de l’augmentation de la protéine RHOA. Dans ce cas, la délétion complète du 

gène Kctd13 n’induisait pas de déficits de mémoire de reconnaissance chez la souris 

(Escamilla et al., 2018). Cependant, une autre modèle de souris pour la délétion de l'exon 2 

de Kctd13, et donc l'inactivation du gène, présentait des altérations de la densité des épines 

dendritiques et des déficits de mémoire de reconnaissance, mais en absence de 

changements détectables sur les niveaux d'expression de RHOA. Pourtant, les analyses 

d'ARN-seq des profils d'expression génique du cortex et de l'hippocampe de ce modèle ont 

révélé des voies de signalisation altérées essentielles pour le développement neurologique, 

incluant la formation synaptique (Arbogast et al., 2019). 

          La compréhension des mécanismes physiopathologiques sous-jacents aux CNVs 

16p11.2 nous a motivé à évaluer l'implication de la voie RHOA / ROCK dans les phénotypes 

associés aux syndromes 16p11.2. Avec cet objectif, nous avons décidé d’étudier les effets 

thérapeutiques de l’administration chronique de la drogue fasudil (HA1077), un inhibiteur de 

la kinase Rho (ROCK) sur le modèle de souris pour la délétion du gène Kctd13, ainsi que sur 

le modèle pour la délétion de la région complète 16p11.2 BP4- BP5 (Arbogast et al., 2016). 

Notre étude a montré que le traitement chronique par le fasudil de souris adultes parvient à 

rétablir la mémoire de reconnaissance chez deux modèles de souris, portant l’inactivation 

heterozygote de Kctd13 ou la délétion de la région Sult1a1-Spn1 (Arbogast et al., 2016). Ces 

résultats confirment la cible KCTD13 et valide la voie RHOA / ROCK comme voie 

d’intervention pour réduire certains déficits de mémoire associés au syndrome de délétion 

de la région 16p11.2. 
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ABSTRACT 
 

Copy number variants have an important role in the appearance of neurodevelopmental 

disorders. Particularly, the deletion of 16p11.2 locus is found in patients with autism 

spectrum disorders, intellectual disability and several other features. Previous studies 

highlight the implication of Kctd13 genetic imbalance in the 16p11.2 deletion through the 

regulation of RHOA pathway. Thus, we decided to target this RHOA pathway to rescue the 

cognitive phenotypes found in 16p11.2 mouse models. We used a chronic administration of 

fasudil (HA1077), an inhibitor of the Rho-associated protein kinase (ROCK), in the mouse 

model with a heterozygous inactivation of Kctd13, and in the model carrying the deletion of 

the entire region 16p11.2 BP4-BP5 and we focus our attention on the most robust cognitive 

phenotypes affecting the novel object recognition. Our results showed that a chronic fasudil 

treatment can restore the object recognition memory in both mouse models. These findings 

confirm the KCTD13 as a target for the 16p11.2 deletion and the involvement of the RHOA / 

ROCK pathway dysregulation in cognitive deficits linked to 16p11.2 CNV. 
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INTRODUCTION 

 

Genetic copy number variants (CNV) of the 16p11.2 locus are an important risk factor for 

multiple neurodevelopmental disorders1,2,3. The most recurrent 16p11.2 rearrangements, 

deletion and reciprocal duplication, induces intellectual disability (ID)4 and Autism Spectrum 

Disorder (ASD)5,6,7,8. In addition, they are associated with other neuropsychiatric disorders, 

such as epilepsy9, attention deficit / hyperactivity disorder10, schizophrenia and bipolar 

trouble11. Body mass index phenotypes and abnormal head size have also been reported in 

these 16p11.2 mutation9,10,12 ,13,14. 

The most frequent event of the 16p11.2 CNVs corresponds to the genetic interval between 

SULT1A1 and SPN1 encompassing 600 kb and 32 genes. A study conducted in 2011 found a 

microdeletion of the 118 kb MVP-KCTD13 region inside the 16p11.2 genetic interval, 

segregating with ASD in a family of three generations15, highlighting a potential key role of 

these genes in the neuropsychiatric syndrome linked to this mutation. 

The modelling of the 16p11.2 rearrangements, through animal models, supplies some 

mechanism supporting the human genetic data. Indeed, three mouse models have been 

developed carrying deletion of the 16p11.2 homologous genetic interval and they shared 

common phenotypes with hyperactivity, repetitive behaviors, and deficits in spatial or 

recognition object memory16,17,18.  

To find the specific brain regions, developmental periods, networks and pathways impacted 

by the 16p11.2 deletion, several studies have been carried out. In particular, the 

development of dynamic spatio-temporal networks of 16p11.2 genes, by integrating data 

from brain developmental transcriptome with physical interactions of 16p11.2 proteins, 

allowed to elucidate the role of KCTD13 as protein that complexes with CULLIN 3 (Cul3) 

ubiquitin ligase regulating the Ras homolog family, member A (RHOA) protein levels19. The 

known important functions of Rho GTPase signaling pathway in brain morphogenesis at early 

stages of brain development, allowed to propose that KCTD13 dosage changes in 16p11.2 

deletion or duplication carriers may influence RHOA levels and lead to impaired brain 

morphogenesis and cell migration during fetal stages of brain development19. This 

hypothesis agrees with precedent studies in which it was demonstrated that KCTD13 is 

implicated in abnormal brain size associated to 16p11.2 CNVs in zebrafish20. 

Based on these findings, Kctd13+/- mouse model showed a reduction of the functional 

synapses number, due to a diminution of dendritic length, complexity and dendritic spine 

density by increasing levels of RHOA21. This alteration was reversed by RHOA inhibition with 

rhosin, which present the potential role of RHOA as therapeutic target. Also, recent studies 

revealed dendritic spine maturation alterations of hippocampal pyramidal neurons in 

another Kctd13+/- mouse model22. This model also presented a deficit in recognition and 

location memory, in the same paradigm with two objects as previously observed in the 

16p11.2 Del/+ mouse model16,17,18 whereas the recognition deficit was not observed in 
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another paradigm with 3 objects21. Surprisingly, in the last case this deficit did not seem to 

be related to a change in RHOA protein level.  

 

Despite intense investigations, how the level of KCTD13 can regulates the RHOA signaling 

pathway, as well as its implication in the phenotypes associated with the 16p11.2 CNVs 

remain unclear. Thus, we decided to explore the role of Kctd13 by engineering a third knock-

out with CRISPR / Cas9 and we characterized the novel heterozygous mouse model and 

compared its outcome with the 16p11.2 deletion. 

Furthermore, the integration of all the previous studies let us to hypothesis that the 

functional of 16p11.2 deletion may lead to an over-activation of the KCTD13-CUL3-

dependent RHOA pathway. So, if we assume that the RHOA / ROCK pathway over-activation 

causes some behavioural and learning alterations in the 16p11.2 deletion, inhibiting this 

pathway should improve the Kctd13+/- and the 16p11.2 Del/+ associated phenotypes. We 

decided therefore, to treat our mice with fasudil (HA1077), an inhibitor of the RHOA / ROCK 

pathway that we already used to reverse the behavioral impairments of the Oligophrenin-1 

mouse model of intellectual disability26. Thus we planned first to characterize the behavior 

phenotypes of the new Kctd13 haploinsufficient model and to compare the outcome with 

the 16p11.2 Del/+ mice. Then we set up a chronic administration of fasudil (HA1077) in adult 

Kctd13+/- and 16p11.2 Del/+ 18 mice and evaluate the behavior of the treated versus the 

non-treated animals. This evaluation was carried out based on a phenotypic analysis, 

focusing on open field activity and object memory (both location and recognition) and 

additional molecular analysis of key elements linked to the RHOA pathway. 
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MATERIALS AND METHODS  
 

Mouse lines, genotyping and ethical statement 

 

Two mouse models were used in the study. The 16p11.2 mouse model corresponds to the 

Del(7Sult1a1-Spn)6Yah mouse model18, previously described and noted here Del/+. The line 

was maintained on a pure C57BL/6N inbred genetic background. The deletion allele was 

identified by PCR using primers Fwd1 (5’-CCTGTGTGTATTCTCAGCCTCAGGATG-3’) and Rev2 

(5’-GGACACACAGGAGAGCTATCCAGGTC-3’) to detect a specific band of 500 bp while the 

wild-type allele was identified using Fwd1 and Rev1 (5’-GGACACACAGGAGAGCTATCCAGGTC-

3’) primers to detect the presence of a 330 bp fragment. PCR program was: 95 °C / 5 min; 

35× (95 °C / 30 s, 65 °C / 30 s, 70 °C / 1 min), 70 °C / 5 min. 

The Kctd13Yah1 knock out mice was generated by the CRISPR / Cas9 technology23. Two pairs 

of sgRNAs, one pair located upstream and the other pair downstream of the target region, 

were selected to delete the exon 3 and 4 of the gene. Both pairs of sgRNAs (showing a cut) 

and Cas9 mRNA were microinjected in fertilized eggs of superovulated sexually immature 

female C57BL/6 N mice (4–5 weeks olds). Injected embryos cultured in vitro were implanted 

into the oviducts of pseudo-pregnant females. 

The deletion of Kctd13 (Kctd13+/-) was confirmed by PCR using primers Ef (5’-

ACCTCTTAGCTGGGCATGCTAAATT-3’) and Xr (5’-AGCCTATGCTAACTATTATCACAGG-3’) and 

the sequence of the deleted fragment. PCR reaction gave deletion and wild-type products of 

429 and 668 bp long respectively. PCR program was: 94°C / 5 min, 35 X (94°C / 30 sec; 60°C / 

30 sec; 72°C / 30 sec), 72°C / 5 min. This set of primer were also used for genotyping. 

 

Experimental procedures for the use of animals for research were approved by the Ministry 

of National Education, Superior Learning and Research and with the agreement of the local 

ethical committee Com’Eth (n° 17) under the accreditation number APAFIS#3590-

2016011510199843 v4 with YH as the principal investigator (accreditation 67-369). 

 

Chronic fasudil treatment  

 

In this study, we developed a protocol for a pre-clinical treatment with the tolerated drug 

fasudil hydrochloride or HA1077 (F4660, LC laboratories Boston, MA, USA). At weaning, 

control littermate of heterozygous male mice from the Kctd13 or the Del/+ lines were 

collected from several litters and housed in groups of 4-2 individuals in ventilated cages 

(Green Line, Techniplast, Italy), where they had free access to water and diet (D04 chow 

diet, Safe, Augy, France). Animal bedding (Litiere peuplier AB 3 autoclavable, AniBed, 

Pontvallain, France) were changed once a week. At 11 weeks old animals were transferred 

from the animal facility to the phenotyping area. The constant temperature was kept at 

21±2 °C, and the light cycle was controlled as 12 h light and 12 h dark (lights on at 7 am).  
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Three independent cohorts of mice for each line at 12 weeks old were subjected to a battery 

of behavioral tests (see below) for 2 weeks. Then, 14 weeks old mice were randomly divided 

into 2 groups, one treated with fasudil administrated orally ad libitum in drinking water 

(100mg/kg/day) and a second with no treatment. Four weeks after the start of the 

treatment 18 weeks old mice underwent again the same battery of behavioral tests (see 

below) and were kept under the same treatment condition (Figure 1). The experiments were 

conducted blindly for genotype information to the animal caretakers and investigators as 

recommended by the ARRIVE guidelines24,25. A second batch of three independent cohorts 

were processed similarly but without behavior test for the molecular analysis of the 

hippocampal region from treated and non-treated mice. In this case, treated animals started 

directly the fasudil treatment at 12 weeks old during 6 weeks. Samples were quickly 

recovered from 18 weeks old mice after euthanasia by cervical dislocation and snap frozen 

for subsequent molecular analyses.   

 

Behavioral analysis  

 

Three behavior tests were used to evaluate the exploration activity in the open field test, 

and the learning and memory in the novel object location and the novel object recognition 

tasks in mice18. 

For the open-field (OF) mice were tested in automated open field (44.3 x 44.3 x 16.8 cm) 

made of PVC with transparent walls and a black floor, and covered with translucent PVC 

(Panlab, Barcelona, Spain). The arena was divided into central and peripheral regions and 

homogeneously illuminated at 150 Lux. Each mouse was placed on the periphery of the open 

field and allowed to explore the apparatus freely for 30 min. During each session we could 

measure the total distance travelled, evaluate the habituation of the animal over time, by 

splitting the data in 10-minute intervals and assess the vertical activity through the number 

of rears. 

The novel object location (NOL) memory task was carried out in an open field arena as 

previously described. In the first day, mice were habituated to the arena for 30 min at 150 

Lux. On the following day, animals were submitted to the first 10-min acquisition trial during 

which they were individually presented to 2 similar objects A (cylinder). Each object was 

placed 10 cm away from each one of the corners on the north side of the box. The 

exploration time of objects A (when the animal’s snout was directed towards the object at a 

distance ≤1 cm) was recorded. Minimum exploration time was set to 3 s, and mice that did 

not reach this criterion were excluded from the study.  A 10-min retention trial (second trial) 

was conducted 5 min later, when one of the familiar objects was displaced to a novel 

location (B) on the south side and the exploration time (t) of the two objects was recorded 

for 10 min. In this session, minimum exploration time was set also to 3 s, and mice that did 

not reach this criterion were excluded from the study. The recognition index (RI) was defined 

as (tB / (tA + tB) × 100). A RI of 50% corresponds to chance level and a significantly higher RI 

reflects good novel object location memory. 
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The novel object recognition (NOR) memory task is based on the innate preference of 

rodents to explore novelty. The test was performed in a circular open field of PVC white with 

opaque walls and floor of 30 cm high and 50 cm diameter. On the first and second days, 

each mouse was habituated to the arena for 15 minutes at 60 Lux. The following day, we 

started the NOR sessions. First, each animal was individually submitted to a 10 minutes 

acquisition trial during which occurs the presentation of two identical objects A (marble or 

dice) placed at the northeast or northwest of the open field arena. The exploration time of 

both objects A was recorded. 3 hours later (retention delay in home cages), a 10 minutes 

retention trial (second trial) was performed. One of the identical object A was changed for 

other novel object B at the same position. The exploration time of the two objects (familiar 

object and novel object) was recorded.  The recognition index (RI) was defined as (tB / (tA + 

tB) × 100). A RI of 50% corresponds to chance level and a significantly higher RI reflects good 

recognition memory. All mice that did not explore the objects for more than 3 seconds 

during the acquisition trial or the retention trial were excluded from the analysis. 

 

Western blot  

 

Fresh hippocampal tissue was isolated by rapid decapitation/dissection of tested mice and 

snap frozen. Then, it was lysed in ice-cold sonication buffer supplemented with Complete™ 

Protease Inhibitor Cocktail (Roche). Individual samples were disaggregated, centrifuged at 

4°C for 30 minutes at 14000 rpm, diluted in 4 X Laemmli sample buffer containing β-

mercaptoethanol (Bio-Rad), and incubated at 95 °C for 5 min. Protein concentration was 

determined by PierceTM BCA Protein Assay Kit (23225, ThermoScientific). Samples was 

diluted with sample buffer such that 30 µg of protein were loaded per lane onto 15% 

polyacrylamide gel. Gels were run and then transferred to nitrocellulose membranes by 

Trans-Blot® Turbo™ Transfer System (BioRad) through MIXED MW Bio-Rad Preprogrammed 

Protocol. Then they were blocked in 5% BSA, 1 X Tris-buffered saline, 0.1% Tween 20 (TBS-T) 

and incubated with primary antibody during 10 minutes. Membranes were washed in TBS-T 

followed by a 10 minutes secondary antibody incubation using GOXRB HRP AFFINITY 

(A16096, Invitrogen) at 2:10,000 through SNAP i.d.® 2.0 Protein Detection System (C73105, 

Merck). This apparatus has a vacuum-driven technology and a built-in flow distributor that 

actively drive reagents through the membrane. 

Total levels of RHOA protein and Myosin Light Chain phosphorylation by Myosin Light Chain 

Kinase via RHOA pathway were analysed using Western Blot. Proteins were visualized with 

Amersham™ Imager 600. Signals were quantified using ImageJ and analysed using Microsoft 

Excel and GraphPad Prism. We used the primary antibodies: RHOA (2117, Cell Signaling, USA, 

1:1,000) and pMLC (Thr18/Ser19 #3674, Cell signaling, Boston, MA, USA, 1:1,000). The ratio 

of protein or phosphorylation densities against control β-actin protein (monoclonal Anti-β-

Actin−Peroxidase antibody produced in mouse (A3854 Sigma)) was normalized to untreated 

wt sample mean. 

 

http://www.abcam.com/protocols/buffer-and-stock-solutions-for-western-blot#8
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Statistical analysis 

 

The statistical analysis was carried out using standard statistical procedure operated by 

Sigma Plot software (Starcom Information Technology Ltd, Bangalore, INDIA). All outliers 

were identified using the Grubbs' test from calculator GraphPad (GraphPad Software, San 

Diego). Acquired data from pre-treatment behavioral characterization of Kctd13+/- and 

16p11.2 Del/+ mouse models were analyzed through the Student t-test. One sample t-test 

were used to compare recognition index values to the set chance level (50%). Data from 

post-treatment behavioral phenotyping of both genetic lines were analyzed using one-way 

ANOVA followed by Tukey’s post-hoc test whenever data presented normal distribution and 

equal variance. Otherwise, we used the non-parametric Kruskal-Wallis one-way analysis of 

variance and Mann-Whitney U test. One sample t-test were used also to compare 

recognition index values to the set chance level (50%). Data from western blot technique 

were analyzed using the Kruskal-Wallis one-way analysis of variance test between groups 

followed by Mann-Whitney U test or Student t-test depending of data distribution. Data are 

represented as the mean ± SEM and the significant threshold was p < 0.05. 
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RESULTS 
 

Phenotypic characterization of the new Kctd13+/- mouse model and comparison with the 

16p11.2 Del/+ mouse model 

 

We created a new Kctd13 KO mouse model with the deletion of exon 3 and 4, and we 

evaluated its behavior in three tasks and compared the results obtained with the 

characterization of 16p11.2 Del/+ model (Figure 2). First, we did not observe significant 

differences in the open field test, when we measured the total distance travelled by 

Kctd13+/- mice compared to wt littermates. This result was different from the phenotype of 

the Del/+ mice. Indeed Del/+ mutant mice were more active with a significant increase in the 

distance travelled compared to their wt littermate. Then, we analyzed the distance travelled 

in 5-minute intervals, in order to detect the habituation to a new environment during the 

test. We found that the Kctd13 mutant mice experience a similar habituation to the control 

individuals. Here too, significant difference was observed in the 16p11.2 Del/+ carrier mice 

compared to their wild-type littermates. Finally, we evaluated the vertical activity with the 

numbers of rears, and we did not observe any significant differences in the two lines. 

Then we analyzed the memory for the location of objects (Figure 3). For this test, animals 

must distinguish between an object whose position has been changed and an unmoved 

object presented previously, after a retention delay of 5 min. When comparing the 

recognition index of the novel location object to the level of chance (50%), we observed that 

both mutant mice, Kctd13+/- and 16p11.2 Del/+, were not able to differentiate between the 

novel and familiar location compared to their respective wt littermates.  

Finally, we investigated whether Kctd13+/- mice could discriminate a novel object from a 

previously explored set of two objects after a retention delay of 3 hours in the NOR task. 

Whereas wt animals were able to differentiate objects showing a novel object preference, 

Kctd13+/- mice were not able to discriminate the novel from the familiar object. The deficit 

was like the one observed in the 16p11.2 Del/+ mice. Overall our behavioral analysis showed 

that the Kctd13 haploinsufficiency in the pure C57BL/6N genetic background phenocopied 

the object location and recognition memory deficits observed in the 16p11.2 deletion 

model. However, the increased exploration activity found in the 16p11.2 Del/+ mice was not 

observed in the Kctd13+/- mutant mice. 

 

Fasudil treatment reverses partially the cognitive impairment in the Kctd13+/- and in the 

16p11.2 Del/+ mouse models 

 

Thus, after the behavior characterization of the Kctd13+/- and 16p11.2 Del/+ mouse models, 

we subdivided both genotypes (wt and mutant) into two groups where individuals were 

randomly affected to one treated group with fasudil and a control group not treated for one 

month prior to further testing (Figure 1). 
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First, we noticed that the Fasudil treatment did not change the locomotor exploration 

activity since both genotypes maintained a total travelled distance. We also found a similar 

habituation to a new environment for the Kctd13+/- individuals but the habituation was 

altered for the Del/+ model. (Figure 4). 

Then we performed the novel object location memory test (Figure 5 top). Interestingly, one 

month after the first phenotypic characterization, we remarked on this occasion that non 

treated Kctd13+/- mice were able to differentiate between the novel and familiar located 

objects at 18 weeks of age. Nevertheless at the same age the non-treated and the treated 

16p11.2 Del/+ were impaired in the novel object location memory. 

A week after, we found that the wt groups, treated and non-treated, as well as the fasudil-

treated mutant, except non-treated Kctd13+/-, showed recognition performance in the NOR 

memory test. This observation confirmed the altered recognition memory in mutants at 19 

weeks, observed previously at 12 weeks, and demonstrated the protective effect of fasudil 

treatment in the Kctd13+/- and the 16p11.2 Del/+ models (Figure 5 bottom). 

 

Molecular analyses of RHOA / ROCK signaling pathway in the Kctd13+/- and the 16p11.2 

Del/+ mouse models 

 

Then we checked whether the RHOA / ROCK signaling pathway was over-activated due to 

increased levels of RHOA protein because of the Kctd13 deficit in both mouse models. In 

addition, we wanted to verify if the therapeutic effect of Fasudil on the behavioral 

phenotypes found in these models was due to the inhibition of the signaling pathway. For 

that purpose, total levels of RHOA protein as well as the phosphorylation of the Myosin Light 

Chain (MLC), a protein targeted by the RHOA/ROCK pathway, were quantified using Western 

Blot in Kctd13+/- and 16p11.2 Del/+, with or without fasudil treatment in naïve mice (Figure 

6).  

In agreement with the paper of Arbogast et al.22 our mouse model for the deficiency of 

Kctd13 did not show increased levels of RHOA in the hippocampal region at 18 weeks of age. 

As expected, the fasudil treatment did not modify RHOA expression levels (Figure 6). 

Nevertheless, this model showed an over activation of the RHOA / ROCK pathway with an 

increased MLC phosphorylation in the hippocampus. Interestingly the fasudil treatment 

normalized MLC phosphorylation levels in Kctd13 mutant individuals. For the 16p11.2 Del/+ 

line, we observed that the loss of one copy of the complete chromosomic region did not 

induce RHOA levels changes. Likewise, we did not found either alterations on the levels of 

this protein in the hippocampus of treated mice.  

As for the Kctd13 +/- model, we found that 16p11.2 deficient present increased 

phosphorylated MLC protein. Fasudil restored abnormal MLC phosphorylation in treated 

mutant mice but rather surprisingly induced increased MLC phosphorylation in wt mice to a 

degree comparable to non-treated  16p11.2 Del/+ mice. 
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DISCUSION 

 

In this manuscript we described the phenotypes of a new Kctd13+/- mouse lines that 

replicates some of the defects seen in young mouse models carrying the 16p11.2 deletion 

and we explored a treatment aiming at reducing the activity of the RHOA / ROCK pathway on 

cognition.  

With the new Kctd13+/- mouse line, we were able to detect changes in the NOL and NOR but 

no effect on the exploration activity compared to the 16p11.2 Del/+ mouse model. These 

results agreed with a recent study22 highlighting the role of KCTD13 in the 16p11.2 deletion 

syndromes. The loss of one copy of Kctd13 gene did not cause alterations on exploration or 

vertical activity of mice in open field test. However, the hemi-deletion of entire 16p11.2 

region induce hyperactivity in these animals. This observation lead us to propose that Kctd13 

genetic dosage is not involved in the increased exploration activity associated with 16p11.2 

deletion. Accordingly, we did not found improvement on the hyper locomotion showed by 

the 16p11.2 Del/+ mice with chronic fasudil administration. This finding suggests that there 

could be other genes of the region involved on this phenotype. For this reason, the 

treatment with an inhibitor of the RHOA / ROCK pathway, deregulated because of Kctd13 

decreased levels in 16p11.2 deficient, did not produce any response. 

When we analyzed the NOL in Kctd13 mutant mice, we saw that the mutant mice developed 

impaired novelty detection in NOL test at 12 weeks of age. However, at 18 weeks when we 

repeated the test again, the non-treated mutant mice did not show any defect. This 

observation may show that either there is a maturation deficit that is recovered in older 

mice, may be through compensatory effect or there is an effect in the repetition of the test. 

We favor the first hypothesis as the NOR phenotypes in this line in found as both age and 

the NOL phenotype is also observed at both ages in the 16p11.2 deletion. Indeed, we found 

a profound NOL deficit for the 16p11.2 Del/+ mice at 12 weeks, that was still observed at 

18weeks, with no recovered by chronic administration of fasudil for 4 weeks. So, future 

research will be necessary to analyze how this Kctd13 NOL phenotype is rescued in 18 weeks 

old naïve mice. This finding confirms that the NOL-phenotype associated to 16p11.2 

rearrangement is not completely dependent on Kctd13 dosage and on the effect in the 

RHOA / ROCK pathway. 

The object recognition memory is the cognitive ability that allows us to retrieve object 

information stored in memory and compare it with the object information presented to us, 

and we can evaluate it from new object recognition test in mouse model. This defect is one 

of the most robust and reproducible phenotypes associated with 16p11.2 deficient mice.  In 

agreement with precedent research, our Kctd13+/- mouse model developed deficits in 

novelty detection in NOR test. Furthermore, our study showed that fasudil treatment 

significantly improved this impairment in mutant mice. In agreement with the initial study of 

characterization of 16p11.2 Sult1a-Spn mouse model18, in the present investigation we 

observed a NOR phenotype in the mutant individuals. Likewise, fasudil chronic treatment 
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completely restored the observed phenotype in 16p11.2 deficient mice. Thus KCTD13 is 

probably a major driver of object recognition phenotype associated with 16p11.2 deletion. 

In addition, the therapeutic effects of fasudil on Kctd13 deficient and 16p11.2 deletion mice 

highlight the RHOA/ROCK signaling pathway as the main mechanism responsible of this 

phenotype. 

Interestingly deficient individuals for the Kctd13 gene showed no change in expression levels 

of the RHOA protein and the fasudil treatment did not modify RHOA protein expression in 

mutant and control mice. Likewise, the carriers of the 16p11.2 hemi-deletion did not display 

either alterations in the amount of this protein. Even if we were not able to detect change in 

the RHOA protein level, Kctd13 mutants as well as 16p11.2 deficient mice had increased 

phosphorylated-MLC levels. This observation confirms that RHOA / ROCK pathway outcome 

is over-activated probably due to a loss copy of Kctd13 in Kctd13 and 16p11.2 mutants. 

Furthermore, our study showed that the therapeutic effect of fasudil in recognition memory 

phenotype associated to 16p11.2 CNV was due to the normalizing action of the drug in both 

mouse models. 

At this point, we can highlight the clinical relevance of treatment because of its potential as 

a cognitive enhancer in humans with memory and learning dysfunction related to 

neurodevelopmental disorders. However, more work is necessary to understand what 

elements in the molecular mechanism affected by the loss of the Kctd13 gene are 

responsible for the over activation of the RHOA / ROCK pathway. 
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LEGENDS TO FIGURES 
 

Figure 1. Representation of the behavioral pipeline used for investigating the therapeutic 

effects of fasudil drug in Kctd13 deficient and 16p11.2 deletion mouse models. We used 3 

cohorts of animals for each genetic line. 12-week-old mice were subjected to different 

behavior and learning tests, after a previous habituation to the phenotyping zone. At 14 

weeks old, each cohort was divided into two groups. The first group started the fasudil 

treatment and the second group followed the cognitive characterization without treatment. 

 

Figure 2. Exploration activity in the Open field test of the Kctd13+/- (A) and the 16p11.2 Del/+ 

(B) mouse models at 12 weeks of age.  Male mice from the Kctd13+/- line (A : wt (n=20) and 

Kctd13+/- (n=19)) or from the 16p11.2 Del/+ line (B : wt  (n=38) and 16p11.2 Del/+ (n=32)) 

were free to explore the open field for 30 min as a new environment. First, the exploration 

activity was analyzed from the total distance (m) traveled during the test. Next, the 

adaptation of the mice to the environment was evaluated by dividing the test into periods of 

5 minutes. The central graph shows the distance traveled each 5 min for both genotypes. 

Finally, we analyzed the numbers of rears for evaluate vertical activity. The Kctd13+/- animals 

(A) showed no alterations in the different variables compared to their wt littermate whereas 

the 16p11.2 Del/+ mice (B) showed increase exploratory activity in the distance travelled 

compared to wt (Student t-test, Total distance : wt vs. Del/+ t(68) = -4.096; p < 0.001). 

However, the Del/+ mutant individuals displayed a decreased of the arena exploration 

during the test and thus a normal habituation to the new environment (Student t-test, T25-30 :  

wt vs. Del/+ t(68) = -1.336; p = 0.186). In addition, the mutant mice developed a tendency to 

the appearance of repetitive behavior, measured from the number of rears with 8 Del/+ 

animals having a strong rearing activity but as a group it was not significant (** p < 0.01; *** 

p < 0.001).  

 

Figure 3.  Novel object location (top) at 12 weeks and novel object recognition (bottom) at 

13 weeks in the Kctd13+/- (A) and the 16p11.2 Del/+ (B) mouse models. In the NOL test (top), 

the recognition index reflects the ability of mice from the two lines Kctd13+/- (wt (n=20) and 

Kctd13+/- (n=21) littermates); and 16p11.2 Del/+ (wt (n=28) and 16p11.2 Del/+ (n=27) 

littermates) to distinguish the new located object from the familiar one after a 5 min 

retention delay. The Kctd13+/- and the 16p11.2 Del/+ male mice showed a deficit in object 

location recognition memory compared to their wt littermate (One sample t test for the 

Kctd13+/-  line : wt (t (19) = 4.4607; p = 0.0003), Kctd13+/- (t (20) = 0.8648; p = 0.3974); and the 

16p11.2 Del/+  model: wt (t(27) = 3.2299; p = 0.0032), Del/+ (t(26) = 1.8372; p = 0.0776)). In the 

NOR test (Bottom), the animals (wt (n=24) and Kctd13+/- (n=23) littermates; and (wt (n=29) 

and 16p11.2 Del/+ (n=29)) littermates) were challenged to recognize the new object from 

the familiar object after a 3 h delay. Kctd13+/- and the 16p11.2 Del/+ mice showed a poor 

object recognition memory compared to their respective wt littermates (One sample t test 

for the Kctd13+/- model : wt (t(23) = 3.0558; p = 0.0056), Kctd13+/- (t(22) = 0.0805; p = 0.9366); 
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and the 16p11.2 Del/+  model: wt (t(28) = 2.6891; p = 0.0119), Del/+ (t(28) = 0.9147; p = 

0.3682)). (* p < 0.05; ** p < 0.01; *** p < 0.001).  

 

Figure 4. Exploration activity in the Open field test of the Kctd13+/- (A) and the 16p11.2 Del/+ 

(B) mouse models with or without fasudil treatment at 18 weeks of age. Male mice from the 

Kctd13+/- line (A: non treated wt (n=11), treated wt (n=9), non treated Kctd13+/- (n=10) and 

treated Kctd13+/- (n=9)) or from the 16p11.2 Del/+ line (B: non treated wt (n=20), treated wt 

(n=19), non treated 16p11.2 Del/+ (n=15) and treated 16p11.2 Del/+ (n=14)) explored the 

open field for 30 min. The exploration activity was measured with the total distance (m) 

traveled during the test. Next, the habituation of the mice to the environment was evaluated 

by dividing the test into periods of 5 minutes. The central graph shows the distance traveled 

each 5 min for both genotypes. Finally, we analyzed the numbers of rears for vertical 

activity. The Kctd13+/- animals (A) showed no alterations in the different variables compared 

to their wt littermate whereas the 16p11.2 Del/+ mice (B) showed increased exploratory 

activity in the distance travelled which was not affected by the fasudil treatment (One way 

ANOVA between groups : F(3,64) = 10 ; p < 0.001; Tukey’s post hoc tests : non treated wt vs. 

treated wt : p = 0.745, non treated Del/+ vs. treated Del/+ : p = 0.54, non treated wt vs. 

treated Del/+ : p = 0.001, treated wt vs. non treated Del/+ : p = 0.005 and treated wt vs. 

treated Del/+ : p < 0.001). Nevertheless, non-treated and treated Del/+ individuals 

experienced a decreased activity less pronounced throughout the test (One way ANOVA 

between groups, T25-30 : F(3,64) = 11.228 ; p < 0.001; Tukey’s post hoc tests: non treated wt vs. 

non treated Del/+ : p = 0.022, non treated wt vs. treated Del/+ : p < 0.001, treated wt vs. non 

treated Del/+ : p = 0.003; treated wt vs. treated Del/+ : p < 0.001).The treatment did not 

have either effect for any genotype on the vertical activity (Kruskal-Wallis one-way analysis 

of variance: H(3) = 7.274; p = 0.064). (* p < 0.05; ** p < 0.01; *** p < 0.001).  

 

Figure 5.  Novel object location (top) at 18 weeks and novel object recognition (bottom) at 

19 weeks in the Kctd13+/- (A) and the 16p11.2 Del/+ (B) mouse models. For NOL test (Top), 

recognition index reflects the ability of mice from the two lines Kctd13+/- (A : non treated wt 

(n=12), treated wt (n=13), non treated Kctd13+/- (n=13) and treated Kctd13+/- (n=10) 

littermates) and the 16p11.2 Del/+ (B : non treated wt (n=13), treated wt (n=15), non treated 

16p11.2 Del/+ (n=8) and treated 16p11.2 Del/+ (n=15) littermates) lines to distinguish the 

new location of an object from the familiar one after a 5 min retention delay. In the top 

panel, we observed again that the 16p11.2 Del/+ male mice showed a deficit in object 

location memory compared to their wt littermate but the Kctd13 heterozygotes were no 

more defective (One sample t test : non treated wt (t(11) = 3.9860; p = 0.0021), treated wt 

(t(12) = 4.4858; p = 0.0007), non treated Kctd13+/- (t(12) = 2.3628; p = 0.0359), treated Kctd13+/- 

(t(9) = 6.2928; p = 0.0001)) and the fasudil treatment was not able to restore this ability in the 

16p11.2 Del/+ model (One sample t test : non-treated wt (t(12) = 5.9663; p < 0.001), treated 

wt (t(14) = 4.8786; p < 0.002), non-treated Del/+ (t(7) = 0.9837; p = 0.3580),  treated Del/+ (t(14) 

= 2.1021; p = 0.0541)). In the NOR test (Bottom), the mutant animals from the Kctd13+/- 
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line(non treated wt (n=11), treated wt (n=11), non treated Kctd13+/- (n=14) and treated 

Kctd13+/- (n=10)) or the 16p11.2 Del/+ model (non treated wt (n=17), treated wt (n=12), non 

treated 16p11.2 Del/+ (n=14) and treated 16p11.2 Del/+ (n=12)) were challenged to 

recognize the new object from the familiar object after a 3 h delay. Kctd13+/- and the 16p11.2 

Del/+ mutant mice were both impaired to recognize the new object compared to their 

respective wt littermates in the non treated group. Additionality, fasudil treatment was able 

to restore the object recognition in the Kctd13+/- line (One sample t test : non-treated wt 

(t(10) = 2.7976; p = 0.0189), treated wt (t(10) = 5.7297; p = 0.0002), non-treated Kctd13+/- (t(13) = 

1.0142; p = 0.3290), treated Kctd13+/- (t(9) = 3.1937; p = 0.0109)) and in the 16p11.2 Del/+ 

model (One sample t test: non-treated wt (t(16) = 2.3736; p = 0.0305), treated wt (t(11) = 

2.3905; p = 0.0358), non-treated Del/+ (t(13) = 0.1737; p = 0.8648), treated Del/+ (t(11) = 

2.7517; p = 0.0188)). (* p < 0.05; ** p < 0.01; *** p < 0.001).    

 

Figure 6. Detection of RHOA (A, C) and of the phosphorylated form of MLC levels (P-MLC, 

B,D) by western blots in heterozygous Kctd13+/- (A,B) and the 16p11.2 Del/+ (C,D) 

hippocampal lysates and their control (wt) littermate. (A) The quantification of the western 

blot (an example is shown below the graph) revealed no changes in RHOA protein levels in 

the Kctd13+/- (A) or in the 16p11.2 Del/+ (C) mutant lines compared to their wt littermate. As 

expected, fasudil treatment did not cause changes in RHOA protein levels in the two mutant 

lines (wt non treated (n=22), wt treated (n=11), Kctd13+/- non treated (n=21) and Kctd13+/- 

treated (n=7); and wt non treated (n=17), wt treated (n=8), 16p11.2 Del/+ non treated 

(n=11) and 16p11.2 Del/+ treated (n=11)). However, Kctd13 deficient mice showed an 

increase in the levels of phosphorylated MLC protein (B) and the loss of a copy of 16p11.2 

region caused an increase in the levels of phosphorylated MLC protein (D). The treatment 

with fasudil reversed this alteration in Kctd13+/- (wt non treated (n=21), wt treated (n=10), 

Kctd13+/- non treated (n=23) and Kctd13+/- treated (n=9)) (Kruskal-Wallis one-way analysis of 

variance between groups : H(3) = 21.731; p < 0,001; Mann-Whitney Test : non treated wt vs. 

non treated Kctd13+/- : p = 0.009; non treated wt vs. treated Kctd13+/- : p = 0.702; non treated 

Kctd13+/- vs. treated Kctd13+/- : p = 0.049) and in the 16p11.2 Del/+ mutant line (wt non 

treated (n=17), wt treated (n=8), 16p11.2 Del/+ non treated (n=14) and 16p11.2 Del/+ 

treated (n=10)) (Kruskal-Wallis one-way analysis of variance between groups : H(3) = 8.457; p 

= 0.037; Mann-Whitney Test : non treated wt vs. treated wt : p = 0.008; t-test : non treated 

wt vs. non treated Del/+ : p = 0.047, non treated wt vs. treated Del/+: p = 0.364). (* p < 0.05; 

** p < 0.01).  
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FIGURES  

 

Figure 1. Representation of the behavioral pipeline used for investigating the therapeutic 

effects of fasudil drug in Kctd13 deficient and 16p11.2 deletion mouse models 
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Figure 2. Exploration activity in the Open field test of the Kctd13+/- and the 16p11.2 Del/+ 

mouse models at 12 weeks of age 
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Figure 3.  Novel object location at 12 weeks and novel object recognition at 13 weeks in 

the Kctd13+/- and the 16p11.2 Del/+ mouse models 
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Figure 4. Exploration activity in the Open field test of the Kctd13+/- and the 16p11.2 Del/+ 

mouse models with or without fasudil treatment at 18 weeks of age 
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Figure 5.  Novel object location at 18 weeks and novel object recognition at 19 weeks in 

the Kctd13+/- and the 16p11.2 Del/+ mouse models 
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Figure 6. Detection of RHOA and of the phoshorylated form of MLC (P-MLC) by western 

blots in heterozygous Kctd13+/- and the 16p11.2 Del/+ hippocampal lysates and their 

control (wt) littermate 
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TABLES  

 

 
  

Pre treatment 
 

 

Post treatment 

  

wt 

 

Kctd13+/-
 

 

wt 
 

 

Kctd13+/- 

 

Test 
 

Parameter 

 

 

 
 

 
 

Non 

treated 

 

Treated 

 

Non 

treated 

 

Treated 

 
 

 

 

Open Field 

Total distance (m) 94 ± 4 92 ± 5 81 ± 5 91 ± 6 82 ± 5 88 ± 8 

Distance t 0-05 (m) 22 ± 7 21 ± 1 18 ± 2 18 ± 2 17 ± 1 16 ± 2 

Distance t 05-10 (m) 18 ± 1 17 ± 1 16 ± 1 17 ± 1 16 ± 1 18 ± 1 

Distance t 10-15 (m) 16 ± 1 16 ± 1 13 ± 1 16 ± 1 14 ± 1 14 ± 1 

Distance t 15-20 (m) 14 ± 1 14 ± 1 13 ± 1 13 ± 1 13 ± 1 13 ± 2 

Distance t 20-25 (m) 13 ± 1 14 ± 1 11 ± 1 13 ± 1 12 ± 1 13 ± 1 

Distance t 25-30 (m) 12 ± 1 13 ± 1 10 ± 1 13 ± 1 11 ± 1 12 ± 1 

Rears (count) 244 ± 13 234 ± 15 149 ± 22 155 ± 14 148 ± 21 157 ± 20 
 

Novel Object 

Location 

Recognition 
5 min delay 

S1 object exploration (s) 9 ± 1 10 ± 1 7 ± 1 6 ± 1 8 ± 1 7 ± 1 
S2 non-displaced object 

exploration (s) 

3 ± 0,4 6 ± 1* 2 ± 0,4 3 ± 0,4 4 ± 1 3 ± 0,4 

S2 displaced object (s) 6 ± 1 6 ± 1 4 ± 0,4 6 ± 1 5 ± 1 6 ± 1 
Recognition Index (%) 65 ± 3§§§ 52 ± 2*** 68 ± 5§§ 66 ± 3§§§ 55 ± 2§ 64 ± 2§§§ 

 

Novel Object 

Recognition 
3 hours delay 

S1 object A exploration (s) 18 ± 2 19 ± 3 13 ± 2 30 ± 5* 19 ± 4 16 ± 3 
S2 object A exploration (s) 5 ± 1 7 ± 1 6 ± 1 5 ± 1 6 ± 1 4 ± 1 
S2 object B exploration (s) 7 ± 1 5 ± 1 10 ± 2 8 ± 2 7 ± 2 8 ± 2 

Recognition Index (%) 57 ± 2§§ 50 ± 3 62 ± 4§ 61 ± 2§§§ 46 ± 4 66 ± 5§ 

 

 

Table 1. Behavioral characterization of the Kctd13+/- mouse model before and after fasudil 

chronic treatment. In the open field test, no change of horizontal (total distance) or vertical 

activity (rears) was detected because the inactivation of the gene pre or post treatment. 

Recognition memory was analyzed through the novel object location and object recognition 

test. Kctd13+/- mice showed a deficit for displaced object discrimination and novel object 

recognition. Mutant males presented no recognition indexes significantly higher than the 

level of chance 50%. Data are mean ± SEM. Test de Student, * p < 0.05, ***p < 0.001. One 

Sample T. Test, §§p < 0.01, §§§p < 0.001 compared with the chance level (50%). Each genotype 

was divided into 2 groups, non-treated and treated mice. Non-treated Kctd13+/- mice 

showed 4 weeks later improvements for novel object location recognition index. In the novel 

object recognition test, non-treated Kctd13+/- mice showed 4 weeks later a deficit for novel 

objet recognition index whereas treated Kctd13 +/- mice recovered the object recognition 

memory. Data are mean ± SEM. Tukey’s test, * p < 0.05. One Sample T. Test, §p < 0.05, §§p < 

0.01, §§§p < 0.001 compared with the chance level (50%). 
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Pre treatment 
 

 

Post treatment 

  

wt 

 

16p11.2 

Del/+ 
 

 

wt 
 

 

16p11.2 

Del/+ 

 

Test 
 

Parameter 

 

   

Non 

treated 

 

Treated 

 

Non 

treated 

 

Treated 

 
 

 

 

Open Field 

Total distance (m) 91 ± 2 105 ± 3*** 76 ± 3 71 ± 4 91 ± 4 99 ± 5*** 

Distance t 0-05 (m) 19 ± 1 22 ± 1*** 15 ± 1 15 ± 1 16 ± 1 17 ± 1 

Distance t 05-10 (m) 16 ± 1 20 ± 1*** 16 ± 1 15 ± 1 18 ± 1 18 ± 1 

Distance t 10-15 (m) 15 ± 1 17 ± 1*** 13 ± 1 12 ± 1 16 ± 1 17 ± 1* 

Distance t 15-20 (m) 15 ± 0,4 16 ± 1 12 ± 1 11 ± 1 15 ± 1 17 ± 1* 

Distance t 20-25 (m) 14 ± 0,4 16 ± 1** 11 ± 1 10 ± 1 13 ± 1 16 ± 1*** 

Distance t 25-30 (m) 13 ± 0,4 14 ± 1 10 ± 1 9 ± 1 13 ± 1* 15 ± 1*** 

Rears (count) 217 ± 13 253 ± 17 129 ± 13 122 ± 11 154 ± 15 171 ± 17 
 

Novel Object 

Location 

Recognition 
5 min delay 

S1 object exploration (s) 10 ± 1 16 ± 2** 7 ± 1 9 ± 1 12 ± 2 10 ± 1 
S2 non-displaced object 

exploration (s) 

4 ± 0,4 6 ± 1** 3 ± 0,4 2 ± 0,4 5 ± 1** 4 ± 1 

S2 displaced object (s) 5 ± 1 7 ± 1 6 ± 1 6 ± 1 4 ± 1 6 ± 1 
Recognition Index (%) 58 ± 2§§ 54 ± 2 68 ± 3§§§ 69 ± 4§§§ 45 ± 5** 58 ± 4 

 

Novel Object 

Recognition 
3 hours delay 

S1 object A exploration (s) 16 ± 2 20 ± 2 15 ± 2 11 ± 2 30 ± 5* 24 ± 5 
S2 object A exploration (s) 5 ± 1 9 ± 1** 4 ± 1 4 ± 1 10 ± 2* 6 ± 1 
S2 object B exploration (s) 6 ± 1 8 ± 1 6 ± 1 6 ± 1 9 ± 2 9 ± 1 

Recognition Index (%) 58 ± 3§ 52 ± 3 59 ± 4§ 59 ± 4§ 49 ± 4 59 ± 3§ 

 

 

Table 2. Behavioral characterization of the 16p11.2 Del/+ mouse model before and after 

fasudil chronic treatment. In the pre-treatment open field test, the mutant mice showed 

increased horizontal activity during the 30 minutes of test (total distance) and during the 

first time intervals. Recognition memory was analyzed in our mouse model through the 

novel object location and object recognition test. In general, Del/+ mice spent more time 

exploring the objects during session S1. This higher exploration is probably due to the 

increased exploration activity associated with the loss of one copy of the 16p11.2 region. 

Del/+ mice showed a deficit for displaced object discrimination and novel object recognition. 

Data are mean ± SEM. Test de Student, **p < 0.01, ***p < 0.001. One Sample T. Test, §p < 

0.05, §§p < 0.01 compared with the chance level (50%). Our animals were divided into 4 

different groups depending on their genotype and treatment. Post-treatment analyses 

showed for the open field test a higher difference in exploration activity between the 

treated mutant group and the control group. In the novel object location test, non-treated 

Del/+ animals showed a deficit for displaced object recognition. Treatment in mutant mice 

increased recognition index but it was not significantly higher than the level of chance (50%). 

Data are mean ± SEM. Tukey’s test, * p < 0.05, **p < 0.01, ***p < 0.001. One Sample T. Test, 
§§§p < 0.001 compared with the chance level (50%). In novel object recognition test, non-

treated mutant mice showed 4 weeks later a deficit for novel objet recognition index 

whereas fasudil treatment rescued the object recognition memory in mutant mice. Data are 

mean ± SEM. Mann-Witney U test, * p < 0.05. One Sample T. Test, §p < 0.05 compared with 

the chance level (50%). 
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wt 
 

 

Kctd13+/- 

 

Protein 
 

Non 

treated 

 

Treated 

 

Non treated 

 

Treated 

 

RHOA 
 

 

0.91 ± 0.14 
 

0.81 ± 0.11 
 

0.96 ± 0.12 
 

0.7 ± 0.07 

 

p-MLC 
 

0.92 ± 0.1 
 

1.6 ± 0.17 
 

2.17 ± 0.22** 
 

1.54 ± 0.35 
 

  

wt 
 

 

16p11.2 Del/+ 

 

Protein 
 

Non 

treated 

 

Treated 

 

Non treated 

 

Treated 

 

RHOA 
 

 

1 ± 0.14 
 

1.4 ± 0.4 
 

1.47 ± 0.27 
 

1.13 ± 0.16 

 

p-MLC 
 

1 ± 0.1 
 

2.42 ± 0.59** 
 

1.36 ± 0.15* 
 

1.16 ± 0.16 
 

 

 

Table 3. RHOA protein and MLC phosphorylation levels analyzed by western blot from 

hippocampal regions of Kctd13+/- mouse model treated or non-treated with fasudil Chronic 

treatment. The intensity of each interest protein bands normalized with the intensity of the 

corresponding control protein band was again normalized with the mean of all samples of 

the untreated control individuals. Non-treated Kctd13+/- hippocampus presented increased 

phosphorylation levels of MLC protein whereas mutant treated with fasudil didn’t present 

significant increased phosphorylation levels of protein. In the case of the mouse model for 

the deletion of the 16p11.2 region, we also observed an increased phosphorylation levels of 

MLC. These levels were normalized with the treatment. Mann-Witney U test, * p < 0.05, ** p 

< 0.01. 
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Discussion et conclusion 
 

Pour ce projet de recherche on a développé un approche préclinique dans lequel nous avons 

évalué les effets thérapeutiques de l’inactivation de la voie RHOA / ROCK sur les phénotypes 

associés à la délétion 16p11.2.  A cette fin, notre laboratoire a mis en place un protocole de 

caractérisation du modèle de souris pour la délétion du gène Kctd13 et du modèle de la 

délétion de la région 16p11.2 à l’âge de 12 semaines. Après 4 semaines de traitement 

chronique avec la drogue fasudil, nous avons vérifié si les phénotypes observés chez ces 

modèles sont normalisés. 

 

Caractérisation des modèles de souris Kctd13+/- et 16p11.2 Del/+ précédente à 

l'inactivation de la voie de signalisation RHOA / ROCK 

 

La caractérisation du modèle murin pour l'inactivation du gène Kctd13 par l'hémi-délétion de 

l'exon 3 et 4 à partir de la technologie CRISPR / Cas9 a révélé la présence des phénotypes de 

déficit dans la mémoire de localisation et dans la mémoire de reconnaissance d'objet à 12 et 

13 semaines respectivement. Nos résultats coïncident avec la caractérisation phénotypique 

du modèle d’Arbogast et al., obtenu à partir de la délétion de l’exon 2 du génome de la 

souris. Les auteurs ont également observé un déficit dans la mémoire de reconnaissance 

d’objet à 13 semaines et dans la mémoire de localisation d’objet à 15 semaines (Arbogast et 

al., 2019). Cependant, notre modélisation ne partage pas les mêmes phénotypes avec le 

modèle développé par Escamilla et al., à partir d’une construction conçue pour remplacer le 

gène entier Kctd13. Dans cette étude les souris mutantes ne présentent pas des phénotypes 

de mémoire de localisation ou reconnaissance d’objet à l’âge adulte (Escamilla et al., 2017). 

Cette divergence pourrait s'expliquer par l'utilisation de protocoles différents pour établir la 

mémoire de reconnaissance entre cette étude et notre analyse. 

          De plus, ces deux phénotypes ont été également observés sur le modèle pour la 

délétion de la région complète 16p11.2. Ces résultats sont compatibles avec l’étude de 

Arbogast et al., en 2016. Notre observation indique que Kctd13 a une responsabilité dans le 

développement de la capacité de reconnaissance et localisation d’objet.  

          En outre, nous avons décidé d’examiner l’implication de Kctd13 dans un autre 

phénotype robuste associé au réarrangement 16p11.2 (Arbogast et al., 2016), l’activité 

d'exploration. Les souris Kctd13+/- n'ont pas présenté des altérations significatives. Pour 

cette raison, nous concluons que ce gène n’a pas d’implication pertinente dans l’apparition 

d’hyperactivité liée à la délétion 16p11.2.  
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Effet de fasudil dans les phénotypes cognitifs associés à la délétion de Kctd13 et à la 

délétion de la région 16p11.2 

 

Cette approche préclinique nous a permis de constater que le traitement chronique de 

fasudil pendant quatre semaines normalise le phénotype de la mémoire de reconnaissance 

d'objet observé chez le modèle Kctd13+/- et le modèle 16p11.2 Del/+. Ces résultats nous 

indiquent que la sur activation de la voie RHOA est clé pour l’apparition de ce phénotype 

associé à la perte de KCTD13 à cause de la délétion 16p11.2. Pour cette raison, l’inactivation 

de la voie a des effets thérapeutiques sur ces deux modèles. 

          Par rapport à la mémoire de localisation d’objet, ce phénotype n'était plus présent 

pendant la deuxième caractérisation post-fasudil chez les souris Kctd13+/- non traitées à l’âge 

de 18 semaines. Cette divergence pourrait s'expliquer par la possible habituation des 

animaux au test ou par la possibilité que la déficience du gène provoquerait un retard du 

développement à l'âge adulte précoce de 12 semaines qui est rattrapé ou compensé à 18 

semaines. Pour cette raison, nous considérons l’évaluation de ce phénotype chez les souris 

Kctd13+/- de 18 semaines naïves pour des recherches futures. De plus, le traitement avec 

fasudil n’a pas eu des effets de normalisation dans le phénotype de la mémoire de 

localisation d’objet sur le modèle 16p11.2 Del/+. Ces résultats indiquent que la dérégulation 

de la voie RHOA / ROCK par la perte d’une copie de Kctd13 n’est la cause principale de 

l’apparition du phénotype de mémoire de localisation associée à la délétion 16p11.2. 

          En outre, les souris déficientes pour la région 16p11.2 n’ont pas montré une 

normalisation de l’hyperactivité après traitement. Ces résultats sont compatibles avec le fait 

que Kctd13 n’est pas impliqué dans ce phénotype. 

 

Analyses moléculaires de la voie de signalisation RHOA / ROCK sur les modèles Kctd13+/- et 

16p11.2 Del /+ 

 

Considérant les différences entre les résultats montrés dans les études précédentes par 

rapport à l'effet de la délétion de Kctd13 sur les niveaux d'expression de RHOA, nous avons 

décidé d'analyser le niveau d'expression de la protéine sur nos modèles murins. Notre 

modèle pour l’inactivation du gène Kctd13 n’a pas montré d’altérations du niveau 

d’expression de la protéine. Ces résultats ont été également observés sur le modèle 

d’inactivation de Kctd13 dans l’étude d’Arbogast et al., en 2019. Par contre, le modèle pour 

la suppression génétique complète du locus analysé dans l’étude d’Escamilla et al., en 2017 a 

présenté une augmentation du niveau d’expression de la protéine. Nous considérons que 

cette divergence entre les études pourrait être expliquée par la différence de stratégies de 

mutation utilisées. Il est possible que la lésion génétique plus grande utilisée par Escamilla et 

al., affecte des éléments régulateurs qui pourraient être responsables de certains des 

observations divergents. 

          En outre, notre modèle de délétion de la région 16p11.2 n'a pas montré d’altérations 

du niveau d'expression de la protéine RHOA. 
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          Nous avons décidé également d'analyser l'activation de la voie RHOA / ROCK sur nos 

modèles, en considérant les effets thérapeutiques dans le phénotype de mémoire de 

reconnaissance de l'inactivation de RHOA / ROCK via l'inhibiteur fasudil. Le paramètre choisi 

pour cette analyse a été le niveau de phosphorylation de la protéine MLC. Ainsi, nous avons 

découvert que l'hippocampe des souris Kctd13+/- et 16p11.2 Del/+ présentait un niveau de 

phosphorylation de MLC accru. Ceci indique que la voie de signalisation RHOA / ROCK est sur 

activée sur les deux modèles. 

          De même, nous avons voulu corroborer les effets déjà connus de la drogue fasudil, en 

tant qu’inhibiteur de ROCK (Huentelman et al., 2009), et donc vérifier si ses effets 

thérapeutiques sur nos souris sont dus à l’inactivation de la voie de signalisation. fasudil n’a 

pas altéré les niveaux d’expression de RHOA mais il normalise la sur phosphorisation de MLC 

observée chez les individus Kctd13+/- et 16p11.2 Del/+ traités. 

 

Conclusion de l’étude 

 

Dans cette étude, nous avons montré qu'un inhibiteur de la voie de signalisation RHOA / 

ROCK pourrait être utilisé comme traitement pour améliorer l'apprentissage et la mémoire, 

comme cela observée chez le modèle murin d’inactivation du gène Kctd13 et le modèle de 

délétion de la région 16p11.2. Par conséquence, le fasudil pourrait avoir une pertinence 

clinique en raison de son potentiel comme amplificateur cognitif chez l'homme présentant 

un dysfonctionnement de la mémoire lié aux désordres neuro développementaux. 

Cependant, des recherches futures seront nécessaires pour comprendre quels sont les 

mécanismes moléculaires affectés par la perte du gène Kctd13, responsables de la 

suractivation de la voie RHOA / ROCK. 
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Partie 2 

Implication des gènes Mvp et Sez6l2 

pour les phénotypes comportementaux 

des modèles souris de la délétion de la 

région 16p11.2 
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Introduction 

 

Comprendre la base moléculaire des troubles neurodéveloppementaux et 

neuropsychiatriques associés aux CNVs 16p11.2 présente de nombreux obstacles inhérents à 

la complexité des syndromes et au manque de modèle. L’objectif de ce projet de recherche 

est de continuer à décrypter le rôle de certains gènes de la région 16p11.2 Sult1a1-Spn dans 

les phénotypes comportementaux observés dans la délétion et la duplication de cet 

intervalle génétique.  Nous avons focalisé notre attention sur la micro-délétion de 118 kb 

englobant 5 gènes de la région MVP, CDIPT, SEZ6L2, ASPHD1 et KCTD13 qui avait été 

identifiée dans une famille de trois générations avec ASD (Crepel et al., 2011). Cette 

recherche mettait en évidence un rôle clé de ces 5 gènes dans les caractéristiques 

neuropsychiatriques associées aux réarrangements 16p11.2. Dans le chapitre précédent de 

ce manuscrit nous nous sommes intéressés au gène candidat Kctd13. L'inactivation de ce 

gène chez la souris a provoqué des phénotypes de mémoire de reconnaissance. Ce déficit a 

été déjà observé dans le modèle pour la délétion complète de la région 16p11.2. Cependant, 

Kctd13 n'est pas responsable de tous les phénotypes associés au réarrangement 16p11.2.                    

Pour cette raison, ici nous avons choisi de nous focaliser sur les deux gènes Mvp et Sez6l2. 

          Le gène MVP (« Major Vault Protein ») code pour le composant majeur du complexe 

vault. Les vaults sont des structures de ribonucléoprotéines à multi-sous-unités impliquées 

dans le transport nucléo-cytoplasmique. MVP, en plus de fonctionner en tant que 

transporteur d'ARN, est une protéine d'échafaudage qui est connue pour réguler la voie 

MAPK / ERK par des interactions avec Shp2 (Berger et al., 2009; Kolli et al., 2004).  En plus de 

son rôle important dans la prolifération cellulaire, la signalisation ERK est impliquée dans les 

fonctions neuronales, incluant la plasticité synaptique et la consolidation des mémoires à 

long terme (Sweatt et al., 2004).  

          Il est intéressant de noter que les souris hétérozygotes pour la délétion de la région 

16p11.2 présentent une activité ERK / MAPK élevée. Cet sur activation est associée à des 

anomalies de la corticogenèse dues à des altérations de la dynamique du cycle cellulaire de 

la population des progéniteurs neurales (Pucilowska et al., 2015). Egalement, la perte d’une 

copie du gène Mvp cause une activité ERK / MAPK élevée ainsi que des défauts de plasticité 

du cortex visuel (Ip et al., 2018). Pourtant, il est probable que plusieurs gènes dans ce locus 

convergent sur la voie MAPK (Pucilowska et al., 2018; données non publiées). A ce jour, le 

niveau auquel ce gène est impliqué dans les mécanismes pathophysiologiques affectés dans 

les syndromes 16p11.2 reste encore inconnu.  

          Le gène SEZ6L2 (« Seizure related 6 homolog (mouse)-Like2 ») code pour une protéine 

de membrane type 1 qui contient les domaines du complément C1r / C1s, Uegf et Bmp1 

(CUB) et le domaine de la protéine de contrôle du complément (CCP) (Miyazaki et al., 2006). 

Les protéines contenant ces domaines peuvent constituer une nouvelle famille de protéines 

capables de moduler la localisation ou la fonction des récepteurs des neurotransmetteurs 

(Nakayama et al., 2011). Il est également important de mentionner que SEZ6L2 est l'une des 

sous-unités auxiliaires du récepteur AMPA et agit comme une protéine d'échafaudage pour 

lier la sous-unité 1 du récepteur ionotropique au glutamate de type AMPA (GLUR1) à 
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ADDUCIN (ADD). ADD est une protéine de terminaison des filaments d’actines associée au 

recrutement de la spectrine. De plus, la surexpression de Sez6l2 régule positivement la 

phosphorylation de l'ADD, alors que la régulation négative de Sez6l2 médiée par un petit 

ARN interférent (siRNA) empêche la phosphorylation de l'ADD, suggérant que Sez6l2 module 

la transduction du signal AMPA-ADD (Yaguchi et al., 2017). SEZ6L2 sert également de 

récepteur permettant le tri de la cathepsine D en des endosomes, et son clivage 

protéolytique par la cathepsine D pourrait être impliqué dans la modulation de la 

différenciation neuronale (Boonen et al., 2016). Ce gène a été considéré comme un gène 

candidat pour les TSA en raison du niveau élevé d'expression dans le cerveau, 

spécifiquement dans l'hippocampe et le cortex cérébelleux, et de la forte homologie entre la 

protéine et SRPX2 (pour Sushi-repeat-containing protein, X-linked)), dont les mutations 

génétiques provoquent de l'épilepsie et des troubles du langage (Roll et al., 2006). De plus, 

le SNP R386H du gène est associé aux TSA (Kumar et al., 2009).  

          Dans l'ensemble, ces investigations soulignent la signification de ces gènes dans le 

neurodéveloppement humain. Cependant, il est encore nécessaire de mener des recherches 

qui permettent l'identification de gènes candidats pouvant être associés aux différents 

phénotypes montrés par les porteurs des CNVs 16p11.2. Ceci permettra la compréhension 

des mécanismes moléculaires affectés et la création des premières stratégies 

thérapeutiques.  

          Nous avons décidé de développer des modèles de souris porteurs des mutations nulles 

hétérozygotes affectant chacun des 2 gènes, Mvp et Sez6l2. Grâce à ces modèles, nous 

avons conduit une étude phénotypique de l’impact de ces mutations à l’état hétérozygote 

sur des animaux de 12 semaines d’âge. Comme dans le cas de la caractérisation 

comportementale des femelles 16p11.2 Del/+ du chapitre précédent, ces modèles murins 

ont été soumis à une analyse phénotypique des capacités exploratrices et cognitives basée 

sur les déficits identifiés chez les souris mâles 16p11.2 (Arbogast et al., 2016). Ainsi, si l’un 

des modèles récapitule les phénotypes trouvés chez le modèle murin pour la délétion de la 

région 16p11.2, nous pourrons lier le gène à l’apparition du déficit indiqué. 
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Matériels et méthodes 
 

Lignes de souris, génotypage et autorisation éthique 

 

Dans ce projet de recherche nous avons évalué le phénotype comportemental des modèles 

murins d’inactivation des gènes candidats Mvp et Sez6l2, sur un fond génétique consanguin 

pur C57BL/B6N chez les individus mâles à partir de 12 semaines d’âge. Tout d’abord, pour le 

modèle d’inactivation du gène Mvp, nous avons eu accès à un modèle KO hétérozygote 

obtenu à partir d’une stratégie de mutation par insertion d’une cassette de piégeage de 

gènes (Friedel et al., 2017) (Collaboration avec Dr. Yalcin. B.). La cassette virale est placée 

entre les exons 2 et 3 du gène et doit empêcher la transcription du gène Mvp (Figure 1). 

L’identification de la mutation a été menée grâce à la technique PCR. Les amorces KOf (5’- 

CTTGCAAAATGGCGTTACTTAAGC  -3’) et WTr (5’- TTTTGCTTGGGATGGCTAAG -3’)  ont été 

utilisés pour obtenir une bande spécifique du produit de la délétion du gène de 308 pb et les 

amorces WTf (5’- AGGACAGAGCCTGGAAGTCA -3’) et WTr (5’- TTTTGCTTGGGATGGCTAAG -

3’)  ont été utilisés pour obtenir la bande spécifique du produit témoin de 542 pb.  Le 

programme de PCR a été: 95°C / 4 min, 34 X (94°C / 30 sec; 62°C / 30 sec; 72°C / 1 min), 72°C 

/ 7 min. Cependant, dans certains cas, l'inactivation de certains gènes par cette construction 

n'est pas assurée. Cette condition se produit lorsque la cassette de piégeage laisse passer la 

machinerie de transcription. Pour cette raison, nous avons décidé de créer un autre modèle 

à partir de la stratégie de mutation CRISPR / Cas9 (Figure 1). Cette technique a permis la 

création d’un allèle nul à partir de l’inactivation du gène en éliminant les exons 4 et 5. La 

mutation a été menée à partir de une micro-injection contenant deux paires d’ARN guide 

simple brin (« single guide RNA » ou sgRNA), une paire située en amont et l'autre en aval de 

la région cible et l’ARN de Cas9. Cette micro-injection a été administrée à des œufs fécondés 

de souris C57BL/6N femelles super ovulées sexuellement immatures (âgées de 4 à 5 

semaines). Les embryons injectés ont été implantés dans les oviductes de femelles pseudo-

enceintes (Birling M.-C. et al., 2017)La mutation du gène a été identifiée par PCR en utilisant 

les amorces Ef (5’- GTCCTCGACAGTCAGAAGAGAGTGC -3’) et Xr (5’- CCATCCACCACAGTG 

CTGC -3’). Le product de la PCR donne une bande de délétion spécifique de 294 bp et une 

bande wt de 713 pb respectivement. Le programme de PCR utilisé a été: 98°C / 30 sec, 30 X 

(98°C / 8 sec; 60°C / 10 sec; 72°C / 30 sec), 72°C / 5 min. 

 

Ensuite, pour la caractérisation du modèle d’inactivation du gène Sez6l2 on a travaillé avec 

deux allèles différents (Figure 2). En première lieu, on a analysé l’allèle tm1a. Cet allèle est 

initialement une forme non-expressive développée par insertion d’une cassette de piégeage 

de gènes. La cassette de piégeage est placée entre les exons 6 et 7 du gène et doit empêcher 

la transcription du gène Sez6l2. Dans le cas particulier de cet allèle les exons ciblés sont 

présent dans le génome des souris. Pour cette raison, afin de valider ce modèle KO on a 

vérifié l’expression de l’ARN messager du gène. Ultérieurement, on a analysé l’allèle tm1b. 

Cet allèle est un allèle Knock-In conditionnel, dont construction conduit à la perte d’un exon 

critique après l’action de la recombinasse Cre (Skarnes et al., 2011). L’avantage que présente 

cet allèle est que les exons ciblés n’est pas présent dans le génome des souris. Un impact sur 
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la viabilité a été observé pour l’inactivation du gène à partir de cette construction dans le 

croisement hétérozygote sur le fond génétique B6N (Table 1). 

Dans le deux cas, l’inactivation de Sez6l2 a été identifiée par PCR en utilisant les amorces Ef 

(5’-TGCAAAAAGGAATGGCTACACAGTTG- 3’) et Kr (5’-CTCCTACATAGTTGGCAGTGTTTGGG- 3’). 

Le product de la PCR a été une bande de délétion spécifique de 333 pb. Le programme de 

PCR a été: 95°C / 2 min, 35 X (95°C / 30 sec; 62°C / 30 sec; 72°C / 1 min), 72°C / 7 min. 

Les procédures expérimentales concernant l'utilisation d'animaux à des fins scientifiques ont 

été approuvées par le Ministère de l'enseignement supérieur, de la recherche et de 

l'innovation avec l'accord du comité d'éthique local Com’Eth (n°017) sous le numéro 

d'accréditation APAFIS#9290-20I7031617456047 v4 et dont la responsabilité de la mise en 

œuvre générale du projet et de sa conformité à l'autorisation est assurée par Monsieur Yann 

HERAULT (accréditation 67-369). 

 

Détection et quantification de l’ARN du gène Sez6l2 pour l’allèle tm1a par qRT-PCR  

 

Comme nous l’avons mentionné précédemment, le premier modèle auquel nous avions 

accès pour le gène candidat Sez6l2 était l’allèle tm1a. Cet allèle a été conçu à l'origine pour 

être un knock-out à partir de l’épissage de l'ADNc à une cassette LacZ. La cassette a ensuite 

été insérée en amont d'un exon critique pour créer un allèle nul du gène. Cependant, pour 

de nombreux gènes, le saut de la cassette LacZ a permis de restaurer l’expression du gène 

dans une certaine mesure. Pour cette raison, on a décidé d’analyser la détection et 

quantification de l’ADNc du gène, obtenu par retrotranscription de l'ARN, à partir de la 

technique de qRT-PCR. 

La synthèse de l'ADNc a été réalisée à l'aide du kit de synthèse d'ADNc SuperScript® VILO™ 

(Invitrogen, Carlsbad, CA). La PCR a été réalisée avec TaqMan® Universal Master Mix II et des 

tests d’expression génique TaqMan® pré-optimisés (Applied Biosystems, Waltham, 

Massachusetts, États-Unis), consistant en une paire d’amorces PCR non marquées et une 

sonde TaqMan® avec un test Applied Biosystems™ FAM™ étiquette de colorant sur 

l'extrémité 5' et le minor groove binder (MGB) et nonfluorescent quencher (NFQ) sur 

l'extrémité 3'. Les efficacités des tests de Taqman ont été vérifiées en utilisant une série de 

dilutions d'ADNc à partir d'extraits d'échantillon d'hippocampe. La normalisation a été 

effectuée en parallèle avec l’amplification de 3 gènes de ménage (Gnas, Pgk1 et Actb) et en 

utilisant la procédure GeNorm afin de corriger les variations de la quantité d’ARN source 

dans le matériel de départ (Vandesompele et al., 2002). Tous les échantillons testés ont été 

réalisés en triple. 

 

 

Symbole 
du gène 

 

 

Nombre du gène 
 

ID 
 

Limite 
d'exon 

 

Emplacement du 
test RefSeq 

 

Longueur 
d'amplicon 

Actb Actin, beta Mm00607939_s1 6-6 1233 115 

Gnas GNAS (guanine nucleotide binding protein, 
alpha stimulating) complex locus 

Mm01242435_m1 4-5 2609 57 

Pgk1 Phosphoglycerate kinase 1 Mm00435617_m1 5-6 675 137 

Sez6l2 Seizure related 6 homolog like 2 Mm00523504_m1 12-13 2601 86 
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L’élevage et la conception de l’analyse  

 

Afin de chercher des gènes candidats responsables des phénotypes associés à la délétion 

16p11.2 on a suivi un protocole de caractérisation comportemental. La sélection de la 

batterie de test a été basée sur les capacités cognitives affectées chez le mâle 16p11.2 Del/+.  

 

Nous avons uniquement sélectionné les individus mâles pour cette étude. Les animaux 

utilisés ont été regroupés de plusieurs portées, en ensembles de 2 à 4 souris après le 

sevrage, dans des cages de 39 x 20 x 16 cm (Green Line, Techniplast, Italy) où elles ont eu 

l’accès libre à l'eau et à la nourriture (D04 chow diet, Safe, Augy, France). Les chambres où 

les sujets ont été gardés ont été maintenues à une température constante de 21±2 °C, avec 

un cycle de lumière contrôlé comme 12 h de lumière et 12 h de sombre  (les lumières ont 

été allumés à 7h).  

Les souris furent transférées de l’animalerie d’élevage à la zone de comportement avec 11 

semaines d’âge. Au cours de cette semaine, les souris se sont habituées à ce nouvel 

environnement et elles ont été manipulées quotidiennement par l’expérimentateur. 

Afin de valider l’implication des gènes candidats aux phénotypes associés à la délétion 

16p11.2, on a développé un protocole d’analyse de caractérisation comportemental basé sur 

les capacités cognitives affectées chez le mâle. Les souris ont subi les tests de comportement 

dans l'ordre suivant: le test de champ ouvert, la tâche de reconnaissance du nouvel objet et 

l’activité circadienne à 12 semaines et le test du comportement répétitif à 13 semaines. 

 

Les jours où les tests ont été effectués, les animaux ont été placés dans  l’antichambre de la 

salle expérimentale 30 min avant le début de l’expérience.  Tous les tests ont été menés par 

le chercheur à l'aveugle par rapport à l’information du génotype des souris, comme il est 

recommandé par les directives ARRIVE (Karp et al., 2015; Kilkenny et al., 2010). 

 

Le test de champ ouvert a été utilisé pour évaluer le comportement exploratoire du rongeur 

dans un nouvel environnement. Le test a été réalisé dans une enceinte ronde de PVC blanc 

avec des murs et fond opaques de 30 cm de haut et 50 cm de diamètre (Figure 3 A). L’arène 

a été éclairée pour avoir 60 Lux au centre et elle est placée sous une caméra permettant un 

suivi de l’animal. Le test se compose d’une session unique de 30 min, pendant laquelle on 

peut mesurer la distance parcourue, le temps passé sur chaque zone de l’arène (le centre, la 

zone intermédiaire, la périphérie et les murs)  ainsi qu’évaluer l’habituation de l’animal au 

cours du temps, en fractionnant les données en intervalles de 10 minutes. 

 

La tâche de reconnaissance du nouvel objet est basée basé sur la préférence innée des 

rongeurs pour la nouveauté et permet d’analyser la mémoire de reconnaissance entre un 

objet observé précédemment et un nouvel objet. Cette évaluation se déroule dans la même 

espace que le champ ouvert. Le premier jour, les souris ont été habituées à l’arène pendant 

30 minutes à 60 Lux. Le deuxième jour, les animaux ont été soumis au premier essai 

d’acquisition de 10 minutes au cours duquel ils ont été individuellement mis en présence de 

deux objets A (marbre ou dés) placés à 28 cm entre eux. Le temps d’exploration de l’objet A 
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(lorsque le museau de l’animal était dirigé vers l’objet à une distance ≤ 1 cm) a été 

enregistré. Après une période de rétention de 3 heures à l’intérieur des cages 

d’hébergement, un deuxième essai de discrimination d'objet a été effectué. L’objet familier 

A et un nouvel objet (objet B) ont été placés à la même distance et position et le temps 

d'exploration de ces deux objets a été enregistré (Figure 3 A).                                                                                                 

Un index de reconnaissance a été définis comme ((tB / (tA + tB)) × 100). Toutes les souris 

n'ayant pas exploré les objets présentés plus de 3 secondes au cours de l'essai d'acquisition 

ou de rétention ont été exclues de l'analyse.  

 

Le test de l’activité circadienne nous a permis d’évaluer l’activité endogène au cours du cycle 

de lumière et sombre. L’essai a eu lieu dans des cages individuelles (11 x 21 x 18 cm) 

équipées de capteurs infrarouges connectés à une interface électronique (Imetronic, France) 

qui fournissent des mesures automatisées de la position et de l'activité locomotrice de la 

souris testée (Figure 3 B). Les animaux ont été placés dans les cages à 19 h le premier jour et 

le test a fini le troisième jour à 7h (60 h). Le cycle de lumière a été contrôlé comme 12 h de 

lumière et 12 h de sombre. 

 

Le test de comportement répétitif nous a permis d’évaluer la présence de comportement 

stéréotypé sur notre modèle animal. Les souris femelles sont placées individuellement dans 

des cages d’hébergement propres faiblement éclairées à 60 lux sans le couvercle (Figure 3 

C). L’occurrence des comportements du redressement, du saut, de l'escalade, du creusage, 

et du toilettage est notée pendant 10 min. Les tâches sélectionnées ont été le test de champ 

ouvert, le test de reconnaissance du nouvel objet, l’activité circadienne et le test de 

comportement répétitif. 

 

Analyses statistiques 

 

Les résultats obtenus à partir de ce travail de recherche ont été analyses statistiquement en 

utilisant le logiciel Sigma Plot (Sigma). Toutes les valeurs aberrantes ont été identifiées à 

l'aide du test de Grubbs en utilisant le calculateur GraphPad et exclues de notre analyse. Les 

données obtenues à partir de la caractérisation phénotypique des modèles ont été analysées 

par le test de Student pour autant que les données aient suivi une distribution normale et 

présentent une variance égale. Dans le cas contraire, le test non-paramétrique U de Mann-

Whitney a été utilisé. De plus, le test « One Sample T test » a été utilisé pour comparer les 

valeurs de l’index de reconnaissance au niveau de chance de 50%. Les données provenant de 

l’évaluation de la transmission d’allèles mutants ont été analysées par le test du χ² de 

Pearson. Les données ont été représentées come la moyenne ± l’écart-type et le seuil 

significatif a été p < 0,05. 
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Résultats 
 

Caractérisation cognitive du modèle d’inactivation du gène Mvp 

 

Le premier modèle murin auquel nous avons eu accès était le modèle d'inactivation du gène 

Mvp à l’état hétérozygote, généré par l'insertion d’une cassette de piégeage de gènes dans 

le génome de cellules souches embryonnaires. Le vecteur a été placé entre l’exon 2 et 3 du 

gène et devait empêcher la transcription du gène. Étonnamment, l’étude phénotypique à 

laquelle ces souris ont été soumises n’a pas révélé de déficits cognitifs importants, à 

l’exception de certaines altérations par rapport au temps passé dans les différentes zones du 

test de champ ouvert (Figure 4). En particulier, les souris Mvp+/- restent significativement 

plus de temps dans la zone centrale et intermédiaire et moins de temps dans la zone 

périphérique de l’arène (Centre : Test de Student, T = 170,000 ; p = 0,021; Zone 

intermédiaire : Test U de Mann-Whitney, t(21) = -2,227 ; p = 0,037; Périphérie : Test de 

Student, t(21) = 2,411 ; p = 0,025). 

 

Cependant, l’inactivation de certains gènes par l’insertion d’une cassette de piégeage n’est 

pas toujours valide. Dans certains cas, la cassette de piégeage laisse passer la machinerie de 

transcription et permis ainsi la lecture du gène d’intérêt dans une certaine mesure.  

Par la suite, notre laboratoire a développé un nouveau modèle d'inactivation de Mvp par 

l’excision des exons 4 et 5 grâce à la technologie de modification de l'ADN CRISPR / Cas9. La 

caractérisation de ces souris a commencé par le test de champ ouvert (Figure 5). Les 

individus mutants ne présentent aucune anomalie dans l'activité d'exploration du nouvel 

environnement comme dans le cas précédent, bien qu'ils aient été moins actifs que le 

modèle antérieur. Cependant, ces souris ne présentent pas de changements dans le temps 

d'exploration de chaque zone du test. Ensuite, les animaux ont passé le test NOR, où ils 

devaient être capables de différencier entre un nouvel objet et un objet précédemment 

exploré. Les deux génotypes ont développé un indice de reconnaissance du nouvel objet 

significativement supérieur au niveau de chance de 50% (One sample t test: wt (t(14) = 

3,1375; p = 0.0073), Mvp+/-  (t(14) = 2,9036; p = 0,0116)). Plus tard, notre laboratoire a évalué 

l’influence de la perte d’une copie du gène dans le test d’activité circadienne. Nous avons 

constaté que les souris mutantes ne développent pas de phénotypes ni dans l’activité 

locomotrice mesurée comme le nombre de va et viens dans la cage du test, ni l'activité 

verticale mesurée comme le nombre de redressements, au cours des cycles de lumière et 

sombre. Enfin, nous nous demandions si ce modèle présentait des comportements 

stéréotypés, un phénotype trouvé chez des souris déficientes 16p11.2 (Arbogast et al., 

2016). Afin de répondre à cette question, nous avons évalué la présence de comportements 

répétitifs pour des événements différents trouvés chez la souris. Nous n'avons pas observé 

de modifications significatives par rapport aux souris témoins. 
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Caractérisation cognitive du modèle d’inactivation du gène Sez6l2 

 

Après la caractérisation de Mvp+/-, nous avons effectué le phénotypage comportemental du 

modèle Sez6l2+/-. Pour la caractérisation de cette modèle, on a travaillé avec deux allèles 

différents. En première lieu, on a analysé l’allèle tm1a. Cet allèle est initialement une forme 

non-expressive développée par insertion d’une cassette de piégeage de gènes. Cette 

construction s’est placée entre l’exon 6 et 7 du gène et doit empêcher la transcription du 

gène. Ensuite, nous avons décidé de répéter la même batterie de tests que pour le modèle 

précédemment évalué sur la base des phénotypes associés à la perte d’une copie de 16p11.2 

(Figure 6). L’analyse comportementale de ce modèle murin Sez6l2tm1a/+ chez le male montre 

une déficience dans la mémoire de reconnaissance d’objet. En fait, les souris mutantes ont 

présenté un index de reconnaissance du nouvel objet non significativement supérieur au 

niveau de chance de 50%, contrairement aux souris témoins (One sample t test: wt (t(10) = 

3,0486; p = 0,0123), Sez6l2tm1a/+ (t(8) = 2,2324; p = 0.0561)). De plus, nous avons observé la 

présence de comportements répétitifs d’escalade significativement supérieurs aux individus 

wt (Test U de Mann-Whitney : T = 409,500; p = 0,040). 

 

Le principal avantage de cette construction est sa polyvalence. Pourtant l'inconvénient 

fondamentalement est que, bien que la cassette de piégeage évite la lecture du transcrit du 

gène, cette cassette pourrait éventuellement laisser passer la machinerie de transcription de 

l'ADN et permettre l'expression du gène car les exons ciblés sont toujours présents dans le 

génome. Donc, afin de valider ce modèle KO hétérozygote on a réalisé des analyses 

d’expression de RNAm du gène et les résultats nous indiquent une diminution significative 

de l’expression du gène chez les individus hétérozygotes Sez6l2tm1a/+  (Test de Student, t(8) = 

2,438 ; p = 0,041) (Figure 7).  

 

Ensuite, on a analysé l’allèle tm1b (Figure 8). Cet allèle est un allèle Knock-In conditionnel 

généré à partir de la délétion inductible par la recombinasse Cre. L’avantage qui présente cet 

allèle est que les exons ciblés ne sont pas présentes dans le génome des souris. On pourrait 

aussi considérer cela comme un allèle plus propre, en raison de l'absence du gène marqueur 

néomycine qui pourrait avoir une implication dans les phénotypes retrouvés. Lors de 

l’amplification de la ligne nous avons observé une réduction de la transmission de l’allèle 

mutant par rapport à la transmission mendélienne. Ces résultats montrent un effet de 

l’haplo-insuffisance du gène dans la viabilité des souris. L'analyse cognitive et 

comportementale nous a montré que les souris Sez6l2tmb1/+ développent des déficits 

profonds dans la capacité de reconnaissance d’objet. Leur indice de reconnaissance du 

nouvel objet a été inférieur au niveau de chance de 50% (One sample t test: wt (t(32) = 

3,2605; p = 0,0026), Sez6l2tmb1/+  (t(18) = 1.9792 ; p = 0.0633)). En outre, comme l'allèle tm1a, 

nous avons observé la présence de comportements stéréotypés significativement supérieurs 

aux individus wt, mais dans ce cas-là il s’agit de l’événement de creuser (Test U de Mann-

Whitney : T = 556,000; p = P = 0,029). 
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Discussion et conclusion 
 

La micro-délétion de la région 16p11.2 SULT1A1-SPN augmente la sensibilité à divers 

troubles neuropsychologiques. Comme nous l’avons indiqué précédemment, les désordres le 

plus fréquemment diagnostiqués sont la déficience intellectuelle et les TSA. Cette CNV est 

également associée à d'autres symptômes anatomiques liés à la taille de la tête et au poids 

corporel. Dans cette étude, nous avons décidé de trouver des candidats dans l'intervalle 

génétique en créant des modèles murins d'inactivation de 2 gènes qui pourraient copier le 

phénotype étroitement au modèle de délétion de la région 16p11.2.  

 

Mvp n'a pas d'implication directe dans les phénotypes cognitifs et d'apprentissage associés 

à la délétion 16p11.2 

 

Le premier modèle de souris caractérisé a été le modèle pour l’inactivation du gène Mvp. 

Pour obtenir cette modélisation, nous avons eu accès à une première construction 

génétique qui devrait empêcher la lecture du transcrit du gène grâce à une cassette de 

piégeage. Ces souris présentent des anomalies dans le temps passé sur la zone centrale, 

intermédiaire et périphérique du nouvel environnement créé dans le test en champ ouvert. 

Cependant, cette construction n'est pas toujours fiable à cause de la possibilité de lecture du 

gène. Pour cette raison, nous avons décidé de l'exclure.      

           La deuxième stratégie de mutation utilisée était CRISPR / Cas9, une technique bien 

connue pour ses applications en biologie moléculaire pour l'édition de l'ADN, à partir de 

laquelle deux exons du gène endogène ont été excisés. Dans ce cas, aucune anomalie n'est 

observée pour le phénotype de l’activité d'exploration, de l'activité circadienne, de la 

mémoire de reconnaissance ou de la présence de comportements répétitifs. Ces résultats 

indiquent que le phénotype observé sur le premier allèle pourrait être dû à des effets causés 

par la cassette de piégeage incluant le gène rapporteur et le gène de sélection (β-

galactosidase / néomycine phospho-transférase), car ce phénotype n'a pas été observé sur 

le second allèle. 

          Ce gène est impliqué dans certains processus importants du développement neural. Il 

est fortement exprimé dans les neurones cérébrocorticaux en développement et il se 

présente comme une molécule clé influençant le composant homéostatique de la plasticité 

synaptique dépendante de l'activité, via la régulation de STAT1 et la signalisation ERK (Ip et 

al., 2018). Pourtant il est important de mentionner que jusqu'à présent, Mvp n'a pas été 

associé directement à des phénotypes liés à la délétion 16p11.2, bien qu'il a été démontré 

que ce gène augmentait significativement l'expressivité du phénotype du volume cérébral 

associé à la délétion de Kctd13 (Golzio et al., 2012; Arbogast et al., 2019). Ces études ont 

précisé également que les patients porteurs d'altérations du niveau d'expression de MVP 

pourraient avoir un phénotype plus grave que les individus qui présentent une perte unique 

de fonction hétérozygote du KCTD13.  
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L’inactivation de Sez6l2 provoque des déficits dans la mémoire de reconnaissance et des 

comportements répétitifs 

 

Nous avons sélectionné à Sez6l2, en raison de sa forte expression dans les régions de 

l'hippocampe et du cortex cérébral; deux structures essentielles pour la formation de la 

mémoire. Afin d’obtenir notre modèle nous avons utilisé une construction initiale tm1a de 

l’IMPC (www.mousephenotype.org), qui a été conçue à l'origine pour être une invalidation 

génétique en épissant l'ARNm au niveau d’une cassette LacZ de piégeage de gène. Notre 

analyse montre un phénotype altéré de la mémoire de reconnaissance d’objet ainsi que la 

présence de stéréotypie pour le comportement d’escalade. Bien que cette construction soit 

très polyvalente, dans certains cas, un possible saut par-dessus la cassette LacZ pourrait 

restaurer l'expression génique dans une certaine mesure. Pour cette raison, la 

transformation de l'allèle tm1a en allèle tm1b grâce à la recombinasse Cre est nécessaire. 

Nous avons donc obtenu l’allèle tm1b. L’analyse phénotypique de ce nouveau modèle révèle 

également des déficits dans la détection de nouveauté dans le test de mémoire de 

reconnaissance et la présence des comportements stéréotypés de creusage. 

          Les souris porteuses des deux constructions présentent des phénotypes similaires, à 

l'exception du type de comportement répétitif. La différence du type de stéréotypie entre 

les deux allèles pourrait s'expliquer par la diversité des types de comportement restreint, 

répétitif et stéréotypé montrée par les patients atteints des ASD (Cunningham et al., 2008). 

          En outre, ces résultats similaires sont en accord avec l'analyse de l'expression de 

l'ARNm pour l'allèle tm1a qui montre une diminution significative de l'expression du gène 

chez les souris hétérozygotes. En plus, notre travail souligne l’implication de la dérégulation 

des niveaux d’expression de Sez6l2 dans les phénotypes de mémoire de reconnaissance et 

les comportements répétitifs liés à la perte d’une copie de la région 16p11.2. Cependant, 

nos données n'excluent pas la possibilité que d'autres loci apportent également une 

contribution aux phénotypes cognitifs associés à la délétion 16p11.2 et ne permettent pas 

de déterminer directement si la totalité de la pathologie observée chez les patients porteurs 

de la délétion 16p11.2 est dictée par les modifications dans le dosage de Sez6l2. En outre, 

notre étude montré un effet de l’haplo-insuffisance du gène sur la viabilité des animaux. 

Cette observation a été également montrée dans la caractérisation des souris porteuses des 

réarrangements 16p11.2 Sult1a1-Spn. Notre travail souligne également l’implication de la 

dérégulation des niveaux d’expression de Sez6l2 dans l’altération de la viabilité et les 

troubles du développement associés aux CNVs 16p11.2. 

 

Conclusion de l’étude 

 

Nos modèles murins d'inactivation indépendante de 2 gènes de la micro-délétion atypique 

associée au développement des TSA chez l'homme, représentent de nouveaux outils 

génétiques permettant la compréhension des mécanismes moléculaires liés aux syndromes 

16p11.2. Plus précisément, nos recherches indiquent que Sez6l2 est un gène majeur pour 

l’apparition des comportements stéréotypés. De plus, le dosage de Sez6l2, comme celui de 

Kctd13 (Chapitre: Etude de l’inhibition pharmacologique de la voie de signalisation 
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RHOA/ROCK dépendante de l’interaction entre KCTD13 et CULLIN sur les modèles 16p11.2 

Del/+ et Kctd13 +/-) est déterminant pour le développement de la mémoire de 

reconnaissance d’objets. Pour conclure, nous estimons nécessaire d’analyser dans des 

futures recherches les niveaux des protéines SEZ6L2 et KCTD13 chez les deux modèles afin 

de comprendre si l’altération du niveau d'expression de l’un des gènes aurait un effet 

épistatique sur l'autre gène. Nous pourrons évaluer également le comportement du modèle 

double hétérozygote (Sez6l2tm1b,+)/(+ ; Kctd13Yah1), dans le but de vérifier si la double 

inactivation augmente l'expressivité du phénotype. En plus, bien que la perte d’une copie de 

Mvp ne soit pas suffisante pour induire des altérations cognitives, des futures évaluations 

comportementales et de l’apprentissage sur le modèle double hétérozygote (Mvp+/-,+)/(+ ; 

Kctd13Yah1), ainsi que sur le modèle pour la micro-délétion Mvp-Kctd13 doivent être mises en 

œuvre. 

          Comme nous l'avons mentionné précédemment dans l'introduction de ce manuscrit, la 

région 16p11.2 contient de nombreux gènes essentiels pour le développement du système 

nerveux. Parmi eux nous avons décrit par exemple, le gène QPRT impliqué indirectement 

dans le développement du cortex préfrontal dorsolatéral, de l'hippocampe et de l'amygdale, 

précédemment associé aux ASD (Haslinger et al., 2018) ; le gène PRRT2 associé aux 

phénotypes épileptiques (Michetti et al. 2017; Vlaskamp et al., 2019) ; le gène ALDOA dont 

les mutations ont été identifiées dans des cas de retard mental (Beutler et al., 1973), de 

microcéphalie, de retard de langage (Kreuder et al., 1996), de schizophrénie et de 

dépression (Beasley et al., 2006) ou le gène MAPK3 présent dans la voie de signalisation Ras 

/ MAPK associée fréquemment aux ASD (Mitra et al., 2017). Nos résultats ainsi que ces 

études corroborent la complexité des interactions génétiques associées à l’expression 

phénotypique liée aux syndromes des CNVs 16p11.2. 
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Légendes des figures 
 

Figure 1. (A) La stratégie de mutation pour la modélisation de la perte d’une copie du gène 

Mvp. Cette technique est basée sur l’introduction d’une cassette de piégeage dans le 

génome (entre l’exon 2 et 3 du gène) des cellules souches embryonnaires (ES). Cette 

construction contient à l’intérieur un site accepteur d’épissage,  qui permet la lecture du 

vecteur lorsqu'il est reconnu comme le début d'un exon du gène par la machinerie de 

transcription de l'ADN et d’engendrer ainsi le transcrit de la casette. En suit, l’expression de 

la séquence du rapporteur/séléction β-galactosidase/néomycine phosphotransférase 

confère une résistance aux médicaments et permet  de sélectionner  positivement  toutes  

les cellules  ayant  intégré  la  construction introduite. Finalement la «construction-piège» 

interrompe le gène Mvp endogène avec la présence à la fin d’une queue poly(A) et donc elle 

agit comme un agent  mutagène. Le principal inconvénient de cette construction est que le 

mécanisme de transcription de l'ADN peut sauter la cassette et coder le gène endogène. Les 

produits spécifiques de la PCR pour l’allèle wild-type (542 pb) et de la mutation (308 pb). (B) 

Stratégie de mutation basée sur la technologie CRISPR / Cas9 pour l'inactivation du gène 

Mvp. Il s’agit d’un outil de modification du génome. Il est constitué par deux paires d’ARN 

guide simple brin qui ciblent la séquence d’ADN en amont et en aval des exons 4 et 5 d’une 

des copies du gène et l’enzyme Cas9 qui coupe la séquence ciblée. De cette manière, les 

exons critiques sont éliminés et l’inactivation est obtenue. Les produits spécifiques de la PCR 

pour les allèles wild-type (713 pb) et de la mutation (294 pb). 

 

Figure 2. La modélisation de l’inactivation du gène Sez6l2 à l’état hétérozygote a été menée 

à partir de deux constructions différentes. (A) En première lieu, l’allèle tm1a est une forme 

non-expressive «knockout-first» qui contient une cassette de piégeage LacZ (gène 

rapporteur) et une cassette pilotée par un promoteur floxé qui contient néomycine. Ces 

séquences permettent le marquage et la sélection des cellules génétiquement modifiées. La 

cassette de piégeage inclue également l’accepteur d’épissage et les séquences de 

polyadénylation, deux signaux très efficaces pour créer des allèles nuls chez la souris. Ces 

vecteurs ont été insérés en amont des exons 6 et 7 de Sez6l2, perturbant ainsi la fonction du 

gène. L'allèle tm1a peut être facilement modifié à partir de croisements entre des souris 

porteuses de l’allèle tm1a et des souris transgéniques exprimant la recombinasse Cre pour 

obtenir l’allèle Knock‐In conditionnel (tm1b). (B) Le modèle obtenue à partir de l’allèle tm1b 

créé pour l’inactivation du gène Sez6l2. L'allèle tm1b est produit par la délétion des exons 

critiques et de la cassette de néomycine en utilisant une recombinasse Cre qui reconnaît les 

sites loxP. Cet allèle est considéré comme une véritable invalidation génique, car l'absence 

des exons 6 et 7 empêche que le saut de la cassette LacZ pour la machinerie de transcription 

restaure l'expression du gène. Le produit spécifique de la PCR pour les allèles tm1a et tm1b 

(333 pb). 

 

Figure 3. Dépistage du phénotype cognitif et comportemental. (A) De gauche à droite, on 

montre le schéma de l’arène où le test de champ ouvert ainsi que la première phase 

d’habituation du test de reconnaissance du nouvel objet ont eu lieu. L’image centrale 
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présente la phase d’acquisition de 10 min au cours de laquelle les souris sont présentées à 

deux objets identiques (par exemple deux billes opaques verts). La dernière image montre la 

phase de rétention où un des deux objets est change par un nouvel objet (par exemple un 

dé). (B) Test d’activité circadienne. (C) Test de comportement répétitif. Afin d’analyser la 

présence des comportements stéréotypés, les souris sont mises individuellement dans une 

cage d’hébergement. 

 

Figure 4. Caractérisation comportemental du modèle de souris Mvp+/- à partir d’une cassette 

de piégeage.  (A) L’analyse du comportement exploratoire des mâles (wt  (n = 12) et Mvp+/- 

(n = 12)) dans le test de champ ouvert. Les souris ont été placées dans l’enceinte pendant 

une session de 30 min et elles ont été permises à explorer le nouvel environnement 

librement. En première lieu, le graphique montre l’activité d’exploration à partir de la 

distance (m) totale parcourue au cours du test. Ensuite, nous évaluons l’adaptation des 

souris à l’environnement en divisant la session du test en périodes de temps. Le graphique 

central montre la moyenne de la distance parcourue chaque 10 min pour les deux 

génotypes. Finalement, nous analysons le temps (s) resté par chaque souris sur les zones 

établies de l’arène (la zone central, la zone intermédiaire, la zone périphérique et les murs) 

Les souris mutantes Mvp+/- restent significativement plus de temps dans la zone centrale et 

intermédiaire et moins de temps dans la zone périphérique de l’arène (Centre : Test de 

Student, T = 170,000 ; p = 0,021; Zone intermédiaire : Test U de Mann-Whitney, t(21) = -

2,227 ; p = 0,037; Périphérie : Test de Student, t(21) = 2,411 ; p = 0,025). (B) Tâche de 

mémoire de reconnaissance de nouvel objet. Les mâles de deux génotypes (wt (n = 15) et 

Mvp+/- (n = 15)) ont été évalués pour la mémoire de reconnaissance des objets avec un délai 

de 3 heures. Le première graphique montre le temps (s) d’exploration de chacun des deux 

objets pendant la phase d’acquisition, placés à la droite (D) et à la gauche (G) de l’arène. 

Ensuite, le graphique représente l’index de reconnaissance, comme la capacité de distinguer 

entre le nouvel objet et l’objet familier. Tous les génotypes présentent un index de 

reconnaissance significativement supérieur au niveau de chance de 50 % (One sample t test: 

wt (t(14) = 3,1375; p = 0,0073), Mvp+/-  (t(14) = 2,9036; p = 0,0116)). (C) Le test d’activité 

circadienne. En haute: Le graphique supérieur montre l’activité locomotrice mesurée par le 

nombre de va et viens dans la cage du test, au cours des intervalles du cycle de 12 h de 

lumière et 12 h de sombre (les lumières s’allument à 7h). Ensuite, l’activité locomotrice 

totale de chaque génotype au cours du test, ainsi que l’activité locomotrice pendant les 

périodes de lumière et de sombre. En bas: le graphique inférieur montre l’activité verticale 

de notre modèle à partir du nombre de redressements montré par les souris. Ces données 

sont représentées avec le même schéma que pour l’activité locomotrice. Le modèle Mvp+/- 

(wt (n = 10) et Mvp+/- (n = 10)) ne développe pas d’altérations de l’activité locomotrice ni de 

l’activité verticale. (D) Le test d’évaluation de la présence de comportement répétitif (wt (n = 

9) et Mvp+/- (n = 10)). Des occurrences des redressements, des sautes, des escalades, des 

creusages et des toilettages pendant 10 min dans une nouvelle cage d’hébergement. Les 

individus mutants ne présentent pas d’augmentation significative du comportement répétitif 

par rapport aux souris wt. (* p < 0.05; ** p < 0.01). 
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Figure 5. Caractérisation du modèle Mvp+/- à partir de la technologie CRISPR / Cas9. (A) Le 

comportement exploratoire des souris mâles (wt (n = 6) et Mvp+/- (n = 9)) dans le test de 

champ ouvert. (B) Tâche de mémoire de reconnaissance de nouvel objet. Tous les génotypes 

(wt (n = 5) et Mvp+/-  (n = 8)) montrent un index de reconnaissance significativement 

supérieur au niveau de chance de 50 % (One sample t test: wt (t(4) = 5,9230; p = 0,0041), 

Mvp+/- (t(4) = 4,7864; p = 0,0020)). (C) Le test d’activité circadienne (wt (n = 6) et Mvp+/- (n = 

8)). (D) Le test d’évaluation de la présence de comportement répétitif (wt (n = 6) et Mvp+/- (n 

= 9)). (** p < 0.01).  

 

Figure 6. L’analyse cognitive du modèle de souris Sez6l2+/- créé à partir de la forme non 

expressive du gène (Sez6l2tm1a/+). (A) Le test de champ ouvert pour l’analyse du 

comportement d’exploration de notre modèle (wt  (n = 23) et Sez6l2tm1a/+ (n = 24)). Pour ce 

test nous avons mesuré la distance (m) totale parcourue, la moyenne de la distance 

parcourue en des intervalles de 10 min et le temps (s) resté par nos souris sur les zones de 

l’arène. L’analyse de l’activité d’exploration de notre modèle dans le test de champ ouvert 

montre un phénotype normal par rapport aux individus wt. (B) Test d’évaluation de la 

mémoire de reconnaissance de nouvel objet. Les souris mâles de deux génotypes (wt (n = 

11) et Sez6l2tm1a/+ (n = 9)) ont été évaluées pour la capacité de distinction entre un objet 

précédemment observé et un nouvel objet avec un délai de 3 heures. Alors que les individus 

wt présentent un index de reconnaissance significativement supérieure au niveau de chance 

de 50 %, les souris Sez6l2tm1a/+ montrent des déficits de reconnaissance d’objet (One sample 

t test: wt (t(10) = 3,0486; p = 0,0123), Sez6l2tm1a/+ (t(8) = 2,2324; p = 0.0561)). (C) Le test 

d’activité circadienne. L’analyse de l’effet de la perte d’une copie du gène Sez6l2 sur 

l’activité circadienne (wt (n = 23) et Sez6l2tm1a/+ (n = 24)) nous montre que cette mutation ne 

cause pas d’altérations de l’activité locomotrice (nombre va et viens) ni l’activité vertical 

(nombre de redressements). (D) Le test de comportement répétitif (wt (n = 23) et 

Sez6l2tm1a/+ (n = 22)). Les individus mutants présentent une augmentation significative de 

comportements répétitifs par rapport à l’évènement d’escalade (Test U de Mann-Whitney : 

T = 409,500; p = 0,040) (* p < 0.05; ** p < 0.01).  

 

Figure 7. La technique de qRT-PCR pour la quantification de l’ADNc obtenu à partir de  

transcription inverse de l’ARNm provenant de l’extraction d'échantillons d'hippocampe du 

modèle Sez6l2tm1a/+ (wt  (n = 4) et Sez6l2tm1a/+ (n = 5)) ; Test de Student, t(8) = 2,438 ; p = 

0,041). (* p < 0.05).  

 

Figure 8. L’évaluation du phénotype comportemental du modèle Sez6l2+/- créé à partir du 

Knock-in conditionnel (Sez6l2tm1b/+). (A) L’analyse du comportement exploratoire des mâles 

(wt  (n = 38) et Sez6l2tm1b/+ (n = 31)) dans le test de champ ouvert. L’allèle tm1b pour la 

délétion du gène Sez6l2 ne provoque pas d’altérations de l’activité d’exploration. (B) Tâche 

de mémoire de reconnaissance de nouvel objet. Les souris Sez6l2tm1b/+ (wt (n = 33) et 

Sez6l2tm1b/+ (n = 19)) montrent un index de reconnaissance en dessous du niveau de chance 

de 50 % (One sample t test: wt (t(32) = 3,2605; p = 0,0026), Sez6l2tmb1/+  (t(18) = 1.9792 ; p = 

0.0633)). (C) Le test d’activité circadienne (wt (n = 24) et Sez6l2tmb1/+ (n = 18)). Les individus 
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mutants ne montrent pas des variations dans l’activité locomotrice spontanée ou le nombre 

de redressement au cours des phases de lumière et sombre. (D) Le test d’évaluation de la 

présence de stéréotypie (wt (n = 25) et Sez6l2tmb1/+ (n = 20)). Dans ce cas, les individus 

Sez6l2tmb1/+ présentent une augmentation significative de comportements répétitifs par 

rapport à l’évènement de creusage. (* p < 0.05; ** p < 0.01). 
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Figures 
Figure 1. La stratégie de mutation pour l’obtention de l’inactivation du gène Mvp par 

l’insertion de la cassette de piégeage de gènes ou la technologie CRISPR / Cas9 et la 

validation moléculaire 

 

 

 

         

 

Figure 2. La stratégie de mutation pour l’obtention de l’inactivation du gène Sez6l2 à partir 

de l’allèle tm1a et tm1b et sa validation moléculaire 
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Figure 3. Dépistage du phénotype cognitif et comportemental 

 

 

A 

 

 

 

 

 

B                                                                                          C 

 

                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PARTIE 2 

78 

 

Figure 4. Caractérisation comportemental du modèle de souris Mvp+/- à partir d’une 

cassette de piégeage 
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Figure 5. Caractérisation du modèle Mvp+/- à partir de la technologie CRISPR / Cas9 
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Figure 6. L’analyse cognitive du modèle de souris Sez6l2+/- créé à partir de la forme non 

expressive du gène (Sez6l2tm1a/+) 
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Figure 7. La technique de qRT-PCR pour la quantification de l’ADNc obtenu à partir de  

transcription inverse de l’ARNm provenant de l’extraction d'échantillons d'hippocampe du 

modèle Sez6l2tm1a/+ 
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Figure 8. L’évaluation du phénotype comportemental du modèle Sez6l2+/- créé à partir du 

Knock-in conditionnel (Sez6l2tm1b/+) 
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Tableaux 
 

 
 

Ligne 
génétique 

 

 

Fond 
génétique 

 

Accouplement 
 

Génotype 
 

Individus 
 

Ratio 
 

χ² 
 

p 

 

Mvp+/- 
 

B6N 
 

Mvp+/-  x wt 
wt 71 45,2%  

1.4 
 

0.23 
Mvp+/- 86 54,8% 

 

Sez6l2tm1b/+ 
 

B6N 
 

Sez6l2tm1b/+ x wt 
wt 234 64,8%  

31.7 
 

< 0.0001 

Sez6l2tm1b/+ 127 35,2% 

 

 

Tableau 1. Taux de transmission des allèles Mvp+/- (vert) et Sez6l2+/- (bleu) à l’état 

hétérozygote à partir des accouplements  +/-  x wt sur le fond génétique B6N. L’haplo-

insuffisance du gène Sez6l2 +/- a été associée à la létalité à conséquence de l’observation 

d’une diminution de la transmission de 14,8% par rapport à la transmission mendélienne. 
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Test 
 

Paramètre 
 

 

wt 
 

Mvp+/- (casette) 

 

wt 
 

Mvp+/- (CRISPR/Cas9) 

 
 

 
 

Champ ouvert 

Distance totale (m) 70 ± 3 81 ± 6 82 ± 4 70 ± 7 

Distance t 0-10 (m) 33 ± 2 34 ± 3 32 ± 1 31 ± 3 

Distance t 10-20 (m) 21 ± 1 25 ± 2 27 ± 2 23 ± 2 

Distance t 20-30 (m) 17 ± 1 21 ± 1 23 ± 2 18 ± 2 

Temps Centre (s) 142 ± 19 190 ± 10* 243 ± 50 230 ± 69 

Temps Zone intermédiaire (s) 437 ± 30 525 ± 25* 479 ± 51 490 ± 44 

Temps Périphérie(s) 1211 ± 46 1074 ± 41* 997 ± 80 1025 ± 100 

Temps Mur (s) 10 ± 2 10 ± 2 80 ± 16 54 ± 11 
 

Reconnaissance 
d’objets 

3 heures délai 

S1 exploration d’objet A (s) 18 ± 2 20 ± 2 12 ± 2 24 ± 5 

S2 exploration d’objet A (s) 4 ± 1 4 ± 1 2 ± 0,17 2 ± 0,38 
S2 exploration d’objet B (s) 6 ± 1 6 ± 1 4 ± 0,34 5 ± 1 

Index de reconnaissance (%) 59 ± 3§§ 59 ± 3§ 64 ± 2§§ 66 ± 3§§ 
 

 
 

Activité 
circadienne 

Activité locomotrice totale (count) 1306 ± 130 1389 ± 156 1596 ± 283 2104 ± 215 

Activité locomotrice lumière (count) 388 ± 30 330 ± 34 133 ± 39 162 ± 26 
Activité locomotrice sombre (count) 590 ± 73 587 ± 64 1024 ± 197 1441 ± 179 

Activité verticale totale (count) 5972 ± 936 5391 ± 1464 2086 ± 367 1978 ± 266 
Activité verticale lumière (count) 442 ± 58 314 ± 49 156 ± 58 126 ± 26 
Activité verticale sombre (count) 831 ± 154 1240 ± 564 1507 ± 268 1371 ± 201 

 
 

Comportement 
répétitif 

Redressement 32,3 ± 5,6 30,6 ± 5,2 54,3 ± 3,9 56,3 ± 3,8 

Saute 0 0 0 0 
Escalade 0,1 ± 0,1 1,1 ± 1,1 0 0,6 ± 0,6 
Creusage 5,2 ± 0,9 9,2 ± 2 7,2 ± 1,4 12,6 ± 2,1 
Toilettage 2,4 ± 0,6 3,1 ± 0,5 6,5 ± 2,3 8,2 ± 1,8 

 

 

Tableau 2. Caractérisation comportementale du modèle murin pour l’inactivation du gène 

Mvp à l’état hétérozygote chez le mâle sur un fond génétique pur. Cette modélisation a été 

menée à partir de deux stratégies de mutation, la cassette de piégeage de gènes et la 

technologie CRISPR / Cas9. Dans le cas des deux stratégies de mutation, l'inactivation de ce 

gène n'a pas entraîné de modification de l'activité des souris dans le test de champ ouvert. 

Bien que le modèle créé à partir de l’insertion de la cassette de piégeage montre des 

altérations du temps resté par les souris sur la zone central, la zone intermédiaire 

(significativement supérieur) et la zone périphérique (significativement inférieur). De plus, 

les souris mutantes dans les deux cas ont présenté un index de reconnaissance d'objet 

significativement supérieur au niveau de chance de 50%. Finalement, nos animaux n'ont 

montré aucune altération dans l'activité circadienne ni la présence de comportements 

répétitifs. Les données sont les moyennes ± l’écart-type. Test de Student, *p < 0,05. One 

Sample T. Test, §p < 0,05, §§p < 0,01 par rapport au niveau de chance (50%).  
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Test 
 

Paramètre 
 

 

wt 
 

Sez6l2tm1a/+ 

 

wt 
 

Sez6l2tm1b/+ 

 
 

 
 

Champ ouvert 

Distance totale (m) 70 ± 2 72 ± 3 79 ± 3 72 ± 3 

Distance t 0-10 (m) 28 ± 1 28 ± 1 32 ± 1 31 ± 1 

Distance t 10-20 (m) 22 ± 1 23 ± 1 24 ± 1 22 ± 1 

Distance t 20-30 (m) 20 ± 1 21 ± 1 21 ± 1 19 ± 1 

Temps Centre (s) 197 ± 11 238 ± 16 169 ± 11 184 ± 17 

Temps Zone intermédiaire (s) 528 ± 14 578 ± 22 509 ± 24 468 ± 27 

Temps Périphérie(s) 1057 ± 21 965 ± 35 1093 ± 32 1120 ± 41 

Temps Mur (s) 17 ± 2 19 ± 2 28 ± 3 27 ± 3 
 

Reconnaissance 
d’objets 

3 heures délai 

S1 exploration d’objet A (s) 10 ± 1 14 ± 3 17 ± 2 15 ± 2 

S2 exploration d’objet A (s) 2 ± 0,38 2 ± 0,21 5 ± 1 6 ± 1 
S2 exploration d’objet B (s) 5 ± 1 5 ± 2 7 ± 1 5 ± 1 

Index de reconnaissance (%) 67 ± 6§ 64 ± 6 58 ± 2§§ 45 ± 2*** 
 

 
 

Activité 
circadienne 

Activité locomotrice totale (count) 2540 ± 252 2296 ± 207 1898 ± 100 1853 ± 123 

Activité locomotrice lumière (count) 483 ± 54 385 ± 38 183 ± 17 181 ± 16 
Activité locomotrice sombre (count) 1134 ± 136 1050 ± 123 1237 ± 83 1166 ± 112 

Activité verticale totale (count) 2951 ± 336 3000 ± 321 2494 ± 255 2102 ± 216 
Activité verticale lumière (count) 463 ± 62 430 ± 55 180 ± 23 142 ± 21 
Activité verticale sombre (count) 1359 ± 197 1344 ± 174 1744 ± 196 1485 ± 175 

 
 

Comportement 
répétitif 

Redressement 59,6 ± 2,9 60,5 ± 4,3 40,3 ± 3,7 39,1 ± 3 

Saute 0 0,2 ± 0,1 0 0 
Escalade 0,1 ± 0,1 0,3 ± 0,1* 0 0,1 ± 0,1 
Creusage 10,3 ± 2,1 9,3 ± 1,7 10,5 ± 1,6 16 ± 2,2* 
Toilettage 1,9 ± 0,5 2,3 ± 0,4 3,7 ± 0,7 4,6 ± 0,7 

 

 

Tableau 3. Caractérisation comportementale du modèle murin pour l’inactivation du gène 

Sez6l2 à l’état hétérozygote chez le mâle sur un fond génétique pur. Cette modélisation a 

été obtenue à partir de deux constructions différentes, l’allèle tm1a et l’allèle tm1b. La 

différence fondamentale entre les deux constructions est l’absence des exons ciblés du gène 

et le gène marqueur sur le génome de l’allèle tm1b. Le test du champ ouvert n’a pas révélé 

de phénotype chez les souris mutantes. La mémoire de reconnaissance a été évaluée à partir 

du test de reconnaissance d’objets. Au cours de la session S1 du test, aucune différence 

d’exploration des objets A n'a été remarquée. Après un délai de rétention de 3 heures, 

aucune des modèles ont présenté un index de reconnaissance d’objets significativement 

supérieur au niveau de chance de 50%. De plus, dans le cas de l’allèle tm1b, les souris 

mutantes montrent un déficit significatif dans l’index de reconnaissance par rapport aux 

souris témoins. Enfin, nous avons observé également la présence de comportements 

répétitifs. Les souris porteuses de l’allèle tm1a ont montré une augmentation du 

comportement d’escalade alors que les souris porteuses de l’allèle tm1b ont montré une 

augmentation du comportement de creusage. Les données sont les moyennes ± l’écart-type. 

Test de Student, ***p < 0,001. One Sample T. Test, §p < 0,05, §§p < 0,01 par rapport au 

niveau de chance (50%).  



Partie 3 

Modélisation des syndromes de 

variation du nombre de copies de la 

région 16p11.2 chez le rat 

 –  
Données préliminaires  

 
 
 
 
 
 



PARTIE 3 

86 

 

Introduction 
 
L’étude des syndromes de délétion et duplication de la région 16p11.2 BP4-BP5 présente un 
intérêt majeur pour la compréhension des troubles neuropsychiatriques, tels que la 
déficience intellectuelle et les ASD, les anomalies de croissance de la boite crânienne et la 
variabilité du BMI. L'élucidation des mécanismes génétiques par lesquels les CNVs influent 
sur le développement nécessite une analyse rigoureuse des données quantitatives sur le 
phénotype humain et la mise en place de systèmes modèles dans lesquels les mécanismes 
génétiques sont conservés. La caractérisation des premiers modèles animal des 
réarrangements 16p11.2 a montré des effets sur le développement de la tête et les 
fonctions cognitives chez le poisson zèbre (Golzio et al., 2012) et la souris (Arbogast et al. 
2016). 
          Afin de générer un modèle des réarrangements 16p11.2 plus relevant pour l'autisme, 
nous avons développé des modèles pour la délétion ou la duplication de la région 
homologue à l'intervalle génétique humain 16p11.2 chez le rat.  Comme chez la souris, les 
gènes de la région 16p11.2 BP4-BP5 sont hautement conservés sur le chromosome 1 du rat.  
En tant que modèle de maladie humaine, cette espèce présente plusieurs avantages par 
rapport à la souris. Les rats montrent des meilleures performances dans les tests 
d'apprentissage et de mémoire. En plus, ces animaux sont associés avec un fort composant 
dans le domaine social, ce qui les rend un modèle approprié pour l’étude des maladies 
associées à une interaction sociale déficiente. 
Ces modèles de rats ont été créés grâce à la technologie CRISPR / Cas9 (Birling et al., 2017) 
sur la lignée hybride Sprague-Dawley (SD) non consanguin, afin de comprendre mieux la 
variabilité (pénétrance et expressivité) des phénotypes associés à ces syndromes chez les 
patients. 
          Pour déchiffrer plus en détail les fonctions cognitives spécifiques affectées ainsi que les 
traits autistiques sur les modèles de rat pour la délétion et la duplication de l’intervalle 
16p11.2, nous avons travaillé avec le sexe masculin et féminin en évaluant des phénotypes 
comportementaux et sociaux. Cette caractérisation a été menée avec un protocole basé sur 
des tests où les modèles de souris montraient des phénotypes robustes: des altérations de 
l'activité dans le test de champ ouvert, des anomalies dans la mémoire de localisation et de 
reconnaissance d’objet et l'interaction sociale.  
          Le modèle 16p11.2 chez le rat présente principalement des défauts de comportement 
social et seulement quelques défauts cognitifs. 
          En parallèle nous avons contribué avec nos modèles de rat à une analyse phénotypique 
multi-espèces des malformations craniofaciales induites par les CNVs de la région 16p11.2. 
L’objectif principal de cet étude est basé sur la description d’une tendance caractéristique de 
traits dysmorphiques liés à ces réarrangements.  
Le nombre de copies de la région 16p11.2 a des effets pertinents sur la structure cranio-
faciale qui est bien conservée entre les espèces étudiées. 
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ABSTRACT 
 
Recurrent copy number variations (CNVs) of human 16p11.2 locus have been associated 
with several developmental/neurocognitive syndromes. Particularly, deletion and 
duplication of this genetic interval are found in patients with autism and intellectual 
disability. The high gene density in that region and the strong phenotypic variability of 
incomplete penetrance, make the study of the 16p11.2 syndromes extremely complex. To 
systematically studying the effect of 16p11.2 CNVs and identifying candidate genes and 
molecular mechanisms involved in the pathophysiology, mouse models were generated 
previously. This animals developed some learning and memory deficits. In order to generate 
a 16p11.2 CNVs model more relevant to autism, we engineered deletion and duplication of 
the homologous region to the human 16p11.2 genetic interval in rat (SD). The rat 16p11.2 
model displayed mainly defects in social behavior and only a few cognitive defects. These 
findings make our model a new genetic tool for the study of syndromes related to deficits in 
social behavior. 
 



PARTIE 3 

88 

 

INTRODUCTION 
 
The 16p11.2 locus is a pericentromeric region of the chromosome 16.  Interestingly, it is one 
of the most gene-rich chromosomes in our genome and 10% of its sequence consists of 
segmental duplications1. These elements give strong instability and induce the appearance 
of copy number variations (CNV) as a consequence of the recurrent non-allelic homologous 
recombination mechanism2. The most prevalent rearrangement, deletion and duplication 
are generated between two low copy repeats (LCR), named BP4 and BP5, and encompasses 
600 kb. 16p11.2 CNVs are an important risk factor for neurodevelopmental disorders3, 
including intellectual disability (ID)4 and autism spectrum disorder (ASD)5,6,7,8,9. In addition, 
deletion and duplication have been linked to epilepsy10,11,12  and attention deficit 
hyperactivity disorder (ADHD)13, whereas only the duplication has been related to 
schizophrenia, bipolar disorder and depression14,15,16,17. 
Besides, these chromosomal rearrangements have been linked to mirrored physical 
phenotypic effects. The 16p11.2 deletion has been associated with the risk of diabetes-
independent morbid obesity and large head circumference, while the 16p11.2 duplication 
has been associated with low body mass index (BMI) and small head circumference18,19,20,21. 
Taking into account this reciprocal impact on BMI and head size, it has been suggested that 
changes in gene transcripts levels could be responsible for the symptoms associated with 
these CNVs. 
So, in order to verify this hypothesis, animal models had been developed and characterized. 
The investigation of the interplay between genes and proteins, brain activity and behavior 
through animal experimentation is crucial for the understanding of neurocognitive processes 
affected for these symptoms in humans. 
In particular, genes of the 16p11.2 region have been found to be highly conserved on mouse 
chromosome 7. Three Mouse models for deletion or duplication of the region homologous 
to the 16p11.2 have been generated in different groups.  
Among them, our laboratory engineered novel 16p11.2 CNV mouse models in pure genetic 
background named Del(7Sult1a1-Spn)6Yah (Del/+) and Dp(7Sult1a1-Spn)6Yah (Dup/+) and 
investigated them focusing on behavior and metabolism22. Sult1a1-Spn CNVs affect growth, 
weight, adiposity, activity and short-term memory in opposite ways. Whereas mice carrying 
the deletion (Del/+) show weight and adipogenesis deficits, endogenous and exploratory 
hyperactivity with increased stereotyped behavior and short-term memory impairments, 
mice carrying the duplication (Dup/+) show weight and adipogenesis increase, endogenous 
and exploratory hypo activity and short-term memory improvements. We also have found 
that the genetic background can affect the social interaction deficits in both Del/+ and Dup/+ 
mice. However, these last models in a mixed genetic background did not share all the 
phenotypes found in the pure genetic background. Altogether this observation suggests that 
this deficit could be the consequence of an effect of the genetic context. 
Transcriptomic analysis revealed that most genes located on the Sult1a1-Spn were dosage-
sensitive genes and a whole genome effect was induced altering many pathways in the 
hippocampus and the striatum certainly as a consequence of many genes from the genetic 
interval sensitive to gene dosage. 
In order to generate a model presenting more suitable autistic traits, we engineered deletion 
or duplication of the homologous region to the human 16p11.2 genetic interval in the rat. As 
a model of human disease, the rat is a more sociable animal than the mouse with a large 
spectrum of similar and complementary behavioral assessments.  
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The main contribution of our research is the establishment of a new validated 16p11.2 
animal model that can be helpful to develop later pharmacological therapies and help with 
them to improve the lives of patients. 
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MATERIAL AND METHODS 
 
Rat lines and genotyping 
 
The 16p11.2 rearrangement, deletion and duplication, were studied in a rat model 
engineered through CRISPR / Cas9 technology23. Like in mouse, genes of the 16p11.2 
Sult1a1-Spn region are highly conserved on rat chromosome 1 (Figure 1). 
This model was bred on the Sprague-Dawley (SD) outbred line with the aim of helping us to 
understand the variability (penetrance and expressivity) of the phenotypes associated to 
these syndromes in patients. No impact on viability was observed so far in the 16p11.2 
deletion and duplication in heterozygous cross of the SD rat models (Table 1). 

Deletion of the Sult1a1-Spn region, referred as Del/+, was confirmed by PCR (Figure 1) using 
Primer Del rHamont99For: (5’-GGGCTGGCAGACTTGAA-3’) and Primer Del rHavalB284 Rev: 
(5’-GTGCCACGATCAGCAGT-3’). 
Duplication of the same region, referred as Dup/+, was identified using Primer Dup 
rHamont99Rev: (5’-CGCTTTGATGCCCACTAT-3’) and Primer Dup rHavalB84For: (5’-
AGCTGTGATCCTCTGGTT-3’). 
The wild-type allele was identified using Primer rAnks3-205For: (5’-CCCCAGCCTCCC 
ACTTGTC-3’) and Primer rAnks3-205Rev: (5’-AGGATGACTGAAATTGGTGGAC3’).  
The PCR reactions gave deletion, duplication and wt products of 290 bp, 500 bp and 205 bp, 
respectively 
All rats were genotyped by PCR using the following program: 95 °C / 5 min; 35× (72 °C / 30 s, 
95 °C / 10 s, 60 °C / 10 s), 72 °C / 3 min.  
 
Behavioral analysis  
 
To decipher more in detail specific cognitive functions and autistic traits in 16p11.2 deletion 
and duplication rat models, we evaluated several phenotypes with a validated in house rat 
phenotyping for the classical unique behavioral pipeline as defined in figure 2. We defined 
the protocol with tasks in which mouse models showed robust phenotypes: increased 
activity in the open field, defect in object location and recognition memory, and social 
interaction. Four genotypes with littermate animals from different crosses were used: wt, 
Del/+, Dup/+ and pseudo-disomic Del/Dup. 
Behavioral studies were conducted in 14-16 week old rats of both sexes separately, from 8 
cohorts. Animals were housed 2 invidious per cage (Innocage Rat cages; 909 cm² of floor 
space; Innovive, San Diego, USA), where they had free access to water and autoclaved food 
(D03, Safe Diets, France). Temperature was maintained at 23±1°C and the light cycle was 
controlled as 12 hours light and 12 hours dark (light on at 7 am).  
In the testing days, animals were transferred to experimental room antechambers 30 min 
before the start of the experiments. Body weights of animals were recorded at 13 weeks old 
when they arrived to our phenotype zone. 
All assessments were scored blind to genotype as recommended by the ARRIVE 
guidelines24,25.  
 
Open Field: This test was used to study exploration activity. Rats were tested in an 
automated open field (90 x 90 x 39.5 cm) made of PVC with black walls and floor (Imetronic, 
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Pessac - France). The structure was equipped with infrared sensors for accurate location of 
the animal and the rearing. An interface provided the formatting of signals from infrared 
sensors and allows communication with the computer, where the sofware POLY OPENFIELD 
v5.3.2 managed experimental data. The open field arena was divided into central and 
peripheral regions and was homogeneously illuminated at 15 Lux. Each animal was placed in 
the periphery of the open field and allowed to explore freely for 30 min. The distance 
travelled in total arena and in each regions of the arena, as well as, the numbers of rears 
were recorder over the test session. 
 
Social interaction task: This analyze focused on the evaluation of rat social behavior by 
manually scoring of a battery social interactions26 among two animals of the same sex and 
genotype, housed in different cages.  The test was carried in a previously described 
standardized open field arena during 10 min of video recording. 
 
Novel object location recognition memory task: This test was based on the innate preference 
to the novelty showed by the rodents.  On the first day, rats were habituated to the 
previously described open field arena for 15 min at 15 Lux. On the following day, animals 
were submitted to the first 3-min acquisition trial during which they were individually placed 
in the presence of two identical objects A (syringe or flask) located at 15 cm away from one 
of the corners, on the north side of the box. After a retention period of 5 minutes, a novel 
location discrimination test was conducted. One of the familiar objects was randomly 
displaced to a novel location B.  The exploration time of the two objects (when the animal’s 
snout was directed towards the object at a distance ≤ 1 cm) was recorded during both trials. 
All rats that did not explore the first object for more than 3 seconds during the acquisition 
trial and retention trial were excluded from the analysis. A recognition index (RI) was defined 
as ((tB / (tA + tB)) x 100). A RI of 50% corresponds to chance level and a significantly higher 
RI reflects good recognition memory. All rats which did not explore the first object more 
than 3 seconds during the acquisition and retention trial were excluded from the analysis. 
 
Novel object recognition memory task: This test let to evaluate the ability to recognize 
previously encountered objects in murine models.  
Firstly, we carried out the NOR test through a protocol based on the characterization of the 
mouse model. In the first 3 min acquisition trial, rats were presented to two identical objects 
A (syringe, block, bottle or flask). A 3 min retention trial was conducted 3 hour later. One of 
the two familiar objects was randomly changed for another new object B. 
The surprising good performance of the mutant individuals made us question about the 
simplicity of this test for an intelligent animal like the rat. For this reason, we were 
motivated to develop a new NOR protocol. 
In this case, animals from new cohorts were presented to three different objects located at 
the northwest, northeast and southwest corner of the arena during 3 min acquisition trial. A 
3 min retention trial was conducted 3 hour later. One of the three familiar objects was 
randomly changed for another new object. Test was analyzed as for the Novel location 
recognition task.  
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Statistical analysis 
 
The statistical analysis of our results was carried out using standard statistical procedure 
operated by Sigma Plot software. All outliers were identified using Grubbs' test from 
calculator GraphPad. Acquired data from behavioral characterization of 16p11.2 rat models 
were analyzed using one-way ANOVA followed by Student’s t-test and Tukey’s post-hoc test 
whenever data presented normal distribution and equal variance. Otherwise, we used the 
non-parametric Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. One 
sample t-test were used also to compare recognition index values to the set chance level 
(50%). Data from evaluation of mutant allele transmission were analyzed by a Person’s chi-
squared test. Data are represented as the mean ± SEM and the significant threshold was p < 
0.05. 
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RESULTS 
 
Behavioral characterization of the 16p11.2 rat models.  
 
To carry the behavioral analysis of the 16p11.2 rat models we decided to combine the 
deletion (Del/+) and the duplication (Dup/+) for the generation of 4 groups of genotypes: wt 
control, Del/Dup pseudo-disomic for the 16p11.2 conserved region, Del/+ and Dup/+ 
littermates. 
 
As a first analysis for consequences of 16p11.2 CNVs in neuronal function, we measured 
spontaneous locomotion activity and exploratory behavior in the open field test. The 
horizontal activity was measured through total travelled distance, whereas the vertical 
distance has been analyzed by the number of rears. As shown in figure 3, increased 
variability was observed in the distance travelled and the rearing activity. Only significant 
differences were found between extreme genotype male Del/+ versus Dup/+ and between 
female Del/Dup versus Dup/+ for both the distance travelled and the rearing activity in the 
open field. 
 
Then we carried out the novel object location recognition test and the novel object 
recognition test, common assays for assessing impaired memory in rodents.  
For the novel object location recognition, animals were challenged to discriminate a moved 
object from an unmoved object. We first evaluated the performances of males and females 
separately. As no significant sex differences were noted, we collapsed these data across both 
sexes. As shown in figure 4, no difference was observed between genotypes in the retention 
session (Kruskal-Wallis one-way analysis of variance: H(3) = 5.61; p = 0.132). We also 
compared the recognition index of animals, like percentage of exploration time of the new 
object location, with the level of chance (50%). The new object position was always explored 
more than the object not moved for all the genotypes. 
 
Following these observations, we next evaluated novel object recognition from a first 
paradigm, based to the protocol used for the CNVs 16p11.2 Sult1a1-Spn mouse model. The 
animals should be able to differentiate an object observed previously during the acquisition 
phase of a novel object, during the retention phase (Figure 5). All four genotypes engaged in 
similar levels of novelty discrimination (One way ANOVA : F(3,88) = 0.038; p = 0.99). We also 
compared the recognition index with the level of chance (50%). A general preference was 
observed for the new object compared to the familiar object.  
 
The rat 16p11.2 models displayed correct recognition memory, as well as increased time of 
the objects exploration spent by rats compared to mouse (Arbogast et al., 2016). Thus we 
used a more complex object recognition paradigm with 3 different objects (Figure 6). In this 
case, the Del/+ male carriers showed an impairment in the discrimination of the novel object 
compared to all the other genotypes. Nevertheless, no alteration was observed in the 
females, with all the genotype able to discriminate the novel versus the two familiar objects. 
 
Finally, the last task focused on rat social interactions by analyzing different social 
behaviour26 (Figure 7). The Del/+ male displayed significant increased time in solitary 
compared to all genotypes. In addition, 16p11.2 Del/+ was associated to the presence of 
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more pinning, a behavior to exert dominance. Interestingly the pinning behavior was found 
also in the Del/Dup male animals. Furthermore, Dup/+ male showed increased agnostic 
behavior compared to all genotypes. Surprisingly we did not see any social phenotypes in 
Del/+ or Dup/+ females. 
 
Effect of Sult1a1-Spn rearrangements on weight body 
 
When we analyzed the effect of 16p11.2 CNVs on the weight of the 13 weeks old rats, we 
observed that male rats carrying 16p11.2 deletion showed a decrease in body weight, while 
males carrying 16p11.2 duplication did not show alterations compared to wt littermates. The 
16p11.2 rearrangements had no effect on the body weight of female rats. 
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DISCUSSION 
 
In the present study, we determined the behavioral and cognitive phenotypes of rat 16p11.2 
deletion and duplication models. Only a few cognitive defects were found in our rat model. 
Above all, 16p11.2 Del/+ male presented deficiencies in the novel object recognition 
memory test with 3 objects, a trial adapted for the phenotypic study of the rat model. 
Nevertheless, the rat 16p11.2 models displayed defects in social behavior. 16p11.2 Del/+ 
male showed an isolation behavior, a typical autistic trait, significantly superior to the rest of 
genotypes. The deletion of the Sult1a1-Spn region could also be associated with the 
appearance of pinning, a behavior associated with the expression of dominance. In addition, 
this type of behavior could also be seen among pseudo-disomic Del/Dup carriers, suggesting 
a genetic construct effect not related to the dosage of gene from the region. This 
phenomenon may result from the new deletion allele that could alter the expression of 
neighboring genes. In the other hand, 16p11.2 duplication in male was linked to an increase 
in aggressiveness. 
Surprisingly, social and cognitive phenotypes were not reproduced by the mutant females. 
This observation supports the theory of Empathy-Systematization, according to which sexual 
psychological differences reflect a reinforcement of systematization in the male and a 
reinforcement of the empathy in the female. In the context of TSA, this theory has an 
extension, called "extreme male brain" according to which individuals are characterized by 
deficiencies in empathy with an intact or increased systematization27,28. 
In addition, a previous study showed a male : female ratio of 1.3 : 1 for the 16p11.2 deletion 
in autistic individuals and 1.6: 1 for the 16p11.2 deletion in patients with intellectual 
disability / developmental delay29.  
Further studies are needed for a better understanding of the mechanisms underlying risk 
and resilience to disease between the sexes. 
Another possible explication is that this bias is only due to the specific genetic background of 
our rat model.  
Besides we decided to evaluate the effect of CNVs 16p11.2 on the body weight of our rat 
models. Our study demonstrates that the deletion of the genetic interval causes only a 
significant reduction in body weight of males carrying 16p11.2 deletion. These results are in 
agreement with the characterization of 16p11.2 mouse models22, however in our model the 
male rats carrying 16p11.2 duplication do not show an important phenotype. In addition, 
16p11.2 rearrangements do not affect body weight in female rats evidencing a resilient 
effect of female sex. 
It is important to emphasize that higher variability in the behavior outcome of phenotypic 
analysis hinder our research. We have used 8 cohorts of rat to increase the number of 
animals (about 20-25 animals per experiment) to be able to gather a larger part of the 
population. This should be a direct consequence of the SD outbred genetic background in 
which the 16p11.2 rat models were generated.  
The dysregulated genes and pathways by a comparative transcriptome analysis as well as, 
dysregulated proteins by a comparative proteomic analysis of different brain regions and 
liver from our rat 16p11.2 deletion and duplication models should be explored for further 
research. 
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LEGENDS TO FIGURES 
 
Figure 1. (A) The homologous region 16p11.2 BP4-BP5 placed in the rat chromosome 1. All 
genomic position are given according to UCSC human genome browser. (B) Top. Mutation 
strategy using CRISPR / Cas9 technology from the in vitro genome editing inside of a 
fertilized embryo and subsequent injection into a pseudo- pregnant female. We obtained 
individuals carrying the deletion and duplication of the Sult1a1-Spn region.  Bottom. PCR 
products specific for the wt (205 bp), Del/+ (290 bp) and Dup/+ (500 bp) alleles. (C) Breeding 
strategy for obtaining wt, Del/+, Dup/+ and Del/Dup littermates. 
 
Figure 2. Detailed representation of the rat behavioral pipeline used for investigating 
16p11.2 deletion and duplication rat models. The pipeline is derived from the analysis of the 
Del(7Sult1a1-Spn)6Yah and Dp(7Sult1a1-Spn)6Yah mouse models (Arbogast et al., 2016). 
 
Figure 3. Exploratory behavior of the rat 16p11.2 models in the open field test. Male (wt  
(n=28), Del/Dup (n=26), Del/+ (n=21) and Dup/+ (n=27)) and female (wt  (n=25), Del/Dup 
(n=22), Del/+ (n=26) and Dup/+ (n=22)) rats were placed in the open field for 30 min to 
explore the new environment. Horizontal activity was measured by the total distance 
traveled and vertical activity was recorded with the number of rears. Animals showed large 
variability and limited changes between genotype except Del/+ versus Dup/+ male (One way 
ANOVA between groups, Total distance : F(3,98) = 4.33; p = 0.007; Tukey’s post hoc tests : 
Del/+ vs. Dup/+ : p = 0.004; Rears : F(3,117) = 3.55; p = 0.017; Tukey’s post hoc tests: Del/+ vs. 
Dup/+: p = 0.016) and Del/Dup versus Dup/+ female (Kruskal-Wallis one-way analysis of 
variance, Total distance : H(3) = 14.18; p = 0.003, Mann-Whitney Test : Del/Dup vs. Dup/+ : p = 
0.002); (One way ANOVA between groups, Rears : F(3,116) = 4.83; p = 0.003; Tukey’s post hoc 
tests: Del/Dup vs. Dup/+: p = 0.002). (* p < 0.05; ** p < 0.01). 
 

Figure 4. Novel object location recognition memory task of the 16p11.2 rat models after 5 
min of retention. Male and female rats from different genotypes (wt  (n=21), Del/Dup 
(n=25), Del/+ (n=18) and Dup/+ (n=25) developed similar novel object location recognition 
index. All the genotypes showed increased time in exploring an object with a new relative 
location (NO) compared to the time spent exploring an unmoved object (FO) in the retention 
session of 3 min. We compared the recognition index, like percentage of exploration time of 
the new object location, to the level of chance (50%). No object location recognition deficit 
was observed among genotypes. (One sample t test: wt (t(20) = 9.3; p  < 0.0001), Del/Dup (t(24) 
= 2.41; p = 0.02), Del/+ (t(17) = 4.69; p = 0.0002) and Dup/+ (t(24) = 4.05; p = 0.0005). (* p < 
0.05; *** p < 0.001).  
 

Figure 5. Novel object recognition memory task of the 16p11.2 rat models after 3 hours of 
retention with 2 objects. (A) Scheme of the phenotyping paradigm used for the analysis of 
object recognition memory in rodents. (B) There are no differences between the recognition 
index shown by male and female rats from different genotypes (wt  (n=22), Del/Dup (n=25), 
Del/+ (n=18) and Dup/+ (n=27). In the four groups we observed a preference for a novel 
object (NO) compared to a  familiar object (FO). We compared the recognition index, like 
percentage of exploration time of the new object, to the level of chance (50 %). (One sample 
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t test: wt (t(21) = 3.87; p = 0.0009), Del/Dup (t(24) = 4.12; p = 0.0004), Del/+ (t(17) = 2.96; p = 
0.009) and Dup/+ (t(26) = 3.5; p = 0.0017). (** p < 0.01; *** p < 0.001). 
 
Figure 6. Novel object recognition memory task of the rat 16p11.2 models after 3 hours of 
retention with 3 objects. (A) Scheme of the phenotyping paradigm adapted for the analysis 
of object recognition memory in our rat model. (B) Male rats from different genotypes (wt 
(n=26), Del/Dup (n=16), Del/+ (n=14) and Dup/+ (n=16)) and female rats (wt  (n=18), Del/Dup 
(n=16), Del/+ (n=26), and Dup/+ (n=17)) were tested for the novelty recognition. The graphs 
show the percentage of time spent by the animals exploring a novel object compared to the 
time spent exploring two familiar objects. We compared the recognition index, like 
percentage of exploration time of the new object, to the level of chance (33.3 %). Only the 
Del/+ males showed an impairment in the recognition index (One sample t test: wt (t(25) = 
4.6; p = 0.0001), Del/Dup (t(15) = 2.82; p = 0.01), Del/+ (t(13) = 0.34; p = 0.74) and Dup/+ (t(14) = 
3.58; p = 0.0030) compared to all the other genotypes in males and in females. Surprisingly, 
no change was observed in the Del/+ females (One sample t test: wt (t(17) = 3.67; p = 0.002), 
Del/Dup (t(16) = 3.08; p = 0.01), Del/+ (t(25) = 3.83; p = 0.0008) and Dup/+ (t(16) = 2.3; p = 
0.035). (* p < 0.05; ** p < 0.01; *** p < 0.001). 
 
Figure 7. Social interaction of the 16p11.2 rat models. (A) Example frames of each behavior 
event analyzed during social interaction test. (B) Male (wt  (n=15), Del/Dup (n=14), 16p11.2 
Del/+ (n=10) and Dup/+ (n=14)) and female (wt  (n=14), 16p11.2 Del/+ (n=15), 16p11.2 
Dup/+ (n=12) and Del/Dup (n=15)) rats were tested for impairment of social interaction in 
pairs of individuals from different home cages with the same genotype. The Del/+ male rat 
showed increase solitary time (One way ANOVA between groups, Solitary behavior : F(3,49) = 
9.85; p < 0.001; Tukey’s post hoc tests : Del/+ vs. wt : p < 0.001, Del/+ vs. Del/Dup : p < 0.001 
and Del/+ vs. Dup/+ : p = 0.005). and pinning behaviour with Del/Dup (Kruskal-Wallis one-
way analysis of variance : H(3) = 8.66; p = 0.03; Mann-Witney test: Del/+ vs. wt: p = 0.04; 
Del/Dup vs. wt: p = 0.01) while Dup/+ males are more agnostic (Kruskal-Wallis one-way 
analysis of variance : H(3) = 13.63; p = 0.003; Mann-Witney test: Dup/+ vs. wt: p = 0.01; Dup/+ 
vs. Del/+: p = 0.02). No altered social behaviour has been detected in females (* p < 0.05; ** 
p < 0.01; *** p < 0.001). 
 
Figure 8. Effects of Sult1a1-Spn rearrangements on body weight. Body Weight (g) of the 13 
weeks old males (wt (n=15), Del/Dup (n=8), Del/+ (n=12) and Dup/+ (n=16)) and female rats 
(wt  (n=15), Del/Dup (n=12), Del/+ (n=13), and Dup/+ (n=13)) from Del-Dup littermates. Only 
the deletion of 16p11.2 region caused body weight alteration associed with the male sex. 
Our observations showed a decreased weight body in Del/+ males compared to wt 
littermates (One way ANOVA between groups, F(3,44) = 6.24; p = 0.001; Studet t-test, Del/+ vs. 
wt : t(25) = 3.39 p = 0.002). (** p < 0.01). 
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FIGURES  

 
Figure 1. Rat models for 16p11.2 deletion and duplication 
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Figure 2. Detailed representation of the rat behavioral pipeline used for investigating 
16p11.2 deletion and duplication rat models 
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Figure 3. Exploratory behavior of the rat 16p11.2 models in the open field test 
 
 

 
 
 
 
 
 
Figure 4. Novel object location recognition memory task of the 16p11.2 rat models after 5 
min of retention. 
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Figure 5. Novel object recognition memory task of the 16p11.2 rat models after 3 hours of 
retention with 2 objects 
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Figure 6. Novel object recognition memory task of the rat 16p11.2 models after 3 hours of 
retention with 3 objects 
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Figure 7. Social interaction of the 16p11.2 rat models 
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Figure 8. Effects of Sult1a1-Spn rearrangements on body weight 
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TABLES  

 
 

Genetic 
background 

 

Crossings 
 

Sex 
 

Genotype 

 

Individuals 
 

Ratio 
 

χ² 
 

p 

 

 
SD 

 
 

Del/+ x 
Dup/+  

 

 
Total 

wt 170 29,2%  
 

5.8 

 
 

0.12 
Del/Dup 132 22,6% 

Del/+ 138 23,7% 
Dup/+ 143 24,6% 

 

 
SD 

 
 

Del/+ x 
Dup/+ 

 

 
Male 

wt 79 27,7%  
 

1.7 

 
 

0.64 
Del/Dup 64 22,5% 

Del/+ 69 24,2% 
Dup/+ 73 25,6% 

 

 
SD 

 
 

Del/+ x 
Dup/+ 

 

 
Female 

wt 91 30,5%  
 

4.9 

 
 

0.18 
Del/Dup 68 22,8% 

Del/+ 69 23,2% 
Dup/+ 70 23,5% 

 
 
Table 1. Summary table of the transmission rates of the Sult1a1-Spn deletion (Del/+) and 
duplication (Dup/+) alleles from the Del/+ x Dup/+ crossing in total individuals, males or 
females observed at weaning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PARTIE 3 

108 

 

 
 

Sex 
 

 

Test 
 

Parameter 
 

wt 
 

Del/Dup 
 

Del/+ 
 

Dup/+ 

 
Male 

 
 

 
Open Field 

Horizontal activity (m) 127 ± 5 132 ± 4 149 ± 7 119 ± 6 

Vertical activity (count) 139 ± 8 157 ± 9 167 ± 12 130 ± 7 

 
Female 

Horizontal activity (m) 174 ± 8 182 ± 9 166 ± 4 141 ± 6 

Vertical activity (count) 184 ± 8 217 ± 11 177 ± 13 156 ± 11 

 
 

Total 

 

New Object 
Location 

Recognition 
5 min delay 

S1 object exploration (s) 38 ± 3 40 ± 3 48 ± 2 38 ± 3 

S2 non-displaced object exploration (s) 4 ± 1 4 ± 1 5 ± 1 6 ± 1 

S2 displaced object (s) 15 ± 1 8 ± 1*** 13 ± 1 11 ± 1* 
Recognition Index (%) 82 ± 4§§§ 66 ± 5§§ 73 ± 5§§§ 70 ± 5§§§ 

 
 

Total 

 

Novel 
Object 

Recognition 
2 objects 

3 hours delay 

S1 object A exploration (s) 39 ± 3 33 ± 2 45 ± 3 38 ± 2 

S2 object A exploration (s) 12 ± 2 8 ± 1 10 ± 1 11 ± 1 
S2 object B exploration (s) 18 ± 3 13 ± 1 21 ± 4 19 ± 2 

Recognition Index (%) 64 ± 4§§§ 63 ± 3§§§ 62 ± 4§§ 63 ± 4§§ 

 
 

 
Male 

 
 
 

 
 

Novel 
Object 

Recognition 
3 objects 

3 hours delay 

 
 
 

S1 object exploration (s) 50 ± 3 41 ± 4 44 ± 3 40 ± 3 

S2 familiar 1 object exploration (s) 8 ± 1 7 ± 1 13 ± 2* 7 ± 1 

S2 familiar 2 object exploration (s) 7 ± 1 6 ± 1 16 ± 4** 7 ± 1 

S2 new object exploration (s) 15 ± 2 12 ± 2 14 ± 2 13 ± 2 

Recognition Index (%) 49 ± 3§§§ 45 ± 4§§ 34 ± 4 46 ± 4§§ 
 

 
 

Female 

S1 object exploration (s) 50 ± 4 43 ± 5 53 ± 3 42 ± 4 

S2 familiar 1 object exploration (s) 10 ± 1 10 ± 1 12 ± 1 10 ± 1 

S2 familiar 2 object exploration (s) 9 ± 1 10 ± 1 9 ± 1 10 ± 1 

S2 new object exploration (s) 18 ± 3 16 ± 2 17 ± 2 14 ± 2 

Recognition Index (%) 47 ± 4§§ 44 ± 4§§ 45 ± 3§§§ 42 ± 4§ 

 
 
 
 
 
 

Male 

 
 
 
 
 
 

 
 
 
 

 
Social 

Interaction 
 
 

Solitary 118 ± 14 93 ± 11 190 ± 22*** 87 ± 11 

Contact 37 ± 4 41 ± 4 38 ± 7 60 ± 10 

Head to head 6 ± 1 8 ± 1 8 ± 2 7 ± 1 

Head to back 15 ± 3 13 ± 2 25 ± 5 13 ± 3 

Approaching 16 ± 2 16 ± 1 17 ± 2 17 ± 2 

Moving away 17 ± 2 17 ± 1 19 ± 2 16 ± 1 
Following 12 ± 3 15 ± 3 11 ± 1 17 ± 4 
Pinning 0 2 ± 1* 3 ± 1* 1 
Agnostic 0 1 0 6 ± 2** 

 
 

 
 
 

Female 

Solitary 145 ± 11 118 ± 8 154 ± 12 144 ± 15 
Contact 38 ± 5 41 ± 6 32 ± 4 38 ± 5 

Head to head 7 ± 1 7 ± 1 7 ± 1 6 ± 1 

Head to back 35 ± 7 33 ± 4 35 ± 5 44 ± 8 

Approaching 21 ± 1 20 ± 1 20 ± 1 21 ± 1 

Moving away 25 ± 2 22 ± 1 24 ± 2 21 ± 1 

Following 12 ± 2 12 ± 2 17 ± 3 11 ± 3 

Pinning 0 0 0 1 

Agnostic 0 0 0 2 ± 1 

 
 
Table 2. Behavioral and cognitive study of the 16p11.2 Sult1a1-Spn Del/Dup genetic line in 
the rat model for both sex. In the open field test, we didn’t observe any significant alteration 
for horizontal and vertical activity in our mutant rats compared to wt animals for any sex. 
The absence of phenotype could be explained by the high variability shown by the 
individuals in each group. Recognition memory was analyzed through the novel object 
location and object recognition test. We first evaluated the performances of males and 
females separately. As no significant sex differences were noted, we collapsed these data 
across both sexes. In the first session (S1) no difference in object A exploration was noticed. 
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Although the Del/Dup and Dup/+ individuals showed a decreased exploration time of 
displaced object, any genotype showed impaired objet location recognition. In the novel 
object recognition task with 2 objects, no change of memory was observed. In the first 
session (S1) of the novel object recognition test with 3 objects, no difference in object A 
exploration was noticed. The Del/+ males showed a deficit for novel object recognition 
index. Del/+ males were the only animals whose recognition index was not significantly 
higher than the level of chance for 3 objects (33.3%). Finally, social interaction test indicated 
that Del/+ males present an increased solitary behavior whereas Dup/+ males develop 
agnostic behavior. In addition, Del/+ as well as Del/Dup males showed an increased pinning 
behavior. Data are mean ± SEM. Mann-Witney U test, * p < 0.05, ** p < 0.01, ***p < 0,001. 
One Sample T. Test, §p < 0,05, §§p < 0,01, §§§p < 0,001. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PARTIE 3 

110 

 

 
 

Sex 
 

 

Parameter 
 

wt 
 

Del/Dup 
 

Del/+ 
 

Dup/+ 

 

Male 
 

 

Female 

 

Body weight (g) 
 

525 ± 11 
 

526 ± 13 
 

469 ± 10** 
 

540 ± 13 

 

Body weight (g) 
 

301 ± 6 
 

309 ± 6 
 

299 ± 8 
 

305 ± 8 

 
 
Table 3. Body weight analyse of 16p11.2 Sult1a1-Spn Del/Dup rat model. Del/+ male carriers 
showed decreased body weight compared to wt littermates. Data are mean ± SEM. Student 
t-test ** p < 0.01. 
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ABSTRACT 
 

A copy number variant (CNV) of 16p11.2, which encompasses 30 genes, is associated with 

developmental and psychiatric disorders, head size and body mass. The genetic mechanisms 

that underlie these associations are not understood. To elucidate the effects of genes on 

development, we exploited the quantitative effects of CNV on craniofacial structure in 

humans and model organisms. We show that reciprocal deletion and duplication of 16p11.2 

have characteristic “mirror” effects on craniofacial features that are conserved in human, rat 

and mouse. By testing gene dosage effects on the shape of the mandible in zebrafish, we 

show that the distribution of effects for all individual genes is consistent with that of the 

CNV, and some combinations have non‐additive effects. Our results suggest that, at 

minimum, one third of genes within the 16p11.2 region influence craniofacial development, 

and the facial gestalt of each CNV represents a product of 30 dosage effects. 

 

HIGHLIGHTS 
 

• Reciprocal CNVs of 16p11.2 have mirror effects on craniofacial structure. Copy 

number is associated with a positive effect on nasal and mandibular regions and a negative 

effect on frontal regions of the face. 

• Effects of CNV on craniofacial development in human are well conserved in rat and 

mouse models of 16p11.2 deletion and duplication. 

• 7/30 genes each independently have significant effects on the shape of the mandible 

in zebrafish; these include SPN, C16orf54, SEZ6L2, ASPHD1, TAOK2, INO80E and FAM57B. 

Others (MAPK3, MVP, KCTD13) have detectable effects only in combination. 

• Overexpression of 30 genes individually showed a distribution of effects that was 

skewed in the same direction as that of the full duplication, suggesting that specific facial 

features represent the net of all individual effects combined. 
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INTRODUCTION 
 

Recent technological advances in genomics have facilitated the discovery of scores of new 

genetic disorders that have a complex and variable clinical presentation (Malhotra and 

Sebat, 2012). Unlike Down syndrome (Roizen and Patterson) and Williams’s syndrome 

(Ewart et al.), which have a distinguishable constellation of clinical features and facial 

gestalts, these new genetic disorders are notable for not having a clear pattern of congenital 

anomalies or dysmorphic features (Nevado et al.). A major exemplar are the reciprocal CNVs 

of 16p11.2 (BP4‐BP5, OMIM: 611913 and 614671). Deletion (Miller et al.) and duplication 

(D'Angelo et al.) of 30 genes are associated with variable degrees of cognitive impairment, 

epilepsy and psychiatric traits including autism spectrum disorder, psychiatric disorders. We 

and others have shown tha the dosage of 16p11.2 has quantitative effects on development 

in particular morphometric traits, such as head circumference (McCarthy et al.; Shinawi et 

al.) and body mass index (BMI) (D'Angelo et al.). Deletions are associated with greater head 

size and BMI while duplications are associated with smaller head size and BMI. In addition, a 

variety of craniofacial anomalies have been reported in a subset of cases (Bijlsma et al.; 

Rosenfeld et al.; Shinawi et al.), but a characteristic pattern of dysmorphic features has not 

been described. 

Thus, the influence of CNV on psychiatric and morphometric traits alike is complex, and the 

underlying genetic mechanisms are not understood. 

Elucidating the genetic mechanisms through which CNVs influence development requires 

rigorous analysis of quantitative phenotype data in humans and the establishment of model 

systems in which the genetic mechanisms are conserved. Craniofacial development, in 

particular, is controlled by genetic mechanisms that are conserved across species (Schilling). 

The effect of genes on the human face is of interest, therefore, because craniofacial 

structure represents developmental phenotypes that are experimentally tractable in model 

organisms, and which could provide insights into disease mechanisms. Effects of 16p11.2 

CNV on development of the brain and head have been reported in both mouse (Arbogast et 

al.; Horev et al.) and zebrafish (Golzio et al.), and multiple genes have been demonstrated to 

influence brain development including KCTD13, MAPK3 and MVP (Arbogast et al.; Escamilla 

et al.; Golzio et al.). We hypothesize that a precise morphometric characterization of 

patients could help to further illuminate how 16p11.2 genes influence embryonic 

development. 

 

The application of 3D imaging provides detailed quantitative analysis of surface features, 

enabling more precise measurements of the shape of the head and face. Application of this 

approach has facilitated the finer characterization of genetic syndromes with characteristic 

craniofacial features (Hammond; Hammond et al.). Application of this technology in 

non‐syndromic and complex genetic disorders has the potential to elucidate the effect of 

genes on craniofacial development. By three‐dimensional image analysis of surface features 

in human, rat and mouse and the dissection of single gene effects in zebrafish, we show that 

the copy number variation of 16p11.2 has a strong effects on craniofacial structure that are 
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conserved across species, and the facial features associated with each disorder are 

attributable to the oligogenic effects of multiple genes. 

  

RESULTS 
 

Reciprocal deletion and duplication of 16p11.2 have mirror effects on craniofacial 

structure 

 

3D morphometric facial imaging was performed on subjects with 16p11.2 duplications or 

deletions and controls recruited to the Simons VIP study (Simons VIP Consortium, see 

supplementary methods). The final dataset (N = 228, Table S1) included 45 with deletions, 

44 with duplications and 139 familial non‐ carrier controls. A total of 24 landmarks were 

placed on each image and a “features”, defined as pairwise distances between landmarks, 

were normalized to the mean. Differences in deletion and duplication groups relative to 

controls were detected by linear regression controlling for fixed effects of age, head 

circumference, body mass index (BMI), sex, and ancestry principal components obtained 

from genetic data, with a random intercept allowed to account for within‐family correlation. 

Eighteen features differed significantly between groups at a family‐wise error rate of 5% (Fig 

1B, Table S2), and forty‐five were significant at a Benjamini‐Hochberg FDR correction of 5%. 

For 13 of the 18 significant features, deletion and duplication had effects that were opposite 

in direction (p= 0.048, one‐ sided binomial test). Consistent with the deletion and duplication 

having reciprocal effects, the deletion vs duplication effect sizes were negatively correlated 

for the 18 significant measures (p = <0.001, Pearson’s correlation = ‐0.77, Fig 1A). 

Genetic effects were clustered in regions corresponding to major processes of craniofacial 

development (Frontonasal, Medial Nasal, Maxilla and Mandible, Fig 1A). Deletion of 16p11.2 

was associated with significantly larger frontal (4‐1, 4‐2, 4‐3, 12‐9, 12‐10, 12‐11) and 

maxillary (7‐8, 15‐16, 5‐16 and 13‐8) dimensions and a shorter (18‐19) and narrower nose 

(4‐12, 4‐15, 6‐15, 7‐12 and 7‐14). By contrast the duplication was associated with opposite 

effects, including smaller frontal dimensions (4‐2) and significantly wider nose and longer 

nasal bridge (18‐19). Duplications were associated with a narrower LMA consistent with a 

more protrusive chin. A wider LMA was observed in deletion carriers, but the effect did not 

reach statistical significance in this comparison. Least absolute shrinkage and selection 

operator (LASSO) logistic regression was performed to select a parsimonious subset of 14 

features which could best discriminate each genotype (Fig. 1B, Table S2). 

Facial gestalts associated with the 16p11.2 deletion and duplication were visualized using 

computer‐ generated faces in which the features of a model face were adjusted according to 

the 14 differences described above, including the frontonasal and maxillary distances and 

the LMA (Fig. 1C, Table S2). Dimensions were adjusted based on the percentage difference 

between CNV and control groups (defined as the effect size divided by the mean). 

Differences ranged from 1% to 12%. 

  

To further visualize the facial gestalts of controls, deletion carriers and duplication carriers 

respectively, a 3D‐model of each was generated by averaging of the surface topography of 
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faces from multiple subjects (3dMDvultus version 2.5.0.1). The sample was limited to 

subjects ages 14‐49 to avoid variability in facial features across development at young ages, 

and the sample was restricted to males for which there were sufficient numbers of 

age‐matched subjects (>5) for all three genotypes (Table S3). A facial gestalt similar to that 

of the simulated faces was distinguishable in the average faces of adult male deletion and 

duplication carriers and control subjects, with the effects on the nose and chin being the 

most recognizable feature (Fig. 1D). Similar features were observed in the average faces of 

younger (age 8‐11) and older (ages 18‐50) subjects of both sexes (Fig. S1). 
 

Craniofacial characteristics distinguish 16p11.2 deletion and duplication carriers from 

controls 

 

Based on Linear Discriminate Analysis (LDA) of craniofacial features, genotypes could be 

separated into clusters, with better separation for younger subjects (Fig. 2). The LDA model 

achieved a total correct classification rate of 0.78 on the full sample; reflecting the 

considerable overlap between the genotypes (Fig. 2A). Genotype was classified more 

accurately by LDA when restricted to younger (age 3‐20) subjects, with total correct 

classification 0.84. The predictive accuracy of the LDA model was confirmed by 

leave‐one‐out cross validation of the full sample which gave specificities of 0.88 and 0.93 

and sensitivities of 0.48 and 0.42 for deletion and duplication respectively. When restricted 

to younger subjects, specificities were 0.88 and 0.87 and sensitivities were 0.72 and 0.52 for 

deletion and duplication respectively. 

 

These results demonstrate that deletion and duplication carriers have combinations of facial 

features that are distinctive for each group. However, the substantial overlap between the 

faces of CNV carriers and controls is consistent with many subjects having a non‐syndromic 

appearance that is not characterized by gross anomalies. Examination of group differences 

on each of the individual distances confirms that deletion and duplication groups do not 

represent outliers on any single measure. (Fig. S2). 

  

Differential effects CNV on craniofacial structure are recapitulated in rat and mouse 

models of 16p11.2 

 

Rodent models of 16p11.2 deletion and duplication exhibit a variety of behavioral traits 

(Arbogast et al.; Horev et al.; Yang et al.). However, the direct relevance of these phenotypes 

to the human condition is uncertain. Similarly, the analysis of anthropometric traits in model 

organisms has been confounded by growth retardation that is observed in some mouse 

models (Arbogast et al.; Horev et al.; Yang et al.). 

We theorized that the cranial skeleton might represent an aspect of vertebrate development 

that is sufficiently conserved to serve as surrogate traits for genetic dissection of 16p11.2 

CNV. To that end, we pursued quantitative analyses of the cranial skeleton from rat and 

mouse models of the 16p11.2 deletion and duplication (Arbogast et al., 2016). 

Rat deletion and duplication models were generated by CRISPR/Cas9 genome editing of the 

syntenic region, and computed tomography (CT) scans were obtained from a cohort of 75 
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rats. In addition, CT scans of mouse lines from Arbogast et al. were obtained from a cohort 

of 26 mice (see supplementary methods). For each subject, a set of 19 landmarks were 

placed delineating the major craniofacial processes, and features were compared between 

the CNV models and matched controlled using linear regression. Results of all univariate 

tests are described in Table S4. 

CNV had a significant effect on craniofacial structure in rat with strong mirror effects across 

all features between the deletion and duplication models (r = ‐0.56, P < 0.001, Fig. S3). A 

total of 52 features were significantly associated with genotype (FDR < 0.05, Fig 3A). By 

labeling features according to their respective craniofacial regions, we observe that the 

deletion was associated with larger frontal regions (e.g. 9‐2, 9‐3, 9‐6 and 9‐7, Fig. 3B) and 

smaller nasal (3‐7, 3‐8, 7‐7 and 4‐8) and mandibular (MW) regions, while the opposite 

effects were associated with the duplication. These results are consistent with the patterns 

that were observed in human. 

Overall the effects of the deletion in mouse were similar to those in rat with effect sizes 

across the face being significantly correlated between species (r = 0.50, p <0.0001, Fig S10). 

The effects of the duplication in mouse did not correlate with those in rat and did not exhibit 

a strong mirror effect relative to the deletion across all features (p = 0.59), consistent with 

the duplication having a comparatively modest effect in this mouse line. Mouse craniofacial 

features that differed between deletion and duplication lines, however, did show mirror 

patterns similar to those in rat and human (Fig. 3C). For the most informative features that 

were selected by LASSO regression, deletion mice had larger frontal (9‐2, 9‐6 and 2‐6) and 

maxillary (19‐14 and 15‐18) distances and smaller nasal (7‐1, 8‐1, 8‐3 and 10‐1) and 

mandibular (ML) distances, which were similar to the effects observed in human (sign test P 

= 0.004), whereas the duplication mouse model had reciprocal effects on the same features 

(sign test P = 0.004). 

 

Craniofacial features associated with 16p11.2 CNVs are attributable to multiple genes 

 

To assess with more granularity the influence of the 16p11.2 BP4‐BP5 genes on facial 

structure, we tested their effects on specific craniofacial features that could be measured by 

in vivo imaging of zebrafish larvae. Protrusion of the lower jaw was measured using the 

ceratohyal arch angle (CHA), where a smaller angle corresponds to a more protrusive jaw 

and a wider angle corresponds to a receding jaw (Fig. 4A). Dimensions of the frontonasal 

region were measured using the Frontonasal area (FNA) and interocular distance (IOD) (Fig. 

S4A), however we are unable to capture separate frontal and nasal measurements in 

zebrafish analogous to those in rodent and in human. 

We first tested the overexpression of all 30 genes in the 16p11.2 region, focusing on the 

lower jaw phenotype which is more directly analogous to the phenotypes in human and 

rodent. We found that several genes had significant effects on CHA, including SPN, C16orf54, 

SEZ6L2, ASPHD1, TAOK2, INO80E and FAM57B (Fig. 4B), The genes inducing the most 

significant phenotypes included SEZ6L2 (4° decrease in CHA versus controls; p<0.0001) and 

TAOK2 (3° decrease in CHA versus controls; p<0.0001; Fig. 4A,B).. Effects for all seven 

transcripts were associated with a narrower CHA compared to controls, consistent with the 
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protruding lower jaw that is associated with the duplication in human and rodent The 

distribution of effects for all 30 genes (95% CI = 98.1‐99.1) was significantly lower than the 

distribution in controls (95% CI = 99.5‐100.5), consistent with the effect of the duplication. 

We evaluated the effects of ablating endogenous zebrafish sez6l2, taok2a, and taok2b using 

CRISPR/Cas9 genome editing, and confirmed that the reciprocal loss of these genes results in 

a reciprocal increase of the CHA in comparison to controls (sez6l2 gRNA+Cas9 versus 

controls, 5° increase in CHA, p<0.0001; taok2a gRNA+Cas9 versus controls, 8° increase in 

CHA, p<0.0001; taok2b gRNA+Cas9 versus controls, 5° increase in CHA, p<0.0001; Fig. 4A,C), 

consistent with the effect of the deletion. 

 

We showed previously using zebrafish models that overexpression of KCTD13 individually 

and in combination with MAPK3 and MVP led to a decrease in head width (Golzio et al., 

2012), and knockdown of kctd13 exhibited mirror effects, a pattern consistent with the 

human phenotype of the 16p11.2 CNV. We tested overexpression and CRISPR/Cas9 F0 

mutants of KCTD13, MAPK3, and MVP individually and in combinations of two or three 

genes. Overexpression of the three mRNAs individually did not have a significant effect on 

CHA, but injection of all three transcripts combined resulted in a significant 6° decrease in 

CHA relative to controls (Tukey’s p<0.01; Fig. 4A, D). Mutants with reciprocal loss of mapk3 

displayed an increased CHA (Fig. 4E) and the three gene combination resulted in a 16° CHA 

increase (Tukey’s p<0.0001). Thus mirror effects of these genes parallel those that are 

observed in human. We evaluated the body length of larvae injected with a combination of 

the three gRNAs and Cas9 and found no growth retardation compared to controls, 

supporting further the specificity of the cartilage phenotypes (Fig. S5). For Frontonasal area 

(FNA) and Interocular distance (IOD), significant effects were also observed with 

combinations of two or three genes (Fig. S4). Genome editing was associated with reduction 

in FNA (Fig. S4A‐C), and gene overexpression was associated with increase in IOD (Fig. S4D, 

E), results that parallel the effect of the deletion and duplication on nasal regions in human. 

Evidence for a synergistic effect of MAPK3 in combination with MVP or KCTD13 was 

observed for dimensions of the frontonasal region but not the mandible (Table S5). Other 

combinations were consistent with additive effects (p=0.99 for additive ANOVA model 

compared to fully parameterized model). Together, our in vivo experiments performed in 

zebrafish suggest that facial features that are associated with CNV are under the influence of 

a substantial proportion of 16p11.2 genes, including some that have non‐additive effects. 
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DISCUSSION 
 

Here we show that reciprocal CNVs of the 16p11.2 BP4‐BP5 region have mirror effects on 

craniofacial development. Deletion and duplication of 16p11.2 are each associated with 

facial features that are distinctive but both groups overlap with the variability observed in 

the general population. Dosage of 16p11.2 was associated with a positive effect on nasal and 

mandibular regions and a negative effect on the frontal regions. 

The principal value of the 16p11.2 CNV facial phenotypes are, not as a clinical diagnostic 

markers, but as a model for studying the genetic mechanisms through which CNVs influence 

complex traits. Here we show that mirror effects of CNV on facial features are well 

conserved in rat and mouse models of 16p11.2, and the effects of gene dosage on a specific 

feature (shape of the mandible) can be further modeled in zebrafish. The craniofacial 

phenotype of 16p11.2 thus represents the first set of traits for which a genetic mechanisms 

is conserved across model systems. 

By dissection of individual gene effects in zebrafish we show that mirror facial phenotypes of 

CNV are attributable to multiple genes within the region. Significant effects were observed 

for seven genes when overexpressed individually and for additional genes (MAPK3, MVP and 

KCTD13) when overexpressed in combination, thus at least one third of genes may influence 

the shape of the mandible The distribution of effects for all 30 gene overexpression tests 

was negative, consistent with the effect for the full duplication. Our results suggest that the 

net effect of the large CNV on specific developmental features consists of a combination of 

30 individual gene effects. We find some evidence for synergistic effects when multiple 

genes are expressed in combination; however, we are not able to assess whether the overall 

effect is explained predominantly by additive effects or epistasis without a model of the full 

CNV in zebrafish. 

The genes that have the greatest effects on shape of the mandible were SPN, C16orf54, 

SEZ6L2, ASPHD1, TAOK2, INO80E and FAM57B. These genes were not clearly distinguishable 

from the other 23 based on their levels of expression in the developing face (Table S6). 

However, some of these genes have been shown previously to be associated with alterations 

in head and brain size, such as TAOK2 (Richter et al.) and FAM57B (McCammon et al.). These 

and other genes within the region function as regulators of cell proliferation and embryonic 

development (Khosravi‐Far et al.). Notably, TAOK2 is a regulator of MAP Kinase (MAPK) 

signaling (Chen et al.), which is a commonality among multiple 16p11.2 genes, including 

MAPK3 which encodes the Extracellular Receptor Kinase 1 (ERK1) (Meloche and Pouyssegur) 

and MVP (Scheffer et al.), which complexes with ERK2 (Kolli et al.) and regulates ERK 

signaling (Kim et al.). This pathway‐level convergence highlights MAPK signaling as a 

potential driver of craniofacial effects that are observed in this study. 

The craniofacial features that are associated with the deletion of 16p11.2, including 

macrocephaly, broad forehead, and underdeveloped nose and chin (micrognathia), bare 

some similarity to features of monogenic disorders that are caused by mutations in 

components of RAS/MAPK signaling, such as Noonan (Bhambhani and Muenke) and 

Cardiofaciocutaneous (CFC) syndromes (Rauen). Similar craniofacial anomalies are also 

observed in mouse embryos with conditional disruption of MAPK signaling in neural crest 
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cells (Parada et al.). Common facial features between 16p11.2 deletions and a subset of 

these other syndromes is intriguing and suggests that dysregulation of RAS/MAPK signaling 

might affect embryonic patterning in similar ways in 16p11.2 microdeletion syndrome and in 

the family disorders known as the “rasopathies” (Araki et al.). 

An oligogenic mechanism is unlikely to be unique to the to the 16p11.2 locus. Rather an 

oligogenic model may apply in general to the effect of large CNVs on complex traits. For 

example, the polygenic contribution to height appears to be distributed across a large 

proportion of the genome (Boyle et al.; Liu et al.). The same is likely to be true for other 

anthropometric and cognitive traits such as facial features, body mass and IQ. In principle, 

haploinsufficiency of 30 adjacent genes may exert a distribution of effects across a variety of 

traits, and the features that are most prominent for a particular disorder could be those 

traits for which the sum of gene dosage effects across the CNV deviates significantly from 

the genome‐wide genetic load. 

Previous studies have found evidence that multiple genes within the 16p11.2 region impact 

various aspects of development in zebrafish (McCammon et al.) and drosophila (Iyer et al.). 

However, a major limitation has been a lack of validation of these phenotypes as models of 

the human disorder. The reciprocal craniofacial phenotypes that we observe are, to our 

knowledge, the only human 16p11.2‐ associated traits that are reproducible across multiple 

model organisms, both in magnitude and direction of effect. Knowledge of the influence of 

16p11.2 deletion and duplication on craniofacial development could serve as a guide for 

how these genetic disorders influence embryonic patterning more broadly, including 

regional patterning of the brain (Chang et al.; Owen et al.; Owen et al.; Qureshi et al.) . 

Further studies of the oligogenic effects described here could provide insights into 

mechanisms underlying cognitive impairments of these genetic disorders. 
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EXPERIMENTAL PROCEDURES 
 

3D Morphometric Analysis of Simons VIP subjects 

 

Images of Simons VIP subjects were acquired using the 3dMDtrio system 

(http://www.3dmd.com/3dmd‐systems/#trio) and were landmarked according to Farkas 

standards (Farkas) blind to genotype. Additional landmarks were placed to capture frontal 

dimensions including landmarks 2 (lateral brow) and 4 (medial brow). A total of 24 

landmarks were placed. Quantitative pairwise distances between landmarks were calculated 

using the 3DMD software (3dMDvultus version 2.5.0.1). Symmetric distances were averaged 

and normalized to the overall size of the face, yielding 156 facial measurements and two 

angular measurements, the nasomental (NMA) and labiomental (LMA) angles respectively. 

We used a series of linear mixed‐effects models to test for the effect of the deletion and the 

duplication separately on each facial measure. Linear regression was controlled for fixed 

effects of age, head circumference, body mass index (BMI), sex, and ancestry principal 

components obtained from genetic data, with a random intercept allowed to account for 

within‐family correlation. 

To investigate further the extent to which the 16p11.2 genotype can be distinguished based 

on craniofacial features, we performed Linear Discriminate Analysis (LDA) using the 45 

distances significant at FDR <0.05 (Fig. 2), for the total sample and a subset restricted to 

younger subjects (age 3‐20). 

Statistical analysis controlled for age, head circumference, body mass index (BMI), sex, and 

ancestry principal components. Leave‐one‐out cross validation was performed twice to 

calculate misspecification rates for both full sample and younger sample. 

 

Computed tomography analysis of 16p11.2 deletion and duplication rodent models 

 

Quantitative analysis of skull morphometry in rodent models of the 16p11.2 deletion and 

duplication was performed using a dataset of CT scans collected by Arbogast et al (Arbogast 

et al.) and completed here with a CT dataset for the rat models (see supplementary 

materials). The cohort of 75 rats consisted of 23 Del/+ (9 male and 14 female), 26 Dup/+ (13 

male and 13 female) and 26 +/+ littermates (13 male and 13 female). The mouse cohort 

consisted of female deletion or duplication lines (aged 13 weeks) paired with the same 

number of wild‐type female littermates, including 10 deletion and 8 duplication pairs 

obtained from more than 5 independent breeder pairs to minimize inbreedism. 

Following CT scans of all rodents, nineteen landmarks were placed to capture the 

dimensions of the frontal, nasal and maxillary regions. Centroids of multiple landmarks were 

determined to mark three positions on the mandible (Fig. S6). For each skull, pairwise 

distances were normalized to the overall geometric mean distance, and the most significant 

differences between mutant and control groups were identified by linear regression at an 

unadjusted significance of 5%. 
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Testing the effects of genes on craniofacial features in a Zebrafish model 

 

To model the 16p11.2 BP4‐BP5 duplication, we overexpressed all 30 genes of the CNV 

individually and evaluated the shape of the mandible in a transgenic zebrafish model 

(‐1.4col1a1:egfp) in which GFP marks the developing cartilage (Kague et al. 2012). In 

addition, we investigated pairwise and three‐way gene interactions for MAPK3, MVP, and 

KCTD13 that have been reported previously to impact head size (Golzio et al 2011). To model 

the reciprocal deletion, we performed CRISPR/Cas9 genome editing of sez6l2, taok2a, and 

taok2b individually; we generated F0 mutants for mapk3, mvp, and kctd13 individually and 

in pairwise and three‐way combinations. We used CHOPCHOP (Labun et al., 2016) to identify 

guide (g)RNAs targeting coding sequence and PCR primers used to determine efficiency of 

CRISPR/Cas9 genome editing (Fig. S7‐12, Table S7). Measurements of the dorsal zebrafish 

head were performed by determining the interocular distance (IOD) and the frontonasal 

area (FNA). 
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Figure 1. Differential effects of 16p11.2 copy number on dimensions of the frontal, nasal, maxillary and 

mandibular regions. (A) On each 3D facial image, 24 landmarks were placed and two angular measurements 

were calculated. After averaging symmetric distances, 156 distance measures were compared between the 

CNV and control groups. (B) 18 measures were significant after correction for a FWER < 5%. Regression 

coefficients for duplication vs control (y‐axis) and deletion vs control (x‐axis) show that reciprocal CNVs have 

reciprocal effects on growth of the major craniofacial processes. The category “Other” represents features that 

span multiple processes. The 14 most informative facial features based on LASSO selection are drawn in panel 

A and colored by facial region according to the legend. For clarity some nasal distances are excluded. (C) Facial 

features associated with deletion and duplication were visualized by adjusting the computer‐generated model 

face according the observed effect sizes (from Panel B and Table S2). (D) The average surface topography was 

generated from multiple (>5) age‐matched subjects with each genotype. Note that subtle differences in BMI 

are also apparent, however these effects are controlled for in the statistical analysis, and do not influence the 

feature selection. 
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Figure 2. Classification of 16p11.2 genotype based on facial features. Discriminate coefficients based on 

features that were significant at FDR < 0.05 can distinguish the subjects based on genotype, with better 

discrimination for younger subjects (age ≤ 20 years). The linear model was controlled for age, head 

circumference, body mass index (BMI), sex, and ancestry principal components. LDA was applied to subjects for 

which the above demographic information was complete (N= 220 for the full sample and 107 for the younger 

group). 
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Figure 3. Validation of mirror craniofacial effects in rat and mouse models of 16p11.2 deletion and duplication. 

All pairwise distances were analyzed for nineteen landmarks on the dorsal skull and three on the mandible as 

shown here and in Table S4. Distances are colored according to craniofacial region using the same scheme as in 

figure 1. Distances that span multiple craniofacial processes are denoted as “other”. ML = Mandibular length, 

MW = Mandibular Width. (A) In the rat models, 52 individual features differed significantly by genotype. 

Regression coefficients for the duplication deletion show significant mirror effects. (B) Informative features 

were identified by LASSO selection, and features that correspond to a specific facial process in rat are shown. 

(C) In the mouse models, twelve craniofacial measures that discriminated mutant and control groups were 

selected by LASSO. Regression coefficients of these features show mirror effects of deletion and duplication 

similar to those in human and rat. (D) Features that correspond to specific facial processes in mouse. 
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Figure 4. In vivo modeling of the 16p11.2 CNV implicates single gene drivers and epistatic effects influencing 

cartilage structures in the zebrafish pharyngeal skeleton. (A) Representative ventral images of ‐1.4col1a1:egfp 

zebrafish larvae at 3 days post‐fertilization (dpf). Orientation arrows indicate anterior (A), posterior (P), left (L) 

and right (R). Scale bar, 300 µm. (B) Quantitative assessment of the CHA of larvae injected with single human 

mRNAs for the 30 genes located in the 16p11.2 BP4‐BP5 region. 

Images were measured as shown in (A) (angle between dashed lines). Seven transcripts induced a significant 

reduction in CHA. Dosage: 12.5 pg for KIF22 and PPP4C; 50 pg for all other genes. (C) Quantitative assessment 

of the CHA of F0 mutant batches injected with single combinations of each of sez6l2, taok2a, and taok2b gRNAs 

with or without Cas9. Dosage: 50 pg gRNA and 200 pg Cas9 protein. 

(D) Quantitative assessment of the CHA of larvae injected with single or equimolar combinations of human 

KCTD13, MAPK3, and MVP mRNAs. Dosage: 50 pg. (E) Quantitative assessment of the CHA of F0 mutant 

batches injected with single or equimolar combinations of kctd13, mapk3, and mvp gRNAs with or without 

Cas9. Dosage: 50 pg gRNA and 200 pg Cas9 protein. Number of larvae measured for each condition are 

indicated at the base of each bar in the graphs. The data are represented as the mean ± standard error of the 

mean (s.e.m.); ns=not significant; **P<0.01, ***P<0.001 and ****P<0.0001 vs uninjected controls. Tukey’s test 

was applied following a significant one‐way ANOVA. 
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SUPPLEMENTARY METHODS  
 

Study Sample 

 

Subjects were recruited in conjunction with the Simons VIP study (Consortium). 3D 

morphometric facial imaging was performed on a subset (N = 359) of subjects with 16p11.2 

duplications or deletions from the Simons VIP cohort at 3 sites (UW, Harvard, Baylor) using 

the 3DMD 3-pod camera system. Data analysis was restricted to subjects of European 

ancestry older than 3 years of age. Additional subjects were excluded due to facial hair, 

image quality or landmark visibility (i.e. obscured by clothing, hair or makeup). The final 

dataset (N = 228) included 45 deletions, 44 duplications and 139 familial non-carrier controls 

(Table S1). 

 

3DMD morphometric imaging 

 

Images were acquired using the 3dMDtrio system (http://www.3dmd.com/3dmd-

systems/#trio). Images were landmarked according to Farkas standards (Farkas) blind to 

genotype. In addition to standard Farkas landmarks, additional landmarks were placed to 

capture frontal dimensions including landmarks 2 (lateral brow) and 4 (medial brow). A total 

of 24 landmarks were placed (Fig. 1A). All Landmarking was performed by a single analyst 

(S.T.) blind to genotype. To confirm a high reliability of our manual landmarking, an 

independent set of landmarks was generated by a second analyst (T.P) and reproducibility 

was determined by the intraclass correlation of the two sets of distances measures (127 

distances per set), assuming random effects for both subjects and analysts. The median ICC 

across all distances was 0.89; 87% (110/127) of distances had ICC > 0.7; and 98% (125 out of 

127) show no significant difference between two analysts (p<0.05). 

Analysis: Quantitative measurement of all pairwise distances between 24 landmarks were 

calculated using the 3dMDvultus – Analysis software, version 2.5.0.1 (3dMD.com). 

Symmetric distances were averaged, yielding 156 facial distance measurements. Each 

distance was normalized to the overall size of the individual’s face, by dividing by the 

geometric mean of the 156 distances for that individual. 

Angular measurements of the nose and chin, the nasomental (NMA) and labiomental (LMA) 

angles respectively, were calculated by triangulating the relevant landmarks A series of 

linear mixed-effects models, using package lme4 in R (version 3.4.1), was used to separately 

test for the effect of deletion and of duplication on each angle or normalized facial distance. 

Each model controlled for fixed effects of age, head circumference, body mass index (BMI), 

sex, and ancestry principal components, with a random intercept allowed to account for 

within-family correlation. Interaction between genotype and sex was included if significant 

at 5% level. Significant differences according to genotype were determined by a likelihood-

ratio test at a family-wise error rate of 5% using Holm’s correction (Holm). 
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Controlling for variation in ancestry 

 

All subjects were of European ancestry, however regional genetic differences could still 

explain variation in facial traits. We controlled for ancestry using principal components 

derived from genetic data subjects. Ancestry principal components were obtained on 213 

subjects from Illumina SNP genotype data (Illumina HumanOmniExpress v.1 and v.2) 

available from the Simons VIP study (https://www.sfari.org/resource/simons-vip/). Missing 

data on 38 subjects was imputed by using PCs from a sibling nearest in age or a randomly 

selected parent. After imputation, 15 subjects from two different families were still missing 

data, 9 of which were familial controls and 6 were duplications. 

Analyses were performed with and without including the ancestry principal components as a 

sensitivity analysis, and the results were very similar. Significant correlation was observed 

between one of the first two principal components and 7 of the 160 craniofacial distances. 

 

Generating 3D models by averaging faces of deletion, duplication and control subjects 

 

To visualize the respective facial gestalts of controls, deletion carriers and duplication 

carriers, a 3D- model of each was generated by averaging of the surface topography of faces 

from multiple subjects using the 3dMDvultus – Analysis software, version 2.5.0.1 

(3dMD.com). To maximize the number of unrelated subjects that were closely matched in 

age within each group, selection criteria for averaging of faces differed slightly from that of 

the overall dataset. Only unrelated individuals were included, additional subjects were 

removed due to image quality (gaps in the surface topography), and the requirement for 

landmark visibility was relaxed, allowing for frontotemporal landmarks (landmarks 1 and 9, 

see Fig. 1) to be covered in some cases by hair or headwear. We first restricted our 3D 

models to young adults (age 14) and older to avoid variability in facial features across 

development at young ages, and the sample was restricted to males (the largest group). 

Subjects consisted of 5 Deletion carriers (average age 25.5 years), 5 duplication carriers (36.5 

years) and 10 controls (36.6 yrs). Four Landmarks (the Exocanthion, Glabella and Subnasale, 

Fig 1. Landmarks 5, 13, 17, 20) were placed manually, and the software’s average-face 

function was used to generate the average face. The surface property of the 3D image was 

then converted from a photographic image into a textured-model (Fig. 1D). Subsequently, to 

determine if similar facial gestalts are apparent for other demographics, additional 3D 

models were generated for children and females (Fig. S1). Subjects that were included in 

average face models are listed in Table S3. 

  

Linear Discriminate Analysis. 

 

Linear discriminate analysis (LDA) was performed on linear model residuals after adjusting 

for age, head circumference, body mass index (BMI), sex, and ancestry principal 

components, for both total subjects and subjects aged < 20 years. The 45 distances with FDR 

q value less than 0.05 were used. We used the function “lda” from the “MASS” package in R 
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(version 3.4.1). Specificity and sensitivity were calculated based on LDA prediction with 

default values. 

 

Least absolute shrinkage and selection operator (LASSO) logistic regression 

 

Generalized linear model with lasso was performed for both human subjects and mice. 

Distances with FDR q value less than 0.05 were used for human subjects, while distances 

with a statistically significant likelihood ratio test at p <.05 were used for mouse skulls. We 

used 10-fold cross validation for lasso with minimum deviance for human subjects, and lasso 

with minimum Akaike Information Criteria (AIC) for mouse skulls (Akaike). Specificity and 

sensitivity were calculated based on lasso selected models. 

Packages “glmnet” and “glmpath” from R (version 3.4.1) were used. 

 

Description of rat and mouse cohorts 

 

Craniofacial structure was analyzed for rodent models of 16p11.2 Deletion and Duplication 

in rat and mouse. Rat deletion and duplication models were generated by CRISPR/Cas9 

genome editing of Sprague Dawley line (Charles River Laboratory, Oncins, France). Briefly a 

deletion of 483,122 bp located at positions chr1:198,100,544-198,583,667 (RatRnor_6.0) and 

a duplication of the interval from chr1:198,100,545-198,583,458 (RatRnor_6.0), 

corresponding to the 16p11.2 homologous region of the rat genome, were obtained. For the 

genotyping, primer pairs were designed for the Del, Dup and an internal control alleles 

(Primers Del: rHamont99For: GGGCTGGCAGACTTGAA rHavalB284Rev: 

GTGCCACGATCAGCAG; Primers Dup: rHamont99Rev: CGCTTTGATGCCCACTA; rHavalB84For: 

AGCTGTGATCCTCTGGTT; Primers for internal control: rAnks3-205For: 

CCCCAGCCTCCCACTTGTC, rAnks3-205Rev: AGGATGACTGAAATTGGTGGAC) to amplify 

specific PCR fragments (Del: 290bp, Dup: 500bp, internal control 205bp) using standard 

conditions (Roche, 60°C for primer hybridation). A cohort of 75 rats was bred for craniofacial 

analysis, which included 23 Del/+ (9 male and 14 female), 26 Dup/+ (13 male and 13 female) 

and 26 +/+ siblings (13 male and 13 female). The mouse models of 16p11.2 used in this study 

consisted of deletion (Del/+) or duplication (Dup/+) of the Sult1a1-Spn genetic interval 

(Arbogast et al.) Lines were maintained on a pure C57BL/6N C3B genetic background. A 

mouse cohort was bred including 36 females at 13 weeks of age, including 10 Del/+ and 10 

+/+ littermates, and 8 Dup/+ and 8 +/+ littermates. 

  

Rodent skull Imaging, Landmarking, Data Processing 

 

For both rat and mouse cohorts, images of the dorsal skulls were captured using a microCT 

imaging system (Quantum GX, Perkin Elmer, France). For rats, an image was acquired for the 

complete skull. For mice, images of the dorsal skull and lower jaw of each animal were 

acquired separately as part of a previous study (Arbogast et al.). Nineteen landmarks were 

placed representing the frontal, nasal and maxillary regions, and all pairwise distances 
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between landmarks were normalized to the geometric mean. In addition the mandibular 

length (ML) and width (MW) were determined by first determining the centroid of multiple 

landmarks at the lower incisors and the left and right ramus (Fig. S6), and then determining 

distances between the three centroids. Symmetric distances of the skull and mandible were 

averaged. 

Differences in facial features between deletion and control lines and differences between 

duplication and control lines were tested with univariate linear models. We tested all 91 

distances on the dorsal skull and two distances on the mandible. Effects that were significant 

at an FDR of 5% were identified. In addition, as we did previously in human, we identified a 

set of features that distinguish CNV models from controls by performing least absolute 

shrinkage and selection operator (LASSO) based on all univariate significant distances by 

generalized linear model, with AIC as the criteria rule. 

 

mRNA overexpression and CRISPR/Cas9 genome editing in zebrafish embryos 

 

Zebrafish embryos were obtained from natural matings of heterozygous -1.4col1a1:egfp 

transgenic adults maintained on an AB background (Kague et al., 2012). To model the 

16p11.2 BP4-BP5 duplication, we overexpressed individually each gene of the region (see 

Fig. 4D). We linearized pCS2+ constructs (Golzio et al., 2012) and transcribed human mRNA 

using the mMessage mMachine SP6 Transcription Kit (Ambion). All RNAs were injected into 

the yolk of the embryo at the 1- to 4-cell stage at 50, 25, or 12.5 pg doses (1 nl/injection). To 

investigate specific gene interactions that have been reported previously (Golzio et al.), 

KCTD13, MAPK3, and MVP mRNAs were tested in combinations of two or three. Two way 

and three way gene interaction models were fitted to test the synergy effect from double-hit 

or triple- hit groups. Packages “multcomp” from R (version 3.4.1) was used. 

CRISPR/Cas9 genome editing was performed as a model of the reciprocal deletion. We used 

CHOPCHOP(Labun et al., 2016) to identify guide (g)RNAs targeting coding sequence within 

kctd13, mapk3, mvp, sez6l2, taok2a, and taok2b (Table S7). gRNAs were transcribed in vitro 

using the GeneArt precision gRNA synthesis kit (ThermoFisher) according to the 

manufacturer's instructions; 1 nl of injection cocktail containing 50 pg/nl gRNA and 200 pg/nl 

Cas9 protein (PNA Bio) was injected into the cell of embryos at the 1-cell stage. To 

determine targeting efficiency in founder (F0) mutants, we extracted genomic DNA from 2 

day post-fertilization (dpf) embryos and PCR amplified the region flanking the gRNA target 

site. PCR products were denatured, reannealed slowly and separated on a 20% TBE 1.0-mm 

precast polyacrylamide gel (ThermoFisher), which was then incubated in ethidium bromide 

and imaged on a ChemiDoc system (Bio-Rad) to visualize hetero- and homoduplexes. To 

estimate the percentage of mosaicism of F0 mutants (n = 5/condition), PCR products were 

gel purified (Qiagen), and cloned into a pCR8/GW/TOPO-TA vector (Thermo Fisher). Plasmid 

was prepped from individual colonies (n = 9–12 colonies/embryo) and Sanger sequenced 

according to standard procedures. 
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Automated zebrafish imaging 

 

Larvae were maintained under standard conditions at 28.5°C until 3 dpf and were positioned 

and imaged live as described (Isrie et al., 2015). Automated imaging was conducted with an 

AxioScope.A1 microscope and Axiocam 503 monochromatic camera facilitated by Zen Pro 

software (Zeiss), to capture dorsal images of GFP signal. Larval batches were positioned and 

imaged live using the Vertebrate Automated Screening Technology (VAST; software version 

1.2.5.4; Union Biometrica) BioImager. Larvae from each experimental condition were 

anesthetized with 0.2 mg/mL Tricaine prior to being loaded into the sample reservoir. Dorsal 

and lateral image templates of uninjected controls and experimental larvae were created 

and we acquired images at a >70% minimum similarity for the pattern-recognition 

algorithms. Larvae were rotated to 180° to acquire ventral images via a 10x objective and 

fluorescent excitation at 470nm to detect GFP to capture fluorescent images of the 

pharyngeal skeleton. ImageJ software (NIH) was used to measure the angle of the ceratohyal 

cartilage. All experimental conditions were normalized to uninjected controls and set to 100 

degrees. Statistical comparisons were performed using one-way ANOVA with Tukey’s test 

(GraphPad Prism). 

 

Examining levels of gene expression during murine craniofacial development 

 

We examined whether the significant effects of seven genes (SPN, C16orf54, SEZ6L2, 

ASPHD1, TAOK2, INO80E and FAM57B) on shape of the mandible could be attributable to 

the differential regulation of these genes. A published dataset was obtained consisting of 

Affymetrix gene expression analysis of the major craniofacial processes of the developing 

mouse embryo (E10.5-E12.5) (Hooper et al.) (accession # FB-STU-201-0001, Facebase.org). 

Samples included mesenchymal and ectodermal cells of the frontonasal and mandibular 

processes of embryos at E10.5, E11.5 and E12.5 in triplicate, and samples of the maxillary 

process at E11.5 and E12.5. The basal expression levels of the seven genes was compared to 

the levels of other in each structure was determined by averaging the expression values 

across replicates and embryonic stages. Results show the expression levels of all three genes 

to be consistent across cell types and structures of the face (Fig S9). 

 

 

 

 

 

 

 

 



PARTIE 3 

134 

 

SUPPLEMENTARY MATERIAL REFERENCES 
 

1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions 19, 

716–723. 

2. Arbogast, T., Ouagazzal, A.M., Chevalier, C., Kopanitsa, M., Afinowi, N., Migliavacca, E., 

Cowling, B.S., Birling, M.C., Champy, M.F., Reymond, A., et al. (2016). Reciprocal Effects on 

Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and 

Duplication Syndromes. PLoS Genet 12, e1005709. 

3. Consortium, S.V. (2012). Simons Variation in Individuals Project (Simons VIP): a genetics-

first approach to studying autism spectrum and related neurodevelopmental disorders. 

Neuron 73, 1063-1067. 

4. Farkas, L.G. (1994). Anthropometry of the head and face (New York: Raven). 

5. Golzio, C., Willer, J., Talkowski, M.E., Oh, E.C., Taniguchi, Y., Jacquemont, S., Reymond, A., 

Sun, M., Sawa, A., Gusella, J.F., et al. (2012). KCTD13 is a major driver of mirrored 

neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363-367. 

5. Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scand J Stat 6, 

65-70. Hooper, J.E., Feng, W., Li, H., Leach, S.M., Phang, T., Siska, C., Jones, K.L., Spritz, R.A., 

Hunter, L.E., and 

6. Williams, T. (2017). Systems biology of facial development: contributions of ectoderm and 

mesenchyme. Dev Biol 426, 97-114. 

7. Isrie, M., Breuss, M., Tian, G.L., Hansen, A.H., Cristofoli, F., Morandell, J., Kupchinsky, Z.A., 

Sifrim, A., Rodriguez-Rodriguez, C.M., Dapena, E.P., et al. (2015). Mutations in Either TUBB or 

MAPRE2 Cause Circumferential Skin Creases Kunze Type. American Journal of Human 

Genetics 97, 790-800. 

8. Kague, E., Gallagher, M., Burke, S., Parsons, M., Franz-Odendaal, T., and Fisher, S. (2012). 

Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 7, e47394. 

9. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B., and Valen, E. (2016). CHOPCHOP v2: 

a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Research 

44, W272-W276. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PARTIE 3 

135 

 

SUPPLEMENTARY FIGURES 
 

Figure S1. 3D models of deletion, control and duplication groups generated by averaging of 

the surface topography of faces from multiple subjects. Separate models were constructed 

for adults and children of each sex. The number and mean age of subjects in each group is 

listed below. 

(A) Female children subjects: Deletion n= 7 ; mean age= 9.15 years ; Control n= 8 , mean 

age= 9.92 years; and Duplication n= 5 , mean age= 12.73 year 

(B) Female adult subjects: Deletion n= 4 ; mean age= 20.13 years ; Control n= 8 , mean 

age= 23.71 years; and Duplication n= 5 , mean age= 23.25 years 

(C) Male children subjects: Deletion n= 7 ; mean age= 8.90 years ; Control n= 9 , mean 

age= 9.27 years; and Duplication n= 9 , mean age= 9.20 years 

(D) Male adult subjects: Deletion n= 5 ; mean age= 25.53 years ; Control n= 10 , mean 

age= 36.59 year; and Duplication n= 5 , mean age= 36.48 years 
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Figure S2. Craniofacial features that distinguish deletion, duplication and control groups. 

Eighteen craniofacial measures were differed significantly between CNV carriers and 

controls. Box plots illustrate the mean and standard error (whiskers) across the full dataset. 
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Figure S3. Comparison of the craniofacial effects of CNV in rat and mouse. Significant mirror 

effects of the deletion and duplication across all facial are observed in rat across all facial 

features. A significant correlation of effects was also observed between the rat and mouse 

models of the deletion. The effects of the duplication in mouse did not show a significant 

correlation with the other rodent models. 
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Figure S4. KCTD13, MAPK3, and MVP dose combinatorial suppression result in a decreased 

frontonasal area whereas similar overexpression results in an increased interocular distance. 

(A) Representative ventral images of -1.4col1a1:egfp zebrafish larvae at 3 days post-

fertilization (dpf). Orientation arrows indicate anterior (A), posterior (P), left (L) and right (R). 

Area between the eyes: dashed white line. Interocular distance: red line. Scale bar, 200 µm. 

(B, D) Quantitative assessment of the frontonasal area. (C, E) Quantitative assessment of the 

interocular distance. The data are represented as the mean ±s.e.m.; ns=not significant; 

*P<0.05, **P<0.01 and ****P<0.0001 vs uninjected controls. Tukey’s test was applied 

following a significant one-way ANOVA. 
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Figure S5. kctd13, mapk3, and mvp dose combinatorial suppression do not induce growth 

delay. (A) Representative lateral images of -1.4col1a1:egfp zebrafish larvae at 3 dpf. 

Measurement of the body length is shown with a white dashed line. Orientation arrows 

indicate anterior (A), posterior (P), dorsal (D) and ventral (V). Scale bar, 600 μm. (B) 

Scatterplot of all larvae; x-axis, area between the eyes; y-axis, body length. Each dot 

corresponds to one larva. F0 mutant larvae injected with equivalent amounts of kctd13, 

mapk3, and mvp guide do not show a reduction of the body length. 
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Figure S6. Landmarks that were used to determine the length and width of the mouse 

mandible. (A) On each jaw bone, two posterior landmarks were placed above and below the 

incisors (yellow) and four anterior landmarks were placed along the ramus (blue = left, red = 

right). (B) Landmarks were grouped by color and the centroid of each group was calculated 

from X,Y,Z coordinates. The distances between the three centroids was then used to 

determine the mandibular width (MW) and the length of the left (ML-L) and right (ML-R) 

mandible. 
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Figure S7. Genome editing of kctd13 using CRIPSR/Cas9 to generate F0 zebrafish mutants. 

(A) Schematic of the kctd13 ortholog in zebrafish. The locus is shown with exons (black 

boxes); untranslated regions (white boxes); introns (dashed lines); guide (g)RNA target site 

and primers used to generate PCR products shown in panel B (red box and triangles, 

respectively). (B) Assessment of genome-editing efficiency using polyacrylamide gel 

electrophoresis (PAGE). Genomic DNA was extracted from single embryos at 2 dpf, and PRC 

amplified. PCR products were denatured, reannealed slowly and migrated on a 20% 

polyacrylamide gel. All twelve F0 embryos displayed heteroduplexes not present in two 

uninjected controls. Asterisks (*) indicate embryos assessed for percent mosaicism with 

PCR8/GW/TOPO-TA cloning and Sanger sequencing of individual clones. (C) Representative 

sequence alignments showing the most common targeting events for each embryo. To 

estimate percent mosaicism, one control and five F0 embryos were assessed (n=9-12 

clones/embryo); all FO clones harbored deletions (green) and some clones harbored 

insertions (blue), suggesting ~100% efficiency. gRNA sequence (gray) and protospacer 

adjacent motif (PAM, red) are shown. 
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Figure S8. Genome editing of mapk3 using CRIPSR/Cas9 to generate F0 zebrafish mutants. 

(A, B): see Figure S2. (C) A majority of F0 clones harbored deletions (green) and some clones 

harbored insertions (blue), suggesting ~97% mosaicism. 
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Figure S9. Genome editing of mvp using CRIPSR/Cas9 to generate F0 zebrafish mutants. (A, 

B): see Figure S2. (C) A majority of F0 clones harbored deletions (green) and some clones 

harbored insertions (blue), suggesting ~96% mosaicism. 
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Figure S10. Genome editing of sez6l2 using CRIPSR/Cas9 to generate F0 zebrafish mutants. 

(A, B): see Figure S2. (C) A majority of F0 clones harbored deletions (green), suggesting ~96% 

mosaicism. 
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Figure S11. Genome editing of taok2a using CRIPSR/Cas9 to generate F0 zebrafish mutants. 

(A, B): see Figure S2. (C) Some F0 clones harbored deletions (green) and some clones 

harbored insertions (blue), suggesting ~94% mosaicism. 
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Figure S12. Genome editing of taok2b using CRIPSR/Cas9 to generate F0 zebrafish mutants. 

(A, B): see Figure X. (C) Some F0 clones harbored deletions (green) and some clones 

harbored insertions (blue), suggesting ~89% mosaicism. 
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Discussion et conclusion 
 
Caractérisation des phénotypes comportementaux chez les modèles Del/+ et Dup/+ chez le 
rat 
 
Lors de l’amplification de la ligne, aucun impact sur la viabilité n’a été observé pour la 
délétion et la duplication de 16p11.2 dans le croisement hétérozygote des modèles de rats 
SD.  
          Nous avons utilisé 8 cohortes de rats pour augmenter le nombre d'animaux afin de 
pouvoir rassembler une grande partie de la population. Pourtant, la variabilité élevée dans 
les résultats comportementaux de cette analyse phénotypique rendre difficile nos 
recherches. Cette circonstance est probablement une conséquence directe du fond 
génétique hybride SD dans lequel les modèles 16p11.2 ont été générés. 
          Globalement, les résultats de la caractérisation phénotypique obtenus chez les mâles 
ont montré une implication du dosage de la région 16p11.2 dans la mémoire de 
reconnaissance, un phénotype déjà observé chez la souris. Pour l'analyse de ce trait cognitif, 
nous avons dû adapter le protocole du test utilisé chez la souris à l'intelligence du rat. Nous 
avons donc rendu ce test plus complexe, en utilisant 3 objets différents à reconnaître.  
          De manière attendue les modèles de rat montrent des variations du comportement 
social. Les rats Del/+ présentent moins d’interaction sociale, un trait communément associé 
aux patients avec TSA. Ce génotype est aussi lié à la présence du comportement de blocage, 
un évent qui survient lorsqu'un partenaire manouvre pour bloquer à l’autre partenaire et il 
est considéré comme un moyen d'exprimer la domination. En plus, ce type de 
comportement a été également observé chez les porteurs pseudo-disomiques de Del / Dup, 
suggérant un effet de construction génétique non lié au dosage génétique de la région. Ce 
phénomène pourrait résulter du nouvel allèle de délétion qui pourrait modifier l'expression 
des gènes voisins. Alors que les rats Dup/+ développent un comportement plus agressif. 
Mais, étonnamment, aucun phénotype n’a été rapporté chez la femelle à différence des 
phénotypes trouvés chez le modèle de souris dans ce travail. 
          Ces observations viennent renforcer la théorie d’Empathie-Systématisation, selon 
laquelle les différences psychologiques sexuelles reflètent un renforcement de la 
systématisation chez le mâle et un renforcement de l’empathie chez la femelle. Dans le 
cadre de TSA, cette théorie a une extension, appelée « cerveau mâle extrême » selon 
laquelle les individus sont caractérisés par des déficiences dans l’empathie avec une 
systématisation intacte ou augmenté (Baron-Cohen et al., 2005; Baron-Cohen et al., 2011).  
De manière complémentaire, une étude précédente a montré un rapport hommes : femmes 
de 1,3 : 1 pour la délétion 16p11.2 chez des personnes autistes et de 1,6 : 1 pour la délétion 
16p11.2 chez les patients présentant une déficience intellectuelle / un retard de 
développement (Polyak et al., 2015). 
          Une autre explication possible est que ce biais est uniquement dû au fond génétique 
spécifique de notre modèle de rat. Afin d'étudier cette possibilité plus en profondeur, de 
futures analyses comportementales ont été prévues dans des modèles de rats avec un autre 
fond génétique pour des recherches ultérieures. 
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Analyse phénotypique des malformations cranio-faciales induites par les CNVs de la région 
16p11.2 chez le rat 
 
Les CNVs de la région 16p11.2 BP4-BP5 ont des effets inverses sur le développement cranio-
facial chez l’homme.  
          Afin de vérifier si ces traits physiques sont bien conservés entre des espèces 
différentes, nous avons participé dans une étude  de caractérisation cranio-facial inter 
espèce en poursuivant des analyses quantitatives du squelette crânien à partir de nos 
modèles de rat pour la délétion et de la duplication 16p11.2. Chez le rat, la délétion a été 
associée à des régions frontales du crâne plus grandes et à des régions nasales et 
mandibulaires plus petites, tandis que les effets opposés ont été associés à la duplication. 
Ces résultats suggèrent que le dosage de la région 16p11.2 a une conséquence quantitative 
dans le développement.  L’effet miroir puissant absente sur le modèle de souris, 
correspondent aux tendances observées chez les patients.  Avec ce travail, nous présentons 
le rat comme un modèle pour étudier les mécanismes génétiques par lesquels les CNVs 
16p11.2 influencent les caractères complexes liés au développement craniofacial. 
 
Conclusion de l’étude 
 
Dans cette étude, nous proposons les premiers modèles de rat porteurs de la délétion ou 
duplication de l’intervalle génétique 16p11.2 BP4-BP5 Sult1a1-Spn associé à la pathologie 
humaine. Nos animaux ont été générés sur un fond non consanguin, ce qui nous a permis 
d’étudier les réarrangements de la région avec une forte variabilité, aussi présente dans les 
syndromes humains. Les CNVs 16p11.2 ont été associées à quelques déficits cognitifs et 
fondamentalement aux troubles du comportement social. Ce dernier phénotype avait été 
trouvé ultérieurement chez la souris mais que sur un fond génétique mixte. A partir de cette 
étude on a confirmé que ce trait est lié aux réarrangements de la région 16p11.2 BP4-BP5 
qui est conservé entre espèces et qu’il ne s’agit pas d’une conséquence du fond génétique. 
L’analyse des animaux Del/Dup indique que la structure d’ADN de la délétion Sult1a1-Spn 
pourrait potentiellement affecter à l’expression génétique aboutissant à l’apparition du 
comportement social de blocage. Nos modèles représentent de nouveaux outils génétiques 
permettant la compréhension des mécanismes moléculaires impliqués dans les désordres 
d’interaction sociale associée ainsi que le développement craniofacial. De futures études 
seront dédiées à la recherche des gènes et les voies dérégulés par une analyse comparative 
du transcriptome ainsi que les protéines dérégulés par une analyse protéomique 
comparative de différentes régions du cerveau et du foie. 
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Introduction 
 
Comme nous avons mentionné précédemment, les variations du nombre de copies 16p11.2 
BP4-BP5 jouent un rôle essentiel dans l'architecture génétique des troubles 
neurodéveloppementaux (Malhotra et al., 2012), tels que l'autisme et la déficience 
intellectuelle. Ces désordres neuropsychiatriques ont un biais sexuel en faveur du caractère 
masculin. Un certain nombre de théories suggèrent que les différences de fonction 
neuronale entre les sexes contribuent au risque de désordres du développement 
neurologique (Baron-Cohen et al., 2005; Lai et al., 2015). Les études génétiques humaines 
indiquent que le biais masculin chez l'autisme trouve son fondement dans la vulnérabilité 
différentielle aux lésions génétiques, en proposant que le cerveau féminin peut être résilient 
en réponse à des altérations génétiques fortement associées au diagnostic chez les hommes 
(Robinson et al., 2013; Jaquemont et al., 2014). Cependant, l'évaluation systématique de ce 
biais est compliquée par l’hétérogénéité génétique et phénotypique significative de ces 
syndromes. Dans le cas de la délétion 16p11.2, le risque de diagnostics psychiatriques est 
plus élevé chez les hommes porteurs de ce réarrangement que chez les femmes (Hanson et 
al., 2015; Duyzend et al., 2015). 
          Etant donné que l'architecture génétique de cette région chromosomique est 
hautement conservée, la perte d'une copie de la région humaine 16p11.2 peut être 
modélisée chez la souris via une hémi-délétion du chromosome 7qF32. Pourtant, des 
analyses antérieures sur des modèles de souris n’ont pas pas permis d’examiner si l’impact 
de la délétion 16p11.2 sur les phénotypes trouvés sur ces modèles est différent entre les 
mâles et les femelles (Horev et al., 2011; Portmann et al., 2014; Arbogast et al., 2016). 
          Dans le travail de recherche actuel, nous avons voulu vérifier si la délétion de la région 
16p11.2 BP4-BP5, associé à la pathologie humaine, entraine les mêmes conséquences 
comportementales pour les 2 sexes sur le modèle préclinique Sult1a1-Spn créé par notre 
laboratoire (Arbogast et al., 2016). 
          Nous avons donc développé un protocole de caractérisation comportementale et 
d’apprentissage pour la femelle, basé sur les altérations phénotypiques trouvées sur le 
modèle de délétion 16p11.2 Sult1a1-Spn mâle, afin de vérifier la robustesse des phénotypes 
du modèle de la délétion 16p11.2 dans les 2 sexes.  
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Matériels et méthodes 
 
A partir de ce projet de recherche, nous avons évalué le phénotype comportemental et 
l’interaction sociale du modèle murin dont génome porte la délétion d’une copie de 
l’intervalle Sult1a1-Spn correspondant à la région de synténie 16p11.2 BP4-BP5, chez la 
femelle. 
 
Ligne de souris, génotypage et autorisation éthique 
 
Le modèle de souris Del(7Sult1a1-Spn)6Yah (Del/+), décrit précédemment (Arbogast et al. 
2016), a été maintenu sur un fond génétique pur C57BL/6N (B6N) consanguin, ce qui nous 
permet d’étudier le réarrangement de la région 16p11.2 dans un contexte génétique défini. 
L’allèle Del6Yah a été identifié à travers de la technique de PCR en utilisant les amorces 
Fwd1 (5’-CCTGTGTGTATTCTCAGCCTCAGGATG- 3’) et Rev2 (5’-GGACACACAGGAG 
AGCTATCCAGGTC- 3’) par la détection de une bande spécifique de 500 pb alors que l’allèle 
wt a été identifié à partir des amorces Fwd1 et Rev1 (5’ –GGACACACAG 
GAGAGCTATCCAGGTC- 3’) avec la présence du produit de PCR de 330 pb (Figure1). 
Toutes les souris ont été génotypées en utilisant le programme suivant: 95 °C /5 min; 35× 
(95 °C/30 s, 65 °C/30 s, 70 °C/1 min) ; 70 °C/5 min. 
 
Les procédures expérimentales concernant l'utilisation d'animaux à des fins scientifiques ont 
été approuvées par le Ministère de l'enseignement supérieur, de la recherche et de 
l'innovation avec l'accord du comité d'éthique local Com’Eth (n°017) sous le numéro 
d'accréditation APAFIS#9290-20I7031617456047 v4 et dont la responsabilité de la mise en 
œuvre générale du projet et de sa conformité à l'autorisation est assurée par Monsieur Yann 
HERAULT (accréditation 67-369). 
 
L’élevage et la conception de l’analyse  
 
Nous avons uniquement sélectionné les femelles pour cette étude. Les animaux utilisés ont 
été regroupés de plusieurs portées, en ensembles de 2 à 5 souris après le sevrage, dans des 
cages de 39 x 20 x 16 cm (Green Line, Techniplast, Italy) où elles ont eu l’accès libre à l'eau et 
à la nourriture (D04 chow diet, Safe, Augy, France). Les chambres où les sujets ont été 
gardés ont été maintenues à une température constante de 21±2 °C, avec un cycle de 
lumière contrôlé comme 12 h de lumière et 12 h de sombre  (les lumières ont été allumés à 
7h).  
 
Les souris furent transférées de l’animalerie d’élevage à la zone de comportement avec 11 
semaines d’âge. Au cours de cette semaine, les souris se sont habituées à ce nouvel 
environnement et elles ont été manipulées quotidiennement par l’expérimentateur. 
Afin de valider la robustesse des phénotypes associés à la délétion 16p11.2, on a développé 
un protocole d’analyse de caractérisation comportemental basé sur les capacités cognitives 
affectées chez le mâle. Les souris ont subi les tests de comportement dans l'ordre suivant: le 
test de champ ouvert, la tâche de reconnaissance du nouvel objet et l’activité circadienne à 
12 semaines, le test de paradigme social de trois chambres et le test du comportement 
répétitif à 13 semaines (Figure 2). 
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Les jours où les tests ont été effectués, les animaux ont été placés dans  l’antichambre de la 
salle expérimentale 30 min avant le début de l’expérience.  
Tous les tests ont été menés par le chercheur à l'aveugle par rapport à l’information du 
génotype des souris, comme il est recommandé par les directives ARRIVE (Karp et al., 2015; 
Kilkenny et al., 2010). 
 
Le test de champ ouvert a été utilisé pour évaluer le comportement exploratoire du rongeur 
dans un nouvel environnement. Le test a été réalisé dans une enceinte ronde de PVC blanc 
avec des murs et fond opaques de 30 cm de haut et 50 cm de diamètre (Figure 3 A). L’arène 
a été éclairée pour avoir 60 Lux au centre et elle est placée sous une caméra permettant un 
suivi de l’animal. Le test se compose d’une session unique de 30 min, pendant laquelle on 
peut mesurer la distance parcourue, le temps passé sur chaque zone de l’arène (le centre, la 
zone intermédiaire, la périphérie et les murs)  ainsi qu’évaluer l’habituation de l’animal au 
cours du temps, en fractionnant les données en intervalles de 10 minutes. 
 
La tâche de reconnaissance du nouvel objet est basée basé sur la préférence innée des 
rongeurs pour la nouveauté et permet d’analyser la mémoire de reconnaissance entre un 
objet observé précédemment et un nouvel objet. Cette évaluation se déroule dans la même 
espace que le champ ouvert. Le premier jour, les souris ont été habituées à l’arène pendant 
30 minutes à 60 Lux. Le deuxième jour, les animaux ont été soumis au premier essai 
d’acquisition de 10 minutes au cours duquel ils ont été individuellement mis en présence de 
deux objets A (marbre ou dés) placés à 28 cm entre eux. Le temps d’exploration de l’objet A 
(lorsque le museau de l’animal était dirigé vers l’objet à une distance ≤ 1 cm) a été 
enregistré. Après une période de rétention de 3 heures à l’intérieur des cages 
d’hébergement, un deuxième essai de discrimination d'objet a été effectué. L’objet familier 
A et un nouvel objet (objet B) ont été placés à la même distance et position et le temps 
d'exploration de ces deux objets a été enregistré (Figure 3 A).                                                                                                            
Un index de reconnaissance et un index de discrimination ont été définis comme ((tB / (tA + 
tB)) × 100) et ((tB - tA)/ (tA + tB))*100) respectivement. Toutes les souris n'ayant pas exploré 
les objets présentés plus de 3 secondes au cours de l'essai d'acquisition ou de rétention ont 
été exclues de l'analyse.  
 
Le test de l’activité circadienne nous a permis d’évaluer l’activité endogène au cours du cycle 
de lumière et sombre. L’essai a eu lieu dans des cages individuelles (11 x 21 x 18 cm) 
équipées de capteurs infrarouges connectés à une interface électronique (Imetronic, France) 
qui fournissent des mesures automatisées de la position et de l'activité locomotrice de la 
souris testée (Figure 3 B). Les animaux ont été placés dans les cages à 19 h le premier jour et 
le test a fini le troisième jour à 7h (60 h). Le cycle de lumière a été contrôlé comme 12 h de 
lumière et 12 h de sombre. 
 
Le test de comportement répétitif nous a permis d’évaluer la présence de comportement 
stéréotypé sur notre modèle animal. Les souris femelles sont placées individuellement dans 
des cages d’hébergement propres faiblement éclairées à 60 lux sans le couvercle (Figure 3 
C). L’occurrence des comportements du redressement, du saut, de l'escalade, du creusage, 
et du toilettage est notée pendant 10 min. 
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Le test de reconnaissance sociale évalue les fonctions cognitives sous la forme de la 
sociabilité générale et de l’intérêt pour la nouveauté sociale sur des modèles de CNVs chez la 
souris. Les rongeurs montrent généralement une préférence pour l’interaction avec un autre 
rongeur (sociabilité) et enquêtent davantage sur un nouvel intrus que sur un intrus familier 
(nouveauté sociale). Sur la base de ces inclinaisons, le test à trois chambres permet 
l’identification des animaux présentant un déficit de sociabilité et / ou de nouveauté sociale. 
Le test a eu lieu dans une boîte à trois chambres successives et identiques (20 x 40 x 22 cm) 
avec des ouvertures (5 x 8 cm) entre les chambres (Stoelting, Dublin). Le protocole, 
précédemment décrit (Moy et al., 2004) a été développé en trois sessions de 10 min. La 
première phase est focalisée à l’habituation. Une souris est permise à explorer librement 
l'enceinte. Au cours de la deuxième phase, le sujet est placé dans la chambre centrale et un 
des deux cages, localisées dans les autres chambres est occupée par un intrus de manière 
aléatoire et équilibrée. Les portes qui bloquent les chambres sont ouvertes et la souris peut 
explorer toutes les chambres librement. Le temps d'exploration de la cage vide et de la cage 
occupée est enregistré. Dans la dernière phase, le sujet évalué rencontre le premier intrus 
ainsi qu'un deuxième nouvel intrus. Le temps d'exploration des deux cages est enregistré 
(Figure 3 D). L’index de préférence ou nouveauté social a été défini comme : ((t2 / (t1 + t2)) × 
100).   
Les souris étrangères ont été des femelles B6N, habituées à la cage et à l’arène du test 
pendant 15-30 min les jours précédents.  
 
Analyses statistiques 
 
Les résultats de notre travail ont été analyses statistiquement en utilisant le logiciel Sigma 
Plot (Sigma). Toutes les valeurs aberrantes ont été identifiées à l'aide du test de Grubbs en 
utilisant le calculateur GraphPad et exclues de notre analyse. Les données obtenues à partir 
de la caractérisation phénotypique de notre modèle ont été analysées par le test de Student 
pour autant que les données aient suivi une distribution normale. Dans le cas contraire, le 
test non-paramétrique U de Mann-Whitney a été utilisé. De plus, l’ « One Sample T test » a 
été utilisé pour comparer les valeurs de l’index de reconnaissance ou préférence au niveau 
de chance de 50%. Les données ont été représentées come la moyenne ± l’écart-type et le 
seuil significatif a été p < 0,05. 
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Résultats 
 
La modélisation de la délétion de la région chromosomique 16p11.2 humaine à partir de la 
souris, aide à la compréhension de la relation entre la perte d’une copie de cet intervalle 
génétique et les symptômes associés. Cette mutation est considérée un facteur de risque 
important pour le développement des troubles neuropsychiatriques. De plus, la délétion 
16p11.2 a un impact supérieur chez les garçons que chez les filles (Polyak et al., 2015). 
Jusqu’à présent, plusieurs modèles de souris ont été créés et caractérisés uniquement chez 
des souris mâles. Ces modèles montrent des altérations au niveau de l’activité, la mémoire 
de reconnaissance et l’apparition du comportement répétitif. 
 
Dans ce projet de recherche, on a décidé d’évaluer le modèle de souris pour la délétion 
16p11.2 Sult1a1-Spn chez la femelle afin de vérifier la robustesse des phénotypes associés 
dans les deux sexes. 
 
En premier lieu, les résultats obtenus dans le test du champ ouvert ont montré une 
augmentation de la distance totale parcourue pour les souris Del/+ par rapport aux souris 
témoins (T = 678,000 ; p = 0,008, test U de Mann-Whitney). L’apparition de ce phénotype a 
été observée précédemment chez les mâles. Ceci signale une association de la délétion 
16p11.2 à l’hyperactivité exploratrice qui affecte aux deux sexes. Quand nous avons analysé 
l’habituation des souris au nouvel environnement en divisant la session de 30 minutes en 
périodes de 10 minutes, nous avons observé une diminution de l’activité au cours du test. 
Cette observation nous indique que les souris Del/+ sont capables de s’habituer à l’arène 
comme les individus wt bien qu’ils maintiennent l’hyperactivité au cours du test (T0-10 : t(46) = 
-2,753 ; p = 0,008 ; T(10-20) : t(46) = -2,142 ; p = 0,038 ; T(20-30) : t(46) = -1,968 ; p = 0,055, test de 
Student). Finalement, on a évalué des possibles comportements d’anxiété en mesurant le 
temps que les souris ont passé sur chaque région de l’aréna. Aucune préférence pour 
quelque zone du test n’a été observée (Figure 4).  
 
Ensuite on a évalué la mémoire de reconnaissance du nouvel objet de notre modèle (Figure 
5), un phénotype qui a été observé chez les mâles 16p11.2 Del/+. 
Pendant la phase d’acquisition on a mesuré le temps d’exploration des deux objets 
identiques, ce qui pourrait nous informer des possibles troubles d’exploration. Aucune 
différence entre le temps d’explorations des deux objets n’a été observée. Après 3 heures, 
on a mesuré le temps d’exploration de l’objet familier et du nouvel objet pendant la phase 
de rétention. Etonnement, les individus témoins n'ont montré aucune préférence par le 
nouvel objet. Ces résultats inattendus nous empêchent d'analyser le phénotype de mémoire 
de reconnaissance d'objet du modèle 16p11.2 Del/+ chez la femelle. Pour cette raison, un 
nouveau protocole adapté doit être développé dans une recherche supplémentaire.  
 
Subséquemment, nous avons décidé de vérifier si les femelles partageaient le phénotype 
d'hyperactivité circadienne présenté par les mâles 16p11.2 Del/+. A cette fin, nous avons 
mesuré l’activité de nos souris pendant 60 heures en cycles de lumière et de sombre (Figure 
6). Cette analyse a été représentée comme l’activité locomotrice et l’activité verticale. Nous 
avons mesuré l’activité locomotrice à partir du nombre de va et viens présentés par les 
souris dans la cage du test et l’activité verticale à partir du nombre de redressement. 
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Contrairement aux mâles, les femelles Del/+ n’ont pas présenté d’anomalies significatives de 
l’activité locomotrice. En ce qui concerne le nombre de redressements au cours du test, les 
souris Del/+ ont montré une grande variabilité. Cependant, notre modèle a présenté une 
augmentation significative du nombre de redressements total (T = 341,000 ; p = 0,043, test U 
de Mann-Whitney). Ce phénotype a été retrouvé également dans le sexe masculin 
précédemment. 
 
Après, on a évalué la présence des comportements répétitifs en mesurant la fréquence des 
répétitions des comportements courants chez la souris (Figure 7). Les femelles porteuses de 
la délétion de la région 16p11.2 ont montré une augmentation significative des escalades 
pendant une session de 10 minutes d’observation (Escalade : T = 579,500; p = 0,002, test U 
de Mann-Whitney). 
 
Afin d’évaluer des possibles déficits de sociabilité et / ou nouveauté social, nos souris ont été 
soumis au test de sociabilité à trois chambres (Figure 8). La variation de structure 
chromosomique à cause de la délétion 16p11.2 n’affecté pas à ce phénotype chez la souris 
femelle.  
Tout d’abord, on a permis aux individus testés d’explorer librement l’arène à trois chambres 
et on a mesuré le temps d’explorations de deux cages à grilles vides. L’absence de 
préférence pour l’une des cages indique que notre modèle ne présente pas d’altérations 
d’exploration. Ensuite, la phase de sociabilité a eu lieu. Au cours de cette session, une autre 
femelle a été introduite dans l'une des cages et le temps de l'exploration des deux cages a 
été mesuré. Les souris Del/+ montrent une préférence pour la cage occupée pour l’étranger 
1 significativement supérieur au niveau de chance de 50% (One sample t test: wt (t(20) = 
5,4512; p < 0,0001), Del/+ (t(18) = 3,8469; p = 0,0012)). Finalement, dans la phase de 
nouveauté sociale, une autre femelle a été introduite dans l’autre cage. Les souris 
déficientes pour la région 16p11.2 passent plus de temps à explorer l’étranger 2. L’index de 
préférence est significativement supérieure au niveau de chance de 50% (One sample t test: 
wt (t(19) = 3,3419; p = 0,034), Del/+ (t(18) = 6,9711; p < 0,0001)). Ce comportement nous 
indique que notre modèle présente une sociabilité et une préférence sociale normales. 
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Discussion et conclusion 
 
Caractérisation phénotypique du modèle murin 16p11.2 Del /+ BP4-BP5 chez la femelle 
 
Pour obtenir une résolution phénotypique complète des syndromes associés à la délétion 
16p11.2 BP4-BP5, nous avons caractérisé le modèle murin Del/+ Sult1a1-Spn chez la femelle.  
Bien que les CNVs les plus fréquemment identifiés chez l'homme soient la délétion et la 
duplication, nous avons décidé de caractériser uniquement le modèle pour la perte d'une 
copie de 16p11.2, car ce modèle présente des symptômes plus graves chez la souris. 
L’évaluation des phénotypes comportementaux chez la femelle Del/+ est basée sur une série 
de paramètres murins affectés chez le mâle Del/+. Ces symptômes sont associés aux 
nombreux troubles neuropsychiatriques chez les patients porteurs de la délétion. 
Les femelles 16p11.2 BP4-BP5 Del/+ présentent une hyperactivité d’exploration dans le test 
du champ ouvert. De plus, on a détecté la présence des stéréotypies d’escalade. Ces deux 
altérations ont été trouvées de manière similaire dans le sexe masculin pour ce modèle. Ces 
observations mettent en évidence l’implication de la perte d’une copie de la région 16p11.2 
dans le développement de ces affections cognitives pour les deux sexes. 
          Contrairement aux mâles, les femelles Del/+ ne présentent pas d’anomalies de 
l’activité locomotrice dans le test d’activité circadienne. Cette différence pourrait être due 
au fait que les femelles témoins ont montré une augmentation de l'activité circadienne par 
rapport aux souris mâles (Arbogast et al,. 2016), ce qui pourrait empêcher l'observation de 
telles différences chez les femelles. En ce qui concerne l'activité verticale, les souris Del/+ 
montrent une augmentation du nombre de redressements. Cependant, si on prend en 
compte les résultats du test des comportements répétitifs, où on n'a pas détecté de 
stéréotypies de redressement, cette augmentation de l’activité verticale pourrait être 
expliquée par la présence des stéréotypies d’escalade. Un comportement détecté par les 
capteurs infrarouges du test comme des redressements. 
          Un autre paramètre analysé a été la mémoire de reconnaissance d'objets. Cette 
capacité cognitive est insuffisante chez les mâles 16p11.2 Del/+. Quand nous testons les 
souris femelles, une déficience de reconnaissance est également observée chez les porteurs 
de la délétion. Pourtant, de façon inattendue, les individus témoins ne montrent aucune 
différence entre le temps d'exploration de l'objet familier et du nouvel objet. Cette faible 
discrimination pourrait être due à l’activité d'exploration de l’arène surélevée montrée par 
ces individus lors de la phase d'acquisition. Ceci pourrait affecter la capacité de 
reconnaissance des animaux pendant la phase de rétention. Ces résultats nous empêchent 
d’utiliser ce protocole pour l’analyse de ce paramètre chez notre modèle et soulignent le 
besoin de développer des nouveaux protocoles qui permettront d’augmenter l’intérêt des 
souris aux objets. 
          Dans le but d’améliorer la capacité discriminante des individus témoins dans ce test, 
nous proposons pour des recherches ultérieures de modifier la phase d’habituation à l’arène 
du test. Dans ce cas, cette phase serait constituée de deux sessions de 15 minutes tenues sur 
deux jours différents. Une autre proposition est de répéter la caractérisation 
comportementale en utilisant des souris d’origine génétique hybride B6NC3B. Ce fond 
génétique présente une activité spontanée plus faible en comparaison à la souche B6N 
(Mandillo et al., 2008), ce qui pourrait nous permettre d’évaluer l’effet de cette atténuation 
sur l’habilité de discrimination des objets. 
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Dans le protocole de caractérisation des femelles, nous incluons finalement le test de 
sociabilité à trois chambres. Ce paramètre n'a pas été affecté chez les mâles Del/+ Sult1a1-
Spn, mais nous avons décidé de l'inclure, car il s'agit d'un trait caractéristique des patients 
autistes. Nos observations dans le test à trois chambres indiquent que la perte d'une copie 
de la région chromosomique 16p11.2 ne provoque pas de déficit du comportement social 
chez le modèle de souris pour les deux sexes. 
 
Conclusion de l’étude 
 
La comparaison des effets observés chez les femelles avec les mâles nous permet de vérifier 
que 2 des phénotypes les plus robustes sont présents dans les deux sexes (Table 1).  
Pourtant, l’étude de la susceptibilité différentielle liée au sexe, impactant la sévérité des 
symptômes de cette maladie, ainsi que l’interaction complexe entre des facteurs génétiques 
et les hormones sexuelles, se présente comme une perspective future à analyser. Notre 
recherche suggère l’importance des études ciblées pour établir les effets des hormones 
neuroactives, tel que l'estradiol dans les modèles génétiques d'autisme, déjà soulignés dans 
d’autres études et par le biais plus important des troubles autistiques chez les garçons 
(Olivetti et al., 2014). 
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Légendes des figures 
 
Figure 1. Modèle murin pour la délétion de la région chromosomique 16p11.2 chez la 
femelle. Validation moléculaire de la modélisation de la perte d’une copie de l’intervalle 
génétique Sult1a1-Spn crée à partir de la recombinaison Cre-LoxP in vivo (Arbogast el al., 
2016). Les produits spécifiques de la PCR pour les allèles wild-type (330 pb) et de la délétion 
(500 pb). 
 
Figure 2. Schéma détaillé du protocole de l’étude comportementale de la souris femelle 
porteuse de la délétion 16p11.2. La consécution des test est dérivée de l'analyse du modèle 
Del (7Sult1a1-Spn) 6Yah (Arbogast et al., 2016). 
 
Figure 3. Dépistage du phénotype cognitif et comportemental. (A) De gauche à droite, on 
montre le schéma de l’arène où le test de champ ouvert ainsi que la première phase 
d’habituation du test de reconnaissance du nouvel objet ont eu lieu. L’image centrale 
présente la phase d’acquisition de 10 min au cours de laquelle les souris sont présentées à 
deux objets identiques (par exemple deux billes opaques verts). La dernière image montre la 
phase de rétention où un des deux objets est change par un nouvel objet (par exemple un 
dé). (B) Test d’activité circadienne. (C) Test de comportement répétitif. Afin d’analyser la 
présence des comportements stéréotypés, les souris sont mises individuellement dans une 
cage d’hébergement. (D) Test de reconnaissance sociale. Pendant la première phase, la 
souris explore l’arène à trois chambres du test comme forme d’adaptation au nouvel 
environnement. Dans la deuxième étape, une autre souris étrangère est placée dans une des 
deux cages à grille vide. Au cours de la dernière phase, une autre souris étrangère occupe la 
deuxième cage vide. Les salles où les tests ont été menés étaient illuminées faiblement à 60 
Lux. 
 
Figure 4. Le comportement exploratoire des femelles 16p11.2 Del/+ dans le test de champ 
ouvert. Les souris (wt  (n=25) et Del/+ (n=23)) ont été mises à l’intérieur d’une enceinte 
pendant une session de 30 min et elles ont été permises à explorer le nouvel environnement 
librement. En première lieu, nous avons analysé l’activité d’exploration à partir de la 
distance totale parcourue (m) au cours du test. Les souris Del/+ montrent une augmentation 
significative de l’activité d’exploration (T = 678,000 ; p = 0,008, test U de Mann-Whitney). 
Ensuite, nous avons évalué l’adaptation des souris à l’environnement en divisant la duration 
totale du test en périodes de temps. Le graphique central montre la moyenne de la distance 
parcourue chaque 10 min pour les deux génotypes. Les animaux porteurs de la délétion de la 
région 16p11.2 maintiennent une activité d’exploration supérieure à exception de la 
dernière période (T0-10 : t(46) = -2,753 ; p = 0,008 ; T(10-20) : t(46) = -2,142 ; p = 0,038 ; T(20-30) : t(46) 
= -1,968 ; p = 0,055, test de Student). Ces résultats se traduisent en une habituation à 
l’environnement. Finalement, nous avons analysé le temps (s) passé par chaque souris dans 
les zones établies de l’aréna (la zone central, la zone intermédiaire, la périphérie et les 
murs).  Aucune préférence pour les différentes zones n’a été observée (* p < 0,05; ** p < 
0,01). 
 
Figure 5. Tâche de mémoire de reconnaissance de nouvel objet. Les souris femelles des deux 
génotypes (wt (n=17) et Del/+ (n=21)) ont été évaluées pour la mémoire de reconnaissance 
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des objets avec un délai de 3 heures. Le premier graphique montre le temps (s) d’exploration 
de chaque objet pendant la phase d’acquisition, placés à la droite (D) et à la gauche (G) de 
l’arène. Aucun génotype ne montre de préférences d’objet. Le graphique central montre 
l’index de reconnaissance du nouvel objet présenté aux souris pendant la phase de 
rétention. La ligne pointillée matérialise un niveau de chance de 50%. Etonnement, les souris 
témoin montrent une performance déficiente inattendue pendant ce test (One sample t 
test: wt (t(16) = 0,2535; p = 0,8031), Del/+ (t(20) = 1,1291; p = 0,2722)). Finalement, l’index de 
discrimination entre les deux objets des souris wt et Del/+ est montre sur le graphique à la 
droite. Aucune différence significative n’a été observée entre les deux génotypes. 
 
Figure 6. Le test d’activité circadienne. (A) Haute: Le graphique supérieur montre l’activité 
locomotrice. Ce paramètre a été mesuré à partir du nombre de va et viens dans la cage au 
cours des intervalles du cycle de 12 h de lumière et 12 h de sombre (les lumières s’allument 
à 7h). Bas: De gauche à droite, nous montrons l’activité locomotrice total de chaque 
génotype pendant 60 heures, ainsi que l’activité locomotrice pendant les périodes de 
lumière et de sombre, par séparé. (B) L’activité verticale de notre modèle a été évaluée à 
partir du nombre de redressements. Les données sont présentées avec le même format que 
pour l’activité locomotrice. L’analyse du modèle 16p11.2 Del/+ (wt (n=21) et Del/+ (n=15)) 
montre que les souris mutantes ne développent pas d’altérations de l’activité locomotrice. 
Par contre, nous observons des différences significatives par rapport au nombre de 
redressements total entre le génotype wt et Del/+ (T = 341,000 ; p = 0,043, test U de Mann-
Whitney). (* p < 0,05). 
 
Figure 7. Le test d’évaluation de la présence de comportement répétitif chez le modèle 
16p11.2 Del /+ femelle (wt (n=24) et Del/+ (n=21)). Des occurrences des redressements, des 
sautes, des escalades, des creusages et des toilettages pendant 10 min dans une cage 
d’hébergement. Les individus Del/+ présentent une augmentation significative du 
comportement répétitif d’escalade par rapport aux souris wt (Escalade : T = 579,500; p = 
0,002, test U de Mann-Whitney). (**p < 0,01).  
 
Figure 8. Le test de reconnaissance social à trois chambres pour le modèle 16p11.2 Del/+ (wt 
(n=21) et Del/+ (n=19)). Pendant la phase d’habituation, nous avons mesuré le temps 
d’exploration de deux cages (D et G) vides placées dans les chambres extérieures de l’aréna. 
Aucune préférence d’exploration des cages n’a été observée. Le graphique de la phase de 
sociabilité montre l’index de préférence de notre modèle par l’étrangère 1 par rapport à une 
cage vide. Les souris Del/+ montrent un index de préférence significativement supérieur au 
niveau de chance de 50%. (One sample t test: wt (t(20) = 5,4512; p < 0,0001), Del/+ (t(18) = 
3,8469; p = 0,0012)). Le graphique de la phase de nouveauté sociale montre l’index de 
préférence par l’étrangère 2 (nouveau) par rapport à l’étrangère 1 (familier). Les souris 
mutantes présentent un index de préférence significativement supérieur au niveau de 
chance de 50%. (One sample t test: wt (t(19) = 3,3419; p = 0,034), Del/+ (t(18) = 6,9711; p < 
0,0001)). La ligne pointillée matérialise un niveau de chance de 50%. (** p < 0,01; *** p < 
0,001). 
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Figures 
 
Figure 1. Validation moléculaire de la modélisation de la délétion de la région 
chromosomique 16p11.2 chez la souris femelle 
 
 

 
 
 
 
 
Figure 2. Schéma détaillé du protocole comportemental du modèle 16p11.2 Del/+ 
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Figure 3. Dépistage du phénotype cognitif et comportemental 
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Figure 4. Le comportement exploratoire des femelles 16p11.2 Del/+ dans le test de champ 
ouvert 
 
 

 
 
 
 
 
Figure 5. Tâche de mémoire de reconnaissance de nouvel objet 
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Figure 6. Le test d’activité circadienne 
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Figure 7. Le test d’évaluation de la présence de comportement répétitif 
 
 

 
 
 
 
 
Figure 8. Le test de reconnaissance social à trois chambres 
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Tableaux 
 
 

 

Ligne génétique 
 

 

Fond génétique 
 

Accouplement 
 

Génotype 
 

Individus 
 

Ratio 

 

16p11.2 Del/+ 
 

B6N 
 

Del/+ x wt 
wt 412 67,2% 

Del/+ 201 32,8% 

 
 
Tableau 1. Taux de transmission de l’allèle porteur de la délétion 16p11.2 Sult1a1-Spn pour 
le sexe féminin à partir des accouplements Del/+ x wt sur le fond génétique B6N. Comme on 
a retrouvé dans le cas du sexe masculin, l'allèle Del/+ montre une réduction de la 
transmission de 17,2% par rapport à la transmission mendélienne. 
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Tableau 2. Carte comportementale des phénotypes observés chez les modèles de souris 
mâle et femelle portant la délétion de l’intervalle génétique Slx1b-Sept1 sur le fond 
génétique B6N.  
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Test 
 

Paramètre 
 

 

wt 
 

Del/+ 

 
 

 
 

Champ ouvert 

Distance totale (m) 70 ± 2 80 ± 3** 

Distance t 0-10 (m) 29 ± 1 33 ± 1** 

Distance t 10-20 (m) 22 ± 1 25 ± 1* 

Distance t 20-30 (m) 19 ± 1 22 ± 1 

Temps Centre (s) 182 ± 22 175 ± 15 

Temps Zone intermédiaire (s) 493 ± 30 520 ± 32 

Temps Périphérie(s) 1095 ± 44 1054 ± 43 

Temps Mur (s) 31 ± 14 51 ± 12 
 

Reconnaissance 
d’objets 

3 heures délai 

S1 exploration d’objet A (s) 10 ± 1 25 ± 4** 

S2 exploration d’objet A (s) 5 ± 1 9 ± 2 
S2 exploration d’objet B (s) 6 ± 2 7 ± 1 

Index de reconnaissance (%) 49 ± 5 46 ± 4 
 

 
 

Activité 
circadienne 

Activité locomotrice totale (count) 3027 ± 225 3312 ± 378 

Activité locomotrice lumière (count) 473 ± 42 586 ± 103 
Activité locomotrice sombre (count) 1380 ± 134 1592 ± 261 

Activité verticale totale (count) 5576 ± 1330 9097 ± 2229* 
Activité verticale lumière (count) 401 ± 47 861 ± 405 
Activité verticale sombre (count) 3064 ± 1062 4548 ± 1528 

 
 

Comportement 
répétitif 

Redressement 71 ± 3,4 68,9 ± 5,1 

Saute 0 0 
Escalade 0,1 ± 0,1 4,3 ± 1,5** 
Creusage 7,4 ± 1,5 12,2 ± 2,5 
Toilettage 1,4 ± 0,3 2 ± 0,4 

 
 
Tableau 3. Analyses comportemental du modèle murin pour la délétion de la région 16p11.2 

Sult1a1-Spn chez la femelle sur un fond génétique pur. L’évaluation de l’activité 

d’exploration d’un nouveau contexte a été menée à  partir du test de champ ouvert. Nos 

résultats montrent une augmentation de l’activité totale, mesurée comme la distance totale 

parcourue par nos animaux. La division de la session du test de 30 minutes en intervalles de 

10 minutes nous a permis d’observer que nos animaux présentent une hyperactivité qui 

continue jusqu'à le dernier intervalle. Ceci pourrait indiquer une habituation correcte au 

contexte. Le test de mémoire de reconnaissance d’objets a été constitué pour deux sessions, 

la session d’acquisition (S1) et la session de rétention (S2). Au cours de la première session, 

nous avons observé une augmentation significative de l’exploration des objets A chez les 

individus Del/+, qui pourrai être explique pour l’hyperactivité d’exploration montrée par nos 

souris au cours du test de champ ouvert. De manière inattendue, nos souris témoins n’ont 

pas développé une capacité de reconnaissance d’objet correcte, probablement en raison du 

manque d’intérêt manifesté par les objets A au cours de la première session du test. Ces 

résultats invalident notre test et nous obligent à développer un nouveau protocole adapté. 

L’activité de notre modèle a été également évaluée en cycles circadiens dans le test 

d’activité circadienne. Nos observations montrent que la perte d’une copie de la région 

16p11.2 génère uniquement des altérations dans l’activité verticale totale. L’observation de 

comportements répétitifs dans des cages pendant 10 minutes montre une augmentation du 

comportement d’escalade. Ce résultat pourrait expliquer l’augmentation de l’activité 

verticale totale dans le test d’activité circadienne. Les données sont les moyennes ± l’écart-

type. Test de Student, *p < 0,05, **p < 0,01.…………………………………………………………………………  



 

Conclusion et perspectives  
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Etude de l’inhibition pharmacologique de la voie de signalisation 

RHOA / ROCK dépendante de l’interaction entre KCTD13 et CULLIN 

sur les modèles Kctd13+/- et 16p11.2 Del/+ 
 

Certains troubles du comportement et des déficits du développement diagnostiqués chez les 

patients porteurs des CNVs de la région 16p11.2 ont été liés à divers mécanismes cellulaires. 

En particulier, un des gènes présents sur la région, KCTD13, fut initialement impliqué dans 

l'apparition d'altérations de la taille du crâne chez l'homme (Kusenda et al., 2015) et des 

modèles animaux (Golzio et al., 2012). Récemment, il a été également impliqué dans le 

contrôle des niveaux cellulaires de la protéine RHOA (Lin et al., 2015). Cependant, la manière 

dont l'haplo-insuffisance de ce gène cause des modifications de l'activation de la voie RHOA 

/ ROCK, entraînant des altérations significatives de la transmission synaptique (Escamilla et 

al., 2017) et des troubles cognitifs chez la souris (Arbogast et al., 2019), ainsi que le rôle 

mécaniste exact de RHOA dans les syndromes 16p11.2 reste toutefois à découvrir.  

          La famille des Rho GTPases joue un rôle essentiel dans la régulation du cytosquelette 

d'actine, ce qui contrôle la croissance, la dynamique et la fonction des épines dendritiques et 

la plasticité synaptique (Penzes et Rafalovich, 2012). Considérant que le dysfonctionnement 

du cytosquelette d'actine a été associé à l’autisme (Yan et al., 2016) et que la normalisation 

des régulateurs d'actine dans la voie RHOA, comme Pak et cofilin, a permis de restaurer des 

phénotypes autistiques dans les modèles génétiques Nf1, Shank3 et Fmr1 (Martin-Vilchez et 

al., 2017), nous avons considéré très intéressant d'étudier l'effet de l’inactivation 

pharmacologique de la voie de signalisation RHOA / ROCK sur les phénotypes associés à la 

modélisation de la délétion 16p11.2 chez la souris. 

          La caractérisation comportementale du modèle de souris pour l’inactivation du gène 

Kctd13 ainsi que le modèle pour la délétion de la région complète 16p11.2 avant et après le 

traitement chronique avec un inhibiteur de la voie RHOA (fasudil), a concerné au premier 

projet de cette recherche. Cette étude a révélé que le gène Kctd13 est impliqué dans le 

déficit de mémoire de reconnaissance d’objets associé à la délétion de la région 16p11.2 et 

que la suractivation de la voie RHOA / ROCK est la cause principale, grâce à l'observation 

d'un effet normalisant du traitement sur ce phénotype chez les deux modèles. Ces résultats 

sont cohérents avec les informations de l’ « Allen Brain Atlas » qui localisent l’expression du 

gène dans l’hippocampe des souris adultes, une région cérébrale impliquée dans 

l’acquisition de la mémoire. En outre, les souris déficientes pour Kctd13 ne présentent pas 

de troubles dans l’activité d'exploration associés à la délétion 16p11.2. De plus, 

l’administration de fasudil ne provoque pas d’effet sur ces deux modèles.  Ces résultats nous 

indiquent que Kctd13 n'est pas responsable de ce phénotype et que pour cette raison la 

normalisation de l'activation de la voie RHOA ne permet pas de rétablir ce phénotype. Une 

autre observation intéressante concerne la disparition à l’âge de 18 semaines du phénotype 

des déficits dans la mémoire de localisation d’objets présenté par le modèle Kctd13+/- à 12 

semaines. Ces résultats pourraient signaler un trouble du développement qui empêche nos 

souris de manifester cette capacité à 12 semaines. Ceci sera vérifié prochainement à partir 

de la caractérisation des souris Kctd13+/- naïves de 18 semaines. En outre, fasudil ne 



CONCLUSION ET PERSPECTIVES 

168 

 

provoque pas d’effets significatifs dans le déficit de reconnaissance de localisation d’objets 

observé chez le modèle 16p11.2 Del/+. Ces résultats sont cohérents avec la faible robustesse 

du phénotype dans le modèle d'inactivation de Kctd13. 

          Finalement, les résultats de l’étude biochimique de la voie RHOA ont montré une 

augmentation de la phosphorisation de MLC dans l’hippocampe des deux modèles signalant 

le gène Kctd13 comme responsable de la sur activation de la voie RHOA / ROCK chez les 

individus porteurs de la délétion 16p11.2. De plus, nous avons démontré l’effet inhibiteur de 

fasudil dans la voie de signalisation grâce à la normalisation significative de la 

phosphorisation de MLC chez les individus mutants traités Kctd13+/- et 16p11.2 Del/+. 

Cependant, nous n’avons pas observé d’altérations des niveaux de la protéine RHOA sur ces 

deux modèles. Ces résultats sont cohérents avec l’étude récente menée par Arbogast et al., 

en 2019, où il n'a pas été montré de changements des niveaux de la protéine RHOA, malgré 

l'observation d'altérations de la maturation des épines dendritiques de l'hippocampe de 

souris déficientes pour Kctd13 avec un déficit de la mémoire de reconnaissance. Cependant, 

notre analyse ne récapitule pas l’altération des niveaux de la protéine RHOA ni l’absence de 

phénotypes de la mémoire de reconnaissance observées sur le modèle Kctd13 de Escamilla 

et al. Ces différences pourraient être la conséquence des stratégies de mutation utilisées 

pour l’obtention de chaque modèle. 

          Nous estimons que des études biochimiques supplémentaires de la voie RHOA / ROCK 

et du complexe KCTD13-CULLIN3 sont nécessaires afin de comprendre le rôle mécaniste de 

la voie dans les syndromes associés aux réarrangements 16p11.2. En outre, nos résultats 

n'excluent pas le fait que d'autres gènes de la région puissent agir à d'autres niveaux de la 

voie RHOA ou à des moments différents du développement. Un de ces gènes est Taok2 dont 

produit a été impliqué dans la régulation de l’activation de la voie de signalisation à travers 

un complexe fonctionnel avec RHOA, dans le cortex de souris présentant des phénotypes du 

comportement, de la connectivité du cerveau entier, de la stratification corticale, de la 

morphologie neuronale et de la fonction synaptique dans les neurones excitateurs corticaux 

(Richter et al., 2019). Il est probable que plusieurs gènes jouent un rôle similaire ou que 

l’expression d’un gène puisse réguler l’expression d’un autre gène de la région, considérant 

la grande densité génotypique de l’intervalle 16p11.2 et la variabilité des phénotypes 

neurologiques associés (Girirajan et al., 2012). 

 

 

Recherche des gènes candidats de la région MVP-KCTD13 
 

Les études transcriptomiques menées précédemment sur le modèle 16p11.2 Sult1a1-Spn 

ont démontré que la plupart des gènes de la région 16p11.2 sont sensibles au dosage 

génétique et qu’en particulier la délétion a un effet plus prononcé sur l’expression des gènes 

que la duplication avec un impact très faible de régulation génomique (Arbogast et al., 

2016). Ces résultats impliquent directement les gènes de l’intervalle dans les phénotypes 

associés.  
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          Considérant que l’inactivation de Kctd13 n’est pas la cause de tous les phénotypes 

associés à la délétion 16p11.2, nous avons décidé ici de continuer la recherche des gènes 

candidats.  

 

Nous avons développé deux modèles d’inactivation des gènes Mvp et Sez6l2 à l’état 

hétérozygote car chez l’humain, les CNVs de la région 16p11.2 les plus fréquemment 

identifiés incluent une unique copie du locus.  

          Ensuite, nous avons procédé à la caractérisation comportementale basée sur les 

phénotypes trouvés sur le modèle murin 16p11.2. Nos résultats montrent que la perte d’une 

copie du gène Mvp généré à partir de la technique de la cassette de piégeage de gènes ou à 

partir de la technologie CRISPR / Cas9 ne provoque pas de phénotypes cognitives. Pourtant, 

des études précédentes ont impliqué ce gène dans l'augmentation de l'expressivité des 

phénotypes de la taille crânienne et cérébrale associés à Kctd13 (Arbogast et al., 2019; 

Golzio et al., 2012). Pour cette raison, nous n'excluons pas la possibilité que Mvp puisse 

aggraver les phénotypes associés à un autre gène de la région dans un modèle double 

hétérozygote. 

          La génération du modèle pour l’inactivation du gène Sez6l2 à l’état hétérozygote a été 

menée à partir de l’allèle tm1a et tm1b. La principale différence entre ces deux 

constructions est la présence ou pas des exons critiques et du gène marqueur 

respectivement. Alors que l'allèle tm1a est plus polyvalent, l'allèle tm1b est plus approprié 

pour l'étude de l'apparition de phénotypes associés à l'inactivation du gène, car il ne 

contient pas les exons ciblés dans le génome. L’allèle Sez6l2tm1b/+ présente une transmission 

similaire à la délétion de la région 16p11.2 à partir du croissement wt x Sez6l2tm1b/+  

d’environ 35%. Ce résultat pourrait nous indiquer que l’inactivation du gène Sez6l2 a un effet 

délétère et est impliquée dans une certaine mesure dans la létalité observé chez les souris 

16p11.2 Del/+.  

          Par rapport à l’analyse comportementale des souris Sez6l2+/-, nos résultats ont montré 

un déficit dans la mémoire de reconnaissance et une stéréotypie du comportement 

d’escalade pour l’allèle tm1a et de creusage pour l’allèle tm1b.  La différence du type de 

comportement répétitif entre les deux allèles pourrait s'expliquer par le fait que les patients 

atteints d’ASD peuvent développer différents types de comportement répétitif (Cunningham 

et al., 2008). 

          Deux gènes, Sez6l2 et Kctd13 sont impliqués dans le phénotype de mémoire de 

reconnaissance d’objets associé à la délétion 16p11.2 Sult1a1-Spn. Nos résultats soulignent 

la possibilité que ces deux gènes agissent dans le même domaine fonctionnel et qu’il serait 

possible de cibler un mécanisme cellulaire contrôlé par l’un de ces deux locus avec une seule 

drogue, comme fasudil et d’obtenir des effets de réversion du phénotype observé. 

Cependant, nous estimons nécessaire de vérifier dans des futures recherches si l’inactivation 

d’un de ces gènes pourrait avoir des effets épistatiques sur l’expression de l’autre. Pour 

cette raison, l’analyse du niveau d'expression du produit des deux gènes adjacents sur ces 

deux modèles est prévue par notre laboratoire.  

          Des futures analyses à partir de la combinaison des deux mutations génétiques chez un 

modèle doble hétérozygote ainsi que la modélisation de la micro-délétion de la région MVP-
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KCTD13 identifiée dans une famille de trois générations avec autisme (Crepel et al., 2011) 

nous permettront de vérifier si les phénotypes sont accentués et si ces modèles 

reproduisent les phénotypes associés à la délétion 16p11.2. 

 

 

Modélisation des syndromes de variation du nombre de copies de la 

région 16p11.2 chez le rat 
 

La modélisation des réarrangements de la région de synténie 16p11.2 Sult1a1-Spn chez la 

souris sur un fond génétique pur ou mixte a permis de mimer les phénotypes cognitifs et 

d’apprentissage associés à la déficience intellectuelle et aux troubles d'activité diagnostiqués 

chez l'homme, ainsi que la stéréotypie couramment observée sur les patients atteints d’ASD 

(Cunningham et al., 2008). Cependant, le phénotype d’altération du comportement social, 

un trait typiquement autiste, a été observé uniquement chez les souris sur le fond génétique 

mixte. Pourtant ces souris ne partageaient pas les mêmes caractéristiques 

comportementales avec les souris sur le fond pur. Ces observations pourraient indiquer une 

association des polymorphismes liés au fond génétique au phénotype social. 

          Dans ce contexte nous avons décidé de créer des modèles animaux porteurs des 

réarrangements 16p11.2 plus relevant pour l’autisme. A cette fin, nous avons développé des 

modèles pour la délétion et pour la duplication de la région 16p11.2 chez le rat, une espèce 

connue pour son intelligence et son instinct social. Lors de l’amplification de la ligne 

génétique à partir des accouplements Del/+ X Dup/+, nous n’avons pas observé de 

différences de transmission des mutations.  

          La caractérisation de ces modèles sur un fond génétique non consanguin nous a permis 

d’observer initialement une grande variabilité phénotypique compatible avec la grande 

variabilité symptomatique et la faible pénétrance des troubles neuropsychiatriques  associés 

aux CNVs 16p11.2 chez l’humain. En outre, nos résultats ont montré que les individus 

porteurs de la délétion développent une suractivité locomotrice par rapport aux rats 

porteurs de la duplication pour le sexe masculin. Dans le cas des femelles, les animaux 

porteurs de deux régions Sult1a1-Spn sur un seul chromosome (Del/Dup) sont 

significativement plus actives que les individus porteurs de trois copies de la région (Dup/+) 

suggérant que la structure de l’ADN pourrait impacter l’expression génétique par des effets 

de position du matériel génétique en provoquant une altération de l’activité. De plus, la 

délétion a été associée à un déficit dans la mémoire de reconnaissance d’objets chez les 

mâles dans un test conditionné à l'intelligence des rats. Ce phénotype a été également 

identifié chez la souris et pourrait être associé à la déficience intellectuelle chez les 

humaines. En outre, nous avons observé à partir de ce modèle animal que la délétion est liée 

à une augmentation significative de l’isolement social alors que la duplication est liée à une 

augmentation des comportements sociaux agressifs. Ces phénotypes pourraient être 

associés aux traits autistiques et aux symptômes psychotiques identifiés chez les patients 

affectés par les réarrangements 16p11.2 (Niarchou et al., 2019). 

          Par rapport aux phénotypes anatomiques, les rats Del/+ ont présenté une diminution 

du poids corporel uniquement pour le sexe masculin. 
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          Nos résultats signalent une diminution de l’expressivité phénotypique liée au sexe 

féminin qui est compatible avec la théorie du « cerveau masculin extrême » développée par 

Baron-Cohen et al., en 2011 selon laquelle l'autisme est considéré comme un extrême du 

cerveau typiquement masculin, présentant une diminution de l’empathie avec une 

systématisation normale ou accrue. Nos données sont également cohérentes avec la 

proportion d’identification des réarrangements 16p11.2 favorable pour les garçons par 

rapport aux filles (Polyak et al., 2015). Une autre possibilité à prendre en compte est que ce 

biais était uniquement dû au fond génétique. La disponibilité des nouveaux modèles de rats 

16p11.2 aidera à vérifier la seconde hypothèse.  

          Nos modèles de rats ont été également utilisés pour l’analyse d’altérations cranio-

faciales dans une étude multi-espèce. Les résultats actuellement publiés, montrent que nos 

animaux présentent des phénotypes opposés entre la délétion et la duplication par rapport 

aux mesures des régions frontales du crâne et des régions nasales et mandibulaires. Ces 

résultats indiquent que le dosage des gènes de la région 16p11.2 a une conséquence 

quantitative dans le développement. Finalement, l’analyse transcriptomique et de 

l’expression des protéines à partir des tissus des différentes régions du cerveau est en cours 

dans notre équipe afin de vérifier cette dernière hypothèse. 

 

 

Caractérisation du modèle de souris chez la femelle Del/+ 16p11.2 

BP4-BP5 Sult1a1-Spn 
 

Nous avons observé des différences comportementales associées au sexe chez le rat 

compatibles avec le biais sexuel des cas porteurs des réarrangements 16p11.2 avec l’ASD et 

la déficience intellectuelle chez l’humain. Par contre, les fondements de ceci sont inconnus. 

Pour cette raison, nous avons décidé d’étudier l’implication du sexe dans les troubles 

comportementaux du modèle de souris pour la délétion 16p11.2 Sult1a1-Spn et ainsi 

compléter la résolution phénotypique associée à ce syndrome. La raison pour laquelle nous 

avons sélectionné la délétion entre les deux réarrangements, a été la plus grande sévérité 

des phénotypes trouvés chez l'homme (Cooper et al., 2011) et le modèle murin (Arbogast et 

al., 2016) par rapport à la duplication. Pour ce projet on a travaillé avec des souris femelles 

sur un fond consanguin à l’état hétérozygote. 

          Comme dans le cas de la modélisation de la délétion 16p11.2 Sult1a1-Spn pour le sexe 

masculin, la première observation à considérer a été un effet sur la viabilité des souris 

porteuses de cette mutation. En effet, nous avons trouvé une létalité significative associée à 

l’haplo-insuffisance des gènes de la région. Ces résultats indiquent que cet effet ne dépend 

pas du sexe des animaux et ils sont cohérents avec la principale proportion de délétions de 

novo identifiées chez l'homme. L’effet délétère de la délétion implique que la mutation ne 

soit pas transmise principalement de génération en génération et qu’elle ne soit pas 

présente dans le patrimoine génétique familial.  

          En ce qui concerne l'analyse des capacités cognitives associées à la perte d’une copie 

de la région pour le sexe féminin, nous avons observé une augmentation de l'activité 

locomotrice d’exploration et une stéréotypie dans le comportement d'escalade. Ces deux 
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phénotypes sont partagés avec le sexe masculin. Cependant, il n’a pas été possible de 

déterminer la présence de désordres dans la mémoire de reconnaissance d’objets sur notre 

modèle car nos animaux témoins n’ont pas montré de préférence entre les objets. Pour 

cette raison, l’obtention de deux nouvelles cohortes de souris est prévue afin de répéter le 

test à partir d'un nouveau protocole dans lequel la phase d'habituation se déroulera en deux 

sessions de 15 minutes sur deux jours différents. Ce changement pourrait diminuer l'intérêt 

des souris pour l’arène et augmenter leur intérêt pour les objets présentés. En outre, 

contrairement aux souris mâles, nos mutantes ne montrent aucune altération de l'activité 

locomotrice circadienne. Cette différence de phénotypes observée entre les deux sexes 

pourrait s'expliquer par l'augmentation générale de l'activité des deux génotypes par 

rapport aux mâles. Cette observation pourrait influer sur la possibilité de trouver des 

différences significatives entre les femelles témoins et les femelles mutantes. 

          Néanmoins, les résultats de l’analyse de ce modèle ont montré également une 

diminution de l’expressivité phénotypique. Cette différence pourrait être associée à une 

résilience spécifique du sexe féminin en ce qui concerne l'effet de l'haplo-insuffisance des 

gènes de la région dans le neuro-développement. Nos résultats sont cohérents avec les 

études menées par Grissom et al., en 2018. Leurs analyses montrent des profondes 

différences entre les sexes par rapport à l'impact de la délétion 16p11.2 liée à des troubles 

du développement neurologique, comprenant des mécanismes de vulnérabilité spécifiques 

aux souris mâles et de la résilience spécifique à la femelle avec un impact sur la signalisation 

intracellulaire dans le cerveau. Nous soulignons le besoin de futures recherches afin de 

comprendre l’effet de vulnérabilité associé au sexe masculin et l’effet protecteur associé au 

sexe féminin, comme conséquence de gènes présents dans les chromosomes sexuels ou 

d'hormones sexuelles agissant dans le système nerveux, ce qui nous permettrait de 

développer de futurs traitements à partir de ces molécules. 

 

 

Conclusion finale 
 

Notre travail se centre sur la compréhension et l’atténuation des conséquences des 

réarrangements de la région chromosomique 16p11.2 chez l’humain. Ces mutations sont 

considérées comme l’une des étiologies les plus pertinentes des troubles neuro 

développementaux et neurocognitives, tels que la déficience intellectuelle et l’autisme. 

Notre recherche a été menée à partir de l’utilisation des modèles animaux de la souris et du 

rat, considérant les recherches scientifiques apportées au cours des dernières années sur ces 

CNVs.  

          Nous avons récapitulé les informations données sur Kctd13, un gène impliqué dans la 

régulation de la voie de signalisation cellulaire RHOA / ROCK, pour le développement d’une 

approche thérapeutique sur les modèles de souris déficientes pour Kctd13 ou porteuses de 

la délétion 16p11.2. Nos résultats démontrent que Kctd13 est impliqué dans le phénotype 

de mémoire de reconnaissance d’objets associé à la délétion de la région 16p11.2 et que la 

suractivation de la voie RHOA est la cause principale. Considérant que Kctd13 n’est pas 

l’unique gène responsable des phénotypes associés à la délétion 16p11.2, nous avons 
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continué la recherche des autres gènes candidats. Ainsi, nous avons découvert l’implication 

du gène Sez6l2 dans l’apparition de comportements répétitifs et le déficit de mémoire de 

reconnaissance d’objets. Nos résultats indiquent donc que plus d’un gène de la région 

16p11.2 est impliqué dans le développement de cette capacité cognitive. Bien que nous 

ayons réussi à récapituler certains phénotypes associés aux syndromes 16p11.2 humains à 

partir du modèle de souris, nous nous sommes intéressés à l’obtention d’un modèle animal 

manifestant des troubles sociaux. Pour cette raison, nous avons développé des modèles de 

rat pour les réarrangements de la région 16p11.2. Nos modèles ont développé 

fondamentalement des troubles du comportement social, un trait associé communément à 

l'autisme chez l'homme. Ces observations présentent nos modèles comme un outil 

génétique pour la recherche de mécanismes moléculaires impliqués dans ce phénotype et 

de molécules thérapeutiques avec des effets de normalisation sur les désordres sociaux 

pouvant aboutir à l’amélioration de la vie des patients. D’autre part, considérant la 

complexité du cerveau humain, nous n’excluons pas que d’autres gènes de la région puissent 

avoir des effets épistatiques et même des fonctions similaires dans des régions du cerveau 

identiques ou différentes. De plus, nous considérons que l’étude d’autres gènes en dehors 

de notre région d’intérêt dont les mutations ont été associées à la déficience intellectuelle 

ou à l’autisme est vraiment importante pour la compréhension globale de ces troubles. En 

particulier, DYRK1A un gène essentiel pour le développement correct du système nerveux 

dont les mutations ont été liées à l’ASD (O'Roak et al., 2012). Nous voudrions également 

inclure d'autres gènes tels que SHANK2 dont les mutations rares ont été identifiées chez des 

patients atteints d’autisme et de déficience intellectuelle (Leblond et al., 2012; Sanders et 

al., 2012) et elles ont eu des effets variables sur la localisation des protéines, le volume des 

épines dendritiques et la ramification dans des cultures neuronales et même la transmission 

synaptique et le comportement cognitif chez la souris (Berkel et al., 2012). De plus, des 

mutations sur SHANK3 (Sarasua et al., 2011; Peça et al., 2011) et NLGN3 (chromosome X) 

(Jamain et al., 2003) ont été aussi associées à l’autisme. Finalement, nos résultats mettent 

en évidence l’effet de résilience associé au sexe féminin chez nos modèles de rat. Cette 

différence d’expressivité phénotypique associée au sexe a été également observée sur le 

modèle de souris. La similitude retrouvée entre les espèces dans nos études nous permet de 

proposer des futures analyses pharmacologiques à partir d'hormones sexuelles qui agissent 

dans le système nerveux et pourraient avoir des effets normalisant chez nos modèles 

animaux. 
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Résumé 

Les variations du nombre de copies (CNVs) des régions chromosomiques sont une source importante de variabilité chez 
l’humain. Ainsi certaines altérations structurelles ont été associées à des maladies syndromiques comme les CNVs de la 
région 16p11.2. En effet la délétion et la duplication de cette région représentent un facteur de risque important pour le 
diagnostic de troubles du neurodéveloppement, tels que la déficience intellectuelle et les troubles du spectre autistique 
(ASD). Pourtant, la grande densité en gènes de la région et la forte variabilité phénotypique, avec la pénétrance 
incomplète des traits phénotypiques, rendent leur étude complexe. La modélisation chez la souris des réarrangements 
16p11.2 a permis d’identifier plusieurs déficits cognitifs similaire aux traits humains afin d’identifier gènes responsables 
et comprendre les mécanismes moléculaires affectés. 
Les projets de recherche présentés dans ce manuscrit consistent en l’identification de gènes candidats à partir de la 
caractérisation comportementale de modèles d’inactivation génétique et le développement d’approches thérapeutiques 
afin de restaurer les phénotypes associés à la délétion de la région 16p11.2 chez la souris. En outre, nous avons 
également engagé la création de modèles porteurs des réarrangements 16p11.2 chez le rat. Grâce à ces nouveaux 
modèles, nous avons retrouvé des désordres de l’interaction sociale, un phénotype associé à l’autisme, ce qui rend ces 
modèles très pertinents pour la compréhension de ces désordres. Finalement, la caractérisation comportementale des 
modèles 16p11.2 à partir de ces deux espèces a mis en évidence un dimorphisme sexuel : les femelles porteuses de la 
délétion étant moins affectées que les males. La similitude retrouvée entre ces modèles animaux dans nos études et le 
biais sexuel des cas porteurs des réarrangements 16p11.2 avec l’ASD ou la déficience intellectuelle chez l’homme ouvre 
des perspectives intéressantes pour le dévellopement de traitements futurs. Ce travail s’inscrit dans une perspective plus 
large qui permette de comprendre le rôle des gènes de la région dans le développement neurologique et leurs effets sur 
le comportement afin de comprendre et améliorer la pathologie humaine associée aux CNVs 16p11.2. 

Variations du nombre de copies, déficience intellectuelle, autisme, modèles murins, gènes candidats et biais sexuel 

 

Résumé en anglais 

Variations in copy number (CNVs) of chromosomal regions are an important source of variability in humans. Thus some 
structural alterations have been associated with syndromic diseases such as the CNVs of the 16p11.2 region. Indeed 
deletion and duplication of this region represent an important risk factor for the diagnosis of neurodevelopmental 
disorders, such as intellectual disability and Autism Spectrum Disorder (ASD). However, the high gene density of the 
region and the high phenotypic variability, with incomplete penetrance of phenotypic traits, make their study complex. 
Mouse modeling of 16p11.2 rearrangements has allowed to identify several cognitive deficits similar to human traits for 
the purpose of identify responsible genes and to understand the molecular mechanisms affected.  
The work presented in this manuscript consists of the identification of candidate genes from the behavioral 
characterization of genetic inactivation models and the development of therapeutic approaches to restore the phenotypes 
associated with the 16p11.2 deletion in the mouse. In addition, we also initiated the creation of models carrying 16p11.2 
rearrangements in rats. Thanks to these models, we found disorders of social interaction, a phenotype associated with 
autism, which makes these models very relevant for the understanding of these disorders. Finally, the behavioral 
characterization of the 16p11.2 models from these two species revealed a sexual dimorphism: the females carrying the 
deletion are less affected than the males. The similarity found between these models in our studies and the sexual bias 
of cases carrying 16p11.2 rearrangements with ASD or intellectual disability in humans open interesting prospects for the 
development of future treatments. This work is part of a wider perspective that allows to understand the role of genes of 
the region in neurodevelopment to understand and improve the human pathology associated with CNVs 16p11.2. 

Copy number variation, intellectual disability, autism, murine models, candidate genes and sexual bias 

 


