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Summary 

Introduction: 

Neuropathic pain occurs as a result of an injury or disease affecting the somatosensory 
system, it is characterized by prolonged allodynia and hyperalgesia as well as spontaneous pain 
(Colloca et al., 2017). As of 2018, 6 to 8% of the European population suffers from neuropathic 
pain. Many patients with chronic pain also develop anxiety and/or depressive disorders, leading 
to a prevalence of around 50% for major depressive disorder (MDD) comorbidity with chronic pain 
conditions (Attal et al., 2011). Despite considerable clinical research, the mechanisms underlying 
this comorbidity remain largely unknown. 

Recent studies in the field of neuroimaging have shown that neurological/ neuropsychiatric 
disorders influence the brain structural and functional networks, and thus, the way different brain 
areas communicate with each other (Fornito and Bullmore, 2010). Indeed, the study of the brain 
as an integrative system provides unique insights into large-scale neuronal communication. Study 
of brain networks and metabolism in preclinical settings is a crucial step for translational research. 

In this context, we conducted a non-invasive brain imaging study to investigate changes in 
structural and functional connectivity in a mouse model of neuropathic pain-induced depression. 
We aimed to provide a fine-grained mapping of brain network architecture and the evolution of 
brain functional and structural connectivity in a longitudinal manner. This would allow us to 
understand the underlying mechanisms of pain-induced depression and develop novel diagnostic 
approaches and therapeutic strategies. 

To achieve our goals, we used two methods of magnetic resonance imaging (MRI), 
currently the only non-invasive imaging technology that is capable of reconstructing the overall 
architecture of functional communication pathways (using resting state functional MRI- rs-fMRI) 
as well as their microstructural substrates (diffusion MRI). 

Rs-fMRI is a method based on the analysis of spontaneous low frequency fluctuations (less 
than 0.1 Hz) of the BOLD (Blood Oxygen Level-Dependent) signal at rest (Biswal et al., 1995). It 
is now accepted that the synchronization of these fluctuations between distinct brain regions 
reflects a functional connectivity between them (Lee et al., 2013; Rosazza and Minati, 2011; van 
den Heuvel and Hulshoff Pol, 2010).  On the other hand, diffusion MRI explores structures on a 
microscopic scale by mapping the displacements of water molecules in the context of the physical 
diffusion process (Le Bihan and Breton, 1985). It provides unique clues about the neural tissue 
microstructure and the changes associated with various physiological and pathological states. 
Since the diffusion directions reflect the underlying organization of white matter axons, diffusion 
MRI can also be used to map axonal fibers in the brain in vivo and non-invasively (Le Bihan, 2014, 
2003). 

Objectives:  

Based on the published data and preliminary results, my thesis project serves two main 
objectives: 1) to compare C57BL/ 6 and BALB/c strains in order to find the most suitable strain 
for the study of depression; 2) to characterize brain functional and structural connectivity in 
chronic pain and depression comorbidity.  



Results: 

The neuropathic pain-induced depression model used in this project consists of placing a 
polyethylene "cuff" around the main branch of the right sciatic nerve in mice (Benbouzid et al., 
2008; Yalcin et al., 2014b). This surgical procedure results in mechanical allodynia and anxio-
depressive behaviors over time. As our first study demonstrated that C57BL/6 mice show less 
variability in their brain structure and function between individuals, we considered this strain more 
suitable for the study of depression. We performed a longitudinal investigation using brain resting 
state functional MRI (rs-fMRI) and structural MRI in this murine model of depression which 
enabled us to characterize the evolution of the pathology. 

We first reproduced our team’s previous results on cuff implantation inducing mechanical 
allodynia in the ipsilateral leg and the development of depression-like behaviors in splash test. 
Functional and structural MRI scans were performed in the same cohort of mice before surgery 
(baseline), at 2 weeks (the timepoint where animals develop mechanical allodynia, TP1) and at 8 
weeks after surgery (the timepoint corresponding to animals displaying both mechanical allodynia 
and depressive phenotype, TP2). 

Structural changes 

We demonstrated differences in fractional anisotropy (FA) values in the anterior cingulate 
area (ACA), retrosplenial area (RSP), hypothalamus, ventral tegmental area (VTA), and thalamus 
at two weeks post-injury (TP1). By contrast, after 8 weeks (TP2), the only remaining changes 
were the ACA and the RSP, core regions of rodent default mode network (DMN). 

Functional changes 

Subsequently, using rs-fMRI, we performed a voxel-wise correlation study to identify 
changes in functional connectivity over time. Our most notable results indicate connectivity 
alterations in ACA and VTA for mice with neuropathic pain. Briefly, ACA had reduced connectivity 
towards insula, caudate-putamen (CP), dorsal hippocampus, habenula, and periaqueductal gray 
(PAG) in neuropathic mice at TP1. At TP2, in addition to this reduced connectivity, ACA had 
higher connectivity towards RSP, amygdala (AMY), and temporal association areas (TeA) in 
neuropathic animals with depressive phenotype. 2 weeks after surgery, VTA showed higher 
connectivity to somatosensory areas (SS), CP and RSP, whereas after 8 weeks this region had 
higher connectivity towards ACA, nucleus accumbens (ACB), CP, bed nucleus of stria terminalis 
(BST), habenula and thalamus in neuropathic group. 

Discussion and perspectives: 

The results obtained in this project demonstrate remarkable structural and functional 
modifications in the brain networks following the induction of neuropathic pain and the emergence 
of depressive phenotype. Combining a relevant preclinical model and in vivo brain MRI, we 
identified a brain connectivity signature of pain-induced depression and its evolution over time, 
involving alterations in reward circuits, with a major impact of the two centers: ACA and VTA. 

  



The brain structural changes observed at 2 weeks post-surgery may be due to a glial 
activation process which subsides over time. Therefore, in the short-term, we are evaluating the 
changes in microglial activity using an immunohistochemistry approach, examining pertinent 
regions of interest. 

The main results of functional imaging reveal considerable changes in the networks 
encompassing the reward circuit and DMN, which are known to be involved in both chronic pain 
pathologies (Borsook et al., 2016; DosSantos et al., 2017; Mitsi and Zachariou, 2016) and major 
depression (Bracht et al., 2015; Greicius et al., 2007; Russo and Nestler, 2013).  Furthermore, 
we observed alterations in the interaction of these networks. The long-term perspective of this 
project is to investigate the causal relationship between pain and depression, reaching a 
mechanistic explanation for the comorbidity. 

  



Résumé en français 

Introduction :  

Les douleurs neuropathiques, qui surviennent à la suite d’une lésion ou d’une maladie 
affectant le système somatosensoriel, sont caractérisées par une allodynie et une hyperalgésie 
prolongée ainsi que par des douleurs spontanées (Colloca et al., 2017). En 2018, 6 à 8 % de la 
population européenne est atteinte de douleur neuropathique. De nombreux patients douloureux 
chroniques développent également des troubles de l'anxiété ou/et des états dépressifs, 
conduisant à une prévalence d'environ 50% de trouble dépressif majeur (Attal, et al. 2011). 
Malgré la recherche clinique considérable, les mécanismes sous-jacents à cette comorbidité 
restent largement inconnus. 

Les études récentes dans le domaine de la neuroimagerie ont montré que les troubles 
neurologiques/neuropsychiatriques influencent l'architecture structurale et fonctionnelle du 
réseau cérébral et, par conséquent, la façon dont différentes zones du cerveau communiquent 
entre elles (Fornito et Bullmore, 2010). En effet, l'étude du cerveau en tant que système intégratif 
fournit des informations uniques sur la communication neuronale à grande échelle. Étudier les 
réseaux et le métabolisme cérébral représente une étape cruciale pour la recherche 
translationnelle. 

Dans ce contexte, nous avons mené une étude d’imagerie non-invasive - par Imagerie de 
Résonance Magnétique (IRM) du cerveau - pour étudier des changements dans la connectivité 
structurale et fonctionnelle dans un modèle murin de dépression induite par la douleur 
neuropathique. L'objectif principal de ce travail était de fournir une cartographie du réseau 
cérébral et de l'évolution de la connectivité fonctionnelle et structurelle du cerveau d'une manière 
longitudinale qui nous permettra d’une part de comprendre les mécanismes sous-jacents de la 
dépression induite par la douleur, d’autre part, de développer des nouvelles approches 
diagnostiques et des stratégies thérapeutiques.  

 Pour atteindre nos objectifs, nous avons utilisé deux méthodes d’imagerie par résonance 
magnétique (IRM), actuellement la seule technologie d’imagerie non invasive permettant de 
reconstruire l’architecture globale des voies fonctionnelles de communication (en utilisant 
l’imagerie fonctionnelle de repos- IRMfr) ainsi que leur substrat microstructural (imagerie du 
tenseur de diffusion – DTI et la tractographie des fibres). 

L’IRMfr est une méthode basée sur l’analyse des fluctuations spontanées de basses 
fréquences (inférieures à 0,1 Hz) du signal BOLD (Blood Oxygen Level-Dependent) à l’état de 
repos (Biswal et al., 1995).  Il est aujourd'hui admis que la synchronisation de ces fluctuations 
entre des régions cérébrales distinctes reflète une connexion fonctionnelle entre elles (Lee et al., 
2013; Rosazza and Minati, 2011; van den Heuvel and Hulshoff Pol, 2010). D'autre part, l'IRM de 
diffusion permet d’étudier les structures à l'échelle microscopique en cartographiant les 
déplacements des molécules d'eau dans le cadre du processus de diffusion physique (Le Bihan 
and Breton, 1985). Il fournit des indices uniques sur l'architecture fine des tissus neuraux et sur 
les changements associés à divers états physiologiques et pathologiques. Comme la direction 
de diffusion reflète l'organisation sous-jacente des axones de la substance blanche, l'IRM de 
diffusion peut également être utilisée pour cartographier les fibres dans le cerveau de manière in 
vivo et non invasive (Le Bihan, 2014, 2003).  



Objectifs : 

Sur la base des données publiés et des résultats préliminaires, mon projet de thèse 
s’articule autour de deux objectifs principaux : 1) comparer les souches C57BL/6 et BALB/c 
afin de trouver la ligne plus adapter pour les études de la dépression ; 2) caractériser les 
changements fonctionnelles et structurelles du cerveau dans la comorbidité douleur chronique et 
la dépression.    

Résultats :  

Le modèle d’animaux que nous avons utilisé pour induire la dépression consiste en poser 
un manchon de polyéthylène « cuff » autour de la branche principale du nerf sciatique (Benbouzid 
et al., 2008 ; Yalcin et al., 2014b). Cette procédure de chirurgie entraîne une allodynie mécanique 
et des comportements de type dépressifs au cours du temps. Comme notre première étude a 
démontré que les souris C57BL/6 sont plus adaptées pour étudier la dépression, nous avons 
utilisé celle-ci pour le reste de l’étude. En utilisant ce modèle, nous avons réalisé un suivi 
longitudinal par IRM fonctionnelle de repos et IRM structurelle du cerveau qui nous a permis de 
caractériser l’évolution de la pathologie.        

Nous avons d’abord reproduit les résultats de l’équipe en démontrant que l’implantation 
du cuff induit l’allodynie mécanique dans la patte ipsilateral et le comportement de type 
dépressive mis en évidence avec le test de toilettage provoquée (splash test).  Ensuite, des IRM 
fonctionnelle/structurelle ont été réalisée chez les mêmes animaux avant la chirurgie, à 2 
semaines (le point temporal correspondant aux animaux montrant seulement l’allodynie 
mécanique) et à 8 semaines après la chirurgie (le point temporal correspondant aux animaux 
montrant à la fois l’allodynie mécanique et le phénotype dépressif).   

Changements structurels 

Nous avons démontré des différences de valeurs du facteur d’anisotropie tissulaire (FA) 
dans le cortex cingulaire antérieurs (CCA), le cortex rétrosplénial (RSP), de l’hypothalamus, de 
l’aire tegmentale ventrale (ATV) et du thalamus à deux semaines post-chirurgical. Par contre, à 
8 semaines, ces changements restent détectables seulement dans le CCA et le RSP, les 
structures qui sont fortement impliquées dans le réseau du mode par défaut (MPD) chez le 
rongeur. 

Changements fonctionnels 

 Par la suite, en utilisant l’IRMfr, nous avons réalisé une étude de corrélation « voxel-wise » 
pour identifier les changements de connectivité au cours du temps.   

Brièvement, nos résultats ont montré que le CCA a une connectivité réduite vers l’insula, 
le caudé-putamen (CP), l’hippocampe dorsale, l’habénula et la substance grise périaqueducale 
(PAG) chez les souris neuropathiques. À huit semaines, en plus de cette connectivité réduite, le 
CCA présentait une connectivité plus élevée vers le RSP, l’amygdale (AMY), et les aires 
associatives temporales (TEa) chez les animaux neuropathiques présentant le phénotype 
dépressif. En outre, 2 semaines après la chirurgie, l’ATV (une des régions clés du réseau de la 
récompense et aversion – « reward-aversion ») montrait une connectivité élevée vers les aires 
somatosensorielles (SS), le CP et le RSP alors qu’à 8 semaines, il avait une connectivité plus 



élevée vers le CCA, le noyau accumbens (NAc), le CP, le noyau de lit de la strie terminale (BST), 
l’habénula et le thalamus chez les neuropathiques.  

Discussion et perspectives : 

Les résultats obtenus dans le cadre de ce projet démontrent des modifications structurels 
et fonctionnels remarquables des réseaux cérébraux suite à l'induction de la douleur 
neuropathique et à l'émergence de comportements dépressifs. En combinant un modèle animal 
pertinent et l’IRM cérébrale in-vivo nous avons identifié la signature de la dépression induite par 
la douleur et son évaluation longitudinale sur la connectivité cérébrale, impliquant des altérations 
dans le cadre des circuits de la récompense, avec un impact majeur sur la connectivité des deux 
centres : le CCA et l’ATV. 

A court terme, comme les changements structurels observés dans des structures 
corticales pourraient être due à un processus d’activation gliale, nous sommes en train d’évaluer 
les changements d’activité de microglie en utilisant une approche d’immunohistochimie dans des 
structures d’intérêts.    

Les résultats principales d’IRLfr montrent une modification considérable dans les réseaux 
englobant le MPD et le circuit de récompense, qui sont impliqués à la fois dans les pathologies 
de la douleur chronique (Borsook et al., 2016; DosSantos et al., 2017; Mitsi and Zachariou, 2016) 
et de la dépression (Bracht et al., 2015; Greicius et al., 2007; Russo and Nestler, 2013). De plus, 
nous avons pu observer des changements d'interaction entre ces réseaux. Il est maintenant 
nécessaire d’étudier la relation causale entre la dépression induite par la douleur et ses 
changements fonctionnels qui font partie de la perspective long-termes de ce projet.  



Preface 

Neuropathic pain is caused by an injury or disease of the somatosensory system including 
peripheral fibers and central neurons (e.g. peripheral nerve damage, diabetic neuropathy, post-
stroke pain, neurodegenerative diseases) and it is among the most frequent causes of chronic 
pain (Colloca et al., 2017). Neuropathic pain affects around 7 -10% of the population and its 
incidence is likely to increase due to ageing of the population. Comorbidities such as poor sleep, 
anxiety and depression are frequent in neuropathic pain and they greatly impair quality of life and 
has a high socioeconomic impact on society (von Hehn et al., 2012). Approximately 30% of 
patients with neuropathic pain develop major depression. Despite concerted efforts, the 
mechanisms underlying this comorbidity remain elusive.  

In recent years, neuroimaging emerged as a method to non-invasively assess structural 
and functional architecture of brain networks and their modifications in various 
neurological/neuropsychiatric disease states (Fornito and Bullmore, 2010). Several different 
magnetic resonance imaging (MRI) methodologies provide tools for the study of the brain as an 
integrative system. MRI gives unique insights into large-scale neuronal communication and 
provides a platform to study and understand how neural networks can be modified or reorganized 
under pathological conditions.  

In this thesis, my main objective was to shed light on the mechanisms underlying 
neuropathic pain and depression comorbidity by exploring the functional and structural brain 
connectivity features in a neuropathic pain-induced depression mouse model. For this, I applied 
non-invasive, in vivo MRI technology in a longitudinal experimental design, aimed at following the 
development of the anxio-depressive phenotype and brain network remodeling over time. Probing 
the brain networks in a mouse model is an important step for translational research as similar MRI 
techniques exist for clinical investigations and thus, animal findings can be transferable to 
humans. In addition, this research could pave the way for innovative diagnostic protocols and the 
development of targeted therapeutic intervention strategies.  

Three MRI methods were used in this work: resting-state fMRI (rs-fMRI) to reconstruct the 
overall architecture of brain functional communication pathways, diffusion tensor imaging (DTI) to 
examine microstructural substrates underlying this communication, and anatomical imaging to 
track morphological alterations using deformation-based morphometry (DBM) methods.  

 In the first part of the introduction chapter, I give an overview of MRI methods that I 
utilized in my work or used in the literature that I’m discussing. Second part of my introduction 
is dedicated to neuropathic pain: including a part summarizing MRI literature in chronic pain 
conditions and the current knowledge on anxio-depressive consequences of pain. 

  



Avant-propos 

La douleur neuropathique résulte d’une lésion ou d’une maladie du système 
somatosensoriel; elle est l'une des causes les plus fréquentes de la douleur chronique. (Colloca 
et al., 2017). La douleur neuropathique touche environ 7 à 10% de la population et son incidence 
est susceptible d’augmenter en raison du vieillissement de la population. Les comorbidités telles 
que l’insomnie, l'anxiété et la dépression sont fréquentes dans les douleurs neuropathiques et 
compromettent grandement la qualité de vie. Elles ont également un impact socioéconomique 
important (von Hehn et al., 2012). Environ 30% des patients souffrant de douleurs 
neuropathiques développent également une dépression. Malgré des efforts concertés, les 
mécanismes sous-jacents à cette comorbidité restent inconnus.  

Récemment, la neuroimagerie est apparue comme une méthode d'évaluation non-invasive 
de l'architecture structurelle et fonctionnelle des réseaux cérébraux et de leurs modifications dans 
divers états neurologiques/neuropsychiatriques (Fornito and Bullmore, 2010). Plusieurs 
méthodes différentes d'imagerie par résonance magnétique (IRM) donnent une possibilité 
d’étudier le cerveau en tant que système intégratif. Les méthodes de l'IRM, comme l’IRM 
fonctionnelle au repos et l’imagerie du tenseur de diffusion, donnent un aperçu unique de la 
communication neuronale à grande échelle et permet de comprendre comment les réseaux de 
neurones peuvent être modifiés ou réorganisés dans des conditions pathologiques. 

Dans ce travail de thèse, mon objectif général était d’améliorer nos connaissances des 
mécanismes sous-jacents à la comorbidité entre douleur neuropathique et dépression en étudiant 
les altérations fonctionnelle et structurelle des réseaux cérébraux en utilisant un modèle de 
dépression e induite par la douleur neuropathique chez la souris. En effet, sonder les réseaux 
cérébraux dans un modèle de souris représente une étape cruciale pour la recherche 
translationnelle car des techniques similaires d'IRM existent pour les investigations cliniques ; par 
conséquent, les résultats obtenus chez la souris sont facilement transférables à l'homme. De 
plus, cela pourrait ouvrir une voie à des protocoles de diagnostic innovants et au développement 
de stratégies d'intervention thérapeutique ciblées.  

Dans ce travail, trois méthodes d'IRM ont été utilisées : IRMf au repos (rs-IRM) pour 
reconstruire l'architecture globale des voies de communication fonctionnelles du cerveau, 
imagerie du tenseur de diffusion (DTI) pour examiner les substrats microstructuraux sous-jacents 
à cette communication et imagerie anatomique pour suivre les altérations morphologiques 
utilisant méthode de morphométrie déformation-basée (DBM). 

Dans la première partie de l’introduction, je résume des méthodes d'IRM utilisées dans 
mon travail et des études précédentes que j’ai citées. La deuxième partie de l'introduction est 
consacrée à la douleur neuropathique, elle résume la littérature sur l'IRM dans les états 
douloureux chroniques et les connaissances actuelles sur les conséquences anxio-dépressives 
de la douleur. 

  



1 Introduction 
1.1 Functional and Structural Connectivity via Magnetic Resonance Imaging 

In the following sections, I will introduce resting-state functional magnetic resonance 
imaging (rs-fMRI), diffusion MRI and fiber tracking methodologies as well as their use in 
mouse brain imaging.  

1.1.1 Resting-state fMRI 

Paramagnetic materials form internal, induced magnetizations in the direction of the 
externally applied magnetic fields (i.e. increasing the field strength in the surrounding area); thus, 
disrupt the homogeneity of the said external magnetic fields. Deoxyhemoglobin possesses 
paramagnetic properties which was first demonstrated by Pauling and Coryell in 1936. Later on, 
Ogawa and colleagues (1990) showed that the paramagnetic deoxyhemoglobin in venous blood 
can be utilized as a naturally occurring contrast agent for MRI through the use of gradient echo 
(GE) techniques in high fields. They recognized the fact that the MRI contrast they termed ‘blood 
oxygen level dependent (BOLD)’ can provide real-time maps of brain oxygenation in vivo. If blood 
flow increases suddenly with an increase in cellular activity and this increase is not accompanied 
by an increase in oxygen consumption of comparable magnitude, oxygenation in capillaries and 
veins is increased (Fox and Raichle, 1986). BOLD functional MRI (BOLD-fMRI) technique is 
based on the accentuated signal due to an increase in venous oxyhemoglobin levels resulting 
from overcompensation by the increased blood flow in response to neural activity.  

Resting-state fMRI technique, based on the use of the BOLD signal, emerged following 
the seminal paper by Biswal and colleagues (1995). They discovered that the spontaneous low 
frequency (<0.1 Hz) fluctuations of the BOLD signal are not artefactual and the regions that are 
activated together during a task have correlated spontaneous BOLD fluctuations during rest. They 
concluded that correlation of low frequency BOLD signal fluctuations is a manifestation of 
functional connectivity (FC) of the brain. Functional connectivity is defined as the temporal 
dependence of neuronal activity patterns of anatomically separated brain regions (Friston et al., 
1993).  

BOLD-fMRI has gained immense popularity during the last three decades in the 
neuroscience field as the method of choice for non-invasively studying the entirety of brain with a 
high spatiotemporal resolution (Logothetis, 2008). However, the BOLD signal is not a direct 
measure of neuronal activity (Fox and Raichle, 2007); rather it is a surrogate signal that reflects 
neuronal mass activity via hemodynamic responses. As such, an understanding of what BOLD 
signal truly represents is a prerequisite to correctly interpret fMRI findings.  

1.1.1.1 Origin of the BOLD signal  

The BOLD signal does not directly measure the neuronal activity itself. Instead, the BOLD 
effect is sensitive to the changes in cerebral blood flow (CBF), cerebral metabolic rate of oxygen 
(CMRO2), and cerebral blood volume (CBV): the set of physiological responses that are referred 
to collectively as the hemodynamic response to activation (Buxton et al., 2004). Based on 
numerous experimental studies of the BOLD responses to brain activation, certain characteristics 
of the BOLD signal were noted (Figure ): 



 

Figure 1-1 Schematic drawing of the BOLD response due to variations in the timing of 
responses of the physiological variables CBF, CBV, and CMRO2.  
(Adapted from Buxton, et al. 2004.) 

 BOLD responses to a brief stimulus are delayed by 1-2 s and have a temporal width on 
the order of 4-6 s. For a sustained stimulus of 20 s or longer, the response typically reaches a 
plateau. A post-stimulus undershoot of BOLD signal is common, with longer duration stimuli tend 
to have longer post-undershoots. This is thought to be related to CBV recovering slower than CBF 
and CMRO2.  

Some investigators have reported an initial dip of the BOLD signal lasting 1-2 s before the 
standard BOLD signal increase. This might reflect a rapid increase of CMRO2 before the CBF 
increase, and this phenomenon may be better localized to the area of increased metabolism 
(Buxton et al., 2004). 

 Electrophysiological correlates of BOLD: Extracellular recording of field potentials bring 
information on different types of neural activity depending on the exact positioning of the 
electrodes and the recording sites (Logothetis, 2003). Single unit recording mainly gives 
information on the spiking activity of large principal cells. On the other hand, neural ensemble 
recordings can monitor electrical field potentials (EFP) related to both spikes and the integrative 
processes taking place mainly in dendrites by several hundred neurons. The two signal types can 
be distinguished by frequency band separation. Multiunit spiking activity (MUA) takes up the 
higher frequency band (500-1000 Hz) and it represents a weighted sum of extracellular action 
potentials (AP) of all neurons within a region. Local field potentials (LFP), low frequency range of 
the EFP signal (<250 Hz) mostly represent slow events reflecting cooperative activity in neuronal 
populations. These slow events include excitatory and inhibitory post-synaptic potentials (EPSP, 
IPSPs), after-potentials of somato-dendritic spikes, and voltage-gated membrane oscillations. To 
sum up, LFPs reflect the input of a given cortical area as well as its local intracortical processing, 
including the activity of excitatory and inhibitory interneurons.  

  

  



 Logothetis et al. (2001) have examined the relationship between BOLD fMRI signal and 
the underlying neural activity in simultaneous intracortical electrophysiology and imaging 
experiments in anesthetized monkeys. Their findings demonstrate a transient increase in power 
of all observed frequencies (i.e. both MUAs and LFPs) after stimulus presentation followed by a 
lower level of activation that was maintained during the entire stimulus presentation. However, 
the increase in LFPs during stimulation is significantly stronger than that of MUA. In addition, 
while MUA was often found to adapt, returning almost to baseline levels, LFP activity was always 
maintained throughout the stimulus presentation. These findings suggest that BOLD activation 
may actually reflect more the neural activity related to the input and the local processing in any 
given area, rather than the spiking activity commonly thought as the output of the data. Even 
though the output activity generally correlates with neurotransmitter release and pre- and post-
synaptic currents; when input into a particular area has a primarily regulatory role, fMRI 
experiments may reveal activation in areas that single-unit activity is not detected (e.g. net 
inhibition of spiking in Purkinje cells is accompanied by LFPs and an increased blood flow) 
(Logothetis, 2003). 

BOLD signal and brain energy metabolism: Activity-induced increases in the blood flow 
are not accompanied by proportional increases in oxygen consumption- a fact that forms the basis 
of BOLD imaging. Oxygen consumption does increase but this increase is much lower than that 
of blood flow and glucose consumption. In fact, the increase in blood flow is invariably 
accompanied by an augmented glucose consumption (Fox et al., 1988). Because this occurs in 
the presence of adequate tissue oxygenation, it is referred to as aerobic glycolysis (Raichle and 
Mintun, 2006). 

The vast majority of the energy consumed by the brain is provided by the metabolism of 
glucose to carbon dioxide and water, a process that begins with glycolysis and ends with oxidative 
phosphorylation. But the two processes are not strictly linked. By far the largest amount of ATP 
is produced by the oxidative phosphorylation (~30 ATP per glucose molecule in contrast to net 2 
ATP for glycolysis). An important advantage of glycolysis over oxidative phosphorylation, other 
than it can operate without oxygen, that it is much faster. Because glycolysis can make pyruvate 
much faster than it can be oxidized, ATP is made nearly twice as fast by converting glucose to 
lactate. In the case of sudden increases in neuronal activity, glycolysis can accommodate the 
metabolic needs, thus, its contribution to brain metabolism seems to be small but strategically 
important. The observed increase in glycolysis was found to be resulting from the uptake of 
glutamate into astrocytes from excitatory synapses along with Na+. The intracellular glutamate is 
converted to glutamine and the resulting rise in intracellular sodium increases the activity of 
Na+/K+-ATPase. Both processes require the hydrolysis of ATP whose synthesis appears to be by 
glycolysis alone (Raichle and Mintun, 2006).  

Astrocytic processes and the BOLD signal: Astrocytes have been considered to 
participate in BOLD signal generation in a passive way. They couple neuronal activity to the 
hemodynamic response to fulfill metabolic demand of neurons (Raichle and Mintun, 2006).  

  



However, a recent study by  Takata et al. (2018) demonstrated that astrocyte activation 
alone can evoke BOLD signal without neuronal activity. They used a transgenic mouse line 
carrying channelrhodopsin-2 (ChR2) in cortical astrocytes (Astrocyte-Chr2): transcranial 
illumination of the mouse cortex evoked BOLD response in awake fMRI. The absence of neuronal 
activation after astrocyte stimulation was detected using c-fos mRNA staining along with 
electrophysiological recordings (i.e. LFP and MUA). Optogenetic stimulation of astrocytes elicited 
oxygen consumption along with synthesis of acetyl-carnitine via oxidative glucose metabolism. In 
physiological conditions, astrocytes may be able to respond to neuromodulators released from 
axonal fibers of distant origin whereby activation of astrocytes is not accompanied by local 
neuronal activity. This study suggests BOLD signal fluctuations can reflect metabolic demands of 
astrocytes in addition to neurons.  

1.1.1.2 Resting-state Functional Connectivity (FC) 

Resting-state activity is a signature of neural oscillations synchronized across large-scale 
networks that occur in the absence of external inputs. The resting human brain represents only 
2% of total body mass but consumes 20% of the body’s energy, most of which used to support 
ongoing neuronal signaling. Task related increases in neuronal metabolism are usually small 
(<5%) when compared with this large resting energy consumption (Fox and Raichle, 2007). 
Biswal and colleagues (1995) proved that the resting-state BOLD fluctuations detected with fMRI 
are not artefactual by showing that BOLD fluctuations of left somatomotor cortex is specifically 
correlated with fluctuations in the right somatomotor cortex and medial motor areas in the absence 
of overt motor behavior. Later on, many other neuroanatomical systems have been shown to be 
coherent in their spontaneous activity (Fox and Raichle, 2007).  

As a rule, regions that are similarly modulated by task paradigms tend to be correlated in 
their spontaneous BOLD activity. In addition, regions with apparently opposing functionality have 
been found to be negatively correlated (i.e. anticorrelated) in their spontaneous activity. These 
correlations and anticorrelations between segregated brain regions as shown by rs-fMRI form the 
basis of resting-state functional connectivity and resting-state networks. Resting-state networks 
were discovered in both humans (Fox et al., 2005; Greicius et al., 2003) and other mammalian 
species such as non-human primates, rats and mice (Belcher et al., 2013; Grandjean et al., 2014; 
Jonckers et al., 2011; Mantini et al., 2011; Mechling et al., 2014; Sforazzini et al., 2014).  

Several resting-state networks were defined including: default-mode network (DMN), task-
positive network (TPN), salience network (SN), somatomotor, visual, auditory and cerebellar 
networks (Fox and Raichle, 2007; Di and Biswal, 2015). Two of the major networks, DMN and 
TPN are described further below: 

Default mode network (DMN): Among the discovered resting-state networks, DMN is 
unique in showing reductions in its activity in response to cognitive tasks. A ‘default mode of brain 
function’ was proposed by Raichle et al. (2001) following their observation using positron emission 
tomography (PET) that a set of brain regions- involving, among other areas, the medial prefrontal 
cortex (mPFC), posterior cingulate cortex (PCC), and precuneus shows ongoing activity during 
rest and deactivation during externally cued tasks. Further investigations using resting-state fMRI 
demonstrated the temporal coherence of BOLD fluctuations between regions comprising DMN as 
described previously in the PET study (Greicius et al., 2003). PCC was recognized as the central 
region whose connectivity displayed task deactivations in PET. Changes in DMN connectivity 



were consistently demonstrated in major depression (Greicius et al., 2007; Zhou et al., 2010) and 
chronic pain conditions (Marwan N. Baliki et al., 2014; Kucyi et al., 2014; Alshelh et al., 2018). 

  

Figure 1-2 Anticorrelated networks in the human brain.  
Task-positive network (TPN), shown in warm colours, is significantly correlated with regions 
involved in focused attention and working memory (intra-parietal sulcus (IPS), frontal eye field 
(FEF) and middle temporal (MT) area). DMN nodes (posterior cingulate/precuneus (PCC), lateral 
parietal cortex (LP) and medial prefrontal cortex (MPF)), shown in cool colours, are significantly 
correlated with task-negative areas and significantly anticorrelated with TPN. (Taken from Fox 
and Raichle, 2007.) 

 Fox et al. (2005) described a ‘task-positive network (TPN)’ that is diametrically opposite of 
DMN; these areas are routinely activated during goal-directed task performance (also called 
dorsal attention system) and they show anticorrelations with DMN regions at rest (Figure ). 

 

1.1.1.3 Methods for analysis of rs-fMRI data 

Firstly, to separate spontaneous low frequency fluctuations from non-neuronal noise, 
certain steps can be followed (Fox and Raichle, 2007). A high sampling rate during data 
acquisition prevents aliasing by higher frequencies arising from cardiac or respiratory activity. 
Another method is the linear regression of physiological noise that was monitored during the 
experiments. Global signal regression or regression of ventricles/white matter can be included in 
the pre-processing pipeline of the acquired resting-state fMRI data.  

Functional connectivity is defined as the temporal dependency of neuronal activation 
patterns of anatomically separated brain regions (Friston et al., 1993). In the context of resting-
state fMRI experiments, functional connectivity is expressed as the level of correlated dynamics 
of fMRI time-series between brain areas (van den Heuvel and Hulshoff Pol, 2010). 

Identification of spatial patterns of functional connectivity can be achieved with various 
analysis methods roughly classified into two: Model-dependent and model-free methods. 

Model-dependent (seed) methods: The most straightforward way to examine the 
functional connections of a particular brain region is to correlate the resting-state time-series of 
the depicted brain region against the time-series of all other regions; resulting in a functional 
connectivity map (van den Heuvel and Hulshoff Pol, 2010). The advantage of seed analysis is the 
relative simplicity of the method and the ease with which to interpret the results. However, this 
type of analysis requires a priori assumptions on the data, necessary for the selection of the seed 
area (see Figure ). 



Model-free methods: In contrast to seed-based methods, model-free methods are 
designed to look for general patterns of connectivity across brain regions without a priori selected 
seeds (van den Heuvel and Hulshoff Pol, 2010). Independent component analysis (ICA) is the 
most commonly used method, providing a high level of consistency. ICA algorithms analyze the 
entire BOLD dataset and decompose it into components that are maximally independent in a 
statistical sense; each component is associated with a spatial component map (Fox and Raichle, 
2007). Advantages of this method are that it is purely data-driven, and it automatically isolates 
the sources of noise. However, it requires a user-selected number of components, evaluation of 
resulting components is done by the user (i.e. neuronal vs. noise) and their interpretation is much 
more complex.  

Taken together, seed-based and data-driven methods all tend to show strong overlap 
between their results; supporting the notion of robust formation of multiple functionally linked 
networks in the brain during resting-state (Fox and Raichle, 2007; van den Heuvel and Hulshoff 
Pol, 2010). 

 

 

Figure 1-3 Simple schema of resting-state fMRI seed analysis and resulting resting-
state functional connectivity maps. 
A. High correlation between the time-series of seed voxel and the voxel j points to a functional 
connectivity between the two areas. (Adapted from van den Heuvel and Hulshoff Pol, 2010.) B. 
Warm colors represent positive correlations and cool colors represent anticorrelations with the 
seed area. 

 

Graph analysis: Graph theory provides a theoretical framework in which the topology of 
complex networks is examined, revealing important information on both the local and global 
organization of functional brain networks. Graph analysis formulates brain networks as a 
collection of nodes representing brain regions and edges(also called links), the functional 
connections showing the correlation values between the time-series of the nodes (van den Heuvel 
and Hulshoff Pol, 2010). Graph analysis suggested that brain networks have an organization 
optimized towards a high level of local and global efficiency. 



 

Figure 1-4 Certain metrics of network topology.  
(Taken from Rubinov and Sporns, 2010.) 

 

Graph theoretical measures commonly used in brain network analysis 

Node degree is the number of links connected to the node. 

Node strength is the sum of weights of links connected to the node. 

The clustering coefficient (CC) is the fraction of triangles around a node and is equivalent to the 
fraction of node’s neighbors that are neighbors of each other. 

The characteristic path length (CPL) is the average shortest path length (SPL) in the network. 

The global efficiency is the average inverse shortest path length (SPL) in the network and is 
inversely related to the characteristic path length (CPL).  

The local efficiency is the global efficiency computed on the neighborhood of the node and is 
related to the clustering coefficient. 

Node betweenness centrality is the fraction of all shortest paths in the network that contain a 
given node. 

(Rubinov and Sporns, 2010) 



1.1.2 Diffusion MRI and fiber tracking 

Diffusion MRI allows probing of tissue structure on a microscopic scale by mapping 
displacements of water molecules as part of the physical diffusion process. It provides unique 
information on the fine architecture of neural tissues and to changes associated with various 
physiological and pathological states. Because the directedness of diffusion is associated with 
the underlying organization of white matter axonal bundles, diffusion MRI can also be used to 
map the fiber tracts in the brain in an in vivo and non-invasive manner (Le Bihan, 2003). 

1.1.2.1 General information on diffusion MRI 

Also known as ‘Brownian motion’, diffusion refers to the constant random microscopic 
molecular motion due to thermal energy. Einstein’s equation (Einstein, 1905)  gives the diffusion 
coefficient (D)- average displacement of a molecule over an area to the observation time (mm2/s):  

 

 

Figure 1-5 Water diffusion and tissue structure.  
a. The random displacements of molecules resulting from Brownian motion obey a statistical law 
formulated by Einstein (1905). b. In biological tissues, obstacles (i.e. cells, tortuous pathways, 
and exchange between compartments) modulate the free diffusion process. (Figure taken from 
Le Bihan, 2003.) 

 

In a free medium, molecular displacements obey a three-dimensional Gaussian distribution 
statistically described by diffusion coefficient (D). This constant depends on the size of the 
molecules, the temperature and the viscosity of the medium. Free water molecules at 37°C have 
a diffusion coefficient of 3× 10-9 m2/s. However, in biological tissues, diffusion is no longer ‘free’; 
rather, molecules travel along the microscopic tissue structure. Water molecules bounce off, cross 
or interact with many tissue components, such as cell membranes, fibers and macromolecules. 
Because the movement is impeded by such obstacles, diffusion is restricted and displacement 
distribution is no longer Gaussian (Figure , above) (Le Bihan, 2003).  

  



Diffusion weighted imaging: Diffusion weighted pulse sequence is constructed by the 
addition of a pair of diffusion sensitizing gradients (Stejskal and Tanner, 1965). Application of the 
first gradient pulse introduces a phase difference depending on the location of the molecules 
along the gradient axis. 10 to 100 ms after the first gradient pulse, another gradient along the 
same axis with opposite polarity is applied to refocus the phase differences. The refocusing is 
only perfect when the water molecules are immobile between the pulses. Because the signal at 
each voxel represents the sum of signals from all the water molecules in that voxel; the imperfect 
refocusing leads to a signal loss. Thus, MR signal is sensitized to the diffusion process; higher 
diffusion resulting in higher signal loss (Figure )(Le Bihan and Breton, 1985).  

 

Figure 1-6 The relationship between the water motion and gradient applications.  
(Figure taken from Mori and Zhang, 2006.) 

 

b-factor is the measure of diffusion weighting that is a function of the strength, duration, 
and temporal spacing of the diffusion sensitizing gradients. Its unit is s/mm2; the reciprocal to that 
of diffusion constant (Mukherjee et al., 2008). Apparent diffusion coefficient (ADC) is the diffusion 
constant measured with MRI, reflecting the fact that diffusion cannot be separated from other 
sources affecting water mobility. For instance, diffusion coefficient might be low due to viscosity 
of the environment directly related to diffusion process or due to many obstacles and barriers, 
diffusion might ‘appear’ slow (Mori and Zhang, 2006). 

1.1.2.2 Quantifying diffusion anisotropy 

Diffusion is said to be anisotropic when molecular mobility is not equal for all directions. In 
an ordered tissue, the measured apparent diffusion coefficient (ADC) will depend on the direction 
from which it is measured (Jones, 2008). White matter tracts with highly packed, coherently 
oriented fiber bundles hinder water displacement perpendicular to the direction of the fibers; 
resulting in larger ADC values parallel to the tracts rather than orthogonal to them. Hence, more 
than one diffusion-encoding direction is required to characterize regions of anisotropic diffusion 
(Moseley et al., 1990).  

  

  



The model used to characterize diffusion anisotropy is the diffusion tensor which is a 3×3 
symmetric matrix of numbers that characterizes three-dimensional water displacements. Diffusion 
tensor calculation requires at least six diffusion-encoded image sets along non-collinear directions 
in addition to at least one b=0 s/mm2 image (Basser, et al. 1994). The diffusion tensor is often 
thought of in terms of an ellipsoid: a surface representing the distance that a molecule will diffuse 
to with equal probability from the origin. The principal axes of the ellipsoid are given by the 
eigenvectors, and the lengths are given by the diffusion distance at a given time. Ellipsoids are 
scaled according to square roots of diffusivities in each direction (i.e. eigenvalues) (Jones, 2008).  

 

Figure 1-7 The diffusion ellipsoids and tensors for isotropic unrestricted diffusion, 
isotropic restricted diffusion, and anisotropic restricted diffusion. 
(Figure taken from Mukherjee, et al. 2008.) 

 

Degree of diffusion anisotropy determines the shape of the ellipsoid: in the case of isotropic 
diffusion where diffusion is equal in each direction, the ellipsoid would become a sphere. With a 
high degree of anisotropy, ellipsoid would become elongated or cigar-shaped (Mori and Zhang, 
2006)(see Figure , above).  

Diffusion tensor parameters: Three eigenvectors represent the three principal axes of 
the tensor and the three eigenvalues are the lengths of ellipsoid axes. The primary eigenvector 
with the largest eigenvalue gives the principal direction and magnitude of diffusion in the voxel. 
In white matter, this indicates the orientation of axonal fiber bundles. Parametric maps can be 
built from tensors to characterize the microstructure in a given voxel: Axial diffusivity (AD) maps 
show longitudinal diffusivity – along the main diffusion axis (λ1); radial diffusivity (RD) maps show 
diffusivity perpendicular to the main axis ((λ2 +λ3)/2), whereas mean diffusivity (MD) is a measure 
of rotationally invariant diffusion in a voxel ((λ1+λ2 +λ3)/3) (Mukherjee et al., 2008). 



    

Figure 1-8 Parametric diffusion tensor maps of a mouse brain in coronal sections. 
 

 

Fractional anisotropy (FA) is a normalized measure that expresses the directedness of 
diffusion in a scale ranging between 0 and 1. It takes the value 0 when diffusion is isotropic, and 
1 when diffusion is constrained along one axis only (Basser and Pierpaoli, 1996). 

Fiber orientation information inherent in the primary eigenvector can also be visualized on 
two dimensional images by assigning a color to each of three mutually orthogonal axes (Jones, 
2008). 

1.1.2.3 Fiber tracking 

By the help of sophisticated computer algorithms, inter-voxel connectivity on the basis of 
anisotropic water diffusion can be calculated. In each brain voxel, the dominant direction of axonal 
tracts can be assumed to be parallel to the primary eigenvector of the diffusion tensor. Fiber 
tracking uses the diffusion tensor of each voxel to follow an axonal tract in three dimensions from 
voxel to voxel through the brain (Mukherjee et al., 2008).  

 Fiber tracking algorithms can be classified into two categories: local and global methods. 
Local methods construct fibers independently path-by-path. The reconstruction of long neuronal 
pathways is performed in small successive steps, either deterministically or probabilistically by 
following the local, voxel-wise defined distribution of fiber directions (Reisert et al., 2011). 
Deterministic fiber tracking algorithms calculate fiber trajectories by creating streamlines from the 
user-defined seed regions along the main diffusion directions in each voxel. Fiber construction 
halts when it reaches a voxel with low anisotropy value or the fiber exceeds a predefined turning 
angle (Mukherjee et al., 2008). Probabilistic algorithms, on the other hand, propagate a large 
number of pathways from each seed point rather than a single trajectory. Thus, a distribution of 
possible orientations is calculated. Stopping criterion for streamlines is the angular deviation 
between successive steps (Jones, 2008). Local methods have the advantage of being very fast; 
however, minor imperfections in the determination of local steps can accumulate and significantly 
affect the final result (Reisert et al., 2011).  

  

  



Global methods try to reconstruct the fibers simultaneously by finding the configuration that 
describes best the measured data. Global tracking methods have better stability with respect to 
noise and imaging artefacts but the computation time is generally very long (Reisert et al., 2011). 
In this work, I used the global tracking method proposed by Reisert and colleagues (2011) and 
validated in the mouse brain (Harsan et al., 2013): Here the computational performance is greatly 
increased while the operator dependence is kept to a minimum. Briefly, the reconstructed fibers 
are built with small line segments that introduce the diffusion anisotropy. These elemental 
segments bind together during the optimization. Their orientation and numbers are adjusted 
simultaneously to match the data. In this method, there are no boundary conditions which 
minimize the necessary user interaction. 

 

Figure 1-9 High resolution global fiber tracking map from a coronal section of the 
mouse brain.  
Method proposed by Reisert, et al. 2011  was utilized for the creation of this image. (Colors denote 
fiber orientations: red, horizontal; green, dorso-ventral; blue, rostro-caudal.) 

 

1.1.2.4 Applications of diffusion MRI 

Diffusion MRI and fiber tracking methods are highly sensitive to microstructural changes 
in tissues; so that anomalies can be detected before changes appear in conventional T1 or T2-
weighted images (Le Bihan, 2003). Tracking algorithms perform better in areas with high 
anisotropy; therefore, diffusion-based methods has found the largest application for the study of 
white matter disorders such as multiple sclerosis in literature (Fox, 2008).  

In a preclinical model of cuprizone-induced demyelination (Sun et al. 2006), axonal 
damage was linked to decreased AD and demyelination lead to increased RD. Diffusion MRI 
could be exploited to monitor developing brain and myelination processes in fetuses, babies and 
during childhood (Schmithorst et al., 2002). Diffusion MRI can also be used to study more subtle, 
functional disorders related to dysconnectivity, such as psychiatric disorders (Le Bihan, 2003). In 
Figure  (below), some pathological processes that might result in changes in diffusion 
anisotropy and consequently the tensor representation are schematized.  



 

Figure 1-10 Different white matter pathologies associated multiple tensor 
representation and DTI simplification. 
Grey ellipsoid represents the diffusion tensor profile for normal myelinated white matter. Black 
drawings represent the diffusion profiles for multiple tensor representation or DTI simplification: 
A. co-existing axon and myelin injury of coherent pure myelinated axons; B. axon and myelin 
injury with cell infiltration; C. axon and myelin injury with axonal loss; and D. axon and myelin 
injury, cell infiltration or proliferation and axonal loss. (Figure taken from Wang, et al. 2011.) 

 

  



Limitations of diffusion MRI and tractography: Interpretation of both the diffusion 
tensor metrics and the fiber tracking maps can be difficult due to the inherent ambiguity of the 
data acquired with diffusion MRI (Mori and Zhang, 2006):  
i. Firstly, there is no directionality information; whether the axons are oriented anterograde 
or retrograde cannot be determined by diffusion tensor imaging (DTI).  

ii. Second issue arises from large voxel sizes; the effects of microscopic structures underlying 
diffusion anisotropy (i.e. protein filaments, cell membranes, and myelin) tend to be averaged over 
the voxel volume. Thus, the diffusion anisotropy can only be accurately detected with DTI when 
the microscopic sources of diffusion anisotropy are homogenously found in a macroscopic voxel 
(Error! Reference source not found.). 

 

Figure 1-11 Averaging of diffusion anisotropy in a large imaging voxel in DTI.  
(Figure adapted from Cross and Song, 2017. ) 

iii. Another crucial issue is the information reduction related to tensor modelling. For instance, 
there might be more than one fiber population within a voxel (i.e. crossing fibers, kissing fibers) 
and a single diffusion tensor cannot represent the orientations of these fibers (Jones, 2010; Jones 
et al., 2013). There are many proposals on alternative modelling approaches to simple tensors. 
Most of them are based on high angular resolution diffusion imaging (HARDI) (Tuch, 2004; Tuch 
et al., 2002)  which uses acquisitions with tens to hundreds of diffusion gradient directions, 
allowing for a more complete description of the water displacements at the voxel level. Such 
approaches can provide the “orientation distribution function” within each voxel and therefore can 
resolve multiple fiber orientations within a single voxel. 

iv. Finally, diffusion MRI is very sensitive to motion artefacts and together with long scan times 
required to acquire high resolution images, data quality might be compromised due to 
physiological motion.  

   



1.1.3 Mouse brain connectome 

Translational studies in the field of neuroscience can investigate hypotheses on the normal 
brain function as well as neuropsychiatric disease models in a well-controlled environment. In 
animal models- rodents in particular, it is possible to perform invasive recordings and stimulation 
along with genetic manipulations (e.g. optogenetics and chemogenetics), which are not feasible 
with human subjects. Rodent models can provide information on the fundamental 
neurophysiology and conserved biomarkers of disease which can pave the way for effective 
therapeutic interventions and can  be translated into humans (Pan et al., 2015). 

There is a considerable homology between human and rodent brains (Pan et al., 2015). 
Indeed, humans and rodents belong to the same subclass of placental mammals. Rostral to the 
brainstem and cerebellum common to all vertebrates, mammals share a common telencephalic 
organization consisting of basal ganglia, allocortex and neocortex. Placental mammals also have 
a large inter-cortical commissure; corpus callosum. All mammalian neocortices have primary and 
secondary representations of auditory, visual, somatosensory, multimodal association, and motor 
areas.  Similar organization of brain structures in rodent and human is a strong rationale for 
translational studies focused on the rodent brain. Use of mouse as a model organism is further 
supported by the substantial number of genetically modified strains developed in the recent years 
as well as the ability to optogenetically (Boyden et al., 2005) and chemogenetically (Roth, 2016) 
manipulate specific neurons and circuits. 

1.1.3.1 Resting-state fMRI in mice 

Resting-state fMRI facilitates the study of brain function where task-based fMRI can be 
challenging (Pan et al., 2015). As no explicit task is needed, rs- fMRI method can be used both 
in rodents relatively easily. However, most rodent rs-fMRI studies require anesthesia to limit 
motion which might affect the results. Fortunately, resting-state networks including the default 
mode network (DMN) can also be detected in anesthetized rodent brain. This opens up 
opportunities for understanding the neurophysiological basis of the spontaneous BOLD 
fluctuations, the behavioral relevance of the network characteristics, connectomic deficits in 
diseases and treatment effects on brain connectivity in rodents (Chuang and Nasrallah, 2017). 

Resting-state networks of the mouse brain: Although the very first resting-state fMRI 
studies in mice failed to show bilaterally symmetric connectivity between homotopic regions 
(Guilfoyle et al., 2013; Jonckers et al., 2011); further investigations demonstrated the existence 
of bilateral and distributed functional connectivity networks within the mouse brain, identifying 
both cortical and subcortical networks (Grandjean et al., 2014 ; Mechling et al., 2014 ; Nasrallah 
et al., 2014; Sforazzini et al., 2014). These findings underscore the presence of spontaneous 
interhemispheric homotopic fluctuations as a fundamental neuro-architectural trait of the 
mammalian brain (Gozzi and Schwarz, 2016). 

Similarly, antero-posterior connectivity along the midline structures of the brain (i.e. 
prefrontal and orbitofrontal cortices, cingulate and retrosplenial areas, peri-/ventro-hippocampal 
areas) corresponding to an evolutionarily-conserved homologue of the DMN was detected with 
mouse rs-fMRI in several studies (Sforazzini et al., 2014; Shah et al., 2016b; Zerbi et al., 2015). 

In addition, a network encompassing ventrolateral striatum, nucleus accumbens, anterior 
insula and cingulate, similar to human salience network was identified in mouse (Sforazzini et al., 



2014). Another feature of human resting-state networks, namely the anti-correlations, were found 
in mouse resting-state fMRI under different anesthetics (Grandjean et al., 2014; Liska et al., 2015; 
Sforazzini et al., 2014).  

As described before, functional parcellation of the brain in resting-state can be achieved 
with different analysis methods. Mechling and colleagues (2014) used an ICA algorithm to 
parcellate mouse brain into more than ninety functional components including both cortical and 
subcortical structures. They were able to identify five bilaterally symmetric network modules (i.e. 
sensorimotor and limbic, basal ganglia, cingulate area, visual processing and memory, 
hypothalamus modules) under medetomidine (an 2-agonist commonly used in veterinary 
practice) sedation. Liska et al. (2015), on the other hand, used a voxel-wise correlation method 
in halothane-anesthetized mice and identified six modules: DMN, lateral cortical, hippocampus, 
basal forebrain, ventral midbrain and thalamic modules. Identification of functional network 
modules overlapping to a reasonable extent under different anesthetics and parcellation methods 
indicate reproducibility of mouse resting-state networks. 

 

Figure 1-12 Resting-state networks (RSNs) of mouse and human brain. 
A. Mouse brain RSNs. B. Human brain RSNs. The labels indicate similar networks that can be 
identified among species. [ACC: anterior cingulate (equivalent to Cg in rodents); Amg: amygdala; 
Au: auditory cortex; Cg: cingulate cortex (equivalent to ACC in humans); dHC: dorsal 
hippocampus; dSt: dorsal striatum; In: insular cortex; lSt: lateral striatum; mPFC: medial prefrontal 
cortex; MC: motor cortex; PCC: posterior cingulate (equivalent to RSC in rodents); Pir: piriform 
cortex; RSC: retrosplenial cortex (equivalent to PCC in humans); SS1,2,3: somatosensory area 
1,2,3; VC: visual cortex; vHC: ventral hippocampus.] From top to bottom: posterior to anterior. 
(Adapted from Chung and Nasrallah, 2017.) 

 



Effects of anesthesia on functional networks: Use of anesthesia in mouse resting-state 
fMRI is a prerequisite for obtaining reliable and interpretable data; anesthesia alleviates stress 
and prevents motion (Pan et al., 2015). However, anesthesia is known to elicit complicated effects 
on neural, metabolic and hemodynamic responses (Chuang and Nasrallah, 2017).  

 Anesthetics are a potential confound for rs-fMRI studies. Fortunately the influence of 
anesthesia appears to only modulate neurovascular coupling rather than completely abolishing it 
(Pan et al., 2013). Studies have demonstrated that rodent resting-state networks are highly 
reproducible and consistent across different anesthesia regimens at optimal doses (Chuang and 
Nasrallah, 2017). Interfering effect of anesthesia appears to be dose-dependent (Gozzi and 
Schwarz, 2016); neural effects of anesthesia mainly arises from sites of anesthetic action, 
associated downstream neural activities, and the regions related to unconsciousness and arousal 
(Chuang and Nasrallah, 2017). Anesthetics can also affect the cardiopulmonary and vascular 
functions, leading to systemic changes in blood oxygenation, basal cerebral blood flow (CBF), 
vascular reactivity, and neurovascular coupling. Certain anesthetics possess analgesic effects 
which would influence pain-related networks in the brain (Chuang and Nasrallah, 2017). 
Additionally, not only the dosage but also the route and timing of delivery can have an influence 
on the resting-state networks; as a rule, continuous delivery ensures more stable anesthesia 
depth and physiological states in comparison to bolus administration. Anesthetic effects are also 
animal species, gender, age, or disease-state dependent (Chuang and Nasrallah, 2017).  

Methodological considerations for mouse rs-fMRI studies: Maintaining stable 
physiology is paramount for resting-state fMRI; constant monitoring and control of anesthetic 
dose, body temperature, blood oxygenation, respiratory and cardiac rates are crucial to obtain 
high quality data. Physiological recordings can also be used for removing nuisance signals later 
in the processing of data. Consistency in the use of strains, gender, age, weight, and housing 
conditions of animals are necessary to ensure reproducibility (Pan et al., 2015).  

 Most rodent rs-fMRI studies follow similar procedures to those designed for humans. 
However, due to very different brain size, shape, and tissue proportions, there are several aspects 
related to acquisition, pre-processing and analysis that need to be considered (Chuang and 
Nasrallah, 2017). 

For the data acquisition, specialized high field scanners are used for rodent imaging: 
scanners with smaller bore size (20-30 cm) with field strengths 7, 9.4 or 11.7 T are common. 
Higher field strengths are necessary to increase the signal to noise ratios; in addition, strong 
gradients for higher spatial resolution and higher order shims for minimizing distortions are 
needed (Pan et al., 2015). These shims are additional electrical currents which are used to render 
the magnetic fields more uniform. Higher order shims have more complex geometrical 
configurations created by the electrical currents.  

 

 

  



Table 1-1 Summary of anesthetics and their effects used commonly in rodent rs-fMRI 
studies.  
(Taken from Chuang and Nasrallah, 2017.) 

  



 Pre-processing pipelines of acquired data are very similar to those of human data; they 
generally include motion correction, band-pass filtering, de-trending, removal of nuisance 
covariates (i.e. global signal regression or white matter/cerebrospinal fluid regression) and 
smoothing. Normalization of images into a common stereotaxic space is also required for group 
analysis in mice data. Allen Mouse Brain Atlas (Lein et al., 2007) is a high definition reference 
atlas accompanied by a systematic, hierarchically organized taxonomy of brain structures. It is 
frequently used as a reference space in mouse rs-fMRI studies. Further data analysis can be 
performed with seed-based or data-driven (i.e. ICA, graph theory) methods discussed above.  

1.1.3.2 Integration of functional and structural connectivity 

In the animal brain, anterograde (or retrograde) and monosynaptic tract tracers can be 
utilized to determine the direction and density of axonal tracts between brain regions to reveal the 
circuitry of the brain (Oh et al., 2014; Zingg et al., 2014). Good correspondence between regions 
with strong direct projections and functional connectivity strength have been found for DMN 
(Stafford et al., 2014) and other cortical networks (Bergmann et al., 2016; Grandjean et al., 2017). 
Grandjean and colleagues (2017) suggested that cortical functional connectivity is mostly 
associated with monosynaptic projections whereas subcortical connectivity tends to depend on 
polysynaptic projections.  

 Hübner et al. (2017) studied cuprizone model of demyelinating pathology using both rs-
fMRI and DTI methods. Their findings suggest that with loss of myelin, the functional connectivity 
decreases globally and the normal relation between white matter fractional anisotropy (FA) and 
functional connectivity ceases to exist. Furthermore, in mice strains characteristically lacking 
corpus callosum (e.g. I/LnJ; BTBR), inter-hemispherical functional connectivity was found to be 
decreased. Similarly, complete callosotomy resulted in fully disturbed bilateral functional 
connectivity (Magnuson et al., 2014) whereas partial callosotomy was observed to recover 
partially, possibly indicating the plasticity mediated by remaining projections (Zhou et al., 2014).  

These findings highlight the importance of axonal connectivity that subserves the resting-
state network topology and activity; and the potential plasticity that may occur to maintain the 
networks and their associated functions (Chuang and Nasrallah, 2017). 

  



1.2 Neuropathic pain 
1.2.1 Definition and Pathophysiology 

Pain is an unpleasant sensory and emotional experience associated with actual or 
potential tissue damage, or described in terms of such damage (IASP 2011). While acute pain is 
a survival mechanism that serves as a warning sign and promotes self-preservation; chronic pain 
confers no individual or evolutionary advantage (Cohen and Mao, 2014). During my thesis, I 
focused my attention on one specific type of chronic pain: Namely, neuropathic pain, which is 
caused by a lesion or disease affecting the somatosensory system including peripheral fibers (i.e. 
Aβ, Aδ and C fibers) and central neurons (Colloca et al., 2017). Neuropathic pain affects 7 to 10% 
of the population and its incidence is likely to increase owing to ageing global population. It is 
more common in females and after the age of 50 years (Colloca et al., 2017). Around 15-25% of 
people with chronic pain are currently thought to suffer from neuropathic pain (Cohen and Mao, 
2014). Comorbidities such as poor sleep, anxiety and depression are frequent in neuropathic pain 
and it greatly impairs quality of life and has a high socioeconomic impact on society (von Hehn et 
al., 2012). 

Symptoms of neuropathic pain include spontaneous pain- either continuous or 
paroxysmal- such as burning and electrical-like sensations or evoked pain resulting from non-
painful stimulation (allodynia) as well as increased responses to painful stimuli (hyperalgesia)  
(von Hehn et al., 2012). Neuropathic pain can be classified into two: central and peripheral 
neuropathic pain (Colloca et al., 2017).  

i. Central neuropathic pain arises due to spinal cord and brain disorders: for example, 
cerebrovascular diseases affecting the central somatosensory pathways (post-stroke pain), 
neurodegenerative disorders (notably Parkinson’s), spinal cord injury, syringomyelia, 
demyelinating diseases (e.g. multiple sclerosis, transverse myelitis, neuromyelitis optica).  

ii. Peripheral neuropathic pain can display generalized (usually symmetrical) or focal 
distribution. Causes of generalized peripheral neuropathic pain include diabetes or pre-diabetes, 
infections (e.g. HIV, leprosy), chemotherapy, immunological (Guillain-Barré) or inflammatory 
processes and inherited channelopathies. Focal neuropathic pain is caused by lesion of one or 
more peripheral nerves or nerve roots: for instance, post-herpetic neuralgia, post-traumatic 
neuropathy, trigeminal neuralgia, entrapment syndromes, HIV, leprosy, diabetes mellitus and 
complex regional pain syndrome (CRPS) type II. 

  



Associated terms 

Allodynia: Pain due to a stimulus that does not normally provoke pain. 

Hyperalgesia: Increased pain from a stimulus that normally provokes pain. 

Hypoesthesia: Decreased sensitivity to stimulation, excluding the special senses. 

Windup: Progressive increase in the frequency and magnitude of firing of dorsal horn neurons 
produced by repetitive activation of C fibers above a critical threshold, leading to a perceived 
increase in pain intensity. 

Nociceptor: A high-threshold sensory receptor of the peripheral somatosensory nervous system 
that is capable of transducing and encoding noxious stimuli. 

Second-order nociceptive neurons: Nociceptive neurons in the central nervous system (CNS) that 
are activated by the Aβ, Aδ and C afferent fibers and convey sensory information from the spinal 
cord to other spinal circuits and the brain. 

Central sensitization: Increased responsiveness of nociceptive neurons in the central nervous 
system to their normal or subthreshold afferent input. 

Peripheral sensitization: Increased responsiveness and reduced threshold of nociceptive neurons 
in the periphery to the stimulation of their receptive fields. 

(IASP 2011; Cohen and Mao 2014; Colloca et al. 2017)  

Neuropathic pain appears as a result of pain signaling changes: peripheral neuropathy 
alters the electrical properties of sensory nerves, which then leads to imbalance between central 
excitatory and inhibitory signaling such that inhibitory interneurons and descending modulatory 
systems are impaired. In turn, transmission of sensory signals and disinhibition or facilitation 
mechanisms are altered at the level of spinal cord dorsal horn neurons (Colloca et al., 2017). 
Long-term plasticity changes in sensory pathways underlie the cellular mechanisms for behavioral 
sensitization in neuropathic pain (Zhuo et al., 2011). In the following sections, I will give a brief 
overview of the current state of knowledge on mechanisms underlying neuropathic pain. 

1.2.1.1 Peripheral mechanisms 

Peripheral processes for the generation of pain are the conversion of noxious stimuli to 
nociceptive signals, termed transduction and relay of nociceptive signals from the site of injury to 
the CNS, termed transmission (Cohen and Mao, 2014). Any disruption in these processes result 
in positive (i.e. gain of function) and negative (i.e. loss of function) sensory symptoms and signs, 
collectively named ‘pain fingerprint’ (von Hehn et al., 2012).  

Peripheral sensitization: Once injury occurs, inflammation and reparatory processes 
ensue, leading to a hyperexcitable state known as peripheral sensitization. Inflammatory 
mediators (e.g. CGRP, substance P) induce increased vascular permeability, edema, and 
leakage of byproducts of injury such as prostaglandins, bradykinin, growth factors, and cytokines. 
These substances sensitize and excite nociceptors; lowering their firing thresholds and causing 
ectopic discharges (Cohen and Mao, 2014).  



Ectopic activity: Ectopic discharges along the nociceptive pathways after nerve injury can 
generate spontaneous pain in the absence of any external stimuli (von Hehn et al., 2012). Most 
frequently, hyperexcitability of primary sensory neurons induce ectopic action potentials leading 
to paresthesia, dysthesia, and spontaneous pain of differing features (e.g. continuous vs. 
episodic; superficial vs. deep; burning vs. shock-like) depending on the fibers affected. Even 
uninjured neighboring fibers can give rise to spontaneous pain via non-synaptic cross-talk, termed 
ephaptic transmission (Cohen and Mao, 2014).  

Nerve injury drastically changes the expression, distribution, and phosphorylation of 
several ion channels in sensory neurons leading to changes in intrinsic membrane properties and 
generation of membrane potential oscillations resulting in rhythmic firing bursts in the absence of 
a stimulus. Downregulation of potassium channels, spontaneous sodium currents, mixed cation 
current through hyperpolarization-activated cyclic nucleotide-gated channels (HCN), activation of 
low threshold T-type calcium channels, changes in the expression profile of voltage-gated sodium 
channels, and downregulation of voltage-gated potassium channels contribute to hyperexcitability 
and generation of ectopic discharges (von Hehn et al., 2012).  

1.2.1.2 Spinal mechanisms 

Central sensitization: Ongoing discharge of peripheral afferent fibers with concomitant 
release of excitatory amino acids and neuropeptides leads to postsynaptic changes in second-
order nociceptive neurons in the dorsal horn resulting in an excess of signaling (Colloca et al., 
2017) and long-lasting synaptic plasticity that facilitates nociceptive processing, called central 
sensitization (von Hehn et al., 2012). Central sensitization provides a mechanism where 
nociceptive neurons have reduced thresholds, increased receptive field sizes and altered firing 
temporal dynamics. All these changes contribute to the generation of dynamic mechanical 
allodynia, hyperalgesia, and temporal summation.  

Central sensitization results from homo-synaptic - similar to long term potentiation (LTP) - 
and hetero-synaptic (i.e. by a spread of the change in synaptic strength from activated to 
neighboring non-activated synapses) facilitation mechanisms. For homo-synaptic facilitation, 
alterations in postsynaptic calcium levels, caused by calcium influx through ionotropic receptors 
and voltage-gated calcium channels or by release from intracellular stores on activation of 
metabotropic receptors or receptor tyrosine kinases, initiate change in synaptic strength. Calcium-
dependent intracellular signaling pathways produce posttranslational and transcriptional changes 
in various effector proteins, altering their levels, distribution, and functional activity. Some of the 
major players of activity-dependent central sensitization are NMDA and AMPA glutamate 
receptors, substance P NK1 receptor, BDNF and its TrkB receptor, CaMKII, PKA and PKC 
(von Hehn et al., 2012).  

In hetero-synaptic facilitation, nociceptor-derived input can enable subsequent long-lasting 
facilitation of responses to input from low threshold Aβ and C fibers, and to afferent inputs from 
topographically different locations (von Hehn et al., 2012).  

  



Glutamatergic regulation: Persistent and enhanced activation of ionotropic (NMDA, 
AMPA) and metabotropic glutamate receptors along with downregulation of glutamate 
transporters reduce the activation thresholds of glutamate receptors, increase neuronal 
excitability, and cause neurotoxicity. For instance, the progressive increase in the frequency and 
magnitude of firing of dorsal horn neurons produced by repetitive activation of C fibers, called 
windup, requires NMDA receptor activity (Cohen and Mao, 2014).  

Loss of inhibition: After nerve injury, there is a loss of inhibitory currents at the spinal 
level as a result of dysfunctional GABA production and release, impaired intracellular 
homeostasis from reduced activity of K+Cl- cotransporter or increased activity of Na+K+-Cl- 
cotransporter, leading to increased Cl- levels; and apoptosis of spinal inhibitory interneurons. Loss 
of inhibition provokes tactile allodynia, hyperalgesia, and transmission of non-painful stimuli 
through Aβ fibers to nociceptive second-order neurons in the dorsal horn.  

Glial mechanisms: Glial cells comprise about 70% of the CNS and play an important role 
in maintenance and homeostasis. Microglia are activated within 24 hours of nerve injury, and 
astrocytes follow shortly thereafter, with activation persisting for up to 12 weeks (Cohen and Mao, 
2014). While previous experiments hypothesis that microglia might be important for initiation while 
astrocytes are important for maintenance of neuropathic pain (Zhuo et al., 2011), our unpublished 
data showed increased microglial activity even after the 8 weeks of neuropathic pain.  

1.2.1.3 Supraspinal mechanisms 

Standard view of central sensitization as a peripherally initiated process must be 
supplemented with the supraspinal mechanisms of brain reorganization, in order to account for 
the long-term maintenance (i.e. chronicity) of central sensitization (Farmer et al., 2012). 
Descending pathways that modulate the transmission of nociceptive signals originate in 
periaqueductal gray (PAG), locus coeruleus, anterior cingulate cortex (ACC), amygdala, and 
hypothalamus, and are mostly relayed through brainstem nuclei in the PAG and medulla to the 
spinal cord; although direct connections from cortical structures to spinal cord do exist (Chen et 
al., 2018). Descending modulation can be both inhibitory and faciliatory, with conflicting signals 
often arising from the same regions. The balance between inhibition and facilitation is dynamic 
and influenced by context, behavior, emotions, timing, and pathology. The neurotransmitters 
involved in descending modulatory pathways include noradrenaline (norepinephrine), 5-
hydroxytryptamine (5-HT or serotonin), dopamine, and endogenous opioids (Cohen and Mao, 
2014).  

After nerve injury, several processes take place that mitigate the normal pain attenuating 
pathways: tonic noradrenergic inhibition decreases, and serotonergic modulation becomes 
predominantly facilitative. The initial spike mediated by changes in the activation and expression 
of glutamatergic receptors after injury is followed by a decrease in the excitability of rostral 
ventromedial medulla (RVM); which results in both facilitation and inhibition (Cohen and Mao, 
2014). Furthermore, supraspinal centers such as ACC, prefrontal cortex (PFC), amygdala and 
PAG have been implicated in central sensitization, pathological plasticity and comorbidities 
associated with neuropathic pain (e.g. anxiety, major depression, and sleep disturbances); with 
detected alterations in brain structure and function in neuroimaging studies. 



 

Figure 1-13 The peripheral and central changes induced by nerve injury or peripheral 
neuropathy. 
(Schema taken from Colloca, et al. 2017.) 

 

Neuroimaging techniques are especially well-suited for investigating brain mechanisms of 
chronic pain and comorbid conditions: in addition to relatively easy translation between animal 
models and patient populations; longitudinal experiments allow for surveying disease progression 
and treatment responsiveness in relation to brain function.   

  



1.2.2 Magnetic resonance imaging of pain and chronic pain conditions  

Neuroimaging can reveal the location and characteristics of brain responses to acute pain 
and plasticity associated with chronic pain (Davis and Moayedi, 2013). A variety of functional 
brain imaging techniques, including fMRI, PET, electroencephalography (EEG) and 
magnetoencephalography (MEG), have been utilized in the study of pain and in particular, chronic 
pain (Schmidt-Wilcke 2015). The most influential technique has been fMRI due to its fairly high 
spatial and temporal resolution, and the fact that no contrast agents or radioactive substances 
are required to image neural activation. In the next few sections, I will give an overview of the so-
called ‘pain matrix’ (i.e. a set of areas sequentially activated in acute pain experience, as shown 
with functional neuroimaging); resuming with clinical imaging of chronic pain disorders, and finally, 
preclinical imaging of pain models.  

1.2.2.1 Concept of a ‘Pain matrix’ 

Pain experience is a multi-dimensional phenomenon with sensory-discriminative, affective-
motivational, motor, and autonomic components (Seifert and Maihöfner, 2009); accordingly, 
functional neuroimaging studies have consistently identified several brain regions activated during 
nociceptive stimulation including thalamus, primary and secondary somatosensory areas, insula, 
ACC and PFC; collectively named the ‘pain matrix’. The term originates from ‘neuromatrix’, first 
described by Melzack (1990, 2005), as a widespread ensemble of neurons integrating various 
sources of input - both nociceptive and non-nociceptive, processing information and generating 
patterns felt as a whole body possessing a sense of self. In this view, the pain matrix is composed 
of two parallel systems: lateral pain system responsible for perception of location and intensity of 
pain; and a medial pain system that includes ACC and parts of the insula related to affective-
motivational processing of pain (Seifert and Maihöfner, 2009).  

However, many of the regions belonging to pain matrix respond to stimuli other than 
nociception, there is no cortical area devoted exclusively to the initial processing of thalamo-
cortical nociceptive input, and nociceptive specific neurons are sparsely distributed in space. 
Furthermore, the magnitude of the elicited brain responses in pain matrix can be dissociated from 
both the intensity of noxious stimulus and that of perceived pain. The brain responses to pain 
seem to be attentional context-dependent; novelty and unpredictability- that is to say saliency of 
stimuli determine the brain activation. These findings have led some researchers to characterize 
the aforementioned brain areas as a multimodal network related to the detection of saliency 
(Iannetti and Mouraux, 2010).  

Nevertheless, pain matrix can be viewed as an interacting networks system: different 
orders of cortical networks, from cortical nociception to the conscious experience defined as pain. 
Pain itself is subject to reappraisal by internal states, feelings and beliefs before turning into 
memories (Garcia-Larrea and Peyron, 2013): 

i. First-order processing (nociceptive matrix): Primate spinothalamic system, carrying 
nociceptive information, originates from spinal laminae I, V and VII and reaches posterior nuclei 
of thalamus. Nociceptive thalamo-cortical projections then reach posterior insula (~40%), medial 
parietal operculum (~30%-includes somatosensory areas) and midcingulate cortex (MCC, ~24%). 
Posterior insula and parietal operculum are the only areas where stimulation triggers acute pain, 
lesions cause selective pain deficits and injury causes neuropathic pain. However, transition from 



nociception to conscious pain and its multiple attentional modulations requires the recruitment of 
a second set of areas. 

ii. Second-order perceptual matrix: Other regions comprising the pain matrix, namely, mid-
/anterior insula, ACC, PFC and posterior parietal areas are not direct targets of spinothalamic 
system, their direct stimulation does not evoke pain, or their selective destruction does not induce 
analgesia. These areas are also activated in contexts that are not related to pain and their 
contribution to pain experience depends on the context in which noxious stimuli are applied. The 
joint activity of the nociceptive and second order matrices is essential to ensure the modulation 
of vegetative reactions and internal feelings via anterior insular networks, the attentional 
modulation of sensory gain by top-down and bottom-up transactions and the conscious 
perception of pain via distributed brain activation. 

iii. Third-order networks: High-level polymodal regions outside the classical pain matrix (i.e. 
pregenual cingulate, orbitofrontal cortex (OFC), temporal pole and anterolateral PFC) assign 
emotional significance, affective states and emotional responses to pain stimuli can enhance or 
attenuate subjective pain. Changes in the subjective pain require no adjustment of sensory gain 
but rather reappraisal of immediate pain perceptions. These areas have strong interconnections 
to subcortical descending pain control regions (e.g. PAG) and may also contribute to changes in 
the activity of ascending nociceptive systems (Garcia-Larrea and Peyron, 2013). 

 

Figure 1-14 Graphical depiction of the ‘pain matrix’ of the human brain. 
A. sagittal; B. coronal views. (Adapted from Thompson and Bushnell, 2012.) 

In contrast to acute pain, chronic pain cannot be regarded as a state of continuous 
nociceptive inputs to an otherwise normally functioning brain. Neuroplastic remodeling occurs on 
various levels of nervous system ranging from synaptic plasticity to reorganization of large scale 
neural networks, which can lead to the maintenance of pain even in the absence of nociceptive 
stimuli (Schmidt-Wilcke 2015). In a chronic pain state, there may be abnormal pain and/or 
salience/attention-related activity, disturbances in connectivity and/or morphology of the pain, 
attention and descending pain control networks (Davis and Moayedi, 2013). These abnormalities 
may represent pre-existing vulnerabilities or arise from disease/pain-driven plasticity. 



1.2.2.2 Structural MRI in chronic pain conditions 

In chronic pain, the brain regions commonly showing gray matter abnormalities are as 
follows: prefrontal cortex (PFC), insula, anterior cingulate cortex (ACC), mid-cingulate cortex 
(MCC), posterior cingulate cortex (PCC), thalamus, basal ganglia, somatosensory areas, 
supplementary motor area (SMA), temporal lobe, and brainstem (Davis and Moayedi, 2013). Most 
of the studies report a decrease in gray matter density/volume or a decrease in cortical thickness 
(Schmidt-Wilcke 2015) with the exceptions of basal ganglia, thalamus and brainstem. Volumetric 
alterations were described for neuropathic pain conditions: trigeminal neuralgia was linked with 
reductions in primary sensory cortex, anterior insula, putamen, NAc and thalamus volumes as 
well as increases in posterior insular area (Gustin et al., 2011). Yoon et al. (2013) found decreases 
in the gray matter volume of left dorsolateral PFC, bilateral insula, and subgenual ACC in patients 
with neuropathic pain following spinal cord injury. 

Furthermore, voxel-based morphometry (VBM) study of a chronic back pain (CBP) 
population (Apkarian et al. 2004) showed decreases in the volume of dorsolateral PFC and right 
thalamus. In another study in this disorder (Schmidt-Wilcke et al. 2006), bilateral basal ganglia 
and left thalamus volumes were found to be increased. Patients with tension-type headache 
displayed reductions in dorsolateral prefrontal, somatosensory areas, and pons volumes 
(Schmidt-Wilcke et al. 2005). Kuchinad and colleagues (2007) have shown decreases in left 
hippocampus, bilateral MCC and PCC, left insula, and medial prefrontal cortex (mPFC) volumes 
in fibromyalgia; whereas Lutz et al. (2008) demonstrated volume reductions in postcentral gyrus, 
amygdala, superior frontal gyrus, ACC, and hippocampus in patients with the same pathology. 
Complex regional pain syndrome (CRPS) was found to be associated with gray matter atrophy in 
right insula, ventromedial PFC, nucleus accumbens (NAc) (Geha et al., 2008), and hippocampus 
(Mutso et al. 2013); hippocampal volume loss was also detected in chronic back pain patients.  

DTI studies performed in various chronic pain conditions found white matter changes in 
several brain areas. DaSilva and colleagues (2007) reported for instance decreased fractional 
anisotropy (FA) for tracts connecting brainstem-thalamus and thalamus-primary somatosensory 
areas in migraine sufferers. In fibromyalgia, there were decreases in FA values in thalamus and 
insula; together with increases in postcentral gyrus (Lutz et al., 2008). Geha et al. (2008) showed 
white matter connectivity changes along ventromedial PFC, anterior insula, and NAc in CRPS 
patients. In temporo-mandibular disorder (TMD), decreases in FA was accompanied by increases 
in mean diffusivity (MD) and radial diffusivity (RD) values in corpus callosum and internal/external 
capsule related to sensory thalamocortical communication (Moayedi et al., 2012); tractography 
revealed reduced fiber density in genu of corpus callosum and dorsolateral PFC in addition to 
fiber increases in other parts of corpus callosum and frontal poles. There were also conflicting 
findings for the same pathologies in different studies. Chen et al. (2011) found increases in FA in 
anterior insula, thalamus (i.e. ventral posterolateral nuclei), fornix, and external capsule in irritable 
bowel syndrome (IBS); whereas another group reported FA decreases in thalamus, basal ganglia, 
sensory-motor association areas along with increased FA in frontal lobe and corpus callosum 
(Ellingson et al., 2013). 

1.2.2.3 Functional MRI in chronic pain conditions 

fMRI technique has been extensively used to study brain function and connectivity across 
various chronic pain conditions. In a cohort with diabetic neuropathic pain, Cauda et al. (2010) 



reported increased connectivity between DMN and the dorsal ACC and primary 
motor/somatosensory cortices bilaterally and decreased connectivity between DMN and the 
dorsolateral PFC, frontopolar cortex, insula, and thalamus bilaterally. Napadow et al.,( 2011) have 
shown that intrinsic brain connectivity is associated with pain intensity in fibromyalgia since 
functional connectivity within the DMN, within right executive attention network (i.e. a resting state 
network involved with cognitive processing of working memory and attention comprising fronto-
parietal regions: namely dorsolateral PFC, superior parietal lobule, and intraparietal sulcus), and 
between DMN-insula were found to be increased. This increase was also correlated with 
spontaneous pain intensity.  

Moreover, in several studies by Baliki and colleagues (Baliki et al., 2006; 2008a; 2008b; 
2010) chronic back pain (CBP) was found to be associated with increased activation in mPFC 
and rostral ACC during sustained pain, with reduced deactivation in default mode network (DMN) 
regions in response to an attention task, and with changes in NAc responses to noxious stimuli. 
The same research group demonstrated an increase in the high frequency oscillations of the 
BOLD signal in mPFC and DMN regions which was related to spontaneous pain in CBP patients 
(Baliki et al., 2011). With longitudinal rs-fMRI, they were able to show that the transition from sub-
acute to chronic back pain could be predicted by the enhanced functional connectivity between 
NAc and PFC (Baliki et al., 2012) and decreased functional connectivity between hippocampus 
and mPFC (Mutso et al., 2013). In another study where patients with CBP, complex regional pain 
syndrome (CRPS), and osteoarthritis (OA) were investigated with rs-fMRI, all chronic pain groups 
demonstrated an attenuated functional connectivity between mPFC and more posterior parts of 
DMN, namely the precuneus, and enhanced insula-mPFC connectivity (Baliki et al., 2014) along 
with increased high frequency BOLD oscillations in mPFC and DMN. Moreover, ongoing pain in 
OA patients were found to be linked with activations in prefrontal and limbic regions (Parks et al. 
2011). 

Taken together, brain networks involved in chronic pain at least partially differ from those 
seen in acute pain perception (pain matrix); as chronic pain involves brain regions critical for 
cognitive and emotional processing/assessment (Schmidt-Wilcke, 2015). Chronic pain seems to 
reflect a shift from nociceptive to meso-corticolimbic circuitry overtime with conditions exhibiting 
distinct patterns of brain network reorganization (Farmer et al., 2012).  

1.2.2.4 Structural and functional MRI of rodent pain models 

Several different chronic pain models have been investigated with rodent MRI techniques, 
sometimes in a longitudinal fashion to allow examining the progression of the pathology 
(Seminowicz et al. 2012; Baliki et al. 2014; Buehlmann et al. 2018; Bilbao et al. 2018). When 
compared with clinical studies in chronic pain, preclinical studies give remarkably similar results. 
For instance, volumetric changes have been observed in prefrontal, somatosensory and limbic 
areas both in humans (Apkarian et al., 2004; Geha et al., 2008; Gustin et al., 2011; Kuchinad et 
al., 2007; Yoon et al., 2013) and in rodents (Bilbao et al., 2018; Seminowicz et al., 2009).  

Functional connectivity studies in chronic pain also highlight similar areas in humans (Baliki 
et al., 2011, 2012; Mutso et al., 2013) and rodents (Chang et al., 2014; M. N. Baliki et al., 2014; 
Morris et al., 2017; Bilbao et al., 2018; Buehlmann et al., 2018) including mPFC/ACC, VS/NAc, 
and hippocampus in which connectivity changes across different pathologies and preclinical 



models were  demonstrated. Following table gives a summary of brain structural and functional 
MRI studies in rodent chronic pain models (Table ). 

Table 1-2 Preclinical imaging studies in rodent chronic pain models.  
Abbreviations: DBM: Deformation-based morphometry; VBM: Voxel-based morphometry; MRS: 
Magnetic resonance spectroscopy; MEMRI: manganese-enhanced MRI; FC: Functional connectivity; 
CC: Clustering coefficient; DR2: Dopamine receptor-2; PFC: Prefrontal cortex; RSP: Retrosplenial 
area; SS: Somatosensory area; MO: Motor area; TH: Thalamus; HY: Hypothalamus; PAG: 
Periaqueductal gray; HIP: Hippocampus; NAc: Nucleus accumbens; CPu: Caudate-putamen; VP: 
Ventral pallidum; AMY: Amygdala; CeA: Central amygdala; ACC: Anterior cingulate cortex; ORB: 
Orbital area; VS: Ventral striatum; VPL: Ventral posterolateral nucleus of thalamus; PL: Prelimbic 
area; BG: Basal ganglia; BNST: Bed nucleus of stria terminalis; ZI: Zona incerta. 

Study Species Model Imaging modality Findings 

 

Seminowicz et al., 

2009 

 

Rat 

 

Spared nerve 
injury (SNI) 

 

T1-weighted MRI/ 
DBM 

 

Age-related volume decreases 
in both shams and SNI 
animals. 

Lower PFC, RSP, entorhinal 
cortex, SS, and insula volumes 
in SNI group at 4 months after 
injury-coincides with anxiety 
phenotype. 

Seminowicz et al., 
2012 

Rat Spinal cord 
injury (SCI) 

Rs-fMRI FC of TH contralateral to injury 
was increased with ipsilateral 
TH, PAG, and HIP; decreased 
with SS areas 1w after injury. 

Asynchrony between thalamus 
and cortex was thought to be 
due to enhanced thalamic 
activity resulting in neuropathic 
pain. 

Chang et al., 2014 Rat Spared nerve 
injury (SNI) 

Rs-fMRI FC decreases in subregions of 
NAc towards CPu, insula, and 
SS areas at 28d after injury. 
Decreases correlated with 
mechanical allodynia and 
reduced DR2 expression in 
NAc contralateral to injury. 
DR2 is engaged in indirect 
striatopallidal pathway; whose 
inactivation results in aversive 
learning. 

 

  



Study Species Model Imaging modality Findings 

 

Hubbard et al., 
2015 

 

Rat 

 

Spared nerve 
injury (SNI) 

 

Task-fMRI 
(acetone 

application 
induced cold 

allodynia) 

 

At 4w, SNI animals showed 
larger activations in 
contralateral SS, VPL, and 
dorsal striatum; larger 
deactivations in contralateral 
insula, midline TH, ipsilateral 
ACC, PAG, and pons. 

At 20w, SNI animals showed 
larger activations in ACC, PL, 
insula, BG, and SS; larger 
deactivations in midline TH 
and PAG. 

Cold allodynia was correlated 
with ACC and PL activation 
levels. 

Komaki et al., 
2016 

Mouse L4 spinal nerve 
root injury 

Rs-fMRI 7d after surgery, contralateral 
primary SS had lower degree 
and eigenvector centrality, 
ACC had higher CC and local 
efficiency, and VPL had higher 
betweenness centrality in 
graph theoretical analysis. 

Morris et al., 2017 Rat Inflammatory 
arthritis 

Rs-fMRI At 3w, with the establishment 
of pain behaviors, ACC FC 
towards dorsal striatum and 
SS areas were increased. 

FC of ACC towards HY, 
preoptic area, and BNST 
negatively correlated with 
burrowing (a behavioral 
measure of motivation). 

Matsubayashi et 
al., 2018 

Mouse Spinal cord 
injury (SCI) 

Awake rs-fMRI FC between MO-upper limb 
SS increased at 1w; 
decreased later on; lower limb 
FC consistently decreased. FC 
between MO-ORB increased. 
MO-ACC and SS-ACC FC 
decreased at 3-7w; increased 
at 14w. SS-CPu FC increased 
over time 

Buehlmann et al., 
2018 

Mouse Metastatic bone 
cancer 

Rs-fMRI Loss of coherence in ACC, 
PFC, NAc, piriform area, and 
dorsal HIP intra-regionally.   

Reduced FC of ACC/PFC to 
NAc and ventral HIP; ACC to 
dorsal HIP, and striatum to 
SS/MO/parietal areas/TH. 

 



Study Species Model 
Imaging 
modality Findings 

 

Apkarian et al., 
2018 

 

Rat 

 

Spared nerve injury 
(SNI) 

 

Awake fMRI/ 
Chemogenetics 

 

Both glutamate-mediated and 
chemogenetic activation of 
dorsal HIP reversed allodynia.  

FC of dorsal HIP with cortical 
(i.e. primary SS, MO, RSP, 
insula, and mPFC) and 
dorsolateral TH predicted pain 
relief. 

FC of dorsal HIP with ZI, 
pallidum, barrel field and 
posterior HIP predicted pain 
exacerbation. 

Bilbao et al., 2018 Mouse Spared nerve injury 
(SNI) 

T2-weighted MRI/ 
VBM, 

Rs-fMRI, MRS 

VBM: Arrest of normal brain 
growth trajectory at 1w after 
surgery. At 12w, SNI mice 
caught up to shams excepting 
the reduced volumes of BNST, 
PFC, NAc, and dorsal striatum. 

Rs-fMRI: At 1w, lower local 
efficiency, CC, and small 
worldness in SNI brains. SC 
showed lower strength, PAG 
showed lower local efficiency, 
and NAc- CPu showed higher 
betweenness centrality. At 
12w, NAc showed higher 
strength, mammillary bodies 
showed lower strength and 
local efficiency in SNI group. At 
both time points, PFC-HIP FC 
was lower in SNI mice. MRS: 
HIP dopamine levels were 
decreased at 1w; increased at 
12w. 

 

 

Even though the studies mentioned in the next few pages mostly found alterations in similar 
brain regions, there were also discrepancies between study results. It is important to bear in mind 
that each research group used either distinct species/strains or pain models (i.e. neuropathic vs. 
inflammatory pain); or simply conduct experiments at different time points. Experimental 
protocols, especially the selection of anesthesia for functional imaging might also influence the 
results. 

  



1.2.3 Affective consequences of chronic pain 

Chronic pain and neuropsychiatric conditions such as stress, anxiety, sleep disturbances, 
and depression are significantly comorbid (DosSantos et al., 2017). Indeed, a wealth of clinical 
data suggests a high degree of comorbidity between chronic pain and depression, with an 
incidence of approximately 50% (Doan et al., 2015). Both animal models and human brain 
imaging studies show strong similarities between chronic pain and mood disorders; both 
conditions critically involve limbic brain circuits (Baliki and Apkarian, 2015) related to reward and 
motivational behaviors. Significant overlap between affected brain regions in chronic pain and 
mood disorders might explain their comorbidity based on  ‘shared substrate hypothesis’ which 
defines the comorbidity of pain and depression as the plasticity of specific brain regions 
processing both the emotional aspect of pain and mood-related information (Yalcin et al., 2014a). 
Transition from acute to chronic pain has been associated with a gradual shift from sensory neural 
activity toward a limbic representation of spontaneous pain (Vachon-Presseau et al., 2016); 
possibly achieved by reorganization of cortex by corticolimbic learning mechanisms. Functional, 
chemical, and anatomical changes from chronic pain can, in time, alter the sensory, emotional 
and motivational systems and result in comorbidities such as depression (Shelton et al., 2012). 
Another view in the field regards nociception, pain and negative mood states a single continuum 
of aversion in the framework of behavioral selection (Baliki and Apkarian, 2015), which explains 
the overlap between structures affected by each condition.  

In the following sections, I give a brief overview of brain regions implicated in both 
depression and chronic pain; stating their role in reward and aversive behaviors and discussing 
their dysfunction - with an emphasis on imaging findings. Gaining insight into each pathology 
might pave the way for reaching an understanding of their comorbidity.  

1.2.3.1 Reward/aversion system and its dysfunction in chronic pain and depression 

The reward circuit comprises several cortical and subcortical regions forming a complex 
network that mediates different aspects of incentive-based learning, leading to adaptive behaviors 
(Haber and Knutson, 2010). In mammals, encoding reward and directing motivated behaviors 
require the coordination of multiple brain regions including nucleus accumbens (NAc), amygdala, 
prefrontal cortex (PFC), substantia nigra (SN), ventral tegmental area (VTA), dorsal raphe 
nucleus (DRN), and lateral habenula (LHb).  

The connections between these regions and others define the reward circuitry and they 
appear to be conserved between rodents and primates (Scaplen and Kaun, 2016). Brain reward 
circuitry is responsible for reinforcing behaviors that are rewarding and preventing behaviors that 
lead to punishment (Proulx et al., 2014) and it is involved in incentive salience, learning, and 
memory of rewards; ensuring survival of the organism (Arias-Carrión et al., 2010).  

Dopamine (DA) is recognized as the main neurotransmitter in reward circuitry. Evidence 
for differential dopamine-dependent positive and negative reinforcement learning exists in both 
rodents and humans via different receptor subtypes (i.e. DR1/DR2). Furthermore, gamma 
aminobutryric acid (GABA), noradrenaline, opioid peptides, serotonin, acetylcholine (ACh), 
endocannabinoids, and glutamate are also implicated in acute reinforcing properties in mammals, 
mainly through modulatory processes (Scaplen and Kaun, 2016).  



  

Figure 1-15 Simplified schema of reward-mediating and aversion-mediating pathways 
in rodents.  
(Figure taken from Hu 2016.) 

 Reward dysfunction is a prominent feature of major depression: DSM-V classifies 
anhedonia (i.e. inability to feel pleasure in normally pleasurable activities) and lack of motivation 
as the cardinal symptoms of the disease. Abnormalities in the perception and interpretation of 
reward valence, motivation to acquire rewards, and decision-making as well as increased 
responses to aversion underlie reward dysfunction in depression (Russo and Nestler, 2013).  

Pain is an aversive stimulus which can act as punishment; whereas pain relief is associated 
with reward. Pain relief itself can induce reward-based operant learning (e.g. conditioned placed 
preference - CPP) (Nees and Becker, 2018). Motivation-decision model of pain (Fields, 2004, 
2007) states that in situations in which reward consumption is more important for an organism 
than pain avoidance, endogenously mediated pain inhibition occurs; while in situations in which 
pain avoidance is more important, pain facilitation occurs to ensure best outcomes for the survival 
of the organism. In the case of chronic pain (Nees and Becker, 2018), pain avoidance and/or 
achieving pain relief becomes an all-dominate goal which can result in an imbalance between the 
valuation of pain and reward. Furthermore, the rewarding properties of pain relief might diminish 
over time and averseness of uncontrolled pain and negative events becomes more overwhelming 
(Borsook et al., 2016). Thus, reward deficiency and anti-reward (i.e. negative affective states) are 
major components of chronic pain. Decreased reward responsivity may underlie a key system 
mediating the anhedonia and depression common with chronic pain (Taylor et al., 2016). 

In addition, involvement of dopaminergic systems in both pain and depression are 
evidenced by chronic pain and mood disorders frequently resulting from malfunction of 
dopaminergic areas (e.g. Parkinson’s disease) (Mitsi and Zachariou, 2016).  

Ventral striatum (VS)/Nucleus accumbens (NAc): Ventral striatum (VS) region 
encompasses NAc, caudate-putamen ventral to rostral internal capsule and olfactory tubercle 
(Haber and Knutson, 2010). The link between NAc activity and reward had been first established 
by the self-stimulation circuit originally described by Olds and Milner (1954). VS constitutes a 
critical element of mesocorticolimbic system responsible for reward, motivation, and salience 
attribution (Borsook et al., 2016).  Afferent and efferent connections of the VS are schematized in 
the Figure  (below). 



Striatal regions are recruited during reward processing (Haber and Knutson, 2010): both 
for primary (e.g. sensory) and secondary (e.g. monetary) rewards. It has been shown that the 
dopamine release after amphetamine injection into the VS correlates with positive and arousing 
affective experience (i.e. euphoria). 

 

Figure 1-16 Schema illustrating the connections of the VS. 
Blue arrows: inputs; gray arrows: outputs; Amy: amygdala; BNST:bed nucleus stria terminalis; 
dACC: dorsal anterior cingulate cortex; Hipp: hippocampus; hypo: hypothalamus; MD: medio-
dorsal nucleus of the thalamus; OFC: orbital frontal cortex; PPT: pedunculopontine nucleus; S: 
shell; SNc: substantia nigra, pars compacta; STN: subthalamic nucleus; Thal: thalamus; VP: 
ventral pallidum; VS: ventral striatum; VTA: ventral tegmental area; vmPFC: ventral medial 
prefrontal cortex. (Taken from Haber and Knutson, 2010.) 

Anticipated reward magnitude consistently increases the NAc and medial caudate 
activation; other aspects of anticipated value (e.g. probability and effort) may elicit more 
pronounced activation in the rostroventral putamen. Rewarding outcomes elicit activation in the 
medial caudate portion of the VS, a region which might integrate information from reward and 
cognitive cortical areas in the development of strategic action planning. Reward omission reliably 
decreases VS activation (Haber and Knutson, 2010). 

 NAc activity in response to reward is decreased in major depression (Russo and Nestler, 
2013). Several brain functional imaging studies have shown reduced activation in VS in response 
to gain outcomes (Pizzagalli et al., 2009; Redlich et al., 2015; Satterthwaite et al., 2015; Stoy et 
al., 2012), during reward anticipation (Hägele et al., 2015; Segarra et al., 2015; Smoski et al., 
2009), during reward selection and feedback (Smoski et al., 2009) in major depressive disorder 
(MDD). Hypoactivity of VS was also seen in response to positive-valance words (Epstein et al., 
2006) and enjoyable music (Lepping et al., 2016; Osuch et al., 2009) in MDD. Depressed 
individuals failed to sustain NAc activity while trying to upregulate their positive affect (Heller et 
al., 2009). Reduced NAc volume was found to be correlated with anhedonia in depressed patients 
(Wacker et al., 2009) and with social avoidance scores in stress-susceptible mice (Anacker et al., 
2016). 
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In pain studies, termination of a brief noxious stimulus (Becerra et al., 2013) was 
associated with increased NAc activation in fMRI both in humans and rats. However, this effect 
was negative in polarity for chronic back pain (CBP) patients (Baliki et al., 2010): termination of 
acute pain stimulus decreased NAc activation, suggesting that the acute pain alleviates the 
ongoing back pain. Reduction in NAc volume was reported for trigeminal neuralgia (Gustin et al., 
2011), complex regional pain syndrome (CRPS) (Geha et al., 2008) and in a mouse model of 
spared nerve injury (SNI) (Bilbao et al., 2018). Functional connectivity (FC)  of NAc with mPFC 
was shown to be predictive of pain chronicity (Baliki et al., 2012) in clinical populations. Preclinical 
chronic pain studies also demonstrated FC changes of NAc against several brain regions and 
changes in dopamine receptor expression in this area (Chang et al., 2014). Peripheral nerve injury 
has been shown to disturb glutamatergic information processing and long-term depression (LTD) 
of NAc neurons, resulting in decreased motivated behaviors (Schwartz et al., 2014).  

 Ventral tegmental area (VTA)/ Substantia nigra (SN): Midbrain dopamine neurons form 
two functional divisions: dorsal tier associated with limbic circuitry including VTA and dorsal parts 
of SN pars compacta (SNc), and ventral tier including ventral SNc and SN pars reticulata (SNr) 
associated with motor functions (Haber and Knutson, 2010). Dorsal tier dopaminergic neurons 
receive input from VS, bed nucleus of stria terminalis (BNST), substantia innominate, amygdala, 
ventral pallidum (VP), pedunculopontine nucleus (PPT), dorsal raphe nucleus (DRN), and 
superior colliculus (SC). Direct sensory input from SC is thought to be responsible from short 
latency burst firing of dopaminergic cells to salient and rewarding stimuli. Dorsal tier of 
dopaminergic neurons sends projections primarily to VS (via medial forebrain bundle-MFB) and 
to midline structures such as hypothalamus, PAG, BNST, amygdala, hippocampus. Dorsal tier 
also diffusely innervates cortical areas. 

 

Figure 1-17 Schematic illustration of a. the organization and b. the connections of the 
midbrain  dopamine cells.  
Red cells: connections with VS regions; yellow cells: connections with dorsal caudate nucleus; 
blue cells: connections with motor control striatal areas. BNST: bed nucleus stria terminalis; CeA: 
central amygdala nucleus; Amy: amygdala; Hipp: hippocampus; PPT: Pedunculopontine nucleus; 
SNc: substantia nigra, pars compacta; VP: ventral pallidum; VTA: ventral tegmental area.(Taken 
from Haber and Knutson, 2010.) 

Dorsal tier dopaminergic neurons respond to unexpected reward by phasic bursts and to 
reward omission by phasic inhibition; encoding prediction error (PE) signals- the discrepancy 
between the expected and actual reward. VTA innervates NAc medium spiny neurons (MSNs) 
via two pathways : direct (D1 type receptor-mediated) which causes excitation and positive affect 
and indirect (D2 type receptor-mediated) which inhibits MSNs and results in negative affect 
(DosSantos et al., 2017).  



Human fMRI studies has shown that dorsal tier dopaminergic neurons increase their 
activity in response to stimuli that predict reward (Haber and Knutson, 2010). Additionally, a small 
percentage of dopaminergic neurons (mostly found in dorsolateral SN with projections to NAc 
core) fire preferentially during aversive stimuli (e.g. noxious stimuli) or during both aversive and 
rewarding stimuli. Neurons activated by both rewarding and punishing stimuli are likely to code 
motivational salience independent of valence (Taylor et al., 2016). Dopamine modulates the 
salience of pain stimuli and thereby mediates the motivation to avoid or endure pain depending 
on the situational context explained in motivation-decision model of pain (Fields, 2007). 

Different rodent models of stress-induced depression reveal differences in VTA and 
mesolimbic reward pathway modulation. Mouse model of social defeat stress was associated with 
increased activity in VTA dopaminergic neurons and higher brain-derived neurotrophic factor 
(BDNF) levels in NAc (Berton et al., 2006). Optogenetic activation of VTA-NAc pathway in this 
model resulted in even higher BDNF levels in NAc which was absent for stress-naïve mice (Walsh 
et al., 2014). Imaging in this model  (Anacker et al., 2016) demonstrated that larger VTA volume 
was correlated with social avoidance scores. In addition, stress-susceptible mice tended to have 
larger VTA and smaller cingulate volumes.  

However, chronic unpredictable mild stress (CUMS) model showed decreased activity in 
VTA-mPFC pathway but not in VTA-NAc pathway (Liu et al., 2018) and injection of BDNF into 
mPFC reversed depression-like behaviors. In clinical imaging, VS and VTA functional connectivity 
was higher in depression group (Redlich et al., 2015). Gradin et al. (2011) have shown lower 
prediction-error (PE) signals in both striatum and midbrain during reward learning and this signal 
reduction was correlated with anhedonia scores. Moreover, weaker memory for positive material 
along with lower activation in dopaminergic midbrain were found in depressed patients (Dillon et 
al., 2014). 

Chronic pain models in rodents also show discrepancies in dopaminergic system 
alterations:  In a rat model of peripheral nerve injury, microglial activation in VTA has been shown 
to result in disruption of dopaminergic signaling and reward behavior (Taylor et al., 2015); these 
effects were mediated by microglia-regulated activation of chloride channels in GABAergic VTA 
interneurons. Ko et al (2018) showed increased GABAergic and decreased dopaminergic 
neuronal activity in a rat model of spinal cord injury (SCI). Inflammatory pain in rats (Hipólito et 
al., 2015) resulted in lower levels of mu-opioid receptors in VTA along with a loss of opioid-
induced dopamine release in NAc. In the spared nerve injury (SNI) model, spontaneous spiking 
of VTA and extracellular dopamine in NAc were reduced together with increased cell-specific 
excitability of NAc shell indirect pathway neurons; which was shown to be responsible from 
amplification of tactile allodynia (Ren et al., 2015). In a study using manganese-enhanced MRI 
(MEMRI) in a rat model of knee-joint pain, MnCl2 accumulation was decreased in VTA (i.e. 
showing lower activity) in line with hyperalgesia (Devonshire et al., 2017). Watanabe and 
colleagues (2018) used both nerve injury and cancer pain models in mice and replicated the 
findings of reduced neuronal excitability of VTA dopaminergic neurons projecting to NAc; 
moreover, optogenetic stimulation of VTA dopamine neurons or their terminals in NAc reversed 
pathological allodynia.  

On the other hand, a study using SNI reported an increase in bursting activity and 
dopamine release in VTA along with higher serotonergic activity in dorsal raphe (Sagheddu et al., 
2015); yet, another study in SNI model showed increased firing rate but not burst firing of VTA 



dopaminergic neurons (Fu et al., 2018). In a chronic constriction injury (CCI) model (Zhang et al., 
2017), an increased dopaminergic signaling in VTA-NAc pathway- dependent on BDNF release 
from VTA - was detected; inhibition of VTA or BNDF signaling attenuated thermal hyperalgesia.  

The conflicting findings for VTA in chronic pain might be partially explained by the 
heterogeneity of this region with respect to cell-types, firing patterns, and projections; as well as 
the use of different preclinical models and experimental protocols. 

Lateral habenula (LHb):  LHb is another important center in reward circuitry that encodes 
negative value/aversion relevant to avoidance or escape behaviors. LHb receives inputs from 
forebrain limbic circuits (via stria medullaris) and sends outputs to aminergic brainstem nuclei (via 
fasciculus retroflexus). See a summary of LHb circuitry on Figure : 

 

Figure 1-18 Summary of the input and output circuitry of the LHb. 
Projections to the lateral habenula (LHb), shown in brown, include the paraventricular nucleus 
(PVN), basal forebrain (BF, including the nucleus accumbens (NAc), lateral septum, and 
diagonal band nuclei (DBN)), lateral hypothalamic area (LHA), lateral preoptic area (LPO), 
ventral pallidum (VP), globus pallidus (GPi), medial prefrontal cortex (mPFC), suprachiasmatic 
nucleus (SCN), and bed nucleus of the stria terminalis (BNST). (Taken from Yang, et al. 2018b.) 

LHb encodes also negative reward prediction error (PE) signals which is induced by 
unexpected non-rewarding or unpleasant events (i.e. pain) and inhibited by unexpected rewards. 
LHb sends glutamatergic projections either directly to VTA inhibitory GABAergic neurons or 
indirectly via rostromedial tegmental area (RMTg) which in turn inhibits VTA. LHb also innervates 
serotonergic raphe nuclei of brainstem (Proulx et al., 2014). 

fMRI studies in depressed patients and rodent depression models have shown LHb 
hyperactivity while LHb lesions abolished depressive phenotypes in rodents: In a rat model of 
congenital learned helplessness (cLH)(Gass et al., 2014b), regional cerebral blood volume 
(rCBV) was found to be increased in LHb and optogenetic perturbation of LHb (Clemm von 
Hohenberg et al., 2018) eliminated DMN hyperconnectivity related to cLH phenotype. Enhanced 
burst activity of LHb was found to be driving depressive behaviors and anhedonia; this phenotype 
was reversed by the suppression of bursting activity using NMDA-receptor antagonist ketamine 
(Yang et al., 2018a).  Cui et al. (2018) has discovered that the LHb bursting pattern in depression 



was due to the upregulation of an astrocytic potassium channel, Kir4.1. Overactive LHb neurons 
may produce an unpleasant state of constant disappointment or sense of doom, which may 
contribute to human depression (Proulx et al., 2014).  In a case study where the habenula was 
inactivated by deep brain stimulation (DBS) resulted in a full remission of major depression in a 
treatment-resistant patient (Sartorius et al., 2010).   

Habenula is modulated or directly modulates systems or pathways involved in  pain 
processing, including opioidergic, serotoninergic and dopaminergic and noradrenergic systems 
(Shelton et al., 2012). LHb is part of a pain modulation loop consisting of NAc, PAG, and LHb and 
morphine injection at these sites promotes analgesia. In a study conducted in pediatric CRPS 
(Erpelding et al., 2013), patients exhibited an overall FC reduction of habenula with the rest of the 
brain; specifically, with the anterior midcingulate cortex (MCC), dorsolateral prefrontal cortex 
(dlPFC), and motor cortices.  

For an understanding of depression and pain comorbidity, a research group has devised 
a set of experiments studying their reciprocal interactions  (Li et al., 2016, 2017). Firstly, they have 
shown that CUMS model of depression results in pain hypersensitivity and significant 
enhancement of LHb firing rates, especially for pain-activated neurons. Indeed, the percentage 
of c-fos positive cells in LHb was increased for rats submitted to the CUMS or pain stimulation; 
this percentage was even higher in rats receiving both. Lesioning LHb was able to overcome both 
depressive behaviors and pain hypersensitivity. Later on, they used a chronic constriction injury 
(CCI) model of pain in rats (Li et al., 2017) where they showed emergence of depressive-like 
behaviors 28 days after surgery. In neuropathic pain group, LHb activity and CaMKII expression 
were increased along with decreases in dorsal raphe activity and serotonin levels. LHb lesions in 
this model also improved pain thresholds and depressive-like behaviors. They came to the 
conclusion that increased activity in LHb may be a common neurobiological mechanism 
underlying pain and depression coexistence. 

Medial prefrontal cortex (mPFC)/ Anterior cingulate cortex (ACC): The main cortical 
areas associated with reward are orbitofrontal cortex (OFC-areas 11,12,13,14 in humans) and 
anterior cingulate cortex (ACC- areas 24, 25, and 32). In imaging studies, distinguishing these 
cortical divisions are difficult; therefore, more broad definitions are used. Prefrontal regions 
include a caudal sensory region (i.e. parts of OFC and insula), a rostral OFC region, ventromedial 
PFC (vmPFC-including areas 11,10,32), and dorsal ACC (area 24). Medial PFC is a subregion of 
vmPFC; includes areas 10/32 (Haber and Knutson, 2010).  

 

vmPFC is implicated in reward processing, including diverse and abstract rewards. 
Rewarding outcomes by sensory cues activate vmPFC; however, abstract rewards (i.e. money) 
mainly activate the mPFC region. mPFC activation may also integrate value across different 
stimulus dimensions (e.g. magnitude, probability, benefits, costs, and immediacy) or different 
stimuli (Haber and Knutson, 2010). The overall function of dACC seems to involve monitoring 
motivation, cognition, and motor control functions in potential conflict situations (Vogt, 2005). 
dPFC (areas 9 and 46) is engaged when working memory is required for monitoring incentive-
based behavioral responses (Haber and Knutson, 2010).  



 

Figure 1-19 Medial prefrontal regions in human and mouse. 
ACC: anterior cingulate cortex; PL: prelimbic area; IL: infralimbic area; dl:dorsolateral, 
dm:dorsomedial, m:medial, vm:ventromedial, vl:ventrolateral PFC: prefrontal cortex. (Taken from 
Bicks, et al. 2015.) 

In major depressive disorder (MDD), ACC demonstrates reduced volume, related to both 
glial and neuronal loss, and hyperactivity in subgenual part (Drevets et al., 1997; Rajkowska, 
2000; Uranova et al., 2004; Mayberg, 2009; Russo and Nestler, 2013). In addition to ACC, gray 
matter loss was also observed in dorsolateral PFC and OFC in depressed individuals (Bora et al., 
2012; Du et al., 2012; Lai, 2013). The involvement of ACC (Knutson et al., 2008) and mPFC 
(Kumar et al., 2015) in reward processing was more pronounced in MDD. For instance, MDD 
patients showed reduced recruitment of vmPFC and lateral OFC during punishment and changes 
in reward contingencies (Hall et al., 2014). Reduced fronto-striatal connectivity during anticipation 
of high magnitude gains and losses (Ubl et al., 2015) and during rest (Anand et al., 2009, 2005) 
were documented in major depression. Subgenual ACC connectivity with DMN regions during 
rest were greater in MDD and sgACC functional connectivity correlated positively with the length 
of the current depressive episode (Greicius et al., 2007).  

Representation of reward in OFC and pain-related activity in insula were found to be 
positively associated (Talmi et al., 2009) so that the increased activation in insula prioritizes pain 
avoidance over obtaining a reward with increased activation in OFC. Activations in both NAc and 
ACC towards rewards were attenuated as a function of anticipated pain levels. OFC also seems 
to mediate reward-induced pain inhibition via increased anti-correlations with anterior insula, 
dACC, and primary sensory cortex (Becker et al., 2017). Patients with neuropathic pain following 
spinal cord injury showed dorsolateral PFC(dlPFC) and subgenual ACC gray matter loss (Yoon 
et al., 2013); volumetric losses were also reported in chronic back pain for dlPFC (Apkarian et al., 
2004); in fibromyalgia for mPFC (Kuchinad et al., 2007) and ACC (Lutz et al., 2008); in CRPS for 
vmPFC (Geha et al., 2008). Diabetic neuropathic pain (Cauda et al., 2010) was associated with 
increased FC between dACC-DMN and decreased FC between dlPFC-DMN. Chronic back 
pain(CBP) patients showed increased activation of mPFC and ACC during sustained pain (Baliki 
et al., 2006) and an attenuated FC between mPFC-precuneus was reported for CBP, CRPS, and 
osteoarthritis (Baliki et al., 2014).  

The ACC is an integration center that interconnects neurons from the frontal cortex, the 
thalamus and the amygdala, processing cognitive, emotional and autonomic functions (Yalcin et 
al., 2014a). ACC is implicated in the processing of pain, anticipation of pain, and avoidance 



learning; this region shows synaptic changes and increased activity in various chronic pain 
models along with volume decrease associated with emergence of anxiety behaviors 
(Seminowicz et al., 2009; Yalcin et al., 2014a). ACC is thought to play an important role in pain-
depression comorbidity: Hyperactivity of this region (comprising areas 24a/24b in mice) was 
associated with anxio-depressive consequences in a cuff model of neuropathic pain in mice 
(Sellmeijer et al., 2018) and optogenetic inhibition of the area provided relief from pain aversion 
and anxio-depressive phenotype without affecting mechanical hypersensitivity in this model. 
Another study (Barthas et al., 2017) showed ACC overexpression of mitogen-activated protein 
kinase phosphatase-1 (MKP-1) in chronic pain-induced depression, CUMS model and ACC 
optogenetic stimulation in mice which was reversed by antidepressant use; knockout, local 
silencing and pharmacological inhibition of MKP-1 alleviated depressive behaviors. In addition, 
lesion or optogenetic activation of prelimbic area (PL), part of rodent mPFC, induced both 
analgesic and anxiolytic effects; GABAergic activation in the region decreased pain responses 
and anxiety, and activation of PL projections to the NAc produced relief from chronic pain (Lee et 
al., 2015; Vachon-Presseau et al., 2016; Wang et al., 2015; Z. Zhang et al., 2015).   

Amygdala: Amygdala is responsible from emotional coding of environmental stimuli and 
providing contextual information used for adjusting motivational level. Imaging studies show that 
amygdala activates both in contexts of potential reward and punishment, thus it responds more 
to stimulus arousal than value. Amygdala is prominently implicated in fear learning in animal 
studies; in addition, amygdala deactivates in response to devaluation of previously rewarding 
stimuli (Haber and Knutson, 2010). 

Amygdala hyperactivity, especially seen in basolateral amygdala (BLA) excitatory tone, 
was demonstrated in MDD (Russo and Nestler, 2013). In functional neuroimaging, depressed 
patients showed enhanced activity in the amygdala and bilateral caudate-putamen (CPu) in 
response to individualized self-critical words compared to controls (Doerig et al., 2016). Moreover, 
amygdala was coupled positively with bilateral medial temporal, ventral occipital regions and 
negatively with the ACC in depressed individuals in an implicit sad affect processing task (Chen 
et al., 2008) and chronic antidepressant use induced higher functional coupling of amygdala with 
right frontal cortex, ACC, striatum, and thalamus. During viewing of negative pictures, depression 
severity correlated with left amygdala, bilateral OFC and left insula activity (Lee et al., 2007).  In 
addition, bilateral amygdala volume reduction was detected in patients with depression (Hickie et 
al., 2007; Sheline et al., 1998). 

Amygdala is also another candidate for an important player in affective consequences of 
pain. In addition to fear processing, amygdala (i.e. central amygdala) has  connections to pain 
centers and contains nociceptive neurons (Yalcin et al., 2014a). Amygdala hyperactivity and 
volume increase (Gonçalves et al., 2008), along with signaling changes in several 
neurotransmitter systems have been observed in chronic pain models. Amygdala involvement in 
spinal cord central sensitization processes and influence on PFC (Baliki and Apkarian, 2015) 
further highlights the role of amygdala in chronic pain.  

Hippocampus: Hippocampal regions are anatomically and functionally connected to 
reward circuitry (Haber and Knutson, 2010). Reward processes modulate memory formation and 
reward learning informs goal-directed behaviors (Adcock et al., 2006; Kahn and Shohamy, 2013; 
Le Merre et al., 2018).  



Hippocampus dysfunction had long been observed in major depressive disorder (MDD) 
(Belzung et al., 2015; Wingenfeld and Wolf, 2014) including reduced hippocampal volume 
associated with synaptic and glial loss (Russo and Nestler, 2013). In addition, neuroimaging 
research featuring reward tasks in major depression discovered various hippocampal 
abnormalities: Reward learning signals in many regions including VS, ACC, retrosplenial cortex 
(RSP), midbrain, and hippocampus were reduced for depressed patients (Kumar et al., 2008). 
Dorsal raphe, PAG and hippocampus were hyperactive during unsuccessful loss-avoidance, 
whereas median raphe was hypoactive (Johnston et al., 2015); during loss events, hippocampus 
failed to deactivate. Healthy subjects demonstrated a stronger encoding response in the right 
parahippocampus and dopaminergic midbrain for reward-paired drawings versus non-rewards 
(Dillon et al., 2014) while depressed individuals showed the opposite pattern.  

Furthermore, hippocampus likely plays a role in cognitive and affective consequences of 
chronic pain: deficits in working memory and short/long-term memory have been detected in 
chronic pain models (Yalcin et al., 2014a). Neurogenesis and synaptic plasticity were shown to 
be impaired in preclinical pain models (Mutso et al., 2012). In a rat spared nerve injury (SNI) 
model, increased HIP connectivity towards VS and sensorimotor areas inversely correlated with 
mechanical pain thresholds (Baliki et al., 2014) and activation of dorsal HIP reversed allodynia in 
the same model (Apkarian et al., 2018). Hippocampus volume was found to be reduced in chronic 
pain patients with fibromyalgia (Kuchinad et al., 2007; Lutz et al., 2008), CRPS, and CBP (Mutso 
et al., 2013). Moreover, decreased FC between hippocampus and mPFC (Mutso et al., 2013) 
predicted chronification of back pain. 

Ventral pallidum (VP): In rats, the term VP was first used to describe the forebrain region 
below the anterior commissure, extending into anterior perforated space that contained pallidal-
like cells. Substantia innominata (SI) is also an extension of the reward-related striato-pallidal 
complex. VP receives inputs from VS, subthalamic nucleus (STN), and midbrain dopaminergic 
neurons and projects to STN, hypothalamus, SN/VTA, PPT, MD nucleus of thalamus, striatum, 
and LHb (Haber and Knutson, 2010). Glutamatergic VP neurons seems to play a role in aversion 
processing, while canonical GABAergic VP neurons promote reinforcement and encode the 
hedonic value of reward (Wulff et al., 2018) via their influence on VTA and LHb. 

Thalamus: Mediodorsal nucleus (MD) of thalamus projects to PFC and is the final link in 
the reward circuit; it completes the reward circuit back to cortex. MD receives reciprocal and non-
reciprocal inputs from the cortex. Thalamic relay nuclei from the basal ganglia seem to integrate 
information flow from reward and higher cortical association areas of the PFC (Haber and 
Knutson, 2010).   

  



1.2.3.2 Rodent models of chronic pain and its affective consequences 

Although the reciprocal interaction between pain and depression is well documented, 
clinical pain conditions and depressive outcomes are very heterogenous; rendering the study of 
underlying neurobiological mechanisms challenging. Preclinical animal research is uniquely 
positioned to address this issue; as the experimental conditions can be carefully controlled and 
pain variables can be precisely measured (Li, 2015). Moreover, preclinical studies allow for more 
invasive methodologies; the effects of novel pharmacological and non-pharmacological 
analgesics can be tested in animals (Thompson and Bushnell, 2012). 

 Chronic pain models: Many animal models have been developed that are designed to 
model different aspects and/or origins of sensory pain and have good construct, face and 
predictive validity (e.g. inflammatory, nerve injury or cancer pain) (Li, 2015). Since trauma is one 
of the leading causes of neuropathic pain and it can be easily applied in animal models, most 
chronic pain models are based on nerve injury. Commonly used nerve injury-induced chronic pain 
models in rodents are as follows (Doan et al., 2015; Li, 2015; Yalcin et al., 2014a): Chronic 
constriction injury (CCI), partial sciatic nerve ligation (PSNL), spinal nerve ligation (SNL), common 
peroneal nerve ligation, spared nerve injury (SNI), and cuff model. Several of these rodent pain 
models have been used to study the anxiety and depression-like comorbidity.(Doan et al., 2015). 
Previous studies showed that it is possible to model the relation between chronic pain and anxiety 
and depressive-like consequences by taking into consideration the time factor (Gonçalves et al., 
2008; Suzuki et al., 2007; Yalcin et al., 2014a). Indeed, in chronic pain models, while the 
hypersensitivity to pain develops quickly, anxio-depressive behaviors are time dependent and 
develop much slower; usually weeks after primary injury (Li, 2015). Time-dependence of affective 
consequences of pain points to a reorganization of brain circuits or neuroplasticity in the interim.  

Behavioral tests for anxio-depressive phenotype: There are several renowned and 
well-validated behavioral tests which could be employed to demonstrate anxio-depressive 
consequences of chronic pain in rodents (Yalcin et al., 2014a). They are summarized in Table 

. Depression also includes homeostatic, neurovegetative (abnormalities in sleep, appetite, 
weight), or cognitive symptoms; however these symptoms are much less studied in chronic pain 
paradigms (Yalcin et al., 2014a). 

Table 1-3 Commonly used behavioral tests for anxiety and depression related phenotypes. 

Anxiety-related Depression-related 

Exploratory-based approach-avoidance conflict 
tests 

 Elevated plus maze (EPM) 
 Open field (OF) 
 Light-dark exploration (LD) 

Exposure to stressful situations and the measure of 
time spent in active versus passive stress coping 

 Forced swimming test (FST) 
 Tail suspension test (TST) 
 Learned helplessness 

Interest in pleasurable activities 
 Sucrose preference test (SP) 
 Social interaction measures (SI) 

Motivation 
Marble burying (MB) 

Both anxiety and depression related 

Novelty suppressed feeding test (NSF) 



Table 1-4 Selected studies on the affective consequences of neuropathic pain. 
(Table taken from Yalcin, Barthas, and Barrot (2014).) ALB: anxiety-like behavior, DLB: depression-
like behavior, BB: burrowing behavior) 

 



1.2.3.3 Structural and functional MRI of preclinical depression models 

Although the comorbidity of chronic pain and depression is well-established; there is a scarcity of 
research on this topic in the MRI field, both in clinical and preclinical settings. To the best of our 
knowledge, there is no animal MR imaging study focusing on depression induced by neuropathic 
pain. However, in order to see whether the brain mechanisms underlying pain-induced and stress-
induced depression are similar or distinct and develop targeted therapies for each individual 
pathology; it is paramount to study and compare the two conditions. The following table (Table 

) offers an overview on animal imaging studies of depression induced by other models, mainly 
stress-related mechanisms. As discussed earlier, several brain regions pertaining to reward 
circuitry show dysfunction in depression models.  

Table 1-5 Preclinical imaging studies in rodent depression models.  
Abbreviations: DKI: Diffusion kurtosis imaging; HR-MRI: high resolution MRI; rCBV: regional cerebral 
blood volume; MEMRI: manganese enhanced MRI; MK: mean kurtosis; AD: axial diffusivity; RD: radial 
diffusivity; ALFF: amplitude of low frequency fluctuations; CPu: caudate-putamen; AMY: amygdala; 
BLA: basolateral amygdala; PFC: prefrontal cortex; DG: dentate gyrus; FC: functional connectivity; 
DRN: dorsal raphe nucleus; BNST: bed nucleus of stria terminalis; DMN: default mode network; TH: 
thalamus; HY: hypothalamus; HIP: hippocampus; vHIP: ventral hippocampus; BDNF: brain-derived 
neurotrophic factor. 

Study Species Model Imaging modality Findings 

 

Delgado y 
Palacios et al. 

2014 

 

Rat 

 

Chronic mild 
stress 

 

DKI, HR-MRI 

 

MK reduced; AD increased at CPu 
for stress susceptible animals: RD 
at AMY increased; CPu/brain 
volume ratio increased 

Gass et al. 2014 Rat Congenital 
learned 

helplessness 
(cLH) 

rCBV, rs-fMRI rCBV bilaterally increased in LHb, 
DG, subiculum; decreased in BNST 
for cLH 

FC increased for DRN-forebrain 
serotonergic connections, 
hippocampo-frontal network and 
BNST-lateral frontal connection in 
cLH 

Henckens et al. 
2015 

Rat Immobilization 
stress 

rs-fMRI, DKI, HR-
MRI 

FC in somatosensory, visual and 
DMN areas increased in chronic 
stress  

Volume and diffusivity of lateral 
ventricles increased in stress 

Gass et al. 2016 Rat Congenital 
learned 

helplessness 
(cLH) – negative 
cognitive state 

rats 

rs-fMRI Increased internodal role, 
decreased local 
clustering/efficiency in ACC and PL 
for negative cognitive state 

Enhancement of long-range 
connections (AMY, DMN) 

 



Study Species Model Imaging modality Findings 

 

Grandjean et al. 
2016 

 

Mouse 

 

Chronic 
psychosocial 
stress (CPS) 

 

rs-fMRI, DTI 

 

Overall increased FC including PFC 
and cingulate networks (mouse 
DMN) in stressed mice: increased 
between network FC for AMY-PFC 
and AMY-cingulate networks 

Increased FA in cingulum bundle 

Laine et al. 2017 Mouse Chronic 
psychosocial 
stress (CPS) 

MEMRI Increased activity in PFC, BNST, 
vHIP, and PAG for stressed mice 

Clemm von 
Hohenberg et 

al. 2018 

Rat Negative 
cognitive state 

(NC/cLH) 

rs-fMRI Optogenetic perturbation of LHb 
decreased DMN FC in NC rats 

Huang et al., 
2018 

Mouse Chronic 
unpredictable 

mild stress 
(CUMS) 

rs-fMRI ALFF was increased in HIP and 
PFC; decreased in BLA; BDNF 
levels were inversely correlated 
with ALFF; increased in BLA and 
decreased in HIP, PFC for CUMS. 

 

 

  



2 Hypothesis and Objectives 
My main objective in this thesis work is to map functional and structural brain connectivity 

alterations in neuropathic pain and depression comorbidity using preclinical MRI in a mouse 
model. Probing the brain networks in a mouse model is an important step for translational 
research as similar MRI techniques exist for clinical investigations and therefore, animal findings 
can be transferable to humans. Such characterization of the network fluctuations underlying 
depression development would bring essential information regarding the mechanisms of the 
disease, paving the way towards targeted therapeutic interventions. In addition, such altered 
circuitry patterns might constitute specific biomarkers of the disease, relating with the causality 
(i.e. pain) or the severity and specificity of the mood disorder. 

I conducted a preliminary study to inform the choice of mouse strain to be used in the 
neuropathic pain-induced depression model: Many inbred strains of mice are commercially 
available and C57BL/6N and BALB/cJ are the two strains most commonly used for depression 
studies. However, important strain differences as well as intra-strain variability were reported in 
the literature regarding both the behavioral outcomes and neuroanatomy (Fairless et al., 2013, 
2012; Kim et al., 2012). Therefore, an important aspect in my project was to compare the brain 
connectivity between C57BL/6N and BALB/cJ mice using structural and functional MRI, with the 
aim of determining more adapted strain for modelling depression. (see section 3.1, page 47) 

Subsequently, I applied non-invasive, in vivo MRI methods in a longitudinal experimental 
design in neuropathic pain-induced depression model, aimed at following the development of 
the anxio-depressive phenotype and brain network remodeling over time.  

My hypothesis is that neuropathic pain and subsequent anxio-depressive phenotype are 
associated with time-dependent changes in brain structure and connectivity at functional and 
structural levels. Based on the previous literature discussed in the Introduction section; I predict 
alterations in brain regions linked to both pain processing and reward circuitry. The alterations 
likely mirror human counterparts of modifications in the brain structure and connectivity for these 
pathological processes and could be useful for developing novel treatments for patients. (see 
section 3.2, page 74).

  



3 Results 
3.1 Mapping the living mouse brain neural architecture: strain specific 

patterns of brain structural and functional connectivity. 
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3.1.1 Introduction 

Animal models of disease - essential for neuroscience research, are gaining huge 
importance in the recent years with the development of genetically modified mice and novel 
methods to investigate brain function. However, the diversity in the genetic background of the 
organisms used for modelling pathology raises questions of the impact of genetic confound on 
findings (Crawley et al., 1997; Keane et al., 2011). Indeed, each strain of mice display distinct 
sets of behavioral, neurochemical and neuroanatomical features (Grubb et al., 2004). Among 
these strains, C57BL/6 and BALB/cJ the commonly used inbred mouse strains, are prime 
examples of such divergent phenotypes (Anderzhanova et al., 2013; Belzung and Griebel, 2001; 
Calcagno et al., 2007). 

At behavioral level, BALB/cJ strain displays neophobia (i.e. reluctance to engage with 
novel stimuli) and elevated anxiety (Anderzhanova et al., 2013; Ohl et al., 2001), in contrast to 
C57BL/6 mice. At young ages, social proximity is not rewarding for BALB/cJ mice (Panksepp and 
Lahvis, 2007) and they typically show reduced sociability towards conspecifics (Brodkin, 2007; 
Brodkin et al., 2004; Jacome et al., 2011; Moy et al., 2007; Sankoorikal et al., 2006). Such 
differences in social behavior are accompanied by differences in early maternal care (Lassi and 
Tucci, 2017) as BALB/cJ mice present a weaker maternal attachment to offspring compared to 
C57BL/6 mice. To divulge the underlying mechanisms of different behavioral phenotypes in 
C57BL/6 and BALB/cJ mice, neurochemical and neuroanatomical studies are indeed necessary 
(Belzung and Griebel, 2001). For instance, it has been previously demonstrated that serotonergic 
and dopaminergic neurotransmitter systems show strain-dependent variations in the brain 
(Calcagno et al., 2007; Guzzetti et al., 2008). At anatomical and microstructural level, longitudinal 
in-vivo diffusion tensor imaging (DTI) (Le Bihan, 2014; Le Bihan and Breton, 1985) of BALB/cJ 
and C57BL/6J mouse brains (Kumar et al., 2012) showed as well differences in developmental 
trajectories along major white matter (WM) tracts, such as the corpus callosum, as well as of gray 
matter (GM) regions including thalamic areas and frontal motor cortices. 

Besides inter-strain differences, within strain inter-individual variations were also reported, 
especially concerning the BALB/cJ animals. Neuroanatomical studies using histological methods 
revealed variability of the size - even complete absence - of the corpus callosum (cc) in BALB/cJ 
mice (Wahlsten, 1974). The size of this structure (Fairless et al., 2008) and whole brain size 
(Fairless et al., 2012) were correlated with social measures in 30-day-old BALB/cJ mice. In 
addition to histology, anatomical magnetic resonance imaging (MRI) and DTI of the brain, 
evaluating morphology and microstructural features (Kim et al., 2012; Kumar et al., 2012), further 
revealed associations between sociability and DTI-derived parameters in several brain regions 
(Kim et al., 2012), including gray matter, of BALB/cJ male mice. For instance, positive regression 
between fractional anisotropy (FA) - an index of water diffusion orientation and indirectly of tissue 
organization – and social sniffing times was found in regions located in thalamic nuclei, zona 
incerta, substantia nigra, visual/orbital/ somatosensory cortices, and entorhinal cortex of BALB/cJ 
strain (Kumar et al., 2012).  

In clinics, alterations in the corpus callosum region has also been detected in subgroups 
of autism spectrum disorders (ASD) patients (Alexander et al., 2007; Just et al., 2006). Indeed, 
behavioral phenotype of BALB/cJ mice also share similarities with certain aspects of ASD, namely 
the low sociability, higher anxiety and aggression (Brodkin, 2007; Liska and Gozzi, 2016). Such 
behavioral phenotypes might stem from the underlying architecture of neural circuitries and 



established patterns of brain communication. Therefore, mapping the brain connectivity blueprints 
is an essential field of study in neurology and experimental neuroscience.  

A detailed non-invasive insight into the whole brain axonal connectivity in vivo has become 
possible with the development of diffusion based tractography (Horsfield and Jones, 2002) and 
high-resolution fiber mapping (hrFM) (Calamante et al., 2011; Harsan et al., 2013). In mice, non-
invasive DTI based fiber mapping revealed the spatial organization of axonal and dendritic 
networks in brain WM regions, in good agreement with the spatial projection patterns visualized 
using viral axonal tracer data (Wu and Zhang, 2016). 

Meanwhile, the functional brain communication or connectivity (FC) can be deciphered 
non-invasively via resting-state functional MRI, detecting low frequency fluctuations in the blood 
oxygen level-dependent (BOLD) fMRI signals and their temporal correlations (Chuang and 
Nasrallah, 2017). Baseline BOLD signals manifest correlations between distinct brain areas that 
are co-activated during a task; thus, said to be functionally connected (Biswal et al., 1995). 

In mouse models, deciphering strain-related patterns in the brain structural and functional 
connectivity or intra-strain variations of the brain wiring schemes have a tremendous importance, 
since these animals are used to answer questions relating to human neurological or 
neuropsychiatric disorders. In this context, the principal goal of our study was to bridge this gap 
by systematically probing the brain connectivity patterns of two mouse strains extensively used 
in preclinical neuroscience, including brain connectivity studies: C57BL/6N and BALB/cJ 
(Grandjean et al., 2017; Grubb et al., 2004; Hübner et al., 2017; Liska et al., 2015; Mechling et 
al., 2016; Shah et al., 2016a). We thus performed comparative MRI exploration of brain structure 
and function via a combination of brain deformation-based morphometry (DBM), DTI and hrFM 
and resting state functional MRI (rs-fMRI) in female animals.  

  



3.1.2 Materials and Methods 

3.1.2.1 Ethics statement 

All procedures were conducted in compliance with the European Directive 2010/63/EU on 
the protection of animals used for scientific purposes, national guidelines of the German animal 
protective law for the use of laboratory animals and with permission of the responsible local 
authorities for the University Medical Center Freiburg (Regierungspräsidium Freiburg, permit 
numbers: G-08/15). 

3.1.2.2 Animal setup 

8-9 weeks old female C57BL/6N (n=11) and BALB/cJ (n=14) mice, purchased from 
Charles River Laboratories (Sulzfeld, Germany) were used for the MRI experiments. Animals 
were housed under standard animal room conditions (temperature 21°C, humidity 55-60%, food 
and water were given ad libitum). 

For the rs-fMRI scans, the animals were initially anesthetized moderately using a 
subcutaneous (s.c.) medetomidine (MD, Domitor, Pfizer, Karlsruhe, Germany) bolus injection of 
0.3 mg per kg body weight in 100 μl 0.9% sodium chloride solution. Preparation for the imaging 
session included the placement of the animal into the adapted imaging bed, stereotactic fixation 
of the head and attachment of physiological monitoring devices (pulse oximeter clipped to the 
hind paw, rectal temperature probe and pressure sensitive respiration pad placed underneath the 
abdomen). 15 minutes after the MD bolus injection, a continuous s.c. MD infusion of 0.6 mg per 
kg body weight in 200 μl per hour was applied to the animals throughout the rs-fMRI exams.  
Animals were monitored strictly for optimal physiological conditions (spO2: 97-99%, body 
temperature: 35.5±1.5°C, respiratory rates: 100-130 breaths/min). For the morphological T2-
weighted and diffusion MRI acquisitions, anesthesia was switched to 1.5% isoflurane (Forene; 
Abbvie Deutschland GmbH & Co. KG, Wiesbaden, Germany) in 1.2 l/min oxygen and respiratory 
gating was performed. At the end of experiments the mice spontaneously recovered.  

3.1.2.3 Data acquisition 

All scans were performed using a 7T small bore animal scanner (Biospec 70/20, Bruker, 
Ettlingen, Germany), a cryogenically cooled quadrature mouse brain resonator (MRI CryoProbe, 
Bruker, Ettlingen, Germany) and the ParaVision software version 5.1 (Bruker, Ettlingen, 
Germany).  

Resting-state fMRI data was acquired with T2*-weighted single shot Gradient Echo-echo 
planar imaging (GE-EPI) sequence using an echo time (TE) of 10 ms and repetition time (TR) of 
1700 ms. 12 axial slices of 0.7 mm thickness were positioned on the mouse brain excluding 
olfactory bulb and cerebellum, field of view (FOV) and acquisition matrix were 19 × 12 mm2 and 
128 × 80, respectively. A resolution of 0.15 × 0.15 × 0.7 mm3 was achieved and 200 volumes 
were recorded in an interlaced fashion for each run. 

High resolution T2-weighted anatomical images (resolution of 0.051 × 0.051 × 0.3 mm3) 
were acquired with a RARE sequence using the following parameters: TE/TR = 50 ms/6514 ms; 
48 slices, 0.3 mm slice thickness, interlaced sampling, RARE factor of 4, 2 averages; an 
acquisition matrix of 256 × 196 and  FOV of 1.3×1 cm2. 



Structural connectivity was investigated based on DTI data. Acquisitions were carried-out 
using a 4-shot DT-EPI sequence (TE/TR = 26 ms / 7750 ms; gradient duration (δ) = 4 ms and 
gradient separation (Δ) = 14 ms), with diffusion gradients applied along 30 nonlinear directions 
(Jones, 2004) and a b-factor of 1000 s/mm2. 25 axial slices with 0.5 mm thickness were acquired 
with a FOV of 1.5 x 1.2 cm² and an acquisition matrix of 160 x 128 resulting in an image resolution 
of 0.094 x 0.094 x 0.5 mm3.  

3.1.2.4 Data processing 

Anatomical MRI analysis 

T2-weighted images were compared across groups using a DBM framework. First, each 
image was corrected for bias field inhomogeneity using N4ITK (Tustison et al., 2010). Then, all 
images were jointly registered in a deformable way using the group-wise registration procedure 
implemented in the ANTs registration toolbox (http://stnava.github.io/ANTs/) (Avants et al., 2011). 
Jacobian maps were computed for each estimated deformation field and a logarithmic 
transformation was applied on them so that dilation (i.e. jacobian greater than one) and 
contraction (i.e. jacobian between 0 and 1) are mapped on [0; +∞ [and]-∞; 0], respectively. These 
maps were finally smoothed using a Gaussian kernel (FWHM: 0.2 mm). Intergroup comparisons 
were conducted at the voxel level using the general linear model implemented in SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/). Statistical maps were thresholded at P< 0.05 after false 
discovery rate (FDR) p-value correction. Results were superimposed on the average 
morphological image built from the group-wise registration procedure.  

Diffusion Tensor MRI data analysis and high-resolution fiber mapping (hrFM) 

Post-processing of the diffusion data was performed using an in-house developed DTI and 
FiberTool software package for SPM (Harsan et al., 2013; Reisert et al., 2011). Diffusion based 
parameter maps were generated, including FA, mean diffusivity (MD), radial (RD) and axial 
diffusivities (AD). We further performed diffusion tractography using a global fiber tracking 
algorithm (Harsan et al., 2013; Reisert et al., 2011). With this family of tractography algorithms, 
the reconstructed fibers are built with small line segments (particle) described by a spatial position 
and orientation. These segments are the basic building blocks of a fiber model, bounding together 
to form the individual fibers. Their orientation and number are adjusted simultaneously and the 
connections between segments are formed based on a probabilistic procedure (Reisert et al., 
2011). To generate fiber density (FD) maps, the number of tracts in each element of a grid was 
calculated from whole-mouse brain fibers in a manner very similar to previously published 
methodology (Calamante et al., 2011; Harsan et al., 2013). Further, the method used the 
continuity information contained in the fibers reconstructed during the global tracking procedure, 
to introduce sub-voxel information based on supporting information from neighboring voxels. After 
the generation of sufficient number of fibers passing a voxel at different spatial locations, their 
density was used as intravoxel information to construct highly resolved spatial histograms of 
diffusion orientations referred to as hrFM. The directionality of the fibers was therefore 
incorporated into the hrFM by assigning red/green/blue color to different spatial directions: red: 
mediolateral, green: dorsoventral and blue: rostro-caudal orientation. 

The grid size was tailored to generate maps of 12 x 12 x 50 μm3 of resolution, 8 times the 
resolution of the acquired data. hrFM allowed individual assessment of the connectivity features, 
highlighting fine details of the structural brain scaffolding.  



Diffusion MRI parametric maps were also compared across groups using a voxel-based 
analysis. The FA and FD maps were jointly registered using the multimodal group-wise 
registration procedure implemented in the ANTs registration toolbox (Avants et al., 2011). The 
analysis was then conducted using the voxel-based quantification (VBQ) method (Draganski et 
al., 2011) which implements a combined weighting/smoothing procedure, avoiding parameter 
value changes by Gaussian smoothing applied in standardized space. Furthermore, we 
conducted voxel-wise analysis on FD maps modulated by jacobian values - in a similar way to 
the modulated grey matter probability map used in DBM (Good et al., 2001)- in order to quantify 
the amount of fibers in the standardized space which accurately reflects that of the native space. 
A Gaussian kernel with a FWHM of 0.5 mm was applied here. Intergroup comparisons were 
conducted at the voxel level using the general linear model in SPM12.  Statistical maps were 
thresholded at p< 0.05 after false discovery rate (FDR) p-value correction. Results showing higher 
statistical values for each group were superimposed on the average FD or FA images built from 
the corresponding group images. 

Resting-state fMRI analysis 

Each of the resting-state fMRI image volumes were first realigned on the corresponding 
first scan, using a least square approach and a 6-parameter rigid body transformation in space. 
The rs-fMRI data was next registered to a morphological template created from individual T2*-
weighted scans with ANTs software using deformable SyN algorithm (Avants et al., 2011). 
Spatially normalized images were smoothed using a Gaussian kernel with FWHM of 0.3×0.3×0.7 
mm3 on SPM8 and a zero-phase band-pass filter was applied to extract frequencies between 
0.01-0.1 Hz, representatives of the low rs-fMRI Blood Oxygen Level Dependent (BOLD) signal. 
The signal from ventricles was regressed out using a least square approach in order to reduce 
non-neural correlations from the cerebrospinal fluid. Several analysis approaches were applied 
on this data as following: 

Graph theory-based analysis of functional connectivity 

To evaluate direct correlations between spatially separated regions of interest (ROIs), 
Partial Correlation (PC) analysis was performed (Hübner et al., 2017) between the mean time 
courses of the resting-state BOLD signal of included ROIs. 37 ROIs covering the major mouse 
brain cortical and subcortical areas were extracted from the Allen Brain Atlas (AMBA) 
(http://mouse.brain-map.org/static/atlas) (Lein et al., 2007) and registered on morphological 
template using an in-house built MATLAB tool.  

The following analysis steps were carried out:  

i. Groups specific average FC matrices of 37x37 ROIs (corresponding to each experimental 
group: C57BL/6N and BALB/cJ mice) were generated and the matrices were arranged according 
to the most similar pattern of connectivity across ROIs. The matrices were Fisher transformed to 
obtain the z scores associated to the connection strength – the edges - between pairs of ROIs. A 
one-sample t-test (p<0.05, FDR corrected) was applied to identify the statistically significant pairs 
of connections (edges). The resulting significant FC matrices were used to as inputs for graph 
theory measures. For each group, the most influent nodes of the network were identified using as 
parameters the weighted hubness (presented as the size of the node in the graph) and the 
Stouffer coefficients (color coded).  



ii. Direct intergroup (C57BL/6N vs. BALB/cJ) statistical comparison of connectivity matrices 
(P<0.05, uncorrected) was performed to identify the most different “nodes” and “edges”. A group 
comparison matrix (GCM) was generated and graphically represented (e.g. Figure 4G) with a 
color-scale, displaying statistically significant inter-group differences of connectivity. A method to 
identify most different network nodes among the FC matrices of the two strains was implemented. 
The following information was taken in account for ranking the most different nodes: the number 
of significantly changed connections for each node, the strength of the connection difference 
between pair of nodes and the number of statistically different connections of the neighboring 
nodes. This information is graphically represented in the GCM in relationship with the node’s size 
and ranked in Figure 4H. Additionally, the group comparison matrix was used for calculating the 
Stouffer coefficients (Stouffer et al., 1949) for each node. A single p-value was computed for each 
region based on the combination of the p-values derived from the statistical tests made on the 
correlations with all other regions.  The results were color-coded for most significantly different 
nodes (e.g. nodes color in the Figure 4B, E, G). 

Seed-based functional connectivity analysis was further performed with a MATLAB tool 
developed in-house. Several ROIs (extracted from AMBA) were selected for this analysis based 
on the DTI and DBM results, as well as based on the previously published reports (Anderzhanova 
et al., 2013; Fairless et al., 2012; Kim et al., 2012; Kumar et al., 2012; Ohl et al., 2001, p. 6; 
Sankoorikal et al., 2006; Wahlsten, 1974) on the behavior of C57BL/6N and BALB/cJ mice. These 
ROIs were:  

i. Right and left somatosensory cortex (SSr and SSl) and right and left motor cortex (MOr 
and MOl). These ROIs were used to check the inter-hemispherical connectivity.  

ii. Anterior cingulate area (ACA) and retrosplenial cortex (RSP), to derive information about 
the default mode patterns in the two mouse strains. c)  Key players of the known reward aversion 
circuitry: accumbens nuclei (ACB), hippocampus (hc).   

iii. Partial correlation coefficients (Spearman correlation) were computed between the mean 
rs-fMRI time course of each ROI and the time courses from each voxel of the brain while excluding 
the effect of all the remaining voxels. Functional connectivity maps for each ROI were constructed 
at the individual level and also at the group level. Voxel-wise group based statistical analysis was 
performed using a two-sample t-test via SPM8 and the statistical results were cluster corrected 
at the P<0.05, FDR cluster corrected.  

  



Directional connectivity analysis (DCA) 

To probe dominant asymmetric information flow alterations within small network, 
population level directionality analysis using MVGC toolbox was performed (Barnett and Seth, 
2014). A small network was constructed via selection of six regions of interest that showed 
structural/function strain differences in previous analysis: nucleus accumbens (ACB), anterior 
cingulate area (ACA), amygdala (AMY), caudate-putamen (CP), hippocampus (hc) and ventral 
tegmental area (VTA) (Figure 9 A). Briefly, the pre-processed resting state functional data was 
deconvolved (Wu et al., 2013) and pairwise unconditional Granger causality (completely data 
driven approach) (Barnett and Seth, 2014; Roebroeck et al., 2005) was carried-out on all possible 
seed pairs included in the constructed network, for each subject. Akaike information criterion (AIC) 
was engaged to find the best stable model order. Statistical analysis was implemented following 
t-test with multiple hypothesis testing (FDR correction, p<0.05).  

  



3.1.3 Results 

3.1.3.1 DTI reveals strain differences in structural connectivity 

Diffusion tensor imaging data obtained from the BALB/cJ and C57BL/6N cohorts were 
used for global mouse brain fiber tracking, generation of hrFM as well as mapping of FA, RA, AD 
and trace values. These maps were assessed at individual and group levels.  hrFM, displaying 
color-coded fiber orientations, were used as a first step to explore the whole brain structural 
connectome. Figure  (on the next page) presents exemplary hrFMs, representative for each 
strain (Figure -A for BALB/cJ strain and B for C57BL/6N strain). These maps are highlighting 
the variability of inter-hemispherical connectivity through corpus callosum (cc) within the BALB/cJ 
strain (Figure -A and B). Certain individuals from BALB/cJ group had visibly shorter cc; the 
variability along this major inter-hemispherical pathway is clearly identified at different callosal 
levels; namely the genu (gcc), body or middle part (mcc), and splenium (scc) parts (Figure ). 
Additionally, statistical tests on fiber density maps showed higher variability within the BALB/cJ 
population (data not shown). C57BL/6N strain, in contrast, showed homogenous and well-defined 
structure of this region (Figure -B). 

 

Figure 3-1 Living mouse brain connectional anatomy in BALB/cJ and C57BL/6N 
mouse brains.   
Representative high-resolution fiber maps (hrFM) were generated from the global fiber tracking 
data and were reconstructed with a resolution of 12×12×50 μm3, at different bregma levels 
(bregma -0.6; -0.7 and -0.9). (A and B): Variability within the BALB/cJ mice population along 
the patterns of callosal (cc) connectivity. Reduced inter-hemispherical connectivity is seed in 
BALB/cJ mouse 1 compared to BALB/cJ mouse 2, at the levels of genu of the corpus callosum 
(gcc), body of the corpus callosum (bcc) and splenium of the corpus callosum (scc), suggestive 
of shorter callosal size in mouse 1.  (C) Overall view of the connectional architecture in a 
C57BL/6N individual. The color-coding indicates the local fiber orientation: red, mediolateral; 
green, dorso-ventral; blue, rostro-caudal. 

  



To further assess the inter-strain differences, group-specific mean FD maps were 
generated (Figure -A and B) illustrating strain FD differences along the length of the cc. 
Individual FD maps were further used for voxel-wise statistical group comparison (C57BL/6N vs. 
BALB/cJ) (Figure -C and D). The C57BL/6N strain shows higher FD than BALB/cJ mice 
(p<0.05, FDR corrected; Figure -C) at the level of WM structures such as gcc and scc, 
fasciculus retroflexus (fr) or cerebral peduncle (cp). Significant differences are demonstrated in 
GM regions including prelimbic and anterior cingulate areas (PL and ACA), caudate putamen 
(CP) and dorsal hippocampus (dhc), temporal association areas (TEa), thalamus (TH), 
periaqueductal gray (PAG), and midbrain nuclei (MB). The shape of the areas is suggestive of 
FD differences along striato-cortical pathways (scp), reaching notably the ACA. By contrast, the 
statistics indicate higher FD values in BALB/cJ strain compared to C57BL/6N (Figure -C, 
p<0.05, FDR corrected) in motor areas (MO). The lateral ventricle (LV) area is marked in the 
statistics (Figure -D) as a result of morphological differences at the ventricular level in-between 
two strains, which is taken into account in the VBQ statistical method (Draganski et al., 2011). 



 

Figure 3-2 Group-specific fiber density (FD) maps reveal structural strain differences.  
(A) Mean FD for C57BL/6N group. (B) Mean FD for BALB/cJ group. (C-D) Voxel-wise statistical 
group comparison of FD maps (p< 0.05, after false discovery rate (FDR) p-value correction; color 
scales represent t-values) indicate areas of differences (C) Contrast C57BL/6N > BALB/cJ: higher 
fiber density in C57BL/6N mice vs. BALB/cJ group. (D) Contrast BALB/cJ > C57BL/6N: higher 
fiber density in BALB/cJ mice vs. C57BL/6N group.[Abbreviations: Genu (gcc), middle (mcc) 
and splenium (scc) of corpus callosum(cc);  fasciculus retroflexus(fr), cerebral peduncle(cp), 
striato-cortical pathways (scp), prelimbic area (PL), anterior cingulate area (ACA), caudate-
putamen (CP), temporal association areas (TeA), thalamus (TH), periaqueductal gray (PAG), 
midbrain reticular nucleus (MRN), motor areas (MO), lateral ventricle(LV).] 

 

  



Statistical analysis of FA maps at the group level showed comparable differences between 
strains: cc, including anterior forceps (fa), cingulum (cg), gcc and scc, internal capsule (int), medial 
forebrain bundle (mfb) and cp as well as gray matter or mixed gray/white matter regions: PL/ACA, 
TEa, CP, dhc, TH, midbrain and pontine reticular nuclei (MRN; PRN, respectively) demonstrated 
significantly higher FA values in C57BL/6N strain (p<0.05, FDR corrected, Figure -A). The 
patterns are also indicative of increased FA along striato-cortical pathways. BALB/cJ mice, on the 
other hand, showed higher FA in ventral CP, as well as along caudal thalamo-cortical pathways 
(tcp), reaching somatosensory (SS) and auditory cortices (AUD) (p<0.05, FDR corrected, (Figure 

-B). 

 

 

Figure 3-3 Fractional anisotropy (FA) maps reveal differences between strains.  
(A-B) Voxel-wise statistical group comparison of FA maps (p< 0.05, after false discovery rate 
(FDR) p-value correction; color scales represent t-values) indicate areas of differences (C) 
Contrast C57BL/6N > BALB/cJ: higher FA in C57BL/6N mice vs. BALB/cJ group. (D) Contrast 
BALB/cJ > C57BL/6N: higher FA in BALB/cJ mice vs. C57BL/6N group. [Abbreviations: 
Corpus callosum (cc), anterior forceps (fa), genu and splenium of cc (gcc and scc), internal 
capsule (int), medial forebrain bundle (mfb), cerebral peduncle (cp), prelimbic area (PL), 
caudate-putamen (CP), Ammon’s horn (CA), temporal association areas (TeA), thalamus (TH), 
midbrain and pontine reticular nuclei (MRN; PRN, respectively) dentate gyrus (DG), thalamo-
cortical pathways (tcp), somatosensory (SS) and auditory cortices (AUD).] 

 

  



3.1.3.2 Inter-strain regional volumetric differences uncovered by DBM 

  Figure  shows statistically significant brain volume differences in-between strains.  
C57BL/6N mice had significantly bigger (p<0.05, FDR corrected; Figure -A) frontal cortical 
areas, including ACA, MO and SS as well as TEa and entorhinal areas (ENT). At subcortical 
levels, the analysis revealed bigger septal areas in C57BL/6N mice and increased size at the 
level of thalamic nuclei (TH) (i.e. ventral group of the dorsal thalamus). The results also indicate 
larger lateral ventricles (LV) in the C57BL/6N strain. For BALB/cJ mice, volumes were significantly 
bigger (p<0.05, FDR corrected; Figure -B) in piriform area (PIR), CP, certain hippocampal 
areas, medial hypothalamus (HY), substantia nigra (SN), VTA, and PAG. Intriguingly, the body of 
cc had larger volume in BALB/cJ, suggesting a different inter-hemispherical connectivity in 
comparison to C57BL/6N strain, which might be a compensatory mechanism for shorter length of 
cc. 

 

Figure 3-4 Inter-group statistical comparison for deformation-based morphometry 
(DBM).  
(Threshold at P< 0.05 after false discovery rate (FDR) p-value correction; color scales represent 
t-values). (A) Contrast C57BL/6N > BALB/cJ. (B) Contrast BALB/cJ > C57BL/6N. 
[Abbreviations: Anterior cingulate area (ACA), motor areas (MO), sensory areas (SS), temporal 
association areas (TeA), entorhinal areas (ENT), thalamus (TH), lateral ventricles (LV), piriform 
area (PIR), caudate-putamen (CP), Ammon’s Horn (CA), hypothalamus (HY), substantia nigra 
(SN), ventral tegmental area (VTA), periaqueductal gray (PAG), corpus callosum (cc). ] 

 

  



3.1.3.3 Functional connectivity patterns in C57BL/6N and BALB/cJ mice 

 To complete the picture of the brain connectome in the two investigated strains we further 
mapped the large-scale FC patterns via rs-fMRI, to determine whether their different brain 
structural architectures are accompanied by functional discrepancies.  

Global FC features of C57BL/6N and BALB/6J brains 

We applied graph network analysis at group level and mapped the topological organization 
of the FC, by modeling the 37 37 ROI PC matrices (Figure -A and D). The nodes were defined 
by the 37 ROIs extracted from AMBA, covering major cortical and subcortical brain areas. The 
selection of nodes was also guided by the structural results. For instance, certain nuclei, such as 
EP were included because differences in this area were observed in the voxel-wise FA analysis. 
Prominent inter-strain differences were obtained in the “hubness” characteristics (Figure -B, C 
vs. E, F). In the C57BL/6N group a dominance of basal forebrain subcortical areas was revealed 
(Figure -C – blue labels), encompassing the major limbic centers modulating reward (ACB, 
CP, ventral pallidum - PALv), stress and anxiety (bed nuclei of stria terminalis - BST) but also 
integrative centers for sensory information (Claustrum – CLA and EP). Cortical hubs included 
frontal areas; namely, insula (AI), piriform (PIR) cortex and orbito-frontal cortex (ORB), but also 
primary motor (MOp). The key player of the default mode network - the retrosplenial cortex (RSP) 
– was one of the C57BL/6N FC hubs.  

The “hubness” patterns in the BALB/6J mice was dominated by cortical areas (see Figure 
-F), including associative (TEa) and sensory areas (visual - VIS, auditory - AUD, PIR). A 

marked difference when compared to the C57BL/6N was the absence of striatal/reward-related 
regions among the identified relay centers of the FC (i.e. ACB, CP).  

 



 

Figure 3-5 Functional connectivity matrices and related graph theoretical measures 
for C57BL/6N and BALB/cJ mice. 
(A and D) Functional connectivity matrices created with 37 bilateral brain areas (nodes) are 
represented for (A) C57BL/6N and (D) BALB/cJ. Color scale denotes correlation coefficients. 
(B and E) Statistically significant connections presented on a scale of correlation coefficients 
and matrix nodes color coded on a scale of Stouffer coefficients (one sample t-test, p<0.05, 
FDR corrected) for (B) C57BL/6N and (E) BALB/cJ matrices. (Node sizes correspond to 
hubness ranking.) (C) C57BL/6N and (F) BALB/cJ brains have distinct hub regions (List is 
ordered according to ranking, highest to lowest). (G) Differences between C57BL/6N and 
BALB/cJ brain FC are shown (Two sample t-test, p<0.05, uncorrected.). Connection strength 
differences are depicted on a scale of correlation coefficients and nodes are color coded to 
depict differences according to Stouffer coefficients; node sizes correspond to most different 
areas. (H) Ranking of most different nodes between C57BL/6N and BALB/cJ. 



Direct inter-group comparison of the global FC matrices identified the brain areas with 
divergent patterns of connectivity (Figure -G, H). ACB showed highest number of different 
connections (see color coding – magenta). However, when normalized for the strength of the 
connectivity difference with other nodes, dorsal hippocampus emerged as the most dissimilar 
area in terms of FC (Figure -H and Figure -G – size of the nodes). Furthermore, our global 
analysis suggested strain variations in the DMN features, as two of the main DMN nodes (ACA 
and RSP) appeared among the nodes with variant FC (Figure -H).  Several sensory processing 
areas (VIS, PIR, EP) as well as MO suggest also strain specific connectivity patterns.  

Most of the areas indicated as divergent in the graph resting state network analysis (Figure 
-G and H) were also highlighted in the inter-strain comparison of the structural data (i.e FA 

voxel vise analysis from Figure ).  Therefore, the next group level seed analysis of FC was 
guided both by the structural results and the brain-wide graph theoretical resting state results. 

Inter-hemispherical FC 

Given the structural differences observed at callosal level in between the two strains, we 
first evaluated the inter-hemispherical FC, largely mediated through cc connections. The 
connectivity between the right and left hemispheric SS and MO cortical areas were therefore 
investigated. We selected successively right and left-lateral SS (SSr and SSl) as seed regions for 
mapping their connectivity patterns across the whole brain; subsequently, group comparisons 
were performed (two-sample t-tests, p<0.05, FDR cluster corrected). Despite the group 
differences observed at the level of gcc and scc after group comparison for structural FD and FA 
maps, the FC of the SS cortices with the same anatomical areas of the contralateral hemisphere 
(homotopic areas) does not show statistically significant inter-group differences (Figure -A and 
B). Interestingly, the results indicate greater synchrony of the BOLD signal ipsilaterally, within the 
cortical areas of the same hemisphere for the BALB/cJ mice (Fig. Figure -A and B, blue areas). 
The feature was reproducible for both right and left SS seeds. SS cortex also showed stronger 
correlation with RSP and VIS area in C57BL/6N strain (Figure -A, red areas).  



 

Figure 3-6 Inter-group differences in somatosensory cortex functional connectivity 
for C57BL/6N and BALB/cJ. 
Inter-group statistical comparison results of seed-based connectivity maps for (A) Right SS; 
(B) Left SS regions of interest (ROI). (FWER correction applied at cluster level for p<0.05); 
Scales represent t-values for contrast C57BL/6N > BALB/cJ in red or BALB/cJ > C57BL/6N in 
blue). [Abbreviations: somatosensory area right and left (SSr and SSl); posterior parietal 
association areas (PTLp), retrosplenial cortex (RSP), visual area (VIS).] 

 

Inter-group statistical analysis carried-out for MO areas - right (MOr) - and left (MOl), 
indicated more complex differences of FC in two strains.  First reproducible feature for both right 
and left MO was the stronger FC connectivity with frontal cortical areas (ACA but also within 
rostral MO – ipsilateral and contralateral to the seed) and frontal subcortical areas (including ACB, 
CP, BST) in C57BL/6N. However - along the rostro-medial-caudal axis, the medial brain regions 
- MO (right and left) displayed higher intra- and inter-hemispherical synchrony of the BOLD resting 
state signal in the BALB/cJ group (Figure , blue patterns), notably within the sensory-motor 
cortex (SS and MO).  



     

Figure 3-7 Inter-group differences in motor cortex functional connectivity for 
C57BL/6N and BALB/cJ. 
Inter-group statistical comparison results of seed-based connectivity maps for (A) Right MO; 
(B) Left MO regions of interest (ROI). (FWER correction applied at cluster level for p<0.05; 
Scales represent t-values for contrast C57BL/6N > BALB/cJ in red or BALB/cJ > C57BL/6N in 
blue). [Abbreviations: motor area right and left (MOr and MOl), anterior cingulate area (ACA), 
caudate-putamen (CP), nucleus accumbens (ACB), agranular insula (AI), somatosensory area 
(SS), retrosplenial area (RSP).] 

 

  



DMN patterns in C57BL/6N and BALB/cJ strains 

The significant strain-specific features measured with structural MRI (Figure  and Figure 
) in the frontal brain areas including ACA - that is part of DMN- and along frontal part of cg 

bundle (Figure -A) suggested that DMN patterns might also have strain-specific 
characteristics. Therefore, we probed the topological patterns of DMN using seed analysis.  

ACA and RSP were previously described as the key DMN nodes in rodents, showing 
synchronous rs-fMRI activity. We used the RSP as seed and mapped the spatial extent of DMN 
network, shown comparatively in Figure  for the two strains. A prominent pattern of BOLD rs-
fMRI signal synchrony is noted along top cortical areas in both groups, encompassing the RSP 
and ACA cortices. Two main features are relevant: larger cortical extent along the caudal to rostral 
axis of the BALB/cJ DMN and RSP-subcortical connectivity (towards CP, hc and TH) patterns in 
C57BL/6N mice. Inter-group comparative evaluation (Figure -B, p<0.05, FDR cluster 
corrected) confirmed significantly stronger connectivity of RSP towards dhc and TH areas in 
C57BL/6N group. Further inter-group analysis of ACA FC (Figure -C) unmasked major 
differences in the topology of ACA network: (i) stronger patterns of synchrony within rostral ACA 
and with neighboring cortical areas (MO) in C57Bl/6N mice and (ii) stronger ACA connectivity with 
RSP and dhc in the BALB/cJ group.  



     

Figure 3-8 Default mode network (DMN)-like patterns in C57BL/6N and BALB/cJ. 
(A) Default mode network as mapped using retrosplenial area (RSP) as seed in the C57BL/6N 
and BALB/cJ strains. (Correlation values were scaled between 0.15 and 0.7.) (B and C) Inter-
group statistical comparison of functional connectivity in (B) Retrosplenial area (RSP) and  (C) 
Anterior cingulate area (ACA); (FWER correction applied at cluster level for p<0.05; Scales 
represent t-values for contrast C57BL/6N > BALB/cJ in red or BALB/cJ > C57BL/6N in blue)  
[Abbreviations: motor area (MO), dorsal hippocampus (dhc), thalamus (TH), temporal 
association area (TEa), entorhinal area (ENT).] 

Functional connectivity of the reward/aversion centers  

We next performed fine-grain connectivity mapping of ACB and hc using seed analysis 
and carried-out inter-group statistical analysis (Figure -A and B).  These two areas are among 
key nodes of the limbic and/or reward-aversion system. This choice was motivated by reported 
behavioral results in the two strains, indicating different sociability and anxiety-related behaviors, 
possibly reflecting strain-specific patterns of the limbic FC. FC modifications of the limbic 
subcortical areas may emerge as well on the basis of the structural differences observed in the 
striatum (i.e greater FA and FD along C57BL/6N striatal-cortical pathways –Figure -A) or dhc 
(Figure -A and B), as shown in our study. Additionally, graph-based network analysis identified 
dhc and ACB as major nodes with divergent FC features in the two experimental groups (Figure 

-G and H). Seed correlation approach – in agreement with FA increase along striato-cortical 
pathways in C57BL/6N mice - revealed better rsfMRI signal synchrony between ACB and frontal 
cortex, encompassing ORB, ACA and MO in this strain (Figure -A), but also more caudally 
with RSP. Subcortically, ACB showed locally stronger FC with other centers of the reward 
circuitry, notably CP and ventral tegmental areas VTA (Figure -A) for C57BL/6N strain. Seed-
based cartography of the hc network showed a better synchrony of the hc rs-fMRI signal with 
medial ACA, AI, SS, TEa as well as RSP in C57BL/6N brains, while better correlating with TH 
nuclei in BALB/cJ strain (Figure -B). 



 

Figure 3-9 Inter-group statistical comparison of seed-based connectivity maps for 
nucleus accumbens and hippocampus. 
(A) Nucleus accumbens (ACB) and (B) Hippocampus (hc) functional connectivity differences 
between C57BL/6N and BALAB/cJ. (FWER correction applied at cluster level for p<0.05; 
Scales represent t-values for contrast C57BL/6N > BALB/cJ in red or BALB/cJ > C57BL/6N in 
blue)  [Abbreviations: orbital area (ORB), anterior cingulate(ACA), endopiriform nucleus (EP), 
caudate-puatamen (CP), hypothalamus (HY), bed nucleus of stria terminalis (BST), ventral 
tegmental area (VTA), retrosplenial area (RSP), agranular insula (AI), claustrum (CLA), 
somatosensory area (SS), auditory area (AUD), temporal association area (TEa), entorhinal 
(ENT) and ectorhinal areas (ECT), dorsal hippocampus (dhc).] 

 

 
  



Directional communication analysis among key nodes of the reward/aversion network 

To investigate the direction of information flow between pairs of nodes of the reward-
aversion circuitry we conducted pairwise Granger Causality analysis. We constructed a network 
by selecting six relevant regions showing group differences in structural or seed-based FC 
analysis: ACB, hc, CP, ACA, amygdala (AMY) and VTA (Figure -A). These regions are core 
players of the reward circuitry and known to be involved in regulating -among others- the 
affective/social behaviors. For each set of ROIs, we computed pairwise Granger Causality 
extracting bidirectional information between pairs of nodes (Figure -B and D) and established 
dominant directionality (p<0.05; FDR corrected). Overall, the information flow directionality was 
similar in both groups with the exception of the ACA. This node was found to be dominantly 
receiving information from hc, AMY and CP only in C57BL/6N group and sending information 
towards ACB only in BALB/cJ strain; clearly providing evidence of group directional information 
differences in ACA region (Figure -C and E). Indeed, these findings again highlight the strain-
specific communication patterns of ACA region, in accordance with seed-based FC analysis and 
microstructural and morphological (DTI and DBM) results.  

 

Figure 3-10 Directional connectivity between reward/aversion centers. 
(A) 3D individual color-coded representation of 6 selected seeds over mouse brain template 
with identification; (B-D) Mean (+SEM) of Granger Causality results with t-test 
(*p<0.05,**p<0.01,***p<0.001, FDR corrected). (C-E) Graphical illustration of dominant 
directionality difference between the two strains (C57BL/6N and BALB/cJ) with black 
directional arrows including black stars to represent level of significance. [Abbreviations: 
Nucleus Accumbens (ACB), anterior cingulate area (ACA), Hippocampus (hc), Amygdala 
(AMY), Caudate-putamen (CP) and ventral tegmental area (VTA)]. 

  



3.1.4 Discussion 

In the recent years, huge effort has been dedicated for the characterization of the mouse 
brain connectome - at micro and mesoscale (Bardella et al., 2016; Grandjean et al., 2017; Grange, 
2018; Ingalhalikar et al., 2014; Knox et al., 2018; Oh et al., 2014; Pervolaraki et al., 2019), as this 
species remains the principal animal model used in neuroscience research. Most of these studies 
were carried-out in the C57BL/6 strain, which remains the primary "genetic background" for 
modelling of human disease. However, C57BL/6 has many behavioral characteristics that make 
it useful for some work and inappropriate for others (Clipperton-Allen et al., 2015, p. 6; Fairless 
et al., 2013; Fontaine and Davis, 2016; Ohl et al., 2001; Pilz et al., 2015; Sankoorikal et al., 2006; 
Yoshida et al., 2016). Therefore, the uncovering the large-scale brain circuitry configurations in a 
strain-specific manner represents a first step towards a better understanding of modifications in 
brain networks under the influence of various genetic factors, pharmacological interventions and 
pathological conditions. In this study, we systematically characterized the brain morphological 
patterns along with the structural and functional connectivity profiles of two commonly used 
mouse strains, C57BL/6N and BALB/cJ, via non-invasive in vivo MRI techniques. We show brain-
wide morphological and functional differences encompassing cortical and subcortical structures 
as well as WM tracts. We further provide exemplary high-resolution fiber tractography maps 
demonstrating the inter-individual variability across inter-hemispherical callosal pathways in the 
BALB/cJ strain.   

3.1.4.1 Strain specific morphological and structural brain connectivity patterns 

Multiple previous histological and MRI studies captured the impact of genetic variability on 
the morphology of the brain (Fairless et al., 2012, 2008; Fontaine and Davis, 2016; Kim et al., 
2012; Kumar et al., 2012; X. Zhang et al., 2015). Mice on different genetic backgrounds have 
stable yet distinct behavioral phenotypes that may lead to unique gene-strain interactions on brain 
structure. One classical example is observed with Fragile X Mental Retardation 1 knock-out 
(FMR1-KO) mice in which Fragile X Syndrome and related phenotypic manifestations of autism 
spectrum disorder (ASD) are induced. Indeed, while FMR1-KO in C57BL/6 strain show very few 
differences in brain morphology compared to wild-type mice (Ellegood et al., 2010) FMR1-KO 
mice on an FVB background displayed multiple neuroanatomical differences, including 
modifications of major white matter structures throughout the brain and changes in areas 
associated with fronto-striatal circuitry (Lai et al., 2016). White matter changes, including 
prominent reduction of callosal fibers are also reported with BTBR mouse, another ASD mouse 
model (Dodero et al., 2013; Ellegood et al., 2013; McFarlane et al., 2008; Miller et al., 2013) In 
our study, we produced highly resolved fiber maps that depict striking inter-individual differences 
along callosal commissure in the BALB/cJ female mice, with significant inter-hemispherical under-
connectivity in the rostral and caudal cc in some individuals. These in vivo brain tractograms are 
in agreement with previous histological (Fairless et al., 2012; Moy et al., 2007; Wahlsten, 1974) 
and diffusion MRI findings in BALB/cJ males (Kim et al., 2012; Kumar et al., 2012) that reported 
variability in the size of cc, including the complete absence, in 30-40% of this strain (Wahlsten, 
1974). This variability was suggested to be possibly due to a variable delay in formation of an 
interhemispheric bridge of tissue in the dorsal septal region during prenatal development 
(Wahlsten, 1974).  

In some ASD-relevant rodent models, this callosal underconnectivity normalizes overtime 
(Frazier et al., 2012), especially in the rostral regions of the cc - suggesting developmental 



trajectories that might influence behavioral outcome overtime. The BALB/cJ inbred strain was 
long been discussed as relevant for certain aspects of ASD (Brodkin, 2007), showing low 
sociability, high anxiety and aggressive behaviors. However, compared to C57BL/6J mice, only 
juvenile BALB/6J animals demonstrated lower sociability scores (Fairless et al., 2012) that 
positively correlated with mean diffusivity values along the external capsule of the WM (Kumar et 
al., 2012).  

Although in our study, we cannot establish a direct link between behavioral features and 
strain-specific brain structural modifications, we provide a refined, high resolution evidence about 
fiber density and tissue anisotropy dissimilarities at the level of callosal structures (gcc, mcc and 
scc) and alongside other WM bundles (fi, fx, cg)  in female C57BL/6N and BALB/cJ mice. GM 
regions, likewise, showed distinct microstructural patterns in the two mice populations, prominent 
differences appearing in frontal cortices (ORB, IL, PL, ACA); along the fronto-striatal pathways 
(within CP) and within thalamic and caudal midbrain nuclei, including dopaminergic VTA and 
substantia nigra areas. For all these areas BALB/cJ mice show lower fiber densities and FA. 
Changes in fronto-striatal circuitry have been often implicated in the fragile X syndrome (FXS) 
with autistic-like features (Dennis and Thompson, 2013a, 2013b) as well as other brain disorders 
(Qiu et al., 2011; Shepherd, 2013), including attention deficit disorders. In FXS patients, the lack 
of response inhibition and conscious regulation of anxiety are among the phenotypes that relate 
to the functions of these regions (Bonelli and Cummings, 2007; Eagle et al., 2008; Fox et al., 
2010), so it might be relevant that fronto-striatal fiber pathways are less dense in BALB/cJ 
animals, that are known to show high anxiety levels.  

Furthermore, we observed large volumetric variations between two strains in the prefrontal, 
rostral MO, SS and temporal association cortices along with septal, hc and TH areas displaying 
bigger volumes in C57BL/6N. Intriguingly, mcc region was found to be larger in BALB/cJ; perhaps 
compensating for shorter rostro-caudal cc length to ensure unperturbed inter-hemispherical 
information transfer. In an ex-vivo study comparing several mouse strains (Ellegood et al., 2015) 
for brain morphometry, BALB/cJ mice were found to have smaller frontal and parieto-temporal 
lobes, similar to our findings. Such regional brain volume changes were correlated with functional 
impairments in ASD patients. For example, changes in superior and medial prefrontal gyri 
volumes correlate with cognitive outcomes in spatial relations and verbal fluency scores in ASD 
adolescents (Bray et al., 2011). In addition, larger CP volumes– as seen in BALB/cJ mice - is a 
recurrent finding in ASD  patients and are associated with repetitive behaviors and cognitive 
deficits (Peng et al., 2014).  

  



3.1.4.2 From structure to function: divergent functional connectivity in C57BL/6N and 
BALB/cJ mice 

To discover whether differences in the brain structural scaffolding of the two strains also 
give rise to functional variations, we first performed a global assessment of the topological 
features of the rs-fMRI FC in both strains via graph analysis. The “brain hubs” - a set of highly 
connected regions serving as integrators of distributed neuronal activity were defined for each 
strain. These FC nodes have an integrative role and are therefore susceptible points to 
dysfunction in brain disorders. Strain differences in cerebral network “hubness” may impose 
strain-specific regional dominance in processing of the functional information. The circuitry 
vulnerability to stressors might be divergent, as well as the circuitry response in terms of mal-
adaptations or compensatory remodeling.   

Based on the anatomical selections of the FC network nodes, our analysis revealed that 
the dominant players in the C57BL/6N strain were subcortical forebrain limbic areas, including 
endopiriform nucleus, claustrum, along with centers controlling reward and motivation (ACB, CP, 
dhc, PALv). The endopiriform nuclei as well as claustrum are intriguing brain structures, featuring 
the highest connectivity per regional volume in the brain. Their connectivity patterns were 
dissimilar, both in structural and functional analysis. Enclosed between the striatum and the 
insular cortex, with widespread reciprocal connections with the sensory modalities and prefrontal 
cortices, these nuclei seem to perform functions in processing limbic and sensorimotor 
information (Watson et al., 2017). The “hubness” in BALB/cJ strain is dominated by cortical areas 
with associative and sensory valence (Tea, VIS, AUD, PERI, PTLp, PIR) but also includes 
aversive centers, such as amygdala (BLA/BMA).   

In both strains, the RSP seem to appear as a hub, emphasizing the importance of this 
DMN node in the FC of the mouse brain. Inter-group comparison highlighted FC differences in 
brain areas showing variations in either the FA or FD maps or the morphometry measures. Dhc, 
the most different node in terms of FC showed higher FA and FD values, but also bigger volumes 
in the C57BL/6N strain. This is coherent with previous studies (de Sá-Calçada et al., 2015) that 
found smaller dendritic lengths and fewer ramifications in dentate granular neurons of BALB/cJ 
hippocampus compared to C57BL/6 strain. Differences in the hippocampal functioning and 
contextual memory formation in between the two strains were among the earliest demonstrated 
features (Chen et al., 1996) as hippocampal lesions impact less on contextual fear conditioning 
in BALB/c mice than C57BL/6 animals. In another study hippocampus related cognitive deficits – 
poor learning and memory performance in both the open field and passive avoidance inhibitory 
tasks - were assessed in stressed BALB/c, but not C57Bl/6 mice (Palumbo et al., 2010). This 
feature can be also mediated by distinct FC between dhc and frontal cortex (including ACA) and 
more dominant flow of information passing from the dhc to the ACA in C57Bl/6N strain. Previous 
studies demonstrated a role for the ACA-dhc pathway in recall of remote memory and its 
involvement in attention in both novel situations as well as during performance of well-learned 
tasks (Weible, 2013).  

We further examined if inter-hemispherical FC of homotopic cortical areas, known to be 
largely mediated by callosal commissure show strain-specific features. FC between SS and MO 
homotopic areas did not show clearly a stronger inter-hemispherical connectivity in the C57BL/6N 
mice, as one might expect on the basis of the structural findings. Rather, a very specific pattern 
of FC differences was observed, along the rostro-caudal axis. For SS cortex, ipsilateral 



connectivity was stronger in the BALB/cJ mice, displaying a greater intra-hemispherical 
synchrony of the BOLD rs-fMRI signal. These results could be reproduced for the MO cortex in 
the medial brain areas, where better inter-hemispherical FC was also noticed for BALB/cJ. These 
results reinforced the observed higher intra cortical FD and FA values of the motor cortex in the 
BALB/cJ strain and bigger volume of the cc in the medial region, eventually favoring the functional 
brain communication locally. The pattern is reversed however in more rostral regions where seed 
analysis of MO cortex shows stronger intra and inter-hemispherical FC in the C57BL/6N animals. 
Higher density of fibers and bigger brain volumes measured in the C57BL/6N strain for the ACA, 
ORB regions and along gcc, might facilitate the FC in this strain locally.  

In a study comparing inter-hemispherical FC in different strains, comprising  acallosal 
mouse strain I/LnJ, C57BL/6 and BALB/cJ (Schroeter et al., 2017), all strains demonstrated 
bilateral stimulus-evoked fMRI responses to unilateral hind paw stimulation, thus ruling out 
minimizing the contribution of transcallosal structural communication as a reason for bilateral FC. 
Emergence of inter-hemispherical homotopic cortical as well as striato-cortical connectivity was 
shown to be primarily due to monosynaptic connections (Grandjean et al., 2017); whereas, certain 
distributed cortical (e.g. default mode network) and subcortical networks emerge through 
polysynaptic connections in C57BL/6 brains. In BALB/cJ strain, compensation for inter-
hemispherical cross-talk could be achieved through the thicker middle portion of cc or possibly 
through polysynaptic routes. In a rodent model of partial callosotomy (Zhou et al., 2014), initial 
decrease in inter-hemispherical connectivity was reversed over time, likely due to compensation 
by remaining axonal pathways. In this study, similar to our findings, an increased intra-
hemispherical connectivity was also noted.  

Default mode-like network  

FC differences were also found in the DMN-like patterns of two mice populations. The DMN 
maps highlighted larger patterns of connectivity between RSP and parts of TH, CP and dhc areas 
in the C57BL/6N animals, while the ACA and RSP connect better along the top cortical line and 
TEa in BALB/cJ. Stronger local connectivity of ACA was noted in the frontal regions of C57Bl/6N 
brains, in agreement with locally increased density of fibers and higher FA in these areas. Weaker 
synchrony of the BOLD rsfMRI signal within DMN was previously reported in the C57BL/6 animals 
(Shah et al., 2016b), when compared to BALB/c and SJL mice. In the present work, we didn’t 
reproduce the lower C57BL/6N functional connectivity features for DMN when compared with the 
BALB/cJ strain. We rather observed variance in the spatial organization of this network, with 
stronger cortico-subcortical communication in C57BL/6N and less functionally connected ACA-
RSP. 

Strain-dependent impact of the medetomidine anesthesia cannot be excluded in this 
context and depends – among other factors - on the expression levels of alpha-2 adrenoreceptors 
across the brain.   

  



Functional connectivity signatures of reward aversion pathways  

Reward system has consistently been implicated in several pathologies especially ASD 
and mood disorders (Hägele et al., 2015; Russo and Nestler, 2013) and is relevant for the 
behavioral phenotypes previously described in the C57BL/6N and BALB/c strains. For instance, 
BALB/c genetic background seems to favor strong response to stress conditions, show high 
anxiety and reduced social interaction (Anderzhanova et al., 2013; Brodkin, 2007; Moy et al., 
2007; Ohl et al., 2001; Panksepp and Lahvis, 2007). Such phenotypes might stem from 
vulnerability of specific connectional pathways between key nodes of the reward-aversion system 
in which ACB is one of the major players. Our results thus demonstrated large patterns of stronger 
ACB FC in the C57BL/6N mice, including reinforced ACB - VTA dopaminergic pathways and 
stronger ACB – prefrontal cortical subcortical septal regions.  

Activity dynamics of VTA - ACB projection encodes and predicts key features of social 
interaction in mice. Optogenetic control of cells specifically contributing to this projection is 
sufficient to modulate social behavior, mediated by dopamine receptor type 1 signaling 
downstream from VTA to ACB (Gunaydin et al., 2014). Weaker ACB-VTA communication might 
therefore form the neural substrate of the social reward deficiency previously described in the 
BALB/c mice. Similarly, differences of directional connectivity of the frontal cingulate (ACA) and 
striatal limbic network (CP, ACB and AMY) could account for behavioral differences in rewarding 
effects of addictive substances such as cocaine (Belzung and Barreau, 2000; Crawley et al., 
1997). In light of distinct FC patterns we observed in the BALB/cJ mice, it could be argued that 
specific functioning of reward system determines the atypical behavioral phenotype in this strain.  

3.1.5 Conclusion 

Taken together, our findings demonstrate distinct structural and functional brain 
architectures in two frequently used mouse strains: C57BL/6N and BALB/cJ. In particular, 
BALB/cJ strain was characterized by marked intra-strain variability; thus, this variability should be 
taken into account while interpreting results from studies using BALB/cJ. C57BL/6N and BALB/cJ 
further show divergent brain wide FC diagrams; an essential aspect to be considered in 
experimental disease models that would also reflect inherent strain differences.   

 
 



3.2 Time-dependent alterations in structural and functional brain networks in 
rodent neuropathic pain-induced depression 

3.2.1 Introduction 

Neuropathic pain is a neurological syndrome that associates both sensory nociceptive and 
aversive emotional components. It can also lead to anxio-depressive consequences, which 
increases the pain burden. The existence of neuropathic pain-induced affective disorders is 
further supported by preclinical studies showing that neuropathic pain models can induce anxiety- 
and/or depression-like behaviors in a time dependent manner (Yalcin et al., 2014a, 2011).  

Previous imaging studies frequently focused on the transition from an acute to chronic pain 
state and demonstrated that the nucleus accumbens (ACB), hippocampus (HIP), prefrontal cortex 
(PFC)(M. N. Baliki et al., 2014; Bilbao et al., 2018; Chang et al., 2014), somatosensory and insular 
cortices (Baliki et al., 2012; Hubbard et al., 2015) are involved in the pain chronicity. However, we 
still do not know how the brain reorganizes functional connectivity when chronic pain comorbid 
with anxiety and depressive-like behaviors, which may stem from the fact that experiments in 
humans are generally cross-sectional in nature. Longitudinal experimental designs are thus the 
unique tool to study how changes occur overtime.  

Longitudinal neuroimaging studies in rodent neuropathic pain models (M. N. Baliki et al., 
2014; Bilbao et al., 2018; Hubbard et al., 2015; Seminowicz et al., 2009) demonstrated time-
dependent changes in brain morphology, metabolism and functional connectivity. For instance, 
volume abnormalities in medial PFC and limbic brain regions (Bilbao et al., 2018; Seminowicz et 
al., 2009), altered glutamatergic transmission in the anterior cingulate area (ACA) and HIP (Bilbao 
et al., 2018; Hubbard et al., 2015) and an overall reorganization of corticolimbic system functional 
connectivity highlighting ACB, PFC and hippocampus connectivity changes (M. N. Baliki et al., 
2014; Bilbao et al., 2018; Chang et al., 2014) were reported at different time points. However, the 
main focus of these aforementioned studies once again was nociception-related behaviors and 
pain chronicity. 

 Affective consequences of pain can be attributed to plasticity changes caused by chronic 
pain conditions in brain regions processing both pain and emotional/motivational information 
(Shelton et al., 2012; Yalcin et al., 2014a). In this framework, mesocortico-limbic circuits, 
encompassing reward/aversion areas such as ACB and ventral tegmental area (VTA) (Borsook 
et al., 2016; Mitsi and Zachariou, 2016), mPFC, ACA (Barthas et al., 2015; Wang et al., 2015; Z. 
Zhang et al., 2015; Zhuo, 2013) and limbic regions (e.g. amygdala, HIP) (Gonçalves et al., 2008; 
Mutso et al., 2013) have been shown to play important roles in negative moods associated with 
pain conditions. Rodent brain imaging studies using stress-based animal models of depression 
also highlighted the role of mesocortico-limbic areas (Anacker et al., 2016; Clemm von Hohenberg 
et al., 2018; Gass et al., 2014a) in particular, the major role of reward/aversion system comprising 
ACB, VTA, and lateral habenula (LHb). Moreover, hyperactivity of default mode network (DMN)- 
a large scale network of interacting brain regions that are activated during rest and deactivated 
during task performance- and its increased connectivity with subgenual cingulate characterizes 
major depressive disorder (MDD) in clinics. This hyper-connectivity is often interpreted as 
rumination, where depressed subjects persevere on negative, self-referential thoughts (Berman 
et al., 2011; Greicius et al., 2007). Similarly, these DMN alterations were also reported in rodent 
with stress-induced depression models (Grandjean et al., 2016; Henckens et al., 2015). Whether 



the brain network alterations in stress-induced and pain-induced depression overlap or diverge is 
an important research question that needs to be answered for a better understanding of pain-
depression comorbidity.  

In this study, we combined neuroimaging methods with behavioral measurements for a 
global characterization of structural and functional brain changes in the neuropathic pain and 
depression comorbidity. For this purpose, we used the cuff model of neuropathic pain in mice 
(Benbouzid et al., 2008; Yalcin et al., 2014b), inducing mechanical allodynia and anxio-depressive 
phenotype in a time-dependent manner. We evaluated mechanical allodynia weekly and tested 
depressive-like behaviors at 8 weeks after cuff surgery, timepoint that animals develop the 
phenotype (Sellmeijer et al., 2018; Yalcin et al., 2011). We longitudinally followed brain functional 
and structural connectivity changes along with morphology at different time points by using 
resting-state fMRI (rs-fMRI), high angular resolution diffusion MRI (HARDI) and fiber tractography 
and anatomical imaging. Our objective was to identify brain structural and functional network 
signatures of pain-induced depression and to define specific imaging-related biomarkers for this 
condition. 

Our main results showed that the cingulate area displays significant structural alterations 
over time with diffusion MRI. Furthermore, resting-state fMRI revealed the reorganization of the 
functional connectivity of brain structures involved in reward, DMN and salience pathways in a 
time-dependent manner.   



3.2.2 Material and Methods 

3.2.2.1 Animals 

14 adult male C57BL/6J mice (Charles River Laboratories, L’Arbresle, France) were used 
for the MRI experiments. Mice were housed under standard animal facility conditions (4-5 per 
cage, temperature 21°C, humidity 55-60%, food and water were given ad libitum, 12h/12h light-
dark cycle). All experiments were conducted in accordance with the European Directive 
2010/63/EU on the protection of animals used for scientific purposes and approved by the local 
ethical committee of the University of Strasbourg (CREMEAS, No: 2016072818151694).  

3.2.2.2 Neuropathic pain model and relevant behavioral tests 

We used the cuff model to induce neuropathic pain in mice (Barthas et al., 2017). Cuff 
surgery was performed as described in the previous literature (Yalcin et al., 2014b). Briefly, mice 
were anesthetized with ketamine/xylazine (80/10 mg/kg) and then a polyethylene cuff was placed 
around right main branch of the sciatic nerve (cuff group, n=7). The nerve was simply exposed 
for the controls (sham surgery group, n=7).  

Since mechanical allodynia is one of the main symptoms of neuropathic pain, we used von 
Frey filaments (Bioseb, Vitrolles, France) to evaluate the mechanical hypersensitivity weekly. For 
this, mice were placed in Plexiglas® boxes (7 cm x 9 cm x 7 cm) on an elevated mesh screen. 
After a 15-minute habituation, animals were tested by applying a series of ascending forces (0.6 
to 8 grams) on the plantar surface of each hind paw. Each filament was tested 5 times per paw, 
applied until it just bent (Barthas et al., 2017; Yalcin et al., 2014b). The threshold was defined as 
3 or more withdrawals observed out of the 5 trials. In order to characterize changes in mechanical 
thresholds during an extended period, we tested animals before and at given time points after 
sciatic nerve surgery. 

Depressive-like phenotype was assessed eight weeks after the surgery using splash test. 
This test was used to measure grooming behavior indirectly (Barthas et al., 2017; Yalcin et al., 
2011), as decreased grooming can be related to the loss of interest in performing self-relevant 
tasks. This behavior was measured for 5 minutes after spraying a 10% sucrose solution on the 
coat of the animals.  

3.2.2.3 Experimental design 

After baseline MRI acquisition, we separated animals into two groups (i.e. Control and 
Cuff) on the basis of baseline mechanical hypersensitivity. Second MRI acquisition was 
performed 2 weeks after the peripheral nerve injury (timepoint 1-TP1). The development of 
depressive-like phenotype was confirmed using the splash test 7 weeks after the neuropathic 
pain induction. The last MRI acquisition was conducted at 8-9 weeks post-surgery (timepoint 2- 
TP2). Mechanical threshold was checked once a week throughout the whole procedure (see 
Figure ).  



 

Figure 3-11 Experimental timeline.  
After baseline resting state functional magnetic resonance imaging (rs-fMRI) and diffusion MRI 
acquisition, we separated animals into two groups, cuff and sham surgery groups (neuropathic pain and 
control mice, respectively) based on their mechanical hypersensitivity. Second MRI acquisition was 
performed 2 weeks after the peripheral nerve injury (TP1). The development of depressive-like 
phenotype was confirmed using the splash test 7 weeks after the neuropathic pain induction. Last MRI 
acquisition was conducted at 8-9 weeks post-surgery (TP2). Mechanical threshold was checked once a 
week throughout the entire procedure.   

3.2.2.4 MRI data acquisition  

All scans were performed with a 7T Bruker BioSpec 70/30 USR animal scanner, room 
temperature surface coil for the acquisition of the MRI signal and ParaVision software version 6.1 
(Bruker, Ettlingen, Germany) at baseline and at 2 (TP1) and 8 weeks (TP2) after cuff surgery. 

Animal preparation and placement were done under 2% isoflurane; a bolus of 
medetomidine (0.15 mg/kg body weight sc) was administered during preparation. 10 minutes after 
the bolus injection, isoflurane was discontinued, and animal bed was placed in the scanner. 
Medetomidine infusion was started (0.3 mg/kg bw /h sc) right before the rs-fMRI scans, within 35 
minutes of bolus injection. Respiration and body temperature were monitored throughout the 
imaging session. Acquisition parameters for rs-fMRI were: single shot GE-EPI sequence, 31 axial 
slices of 0.5 mm thickness, FOV=2.12×1.8 cm, matrix=147× 59, TE/TR= 15 ms /2000 ms, 500 
image volumes, 0.14× 0.23× 0.5 mm³ resolution. Acquisition time was 16 minutes.  

Morphological T2-weighted brain images (resolution of 0.08 × 0.08 × 0.4 mm3) were 
acquired with a RARE sequence using the following parameters: TE/TR =40 ms/4591 ms; 48 
slices, 0.4 mm slice thickness, interlaced sampling, RARE factor of 8, 4 averages; an acquisition 
matrix of 256 × 256 and  FOV of 2.12×2 cm2. For the diffusion MRI, medetomidine infusion was 
replaced with 1.5% isoflurane anesthesia. HARDI (High Angular Resolution Diffusion Imaging) 
acquisitions were carried out using a single shot DTI-EPI sequence, 27 axial slices, 0.1×0.1×0.5 
mm³ resolution, TE/TR= 28.9 ms/3000 ms, 4 averages, diffusion gradients applied along 30 non-
collinear directions, 2 b-values (1000/2000 s/mm2), gradient duration (δ)/separation(Δ)= 5 
ms/10.6 ms for an acquisition time of 1 hour 13 minutes. 

3.2.2.5 Statistical analysis of behavioral parameters 

Data are presented as mean± SEM. For behavioral data, statistical analyses were 
performed with Statistica 7.1 software (StatSoft, Tulsa, OK) by using multifactor analysis of 
variance (ANOVA) with repeated measures and Duncan post hoc analyses for von Frey test and 
unpaired Student’s t tests for splash test. Significance level was set to p<0.05. 

  



3.2.2.6 MRI data processing   

Resting-state fMRI data 

Rs-fMRI images were spatially normalized into a template using Advanced Normalization 
Tools (ANTs) software (Avants et al., 2011) using SyN algorithm and smoothed 
(FWHM=0.28×0.46×1 mm3) with SPM8.  

Seed-based functional connectivity analysis was performed with a MATLAB tool developed 
in-house. Regions of interest (ROI) were extracted from Allen Mouse Brain Atlas (Lein et al., 
2007) which were later normalized into the template space. Resting-state time series were de-
trended, band-pass filtered (0.01-0.1 Hz) and regressed for cerebrospinal fluid signal from the 
ventricles. Principal component analysis (PCA) of the BOLD time courses across voxels within a 
given ROI was performed and first principal component accounting for the largest variability was 
selected as the representative time course for further analysis.  

Partial correlation (PC) between the representative time courses of selected ROIs were 
computed to construct individual connectivity matrices for each mouse (76 pre-selected regions 
comprising limbic, cortical, reward, and nociceptive areas and covering the entire isocortex and 
major subcortical areas). Fisher’s r-to-z transformation was applied to individual matrices and 
average PC matrices were computed by pooling the two groups at baseline, and for each group 
at TP1 and T2. Connections surviving p<0.001 (uncorrected) threshold for one sample t-test were 
selected for graph theoretical analysis using NetworkX software package for Python 
(https://networkx.github.io). A ranking of hub regions (nodes) are reported for each timepoint.  For 
statistical comparison between the two groups, individual baseline matrices were subtracted from 
those belonging to TP1 and TP2, and two sample t-test was applied for subtraction matrices at 
each post-injury time point. Most changed connections (edges, expressed as degrees) and most 
changed nodes (expressed as Stouffer coefficients) were ranked among connections surviving 
p<0.05 (uncorrected) threshold. Briefly, Stouffer method uses a single p-value computed for each 
region based on the combination of the p-values derived from the statistical tests made on the 
correlations with all other regions, highlighting the regions with major changes in the inter-group 
comparison (Stouffer et al., 1949). 

Furthermore, Spearman correlations between the PCA time course of single ROIs and 
each voxel of the brain was computed at the group and individual levels and r values were 
converted to z using Fisher’s r-to-z transformation.  Individual connectivity maps for baseline rs-
fMRI acquisitions were subtracted from TP1 and TP2 counterparts for each subject. Baseline 
subtracted TP1 and TP2 connectivity maps were subsequently used for two sample t-test with 
SPM8 to perform group comparison at two post-injury timepoints. Family-wise error rate (FWER) 
correction was applied at the cluster level (p<0.05) for each statistical image. Additionally, 
statistical analysis of baseline-subtracted connectivity maps was performed using SPM full 
factorial ANOVA of the two factors group and time point, associated with two levels respectively 
(Neuropathic and control for the group factor; TP1 and TP2 for the time point factor) to compare 
longitudinal evolution of functional modifications between groups. The group effect results on the 
evolution functional connectivity of several ROIs from TP1 to TP2 in mice were reported (p<0.05, 
FWER cluster corrected). 

Diffusion MRI data 



Post-processing of the diffusion data was performed using an in-house developed DTI and 
FiberTool software package (see www.uniklinik-freiburg.de/mr-en/research-
groups/diffperf/fibertools.html) for SPM on MATLAB. Diffusion-based parameter maps were 
generated, including fractional anisotropy (FA), mean diffusivity (MD), radial (RD) and axial 
diffusivities (AD). Mouse brain diffusion tractograpy using a global fiber tracking algorithm (Harsan 
et al., 2013) was also performed and fiber density (FD) maps were generated (Reisert et al., 
2011). Diffusion MRI parametric maps were also compared across groups using a voxel-based 
analysis. The FA and FD maps were jointly registered using the multimodal group-wise 
registration procedure implemented in the ANTs; the analysis was then conducted using the 
voxel-based quantification (VBQ) method (Draganski et al., 2011). This method implements a 
combined weighting/smoothing procedure, which avoids parameter value changes by Gaussian 
smoothing applied in standardized space. Furthermore, we conducted voxel-wise analysis on FD 
maps modulated by jacobian values in order to quantify the amount of fibers in the standardized 
space which accurately reflects that of the native space. A Gaussian kernel with a FWHM of 0.5 
mm was applied here. Baseline VBQ images were subtracted from images for later time points. 
Intergroup comparisons were conducted at the voxel level using the general linear model in 
SPM8. Statistical maps were corrected with family-wise error rate (FWER) applied at the cluster 
level for p<0.05. 

  



3.2.3 Results 

3.2.3.1 Behavioral results 

von Frey and splash tests were carried-out as shown in Figure  at timepoints selected 
in correlation with MRI experiments to assess mechanical allodynia and emergence of depressive 
phenotype, respectively. The mechanical allodynia was evaluated at baseline (before surgery) 
and overtime (after cuff or sham surgeries). Mice were then scanned at 2 weeks, the time point 
corresponding to animals displaying only mechanical hypersensitivity (TP1) (Figure -A, 
F(6,72)=6.26 p=0.000025; post-hoc: Neuropathic vs. Control from 1 to 7 weeks, p<0.00001) but not 
depressive-like behaviors, and at 8 weeks, the time point corresponding to cuff animals displaying 
both mechanical hypersensitivity and depressive-like behaviors as demonstrated by decreased 
grooming behavior in the splash test (TP2) (Figure -B, p<0.00001).   

 

Figure 3-12 Nerve injury induces mechanical hypersensitivity and depressive-like 
behavior.  
(A) In C57BL/6J mice, unilateral sciatic nerve compression induces an ipsilateral long-lasting 
mechanical hypersensitivity. Results are presented as a ratio to contralateral paw (%). (B) 
Splash test at 7 weeks after the peripheral nerve injury illustrating decreased grooming 
behavior in neuropathic (NP) animals compared to sham-operated littermates.   ***p<0.0001. 

 

3.2.3.2 HARDI measures of structural connectivity 

Fractional anisotropy (FA) is a measure of water diffusion directedness within the tissue 
where values approach 0 for free unrestricted diffusion (i.e. isotropic) and 1 for oriented diffusion 
direction (i.e. anisotropy, such as seen in muscle and axonal fibers). FA could be an indicator of 
brain microstructural integrity, fiber organization and density, myelination, and axon diameters as 
well as other tissue characteristics unrelated to white matter (e.g. glial processes) (Scholz et al., 
2009). We used voxel-based quantification (VBQ, see Material and Methods section) method for 
the inter-group analysis (TP1/TP2 neuropathic group vs. control group) of FA parametric maps. 
VBQ comparisons were performed after the subtraction of the baseline VBQ images from TP1 
and TP2 counterparts. 

Our results showed lower FA values in the neuropathic group in several areas involved in 
pain processing, including ACA, thalamus (TH), hypothalamus (HY), HIP and retrosplenial area 
(RSP) at TP1 (Figure -A). However, at TP2 these differences persist only for ACA and RSP 
(Figure -B) - core areas of rodent default mode network (DMN).   



 

Figure 3-13 Fractional anisotropy (FA) differences between groups at 2 weeks (TP1) 
and 8 weeks (TP2) after peripheral nerve injury. 
(A) At TP1, neuropathic group displayed lower FA values than controls in the anterior cingulate 
(ACA) and hypothalamus, ventral tegmental area (VTA), parafascicular (PF) and ventromedial 
(VM) nuclei of thalamus (TH), and retrosplenial area (RSP). (B) At TP2, neuropathic mice 
showed lower FA than controls only in ACA and RSP.  FWER correction used at cluster level 
for p<0.05 for statistical images. 

 

  



3.2.3.3 Functional connectivity (FC) via resting-state fMRI  

Next, we created functional connectivity matrices for each timepoint to obtain a global view 
of the potential functional changes associated with neuropathic pain and subsequent depressive 
behaviors. We selected 76 unilateral ROIs which cover the entire isocortex and major subcortical 
areas including limbic, cortical, reward, and nociceptive areas. Figure  demonstrates the 
significant connectivity changes between neuropathic and control group matrices (Figure -A 
and D, p<0.05, uncorrected) overlaid on the mouse brain. We then calculated the connections 
(edges) and regions (nodes) showing most changes between the two groups at TP1 (Figure -
A shows edge strength changes as correlation coefficients and node degree changes as Stouffer 
coefficients, node sizes correspond to ranking of most changed nodes; Figure -B, C list the 
most changed edges and nodes, respectively) and TP2 (Figure -D, E, F). At TP1, most 
changed nodes consisted of areas related to pain processing (e.g. TH and agranular insula-AI), 
and areas associated with aversion (e.g. amygdala, septum, ACB, hypothalamus, hippocampal 
formation and thalamus), highlighting pain-related functional alterations in the mouse brain 
(Figure -C). At TP2, however, the emergence of depressive phenotype coincided with 
functional changes mainly in reward/aversion areas (e.g. ACB, pallidum (PAL), ventral tegmental 
area (VTA), hippocampal formation, bed nucleus of stria terminalis (BST), and septum) and areas 
of rodent DMN (e.g. RSP, hippocampus, midbrain) which are known to be involved in major 
depression (Figure -F). 

In light of the Stouffer analysis results determining the nodes with the most significant FC 
changes (Figure -C, F) and the structural connectivity results previously presented (Figure 

), we chose ACA, VTA, habenula (Hb), HIP, ACB, insula and periaqueductal gray (PAG) as 
regions of interest for inter-group analysis. 



 
Figure 3-14 Graph theoretical analysis for functional connectivity matrices. 
(A and D) Significant changes between neuropathic and control groups for connection (edge) strengths 
and nodes are shown as mouse brain overlays at TP1 (A) and TP2 (D). Edge strength changes are 
displayed on a scale of correlation coefficients.  The relevance of FC chances for each node was 
assessed using two measures: the degree (color coded) denoting the number of significantly changed 
connections / node; and the Stouffer coefficient (node size) that is also introducing the weight of the 
changes for each connection. Stouffer coefficients and therefore the node sizes correspond to ranking 
of most changed nodes. (B and E) List of most changed edges (according to the p value) are ranked for 
TP1 (B) and TP2 (E). (C and F) List of most changed nodes from Stouffer analysis are ranked for the 
two post-injury timepoints.  (C) At TP1, most changed nodes are areas related to pain processing (e.g. 
thalamus [TH] and agranular insula [AI]) and aversion (e.g. amygdala, septum, nucleus accumbens 
[ACB], hypothalamus [HY], hippocampal formation and thalamus [TH]). (F) At TP2, mainly 
reward/aversion areas (e.g. ACB, pallidum (PAL), ventral tegmental area (VTA), hippocampal formation, 
bed nucleus of stria terminalis (BST), and septum) and areas of rodent default-mode network (DMN) 
(e.g. RSP, hippocampus, midbrain) are listed as the nodes with most changes. All results are p<0.05, 
uncorrected. 

(Abbreviations: AAA-CEA-MEA: Anterior-central-medial amygdala; ACB: Nucleus accumbens; AI: 
Agranular insula; AUD: Auditory areas; BST: Bed nucleus of stria terminalis; CLA: Claustrum; COA-PAA-
TR: Cortical-piriform amygdalar areas, post-piriform transition area; dhc: Dorsal hippocampus; ECT: 
Ectorhinal area; ENT: Entorhinal area; EP: Endopiriform nucleus; FRP: Frontal pole; GU: Gustatory area; 
HY: Hypothalamus; LA-BMA-BLA-PA: Lateral-basomedial-basolateral-posterior amygdala; LSX-MSC-
TRS: Lateral-medial septum, triangular nucleus; MBsta: Behavioral state-related midbrain; MH-LH: 
Medial-lateral habenula; MOp: Primary motor area; ORB: Orbital area; PAG: Periaqueductal gray; PALd: 
Dorsal pallidum; PALv: Ventral pallidum; PAR-POST-PRE-SUB: Para-/post-/pre-/subiculum; PERI: 
Perirhinal area; PIR: Piriform area; PTLp: Posterior parietal association area; RSP: Retrosplenial area; 
SS: Somatosensory area; TEa: Temporal association area; TH: Thalamus; vhc: Ventral hippocampus; 
VISC: Visceral area; VTA: Ventral tegmental area.) 



Functional connectivity of cingulate area, a region showing structural alterations in the 
neuropathic group, was assessed at both TP1 and TP2 (Figure , FWER corrected at cluster 
level for p<0.05). At TP1, ACA FC towards AI, caudate-putamen (CP), dorsal hippocampus 
(dHIP), Hb, and PAG was decreased in the neuropathic mice; whereas a stronger ACA-
hypothalamus connectivity was observed in this group compared with control (Figure -A). At 
TP2, when neuropathic mice display depressive-like behaviors, ACA was found more connected 
to RSP, amygdala (AMY), and temporal association areas (TeA) in neuropathic mice, while the 
ACA connectivity with CP, dHIP, Hb, and PAG was lower in neuropathic animals than controls, 
similar to TP1 results in this seed (Figure -B). 

 

Figure 3-15 Inter-group differences in anterior cingulate area (ACA) functional 
connectivity at TP1 and TP2.  
(A) At TP1, ACA connectivity towards agranular insula (AI), caudate-putamen (CP), dorsal 
hippocampus (dHIP), habenula (Hb), periaqueductal gray (PAG) was lower and ACA-hypothalamus 
connectivity was higher in the neuropathic group. (B) At TP2 weeks, ACA was more connected to 
retrosplenial area (RSP), amygdala (AMY), and temporal association areas (TeA) for neuropathic 
mice whereas ACA connectivity with CP, dHIP, Hb, and PAG was reduced. FWER corrected at 
cluster level for p<0.05. 

Inter-group statistical comparisons suggest strong remodeling of the VTA functional 
connectivity in the neuropathic animals. Indeed, at TP1, neuropathic animals showed higher 
synchrony of the BOLD rs-fMRI signal towards somatosensory cortex (SS), CP, and RSP areas 
(Figure , FWER corrected at cluster level for p<0.05; Figure -A) while at TP2, the VTA 
FC changes detected towards  ACA, ACB, CP, BST, Hb, PF and medial dorsal (MD) nuclei of 
thalamus, as well as higher intra-region connectivity within VTA (Figure -B). Many of these 
areas belong to the reward circuitry, a system concerned with incentive salience, motivated 
behaviors, and reward learning (Borsook et al., 2016; Hu, 2016; Russo and Nestler, 2013). Figure 

 shows 3D reconstruction of inter-group statistical differences in longitudinal evolution of VTA 
FC from T1 to T2 (Figure , FWER correction applied at cluster level for p<0.05). 



 

Figure 3-16 Inter-group differences in ventral tegmental area (VTA) functional 
connectivity at TP1 and TP2.  
(A) At TP1, somatosensory (SS), caudate-putamen (CP) and retrosplenial area (RSP) connectivity 
towards VTA was higher in neuropathic mice than in controls. (B) At TP2, neuropathic group showed 
greater VTA synchrony towards anterior cingulate (ACA), nucleus accumbens (ACB), CP, bed 
nucleus of stria terminalis (BST), habenula (Hb), parafascicular (PF) and medial dorsal (MD) nuclei 
of thalamus and higher intra-region connectivity at VTA. FWER corrected at cluster level for p<0.05. 

 

 

Figure 3-17 3D reconstruction of inter-group statistical differences in longitudinal 
evolution of VTA functional connectivity from T1 to T2.   
Full factorial ANOVA results, FWER correction applied at cluster level for p<0.05. 



Lateral habenula (LHb) is an important brain region encoding negative value/ aversion and 
inhibition of reward signals via its extensive connections to limbic forebrain and aminergic 
brainstem centers. At TP1, LHb connectivity towards amygdala, TeA, midbrain reticular nucleus 
(MRN) and ventral hippocampus (vHIP) were increased in neuropathic animals compared to 
controls (Figure -A, FWER cluster correction at p<0.05). At TP2, higher connectivity of LHb 
with thalamus, HY, VTA, and MRN and lower connectivity with AI and secondary motor area 
(MOs) were observed for neuropathic group (Figure -B, FWER correction at cluster level at 
p<0.05). 

 

Figure 3-18 Inter-group differences in lateral habenula (LHb) functional connectivity at TP1 
and TP2.  
(A) At TP1, LHb connectivity towards amygdala (AMY), temporal association area (TeA), ventral 
hippocampus (vHIP) and  midbrain reticular nucleus (MRN) were increased in neuropathic mice. (B) At 
TP2, neuropathic animals displayed higher connectivity of LHb with parafascicular (PF) nucleus of 
thalamus, hypothalamus (HY), ventral tegmental area (VTA), and MRN; lower connectivity with 
agranular insula (AI) and secondary motor area (MOs). FWER correction at cluster level was applied 
for p<0.05. 

 
Based on the graph analysis results that highlighted important inter-group differences of 

FC involving pain and reward/aversion areas, we further performed fine-grained mapping of FC 
using ACB, dorsal HIP (dHIP), insula (AI), and PAG as seeds. Figure  presents the functional 
connectivity alterations of these ROIs in the neuropathic pain group compared with controls at 
TP1 and TP2 (All statistical results are FWER corrected at cluster level for p<0.05). At TP1, ACB 
displays reduced connectivity towards CP, SS, lateral geniculate nucleus (LGN) of thalamus and 
vHIP in neuropathic mice (Figure -A). At TP2, reduced ACB connectivity to CP, SS, and 
primary MO (MOp) areas were accompanied with greater connectivity towards zona incerta (ZI), 
TeA, vHIP, and substantia nigra (SN) for neuropathic animals (Figure -B).  
  

p<0



dHIP connectivity at TP1 was higher towards AMY, RSP, superior colliculus (SC), and LGN 
and lower towards CP in neuropathic pain group (Figure -C). dHIP demonstrated increased 
connectivity with AMY and posterior parietal association areas (PTLp) and decreased connectivity 
with ACA and septum in neuropathic animals with depressive phenotype at TP2 (Figure -D). 

Insula and PAG, areas known to be involved in pain processing, also showed connectivity 
alterations in the neuropathic pain group. Insular connectivity towards RSP and PAG was greater 
and its connectivity towards MOs, TH and vHIP was lower in neuropathic mice at TP1 (Figure 

-E). At TP2, neuropathic pain group presenting depressive behaviors showed insular 
connectivity patterns increased towards HY, LGN, and entorhinal areas (ENT) and decreased 
towards CP, PF nucleus, TeA, and MRN (Figure -F). PAG connectivity at TP1 (Figure -
G) was higher towards ACB, CP and HY and lower towards Hb, PTLp and SS areas in neuropathic 
mice compared to controls. At TP2, connectivity of PAG with ACB, piriform area (PIR), olfactory 
tubercle (OT), and LGN was stronger and PAG-SS connections were weaker for neuropathic 
pain-induced depression group (Figure -H).  

 



 

Figure 3-19 Inter-group differences in the nucleus accumbens (ACB), dorsal hippocampus 
(dHIP), agranular insula (AI), and periaqueductal gray (PAG) functional connectivity at TP1 
and TP2. 
(A) ACB displays reduced connectivity towards caudate-putamen (CP), somatosensory areas (SS), 
lateral geniculate nucleus (LGN) of the thalamus and ventral HIP (vHIP) in neuropathic mice at TP1. 
(B) At TP2, reduced ACB connectivity to CP, SS, and primary MO (MOp) areas and greater 
connectivity towards zona incerta (ZI), temporal association area (TeA), vHIP, and substantia nigra 
(SN) were shown for neuropathic animals. (C) dHIP connectivity at TP1 was higher towards amygdala 
(AMY), retrosplenial area (RSP), superior colliculus (SC), and LGN and lower towards CP in 
neuropathic pain group. (D) dHIP demonstrated increased connectivity with AMY and posterior 
parietal association areas (PTLp) and decreased connectivity with anterior cingulate (ACA) and 
septum in neuropathic animals with depressive phenotype at TP2. (E) Insular connectivity towards 
RSP and periaqueductal gray (PAG) was greater and its connectivity towards secondary motor (MOs), 
thalamus (TH) and ventral hippocampus (vHIP) was lower in neuropathic mice at TP1. (F) At TP2, 
neuropathic pain group showed increased insular connectivity patterns towards hypothalamus (HY), 
LGN, and entorhinal areas (ENT) and decreased towards CP, parafascicular (PF) nucleus, TeA, and 
MRN. (G) PAG connectivity at TP1 was higher towards ACB, CP and HY and lower towards Hb, PTLp 
and SS areas in neuropathic mice compared to controls. (H) At TP2, connectivity of PAG with ACB, 
piriform area (PIR), olfactory tubercle (OT), and LGN was stronger and PAG-SS connections were 
weaker for neuropathic pain-induced depression group. All statistical results were FWER corrected at 
cluster level for p<0.05. 



Longitudinal evolution:  

Additionally, we performed full factorial ANOVA to highlight group-differences in the 
evolution of the FC patterns from TP1 to TP2 (Figure , FWER corrected at cluster level for 
p<0.05). Overall, neuropathic mice showed stronger connectivity modifications of the ACA FC 
with basolateral amygdala (BLA), RSP, and VTA and reduced variations towards claustrum 
(CLA), insula, Hb, and dHIP when compared to the control animals (Figure -A). Overtime, 
RSP functional connectivity was reduced towards thalamus and dHIP in neuropathic group in 
comparison to controls (Figure -B). In neuropathic mice, insular cortex displayed greater FC 
modifications towards RSP and PAG areas and lower variations towards SS and thalamus 
compared to controls overtime (Figure -C). These time-dependent changes were also 
observed for PAG which exhibited stronger FC modifications towards ACB, CP, thalamus and 
dHIP in the neuropathic group while modifications towards SS were reduced compared to controls 
(Figure -D).  

Aside from structures implicated in pain processing, structures involved in reward-aversion 
processes showed a distinct evolution profile of FC in neuropathic animals with depressive-like 
behaviors in comparison with controls. For instance, ACB connectivity changes became dominant 
towards vHIP and VTA in neuropathic animals (Figure -A). In regard to LHb, we observed 
stronger FC changes with amygdala, VTA, and midbrain reticular nuclei (MRN) and weaker FC 
alterations with dHIP (Figure -B). The main changes of the VTA FC were observed with SS, 
CP, BST, and thalamus in neuropathic animals (Figure -C). 

Hippocampus, a structure implicated in both pain and depression also showed time-
dependent changes in neuropathic animals compared to controls.  The vHIP (Figure -D) 
displayed stronger FC alterations with infralimbic (IL), prelimbic (PL), SS, insula and dHIP in 
animals displaying depressive-like behaviors while dHIP (Figure -E) revealed stronger 
changes towards insula and amygdala and reduced connectivity alterations towards ACA, Hb and 
within dHIP in neuropathic mice with depressive phenotype compared to controls. 



 

Figure 3-20  Group-differences in the evolution of the FC patterns from TP1 to TP2 for 
anterior cingulate (ACA), retrosplenial area (RSP), agranular insula (AI) and 
periaqueductal gray (PAG).  
(A) Stronger modifications of the ACA connectivity towards basolateral amygdala (BLA), RSP, and 
ventral tegmental area (VTA) were found neuropathic animals (red). ACA had reduced connectivity 
modifications towards claustrum (CLA), insula, habenula (Hb), and dorsal hippocampus (dHIP) in 
neuropathic mice as compared to control group (blue). (B) RSP connectivity showed stronger 
modifications towards thalamus and dHIP in neuropathic group than in controls. (C) Neuropathic 
mice showed greater insula-RSP and insula-PAG connectivity alterations ovetime when compared 
to the sham group, while insula-SS and insula - thalamus connectivity showed lower variations from 
TP1 to TP2(D) Connectivity modifications between PAG and ACB, CP, thalamus, and dHIP were 
higher in neuropathic mice as compared to sham; SS connectivity showed less changes  to PAG in 
this group. FWER corrected at cluster level for p<0.05. 

 

 



 

Figure 3-21 Group-differences in the evolution of the FC patterns for nucleus accumbens 
(ACB), ventral tegmental area (VTA), lateral habenula (LHb) and two main hippocampal 
divisions (dorsal and ventral hippocampus (dHIP and vHIP, respectively) from TP1 to TP2.  
(A) ACB connectivity with vHIP and VTA showed  stronger overtime modifications  for neuropathic 
animals in comparison with controls. (B) LHb area displayed greater connectivity changes towards 
BLA, VTA, and midbrain reticular nuclei (MRN) in neuropathic pain group; they also had lower 
connectivity changes between LHb-dHIP. (C) VTA revealed stronger than control modifications in 
neuropathic mice towards somatosensory area (SS), bed nucleus of stria terminalis (BST), and 
thalamus. (D) Ventral part of the hippocampus (vHIP) displayed in neuropathic animals greater 
connectivity changes towards infralimbic (IL), prelimbic (PL), and SS areas, insula, dHIP than in 
controls. (E) Dorsal part of hippocampal area (dHIP) exhibited in neuropathic animals greater than 
control  connectivity variations from TP1 to TP2 towards insula and BLA and reduced connectivity 
changes with ACA, Hb, and within dHIP when compared to the sham group. FWER corrected at 
cluster level for p<0.05. 



3.2.4 Discussion 

In this study, we aimed to uncover the evolution of the brain structural and functional 
connectivity associated with the establishment of chronic pain and later, the emergence of 
depressive behaviors in a mouse model of neuropathic pain. For this purpose, we used diffusion 
MRI and resting state fMRI in parallel with behavioral measures in a longitudinal design. We were 
able to show structural differences at two post-injury timepoints for neuropathic mice. ACA and 
RSP displayed lower FA values at both 2 weeks and 8 weeks following cuff surgery while TH, HY, 
and hippocampus had reduced FA values only at 2 weeks post-surgery.  

Brain functional connectivity networks had also undergone a substantial remodeling 
throughout the period of neuropathic pain. As expected, following cuff surgery, mice developed 
long lasting mechanical allodynia (Yalcin et al., 2011). Thus at 2 weeks, corresponding to the 
early stages of the neuropathy, we observed regions involved in pain processing and aversion 
taking predominant roles in neuropathic mouse brain networks determined from graph theoretical 
analysis.  At 8 weeks when animals display not only mechanical allodynia but also depressive-
like behavior, we demonstrated alterations in the reward circuitry and default mode network 
(DMN). 

Further, we investigated functional connectivity profiles of brain areas showing structural 
changes or changes in graph measures between groups in more detail. Several regions exhibited 
connectivity changes for neuropathic pain group at 2-week (TP1) and 8-week (TP2) time points. 
Most notable results were obtained in ACA, VTA, and LHb nodes along with other reward areas 
and DMN components.  

3.2.4.1 Neuropathic pain leads to brain structural modifications  

Our results revealed that FA values are reduced at the early stages of neuropathy (2 
weeks) in ACA and RSP, core regions of mouse DMN, along with TH, HY and hippocampus in 
neuropathic mice. Moreover, ACA and RSP changes persisted at TP2, where a depressive 
phenotype manifests in behavioral tests.  

Preclinical and clinical studies focusing on pain research showed several structural 
alterations which support the results of our present study. Indeed, reduced volumes of prefrontal 
cortex (PFC) and RSP were reported in a rat spared nerve injury (SNI) model, coinciding with 
anxious behavior (Seminowicz et al., 2009). Prefrontal volume reduction was also described in 
the SNI model using mice (Bilbao et al., 2018). In addition, patients with neuropathic pain following 
spinal cord injury (Yoon et al., 2013) displayed gray matter decrease in subgenual ACC while 
decreased FA in thalamic areas was reported for patients with migraine (DaSilva et al., 2007), 
fibromyalgia(Lutz et al., 2008) and temporomandibular disorder (Moayedi et al., 2012). In addition, 
gray matter atrophy in ventromedial prefrontal cortex (vmPFC) along with lower FA in cingulum 
and decreased vmPFC-basal ganglia connectivity were found in complex regional pain syndrome 
(CRPS) (Geha et al., 2008)  

  



Furthermore, studies in major depressive disorder (MDD) showed reduced volume of 
anterior cingulate, related to both glial and neuronal losses (Drevets et al., 1997; Mayberg, 2009; 
Rajkowska, 2000; Russo and Nestler, 2013; Uranova et al., 2004). Structural changes found in 
the same brain region for chronic pain and MDD suggest a contribution of anterior cingulate in 
their comorbidity. Indeed, ACA is thought to play an important role in pain-induced depression. 
Previous research from our group showed that the hyperactivity of this region is associated with 
anxio-depressive consequences of the cuff model (Sellmeijer et al., 2018) and the optogenetic 
inhibition of this area abolishes aversion to pain without affecting mechanical hypersensitivity. 

Longitudinal nature of our experimental design enabled us to assess time-dependent 
evolution of brain connectivity, which is difficult to capture with cross-sectional designs often used 
in clinical settings. We thus could detect the disappearance of FA alterations in TH, HY, and 
hippocampal areas at TP2, which points to an early but short-lasting reaction to cuff surgery. TH, 
HY, and hippocampus were identified as parts of aversion circuitry (Hayes and Northoff, 2011) 
and thalamus is well-known to be involved in pain processing (Garcia-Larrea and Peyron, 2013) 
thus, transient structural changes in these areas might correspond to initiation of chronic pain and 
related aversive behaviors. Concerning the long-lasting changes that we observed in ACA and 
RSP might be associated with steady neuroplastic changes resulting from activity-dependent or 
inflammatory and glial processes, leading to depressive behavior. In line with this, ACA shows 
long term potentiation (LTP) of glutamatergic synapses following nerve injury in mice (Xu et al., 
2008). Astrocytic processes in ACA were also shown to be involved in the establishment of LTP 
and pain hypersensitivity (Ikeda et al., 2013) in an inflammatory injury model. Chemotherapy-
induced neuropathic pain resulted in a significant increase in ACA astrocytes in rats (Mannelli et 
al., 2013) and Narita Minoru et al. (2006) reported role of the cortical δ-opioid receptor dysfunction 
in ACA astrogliosis, potentially leading to anxiety state. Putative role of glial processes in 
depression were also investigated. Postmortem brains of depressed patients showed increased 
microglial quinolinic acid, an NMDA agonist which is considered to modulate the link between 
immune and neurotransmitter staple changes, in subgenual ACC and mid-cingulate areas 
(Steiner et al., 2011). Impairment of gap junction-mediated communication between astrocytes 
and oligodendrocytes in ACA was discovered in postmortem brain tissues from depressed 
suicides (Tanti et al., 2019), emphasizing the importance of glia in normal brain function. 

RSP is a principal area of rodent DMN (Stafford et al., 2014; Upadhyay et al., 2011) 
together with ACA. Default mode network (DMN) is a set of regions that show synchronous activity  
at rest and deactivate during task performance (Greicius et al., 2003; Raichle et al., 2001). DMN 
alterations are found across several neurologic and psychiatric disorders (Baliki et al., 2014; 
Berman et al., 2011; Broyd et al., 2009; Buckner et al., 2008). Deactivation of DMN was reduced 
while switching from rest to attentional task in patients suffering from chronic back pain (Marwan 
N Baliki et al., 2008). In a diabetic neuropathy cohort, DMN connectivity was increased towards 
dorsal ACA and MO/SS cortices and decreased towards dlPFC, insula and TH (Cauda et al., 
2010), whereas in fibromyalgia, DMN-insula connectivity and coherence within DMN were 
increased (Napadow et al., 2011). In three distinct pain conditions, mPFC connectivity with 
posterior part of DMN was found to be decreased and mPFC-insula FC was increased (Baliki et 
al., 2014). In short, while the DMN connectivity changes are not consistent across conditions, 
DMN dysfunction seems to be important maladaptation in chronic pain.   



DMN modifications in major depression are also well-documented(Wang et al., 2012; Zhu 
et al., 2012). For instance, Greicius et al. (2007) has shown greater subgenual ACC connectivity 
towards DMN regions which is correlated with the length of current depressive episode in MDD. 
On the preclinical side, DMN connectivity was enhanced with chronic stress (Henckens et al., 
2015) in a model of depression in mice (Grandjean et al., 2016) and in rats. In rats with genetic 
predisposition for major depression, enhancement of DMN connectivity (Gass et al., 2016) was 
observed while the optogenetic perturbation of LHb in this model resulted in diminished DMN 
connectivity and rescued the rats from depressive phenotype (Clemm von Hohenberg et al., 
2018). Hence, RSP structural modifications might be giving rise to network-level functional 
connectivity reorganization, promoting aversive and anxio-depressive behaviors.  

3.2.4.2 Functional connectivity remodeling in limbic circuitry 

To obtain a global perspective on brain functional connectivity in neuropathic pain, we 
generated large connectivity matrices. We extracted ROIs from anatomical segmentation of Allen 
mouse brain atlas (Lein et al., 2007), covering isocortex and subcortical regions. The connectivity 
matrices were constructed with partial correlation, which computes correlation between any two 
nodes while excluding the influence of all others. Difference between neuropathic and control 
groups were analyzed for TP1 and TP2, graph theoretical parameters were assessed and most 
changed connections (edges) and regions (nodes) were ranked. In this manner, we were able to 
evaluate the longitudinal evolution of brain-wide FC.  

At TP1, the point where mechanical hypersensitivity is established, the most prominent 
changes appeared in pain and aversion-related regions such as thalamus and insula (Iannetti and 
Mouraux, 2010) along with amygdala, hypothalamus, and parts of hippocampal formation.  These 
areas were shown to be parts of aversion circuitry (Hayes and Northoff, 2011) in humans and in 
animals. Chronic pain is thought to reflect a shift from pain-related circuitry to meso-corticolimbic 
circuitry over time (Farmer et al., 2012), different pain conditions displaying divergent patterns of 
network reorganization. Transition from subacute to chronic back pain, as followed by rs-fMRI 
over time, could be predicted from initial cortico-striatal FC patterns (Baliki et al., 2012). Here, we 
observed limbic/reward areas and DMN components as most changed nodes at TP2 for 
neuropathic animals. These areas included VTA, ACB, pallidum, hippocampus, midbrain, septum, 
BST as well as SS, insula and RSP- implicating them in the development of anxiety and 
depression as a consequence of neuropathic pain.  

On the basis of the nodes with most marked changes determined from graph theoretical 
approach and the areas showing structural alterations, we chose several ROIs to perform fine-
grained seed analyses.  

ACA functional connectivity presented major changes at both timepoints: At TP1, lower 
connectivity of ACA towards nociceptive areas (insula, PAG) might reflect the loss of descending 
pain modulation from this area, exacerbating pain. FC reductions towards CP, dHIP, and Hb also 
imply deficits in top-down control, allowing negative affect to prevail.  At TP2, along with the 
changes observed at TP1, ACA displayed stronger connectivity towards RSP; thus, enhanced 
within-DMN connectivity patterns coinciding with depressive phenotype. ACA-AMY FC also 
showed enhancements, denoting an amplification of aversive inputs from amygdala into ACA or 
alterations of the negative loop between ACA and AMY. As mentioned earlier, ACA structural and 
functional connectivity changes are quite prevalent in depression and chronic pain conditions in 



their comorbidity. Combined with our observations, ACA emerges as a crucial node taking part in 
brain network reconstruction prompted by nerve injury and bringing out the behavioral signatures 
of depressive pathology. 

VTA, a dopaminergic midbrain center encoding reward and coordinating meso-
corticolimbic pathway, was one of the most changed areas at TP2 in the graph analysis. At this 
time point, VTA demonstrated stronger connectivity towards several other limbic areas, namely, 
ACA, ACB, CP, BST, Hb, PF and MD nuclei of thalamus in neuropathic mice with depressive 
phenotype. VTA connectivity increases both within reward circuitry and towards ACA, a DMN 
node which position VTA and ACA at the intersection of two important networks, possibly 
regulating their interactions. VTA takes part in both reward and aversion (Lammel et al., 2014), 
pain processing (Ezzatpanah et al., 2016; Hipólito et al., 2015; Ko et al., 2018; Sotres-Bayón et 
al., 2001; Watanabe et al., 2018), stress- and pain-induced depressive behaviors (Fu et al., 2018; 
Isingrini et al., 2017; Ji et al., 2018). In rodent chronic pain models, VTA activity and reward 
behaviors are shown to be disrupted since rats with peripheral nerve injury had reduced 
dopaminergic signaling due to microglia-regulated activation of GABAergic VTA interneurons 
(Taylor et al., 2015) and increased GABAergic and decreased dopaminergic signaling was also 
reported for spinal cord injury in rats (Ko et al., 2018). In a spared nerve injury model, VTA activity 
and dopamine concentration in ACB were reduced (Ren et al., 2015). Both nerve injury and 
cancer pain models resulted in reduced neuronal excitability in VTA (Devonshire et al., 2017; 
Watanabe et al., 2018), while optogenetic stimulation of VTA dopaminergic neurons projecting to 
ACB alleviated allodynia (Watanabe et al., 2018). While preclinical studies such as chronic 
unpredictable mild stress (CUMS) model of depression reported lower VTA activity in VTA-mPFC 
pathway (Liu et al., 2018; Redlich et al., 2015) showed higher functional connectivity of ventral 
striatum (VS) and VTA in depressed patients. However, contradicting findings of increased VTA 
activity were reported in social defeat stress model (Berton et al., 2006; Walsh et al., 2014) and 
in chronic constriction injury (CCI) model (Liu et al., 2018). These contradictions might stem from 
VTA heterogeneity with respect to projections, activity patterns, and neurotransmitter types. 
Although we cannot determine activity levels in VTA with rs-fMRI, we might conjecture the 
increased connectivity towards reward/aversion areas as either compensatory mechanisms 
counteracting reward deficit or increased signaling for anti-reward, or a combination of both 
mechanisms. 

LHb is another key reward/aversion structure which presents with connectivity alterations 
in neuropathic mice. LHb encodes aversion relevant to avoidance and escape behaviors and 
inhibits reward signals. At TP1, LHb connectivity towards AMY, TeA, vHIP and MRN were 
increased in neuropathic animals, which point to an augmented aversive signaling. The higher 
connectivity of LHb with PF nucleus of thalamus, HY, VTA, and MRN and lower connectivity with 
AI and MOs at TP2 can be interpreted as the enhancement of the inhibitory influence of LHb over 
reward areas. This effect can likely cause reward deficits associated with depressive phenotype. 
Longitudinal evolution of LHb FC in neuropathic animals identified stronger connections towards 
amygdala, VTA, and MRN and weaker connections to dHIP, indicating heightened LHb influence 
over reward areas promoting aversion and reward deficiency in a time dependent manner.  

LHb is implicated in pain modulation (Shelton et al., 2012) via its connections to 
monoaminergic and opioidergic centers. Similar to our results, LHb connectivity towards PFC 
divisions and MO cortices were decreased in pediatric CRPS patients (Erpelding et al., 2013). 



LHb is also involved in depressive pathologies (Proulx et al., 2014). For instance, increased 
blood flow to LHb (Gass et al., 2014a) and LHb hyperactivity (Gass et al., 2016) was reported in 
rodent models of depression model while the lesion of the LHb diminish depressive behaviors. In 
addition, increased LHb burst activity drives depressive phenotype and rapid antidepressant 
ketamine acts to suppress this hyperactivity, reversing depressive behaviors and anhedonia 
(Yang et al., 2018b) and inactivation of habenula with deep brain stimulation (DBS)  in treatment 
resistant depression resulted in full remission in a patient (Sartorius et al., 2010). Even more 
relevant, some recent studies showed the involvement of the LHb in depression-pain comorbidity. 
Indeed, it has been shown that CUMS model in rats induces pain hypersensitivity and LHb 
hyperactivity, and its lesion relieves both the pain hypersensitivity and depressive phenotype (Li 
et al., 2016). Moreover, chronic constriction injury in rats also caused increased LHb activity and 
depressive behaviors which were eliminated by lesioning the LHb (Li et al., 2017). To conclude, 
increased LHb activity might be the common denominator in pain and depression comorbidity, 
regardless of initial pathology.   

Moreover, functional connectivity of dorsal hippocampus (dHIP) showed higher 
connectivity towards RSP, SC, and LGN at TP1 which might be associated with amplified 
nociceptive inputs or compensation for lower dHIP activation in chronic pain. Indeed, impaired 
neurogenesis and synaptic plasticity were detected in hippocampus, which contribute to memory 
deficits commonly observed in chronic pain (Mutso et al., 2013). At TP2, dHIP connectivity 
towards ACA and septum was lower and its connectivity towards AMY and PTLp was greater in 
neuropathic mice. Reduced ACA-dHIP connectivity was also shown in a mouse model of 
metastatic bone cancer pain (Buehlmann et al., 2018). Decreased hippocampal connectivity 
towards mPFC was predictive of chronification of back pain in patients (Mutso et al., 2013) and 
may correlate with reduced reward learning signals in depressive disorder (Kumar et al., 2008). 
Overall, dHIP FC was higher with insula and amygdala, pain and aversion areas, and reduced 
towards ACA, Hb, and within itself in neuropathic pain-induced depression model. 

  On the other hand, ventral HIP showed stronger overall connectivity to mPFC, SS and 
insular area, and dHIP underlining their distinct functionalities. In fact, dorsal hippocampus 
engages in cognitive functions whereas vHIP is related to stress and emotional processing 
(Fanselow and Dong, 2010) and the two hippocampal divisions show differential gene expression 
patterns (Lee et al., 2017). Taken together, hippocampal FC patterns we observe might 
correspond to cognitive deficits and heightened emotional processing encountered in chronic pain 
(Simons et al., 2014) and depression.   

While our study brought valuable information concerning the functional and structural 
reorganization of the brain in pain and depression comorbidity, it has some methodological 
limitations. Even though we started with the bigger animal cohort, due to a variation in the 
prevalence of relevant behavioral phenotype our sample size became smaller. Reproduction of 
our findings in a larger cohort would confirm their biological significance. Another caveat was the 
use of male subjects only. Recently, the stance on higher hormonal variability in female subjects 
was abandoned (Shansky, 2019) citing similar variability in males as well as the effects of male 
social hierarchy. There is a pronounced gender bias in basic research (Alderton, 2019) which 
might lead to false generalizations and public health problems. As depression prevalence is 
higher in women (Abate, 2013) and pain responses might differ between sexes (Fillingim et al., 
2009), it is especially important to use female subjects in pain-induced depression results.  



3.2.5 Conclusion 

To recapitulate, we assessed the longitudinal evolution of the brain structural and 
functional connectivity coinciding with pain- and depression-related phenotypes. We observed 
time-dependent brain structural alterations and functional connectivity remodeling in several 
relevant brain areas for neuropathic mice in comparison to controls. Predominance of pain and 
aversion circuitries in the earlier post-injury time point accounted for the establishment of pain 
hypersensitivity. Development of depressive behaviors were accompanied by reorganization of 
reward system and DMN delineating causal relations between pain and depression. A prominent 
role of ACA, LHb, and VTA regions was discovered in pain-induced depression. 

  



4 General Discussion 
My thesis work consisted of the investigation of brain structural and functional connectivity 

signatures of neuropathic pain-induced depression in a relevant mouse model. In particular, I 
studied the evolution of brain networks to identify alterations occurring at different stages of the 
pathology in a longitudinal experimental design. Prospective studies on this subject are rather 
difficult to perform in clinical settings. Not only the transition periods of injury to chronic pain and 
then to depressive disorder are much longer in patients, but also the variability in the type of injury, 
genetic disposition, environmental factors, and other comorbid conditions renders the 
interpretation of findings complex (Burma et al., 2017). In preclinical research, we have the 
advantage of precisely controlling these factors: a standard injury procedure, use of inbred 
organisms, and a strict regulation of housing conditions and experimental variables ensure more 
consistent results. The ability to employ more invasive methods is another crucial advantage of 
animal experiments.  

The inbred strains used for most rodent experiments are created for the purpose of 
reducing genetic variability, as mating of siblings over 20 generations are expected to produce an 
identical genotype for all members of an inbred strain (Padmanabhan, 2014). There are more 
than 400 mouse and 150 rat inbred strains commercially available. Each strain has specific 
phenotypic features which might be useful for addressing different research questions. In 
neuroscience field, inbred rodents are chosen to lower variability in nervous system structure and 
function, consequently the behavioral phenotype. This way, the results of an experiment can be 
attributed to its design and studied parameters, not the inherent variability of the test subjects.  

C57BL/6N and BALB/cJ mouse strains are two most often used strains for depression 
research. BALB/cJ is especially preferred for its vulnerability to develop anxiety and depressive 
behaviors. However, there were previous reports on the intra-strain variability for BALB/cJ mice 
concerning their brain anatomy and behaviors (Fairless et al., 2012; Kim et al., 2012; Wahlsten, 
1974). Thus, I performed a brain connectivity study in C57BL/6N and BALB/cJ to describe 
potential inter-strain differences and within-strain variability, utilizing MRI methods. The main aim 
was to determine the particular strain of mice to use for further experiments on neuropathic pain-
induced depression. 

  



4.1 Comparison of strains C57BL/6N and BALB/cJ  

Investigation of brain structure and connectivity in the two strains was performed via 
anatomical T2 imaging, diffusion MRI and resting state-fMRI.  

4.1.1 Structural connectivity  

Diffusion imaging and further implementation of high-resolution fiber mapping was 
employed to demonstrate brain structural connectivity. C57BL/6N and BALB/cJ mice exhibited 
divergent white matter architectures, showing differences in corpus callosum (genu, splenium and 
parts) and other axonal bundles (e.g. cingulum, fimbria). Several gray matter regions also showed 
microstructural differences, including prefrontal areas, striatum, thalamus and midbrain. There 
was a general under-connectivity in BALB/cJ strain, shorter average corpus callosum and lower 
density of fronto-striatal communication fibers. Notably, BALB/cJ mice displayed great variation 
in the length and fiber density of corpus callosum within the strain. The specific patterns of under-
connectivity in BALB/cJ strain might account for the specific behavioral phenotypes they exhibit, 
such as decreased social interaction and increased anxiety. 

In addition, we performed a volumetric analysis of T2 anatomical images and found 
extensive volume differences in several brain regions between C57BL/6N and BALB/cJ. 
C57BL/6N had larger volumes for cortical (e.g. PFC, motor and somatosensory areas, association 
areas) and subcortical areas (e.g. septum, thalamus, and hippocampus) whereas, BALB/cJ 
showed a thicker corpus callosum around the middle part which can be interpreted as a 
compensation mechanism for its shorter length to ascertain adequate communication between 
hemispheres.  

4.1.2 Functional connectivity 

We further analyzed resting-state fMRI data to discover putative variations in functional 
connectivity arising from discrepancies in brain structures of the two strains. First, we investigated 
global functional connectivity by creating large connectivity matrices and identifying hubs, 
dominant regions within functional brain networks serving to establish effective information 
transfer. Hub regions in the C57BL/6N strain were subcortical forebrain limbic areas (e.g. 
endopiriform nucleus, claustrum) and parts of reward circuity (e.g. ACB, CP, dhc, PALv) along 
with RSP, the core region of mouse DMN. Densely connected endopiriform nucleus and 
claustrum have roles in the integration of limbic and somatomotor information. For BALB/cJ 
strains, sensory (e.g. visual and auditory) and associative (e.g. TEa, PTLp) cortices as well as 
regions implicated in aversion (e.g. BLA, BMA) assumed hub roles. Statistically, dorsal 
hippocampus was the most different area between strains, falling in line with memory impairments 
documented in BALB/cJ (Chen et al., 1996) associated with fear conditioning.  

Next, we examined seed connectivity differences between strains using voxel-wise 
correlation analysis. We found that the structural under-connectivity of corpus callosum does not 
preclude inter-hemispherical cross-talk for the BALB/cJ strain; yet, functional connectivity of 
homotopic cortical areas exhibits a strain-specific configuration. Ipsilateral somatosensory areas 
show more coherence in BALB/cJ. For somatomotor areas, this coherence was observed only for 
caudal regions, connected through middle division of corpus callosum. Rostral motor areas, 
however, were more inter-connected in the C57BL/6N mice around the genu of corpus callosum; 
previously mentioned to have higher density of fibers.  In short, structural connectivity of BALB/cJ 



strain shapes functional connectivity; yet, inter-hemispherical connectivity is preserved, either 
through thicker middle part of callosal fibers or through polysynaptic routes. This shows the 
immense capacity of mouse brains to compensate for connectivity deficits.  

  Core regions of rodent default mode network are the ACA and RSP areas. Functional 
connectivity of these regions was also dissimilar for the two strains. BALB/cJ connectivity was 
higher between ACA-RSP cortical areas, while C57BL/6N showed higher RSP connectivity 
towards subcortical areas and higher intra-regional synchrony in ACA, where fibers are more 
densely packed.  

 Specific behavioral phenotype of BALB/cJ mice, exhibiting neophobia, anxiety, lower 
sociability and strong predisposition to depression (Anderzhanova et al., 2013; Brodkin, 2007; 
Moy et al., 2004; Ohl et al., 2001; Panksepp and Lahvis, 2007) suggest a role of reward/aversion 
circuitry. C57BL/6N mice displayed stronger ACB connectivity towards VTA, prefrontal, and septal 
regions compared to BALB/cJ. Weaker ACB-VTA connectivity, the principal reward pathway, 
might give rise to social reward deficits previously described in the BALB/cJ strain. Directional 
communication of ACA and limbic areas (i.e. ventral and dorsal striatum, amygdala) also showed 
differences between strains. Distinct behavioral phenotype of BALB/cJ mice might arise from the 
specific connectivity patterns we observed here, especially involving reward system function.  

To conclude, C57BL/6N and BALB/cJ strains demonstrate intrinsic differences in brain 
structural connectivity with dissimilarities in white matter tracts and gray matter areas, volumetric 
differences in several regions, as well as divergent functional network architecture. Furthermore, 
the variability of white matter structures in BALB/cJ strain, seen in the dimensions of corpus 
callosum, is of great importance. Intra-strain variability in BALB/cJ might lead to inconsistent and 
contradictory results in experiments with different cohorts of animals. To prevent this, it might be 
possible to control corpus callosum size of BALB/cJ brains with histology or imaging for research 
in the neuroscience field. However, variability in smaller structures might still bias the 
experimental findings. Thus, for my future experiments in the neuropathic pain model, I decided 
to use C57BL/6 strain. 

The results of this study do show some consistency with behavior results described in the 
literature for the BALB/cJ strain, especially the connectivity in fronto-striatal and reward pathways, 
proposing reward deficits as the basis of social impairments and anxio-depressive behaviors in 
this strain. Moreover, FC shows flexibility and exceeds the confines of anatomically defined 
networks, as synchronous activity between two regions might exist due to polysynaptic 
connections or driven by a third region (Park and Friston, 2013).   

 

  



4.2 Brain connectivity signatures of neuropathic pain-induced depression in 
mice 
Chronic pain is an important public health problem, affecting a large proportion of the 

population  (Attal et al., 2011; Pitcher et al., 2019). Anxiety and depression frequently accompany 
chronic pain and worsen the disease burden (von Hehn et al., 2012). To shed light on the elusive 
pathophysiological mechanisms underlying depressive comorbidity in chronic pain, we 
investigated brain structural and functional connectivity in a mouse model of neuropathic pain, 
using diffusion MRI and resting state fMRI in parallel with behavioral assessments in a longitudinal 
manner. Neuropathic pain was induced by placing a polyethylene cuff around the right sciatic 
nerve; von Frey filaments were used to assess allodynia weekly and splash test- measuring 
grooming behaviors, was used to demonstrate depressive behaviors. Imaging sessions were 
scheduled at baseline, prior to cuff surgery; at 2 weeks following surgery (TP1) coinciding with 
mechanical hypersensitivity; and at 8 weeks after surgery where the depressive phenotype 
appears (TP2).  

4.2.1 Structural connectivity 

We detected modifications of the DTI-derived parameter maps, probably accounting for 
microstructural changes for neuropathic mice at post-injury time points (TP1 and TP2). TH, HY, 
and hippocampus had reduced FA values at TP1 while ACA and RSP, centers of rodent DMN, 
displayed lower FA values at both TP1 and TP2. We interpreted these findings as an initial 
reactive process involving pain (Garcia-Larrea and Peyron, 2013) and aversion  (Hayes and 
Northoff, 2011) in order to respond to elevated nociceptive inputs. 

ACA and RSP, on the other hand show persistent modifications over time. The principal 
role of ACA in pain-induced depression was reported previously by our group (Barthas et al., 
2015; Sellmeijer et al., 2018). ACA hyperactivity drives anxio-depressive phenotype and inhibition 
of this area removes this phenotype and pain aversion without affecting pain hypersensitivity in 
the cuff model. Structural modifications of ACA and larger mPFC region was also reported in 
preclinical (Bilbao et al., 2018; Seminowicz et al., 2009) and clinical (DaSilva et al., 2007; Geha 
et al., 2008; Lutz et al., 2008; Moayedi et al., 2012; Yoon et al., 2013) chronic pain studies. In 
addition, structural alterations in this region were documented in major depressive disorder (MDD) 
(Drevets et al., 1997; Mayberg, 2009; Rajkowska, 2000; Russo and Nestler, 2013; Uranova et al., 
2004). Seed connectivity of RSP is often used for detection of DMN in rodents. Distinct 
modifications in DMN connectivity was found for several chronic pain conditions (Marwan N. Baliki 
et al., 2014; Marwan N Baliki et al., 2008; Cauda et al., 2010; Napadow et al., 2011) as well as 
major depression (Greicius et al., 2007; Wang et al., 2012; Zhu et al., 2012) and preclinical stress-
based depression models (Clemm von Hohenberg et al., 2018; Gass et al., 2016; Grandjean et 
al., 2016; Henckens et al., 2015). Long-lasting structural modifications of ACA and RSP might 
thus be associated with stable neuroplastic changes leading to depressive behavior. Activity-
dependent (Xu et al., 2008) and glia-mediated (Ikeda et al., 2013; Mannelli et al., 2013; Narita et 
al., 2004) neuroplasticity occurs in ACA as a result of chronic pain. Glial abnormalities were also 
shown for anterior cingulate in postmortem depression studies (Steiner et al., 2011; Tanti et al., 
2019) which can underlie the structural modifications observed in these structures.  

In short, transient changes in TH, HY, and HIP regions are likely due to pain and aversive 
processes while ACA and RSP are strong candidates for mechanistic basis of pain-depression 



comorbidity. Their structural alterations might give rise to extensive functional brain network 
reorganization, promoting aversive and depressive behaviors.  

4.2.2 Functional connectivity 

Neuropathic mice exhibited a substantial remodeling of brain functional networks over the 
experimental period. To assess brain-wide functional connectivity, we created matrices using 
seed areas covering the entire isocortex and subcortical areas. At TP1, major changes were 
discovered in pain (e.g. TH and insula) and aversion-related regions (e.g. amygdala, 
hypothalamus, and hippocampal formation). In line with mechanical hypersensitivity seen at this 
time point, nociceptive and aversive circuits displayed the most changes. At TP2 limbic/reward 
areas (e.g. VTA, ACB, pallidum, hippocampus, midbrain, septum, BST) and DMN (RSP) 
components showed the most changes in neuropathic animals along with SS and insula. 
Development of depressive-like behavior might stem from changes in the dominant nodes of brain 
networks. Initiated by neuropathic pain, alterations in reward/aversion circuitry may cause reward 
deficits and heightened aversive behaviors. DMN connectivity differences might also lead to 
depressive behaviors (Greicius et al., 2007; Wang et al., 2012; Zhu et al., 2012). Changes in SS 
and insular areas could be explained by continued existence of neuropathic state at TP2. Thus, 
the transition from chronic pain to associated depressive phenotype seems to involve a shift in 
predominant networks of the brain from nociceptive to affective circuitries. 

The nodes with most marked changes from graph theoretical analysis and areas with 
structural alterations were chosen as regions of interest (ROIs) for correlation analyses. At TP1, 
ACA showed reduced connectivity towards nociceptive areas (e.g. insula, PAG) and limbic areas 
(e.g. CP, dorsal hippocampus and habenula). ACA is an important center of descending pain 
modulation; therefore, lower connectivity with pain areas suggests a loss of pain modulation. 
Decreased connectivity towards subcortical limbic regions might point to a top-down control 
deficit, causing negative affect. At TP2, along with the changes observed at TP1, ACA displayed 
larger DMN connectivity and an enhanced connectivity to AMY-a major aversive center, 
concurrent with the depressive phenotype. Our results further support the idea that the ACA is a 
critical region in the remodeling of brain networks following nerve injury at both structural and 
functional levels. 

VTA, implicated in in reward and aversion (Lammel et al., 2014), nociceptive processes 
(Ezzatpanah et al., 2016; Hipólito et al., 2015; Ko et al., 2018; Sotres-Bayón et al., 2001; 
Watanabe et al., 2018) and depressive behaviors (Fu et al., 2018; Isingrini et al., 2017; Ji et al., 
2018) was one of the most changed areas in the graph analysis at TP2. Indeed, VTA showed 
higher connectivity towards many limbic areas (e.g. ACA, ACB, CP, BST, Hb, PF and MD nuclei 
of thalamus) in neuropathic mice with depressive phenotype. VTA connectivity increased both 
within reward circuitry and towards ACA, a DMN node which points out to potential implication of 
DMN in pain-depression comorbidity.  The increased connectivity towards reward/aversion areas 
might either be compensation for reward deficits or increased anti-reward signaling, or a 
combination of both mechanisms. 

LHb, an important part of the reward system, encodes aversion relevant to avoidance and 
escape behaviors and inhibits reward signals. At TP1, LHb connectivity towards aversive areas 
(e.g. AMY, TeA, vHIP and MRN) was increased in neuropathic animals. At TP2, stronger 
connectivity of LHb with thalamus, HY, VTA, and MRN and weaker connectivity with AI and MOs 



were observed. Enhanced LHb inhibition of reward areas might be the cause of reward deficits 
and negative affect associated with depressive phenotype. LHb is implicated in pain processing 
(Erpelding et al., 2013; Shelton et al., 2012; Taylor et al., 2015) and in depression (Clemm von 
Hohenberg et al., 2018; Cui et al., 2018; Gass et al., 2014a; Proulx et al., 2014; Sartorius et al., 
2010; Yang et al., 2018a). LHb is also shown to be involved in depression-pain comorbidity as 
shown by Li et al., 2016. A stress-based rat depression model led to pain hypersensitivity and 
LHb hyperactivity (Li et al., 2016), and LHb lesion relieved both the pain hypersensitivity and 
depressive phenotype.  In addition, chronic constriction injury in rats also caused increased LHb 
activity and depressive behaviors (Li et al., 2017) which were eliminated by lesioning the LHb. 
Increased LHb activity might be a common mechanism underlying pain-depression comorbidity.  

Our study had certain caveats. Due to a variation in the prevalence of relevant behavioral 
phenotype in neuropathic mice, our sample size was rather small. In the future, an investigation 
into neuropathic mice without anxio-depressive behaviors may be warranted to find out resiliency-
related factors in brain connectivity. Further reproduction of our findings in neuropathic pain-
induced depression with a larger cohort would confirm their biological significance. Another 
caveat was the use of male subjects only. Recently, the stance on higher hormonal variability in 
female subjects was abandoned (Shansky, 2019) citing similar variability in males as well as the 
effects of male social hierarchy. There is a pronounced gender bias in basic research (Alderton, 
2019) which might lead to false generalizations and public health problems. As depression 
prevalence is higher in women (Abate, 2013) and pain responses might differ between sexes 
(Fillingim et al., 2009), it is especially important to use female subjects in pain-induced depression 
results.  

 Nonetheless, we obtained important findings on the contribution of different brain areas to 
neuropathic pain-induced pain and their temporal evolution. Further work on underlying cellular 
and molecular mechanisms, and the role of specific projections in highlighted regions are needed 
to provide a mechanistic explanation of pain-depression comorbidity. 

4.3 Conclusion 
My investigations into of the evolution of the brain structural and functional networks 

underlying pain- and depression-related phenotypes showed a dominant role of pain/ aversion 
areas immediately following nerve injury. Depressive phenotype was established pursuant to 
reward system and DMN remodeling; highlighting a causal relationship in pain-depression 
comorbidity. ACA, LHb, and VTA were highlighted as strongly core brain areas implicated 
involved in the development of neuropathic pain-induced depression in mice. 

  



5 Perspectives 
By describing pain and depression-related brain connectivity architecture in this the “cuff” 

preclinical model, we were able to indicate putative brain areas and pathways responsible from 
for the emergence of pain-depression comorbidity. The longitudinal experimental design in the 
present work enabled us to explore time-dependent evolution of brain functional and structural 
remodeling. Detailed work into the highlighted areas, using further molecular and histological 
methods as well as cutting-edge technologies such as optogenetic and chemogenetic 
manipulations designed to alter the activity the highlighted areas, might offer mechanistic 
explanations into the pathophysiology of pain-induced depression. Moreover, brain MR imaging 
in this model might be used to monitor therapy responses to new pharmaceutical agents or 
alternative approaches such as repetitive transcranial magnetic stimulation (rTMS), transcranial 
direct current stimulation (tDCS), and deep brain stimulation (DBS). Therapeutical strategies 
tested in this animal model can be transferred to clinical settings, translating the treatments from 
bench to bedside.  
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ABSTRACT
BACKGROUND: Depression is frequently associated with chronic pain or chronic stress. Among cortical areas, the
anterior cingulate cortex (ACC, areas 24a and 24b) appears to be important for mood disorders and constitutes a
neuroanatomical substrate for investigating the underlying molecular mechanisms. The current work aimed at
identifying ACC molecular factors subserving depression.
METHODS: Anxiodepressive-like behaviors in C57BL/6J male mice were induced by neuropathic pain, unpredict-
able chronic mild stress, and optogenetic ACC stimulation and were evaluated using novelty suppressed feeding,
splash, and forced swim tests. ACC molecular changes in chronic pain–induced depression were uncovered through
whole-genome expression analysis. Further mechanistic insights were provided by chromatin immunoprecipitation,
Western blot, and immunostaining. The causal link between molecular changes and depression was studied using
knockout, pharmacological antagonism, and local viral-mediated gene knockdown.
RESULTS: Under chronic pain–induced depression, gene expression changes in the ACC highlighted the over-
expression of a regulator of the mitogen-activated protein kinase pathway, mitogen-activated protein kinase
phosphatase-1 (MKP-1). This upregulation is associated with the presence of transcriptionally active chromatin
marks (acetylation) at its proximal promoter region as well as increased cyclic adenosine monophosphate response
element–mediated transcriptional activity and phosphorylation of cyclic adenosine monophosphate response
element binding protein and activating transcription factor. MKP-1 overexpression is also observed with
unpredictable chronic mild stress and repeated ACC optogenetic stimulation and is reversed by fluoxetine. A
knockout, an antagonist, or a local silencing of MKP-1 attenuates depressive-like behaviors, pointing to an important
role of this phosphatase in depression.
CONCLUSIONS: These data point to ACC MKP-1 as a key factor in the pathophysiology of depression and a
potential target for treatment development.

Keywords: Anterior cingulate cortex, Chronic pain, Chronic stress, Depression, MAPK, MKP-1
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Besides chronic stress (1), chronic pain is also clinically associated
with the development of mood disorders (2). Epidemiological
studies report a mean prevalence rate of around 50% for major
depressive disorder in patients with chronic pain (3). Preclinical
research further revealed that the anxiodepressive consequences
of chronic pain can be studied in murine models (4,5) and
highlighted the time dependency of these affective phenotypes
(6). These models now offer a reliable tool to explore original
mechanisms leading to depression.

A conceptualized view of depression relates this pathology
to specific structural and functional changes in the brain
neurocircuitry. Among the candidate regions, the anterior
cingulate cortex (ACC) appears to be critical because it is
known to display functional and morphological alterations in
depressed patients (7) such as decreased connectivity to the

amygdala (8), altered glucose metabolism (9), and reduced
gray matter volume (10). Preclinical studies also showed
functional and morphological alterations in the ACC following
chronic stress exposure (11,12). Recently, we reported that the
optogenetic activation of pyramidal neurons within the ACC is
sufficient to induce anxiety and depressive-like behaviors in
naïve animals (13). Furthermore, the lesion of the ACC
prevents chronic pain–induced depressive-like behaviors and
the aversiveness of spontaneous pain without affecting the
sensory mechanical sensitivity (13). Thus, the ACC is a critical
hub for mood disorders, including anxiodepressive conse-
quences observed in chronic pain, and for studying their
underlying molecular aspects.

In this context, open approaches such as genome-wide
studies can be powerful to identify molecular blueprints of
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depression. Here, we first performed a whole microarray
analysis within the ACC in both sham and sciatic nerve–injured
animals. Based on this genome expression analysis, the current
study then focused on one critical regulator of the mitogen-
activated protein kinase (MAPK) pathway, MAPK phosphatase-1
(MKP-1), in chronic pain–induced depression. Namely, our micro-
array results indicate that Mkp-1 is significantly upregulated in the
ACC of sciatic nerve–injured animals. Reports of MKP-1 over-
expression in the hippocampus of stressed animals (14,15), as
well as in patients with major depressive disorder (14), supported
our interest to further investigate MKP-1 in chronic pain and mood
disorder comorbidity.

MKP-1, also known as dual specificity phosphatase 1, is
the main negative regulator of the MAPK signaling cascade
(14,16). Cell culture studies showed that the expression of
MKP-1 can be induced by a wide variety of extracellular
factors such as growth factors, lipopolysaccharides, heat
shock, and hydrogen peroxide (17). Studies focusing on the
mechanisms of MKP-1 expression suggest that its transcrip-
tion can be preceded by chromatin remodeling at the pro-
moter region. External stressors (e.g., arsenite or ultraviolet C)
can initiate phosphorylation and acetylation of histone H3 at
the Mkp-1 promoter region (17) and/or activate several tran-
scription factors such as cyclic adenosine monophosphate
response element binding protein (CREB), activating tran-
scription factors 1 and 2 (ATF1 and -2), and activator protein
1 (18,19), which leads to the induction of Mkp-1.

These data raise questions about whether ACC MKP-1 is a
key factor in depression pathophysiology, particularly for
chronic pain–induced depression. Thus, using animal models,
we studied the link between MKP-1 and anxiodepressive-like
behaviors, identified molecular upstream mechanisms leading
to its increased expression in the ACC, and tested the
therapeutic potential of targeting this phosphatase. We show
that neuropathic pain (NP)–induced depressive-like behaviors
are associated with an increase in c-Fos expression, an
increase in phosphorylated CREB and phosphorylated ATF
levels in the ACC, and increased histone H3 lysine 9/lysine 14
(H3K9/K14) acetylation at the promoter regions of C-fos and
Mkp-1. We further demonstrate that ACC MKP-1 overexpres-
sion is present in several animal models of depression,
suggesting a general link between depression and increased
level of ACC MKP-1. We also show that chronic treatment with
a classical antidepressant drug, fluoxetine, suppresses the
increase in MKP-1 levels within the ACC. Moreover, knocking
out, antagonizing, or locally silencing its presence in the ACC
attenuates depressive-like behaviors induced by NP, pointing
to an essential role of MKP-1.

METHODS AND MATERIALS

Animals

Approximately 350 adult male C57BL/6J mice (Charles River,
L’Arbresle, France) were used in all experiments. For the
optogenetic experiments, we used Thy1-ChR2-YFP mice
(13,20). The cyclic adenosine monophosphate response ele-
ment (CRE)–related activity was examined by using CRE-LacZ
mice (21) (see Supplement). Protocols were approved by
the local ethical committee of the University of Strasbourg

(No. 2015012909428166) and Comité d’expérimentation ani-
male du Val de Loire (No. 19).

Surgical Procedures

All surgical procedures were done under general anesthesia
(ketamine/xylazine, 68/10 mg/kg, intraperitoneally; Centra-
vet, Taden, France). Viral transfection and optogenetic
procedures used standard in vivo stereotaxic procedures,
and coordinates for the ACC (areas 24a and 24b) were
0.7 mm anterior and 0.3 lateral to the bregma, based on the
Mouse Brain Atlas (22).

NP Model and Nociceptive Testing

Chronic NP was induced by placing a polyethylene cuff
around the right common sciatic nerve of the animal (23).
The control group (sham) underwent the same procedure
without cuff implantation. The mechanical sensitivity was
scored using von Frey filaments (Bioseb, Vitrolles, France)
(see Supplement).

Unpredictable Chronic Mild Stress Model

Mice were subjected to a variety of stressors several times a
day/night for 8 weeks, including altered cage and bedding,
altered light/dark cycle, cage tilting (451), and predator smell
exposure (24,25). At the end of 8 weeks, the novelty
suppressed feeding (NSF) test was performed and the ACC
was harvested for protein analyses (see Supplement and
Supplemental Table S3).

Anxiodepressive-Related Behaviors

Behavioral phenotyping was performed by using the NSF,
splash, and forced swim tests (FST) (see Supplement).

Optogenetic

Independent sets of Thy1-ChR2-YFP mice implanted with
optic fibers were tested either 5 minutes and 1 day after a
single stimulation or 1 day and 2 weeks after four consecutive
(30 min/day) stimulations. Animals were stimulated with a blue
light–emitting diode (peak wavelength: 460 nm; intensity: 4–6
mW) (see Supplement).

Viral-Mediated Gene Knockdown

Three weeks after sciatic nerve surgery, NP- or sham-
operated animals received either lentiviral vectors expressing
a set of Mkp-1 small interfering RNA (siRNA)/short hairpin
RNA/RNA-mediated interference and green fluorescent protein
under the cytomegalovirus promoter (Applied Biological Mate-
rials, Richmond, BC, Canada) or a scrambled version of the
virus, bilaterally (2 mL/site) into the ACC. Four weeks after
transfection, behavioral tests were conducted on three
groups: 1) sham-operated (control for NP) mice that express
siRNA (sham/siRNA), 2) mice displaying NP-induced anxiode-
pressive-like behaviors administered with scramble virus (NP/
control), and 3) mice displaying NP-induced anxiodepressive-
like behaviors expressing siRNA (NP/siRNA). In a separate
experiment, the impact of local deletion of ACC MKP-1 was
assessed in naïve animals. Details are shown in the Supplement.
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Pharmacological Agents

The selective serotonin reuptake inhibitor fluoxetine (20 mg/kg/
day) mixed with 0.2% saccharine was administered in drinking
water for 3 weeks (starting 5 weeks after the sciatic nerve injury),
while the control group drank 0.2% saccharine. The MKP
antagonist dusp-(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihy-
dro-1H-inden-1-one (BCI) dissolved in 2% dimethyl sulfoxide
was administered systemically (10 mg/kg, intraperitoneally, twice
a day) for 4 days, followed by a behavioral test 1 hour after the last
injection. Control animals received 2% dimethyl sulfoxide. All
drugs were purchased from Sigma-Aldrich (Saint-Quentin-Fallav-
ier, France) (see Supplement).

Tissue Harvesting and Analysis

For genomic analysis, chromatin immunoprecipitation (26),
and Western blot, all animals were killed by cervical disloca-
tion and the ACC, primary somatosensory cortex, and whole
hippocampus were harvested and stored at 2801C. For
detailed procedures of the microarray analysis, chromatin
immunoprecipitation, Western blot, and immunostaining, see
the Supplement.

Statistical Analysis

Results are expressed as mean 6 SEM. Statistical analyses
were performed with Statistica 7.1 (StatSoft, Tulsa, OK) by
using unpaired Student’s t tests or multifactor analysis of
variance with independent or repeated measures and Duncan
post hoc analyses. Immunoblotting experiments were
analyzed with the nonparametric Kruskal-Wallis test, followed
by multiple comparisons with the Wilcoxon or Mann-Whitney
U test when data did not fit with the rules of parametric
analyses. The significance level was set at p # .05. For
detailed information, see Supplemental Table S4.

RESULTS

Mkp-1 Messenger RNA and Protein Levels Increase
in the ACC of NP Mice Displaying Depressive-like
Behaviors

To characterize molecular changes within the ACC, we con-
ducted a whole-genome expression analysis in NP-induced
depressed-like animals. The ACC tissues were collected at 8
weeks after sciatic nerve surgery, which corresponds to the
presence of both nociceptive and anxiodepressive-like phe-
notypes, as illustrated by decreased mechanical thresholds in
the von Frey test (Figure 1A; F7,70 5 6.04, p # .001; post hoc:
weeks 1–7, p # .001) and increased latency to feed in the NSF
test (Figure 1B; p # .01), respectively. At this time point, no
change in food intake or in spontaneous locomotor activity
was present in NP mice (Supplemental Figure S1A). The
microarray data revealed several changes in gene expression
within the ACC (Figure 1C and Supplemental Table S1). A
Kyoto Encyclopedia of Genes and Genomes signaling path-
way analysis from WebGestalt highlighted a major alteration in
the MAPK pathway (Figure 1D; p 5 1.40e-06), in particular
concerning its negative regulator Mkp-1, whose expression
was robustly upregulated in the ACC of animals displaying
anxiodepressive-like behaviors (1.7-fold) (Figure 1E; p # .01).

This finding was then confirmed by Western blot analysis,
showing that the increase was also present at protein level in
NP mice within the ACC (Figure 1F; p # .001; see also
Supplemental Figure S1B) but not in the primary somatosen-
sory cortex and whole hippocampus (Supplemental Figure S2).
Interestingly, microarray data showed that Mkp-1 was already
upregulated at the messenger RNA (mRNA) level 2 weeks after
sciatic nerve surgery in animals displaying nociceptive hyper-
sensitivity but not yet detectable anxiodepressive-like behav-
iors (Supplemental Figure S3A; p # .001; see also
Supplemental Table S2). However, this upregulation was not
significant at the protein level at this 2-week early time point
(Supplemental Figure S3B), but it slightly increased at 5 weeks
postsurgery (Supplemental Figure S3C; p 5 .10), when animals
displayed anxiety-like behavior (6) in the light/dark box
(Supplemental Figure S3C; p # .001).

NP-Induced Depressive-like Behaviors Are
Associated With Transcription Factors’ Recruitment

To identify potential upstream factors responsible for Mkp-1
overexpression, we looked at the involvement of relevant tran-
scription factors within the genomic data. Based on transcription
factor target analyses from WebGestalt, we focused on CREB
(Figure 2A; p 5 2.55e-08) and ATF-1 (Figure 2A; p 5 4.76e-12) as
well as on Fos proteins (Figure 2A; p5 5.02e-10, serum response
factor) that displayed significant changes in the microarray data
(for C-fos and Fosb: 1.94- and 1.47-fold increases in NP animals,
respectively). CREB and ATF are known to bind CREs at the
Mkp-1 promoter region (27), and functional activator protein
1 binding sites are also present within this promoter region (18).

Western blot analyses confirmed that both phosphorylated
forms of CREB (Figure 2B; p # .05) and ATF-1 (Figure 2B;
p# .01) increased in the ACC of NP animals. To have a functional
assessment of CREB/ATF activity, we used CRE-LacZ transgenic
reporter mice. By using a line of CRE-LacZ mice displaying very
high basal reporter activity in the cortex, we previously reported no
alteration in ACC CRE-mediated transcription (6). However, this
could have been related to a ceiling effect preventing effective
detection of increased activity in this brain region. Thus, here we
used another CRE-LacZ line with lower basal reporter activity. In
this line, β-galactosidase immunostaining showed a significant
increase in the presence of CRE-positive cells in the ACC of NP
animals (Figure 2C, D; F16,48 5 3.98, p, .001; post hoc:20.47 to
11.41 from the bregma; p # .05) but not in the prelimbic (A32)
and infralimbic cortices (Supplemental Figure S4). Because Fos
expression was upregulated by NP in our microarray analysis
(Figure 1C and Supplemental Table S1; p , .05), we also
confirmed increased c-Fos protein levels in the ACC of NP
animals (Figure 2E, F; F14,48 5 5.75, p , .001; post hoc: 20.47
to 11.33 from the bregma; p # .001). This alteration was
also observed in the rostal part of the infralimbic cortex (A25)
(F1,5 5 2.47, p , .05; Supplemental Figure S4) but not in the
prelimbic cortex.

NP-Induced Depressive-like Behaviors Are
Associated With Epigenetic Changes at Mkp-1 and
C-fos Promoters in the ACC

As immediate early genes, it is intriguing that C-fos andMkp-1 are
still present at high levels in the ACC 8 weeks after NP induction,
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and we tested whether specific epigenetic alterations relevant for
active gene transcription could be found at their promoters. We
used chromatin immunoprecipitation followed by quantitative
polymerase chain reaction to look for induction of specific
acetylated marks on H3K9/K14ac, a marker of transcriptionally
active chromatin found mainly in the proximal promoter/tran-
scription start site (TSS) regions, and histone H3 lysine 27
(H3K27ac), a mark of both active enhancers and TSS regions
(28,29). We controlled immunoprecipitation enrichment and spe-
cificity for H3K9/K14ac and H3K27ac on Gapdh as ubiquitously
expressed positive control and Tsh2b as negative control (i.e., not
expressed in the brain) (Supplemental Figure S5). Both histone
marks were enriched on Mkp-1 and C-fos promoter/TSS regions,
with H3K9/K14ac (Figure 2G), but not H3K27ac (Figure 2H),
showing a significant increased enrichment on these promoters
in the NP group (p# .05). Together, these data show that 8 weeks
after the surgery, NP maintains active epigenetic regulations on
the Mkp-1 gene.

MKP-1 Level Increases in Other Models of
Depression

We then assessed whether NP-induced alterations in ACC
MKP-1 levels could be generalized to other models of

depression. Hence, mice were subjected to unpredictable
chronic mild stress (UCMS) during 8 weeks (see
Supplemental Table S3) (25). Similarly to what was observed
in NP animals, mice that underwent the UCMS procedure
displayed an increase in both anxiodepressive-like behavior in
the NSF test (Figure 3A; p # .001) and MKP-1 protein level in
the ACC (Figure 3B; p # .01). Moreover, we previously showed
that sustained activation of pyramidal neurons of the ACC
leads to anxiodepressive-like behavior in naïve Thy1-ChR2-
YFP mice (13). By using the same protocol, we determined the
influence of ACC activation on MKP-1 levels. Repeated, but
not single (Supplemental Figure S6A), optogenetic activation
of the ACC of naïve Thy1-ChR2-YFP mice (Figure 3C) induced
depressive-like behavior 1 day after the last stimulation, as
shown by the increased latency to eat in the NSF test
(Figure 3D; p # .01). More notably, this repeated optogenetic
stimulation of the ACC also increased local MKP-1 levels
(Figure 3E, F; p # .05). The anxiodepressive-like behaviors
totally disappeared 2 weeks after the last stimulation
(Supplemental Figure S6B), while MKP-1 levels still remained
significantly high (Supplemental Figure S6C). However, this
upregulation was lower than that obtained on day 1 following
the last consecutive stimulation (1.54 6 0.15-fold vs. 2.29 6

0.63-fold; p 5 .06) (Figure 3E).

Figure 1. After 8 weeks of sciatic nerve compression, mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) messenger RNA (mRNA) and
protein levels increase in the anterior cingulate cortex (ACC) of neuropathic pain (NP) animals displaying depressive-like behaviors. (A) von Frey test shows
long-lasting ipsilateral allodynia, as evidenced by decreased mechanical thresholds of the right paw of NP animals. (B) NP animals display an
anxiodepressive-like behavior, as shown by an increased latency to feed compared with their sham-operated littermates in the novelty suppressed feeding
(NSF) test 8 weeks after surgery. (C) Heatmap representing dysregulated genes in the ACC 8 weeks after the surgery. (D) Results of Kyoto Encyclopedia of
Genes and Genomes signaling pathway analysis showing that the MAPK pathway was most significantly enriched. (E) Microarray result showing an
overexpression of Mkp-1 (1.7-fold) in the ACC of NP animals compared with controls. (F) Western blot results illustrating an upregulation of ACC MKP-1
protein levels in animals displaying NP-induced depressive-like behaviors. Data are expressed as mean 6 SEM; **p # .01, ***p # .001. PWT, paw withdrawal
thresholds.
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Fluoxetine Decreases ACC MKP-1 Levels

Chronic oral treatment (3 weeks) with the selective serotonin
reuptake inhibitor fluoxetine did not affect mechanical hyper-
sensitivity (Figure 4A; F1,44 5 0.65, p 5 .42), but it blocked the
anxiodepressive-like behavior in the NSF test (Figure 4B;
F3,42 5 14.10, p # .001; post hoc: NP vehicle . sham vehicle,
p # .001; NP fluoxetine , NP vehicle, p # .001). Interestingly,
fluoxetine treatment also significantly decreased the ACC

MKP-1 in the NP and sham groups (Figure 4C; H 5 13.93,
p # .01; post hoc: sham vehicle , NP vehicle, NP vehicle
. NP fluoxetine, sham vehicle . sham fluoxetine, p # .01).

MKP-1-Deficient Mice Are Resistant to NP-Induced
Depression

To investigate the causal link between MKP-1 and depression,
we obtained Mkp-12/2 mice from the laboratory of Andrew

Figure 2. Neuropathic pain (NP)–
induced depressed animals display
enhanced cyclic adenosine monophos-
phate (cAMP)–driven transcriptional
activity and H3 acetylation at the
promoter of C-fos and Mkp-1 in
the anterior cingulate cortex (ACC).
(A)Microarray-based transcription factor
target analysis showing the 7 most
probable transcription factors regulat-
ing the prominently changed genes in
the ACC of animals displaying NP-
induced depressive-like behaviors.
(B) Western blot analysis showing an
increase in phosphorylated cAMP
response element binding protein (p-
CREB) and phosphorylated activating
transcription factor (p-ATF) in the ACC
of the NP group. (C) Quantitative
representation of β-galactosidase
(β-gal)-positive nuclei in the ACC of
sham and NP animals at various dis-
tances from the bregma, showing a
higher presence of CRE positive cells
in the ACC of NP animals after 8
weeks of sciatic nerve compression.
(D) Representative pictures compar-
ing the expression and distribution of
β-gal labeling in the ACC of sham and
NP CRE-LacZ mice. Large scale bar
5 300 mm, inset scale bar = 30 μm.
(E) Increased c-Fos expression in NP
animals compared with sham animals
after 8 weeks of sciatic nerve com-
pression. (F) Representative pictures
comparing the expression and distri-
bution of c-Fos-positive cells in the
ACC of sham and NP animals. Large
scale bar 5 300 mm, inset scale bar =
30 μm. (G, H) Quantitative polymerase
chain reaction results from chromatin
immunoprecipitation (ChIP) experi-
ments performed in the ACC of
NP animals compared with sham,
demonstrating the presence of
histone H3 lysine 27 acetylation
(H3K27ac) at the proximal promoter/
transcription start site regions of
C-fos and Mkp-1 and a significant
increase in histone H3 lysine 9/lysine
14 acetylation (H3K9/K14ac) binding
on both genes in the NP group. No
Ab, no antibody. Data are expressed
as mean 6 SEM; *p # .05, **p # .01,
***p # .001. cc, corpus callosum; LV,
lateral ventricle.
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Cato (30) and bred them in our animal facilities. We charac-
terized the nociceptive sensitivity and anxiodepressive-like
behavior in Mkp-12/2 and Mkp-11/1 animals before and after
NP induction. It is important to note that we did not observe
any alteration in the mechanical paw withdrawal thresholds in
Mkp-12/2 mice compared with Mkp-11/1 mice before surgery

(Figure 5A; F1,43 5 3.33, p . .05). After surgery, NP animals
developed mechanical allodynia regardless of their genetic
background (Figure 5B; F3,123 5 50.25, p # .001), showing
that the loss of MKP-1 expression did not modify the NP
somatosensory component. However, by using the NSF and
splash tests, we showed that Mkp-12/2 mice did not display
the anxiodepressive-like behaviors normally induced by NP.
Indeed, the loss of MKP-1 suppressed the NP-induced
increased latency to feed in the NSF test (Figure 5C; F1,41
5 4.09, p # .05, sham , NP in Mkp-11/1, sham 5 NP in
Mkp-12/2). Similarly, Mkp-12/2 NP animals did not display
decreased grooming behavior in the splash test (Figure 5D;
F1,41 5 12.60, p # .001, sham , NP in Mkp-11/1, sham 5 NP
Mkp-12/2). Interestingly, Mkp-1 deficiency had no effect
per se on behavioral tests in sham Mkp-12/2 mice
(Figure 5C, D).

BCI, an MKP Antagonist, Reduces NP-Induced
Depressive-like Behavior

Beyond constitutive depletion of MKP-1, we assessed
whether a reversible pharmacological blockade of this phos-
phatase could also lead to antidepressant-like effects by
testing a systemic subchronic treatment (4 days, intraperito-
neally) with MKP-1/6 antagonist BCI (31). Before treatment,
NP animals showed an increased latency to feed in the NSF
test (Figure 5E; F1,20 5 10.34, p # .001; post hoc: NP . sham,
p # .001), thereby confirming the presence of an
anxiodepressive-like state. Subsequent BCI treatment
increased the grooming time of NP animals in the splash test
(Figure 5E; F1,19 5 3.72, p # .05; post hoc: NP saline , NP
BCI, p # .01) without affecting their mechanical sensitivity
threshold (Figure 5F; F2,23 5 92.2, p # .001; post hoc: NP BCI
right , sham right, p # .001; NP saline right , sham right,
p # .001).

Local Suppression of MKP-1 Within the ACC Blocks
NP-Induced Depression

While constitutive MKP-1 depletion and pharmacological
antagonism brought information for evaluating the link
between MKP-1 and depression, they lack neuroanatomical
selectivity. Thus, we performed a local viral-mediated manip-
ulation (Figure 5G) of Mkp-1 to identify its role in the ACC.
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Figure 3. Anterior cingulate cortex (ACC) mitogen-activated protein
kinase phosphatase-1 (MKP-1) levels increase in other models of depres-
sion. (A) Novelty suppressed feeding (NSF) test performed after unpredict-
able chronic mild stress (UCMS) procedure illustrating an anxiodepress-
ive-like behavior in stressed animals compared with nonstressed animals,
as shown by an increased latency to feed. (B) Western blot analysis
showing increased levels of ACC MKP-1 in stressed animals compared with
nonstressed animals. (C) Representative picture of the ACC in the Thy-1-
ChR2-YFP mice (top) and a scheme of the stimulation protocol used (20 Hz;
4 days; 30 min/day; 8 seconds stimulation; 40-ms pulses; 2 seconds no
stimulation) (bottom). Scale bar 5 300 mm. (D) NSF test at day 5 after ACC
stimulation showing that stimulated animals display an anxiodepressive-like
behavior, as shown by an increased latency to feed. (E, F) Western blot
results illustrating an upregulation of ACC MKP-1 in stimulated animals
compared with controls. Data are expressed as mean 6 SEM; *p # .05,
**p # .01, ***p # .001. cc, corpus callosum.

Figure 4. Prolonged fluoxetine
treatment blocks anterior cingulate
cortex (ACC) mitogen-activated pro-
tein kinase phosphatase-1 (MKP-1)
upregulation. (A) von Frey results for
the right hind paw showing that fluox-
etine treatment (3 weeks) did not
affect the development of allodynia
after neuropathy induction. (B)
Novelty suppressed feeding (NSF)
test results illustrating that fluoxetine
treatment decreases the anxiodepres-
sive-like behavior in neuropathic pain
(NP) animals, as shown by a lowered
latency to feed. (C) Western blot
results demonstrating a decrease in

MKP-1 in the ACC of both sham and NP animals after fluoxetine treatment. Data are expressed as mean 6 SEM; **p # .01, ***p , .001. PWT, paw withdrawal
thresholds.
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In naïve animals, the local deletion of the MKP-1 within the
ACC did not affect behaviors (Supplemental Figure S7). In NP
mice, the local Mkp-1 suppression had a prominent global

effect on both the NSF test (Figure 5H; F2,23 5 7.280, p # .01)
and the FST (Figure 5I; F2,23 5 8.35, p # .01). Indeed, this
silencing lowered both the latency to feed in the NSF test
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Figure 5. Total, systemic, and local suppression or blockade of mitogen-activated protein kinase phosphatase-1 (MKP-1) prevents and/or blocks
neuropathic pain (NP)–induced depression. (A) Baseline von Frey results (right paw) illustrating that Mkp-12/2 mice show no initial difference in mechanical
sensitivity compared with Mkp-11/1 animals before surgery. (B) von Frey results showing that both Mkp-11/1 and Mkp-12/2 mice develop mechanical
allodynia after cuff surgery. (C, D) Behavioral tests demonstrating that there is no difference in the latency to feed in the novelty suppressed feeding (NSF) test
or duration of grooming in the splash test between Mkp-12/2 sham and NP animals, suggesting an absence of development of depressive-like behaviors 8
weeks after NP induction, contrary to that normally observed in Mkp-11/1 cuff mice. (E) NSF test before BCI treatment demonstrating that NP animals display
anxiodepressive-like behaviors 8 weeks after surgery. Splash test results showing that the NP group treated with BCI spent more time grooming compared
with the nontreated group, suggesting a decrease in depressive-like behavior. (F) von Frey results demonstrating that BCI treatment did not affect the NP-
induced mechanical allodynia in the right hind paw. (G) Representative picture of the anterior cingulate cortex (ACC) after bilateral injections of lentiviruses
(Lentivirus-MkP-1-small interfering RNA (siRNA)/short hairpin RNA (shRNA)/RNA-mediated interference (RNAi)-GFP, 2 mL/site) (top left) and Western blot
results showing a decrease in ACC MKP-1 after Mkp-1 silencing (top right and bottom). Scale bars 5 300 mm. (H) NSF test illustrating that NP animals with
Mkp-1 silencing have shorter latency to feed compared with NP animals that received the control virus, suggesting a decrease in anxiodepressive-like
behavior. (I) Forced swim test data showing a decreased immobility time in NP animals with Mkp-1 silencing compared with NP control animals, suggesting a
reduction in depressive-like behavior. Data are expressed as mean 6 SEM; **p # .01, ***p # .001. PWT, paw withdrawal thresholds.
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(Figure 5H; p # .01) and the immobility time in the FST
(Figure 5I; p # .01) compared with the scramble-injected NP
group. This suggests that silencing ACC Mkp-1 leads to a
decrease in anxiodepressive-like behaviors and further rein-
forces the causal link between ACC MKP-1 and depression.

DISCUSSION

Here we show that anxiodepressive-like behaviors in mice are
associated with an upregulation of ACC MKP-1, which is
reversed by fluoxetine. This upregulation is accompanied by
increased phosphorylated CREB/ATF-1 levels and Fos
expression as well as increased enrichment of H3K9/K14ac
at Mkp-1 promoter in animals displaying depressive-like
behaviors. Antidepressant-like effects produced by experi-
mentally preventing, blocking, or decreasing MKP-1 activity
within the ACC further reinforce its crucial role in depression.

While depression is the most prevalent lifetime disorder, our
limited knowledge of its etiology, alongside the lack of efficient
treatment strategies, points to an obvious need for objectively
quantifiable abnormalities at the molecular, cellular, or circuit
level. Because the ACC is an integration center interconnect-
ing neurons from brain regions implicated in pain and
affective-related processing, this study mainly focused on
identifying molecular alterations within this structure. Through
genomic analyses, we identified Mkp-1 as one of the most
prominently upregulated genes in the ACC, extending pre-
vious studies showing increased expression of Mkp-1 in other
brain regions in animal models of depression and in depressed
patients (14,15).

By exploring the expression dynamics of MKP-1, we
observed that its mRNA, but not the protein, starts being
overexpressed after 2 weeks of NP, when mice display
mechanical hypersensitivity without anxiodepressive-like
behaviors. This delay between gene expression and protein
synthesis might involve negative feedback mechanisms con-
trolling MKP-1 degradation (32,33) and/or synthesis (34,35).
Furthermore, MKP-1 protein shows a tendency for overex-
pression at 5 weeks of NP, when anxiety-like behaviors are
present, and significant overexpression after 8 weeks, when
animals fully display anxiodepressive-like behaviors. Because
Mkp-1 deletion or local downregulation suppresses these
behaviors, MKP-1 overexpression appears to be necessary
to anxiodepressive phenotypes. However, it might not be
sufficient. Indeed, following optogenetic stimulation of the
ACC, the increase in MKP-1 levels lasted longer than the
anxiodepressive phenotype. Together, these results suggest
that other molecular actors (which still remain to be identified)
should also be critical and/or that the increase in MKP-1 levels
should reach a certain threshold in order to translate into a
behavioral outcome.

Various studies (16,36,37) focused on the downstream
targets of MKP-1, showing that its main functional role is to
modulate MAPK-CREB signaling pathways by inactivating
several downstream targets, such as extracellular signal-
regulated kinases, c-Jun N-terminal kinases, and P38
(16,36), which further affects the expression of various genes
implicated in depression (14,38). However, the molecular
events triggering MKP-1 upregulation remain unknown. Pre-
vious studies showed that Mkp-1 mRNA has a short half-life of

1 to 2 hours (17,39); however, our genomic analysis at 8 weeks
of NP points out a sustained expression of ACC Mkp-1.
Increased presence of activated transcription factors thus
could be responsible for such prolonged transcription given
that microarray results revealed significant modifications
in several of these factors, including mRNA coding
ATF-1, CREB, and Fos proteins, which are known to target
Mkp-1 (40).

Besides changes in transcription factors, a prolonged
expression of relatively short half-life mRNA, such as Mkp-1
and C-fos mRNAs, might also require sustained changes in
chromatin structure. Thus, we looked for epigenetic regulation
by testing H3ac at the Mkp-1 and C-fos promoters, which has
been previously reported to be altered in response to various
stimuli (17,41–43). Interestingly, while both H3K9/K14ac and
H3K27ac are present at the promoter/TSS region of C-fos and
Mkp-1, only H3K9/K14ac was increased in response to NP.
H3K27ac is generally associated with active enhancers (44),
whereas H3K9/K14ac, which is more particularly present at
the promoter/TSS region of highly transcribed genes (45), is a
highly inducible mark that has been shown to be modulated by
behavior at the global and locus-specific levels (46,47). The
enrichment of H3K27ac and increased NP-induced enrich-
ment of H3K9/K14ac observed at both genes, demonstrating
a favorable chromatin conformation for transcription that may
be relevant, possibly with other modifications, for the sus-
tained upregulation of MKP-1. Such epigenetic alterations in
the ACC could contribute to the emergence of depressive-like
behaviors during NP by modulating Mkp-1 (and other genes) in
the long term.

We further demonstrate that ACC MKP-1 is overexpressed
not only in NP-induced depression but also in other models
such as sustained optogenetic stimulation of the ACC and
UCMS, one of the most valid and relevant models of depres-
sion (48), suggesting that this pattern is consistent regardless
to the cause of depression and could be a common marker.
Interestingly, Duric et al. (14) did not report alterations of Mkp-1
in the whole cortex after chronic stress, whereas they dem-
onstrated an increased level of this gene in the dentate gyrus
and the cornu ammonis 1 of animals submitted to UCMS and
in patients with major depressive disorder. Likewise, we did
not observe any change in the primary somatosensory cortex,
suggesting that the overexpression is not a general cortical
effect but rather may be selective for the ACC. Conversely, we
did not observe alteration in MKP-1 protein level when we
studied the whole hippocampus, which may reflect that
reported changes (14) affect specific subregions of this
structure.

To leap from a correlative analysis to a causal analysis for
understanding the link between MKP-1 and depression, we
combined several approaches. Knocking out and systemic
antagonism of MKP-1 blocks the development as well as the
maintenance of depressive-like behaviors without affecting the
nociceptive hypersensitivity component of NP, suggesting that
the presence of MKP-1 at the systemic level may be crucial for
depression. Interestingly, local silencing of Mkp-1 within the
ACC is sufficient to suppress depressive-like behaviors after
NP. Besides systemic and local suppression of MKP-1,
fluoxetine also induces antidepressant-like effects in our
model and decreases the ACC MKP-1 levels. The latter is in
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line with studies showing a decrease in MKP-1 in the frontal
cortex and hippocampus of rats after chronic fluoxetine treat-
ment (49,50). Unlike tricyclic antidepressants that are suc-
cessful in treating the nociceptive hypersensitivity component,
such as mechanical allodynia, observed in NP (51), selective
serotonin reuptake inhibitors, and particularly fluoxetine, show
limited to no analgesic efficacy in NP (52). Accordingly, the
antidepressant-like effect of fluoxetine that we observed
was also independent of its impact on the mechanical
hypersensitivity.

In conclusion, our results indicate that the upregulation of
ACC MKP-1 is necessary for the expression of depressive
symptoms induced by chronic pain, chronic stress, and
optogenetic activation of the ACC. From a drug discovery
perspective, dual specificity phosphatase family members are
promising drug targets given that several MAPK inhibitors are
already in different states of development for inflammatory
disease and cancer (53). Our results further provide a preclin-
ical target validation for potential treatment of depression
given that systemic pharmacological blockade and local
suppression of the MKP-1 display antidepressant-like effects.
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Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b
Drives Chronic Pain-Induced Anxiodepressive-like
Consequences
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Pain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we
characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like conse-
quences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas
24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male
mice. In vivo electrophysiological recordings evidence an increased firing rate and bursting activity within the ACC when
anxiodepressive-like consequences developed, and this hyperactivity persists beyond the period of mechanical hypersensitivity. Whole-
cell patch-clamp recordings also support ACC hyperactivity, as shown by increased excitatory postsynaptic transmission and contribu-
tion of NMDA receptors. Optogenetic inhibition of the ACC hyperactivity was sufficient to alleviate the aversive and anxiodepressive-like
consequences of neuropathic pain, indicating that these consequences are underpinned by ACC hyperactivity.

Key words: anterior cingulate cortex; anxiety; depression; electrophysiology; neuropathic pain; optogenetics

Introduction
Mood disorders, such as anxiety and depression, are frequently
observed in patients suffering from chronic pain, which adds

dramatically to the patients’ pain burden (Radat et al., 2013).
Preclinical studies have shown that the anxiodepressive-like con-
sequences of chronic pain, as in neuropathic pain condition, can
be studied in murine models (Narita et al., 2006; Yalcin et al.,
2011; Alba-Delgado et al., 2013) and further highlight the im-
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Significance Statement

Chronic pain is frequently comorbid with mood disorders, such as anxiety and depression. It has been shown that it is possible to
model this comorbidity in animal models by taking into consideration the time factor. In this study, we aimed at determining the
dynamic of different components and consequences of chronic pain, and correlated them with electrophysiological alterations. By
combining electrophysiological, optogenetic, and behavioral analyses in a mouse model of neuropathic pain, we show that the
mechanical hypersensitivity, ongoing pain, anxiodepressive consequences, and their recoveries do not necessarily exhibit tem-
poral synchrony during chronic pain processing, and that the hyperactivity of the anterior cingulate cortex is essential for driving
the emotional impact of neuropathic pain.
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portance of the time factor in the development of these con-
sequences (Yalcin et al., 2011; Barthas et al., 2015). It has been
recently shown that depressive-like behaviors are still present
2 weeks after recovery from mechanical hypersensitivity in an
animal model of neuropathic pain (Dimitrov et al., 2014),
raising the question of whether these consequences of chronic
pain might be maintained in the long-term independently
from sensory aspects.

The anterior cingulate cortex (ACC) is involved in the pro-
cessing of both pain and mood-related information (Shackman
et al., 2011; Bliss et al., 2016). The implication of the ACC in
depression is supported by a hyperactivity of the ACC in de-
pressed patients (Mayberg et al., 1999; Drevets et al., 2002;
Yoshimura et al., 2010), and by changes in the mouse ACC
transcriptome that are correlated with depressive-like behaviors
in the chronic stress model (Surget et al., 2009). Clinical imaging
studies also show the recruitment of the ACC in pain processing
(Peyron et al., 2000), and preclinical studies more precisely asso-
ciate the activation of ACC neurons with pain-like aversive (Jo-
hansen et al., 2001; Barthas et al., 2015) or fearful (Tang et al.,
2005) behaviors. Potentiation of synaptic responses (Xu et al.,
2008; Chen et al., 2014), disinhibition (Blom et al., 2014), and
increased excitability (Li et al., 2010; Cordeiro Matos et al., 2015)
are also observed ex vivo in the ACC in rodent models of chronic
pain. In vivo studies further show that a lesion of the ACC pre-
vents both chronic pain-induced anxiodepressive-like behaviors
(Barthas et al., 2015) and the aversiveness of ongoing pain (Jo-
hansen et al., 2001; King et al., 2009; Qu et al., 2011; Barthas et al.,
2015). In addition, it has been reported that (1) optogenetic ac-
tivation of pyramidal neurons within the ACC is sufficient to
induce anxiodepressive-like behaviors in naive mice (Barthas et
al., 2015) and that (2) these behaviors are associated with tran-
scriptomic changes in the ACC (Barthas et al., 2017). Finally,
presynaptic LTP in the ACC has been linked to pain-related anx-
iety (Koga et al., 2015).

Accordingly, the ACC seems to be a critical brain region im-
plicated in different symptoms of chronic pain, and especially in
its anxiodepressive-like consequences (Barthas et al., 2015; Koga
et al., 2015).

In the present study, we first aimed at characterizing the long-
term evolution, over 6 months, of mechanical hypersensivity, of
the aversive state induced by ongoing pain, and of the anxio-
depressive-like consequences of neuropathic pain in mice using
the “cuff” model. This model, based on sciatic nerve cuffing, has
the advantage of displaying spontaneous recovery from mechan-
ical allodynia (Yalcin et al., 2014b), which allows studying the
behavioral consequences of neuropathic pain in the presence and
absence of hypersensitivity. We also determined the time course
of in vivo electrophysiological alterations accompanying these
various symptoms within the ACC (cortical areas 24a/24b) (Fill-
inger et al., 2017b), and correlated them to the different stages of
the pathology.

This long-term characterization evidenced that the mechani-
cal hypersensitivity, aversiveness of ongoing pain, and anxiety/
depressive-like consequences of neuropathic pain evolve in
distinct time courses. The in vivo electrophysiological recordings
further showed a correlation between ACC hyperactivity and the
aversive and anxiodepressive-like consequences. These results
are reinforced by whole-cell patch-clamp recordings highlighting
a facilitation of excitatory synaptic transmission onto ACC pyra-
midal neurons in cuff-implanted animals showing depressive-
like consequences. Moreover, we showed that optogenetic
inhibition of the ACC was sufficient to counteract the chronic

pain-induced emotional consequences, which supports a causal
link between ACC hyperactivity and the emotional aspects of
neuropathic pain.

Materials and Methods
Animals
Experiments were conducted using male adult C57BL/6J (RRID:IMSR_JAX:
000664) mice (Charles River), group-housed with a maximum of 5 ani-
mals per cage and kept under a reversed 12 h light/dark cycle. Only the
animals used for optogenetic experiments were single housed after the
optic fiber implantation to avoid possible damage to the implant.
Behavioral tests were conducted during the dark phase under red light.
The Chronobiotron animal facilities are registered for animal experi-
mentation (Agreement A67-2018-38), and protocols were approved
by the local ethical committee of the University of Strasbourg (CREMEAS,
#02015021314412082).

Surgical procedures
Surgical procedures were performed under ketamine/xylazine anesthesia
(ketamine 17 mg/ml, xylazine 2.5 mg/ml; i.p., 4 ml/kg) (Centravet).

Neuropathic pain model. Neuropathic pain was induced by implanting
a 2 mm section of PE-20 polyethylene tubing (Harvard Apparatus)
around the main branch of the right sciatic nerve (Benbouzid et al., 2008;
Barrot, 2012; Yalcin et al., 2014b). Before surgery, animals were assigned
to experimental groups according to their initial mechanical nociceptive
threshold, to even out the average mechanical threshold among groups.
Animals in the sham condition underwent the same procedure without
cuff implantation.

Virus injection. After anesthesia, C57BL/6J mice were placed in a ste-
reotaxic frame (Kopf). The 0.5 �l of AAV5-CaMKIIa-eArchT3.0-EYFP
(UNC Vector core) was injected bilaterally in the ACC (areas 24a/24b)
using a 5 �l Hamilton syringe (0.05 �l/min, coordinates for the ACC: 0.7
mm from bregma, lateral: �0.3 mm, dorsoventral: �1.5 mm from the
skull). After injection, the 32 gauge needle remained in place for 10 min
and then the skin was sutured.

Optic fiber cannula implantation. Four weeks after virus injection, the
animals underwent optic fiber cannula implantation. The mice were
implanted unilaterally over the site of virus injection. Cannulas were
implanted in the left hemisphere in half of each experimental group,
whereas the other half received the implant in the right hemisphere. The
optic fiber cannula was 1.7 mm long and 220 �m in diameter. The cannula
was inserted 1.5 mm deep in the brain (MFC_220/250 – 0.66_1.7mm_
RM3_FLT, Doric Lenses) (Barthas et al., 2015).

Optogenetic procedures
After a 3 to 7 d recovery period, we performed behavioral experiments.
Green laser light (custom assembly, Green 520 nm, 16 mW, Miniature
Fiber Coupled Laser Diode Module, Doric Lenses) was delivered
through a 0.75-m-long monofiber optic patch chord (MFP_240/250/
2000 – 0.63_0.75m_FC-CM3, Doric Lenses) that was mounted to the op-
tic fiber implant on the skull. Optogenetic inhibition was performed
either before or during behavioral testing, by continuous light for 5 min
with a power of 16 mW. Control animals underwent the same procedures
but the light was turned off during stimulation protocols.

Behavioral analysis
Behavioral testing was performed during the dark phase, under red light.
While each mouse went through different tests, those were conducted
according to the following rules: excepted for the von Frey results, no
mouse went twice through the same test (i.e., the different time points
(TPs) for a given test were performed on independent sets of animals);
the forced swim test was always considered as terminal (i.e., no other test
was done on mice after they went through forced swimming). Each graph
displayed in Figure 2 is from a given (single) batch of animals, with Sham
and Cuff mice from this batch tested on the same day(s) to always ensure
internal control, and with von Frey data always available the same week
for these mice. Thus, for this general characterization, we did not mix
results from different batches within a given graph of Figure 2, and we
always had the hypersensitivity status of the animals to justify the hyper-
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sensitivity component of the TP clustering. Mechanical threshold and
anxiodepressive-like behaviors of animals used for electrophysiology
studies were determined before recordings.

Nociceptive testing. von Frey filaments were used to determine the
mechanical threshold of hindpaw withdrawal (Bioseb). Mice were placed
in Plexiglas boxes (7 cm � 9 cm � 7 cm) on an elevated mesh screen.
After 15 min habituation, animals were tested by applying a series of
ascending forces (0.16 – 8 g) on the plantar surface of each hindpaw. Each
filament was tested 5 times per paw, applied until it just bent (Yalcin et
al., 2014b; Barthas et al., 2015). The threshold was defined as 3 or more
withdrawals observed out of the 5 trials. To characterize changes in me-
chanical thresholds during an extended period, we tested animals before
and at given TPs after sciatic nerve surgery. The animals used for opto-
genetic inhibition of the ACC were tested before sciatic nerve surgery and
before the behavioral tests. Finally, we tested the animals during light
stimulation to see whether optogenetic inhibition affected mechanical
thresholds.

Conditioned place preference (CPP). To test the motivational drives
resulting from the aversive state induced by ongoing pain and from its
relief by clonidine, a single-trial CPP paradigm was used (King et al.,
2009). In this test, animals develop a preference to a clonidine-paired
chamber due to both pain relief in this environment and avoidance for
the saline-paired chamber associated with ongoing pain. The apparatus
consisted of 3 Plexiglas chambers separated by manually operated doors
(Imetronic). Two chambers (15 cm � 24 cm � 33 cm), distinguished by
the texture of the floor and by the wall patterns, were connected by a
central chamber (15 cm � 11 cm � 33 cm). Animals went through a 3 d
preconditioning period during which they had access to all chambers for
30 min each day. Time spent in each chamber was analyzed to control for
the lack of preference for one of the chambers. Animals spending �75%
or �25% of the total time in one of the chambers were excluded from the
study. On the conditioning day (day 4), mice first received intrathecal
saline (10 �l) and were placed in a conditioning chamber. Four hours
later, mice received clonidine (10 �g/10 �l), an �2-adrenoceptor agonist
inducing analgesia after intrathecal administration, and were placed in
the opposite chamber. Conditioning lasted 15 min per chamber, without
allowing the animal to access the other chambers. On the fifth day, mice
were placed in the center chamber, with free access to both conditioning
chambers, and the time spent in each chamber was recorded for 30 min.
CPP was assessed in separate sets of mice corresponding to 8 weeks
(TP2), 14 weeks (TP3), and 22 weeks (TP4) after cuff implantation. The
exact TP status of the animals was each time determined using the von
Frey test for mechanical hypersensitivity and by using the novelty sup-
pressed feeding test for the anxiodepressive-like state.

To study whether optogenetic inhibition of the ACC caused a prefer-
ence, we used another version of the CPP test, with a custom-made box
with 2 chambers (23 cm � 22 cm � 16 cm), distinguishable by different
wall patterns, and connected to each other by a single sliding door. The
test lasted 4 d. On the first day, animals were habituated to the testing box
by allowing them full access to both compartments for 5 min. During the
second and third days, animals went through a conditioning period. For
this purpose, during the mornings, the animals were placed in the
compartment where they received no-light stimulation, whereas dur-
ing the afternoon sessions the animals were light-stimulated follow-
ing the above-mentioned protocol. Control animals underwent the
same procedures, but during the afternoon session the laser light
remained off. On the fourth day, we placed the animal at the level of
the sliding door and measured the time spent in each compartment
during 5 min.

Dark-light test. To measure anxiety-like behavior, we performed the
dark-light test (Vogt et al., 2016), with a two compartment testing box
(18 cm � 18 cm � 14.5 cm) connected by a dark tunnel (8.5 cm � 7
cm � 6 cm). One compartment was brightly illuminated (1500 lux),
whereas the other was dark. Mice were placed in the dark compartment at
the beginning of the test, and the time spent in the lit compartment was
recorded for 5 min. This test was performed 2, 8, 11, and 15 weeks after
sciatic nerve surgery in different sets of animals.

Novelty suppressed feeding (NSF) test. The NSF test was used to assess
anxiodepressive-like behavior as it induces a conflict between the drive to
eat and the fear of venturing into the center of the box (Yalcin et al., 2011;
Barthas et al., 2015, 2017). For this test, we used a plastic box with the
floor covered with 2 cm of sawdust. Animals were food deprived for 24 h.
At the time of testing, a single pellet of food was placed in the middle of
the testing chamber under 7 lux, and the latency to eat the pellet was
recorded within a 5 min period. The NSF test was performed 2, 8, 11, 16,
18, and 21 weeks after sciatic nerve surgery in independent sets of ani-
mals. For the optogenetic experiment, the NSF test was performed im-
mediately after the inhibition procedure.

Splash test. This test was used to measure grooming behavior indirectly
(Yalcin et al., 2011; Barthas et al., 2015) because decreased grooming can
be related to the loss of interest in performing self-relevant tasks. This
behavior was measured for 5 min after spraying a 10% sucrose solution
on the coat of the animals. The splash test was performed on animals 3, 9,
12, 14, and 16 weeks after the peripheral nerve injury in independent sets
of animals. For the optogenetic experiment, the splash test was per-
formed during the inhibition procedure.

Forced swimming test. This test was performed to evaluate despair-like
behavior (Porsolt et al., 1977). We lowered the mouse into a glass cylin-
der (height 17.5 cm, diameter 12.5 cm) containing 11.5 cm of water
(23°C–25°C). The test duration was 6 min; but because only little immo-
bility was observed during the first 2 min, we only quantified the duration
of immobility during the last 4 min of the test. We considered the mouse
to be immobile when it floated upright in the water, with only minor
movements to keep its head above the water. This test was performed 7,
14, 17, 18, and 21 weeks after the sciatic nerve surgery in different sets of
animals.

Locomotor activity. At three different TPs, locomotor activity was
monitored in both sham and cuff-implanted mice. Mice were individu-
ally placed in activity cages with photocell beams. The number of beam
breaks was recorded over 1 h.

Ex vivo electrophysiological recordings
We performed whole-cell patch-clamp recordings of neurons from the
layer II/III of the ACC. Local electrical stimulation was delivered by a
bipolar stimulation electrode placed in layer V/VI of the ACC. For these
experiments, mice were killed by decapitation and the brain was re-
moved, then immediately immersed in cold (0°C-4°C) sucrose-based
ACSF containing the following (in mM): 2 kynurenic acid, 248 sucrose, 11
glucose, 26 NaHCO3, 2 KCl, 1.25 KH2PO4, 2 CaCl2, and 1.3 MgSO4

(bubbled with 95% O2 and 5% CO2). Transverse slices (300 �m thick)
were cut with a vibratome (VT1000S, Leica). Slices were maintained at
room temperature in a chamber filled with ACSF containing the follow-
ing (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2
MgCl2, and 10 glucose (bubbled with 95% O2 and 5% CO2; pH 7.3; 310
mOsm measured). Slices were transferred to a recording chamber and
continuously superfused with ACSF saturated with 95% O2 and 5% CO2.
Pyramidal ACC neurons were recorded in the whole-cell patch configu-
ration. Patch pipettes were pulled from borosilicate glass capillaries
(Harvard Apparatus) using a P-1000 puller (Sutter Instruments). For
optogenetic experiments performed in AAV5-CaMKIIa-eArchT3.0-
EYFP-injected animals, pipettes were filled with a solution containing the
following (in mM): 145 KCl, 10 HEPES, and 2 MgCl2. For mEPSCs re-
cordings, pipettes were filled with a solution containing the following (in
mM): 75 Cs2SO4, 10 CsCl, 10 HEPES, and 2 MgCl2. The pH of intrapi-
pette solutions was adjusted to 7.3 with KOH, and osmolarity to 310
mOsm with sucrose. With this solution, the patch pipettes had an open
tip resistance from 3.5 to 4.5 M�. Recordings were performed in the
presence of CNQX (10 �M) and bicuculline (10 �M) for optogenetic
experiments, whereas mEPSCs were recorded with TTX (0.5 �M) in the
recording solution. For optogenetic experiments, the ACC was illumi-
nated with the same system used for the in vivo experiments (see below)
triggered with WinWCP 4.3.5, the optic fiber being localized in the re-
cording chamber at 3 mm from the recorded neuron. In voltage-clamp
mode, the holding potential was fixed at �60 mV, and in current-clamp
mode at a holding current allowing maintaining the resting neuron at
��60 mV. Recordings were acquired with WinWCP 4.3.5 (courtesy of
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Dr. J. Dempster, University of Strathclyde, Glasgow, United Kingdom).
All recordings were performed at 34°C.

In vivo electrophysiological recordings
Animals were anesthetized in an induction box with a 2% isoflurane/air
mixture (Vetflurane, Virbac) and then placed in a Kopf stereotaxic frame
(KOPF 1730) equipped with a tight nose mask to continuously deliver
the anesthesia.

A 1 � 1.4 mm cranial window was prepared directly anterior to the
bregma, ranging from �0.7 to 0.7 mm lateral from the midline. The dura
was opened to lower the glass electrode into the brain. Recordings of
spontaneous activity were performed using sharp electrodes pulled from
borosilicate micropipettes (1.2 mm outer and 0.69 mm inner diameters,
Harvard Apparatus, 30 – 0044), with a Narashige pipette puller (tip di-
ameter � 1 �m, resistance �25 M�). The glass electrodes were filled with
0.5 M potassium acetate solution. The signal from the electrode was re-
corded by a silver wire, amplified using an operational amplifier (Neu-
rodata IR-183A, Cygnus Technology; gain � 10), and then amplified
further and filtered using a differential amplifier (Model 440, Brownlee
Precision; gain � 100; bandpass filter 0.1–10 kHz). The signal was then
digitized with a CED digitizer (sampling rate: 20 kHz) and recorded with
Spike2 software (version 7.12b, Cambridge Electronic Design). Raw data
files were exported into MATLAB (The MathWorks) and analyzed with
custom-made MATLAB scripts, which are available in a bitbucket repos-
itory entitled Sellmeijer, 2016.

During the recording procedure, isoflurane anesthesia was lowered to
0.5%– 0.75% and was monitored by regular paw pinching. The glass
pipette was slowly lowered using a Scientifica one-dimensional micro-
manipulator, and recordings were made between 0.2 and 1.0 mm ante-
rior to the bregma ranging from �0.5 to 0.5 mm from the midline, which
corresponds to layers II/III of the cortex. Neurons were recorded from
the brain surface until 1500 �m deep. Once stable cell activity was de-
tected, a 5 min segment of spontaneous activity was recorded. Recording
sites were marked by iontophoretically injecting a 4% Pontamine Sky
blue dye (Sigma-Aldrich) in 0.5 M sodium-acetate solution (Sigma-
Aldrich). At the end of the recording, the mice were perfused, the brain
was collected, and 40 �m sections were cut on a cryostat. The position of
recorded cells was registered using the microdrive reference point with
respect to the Pontamine Sky blue dye deposit.

Firing rate and bursting activity were calculated. Bursting activity,
defined as �3 spikes within a 50 ms time window, was analyzed by
calculating the total number of bursting events within a 90 s data seg-
ment. Neurons in which �20% of action potentials occurred in a burst-
ing event were considered bursting neurons. The average number of
spikes within a bursting event was also calculated.

Experimental design and statistical analysis
Before starting experiments, based on our previous behavioral studies,
we estimated the sample size by using power analysis. All behavioral tests,
in vivo electrophysiological recordings, and experiments using optoge-
netic approach were replicated several times. For each group, the me-
chanical sensitivity and anxiodepressive-like behaviors were analyzed

before recordings and optogenetic manipula-
tion. The number of animals per group is indi-
cated in each behavioral graph; and both the
number of recorded cells and of animals per
group is indicated in each electrophysiology
graph. Data are mean � SEM. When data were
not normally distributed, the Kruskal–Wallis
test was performed followed by Mann–Whit-
ney U post hoc tests to compare the means.
When data were normally distributed, groups
were compared with ANOVA multiple group
comparisons followed by Duncan post hoc
analysis, or with the Student’s t test. For the
von Frey results, we used a multifactorial
ANOVA, considering paws (ipsilateral vs con-
tralateral) and TPs as two levels of dependent
data, and surgery (sham vs cuff) as indepen-
dent groups. Significance level was set to p �

0.05. Statistical analyses were performed with MATLAB 2014a (The
MathWorks) and Statistica version 7.1 (Statsoft).

Results
Long-term characterization of different symptoms of
neuropathic pain
It has been previously shown that the anxiodepressive-like con-
sequences of neuropathic pain evolve over time (Suzuki et al.,
2007; Gonçalves et al., 2008; Yalcin et al., 2011). Indeed, whereas
mechanical hypersensitivity is immediately present following
nerve injury in the cuff model, mice develop anxiety-related be-
haviors 3– 4 weeks later, while depression-related behaviors are
observed after 6 – 8 weeks (Yalcin et al., 2011). On the longer
term, cuff-implanted animals recover spontaneously from mechan-
ical hypersensitivity (example from one batch of mice: F(13,260) 	
5.54, p 	 6.9 � 10�9; cuff�sham: first p 	 2.7 � 10�6; week 3,
p 	 8.8 � 10�7; week 5, p 	 1 � 10�6; week 7, p 	 1.8 � 10�6;
week 9, p 	 1.5 � 10�6; Fig. 1). Depending on the considered
batch of animals, this recovery happened between the 11th and
14th weeks after operation. However, it is to be noted that all mice
displayed mechanical hypersensitivity up to the 10th weeks after
operation, and that no mice was hypersensitive at 15 weeks after
operation. This recovery from mechanical hypersensitivity raises
the question of whether the aversiveness of ongoing pain and/or
the anxiodepressive-like consequences of chronic pain also dis-
appear or remain present.

As reported previously (Yalcin et al., 2011), the nerve-injured
animals did not show anxiodepressive-like behaviors yet at 2
weeks after operation (dark-light test, Fig. 2A; NSF test, Fig. 2C)
or at 3 weeks after operation (splash test, Fig. 2B), even though
mechanical hypersensitivity was already present (VF: p 	 0.01,
Fig. 2A; p 	 0.0001, Fig. 2B; p 	 0.001, Fig. 2C). In the dark-light
test, nerve-injured animals displayed increased anxiety-like be-
havior at 8 weeks after operation, as shown by the reduced time
spent in the lit compartment (p 	 6.17 � 10�4; Fig. 2A). This
behavior disappeared at 11 and 15 weeks after operation, coin-
ciding with the recovery from mechanical hypersensitivity in the
same animals (Fig. 1). In contrast, in the splash test, decreased
grooming behavior was present at 9 weeks after operation (p 	
0.01), but also at 12 weeks (p 	 0.003) and 14 weeks after oper-
ation (p 	 0.0011) (Fig. 2B) despite that mechanical hypersensi-
tivity was no longer present in these sets of animals at these last
2 TPs. The deficit in grooming behavior, however, disappeared at
16 weeks after operation (Fig. 2B). Recovery was even more de-
layed in the NSF test, for which an increased latency to feed was
present at 8 (p 	 3.3 � 10�4), 11 (p 	 0.0437), and 16 weeks after
operation (p 	 0.0016) (with no mechanical hypersensitivity at
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Figure 1. Nerve injury induces mechanical hypersensitivity. In C57BL/6J mice, unilateral sciatic nerve compression induces an

ipsilateral long-lasting mechanical hypersensitivity which lasts�11 weeks. After this period, mechanical thresholds return back to

sham levels spontaneously. Sham, n 	 24; Cuff, n 	 24. Data are mean � SEM. ***p � 0.001. PWT, Paw withdrawal threshold.
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these last 2 TPs), with recovery at 18 and 21 weeks after operation
(Fig. 2C). The presence of depressive-like behavior as assessed
using the forced swimming test was also long-lasting. Indeed,
nerve-injured mice spent more time immobile at 7 (p 	 4.33 �
10�5), 14 (p 	 0.0043), and 17 weeks after operation (p 	

0.0023) (with no mechanical hypersensitivity at these last 2 TPs)
(Fig. 2D), and returned back to sham level only at 18 and 21 weeks
after operation (Fig. 2D). Each von Frey result obtained the same
week as the anxiodepressive behavioral tests is presented near the
anxiodepressive behavioral graph (Fig. 2A–D).
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Figure 2. Long-term anxiodepressive-like consequences of neuropathic pain. Neuropathic pain induces anxiodepressive-like consequences, which disappear in a time-dependent manner. Sciatic
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Because the time course of recovery from mechanical hyper-
sensitivity could slightly differ between batches of experiments,
the results are presented according to 4 representative TPs for the
rest of this study. TP1 corresponds to animals displaying me-
chanical hypersensitivity but not yet anxiodepressive-like conse-
quences. TP2 corresponds to animals displaying both mechanical
hypersensitivity and anxiodepressive-like consequences. TP3
corresponds to animals that recovered from mechanical hyper-
sensitivity but still displayed depressive-like consequences. TP4
corresponds to animals that recovered from both mechanical
hypersensitivity and anxiodepressive-like consequences.

As a control for behavioral tests, we checked the locomotor
activity of animals over 1 h at different TPs and confirmed our

previous reports (Barthas et al., 2015, 2017) by showing that lo-
comotor activity was not significantly affected in cuff-implanted
animals at the representative TP1, TP2, and TP3 (Fig. 2E).

We then tested the aversiveness of ongoing pain by using a
CPP test. Clonidine was delivered intrathecally at lumbar level,
which inhibits ascending inputs and leads to pain relief. Nerve-
injured animals displayed a significant preference for the compart-
ment associated with clonidine analgesia at TP2 (F(1,9) 	 5.36, p 	
0.04; cuff saline vs cuff clonidine, p 	 0.017; Figure 3A) but also at
TP3 (F(1,12) 	 5.219, p 	 0.04; cuff saline vs cuff clonidine, p 	
0.03; Fig. 3B), despite the absence of mechanical hypersensitivity
at this TP. Interestingly, this preference was no longer present at
TP4 (F(1,11) 	 0.36, p 	 0.55; Fig. 3C), suggesting a recovery from
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ongoing pain. See also Figure 3A–C for the state of mechanical
hypersensitivity (TP2, p 	 6.2 � 10�5; TP3, p 	 0.34; TP 4, p 	
0.58) and of anxiodepressive-like consequences (TP2, p 	 0.0028;
TP3, p 	 0.0014; TP4, p 	 0.83) in the same mice.

Together, these data show that ongoing pain and the depressive-
like consequences of neuropathic pain can persist for weeks after
the recovery from mechanical hypersensitivity.

ACC hyperactivity coincides with anxiodepressive-like
consequences of neuropathic pain
To understand whether the spontaneous activity of the ACC is
affected along the time-dependent evolution of neuropathic pain
symptoms, we performed in vivo single-unit electrophysiological
recording (Fig. 4A) at 4 different TPs (Fig. 4B). ACC neurons
from nerve-injured animals had a significantly higher in vivo
spontaneous firing rate at TP2 (p 	 3.52 � 10�7) and TP3 (p 	
0.0022; Fig. 4C,D), which was associated with an increase in
bursting activity (TP2: p 	 5.50 � 10�5, TP3: p 	 0.017; Fig. 4E),
in the number of action potentials per burst (p 	 3.42 � 10�5,
Fig. 4F) and in the number of bursting cells (p 	 0.034; Fig. 4F)
in nerve-injured animals at TP2. In the absence of anxiode-

pressive-like behaviors (i.e., at TP1, before affective symptoms
developed; and at TP4, after affective symptoms recovered), the
firing rate and bursting activity remained similar between sham
and nerve-injured animals (Fig. 4D,E). No significant lateraliza-
tion effect was measured for firing rate and bursting activity in
cuff-implanted animals (data not shown).

Enhancement of excitatory synaptic transmission in the ACC
coincides with anxiodepressive-like consequences of
neuropathic pain
To assess the impact of neuropathic pain on synaptic transmis-
sion of pyramidal neurons, we recorded both paired-pulse ratio
and miniature synaptic currents at TP2, when nerve-injured an-
imals displayed depressive-like behavior. There was a significant
reduction in the paired-pulse ratio of electrically evoked EPSCs,
which provides support for presynaptic changes in nerve-injured
mice (F(1,120) 	 30.8, p � 0.001; Fig. 5A). Both the amplitude and
frequency of mEPSCs (amplitude: sham mice 7.8 � 0.4 pA, cuff
mice 9.8 � 0.6 pA, p � 0.05; frequency: sham mice 1.2 � 0.1 Hz,
cuff mice 2.2 � 0.2 Hz, p � 0.01; Fig. 5B) were significantly
increased in nerve-injured mice, indicating that the facilitation of

A

DC

0

2

4

6

4 2 0 -2 - 4 - 6 - 8
Bregma

Cuff

Sham 

Fi
rin

g 
R

at
e 

(H
z)

0

1

2

3

4

5

6
Sham 
Cuff

TP2TP1 TP3 TP4

Firing rate

***
**

7

42
(5)

38
(5)

69
(10)

70
(11)

119
(11)
132

(10)
31
(4)

35
(5)

A
ct

io
n 

po
te

nt
ia

ls
 p

er
 b

ur
st

0

1

2

3

4

APs per burst
TP2

***

5

69
(10)

70
(11)

Bursting activity

N
o.

 o
f B

ur
st

in
g 

E
ve

nt
s

0

10

20

30
40

50
60

***

*

42
(5)

38
(5)

69
(10)

70
(11)

119
(11)
132

(10)
31
(4)

35
(5)

70

B

mm

1 sec
400 μV

TP1 TP2 TP3 TP4

Anxiety-like behavior N Y N N

Mechanical hypersensivity Y Y N N

Bursting cells
TP2

B
ur

st
in

g 
C

el
ls

 (%
)

0

20

40

60

80

100
*

N Y Y NDepression-like behavior

LVcc

24a

24b

750μm 750μm1mm

F

TP2TP1 TP3 TP4

Sham 
Cuff

69
(10)

70
(11)

E

Figure 4. Increased ACC single-unit activity. A, Illustration of the recording sites in the ACC (dots) on a sagittal and on a frontal plane. Right, Pontamine Sky blue dye deposit at the end of the

recording. B, Overview of the development and recovery of different aspects of neuropathic pain. Time frames of recorded animals correspond to 4 phenotypical TPs defined based on previous

experiments (Fig. 2) and corresponding to the presence or absence of given behaviors. Each recorded animal was tested for mechanical hypersensitivity and anxiodepressive consequences.

C, Example of representative recordings from sham and nerve-injured animals at TP2. Single-unit firing rate (D) and bursting activity (E) are increased at TP2 and TP3 but not at TP1 and TP4.

F, Increased number of action potentials per burst and increased number of bursting cells at TP2. TP1 corresponds to animals displaying mechanical hypersensitivity but not yet anxiodepressive-like

consequences. TP2 corresponds to animals displaying both mechanical hypersensitivity and anxiodepressive-like consequences. TP3 corresponds to animals that recovered from mechanical

hypersensitivity but still displayed depressive-like consequences. TP4 corresponds to animals that recovered from both mechanical hypersensitivity and anxiodepressive-like consequences. Data are

mean � SEM. Numbers in the bars indicate the number of cells and animals. *p � 0.05, **p � 0.01, ***p � 0.001. cc, Corpus callosum; LV, Lateral ventricle.

3108 • J. Neurosci., March 21, 2018 • 38(12):3102–3115 Sellmeijer et al. • Cortex in Chronic Pain-Induced Depression



 

 

**

BA

C

D

0

 

Sham Cuff
Sham

Cuff

20 pA 

5 s

Sham Cuff

Sham Cuff

NMDAR  mediated EPSCs 

CuffSham

Sham Cuff

*

**

*

*

*

*

 

** * *

 

*

Cuff
Sham

 

2.0

1.5

1.0

0.5

0.0

P
ai

re
d-

pu
ls

e 
ra

tio

40 60 80 100 120 140 160
Interval time (ms)

12

10

8

6

4

2

0

m
E

P
S

C
 A

m
pl

itu
de

 (p
A

)

3

2

1

0

m
E

P
S

C
 F

re
qu

en
cy

 (H
z)

AMPAR mediated EPSCs

A
M

P
A

 re
ce

pt
or

 m
ed

ia
te

d
E

P
S

C
 A

m
pl

itu
de

 (p
A

)

400

300

200

100

0
5 6 7 8 9

Stimulation intensity (V)

100

50

0

-50

-100

-150

-80 -60 -40 -20 4020 60
Vm (mV)

I (%)

N
M

D
A

 re
ce

pt
or

 m
ed

ia
te

d
E

P
S

C
 A

m
pl

itu
de

 (p
A

)

250

200

150

100

50

0
4 6 8 10 12

Stimulation intensity (V)

100

50

0

-50

-100

-80 -60 -40 -20 4020 60
Vm (mV)

I (%)

 Sham
Cuff

 Sham
Cuff

[11 (4)]
[15 (5)]

18
 (3)

12
 (3)

18
 (3)

12
 (3)

[11 (4)]
[11 (4)]

 Sham
Cuff

[7 (3)]
[7 (3)]

 Sham
Cuff

[6 (3)]
[7 (3)]  Sham

Cuff
[10 (4)]
[9 (4)]

  50 pA

50 ms

  100 pA

50 ms

  100 pA

50 ms

  50 pA

100 ms

  50 pA

100 ms

** ** ****
**

**

Figure 5. Facilitated presynaptic and postsynaptic ACC transmission in nerve-injured animals displaying depressive-like behaviors. A, Samples (top) and summarized results (bottom) showed

that the paired-pulse ratios, with recorded intervals of 35, 50, 75, 100, and 150 ms, were decreased in the cuff group compared with the sham group. B, Samples (top) and summarized results

(bottom) of the amplitude and frequency of mEPSCs. Both amplitude and frequency were increased in the cuff group compared with the sham group. (Figure legend continues.)

Sellmeijer et al. • Cortex in Chronic Pain-Induced Depression J. Neurosci., March 21, 2018 • 38(12):3102–3115 • 3109



excitatory synaptic transmission onto pyramidal ACC neurons
involved presynaptic and postsynaptic changes. Interestingly,
both the slopes of the AMPAR-mediated input– output curve
(F(1,97) 	 17.1, p � 0.001; Fig. 5C, left) and NMDAR-mediated
input– output curve (F(1,55) 	 7.7, p � 0.01; Fig. 5D, left) were
shifted to the left in nerve-injured mice, suggesting that an up-
regulation of AMPA and NMDA receptors could contribute to
excitatory facilitation. We then tested the AMPAR and NMDAR-
mediated I–V relationship and found that there was no difference
in the AMPAR-mediated I–V between sham and nerve-injured
mice (F(1,108) 	 2.0, p 	 0.15; Fig. 5C, right). However, the
NMDAR-mediated I–V curve differed between groups (F(1,153) 	
61.3, p � 0.01; Fig. 5D). When the same experiments were per-
formed at TP3, which corresponds to animals still displaying
depressive-like behaviors after recovery from mechanical hyper-
sensitivity, we observed that the mEPSC frequency was still
increased (F(1,19) 	 8.974; p 	 0.008; Fig. 6), but not the paired-
pulse ratio of evoked EPSCs. This finding indicates that the spon-
taneous release of glutamate was still enhanced in the ACC after
the recovery from mechanical hypersensitivity. Neither the AMPAR
nor the NMDAR-mediated input and output curves were altered.
Interestingly, the NMDAR I–V curve remained different in the
cuff group (F(1,108) 	 15.54; p 	 0.001; Fig. 6).

Inhibition of the ACC relieves the emotional consequences of
neuropathic pain
Based on our results demonstrating ACC hyperactivity in mice
displaying anxiodepressive-like behaviors, we studied whether
optogenetic inhibition of the ACC may counteract these con-
sequences.

The delivery of AAV5-CaMKIIa-eArchT3.0-EYFP resulted in
reliable virus transfection in the ACC, which was confirmed by
EYFP fluorescence (Fig. 7A). To characterize the effect of green
laser light illumination on transfected ACC neurons, we per-
formed ex vivo electrophysiological recordings. Patch-clamp
recordings showed that illumination with green light reliably
inhibited spontaneous action potential firing in the current-
clamp mode, and induced an outward current in the voltage-
clamp mode (Fig. 7B).

In vivo, mechanical hypersensitivity was not affected by the
ACC inhibition at either TP2 (F(1,26) 	 60.29, p 	 0.3 � 10�8,
cuff right � sham right, p 	 0.0001) or TP3 (F(1,20) 	 0.0032, p 	
0.95) (Fig. 7C). However, inhibition of the targeted ACC neurons
induced a place preference in nerve-injured animals at both TPs
(i.e., when mechanical hypersensitivity was still present) (TP2,
F(1,18) 	 5.42, p 	 0.031, cuff stimulated [light on] vs cuff control,
p 	 0.006) (Fig. 7D) or after it recovered (TP3, F(1,8) 	 8.66, p 	
0.018, cuff stimulated [light on] vs cuff control, p 	 0.039; Figure
7D), without having any effect in sham animals. These findings
indicate that the inhibition of the CaMKIIa ACC neurons re-
lieved the aversiveness of ongoing pain in nerve-injured mice.

Finally, we showed that optogenetic inhibition of the ACC
also suppressed the anxiodepressive-like behaviors in nerve-

injured animals, as observed by a normalization of grooming
behavior in the splash test (Fig. 7E) at both TP2 (p 	 0.0033, cuff
no-light vs cuff light on) and TP3 (p 	 0.03, cuff no-light vs cuff
light on), and of the feeding latency in the NSF test at TP2 (p 	
0.0013) (Fig. 7F). “No-light delivered” nerve-injured animals,
however, still displayed characteristic chronic pain induced-
behaviors (sham no-light vs cuff no-light grooming duration:
p 	 0.03, TP2; p 	 0.01, TP3; Fig. 7E; sham no-light vs cuff
no-light latency to feed: p 	 0.015, TP2; p 	 0.015, TP3; Fig. 7F).
Together, our results show that a selective inhibition of ACC
excitatory neurons is sufficient to alleviate the long-lasting con-
sequences of neuropathic pain.

Discussion
We show here that different symptoms of neuropathic pain,
including mechanical hypersensitivity, aversiveness of ongoing
pain, and anxiodepressive-like consequences, display different
time courses following nerve injury. The in vivo electrophysiolog-
ical recordings showed an ACC hyperactivity coinciding with the
time window of pain aversiveness and of anxiodepressive-like
behaviors. Ex vivo patch-clamp recordings further supported ACC
hyperactivity, as shown by increased excitatory postsynaptic
transmission and increased contribution of NMDA receptors.
Finally, our results show that optogenetic inhibition of the ACC
can alleviate the aversiveness and anxiodepressive-like conse-
quences of neuropathic pain.

A growing number of preclinical studies shows that the anxio-
depressive-like consequences of chronic pain evolve over time
(Yalcin et al., 2011; Alba-Delgado et al., 2013), raising the ques-
tion of whether the various symptoms of neuropathic pain are
interdependent or whether they develop separately. With the
model and species used in this study, animals develop mechanical
hypersensitivity immediately after nerve injury and spontane-
ously recover �3 months later, which allows studying the behav-
ioral consequences of neuropathic pain in the presence and
absence of mechanical hypersensitivity. Patients with chronic
pain also experience ongoing pain, which is rarely evaluated in
preclinical studies. In animals, this symptom can be unmasked by
alleviating the pain-related tonic aversive state in a CPP proce-
dure (King et al., 2009; Barthas et al., 2015). For instance, lido-
caine injected into the rostral ventromedial medulla, the brain
area mediating descending modulation of pain (Wang et al.,
2013), or spinal injection of clonidine (King et al., 2009; Barthas
et al., 2015), induces place preference only in nerve-injured ani-
mals. In the present study, we also detected the presence of on-
going pain at TP3 (i.e., when mechanical hypersensitivity is no
longer present), a finding that represents, to our knowledge, the
first evidence in an animal model for a naturally occurring tem-
poral dichotomy between evoked and ongoing pain. The hyper-
sensitivity and ongoing pain that follow nerve injury have been
proposed to share some mechanistic features. Indeed, both may
imply an upregulation of voltage-gated Nav1.8 channels in
primary afferent neurons (Yang et al., 2014), an alteration of
descending pathways (Wang et al., 2013). and of spinal NK-1-
positive ascending projections (King et al., 2011). Studies also
pointed out that they can be distinguished mechanistically as well
as neuroanatomically. An ACC lesion can block the aversiveness
of ongoing pain in both neuropathic (Qu et al., 2011; Barthas et
al., 2015) and inflammatory pain models without affecting me-
chanical hypersensitivity (Johansen et al., 2001; Chen et al., 2014;
Barthas et al., 2015), whereas lesioning the posterior insular cor-
tex can suppress the maintenance of mechanical hypersensitivity

4

(Figure legend continued.) C, Samples (top) and summarized results (bottom) showed that the

input– output curve of AMPARs-mediated EPSCs was steeper in the cuff group. However, the

I–V curves were not changed. D, Samples (top) and summarized results (bottom) showed that

the input– output curve of NMDARs-mediated EPSCs was steeper in the cuff group. The I–V
curve in the cuff group differed from that of the sham group. All experiments were performed at

TP2 (8 –9 weeks after surgery), which corresponds to animals displaying both mechanical

hypersensitivity and anxiodepressive-like consequences. *p � 0.05, **p � 0.01. Numbers in

bars or near group names indicate the numbers of cells and animals.
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(Benison et al., 2011; Barthas et al., 2015) without affecting on-
going pain (Barthas et al., 2015). In addition, large-diameter fi-
bers of the dorsal column were proposed to mediate mechanical
hypersensitivity but not ongoing pain (King et al., 2011). This
dichotomy should thus be taken into consideration for drug de-
velopment because mechanical hypersensitivity, rather than on-
going pain, is presently used for target validation. As it is more
often ongoing pain that leads patients to seek treatment, this may
in part explain why the development of new treatments has not
always provided translational satisfaction.

While mechanical hypersensitivity is no longer present �3
months after operation, we still observed depressive-like behaviors.
Previously, it has been reported in mice that anxiodepressive-like
behaviors can persist at least 10 d after normalization of mechan-
ical sensitivity following cuff removal (Dimitrov et al., 2014). Our
results confirm and further extend this hypersensitivity/affective
dichotomy by showing that aversiveness and depressive-like
symptoms persist at least 3– 6 weeks after cessation of hypersen-
sitivity. We also show that recovery from anxiety-like behaviors is
faster, happening almost 6 weeks before the loss of depressive-like
consequences, and that it coincides with the disappearance of
mechanical hypersensitivity. It is important to consider that the
detailed time courses for the various behavioral consequences of
neuropathic pain likely depend on the considered species, strain,
and pain model or etiology, as already suggested by published
reports (Yalcin et al., 2014a).

The prolonged emotional consequences point out the pres-
ence of long-term plastic changes in the brain, secondary to a
peripheral nerve injury. One of the cortical regions where such
morphological (Blom et al., 2014; Yalcin et al., 2014b), molecular
(Barthas et al., 2017), and functional plasticity (Li et al., 2010;
Koga et al., 2015) has been reported is the ACC. Our in vivo
single-unit extracellular recordings showed an increased firing
rate and bursting activity in the ACC at TP2 and TP3, coinciding
with aversive and depressive-like behaviors. Interestingly, the
ACC hyperactivity persists even after anxiety-like behaviors dis-
appeared, suggesting that this hyperactivity may be important
but not sufficient for the anxiety-like behavior. In humans, fMRI
studies have shown that the ventral part of the ACC, which is
involved in emotional processing (Kanske and Kotz, 2012), is
hyperactive in depressed patients (Mayberg et al., 1999; Yo-
shimura et al., 2010), and that activity patterns in ACC subre-
gions correlated with symptom clusters, such as sadness and
depressed mood (Mayberg et al., 1999). This possible role of ACC
is further supported by animal studies showing increased cingu-
late cortex activity accompanying depressive-like behaviors in a
social-defeat paradigm, as evidenced by c-Fos overexpression
(Yu et al., 2011), and in the present model of nerve-injured mice,
as evidenced by enhanced phosphorylation of the transcription
factors cAMP response element binding protein and activating
transcription factor as well as by enhanced cAMP responsive
element-driven transcriptional activity and by c-Fos expression
(Barthas et al., 2017). While it has been hypothesized that the
abnormal ACC activity in depression can be associated with
changes in GABA interneurons because levels of somatostatin
(Seney et al., 2015) and parvalbumin (Tripp et al., 2012) are low
in patients with major depressive disorders (Northoff and Sibille,
2014), 80% of ACC neurons are pyramidal ones, and the optoge-
netic inhibition of CaMKII-expressing ACC neurons blocks the
anxiodepressive-like behaviors induced by chronic pain. More-
over, we previously showed that optogenetic activation of pyra-
midal neurons was sufficient to drive anxiodepressive-like
behaviors in naive mice (Barthas et al., 2015, 2017). While these

data indirectly support an implication of pyramidal neurons in
ACC hyperactivity, the shape of spikes did not allow differentiat-
ing neuronal subtypes responsible for the in vivo increased firing
activity. However, our ex vivo recordings further show that ACC
might also be linked to a long-term increase in excitatory synaptic
transmission. This hyperactivity could be supported by long-
term alterations in functional connections onto pyramidal neu-
rons, which may be initiated at an early stage of the neuropathy
(Koga et al., 2015) and participate in the long-lasting presence of
affective symptoms. Here, all the recordings were performed in
layers II-III because these neurons receive both sensory inputs
from the thalamus and inputs from the basal forebrain, including
amygdala ones; and we previously reported that synapses in lay-
ers II-III undergo plastic changes after LTP induction or periph-
eral nerve injury (Koga et al., 2015; Song et al., 2017).

To leap from correlative analyses to a causal link between ACC
hyperactivity and the behavioral outputs of neuropathic pain, we
performed optogenetic inhibition of the ACC. We showed that
the inhibition of the ACC suppressed the aversiveness of ongoing
pain and the depressive-like consequences of neuropathic pain
without affecting mechanical hypersensitivity at TP2 and TP3.
These results further reinforce the links between pain aversive-
ness and depressive-like consequences on the one hand, and be-
tween ACC hyperactivity and these emotional aspects of chronic
pain on the other. Together with our recent data showing that
optogenetic recapitulation of the ACC hyperactivity by using
channelrhodopsin 2 (Barthas et al., 2015, 2017) is sufficient to
drive anxiodepressive-like behaviors in naive animals, the pres-
ent data with archaerhodopsin further support the hypothesis
that ACC hyperactivity is critical to anxiodepressive-like behav-
iors. Conversely, it has been shown that inhibiting ACC pyrami-
dal neurons (Kang et al., 2015) or activating inhibitory neurons
(Gu et al., 2015) can acutely reduce the hypersensitivity induced
by Freund’s complete adjuvant or formalin respectively, as also
observed with pharmacological manipulation at early stages of
neuropathic pain (Li et al., 2010). It suggests that ACC manip-
ulation might also affect nociceptive hypersensitivity in given
conditions.

In conclusion, our results emphasize that anxiodepressive-
like consequences of chronic pain can experimentally be segre-
gated from mechanical hypersensitivity in a time-dependent
manner, whereas they follow the same time course as the
aversiveness of ongoing pain. This time dependency between
symptoms should be taken into consideration to improve the
translational features of preclinical models, and for preclinical
target validation of relevant potential therapies. The fact that the
emotional consequences of chronic pain are driven by ACC hy-
peractivity further highlights the ACC and its circuitry as critical
neuroanatomical substrates to further explore mood disorder
mechanisms. Such circuitry analysis requires a precise knowledge
of the ACC connectome, which was recently detailed in mice
(Fillinger et al., 2017a, b). Together with present behavioral char-
acterization and electrophysiological data, this information
should now allow reaching circuit-level of analysis, including
concerning the question of critical input(s) required to induce
ACC hyperactivity, and of whether maintaining ACC hyperactiv-
ity requires or not input(s) hyperactivity.

Note Added in Proof: The 12th author was left out of the author line in
the early release version of this article that was published online on Feb-
ruary 20, 2018. The author line has since been corrected.
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Correction of cognitive deficits in mouse models of Down
syndrome by a pharmacological inhibitor of DYRK1A
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Guillaume Pani1,2,3,4, Meltem Karatas7,8, Anna E. Mechling8, Laura-Adela Harsan7,8, Emmanuelle Limanton9,
Jean-Pierre Bazureau9, François Carreaux9, Spiros D. Garbis6,*,‡, Laurent Meijer5,‡ and Yann Herault1,2,3,4,‡

ABSTRACT
Growing evidence supports the implication of DYRK1A in the
development of cognitive deficits seen in Down syndrome (DS) and
Alzheimer’s disease (AD). We here demonstrate that pharmacological
inhibition of brain DYRK1A is able to correct recognition memory
deficits in three DS mouse models with increasing genetic complexity
[Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing anextra copyofDyrk1a.
Overexpressed DYRK1A accumulates in the cytoplasm and at the
synapse. Treatment of the three DS models with the pharmacological
DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A
activity and corrects the novel object cognitive impairment observed in
these models. Brain functional magnetic resonance imaging reveals
that this cognitive improvement is paralleled by functional connectivity
remodelling of core brain areas involved in learning/memory
processes. The impact of Dyrk1a trisomy and L41 treatment
on brain phosphoproteins was investigated by a quantitative
phosphoproteomics method, revealing the implication of synaptic
(synapsin 1) and cytoskeletal components involved in synaptic
response and axonal organization. These results encourage the
development of DYRK1A inhibitors as drug candidates to treat
cognitive deficits associated with DS and AD.

KEY WORDS: DYRK1A, Kinase inhibitor, Leucettine, Down
syndrome, Synapsin

INTRODUCTION
Down syndrome (DS) results from the trisomy of human
chromosome 21 (HSA21). It is still the most frequent intellectual
disability, affecting 1 newborn per 700 births. Among the most
common DS features are hypotonia, dysmorphic features and
intellectual disability (Sureshbabu et al., 2011; Morris et al., 1982).
Although children with DS show good socialization skills –
encompassing social relations, friendship and leisure activities –
they exhibit difficulties in communication abilities, i.e. the daily use
of receptive, expressive and written language (Marchal et al., 2016).
They experience troubles in daily life skills, such as self-caring,
eating, toileting, dressing, behaving safely, and conceptualizing
time and money. Improving the intellectual quotient of DS people
would allow them to achieve more independence, increase their
vigilance and globally improve their quality of life.

Among candidate genes explaining intellectual disabilities in DS
people, the dual specificity tyrosine-phosphorylation-regulated
kinase 1A, DYRK1A, is located in the DS chromosome 21 critical
region (Walte et al., 2013; Duchon and Herault, 2016). It encodes
a serine/threonine kinase which has numerous substrates. Two
nuclear localization signals confer nuclear activity to this kinase
(Alvarez et al., 2007), through interactions with transcription factors
including GLI1 (Mao et al., 2002), RNA POL II (Di Vona et al.,
2015) or splicing factors like cyclin L2 (Graaf et al., 2004). In the
cytoplasm, DYRK1A phosphorylates cytoskeletal substrates such
as β-tubulin, MAP1A or MAP1B (Ori-McKenney et al., 2016;
Murakami et al., 2012; Scales et al., 2009). DYRK1A plays a role in
cell cycle regulation by phosphorylating the cyclin-dependent
kinase (CDK) inhibitor KIP1 (also known as CDKN1B) in cultured
hippocampal neurons and in embryonic mouse brain (Soppa et al.,
2014) and LIN52 in vitro (Litovchick et al., 2011). Through its
‘priming’ activity for glycogen synthase kinase 3β (GSK-3β)-
dependent phosphorylation, DYRK1A regulates the nuclear/
cytoplasmic localization of the NFAT transcription factors
(Arron et al., 2006). At the synaptic level, DYRK1A binds to
N-methyl-D-aspartate receptor subunit 2A (GLUN2A; also known
as GRIN2A) and synaptojanin 1 (SYNJ1) (Chen et al., 2014; Grau
et al., 2014) and phosphorylates amphyphysin 1 (Murakami et al.,
2012) and GLUN2A (Grau et al., 2014). These are examples of
different biological brain functions controlled by DYRK1A which
are probably dysregulated when DYRK1A is overexpressed in DS,
leading to cognitive impairments.

Several mouse models overexpressing DYRK1A have been
described. The first one, Tg(CEPHY152F7)12Hgc, carries a single
copy of a yeast artificial chromosome (YAC) containing a 570 kb
fragment of human DNA encompassing TTC3, DYRK1A and
KCNJ6. This model shows no strong defect in spatial learning and
memory, but displays less crossing of the site where the platform
was during the probe test in the Morris water maze (MWM) taskReceived 11 May 2018; Accepted 1 August 2018
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(Smith et al., 1997). Another model, Tg(MT1A-Dyrk1a)#Xest
(#=9 or 33), was produced by expressing the Dyrk1a rat
complementary DNA (cDNA) under the control of the
metallothionein 1a exogenous promoter (Altafaj et al., 2001).
These mice demonstrated impairments in neuromotor development
and hyperactivity evaluated in treadmill performance and rotarod
tests (Martínez de Lagrán et al., 2004). They also display defects in
visuospatial learning and memory in the MWM task (Martínez de
Lagrán et al., 2004; Pons-Espinal et al., 2013), as well as in
recognition memory revealed in the novel object recognition (NOR)
task (de la Torre et al., 2014). A third model, Tg(DYRK1A)36Wjs,
was generated using a bacterial artificial chromosome (BAC)
containing the human DYRK1A gene. DYRK1A triplication leads to
alterations in synaptic transmission with an increase in long-term
potentiation (LTP) and a decrease in long-term depression (LTD).
The transgenic mice are also deficient in the MWM task, suggesting
spatial learning and memorization disabilities (Ahn et al., 2006).
Although the human YAC and BAC transgenic mice exhibit
features similar to those seen in DS patients, they carry an extra
copy of human/rat DYRK1A gene, which could lead to biased
phenotypes, as optimal expression and functionality of the human/
rat protein cannot be ensured in a mouse background. Therefore, a
BAC transgenic model with the entire Dyrk1a murine gene,
Tg(Dyrk1a)189N3Yah [hereafter referred to as Tg(Dyrk1a)], was
created (Guedj et al., 2012). This model shows alterations in
short-term memory in the Y-maze task, and in spatial memory
in the MWM task (Souchet et al., 2014). Deficits in cortical
synaptic plasticity were also observed (Thomazeau et al., 2014).
Comparable impairments were seen in the Ts(1716)65Dn model
(hereafter referred to as Ts65Dn), a mouse model trisomic for
almost 13.4 Mb, homologous to HSA21 and containing DYRK1A
(Reeves et al., 1995). Spatial memory, especially reversal learning
reflecting cognitive flexibility, was altered in the Water T-maze
test and in the reversal version of the MWM (Olmos-Serrano et al.,
2016). Although the Ts65Dn model has been widely used to
study DS features, it carries a triplication of genes located in a
subcentromeric region of mouse chromosome 17 (MMU17) which
are not syntenic to any HSA21 genes (Duchon et al., 2011).
A complete DS model, Dp1Yey, was thus produced, which is
trisomic for 22.9 Mb, spanning the entire HSA21 region on
MMU16 (Li et al., 2007). Dp1Yey mice are less well performing
than control mice in the MWM task and display context-associated
learning deficits in the fear conditioning test (Yu et al., 2010).
Reducing DYRK1A overdosage leads to correction of several DS

traits, demonstrating the major implication of this kinase in DS.
Indeed, normalization of DYRK1A expression attenuates spatial
learning as well as associative memory defects, and rescues LTP in
the Ts65Dn model (García-Cerro et al., 2014; Altafaj et al., 2013).
In addition, reversal to two DYRK1A copies in Dp1Yey mice
enhances working and associative learning performance assessed in
the T-maze and contextual fear-conditioning tests, respectively
(Jiang et al., 2015). Furthermore, epigallocatechin gallate (EGCG),
a natural polyphenol found in coffee, cocoa and green tea, reported
to inhibit DYRK1A, restores intellectual capacities of trisomic mice
(Guedj et al., 2009; de la Torre et al., 2014). EGCG has undergone a
phase 2 clinical trial (de la Torre et al., 2016). However, EGCG also
interacts with the cannabinoid receptor 1 (CNR1) (Korte et al.,
2010). This receptor modulates the release of neurotransmitters in
various brain areas, such as the prefrontal cortex and hippocampus,
thereby controlling memory, cognition processes and mood.
Interaction of EGCG with CNR1 might thus affect memory,
cognition and pain perception, leading to psychiatric disorders

(Freund et al., 2003; Wilson and Nicoll, 2002), compromising its
therapeutic use. Furthermore, DYRK1A is less sensitive to EGCG
[half-maximal inhibitory concentration (IC50), 0.33 μM] than
vimentin (IC50, 0.003 μM) and the laminin receptor (IC50,
0.04 μM) (Khan et al., 2006; Yang et al., 2009). Cognitive
restoration in trisomic mice by EGCG might thus be due to
inhibition of targets other than DYRK1A. Consequently,
alternative pharmacological inhibitors have started to emerge
(Kim et al., 2016; Nakano-Kobayashi et al., 2017; Nguyen et al.,
2017). Nevertheless, all available results clearly demonstrate
the implication of DYRK1A in DS intellectual deficiencies and
the beneficial effects of its inhibition on the correction of
cognitive deficits.

DYRK1A has become a major screening target for the
development of selective and potent pharmacological inhibitors
(Smith et al., 2012; Stotani et al., 2016; Nguyen et al., 2017).
We here investigated the effects of a relatively selective DYRK1A
inhibitor, leucettine L41 (hereafter referred to as L41) in three
different trisomic mouse models with increasing genetic
complexity: Tg(Dyrk1a), Ts65Dn and Dp1Yey. Leucettines are
derived from the marine sponge alkaloid Leucettamine B
(Debdab et al., 2011; Tahtouh et al., 2012). The chemically
synthesized L41 displays a high selectivity for DYRK1A but also
DYRK1B, DYRK2 and some Cdc2-like kinases (CLKs) (Fig. 1).
It acts by competing with ATP binding to the kinase catalytic site.
We here establish a proof of concept that pharmacological
inhibition of brain DYRK1A is able to correct NOR cognitive
impairment in three DS models with increasing genetic complexity.
We show, via brain functional magnetic resonance imaging (fMRI)
in Dp1Yey, the most complete mouse model of DS, that such
cognitive improvement is paralleled by significant functional
connectivity remodelling of core brain areas involved in learning
andmemory processes. Furthermore, phosphoproteomic analyses in
the Tg(Dyrk1a) model unravelled brain DYRK1A targets for which
phosphorylation increases with DYRK1A overdosage and
decreases following L41 treatment. These novel substrates, such
as synapsin 1 (SYN1), also found in the phosphoproteomic analyses
of Ts65Dn, the most used DS model, bring new insight into the role
of DYRK1A, and allow us to propose some dysregulated biological
processes related to axonal organization and synaptic response which
are responsible for cognitive deficits associated with DS.

RESULTS
Leucettines restore cognitive function, assessed in the
NOR test, through kinase inhibition in three DS mouse
models overexpressing DYRK1A
To investigate the importance of DYRK1A in cognitive deficits
shown by transgenic mouse models of DS, we used a series of low
molecular weight pharmacological inhibitors, collectively known as
leucettines (Debdab et al., 2011; Tahtouh et al., 2012; T. Tahtouh,
unpublished). We selected the well-characterized leucettine L41 as
an archetype of this inhibitor family (Fig. 1) and L43, a closely
related analogue which displays little kinase inhibitory action.
Because both compounds were found to inhibit CNR1 (T. Tahtouh,
unpublished), we also used L99, a DYRK1A inhibitor lacking
activity on CNR1 (Fig. 1). To ensure its brain bioavailability,
L41 was dosed following acute intraperitoneal (i.p.) injection in
Tg(Dyrk1a) and wild-type (wt) mice. Plasma half-life was∼45 min,
and the inhibitor reached a maximum brain concentration at 20 min,
and was eliminated 2 h later. No differences in L41 pharmacokinetics
or biodistribution were observed between transgenic and wt
mice (Fig. S1).
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We used three mouse models of DS: Tg(Dyrk1a), which expresses
a single additional copy of DYRK1A (Guedj et al., 2012); and
Ts65Dn (Reeves et al., 1995) and Dp1Yey (Li et al., 2007), which
carry MMU16 segments encompassing Dyrk1a, with 89 and 101
genes homologous to HSA21, respectively (Gupta et al., 2016).
Using the NOR test, we first evaluated the effects on Tg(Dyrk1a)

animals following daily i.p. treatment with L41 (20 mg/kg) for
5, 12 or 19 days (Fig. 2A). As expected, untreated wt mice
discriminated the novel over the familiar object. L41 treatment for
5, 12 or 19 days had no effect on the performance of wt animals.
Untreated Tg(Dyrk1a) mice were unable to discriminate the novel
over the familiar object (de la Torre et al., 2014) (Fig. 2A). In
contrast, L41-treated Tg(Dyrk1a) mice preferentially explored the
novel object, thus reverting to the behaviour of wt animals. This
recovery was fully observed following 19 days of treatment, but was
consistently or only marginally seen following 12 and 5 days of
treatment, respectively (Fig. 2A). In other words, a minimum of
12 days of daily L41 treatment was necessary for full recovery in the
NOR test.
These experiments were repeated (daily i.p. treatment for

19 days) with the kinase-inactive/CNR1-active L43 and the
kinase-active/CNR1-inactive L99 leucettines (Fig. 2B). Results
clearly showed the beneficial behavioural effects of L99 (Fig. 2B,
right) and the lack of effects of L43 (Fig. 2B, left), demonstrating
that the rescuing activity of leucettines derives from kinase
inhibition rather than CNR1 antagonism.
We next ran the same experiments in Ts65Dn and Dp1Yey

animals (Fig. 2C). Daily i.p. treatment with L41 for 19 days led to
rescue in the NOR test. Intriguingly, L41 treatment had no restoring
effect on working memory (Fig. S2A), nor on place memory in
Tg(Dyrk1a) mice (Fig. S2B), as assessed in the Y-maze and place
object location paradigms, respectively.

L41 treatment has a global effect on brain functional
connectivity measured by resting state fMRI
To noninvasively investigate whether DYRK1A kinase activity
alters the brain functional connectivity (FC) and to reveal possible
circuitry-based mechanisms underlying cognitive improvements
induced by L41, we performed brain resting state fMRI (rsfMRI)
experiments in vehicle or L41-treated Dp1Yey and wt mice.
The brain connectivity patterns associated with default mode

network (DMN) – the main functional circuitry describing the
brain’s intrinsic activity at rest (Raichle, 2015) – were mapped
comparatively for each experimental group (Fig. 3A-a,b,B-a,b) via
seed-based analysis. The seed used for generating DMN was the
retrosplenial cortex (RSP), considered as the mouse DMN core area.
DMN configuration obtained for the wt vehicle-treated group
(Fig. 3A-a) served as a control pattern and encompassed the
midline cortical areas [RSP, posterior parietal association areas
(PTLp), temporal association areas, visual areas] as well as the
rostral and medial anterior cingulate cortex (ACA) and hippocampal
formation (HF) as previously described in mice (Sforazzini
et al., 2014; Stafford et al., 2014). This DMN-like configuration
was only minimally impacted by L41 treatment in wt animals
(Fig. 3A-c,d), by decreasing the RSP connectivity with limited
hippocampal (HF) areas.

In Dp1Yey mice, trisomy strongly influenced DMN architecture
(Fig. 3B-a) by altering its pattern along midline cortical areas,
highlighting the pathological features of Dp1Yey brain, as compared
with wt brains (Fig. 3A-a). Notably, Dp1Yey mice show reversed
connectivity features of RSP (the core area of DMN) towards the
rostrofrontal cortical regions, including ACA [Fig. 3A-a versus B-a;
switch from positive correlations (red/yellow scale) to negative
correlations (blue scale)]. Intergroup statistics (vehicle-treated wt
versus vehicle-treated Dp1Yey; Fig. S3) revealed diminished
RSP-ACA connectivity in Dp1Yey animals compared with
controls (Fig. S3A), while strengthening the local connectivity
around the RSP seed (Fig. S3B). Concurrently, the RSP of Dp1Yey
vehicle animals showed increased connectivity to limbic areas of
basal forebrain [i.e. pallidum (PAL)] when compared with that of
the wt vehicle group (Fig. S3B).

L41 treatment of Dp1Yey mice rescued this altered DMN
pattern (Fig. 3B-b), prominently acting to significantly increase the
FC of the RSP with the ACA, prefrontal cortex (PFC) and ventral
HF (group statistics in Fig. 3B-d, orange/red) and to reduce FC
with subcortical regions including the thalamus (TH) and PAL
(Fig. 3B-d, green/blue).

To further reveal FC signatures of L41 action in Dp1Yey mice we
evaluated the connectivity, across the whole brain, for several key
brain areas involved in learning and memory [hippocampal CA1
and dentate gyrus (DG) areas, perirhinal cortex (PERI) and ACA].
Group statistical analysis of FC maps highlighted overall restricted

Fig. 1. Chemical structure and selectivity of the leucettines
used in this study. Selectivity of leucettines L41, L43 and L99
was assessed in vitro on 16 recombinant kinases, and in a
cellular CB1 annexin assay. Dose-response curves provided
IC50 values (reported in μM). –, no inhibition at 10 μM.
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effects of L41 on brain FC of wt animals (Fig. 3C-a-d) but robust
L41-dependent brain FCmodifications in theDSmodel (Fig. 3D-a-d).
Acting at the hippocampal level, L41 treatment triggered robust
changes in CA1 and DG connectivity in Dp1Yey mice (Fig. 3D-a,b).
The CA1 strengthened its FC with the PFC and ACA (Fig. 3D-a,
orange/red) and decreased its functional communication with the
ventral HF (subiculum) and thalamic nuclei (Fig. 3D-a, green/blue).
The strongest L41-triggered DG connectivity modifications were
identified along the DG-RSP functional pathway in Dp1Yey mice
(Fig. 3D-b). A divergent and limited effect of decreased CA1-ACA
connectivity was measured in wt mice, after L41 treatment
(Fig. 3C-a, green/blue), and the DG altered its connectivity towards
the TH and superior colliculus (SC) in wt animals.

Furthermore, L41 treatment triggered remodelling of
functional cross-talk between the PERI and the HF, RSP and
PTLp in Dp1Yey animals (Fig. 3D-c), while acting primarily
on PERI-TH connectivity in wt animals (Fig. 3C-c). Group
statistics additionally revealed a selective impact of L41 on
ACA connectivity in Dp1Yey mice (Fig. 3D-d), significantly
modifying its patterns towards the PFC (decrease), RSP
(increase), SC (increase) and hypothalamic (HY) areas
(decrease). Meanwhile, L41 induced limited effects in wt mice,
by decreasing ACA-PFC connectivity (Fig. 3C-d). Overall, these
results indicate the potential of L41 to act at a circuitry level,
modifying the global brain FC in Dp1Yey mice, which are
strongly susceptible to its effects.

Fig. 2. DYRK1A-specific inhibitors rescue NOR deficits induced in Tg(Dyrk1a), Ts65Dn and Dp1yey trisomic mice. (A) Duration of treatment.
NOR test results for Tg(Dyrk1a) mice treated with L41 or vehicle for 5, 12 or 19 days. Percentage object exploration by sniffing was determined for each
object after a 24 h retention delay (familiar object, open symbol; novel object, filled symbol). NOR results of three Tg(Dyrk1a) cohorts treated with L41 for 5 (left),
12 (centre) or 19 (right) days. Tg(Dyrk1a) and Ts65Dn treated animals spent more time exploring the novel object compared with control mice, showing a rescue
of their recognition memory. Left: 5 days treatment induced a NOR rescue in Tg(Dyrk1a) animals [wt: n=15, P<0.001; treated wt: n=15, P<0.001; untreated
Tg(Dyrk1a): n=11,P=0.8; treated Tg(Dyrk1a): n=13,P=0.02]. Centre: amore consistent rescuewas obtained after 12 days of L41 treatment [not treated wt: n=12,
P<0.001; treated wt: n=15, P=0.11; untreated Tg(Dyrk1a): n=8, P=0.76; treated Tg(Dyrk1a): n=11, P<0.001]. Right: rescue obtained after 19 days of L41
treatment: the exploration was significantly different for wt (n=15, P<0.001), treated wt (n=15, P<0.001) and treated Tg(Dyrk1a) (n=15b, P<0.001) mice, but
not for nontreated transgenic mice (n=13, P=0.64). (B) Treatment with L43 (left) and L99 (right). L99 treatment induced a cognitive rescue in the Tg(Dyrk1a) mice,
whereas L43 treatment had no effect. L99 (right): [wt: n=10, P=0.02; treated wt: n=12, P=0.003; Tg(Dyrk1a): n=12, P=0.01; treated Tg(Dyrk1a): n=9, P<0.001].
L43 (left): [wt: n=12, P=0.008; treated wt: n=7, P=0.9; Tg(Dyrk1a): n=13, P=0.91; treated Tg(Dyrk1a): n=12, P=0.71]. (C) Ts65Dn and Dp1yey models. Left: in the
Ts65Dn study, a significant statistical difference was observed for untreated wt (n=10, P<0.001), treated wt (n=8, P=0.009) and treated Ts65Dn (n=11, P=0.002),
but not for untreated Ts65Dn animals (n=9, P=0.08). Right: L41 also normalizes the recognition memory of Dp1Yey mice (wt: n=13, P=0.04; treated wt: n=14,
P=0.02; Dp1Yey: n=7, P=0.98; treated Dp1Yey: n=11, P=0.03). Data are represented as mean±s.e.m. with individual points per animal. Statistical analysis was
performed with the two-way ANOVA test, Tukey post hoc. n.s., not significant. *P<0.05, **P<0.01, ***P<0.001.
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Increased DYRK1A expression and catalytic activity in DS
models: leucettines normalize DYRK1A activity
To validate the Tg(Dyrk1a) and Ts65Dn models in terms of
DYRK1A expression and function, we first verified the expression
levels of Dyrk1a mRNA (Fig. 4A) and DYRK1A protein (Fig. 4B)
in brains derived from control or L41-treated animals (19 days,
daily i.p.). Total mRNAs were extracted from brains and Dyrk1a,

Gsk-3b and Rplp0 mRNAs were quantified by quantitative
polymerase chain reaction (qPCR) with specific primers. Results
showed the expected ∼1.5-fold increase in Dyrk1a mRNA levels
(normalized with respect to Gsk-3b and Rplp0) in both transgenic
models compared with their wt littermates. L41 treatment for
19 days did not modify Dyrk1a mRNA levels (Fig. 4A). DYRK1A
protein levels were also increased in transgenic mice models

Fig. 3. Influence of L41 on mouse brain functional connectivity (FC) patterns mapped via rsfMRI. (A,B) Default mode network (DMN) pattern in wt (a)
and Dp1Yey (b) animals, mapped using the RSP cortex (core hub of DMN) as a seed region. A-a shows the typical DMN-like pattern observed in mice,
spatially covering the middle rostrocaudal cortical axis of wt animals treated with vehicle, connecting the RSP and ACA. As shown in B-b, L41 treatment in
wt animals slightly modifies the DMN patterns compared with wt-vehicle (see also statistics in A-c, sagittal view and A-d, coronal view; two-tailed Student’s t-test,
P<0.01). Red-orange scale quantifies the areas in which L41 treatment results in increased FC of wt-L41 compared with wt-vehicle. Blue-green scale
indicates areas with decreased RSP connectivity after L41 treatment, compared with vehicle-treated wt mice. B-a demonstrates strongly altered DMN in
vehicle-treated Dp1Yey compared with wt vehicle-treated animals (A-a, wt-vehicle), highlighting the pathological connectivity features of the mutant animals.
As shown in B-b, L41 treatment in mutant Dp1Yey animals (DP16-L41) strongly modifies the DMN, restoring the positive correlations (red) of the RSP with
the frontal brain areas (arrows, B-b). Voxel-wise statistics shown in B-c and B-d indicate, in red-orange, the areas in which L41 treatment results in increased
FC of the DP16-L41 group compared with the DP16-vehicle group. Blue-green scale indicates areas with decreased RSP connectivity after L41 treatment,
compared with the vehicle-treated group mutant mice. In A-a,b and B-a,b, red indicates the positively correlated areas (0.1 to 0.5 correlation coefficients);
blue indicates negatively correlated areas (–0.1 to –0.5 correlation coefficients). (C,D) FC patterns in wt (C) and Dp1Yey (D) animals after L41 treatment:
C-a, CA1 FC; C-b, dentate gyrus FC; C-c, perirhinal cortex FC; C-d, ACA FC (two-tailed Student’s t-test, P<0.01). Red-orange shows the brain areas in which
L41 treatment results in increased FC; blue-green indicates areas with decreased connectivity after L41 treatment, compared with vehicle-treated mice.
ACA, rostral and medial anterior cingulate cortex; Cb, cerebellum; HF, hippocampal formation; HY, hypothalamus; PAL, pallidum; PFC, prefrontal cortex; PTLp,
posterior parietal association areas; RSP, retrosplenial cortex; SC, superior colliculus; TH, thalamus.
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compared with control wt animals, as shown by western blotting
(WB) of total brain proteins, whereas GSK-3α/β and β-actin levels
remained at identical levels in transgenic and wt mice brains
(Fig. 4B). L41 treatment had no effect on the expression of
DYRK1A and GSK-3α/β. We next measured DYRK1A catalytic
activities from transgenic and wt brain protein extracts (Fig. 4C).
After 19 days of L41 or vehicle treatment, GSK-3α/β activity
remained identical in the brains of transgenic and wt mice (data not
shown), and was thus used to normalize the DYRK1A kinase
activity. As expected, DYRK1A activity was elevated by ∼1.5- to
1.8-fold in transgenic brains compared with wt brains (Fig. 4C).
L41 treatment did not reduce DYRK1A activity in wt mice
brains, but reduced DYRK1A activity by ∼30% in the brains of
Tg(Dyrk1a) and Ts65Dn animals, essentially down to the level of
control counterparts. DYRK1A kinase activity was thus normalized
by L41 treatment (Fig. 4C). In other words, although basal DYRK1A
activity in trisomic and disomic mice brains was insensitive to L41,
only excess DYRK1A activity in trisomic mice brains appeared to
be sensitive to L41. To verify that all brain DYRK1A activity can,
in principle, be inhibited by L41, DYRK1A was extracted and
immunopurified from the brains of untreated wt and both transgenic
animals. DYRK1A kinase activities were assayed in vitro in the
presence of increasing concentrations of L41. Results showed that

the DYRK1A of wt and transgenic animal brains can be almost
fully inhibited in vitro with essentially identical dose-response
curves (Fig. 4D).

DYRK1A activity was measured following immunoprecipitation
(and normalization on the basis of GSK-3α/β activity measured in the
same samples) from brain extracts of wt and Tg(Dyrk1a) animals
treated daily for 5, 12 or 19 days (Fig. 5A-C) with L41, or for 19 days
with kinase-inactive L43 (Fig. 5D). As expected, DYRK1A activity
was increased in Tg(Dyrk1a) versus wt brains. Tg(Dyrk1a) brain
DYRK1A activity was normalized after treatment with L41 for 12
and 19 days, but not after 5 days of L41 treatment, nor after 19 days of
L43 treatment. These results correlate with L41-induced DYRK1A
activity normalization (Fig. 5) and cognitive rescue (Fig. 2).

In all previous experiments, brains were collected 1 h after the last
leucettine treatment. We wondered about the persistence of the
effects of L41 after the last injection (Fig. 6). Tg(Dyrk1a) and wt
animals were treated with L41/vehicle daily for 19 days. NOR tests
were run and brains collected 24 h or 48 h after the last L41
treatment. DYRK1A catalytic activity was dosed in Tg(Dyrk1a) and
wt mice brains. As expected, wt brain DYRK1A activity was
insensitive to L41 treatment. Tg(Dyrk1a) brain DYRK1A activity
was increased compared with control wt brain DYRK1A activity
(Fig. 6A,C), and normalized to wt levels 24 h after the last L41

Fig. 4. Dyrk1a mRNA and DYRK1A protein
expression, and catalytic activity in Tg(Dyrk1a)
and corresponding wt mice brains, and in Ts65Dn
and corresponding wt mice brains. (A) mRNA
expression. Total RNA was extracted, purified and
reverse transcribed into cDNA. mRNA expression of
Dyrk1a, Gsk-3b and reference Rplp0 was quantified
by qPCR from the amplification of cDNA with specific
primers (one primer annealing to an exon-exon
junction). Results are presented as mean±s.e. of
four to six measurements and are shown relative
to Rplp0 expression, normalized to wt Gsk-3b
expression. (B) Protein expression. Total proteins
were extracted, resolved by SDS-PAGE and analysed
by WB using antibodies directed against DYRK1A,
GSK-3α/β and actin (loading control). (C) DYRK1A
catalytic activity. DYRK1A was purified from brain
extracts by immunoprecipitation and GSK-3α/β was
purified by affinity chromatography on axin-agarose
beads. Activities of the purified kinases were assayed
in triplicate in a radioactive kinase assay using
specific peptide substrates, and are reported after
normalization with wt GSK-3α/β activities (mean±s.e.).
(D) In vitro DYRK1A kinase activity. The catalytic
activity of DYRK1A immunoprecipitated from the
brains of Tg(Dyrk1a) and Ts65Dn mice and their
respective controls was assayed in the presence of a
range of L41 concentrations.
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treatment (Fig. 6A). In contrast, L41 had no more effects 48 h after
the last treatment (Fig. 6C). In terms of restoration of cognitive
abilities, the NOR tests revealed that Tg(Dyrk1a) deficits were still
corrected 24 h, but not 48 h, after the last L41 treatment (Fig. 6B,D).
Because L41 is essentially undetectable in brain extracts 2 h after
the acute i.p. injection, it might be protected from degradation once
bound to DYRK1A or it could have been metabolized to an
unidentified, stable active inhibitor.

Overexpressed DYRK1A accumulates in cytoplasm and
synapse: differential subcellular L41 distribution
We next investigated the subcellular distribution of DYRK1A in the
brains of Tg(Dyrk1a) and wt animals (Fig. 7A,B). Brains were
collected and cells dissociated and fractionated using two methods.
The first allowed the separation of a cytosol+synaptosomes
fraction from a nuclear fraction (Fig. 7A). The second separated
a cytosol+nuclei fraction from a synaptosomal fraction (Fig. 7B).
The purity of each fraction was evaluated by WB with specific
markers: postsynaptic density protein 95 (PSD95; also known as
DLG4) (cytosol+synaptosomes), histone H2B (nuclei), cyclin L1
(cytosol+nuclei), SYN1 and AMPA-selective glutamate receptor
1 (GLUR1; also known as GRIA1) (synaptosomal fraction)
(Fig. 7A,B, top). DYRK1A expression levels were assessed
following sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) of the different cellular fractions, followed by WB,
and normalization to the levels of β-actin (Fig. 7A,B, bottom).
DYRK1A was detected in all fractions in both genotypes, but its
expression was significantly higher (∼1.5-fold), in the cytosol and
synaptosomes of Tg(Dyrk1a) brains compared with those of wt
brains. No differences in nuclear DYRK1A expression were seen
between transgenic and wt animals. Brain DYRK1A overdosage in
Tg(Dyrk1a) animals thus occurs in the cytosol and synaptosomes,
but not in the nuclei. We are currently exploring the reasons for this
differential distribution of excess DYRK1A.
We next measured L41 levels in nuclear and cytoplasmic

fractions prepared from the brains of Tg(Dyrk1a) and wt animals
which had been i.p. injected daily for 19 days with L41 (20 mg/kg)

or vehicle (Fig. 7C,D). At the end of the treatments, brains were
recovered and processed for L41 extraction and quantification by
isobaric stable isotope chemical labelling, offline hydrophilic
interaction chromatography (HILIC), followed by ultra-high
precision liquid chromatography with electrospray ionization mass
spectrometry (LC–MS). Results show essentially undetectable L41 in
vehicle-treated animals, identical L41 levels in the brain nuclear
fractions of Tg(Dyrk1a) and wt animals (Fig. 7C), and a significantly
increased L41 level in the cytoplasmic fraction of Tg(Dyrk1a) brains
compared with the cytoplasmic fraction of wt animals’ brains
(Fig. 7D). Thus, DYRK1A overexpression in the transgenic animals’
brains appears to be limited to the cytoplasmic fraction,
corresponding to the subcellular distribution of overexpressed
DYRK1A (Fig. 7A,B). Accordingly, more L41 is detected in the
cytoplasmic fraction from transgenic animals compared with their
control littermates.

Phosphoproteomic effects of DYRK1A trisomy and L41
treatment reveal key synaptic and cytoskeletal components
To explore the mechanisms underlying the correcting effects of
L41 on NOR cognitive deficits of transgenic models, we analysed
the phosphoproteome of proteins isolated from the hippocampus,
cortex and cerebellum of both Tg(Dyrk1a) and Ts65Dn
models, along with their respective wt counterparts, and following
treatment with vehicle or L41 (20 mg/kg, daily i.p. injection for
19 days) (Fig. 8). All tissue samples were processed for
phosphoproteomics analysis based on the enrichment and
separation of proteotypic phosphopeptides with HILIC (see
Materials and Methods). In Tg(Dyrk1a) and Ts65Dn mice, the
hippocampus, cortex and cerebellum yielded 1384, 1523 and 2004
peptides, respectively, corresponding to 886, 948 and 1229 proteins
(Table 1; Tables S1-S13).

Among the peptides/proteins detected in this study, only 30% of
the proteins and 20% of the peptides were significantly up- or
downregulated in trisomic versus wt animals. Most peptides (80%)
were phosphorylated on serine residues, whereas phosphorylation
on threonine (15%) or tyrosine residues (5%) was less frequent.

Fig. 5. Effects of L41 treatment duration and treatment
with L43. (A-D) Wt and Tg(Dyrk1a) mice were treated
with L41 or vehicle for 5 (A), 12 (B) or 19 (C) days or L43 or
vehicle for 19 days (D). Brains were recovered and extracted,
and then DYRK1A and GSK-3α/β were immunopurified and
affinity purified, respectively, and assayed for their catalytic
activities. DYRK1A kinase activity was normalized with
GSK-3α/β activities in each extract (mean±s.e.). DYRK1A
inhibition in Tg(Dyrk1a) mice brains was not significant after
5 days of L41 treatment (P=0.42), but was increasingly
significant after 12 (P=0.04) and 19 (P=0.01) days of L41
treatment. 19 days treatment with kinase-inactive L43 did not
reduce DYRK1A activity in Tg(Dyrk1a) mice (P=0.5).
n.s., not significant. *P<0.05, **P<0.01, ***P<0.001.
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Few peptides (less than 5%) were phosphorylated on two amino
acids. Very few phosphopeptides displayed the consensus
DYRK1A phosphorylation sequence [R-P-x(1,3)-S/T-P] and
most phosphopeptides were predicted to be phosphorylated by
kinases from the CMGC (MAPK or GSK-3 protein) or AGC
[MTOR or PKG (also known as PRKG1)] groups (data obtained
with the PhosphoRS algorithm within the Proteome Discoverer
software tool, version 1.4).
We selected the phosphopeptides displaying a trisomy-

associated modulation (up- or downregulation) which was
reverted by L41 treatment (down- or upregulation) (Fig. 8).
These analyses were first run in each brain tissue and in each of the
two models and their wt controls. We thus focused on proteins
displaying an L41-reversible, trisomy-associated phosphorylation
modulation. Based on these two criteria, 258 and 248
phosphoproteins were selected from Tg(Dyrk1a) and Ts65Dn
hippocampus (Fig. 8A), respectively. Similarly, the Tg(Dyrk1a)
and Ts65Dn cortex showed 238 and 223 dysregulated
phosphoproteins, respectively (Fig. 8A). We found that 330 and
341 phosphoproteins in Tg(Dyrk1a) and Ts65Dn cerebellum,
respectively, were altered by trisomy and L41 treatment (Fig. 8A).
Among these phosphoproteins, 102, 88 and 124 were common to
both transgenic models in the hippocampus, cortex

and cerebellum, respectively (Tables S1-S12). These shared
phosphoproteins were selected for DAVID cluster analysis
(Tables S10-S12), which unravelled enrichment in synaptic,
cytoskeletal and learning pathways (Fig. 8B; Fig. S4).
ToppCluster analysis of the modulated phosphoproteins in each
model and each brain region confirmed enrichment in synaptic
transmission common to both models in the hippocampus and
cortex, while cytoskeleton organization was enriched in both
models for all three brain regions (Fig. 8B; Tables S11-S13).

We also compared, in each model, the phosphoproteins
subsets of all three brain areas (Fig. 8C). In Tg(Dyrk1a), only 16
phosphoproteins were commonly modulated in the three brain
substructures (Fig. 8C, left), while only 22 responded to these
criteria in Ts65Dn (Fig. 8C, centre). Among these 16 and 22
phosphoproteins shared by the three brain regions, only five were
common to both DS models (Fig. 8D): the microtubule-associated
proteinsMAP1A,MAP1B andMAP2, and presynaptic components
piccolo (PCLO) and SYN1. All phosphosites modulated by
both trisomy and L41 treatment, for each of the five proteins,
are schematized in Fig. S5. They illustrate the complexity of
the phosphoproteomics consequences of a single gene trisomy
[Tg(Dyrk1a)] or a partial chromosome 16 trisomy (Ts65Dn)
and the complexity resulting from the treatment with a single

Fig. 6. Persistence of the L41 inhibitory effect on DYRK1A activity and rescue of NOR deficit. (A,C) DYRK1A and GSK-3α/β activities were measured after
purification from the brains of wt (n=3), L41-treated wt (n=3), Tg(Dyrk1a) (n=3) and L41-treated Tg(Dyrk1a) (n=3) animals, 24 h (A) or 48 h (C) following the end of a
19 dayL41 treatment.After 24 h (P=0.02), but not at 48 h (P=0.93), theDYRK1Acatalyticactivityof the treatedTg(Dyrk1a)micebrainswasnormalizedcomparedwith
that of nontreated animals. (B,D) NOR tests were performed 24 h (B) or 48 h (D) after the last day of the 19 day L41 treatment. Although the rescuing effect was
detectable 24 h after the last L41 treatment (P=0.01), no rescue was seen after a 48 h delay (P=0.72). n.s., not significant. *P<0.05, **P<0.01, ***P<0.001.
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pharmacological agent. Among these five proteins, we looked for
the residues with increased phosphorylation when DYRK1A was
overexpressed, and with reduced phosphorylation when DYRK1A
was inhibited by L41, and also matching the consensus DYRK1A
phosphorylation sequence (Himpel et al., 2000). Based on these
criteria, serine 551 of SYN1 was selected for further study.

DYRK1A interacts with SYN1 and other proteins implicated
in synaptic functions
To investigate potential interactions between DYRK1A and
SYN1, co-immunoprecipitation (co-IP) experiments were carried
out with adult mouse brain lysates (Fig. 9A) using antibodies
directed against SYN1 or DYRK1A (negative control, GAPDH).
As expected, DYRK1A and SYN1 were found in their respective
immunoprecipitates (IPs). SYN1 was detected in DYRK1A IPs
and DYRK1Awas detected in SYN1 IPs (Fig. 9A), suggesting that
these proteins form a direct or indirect complex in brain extracts.
Calmodulin-dependent kinase 2A (CAMK2A) was present in
SYN1 IPs, as expected from previous results (Llinás et al., 1985;
Benfenati et al., 1992) and from its role in presynaptic vesicle pool

release (Cesca et al., 2010). CAMK2A was also detected in
DYRK1A IPs, suggesting the possibility of a DYRK1A/SYN1/
CAMK2A complex, although separate DYRK1A/CAMK2A and
SYN1/CAMK2A complexes are possible.

To see whether DYRK1A directly phosphorylates SYN1, we ran
in vitro kinase assays using recombinant DYRK1A and various
SYN1-derived peptides, including Ser551, as potential substrates, or
Woodtide as a reference substrate (Fig. 9B,C). Recombinant DYRK1A
displayed similar activity towards SYN1-tide or SYN1-S553A-tide
compared with Woodtide. In contrast, no significant phosphorylation
could be measured with the SYN1-S551A peptide. This confirms that
DYRK1A is able to phosphorylate SYN1 on its S551 residue, but not
on the nearby Ser553 site. The Ser551 site matches with the consensus
DYRK1A phosphorylation site (Fig. 9B).

DISCUSSION
Rescue of cognitive deficits by pharmacological inhibition
of excess DYRK1A
In this study, we show that trisomy is associated with an increase in
DYRK1A expression and catalytic activity, and that a class of

Fig. 7. DYRK1A and L41 subcellular localization. (A,B) Wt or Tg(Dyrk1a) brains were fractionated by two methods and the expression of DYRKA was
estimated by WB following SDS-PAGE. Reference subcompartment-specific proteins were detected by WB. (A) DYRK1A expression in cytoplasm+
synaptosomes and in nuclear fractions [wt, n=6; Tg(Dyrk1a), n=6]. DYRK1A overexpression is observed in the cytoplasm+synaptosomes fraction (P=0.006),
but not in the nuclear fraction (P=0.9). WB of specific markers validates the purity of fractions: PSD95 (95 kDa, cytoplasmic+synaptosomal marker), H2B
(17 kDa, nuclear marker), β-actin (42 kDa, housekeeping protein). (B) DYRK1A expression in cytoplasm+nuclei and in synaptosomal fractions [wt, n=7;
Tg(Dyrk1a), n=7]. DYRK1A was overexpressed in both cytoplasmic+nuclear (P=0.001) and synaptosomal (P=0.02) fractions. Fractionation was confirmed
by WB of specific compartment markers: cyclin L1 (55 kDa, cytoplasmic+nuclear marker), GLUR1 (100 kDa, postsynaptic marker), SYN1 (74 kDa, presynaptic
marker), β-actin (42 kDa, housekeeping protein). (C,D) L41 subcellular levels. L41 was more highly detected in the brain nuclear (C) and cytoplasmic
(D) compartments in L41-treated wt (n=5) and Tg(Dyrk1a) (n=2) mice compared with nontreated wt (n=5) and nontreated Tg(Dyrk1a) (n=5) mice. L41 distribution
was not significantly different between the brain nuclear fractions of treated wt and Tg mice. In contrast, the L41 level was increased in the cytoplasm of
treated Tg mice brain compared with the cytoplasm of control wt mice brain (P=0.002). n.s., not significant. *P<0.05, **P<0.01, ***P<0.001.
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synthetic DYRK1A inhibitors, the leucettines, exemplified by L41,
is able to cross the blood brain barrier and selectively inhibit
the excess DYRK1A linked to trisomy. Why only this fraction
of overexpressed DYRK1A is inhibited, and most native, basal
DYRK1A is not, remains a mystery. This effect could be linked to
the accumulation of excess DYRK1A and L41 in specific cellular
compartments and not in others, as shown in Fig. 7. Intriguingly,
a similar sensitivity to inhibition of excess DYRK1A compared
with ‘normal’ DYRK1A was observed with EGCG. This finding is
encouraging in terms of potential therapeutic implications, as
complete inhibition of DYRK1A is not desired. Intracellular
DYRK1A has been described in both nuclear and cytoplasm
compartments (Martí et al., 2003). Our results indicate that it is also
present in synaptosomes, which might have consequences on the
regulation of synaptic vesicles trafficking (see below).
We here demonstrate the rescuing effect of synthetic DYRK1A

inhibitors, leucettines L41 and L99, on deficient recognition

memory of three different trisomic mouse models with increasing
genetic complexity, Tg(Dyrk1a), Ts65Dn and Dp1Yey. These
beneficial behavioural effects directly correlate with inhibition
of excess DYRK1A activity. There is also a strong coincidence
with the duration of the drug treatment (Figs 2A and 5), the
potency of the leucettine analogues (Figs 2B and 5) and
the duration of the drug-free period following the last injection
(Fig. 6). Finally, behavioural correcting benefits detected in the
NOR test (Figs 2 and 6) correlate with remodelling of brain
functional connectivity detected by fMRI (Fig. 3). However, we
observed that working and spatial memories impaired in the
Tg(Dyrk1a) mice were insensitive to L41 treatment, as assessed in
the Y-maze and place object location tasks, respectively. This
indicates a specific action of DYRK1A inhibition on molecular
pathways specifically related to recognition memory. Our findings
further strengthen the essential role of DYRK1A in intellectual
phenotypes associated with DS. Leucettine derivatives should thus

Fig. 8. Phosphoproteomic analysis of Tg(Dyrk1a) and Ts65Dn mice brains following exposure to L41. Phosphoproteins, in each brain substructure,
that are both up- or downregulated by trisomy and, respectively, down- and upregulated by L41 treatment were selected for analysis. (A) Venn diagrams
comparing the two transgenic models versus wt and L41 treatment, at tissue level. 102, 88 and 124 modified phosphoproteins were common to the two models
in the hippocampus, cortex and cerebellum, respectively. Numbers in parentheses indicate dual modulated phosphoproteins in each model and each tissue.
(B) Biological processes enrichment deregulated by the phosphoproteins which are modulated one way in both Tg(Dyrk1a) and Ts65Dn mice and affected by
L41 treatment in the opposite way. Represented here are those common to both models and to the three brain tissues. DAVID and ToppCluster analyses
were performed in the hippocampus, cortex and cerebellum separately. Enriched classification is determined by the –log(P-value). Synaptic transmission,
common to the hippocampus and cortex, and cytoskeleton organization, common to the three brain regions, are the processes most modified by trisomy and
sensitive to L41. (C) Venn diagrams illustrate the number of dually modulated phosphoproteins in each model and in each tissue, and the numbers shared by
different brain areas. 16 and 22 proteins were shared by all three tissues in Tg(Dyrk1a) and Ts65Dnmice, respectively. (D) Venn diagram comparison of these 16
and 22 phosphoproteins revealed that five are shared by both models.
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be investigated further as drug candidates to improve cognitive
functions of DS patients.

L41 treatment in DYRK1A-overexpressing mice triggers
remodelling of brain FC pathways
Brain rsfMRI in Dp1Yey mice revealed global resilience
of functional cerebral circuitry after L41 administration.
Notably, L41 corrected the abnormal DMN patterns found in

Dp1Yey mice, but also acted on connectivity of key brain areas
associated with cognitive and memory processing (PFC, ACA,
PERI, HF). DMN (Raichle, 2015) – previously described as a
highly active circuitry during rest – and preserved across species
(Stafford et al., 2014), was shown to be vulnerable to various
neuropathological conditions (Hawellek et al., 2011; Raichle, 2015;
Zhou et al., 2017), including DS (Anderson et al., 2013; Pujol et al.,
2015). The core area of this network in mice is the RSP (associated

Table 1. Summary of phosphoproteomic analyses

Model
Tg(Dyrk1a) Ts65Dn Common

Brain area Hippocampus Cortex Cerebellum Hippocampus Cortex Cerebellum Hippocampus Cortex Cerebellum

Total protein number 886 948 1229 886 948 1229 – – –

Total peptide number 1384 1523 2004 1384 1523 2004 – – –

Modulated proteins, trisomic vs wt 275 256 364 257 230 365 – – –

Modulated peptides, trisomic vs wt 333 296 437 311 270 422 – – –

Modulated proteins, trisomic, L41 vs vehicle 267 240 344 253 228 355 34 38 59
Modulated peptides trisomic, L41 vs vehicle 321 275 403 307 265 410 40 38 63
Phospho-Ser peptides 265 221 333 246 205 320 33 29 51
Phospho-Thr peptides 39 44 58 53 42 75 6 6 11
Phospho-Tyr peptides 17 10 12 8 18 15 1 3 1
Phospho-Ser and phospho-Thr peptides 18 19 23 10 6 24 – – –

Phospho-Ser and phospho-Tyr peptides 5 1 4 2 3 4 – – –

Phospho-Thr and phospho-Tyr peptides 6 1 4 7 4 2 – – –

DYRK1A phosphorylation sites 1 7 8 6 3 6 – – –

Other kinases’ phosphorylation sites 279 251 383 263 223 351 – – –

Fig. 9. Direct interaction of DYRK1A and SYN1, phosphorylation of SYN1 by DYRK1A. (A) DYRK1A and SYN1 were immunoblotted following
immunoprecipitation from wt mice brain extracts. DYRK1A or SYN1 present in the starting material (Input) were recovered in the IPs. SYN1 (74 kDa) was present
in the DYRK1A IP and DYRK1A (85 kDa) was detected in the SYN1 IP, suggesting that these two proteins interact directly. Positive control of the SYN1 IP was
performed using an anti-CAMKII antibody. As expected, CAMKII (50 kDa) was present in the SYN1 IP. DYRK1A IP also brought down CAMKII, suggesting
complexes between SYN1, CAMKII and DYRK1A. (B) Sequence of SYN1 in the vicinity of Ser551 matches with the consensus DYRK1A phosphorylation site.
Based on this sequence, three peptides were synthesized and used as potential substrates: SYN1, SYN1-S551A and SYN1-S553A. (C) Kinase activity of
recombinant DYRK1A towards the three different SYN1peptides. SYN1 and SYN1-S553A peptides were phosphorylated at the same level as Woodtide by
recombinant DYRK1A (71.7%±5.2%, 70.1% and 78.4%±11.4%, respectively). No significant catalytic activity was measured with the SYN1-S551A peptide
(7.9%±1.2%).
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with the posterior cingulate/precuneus cortex in humans) (Hübner
et al., 2017; Sforazzini et al., 2014). Our analysis unravelled
increased local connectivity around the RSP in DS mice, but
strongly reduced long-range communication with frontocortical
brain regions (ACA, PFC; Fig. S3), when compared with wt
animals. This short-range stronger connectivity is not limited to
the RSP, but represented a common feature for other investigated
brain regions (ACA, PERI, HF) of Dp1Yey mice. Such a pattern of
increased local, short-range brain communication was described
as a cardinal feature of FC in DS patients (Anderson et al., 2013;
Pujol et al., 2015; Vega et al., 2015). Indeed, DS human brains are
characterized by simplified network structure, organized by local
connectivity (Anderson et al., 2013; Pujol et al., 2015; Vega et al.,
2015) and impaired efficiency to integrate information from
distant connections.
Dp1Yey mouse brains additionally displayed features of higher

negative functional correlations as compared with the wt vehicle
group and, more obviously, a reversed correlation pattern (switch
from positive to negative correlations) between the RSP and frontal
cortical areas in the DS model. This feature, attenuated or corrected
following L41 treatment, could eventually be discussed in the context
of L41 regulation of inhibition/excitation ratios, imbalanced in
DYRK1A-overexpressing mice (Souchet et al., 2014). Indeed,
increased number and signal intensity from neurons expressing
GAD67 (also known as GAD1), an enzyme that synthesizes GABA,
indicating inhibition pathway alterations, was quantified in three
different DS models (Souchet et al., 2014), including Dp1Yey.
Pharmacological correction of inhibition/excitation was achieved in
the Tg(Dyrk1a) DS mouse model (Souchet et al., 2015) by EGCG
treatment. We can speculate on a similar effect of L41 on inhibition/
excitation balance, and subsequent modulation of brain connectivity.
Nevertheless, the brain synchrony modifications after L41 inhibition
of excess DYRK1A activity in DS models might potentially reflect
other molecular mechanisms and interactions at the synaptic and
cytoskeletal level, as shown here, and subsequently underpin
correction of cognitive and memory deficits of DS mice.
Importantly, L41 had only limited effects on FC in wt animals,
whereas in the Dp1Yey model it largely impacted the connectivity
features, on distributed action sites, that coincide with alterations
reported for brain anatomy in DS models, most notably, frontal
and prefrontal cortical areas (ACA/PFA), the HF, PAL and TH.
Volumetric MRI in DS mouse models, showed a general trend for
smaller frontal lobes, hippocampal and cerebellar regions, but
larger thalamic and hypothalamic areas (Powell et al., 2016;
Roubertoux et al., 2017). Diffusion MRI also identified potential
microstructural alterations in the above-mentioned areas and also
the striatum (including the PAL) (Nie et al., 2015). Our rsfMRI
study advances the current knowledge on the brain functional
communication in DSmousemodels, revealing targeted and effective
action of L41 on brain circuitry, consistent with the profile of
cognitive and novel object recognition memory improvements.

DYRK1A and SYN1
Phosphoproteomic analyses using ultra-high precision LC–MS
analysis unravelled several clusters of neuronal phosphorylated
proteins directly controlled by DYRK1A or clusters indirectly
modulated in the trisomic condition and sensitive to L41 treatment.
Five phosphoproteins were shared by Tg(Dyrk1a) and Ts65Dn
mice and were present in three brain substructures (hippocampus,
cortex, cerebellum) (Fig. 8). Furthermore, these phosphoproteins
showed significant modulation in their phosphorylation levels in
trisomic versus disomic animals and these modulations were

sensitive, in the opposite direction, to L41 treatment. A few key
pathways, including controlling synaptic vesicle (SV) transport,
calcineurin NFAT signalling and cytoskeleton organization, were
found to be directly affected by DYRK1A, or as a consequence of its
kinase activity (Fig. S4), while others might represent indirect
effects of the overdosage. Nevertheless, the immune response was
found to be affected, correlating with several studies linking
DYRK1A to inflammation. We here focused on SYN1 as it was the
only protein that revealed a serine residue corresponding to the
DYRK1A phosphorylation consensus sequence. SYN1 Ser551
was hyperphosphorylated following DYRK1A overexpression and
dephosphorylated following L41 treatment. Representative annotated
ultra-high resolution product ion spectrum of proteotypic peptide
qSRPVAGGPGAPPAARPPAsPSPqR encoding the phosphorylated
residue Ser551 is shown in Fig. S6.

Co-IP experiments showed that DYRK1A interacts, either directly
or indirectly, with SYN1 (Fig. 9). SYN1 has been described to be
involved in the reserve SV pool maintenance at the presynaptic
bouton by tethering SVs to the actin cytoskeleton (Hilfiker et al.,
2005; Benfenati et al., 1991). Phosphorylation of SYN1 by CAMKII
leads to the release of SVs and allows them tomove close to the active
zone (Llinás et al., 1991). Neurotransmitter release at the active zone
is thus strongly dependent on SYN1 phosphorylation. We showed
that SYN1 was phosphorylated by DYRK1A on its S551 residue
in vitro and in vivo, thus highlighting a novel role of DYRK1A
in SYN1-dependent presynaptic vesicle trafficking. Besides its
physiological role in synaptic plasticity regulation, SYN1 has been
associated with epilepsy (Garcia et al., 2004; Fassio et al., 2011).
Mutations in the phosphorylation domains of SYN1 essential for
vesicle recycling control have been related to epilepsy (Fassio
et al., 2011). In addition, mental retardation, autosomal dominant
7 (MRD7) patients with Dyrk1a haploinsufficiency display epilepsy
seizures (Courcet et al., 2012; Møller et al., 2008; Oegema et al.,
2010; Valetto et al., 2012; Yamamoto et al., 2011). Our results
suggest that epileptic seizures observed in MRD7 patients could be
induced by defects in SYN1 regulation.

DYRK1A, microtubule-binding proteins, PCLO and other
synaptic targets
The other four proteins found in our phosphoproteomics study will
be the object of another study but are briefly reviewed here. The
detection of MAP1A, MAP1B and MAP2, all previously reported
as DYRK1A substrates (Murakami et al., 2012; Scales et al.,
2009), validated the power of our analysis and confirmed the
role of DYRK1A in dendrite morphogenesis and microtubule
regulation (Ori-McKenney et al., 2016). The last phosphoprotein,
PCLO, is a cytoskeletal matrix protein associated with the
presynaptic active zone (Cases-Langhoff et al., 1996), which
acts as a scaffolding protein implicated in SV endocytosis
and exocytosis (Garner et al., 2000; Fenster et al., 2003). The
lack of PCLO in the human brain leads to a dramatic neuronal
loss associated with pontocerebellar hypoplasia type III (Ahmed
et al., 2015). Moreover, PCLO knockdown in cultured
hippocampal neurons increases SYN1 dispersion out of the
presynaptic terminal and SV exocytosis (Leal-Ortiz et al., 2008).
It has been shown that PCLO modulates neurotransmitter release by
regulating F-actin assembly (Waites et al., 2011). It clearly appears
that PCLO acts upstream of SYN1 and regulates its role in vesicle
recycling.

Taken together, our findings reveal SYN1 as a new direct
substrate of DYRK1A, suggesting a novel role of this kinase in the
regulation of SV release at the presynaptic terminal. Moreover, the
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relatively safe and selective DYRK1A inhibitors, the leucettines,
successfully correct recognition memory deficits associated with
DS in three different mice models. Although the DYRK1A-
dependent biological process which is rescued by these drugs still
needs to be elucidated, leucettines and their analogues represent
promising therapeutic drugs to enhance cognitive functions in DS
patients.

DYRK1A, DS and AD
There is strong support for the involvement of DYRK1A
in cognitive deficits associated with Alzheimer’s disease (AD):
(1) DYRK1A mRNA (Kimura et al., 2007) and DYRK1A protein
(Ferrer et al., 2005) levels are increased in postmortem human AD
brains compared with healthy brains; (2) calpain 1-induced cleavage
of DYRK1A is observed in AD brains and associated with increased
activity (Jin et al., 2015); (3) DYRK1A phosphorylates key AD
players, such as amyloid precursor protein (Ryoo et al., 2008),
presenilin 1 (Ryu et al., 2010), Tau (also known as MAPT) (Woods
et al., 2001; Ryoo et al., 2007; Azorsa et al., 2010; Coutadeur et al.,
2015; Jin et al., 2015), septin (Sitz et al., 2008) and neprylysin
(Kawakubo et al., 2017); (4) DYRK1A regulates splicing of
Tau mRNA (Shi et al., 2008; Wegiel et al., 2011; Yin et al., 2012,
2017; Jin et al., 2015); (5) DYRK1A inhibition corrects cognitive
defects in 3xTG-AD (Branca et al., 2017), APP/PS1 (B. Souchet,
unpublished) and Aβ25-35 peptide-injected wt mice (Naert et al.,
2015), three widely used mice models of AD. These facts provide
additional incentive to investigate the regulation and substrates
of brain DYRK1A and to develop potent and selective DYRK1A
inhibitors to treat cognitive deficits observed in different
indications. DS patients display early symptoms of AD and show
a high frequency of dementia at later age (Ballard et al., 2016). The
triplication of APP located on the HSA21 is thought to contribute to
amyloid plaques and neurofibrillary tangles, two causative factors
in AD, that accumulate early in 30- to 40-year-old DS people (Head,
et al., 2012a). These factors, associated with neuroinflammation and
oxidative damage also diagnosed in both AD and DS individuals,
lead to precocious dementia observed from age 30 to 39 (Head et al.,
2012b). Studying DS will have an impact on the understanding of
AD and, reciprocally, DYRK1A is clearly a common factor between
the two diseases.

MATERIALS AND METHODS
Animal models, treatment and behaviour assessment
Tg(Dyrk1a) mutant mice and Dp1Yey models were maintained on the
C57BL/6J genetic background. Ts(1716)65Dn trisomic mice were obtained
from The Jackson Laboratory and kept on the C57BL/6J×C3B, a congenic
sighted line for the BALB/c allele at the Pde6b locus (Hoelter et al., 2008).
The local ethics committee, Com’Eth (no. 17), approved all mouse
experimental procedures, under the accreditation number APAFIS #5331
and #3473, with Y.H. as the principal investigator.

Behavioural studies were conducted in 12- to 20-week-old male animals.
All assessments were scored blind to genotype and treatment, as
recommended by the ARRIVE guidelines (Karp et al., 2015; Kilkenny
et al., 2010). Leucettine L41 was prepared at 40 mg/ml in dimethyl
sulfoxide (DMSO), aliquoted and stored below −20°C. The final formulation
was prepared just prior to use as a 2 mg/ml solution diluted in PEG300/water
(50/45), to reach a final DMSO/PEG300/water 5/50/45 (v/v/v) mix.
Treated animals received a daily dose (5, 12 or 19 days) of this formulation
by i.p. injection of 20 mg/kg/day. Nontreated animals received the same
formulation without L41.

The NOR task is based on the innate tendency of rodents to differentially
explore a novel object over a familiar one (Ennaceur and Delacour, 1988).
Day 1 was a habituation session. Mice freely explored the apparatus, a white
circular arena (53 cm diameter) placed in a dimly lit testing room (40 lux).

On day 2, the acquisition phase, mice were free to explore two identical
objects for 10 min. Mice were then returned to their home cage for a 24 h
retention interval. To test their memory, on day 3, one familiar object
(already explored during the acquisition phase) and one novel object were
placed in the apparatus and mice were free to explore the two objects for a
10 min period. Between trials and subjects, the different objects were
cleaned with 50° ethanol to reduce olfactory cues. To avoid a preference for
one of the objects, the new object was different for different animal groups
and counterbalanced between genotype and treatment as well as for location
of novel and familiar objects (left or right). Object exploration was manually
scored and defined as the orientation of the nose to the object at a distance
<1 cm. For the retention phase, the percent of time spent exploring familiar
versus novel objects was calculated to assess memory performance.

rsfMRI
rsfMRI was performed on 26 animals separated into four groups: wt, vehicle
treated; wt, L41 treated; Dp1Yey, vehicle treated; Dp1Yey, L41 treated.
rsfMRI was carried under medetomidine sedation during scanning
[subcutaneous bolus injection, 0.3 mg/kg in 100 μl 0.9% NaCl solution
right before the scan followed by continuous subcutaneous infusion
of medetomidine (0.6 mg/kg, 200 μl/h)]. Physiological parameters were
continuously monitored. rsfMRI data were collected using a 7 T small bore
animal scanner and a mouse head adapted cryocoil (Biospec 70/20 andMRI
CryoProbe, Bruker, Germany). The whole brain was examined [24 slices;
150×150×700 μm3 spatial resolution) using single shot gradient echo
EPI (echo time/repetition time=10 ms/1700 ms)] and 200 volumes were
recorded. The preprocessing included motion correction, data co-
registration with Allen Mouse Brain Atlas (mouse.brain-map.org),
detrending, band pass filtering (0.01-0.1 Hz) and regression of ventricular
signal. For seed-based correlation analysis, the functional connectivity of
several brain areas was mapped: RSP to map the default mode network, CA1,
DG, PERI and anterior cingulate area (ACC). Correlation coefficients were
then computed (two-tailed Student’s t-test, P<0.001) between the seed region
and the averaged BOLD signal time series of the remaining whole brain for
each group and were converted and mapped to z-values using Fisher’s r-to-z
transformation.

DYRK1A and GSK-3β protein levels
Brains were obtained from mice and snap-frozen until further use. Then
tissues were weighed, homogenized and sonicated in 1 ml lysis buffer
(60 mM β-glycerophosphate, 15 mM p-nitrophenylphosphate, 25 mM
Mops pH 7.2, 15 mM EGTA, 15 mM MgCl2, 2 mM dithiothreitol, 1 mM
sodium orthovanadate, 1 mM sodium fluoride, 1 mM phenylphosphate
disodium and protease inhibitor cocktail) per g of material. Homogenates
were centrifuged for 15 min at 17,000 g and 4°C. The supernatant was
recovered and assayed for protein content (Bio-Rad, France). The proteins
were separated by 10% NuPAGE pre-cast Bis-Tris polyacrylamide mini gel
electrophoresis (Invitrogen, France) with MOPS-SDS running buffer.
Proteins were transferred to 0.45-μm nitrocellulose filters (Schleicher
and Schuell, Germany). They were blocked with 5% low-fat milk in
Tris-buffered vehicle/Tween 20, and incubated overnight at 4°C with
antibodies. Anti-DYRK1A (H00001859-M01; 1:1000) and anti-GSK-3α/β
(KAM-ST002E; 1:1000) were obtained from Interchim (France) and
Stressgen (France), respectively. Appropriate secondary antibodies
conjugated to horseradish peroxidase (Bio-Rad) were added to visualize
the proteins using the enhanced chemiluminescence reaction (ECL,
Amersham, France).

Protein kinase assays
Protein kinase assays to measure the catalytic activity of DYRK1A in the
brains of the animals treated with or without drugs were performed as follows:
frozen half brains were homogenized in lysis buffer (1.2 ml/half brain) using
Precellys® homogenizer tubes. After centrifugation at 2800 g for 2×15 s,
1 mg brain extract was incubated with 2 μg DYRK1A (H00001859 M01,
Interchim) or GSK3-β (MBS8508391, Emelca Bioscience, France)
antibodies at 4°C for 1 h under gentle rotation. Then, 20 μl protein G
agarose beads (Thermo Fisher Scientific, France), previously washed three
times with bead buffer (50 mM Tris pH 7.4, 5 mM NaF, 250 mM NaCl,
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5 mM EDTA, 5 mM EGTA, 0.1% Nonidet P-40 and protease inhibitor
cocktail from Roche, France), were added to the mix and gently rotated
at 4°C for 30 min. After a 1 min spin at 10,000 g and removal of the
supernatant, the pelleted immune complexes were washed three times with
bead buffer, and a last time with Buffer C (60 mM β-glycerophosphate,
30 mM p-nitrophenolphosphate, 25 mM Mops pH 7.2, 5 mM EGTA,
15 mM MgCl2, 2 mM dithiothreitol, 0.1 mM sodium orthovanadate,
1 mM phenylphosphate, protease inhibitor cocktail). DYRK1A or GSK-3
immobilized on beads were assayed in buffer C as described in the
SupplementaryMaterials andMethods withWoodtide (KKISGRLSPIMTEQ)
(1.5 μg/assay) or GSK3-tide (YRRAAVPPSPSLSRHSSPHQpSED-EEE,
where pS stands for phosphorylated serine) as substrates.

Protein kinase assays to evaluate SYN1 phosphorylation by DYRK1A
were performed with 50 ng recombinant DYRK1A protein (PV3785,
Thermo Fisher Scientific) and 0.98 mM Woodtide, and three peptides
derived from the SYN1 putative DYRK1A phosphorylation site (Fig. 9C).
Kinase activity was then measured as described in the Supplementary
Materials and Methods.

The selectivity of the three leucettines used in this study was evaluated
in a panel of 16 recombinant protein kinases assayed as described in the
Supplementary Materials and Methods.

Subcellular fractionation
Nuclear, cytosolic and synaptosomal subcellular fractionation of brain
tissue was performed with the Syn-PER™ and ProteoExtract® Tissue
Dissociation Buffer Kit and Subcellular Proteome Extraction Kit following
the instructions of the manufacturer. Fractions were analysed by SDS-PAGE
and WB with specific antibodies.

Phosphoproteomics results analysis
Gene ontology enrichment analyses of phosphoproteins that are modulated
(up- or downregulated) in Tg(Dyrk1a) or Ts65Dn mice versus wt and also
modulated in the opposite manner (down- or upregulated) by the L41
treatment, were conducted using ToppCluster (Bonferroni correction,
P-value cutoff 0.05). Only biological processes common to the three
brain regions and both models are presented (complete biological processes
are listed in Tables S11-S13).

DYRK1A substrates and their respective phosphorylation sites were
identified in the phosphoproteome based on the DYRK1A phosphorylation
consensus sequence R-P-x(1,3)-S/T-P (Himpel et al., 2000). Protein-protein
interactions of each substrate were generated with STRING web server
application. Biological process enrichments of each cluster were assessed by
using ToppCluster web server application. Phospho-network was mapped
with the Cytoscape tool. See Supplementary Materials and Methods
for details.

Immunoprecipitation and immunoblotting
All immunoprecipitations were performed on fresh half brains of 3-month-
old wt male mice. Brains were dissected and lysed in 1.2 ml RIPA lysis
buffer (Santa-Cruz Biotechnology, France) using Precellys® homogenizer
tubes. After centrifugation at 2800 g for 2×15 s, 1 ml brain extract was
incubated with 2 μg of antibody of interest at 4°C for 1 h under gentle
rotation. An aliquot of the remaining supernatant was kept for further
immunoblotting as homogenate control. Then, 20 μl protein G agarose
beads, previously washed three times with bead buffer, were added to the
mix and gently rotated at 4°C for 30 min. After a 1 min spin at 10,000 g and
removal of the supernatant, the pelleted immune complexes were washed
three times with bead buffer beforeWB analysis with appropriate antibodies
directed against DYRK1A (H00001859 M01, Interchim; 1:1000), PSD95
(ab18258, Abcam, France; 1:1000), SYN1 (ab64581, Abcam; 1:1000),
CAMK2A (PA5-14315, Thermo Fisher Scientific; 1:1000) and GAPDH
(MA5-15738, Thermo Fisher Scientific; 1:3000). Immunoblots were
revealed with Clarity Western ECL Substrate (Bio-Rad).
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Grau, C., Arató, K., Fernández-Fernández, J. M., Valderrama, A., Sindreu, C.,
Fillat, C., Ferrer, I., de la Luna, S. and Altafaj, X. (2014). DYRK1A-mediated
phosphorylation of GluN2A at Ser1048 regulates the surface expression and
channel activity of GluN1/GluN2A receptors. Front. Cell. Neurosci. 8, 331.
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Martıńez de Lagrán, M., Altafaj, X., Gallego, X., Martı,́ E., Estivill, X., Sahún, I.,
Fillat, C. and Dierssen, M. (2004). Motor phenotypic alterations in TgDyrk1a
transgenic mice implicate DYRK1A in Down syndrome motor dysfunction.
Neurobiol. Dis. 15, 132-142.

15

RESEARCH ARTICLE Disease Models & Mechanisms (2018) 11, dmm035634. doi:10.1242/dmm.035634

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s
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Abstract  

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the 

possibility to non-invasively probe whole-brain network dynamics and to investigate the 

determinants of altered network signatures observed in human studies. Mouse rsfMRI has been 

increasingly adopted by numerous laboratories world-wide. Here we describe a multi-centre 

comparison of 17 mouse rsfMRI datasets via a common image processing and analysis 

pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, 

we report the reproducible identification of several large-scale resting-state networks (RSN), 

including a murine default-mode network, in the majority of datasets. A combination of factors 

was associated with enhanced reproducibility in functional connectivity parameter estimation, 

including animal handling procedures and equipment performance. Our work describes a set of 

representative RSNs in the mouse brain and highlights key experimental parameters that can 

critically guide the design and analysis of future rodent rsfMRI investigations. 
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Introduction 

The brain is the most complex organ, consisting of 86 billion neurons (Azevedo et al., 2009), 

each forming on average 7000 synapses. Approaching the complexity of the brain is rendered 

difficult due to the limited access to the tissue and the imperative for minimally invasive 

procedures in human subjects. Resting-state functional magnetic resonance imaging (rsfMRI) 

has gained attention within the human neuroimaging community due to the possibility to 

interrogate multiple resting-state networks (RSNs) in parallel with a relatively high spatial and 

temporal resolution (Biswal et al., 1995, 2010; Fox and Raichle, 2007). Functional connectivity 

(FC), i.e. the statistical dependence of two or more time series extracted from spatially defined 

regions in the brain (Friston, 2011), is the principal parameter estimated from rsfMRI studies. 

The importance of FC to neuroscience research can be understood through its widespread use 

to describe functional alterations in psychiatric and neurological disorders, e.g. for review 

(Buckner et al., 2008; Greicius, 2008). However, despite an extensive characterization of the 

functional endophenotype associated with diseased states, limitations with respect to 

invasiveness and terminal experiments generally preclude the establishment of detailed 

mechanisms in humans, as can be achieved with animal models. 

 

Since its onset in 2011 (Jonckers et al., 2011), mouse rsfMRI has developed in a number of 

centres and has grown to become a routine method with a number of applications, reviewed in 

(Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016; Hoyer et al., 2014; Jonckers et al., 

2015, 2013; Pan et al., 2015). Prominently, mouse rsfMRI has been used to investigate an 

extensive list of models, including Alzheimer’s disease (Grandjean et al., 2014b, 2016b, Shah et 

al., 2013, 2016c; Wiesmann et al., 2016; Zerbi et al., 2014), motor (DeSimone et al., 2016; Li et 

al., 2017), affective (Grandjean et al., 2016a), autism spectrum (Bertero et al., 2018; Haberl et 

al., 2015; Liska et al., 2018; Liska and Gozzi, 2016; Michetti et al., 2017; Sforazzini et al., 2016; 

Zerbi et al., 2018; Zhan et al., 2014), schizophrenia (Errico et al., 2015; Gass et al., 2016), pain 

(Buehlmann et al., 2018; Komaki et al., 2016), reward (Charbogne et al., 2017; Mechling et al., 

2016), and demyelinating disorders (Hübner et al., 2017). Another application of mouse rsfMRI 

is the elucidation of large-scale functional alterations exerted by pharmacological agents 

(Razoux et al., 2013; Shah et al., 2016a, 2015). Finally, the method has been used to address 

fundamental questions. These include the investigation of the structural basis underlying FC 

(Bergmann et al., 2016; Grandjean et al., 2017b; Hübner et al., 2017; Schroeter et al., 2017; 

Sforazzini et al., 2016; Stafford et al., 2014), the nature of the dynamical event encoded in the 

resting-state signal (Belloy et al., 2018a, 2018b; Bukhari et al., 2018; Grandjean et al., 2017a; 

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/541060doi: bioRxiv preprint first posted online Feb. 8, 2019; 



 

Sethi et al., 2017), as well as strain (Jonckers et al., 2011; Schroeter et al., 2017; Shah et al., 

2016b), and the impact of sedation or awake conditions on the underlying signal and 

connectivity patterns (Bukhari et al., 2017; Grandjean et al., 2014a; Jonckers et al., 2014; Wu et 

al., 2017; Yoshida et al., 2016). This body of work obtained mainly over the past 5 years reflects 

the growth and interest into this modality as a translational tool to understand mechanisms 

underlying RSNs organisation in the healthy and diseased states, with the promise to highlight 

relevant targets in the drug development process and to advance fundamental knowledge in 

neuroscience.  

 

Despite a growing interest in the field, rsfMRI studies in animals have been inherently difficult to 

compare. On top of centre-related contributions analogous to those observed in human studies 

(Jovicich et al., 2016), comparisons in rodents are further confounded by greater variability in 

preclinical equipment (e.g. field strength, hardware design), animal handling protocols and 

sedation regimens employed to control for motion and stress. Discrepancies between reports, 

such as the anatomical and spatial extent of a rodent homologue of the human default-mode 

network (DMN) (Becerra et al., 2011; Gozzi and Schwarz, 2016; Guilfoyle et al., 2013; Hübner 

et al., 2017; Liska et al., 2015; Lu et al., 2012; Sforazzini et al., 2014; Stafford et al., 2014; 

Upadhyay et al., 2011), or the organisation of murine RSNs (Jonckers et al., 2011), have stark 

consequences for the interpretations of the results. To meet a growing need to establish 

standards and points of comparison in rodent fMRI, we carried out a multi-centre comparison of 

mouse rsfMRI datasets. Multiple datasets representative of the local centre acquisitions were 

analysed with a common preprocessing pipeline and examined with seed-based analysis (SBA) 

and independent component analysis (ICA), two common brain mapping methods used to 

investigate RSNs. The aims of our work were to identify representative mouse RSNs, to 

establish a set of reference pre-processing and analytical steps and good-practices, and to 

highlight protocol requirements enabling more sensitive and specific FC detection in the mouse 

brain. 
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Results 

Dataset description and preprocessing validation 

A total of 17 datasets were included in this study. Dataset selection was restricted to 15 

gradient-echo echo planar imaging acquired on C57Bl/6J mice, any gender, any age, any 

sedation protocol (Supplementary table 1). Cortical signal-to-noise ratio (SNR) ranged from 

17.04 to 448.56, while temporal SNR (tSNR) ranged from 8.11 to 112.68 (Supplementary 

figure 1ab). A comparison between SNR and tSNR indicated a positive association between 

the two measures (pearson’s r = 0.75, t = 18.30, df = 253, p = 2.2e-16). Due to the lack of 

orthogonality between the two factors, only SNR was considered in the remaining of the 

analysis. Mean framewise displacement (FWD) ranged 0.0025 mm to 0.15 mm 

(Supplementary figure 1c). A summary of representative estimated motion parameters is 

shown in the supplementary material (Supplementary figure 2). Each preprocessing output 

was visually inspected. Automatic brain extraction generated plausible brain masks. 

Normalisation was carried out to the Allen Institute for Brain Science (AIBS) template 

(Supplementary figure 3). Spatial coverage along the anterior-posterior axis varied across 

datasets. The following analysis is thus restricted to areas fully covered by all scans, 

corresponding to approximately 2.96 and -2.92 mm relative to Bregma. Moreover, distortions 

made it impossible to cover the amygdala region in full. No marked differences in the 

performance of each preprocessing steps were identified between datasets. The brain masked, 

spatially smoothed, temporally filtered, and normalized scans were further processed as follows.  

 

Vascular and ventricle signal regression enhances functional connectivity specificity 

Denoising procedures are an integral step in all FC analyses relying on rsfMRI acquisitions. 

Nuisance signal originates from multiple sources, including physiological and equipment related 

noise (Murphy et al., 2013). No consensus exists both in human and rodent fMRI fields 

regarding optimal noise removal procedures. In this study the following six nuisance regression 

models were designed and compared with the aim to select one model based on objective 

criteria for the remaining of the analysis. The first nuisance model includes only motion 

correction and parameter regression (MC). Global signal regression (GSR) was added to the 

motion parameter in a second model. Signal from either white-matter (WM), ventricle (VEN), or 

vascular (VASC) masks (Supplementary figure 4bcd) were combined with motion parameters 

in additional regression models. Finally, based on results obtained with these approaches, a 

combination (VV) model including VEN and VASC signal regression was included for the 

comparison. The effectiveness of nuisance regression models and the specificity of the resulting 
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networks at the subject level were assessed based on the outcome of a SBA using the anterior 

cingulate area (ACA, Supplementary figure 4a) as seed region. This seed was selected as a 

central node of the putative rodent DMN (Gozzi and Schwarz, 2016).  

 

 
Figure 1 | Denoising strategies and their impact on functional connectivity (FC) specificity. a-b, 

Seed-based analysis for a seed in the anterior cingulate area (ACA) following either global 

signal regression (GSR, a) or vascular+ventricle signal regression (VV, b). The spatial maps 

obtained lead to a set of regions for which the BOLD signals were positively associated to the 

BOLD signal of the ACA. These included the prefrontal cortex, retrosplenial area (RSP), dorsal 

striatum. Under VV, the connectivity profile extended to peri-hippocampal areas. Significant anti-

correlation (negative t-statistic, blue) are also present in the primary somatosensory areas (SSp) 

under GSR but not VV condition. Individual scans were classified as presenting “Specific”, 

“Unspecific”, “Spurious”, or “No” FC relative to the ACA seed (c, see Supplementary figure 5 

for details). Comparison of each FC category depending on the denoising strategies revealed 

that motion correction and GSR lead to lowest percentage of “specific FC” at 30%, while that 

percentage was highest under VV condition (38%). FC as a function of distance to the ACA 

seed indicates comparable rate of decline between denoising strategies (d). Green arrowhead 

indicates the position of the ACA seed, black arrowheads indicate ROIs spaced 0.4 mm apart. 

Voxelwise corrected t-statistic for one-sample t-tests (p<0.001, corrected) are shown as a 

colour-coded overlay on the AIBS reference template. Descriptive statistics are shown as mean 

± 1 standard deviation.  
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The statistical maps of the one-sample t-test across all individual maps following GSR (Figure 

1a) indicated positive FC along rostro-caudal axis, through the ACA and extending to the 

retrosplenial area (RSP), with anti-correlations in adjacent primary somatosensory areas (SSp). 

Comparatively, in the VV nuisance model, a more extended network was revealed to include 

posterior parietal cortical areas (Figure 1b), while anti-correlations in the SSp did not reach 

statistical significance. To assess the specificity of the obtained functional networks, subject-

level FC parameter (z-statistic) were extracted from ROIs located in the RSP and left SSp. The 

former was defined as a specific ROI, i.e. a ROI where positive FC is expected, while the latter 

was defined as a non-specific ROI, i.e. a ROI where low or negative FC is expected. The 

decision to consider these two areas as belonging to separable network systems reflects 

several lines of converging evidence: a) these regions are not linked by major white matter 

bundles or direct axonal projections in the mouse brain (Oh et al., 2014), b) they reflect 

separable electrophysiological signatures in mammals (Popa et al., 2009) c) they belong to 

separable functional communities (Liska et al., 2015) and are similarly characterized by the 

absence of significant positive correlation in corresponding human RSN (Fox et al., 2005).  

 

Detailed FC within the specific ROI for the GSR and VV nuisance model are shown as a 

function of FC within the corresponding non-specific ROI at the single-subject level 

(Supplementary figure 5). In the VV condition, 98/255 (i.e. 38%) of individual scans fell into the 

“specific FC” category while both MC and GSR reach lowest percentage (30%) of scans 

exhibiting “specific FC” relative to the ACA seed (Figure 1c). Out of the 98/255 scans 

categorised as presenting “specific FC” relative to the ACA seed, up to 14/15 scans originated 

from the same dataset (median = 6/15). Two datasets did not contain scans that met the 

definition. Correspondingly, the 98 scans were also unevenly distributed according to the 

different acquisition parameters, including field strength (4.7T N = 1/15, 7T N = 41/120, 9.4T N = 

38/90, 11.7T = 18/30, Χ2 = 13.76, df = 3, p-value = 0.0032), coil type (room-temperature N = 

26/105, cryoprobe N = 72/150, Χ2 = 13.13, df = 1, p-value = 0.00029), breathing condition (free-

breathing N = 58/180, ventilated N = 40/75, Χ2 = 9.10, df = 1, p-value = 0.0026), and sedation 

condition (awake N = 7/15, isoflurane/halothane N = 18/90, medetomidine N = 26/75, 

medetomidine+isoflurane N = 47/75, Χ2 = 32.42, df = 3, p-value = 4.28e-07). Hence, scans 

presenting “specific FC” patterns were more often found in datasets acquired at higher field 

strengths, with cryoprobes, in ventilated animals, and under medetomidine+isoflurane 

combination sedation.  
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To test how FC is affected as a function of distance to the seed and nuisance model, FC in the 

ACA and RSP along the anterior - posterior axis was extracted (Figure 1d). Comparable rate of 

decrease was observed in all conditions, with GSR displaying an overall decrease of FC 

throughout. This is consistent with the overall decrease in FC induced by GSR relative to VV in 

the specificity analysis (Supplementary figure 5). In summary, the VV nuisance model 

enhanced specificity of SBA-derived DMN, as indicated by higher incidence of scans in the 

“specific FC” category. Based on this criterion, this nuisance model was used in all the 

subsequent analyses. 

 

Seed-based analysis identifies common and reproducible murine resting-state networks 

We sought to identify common murine RSNs by means of SBA and to compare reproducibility 

across datasets. Seeds positioned in representative anatomical regions of the left hemisphere 

(Supplementary figure 4a) were used to reveal the spatial extent of previously described 

mouse resting-state networks. The seeds were selected to represent different cortical 

(somatosensory, motor, high order processing), as well as subcortical systems (striatum, 

hippocampal formation, thalamus). To obtain high-specificity and high-confidence group-level 

SBA maps, we first probed only the 98/255 scans listed as containing “specific FC” in the 

previous analysis. We next extended these analyses to include all the 255/255 scans 

(Supplementary figure 7). For datasets comparisons, all 15 scans from each dataset were 

included to reflect inter-dataset variability in the incidence maps. 

 

All group-level SBA maps exhibited a strong bilateral and homotopic extension (Figure 2a, 

Supplementary figure 6). A seed in the ACA revealed a network involving the prefrontal cortex, 

RSP, dorsal striatum, dorsal thalamus and peri-hippocampal areas. This recapitulates 

anatomical features reminiscent of the human, primate and rat DMN (Gozzi and Schwarz, 2016; 

Hutchison and Everling, 2012; Sforazzini et al., 2014; Stafford et al., 2014). Comparable regions 

were observed with a seed in the RSP, a region evolutionarily related to the posterior cingulate 

cortex found in the human DMN (Supplementary figure 6). The anterior insular seed was 

found to co-activate with the dorsal cingulate and the amygdalar areas, corresponding to the 

putative rodent salience network (Gozzi and Schwarz, 2016), while the primary somatomotor 

region (MO) defined a previously described latero-cortical network that appears to be 

antagonistic to midline DMN regions, and that has been for this reason postulated to serve as a 

possible rodent homologous of the primate task-positive network (Figure 2a)(Liska et al., 2015; 
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Sforazzini et al., 2014). Corresponding network across all scans (255/255) recapitulated 

features identified in the 98/255 scans listed as containing “specific FC”, but appeared to be 

characterized by much lower spatial specificity (Supplementary figure 7). Maps derived from 

individual datasets revealed that 70% (12/17) of the datasets presented the features listed 

above (Figure 2b, Supplementary figure 8). Incidence maps indicate, on a voxel basis, the 

percentage of the dataset presenting a significant FC. They confirmed the different extent of 

network detection in the different dataset. In summary, this analysis revealed the commonly 

shared spatial extent of mouse RSNs derived from SBA but also indicates that a small subset of 

the datasets failed to present these features with sufficient sensitivity or specificity.  

 

 
Figure 2 | Seed-based analysis (SBA) for 3 selected seeds positioned on the left hemisphere. 

One-sample t-test maps of individual maps reveal the full extent of SBA-derived resting-state 

networks in the mouse brain across 98/255 scans that presented “specific FC” following 

vascular+ventricle signal regression. Functional connectivity (FC) relative to a seed located in 

the anterior cingulate area reveals the extent of the murine default-mode network, including the 

dorsal caudoputamen, dorsal thalamus, and peri-hippocampal areas. The seed in the insular 

area reveals significant FC in dorsal cingulate and amygdalar areas, corresponding to areas 

previously associated with the human salience network. Inter-hemispheric homotopic FC is 

found relative to the MO seed, together with lateral striatal FC. Incidence maps, indicating the 
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percentage of dataset presenting significant FC in one-sample t-test (p<0.05, uncorrected), 

reveal that 12/17 of datasets recapitulated the features stated above. Out of these, 5 were not 

considered to overlap specifically (Supplementary figure 6). Voxelwise corrected t-statistic for 

one-sample t-tests and incidence maps are shown as a colour-coded overlay on the AIBS 

reference template.  

 

Sedation protocol and SNR affect connectivity strength 

The datasets analysed here were acquired at varying field strengths, coil designs, EPI 

sequence parameters, animal handling, and with different anesthesia protocols, i.e. either 

awake or sedated states. Hence the acquisitions were not purposefully balanced to test for 

specific effects. To identify factors associated with FC strength, a simplified linear model was 

designed including the following explanatory factors: sedation and breathing conditions, SNR, 

and motion (mean framewise displacement). Limitations in orthogonality and representation of 

specific acquisition factors such as field strength, coil design, EPI sequence parameters, 

number of volumes, gender and age precluded a more extensive model. 

 

Individual-level FC values (z-statistic) were extracted from SBA maps estimated from the ACA 

seed using a ROI located in the RSP and shown as a function of different acquisition 

parameters (Figure 3). Sedation protocol (F(247, 251) = 18.29, p = 3.5e-13) and SNR (F(247, 248) = 

12.39, p = 5.1e-4) were significantly associated with FC, while the remaining factors, breathing 

condition (F(247, 248) = 3.48, p = 0.063) and motion (F(247, 248) = 0.082, p = 0.77) were not. The 

awake and medetomidine+isoflurane combination led to higher FC compared to the other two 

sedation categories. With respect to SNR, high FC values started to be observed at SNR > 50, 

suggesting that lower SNR may not be sufficient to detect relevant fluctuations. Interestingly, 

these effects were found consistently across the different ROI pairs considered 

(Supplementary table 2), thus confirming the importance of sedation conditions and SNR, and 

suggesting that breathing conditions impact mildly FC sensitivity.  

 

These animal handling conditions and sedation protocols highlighted here may not be 

applicable to all studies or laboratories due to local legislation, equipment availability, or 

technical knowledge. Distributions of FC values may hence provide useful reference points. 

Connectivity strength between the ACA and RSP, representing a central feature of the rodent 

DMN, reached z = 2.77, 5.71, and 10.46 at the 50th, 75th, and 95th percentile respectively 

(Pearson’s r = 0.15, 0.26, 0.43, when SBA is carried out with a correlation analysis instead of a 
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general linear model). Additional SBA parameter distributions are provided for other ROI pairs in 

Supplementary table 2. The parameters of the acquisitions featured in this analysis offer an 

objective criterion to evaluate and compare sensitivity to FC in a new dataset or in previous 

publications, insofar comparable metrics are available.  

 

 
 

Figure 3 | Functional connectivity (FC) in the retrosplenial cortex relative to a seed located in 

the anterior cingulate area, as a function of acquisition parameters. A statistically significant 

association was determined between sedation effect and FC (a, F(247, 251) = 18.29, p = 3.5e-13) 

and between SNR and FC (c, F(247,248) = 12.39, p = 5.1e-4). Neither breathing condition nor 

motion effects were significant with FC (b, d). Due to limitations in the representation of each 

level within a factor, coil design (e) and magnetic field (f) were omitted from the final statistical 

model. Free = Free-breathing, Vent = Mechanically ventilated, Cryo = cryoprobe, RT = room-

temperature.  

  

Network-specific functional connectivity is found in all datasets 

Evidence for robust distal FC could not be established in all datasets with SBA. To investigate 

the presence of network-specific FC also in datasets characterized by weaker long range 

connectivity, a dual regression combined with group-level ICA (drICA) approach was 

undertaken (Filippini et al., 2009). To obtain an enriched data-driven reference atlas, a group 

ICA atlas was generated out of the 98 “specific FC” scans selected in the SBA above, using 20 
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dimensions. The atlas revealed 9 cortical components (Figure 4a, Supplementary figure 9, 

Supplementary table 3), 5 overlapping with the latero-cortical network (somatomotor area 

(MO) and 4 SSp areas), 3 overlapping with elements of the DMN (prefrontal, cingulate/RSP, 

and temporal associative areas) and 1 overlapping with the insular area (AI). Additionally, 5 sub-

cortical components were revealed, overlapping with the nucleus accumbens (ACB), 

caudoputamen (CP), pallidum (PAL), hippocampal region (HIP), and thalamus (TH) 

(Supplementary figure 10). The components recapitulate many of the features identified with 

SBA (Figure 4b), namely a strong emphasis on homotopic bilateral organization. The 

components identified here also presented strong similarities to a previous analysis (Zerbi et al., 

2015). Due to uneven brain coverages across datasets, rostral and caudal RSNs could not be 

examined, including olfactory, auditory, and visual networks. To obtain individual-level 

representation of these components, a dual regression approach was implemented using the 

reference ICA identified above. These group-level ICA were used as masks to extract time 

series which were then regressed into individual scans using a general linear model. To 

investigate specificity relative to a DMN-related component, FC relative to the cingulate/RSP 

component was extracted from the ACA ROI (Specific ROI, z = 8.33, 14.41, and 22.32, 50th, 

75th, and 95th percentiles) and SSp ROI (Unspecific ROI). “Specific FC” was determined in 79% 

(201/255) of the scans, “Unspecific FC” in 16%, “Spurious FC” in 1.5%, and “No FC” in 3.1% 

(Figure 4c). “Specific FC” in 15/15 scans was determined in 2 datasets (Median = 12/15). The 

“Specific FC” category was also more evenly distributed relative to acquisition protocols and 

equipments: Field strength (4.7T N = 14/15, 7T N = 89/120, 9.4T N = 73/90, 11.7T N = 25/30, Χ2 

= 4.01, df = 3, p-value = 0.25), coil type (room-temperature N = 88/105, cryoprobe N = 113/150, 

Χ2 = 2.17, df = 1, p-value = 0.14), breathing condition (free-breathing N = 138/180, ventilated N 

= 63/75, Χ2 = 1.29, df = 1, p-value = 0.25), and sedation condition (awake N = 13/15, 

isoflurane/halothane N = 65/90, medetomidine N = 55/75, medetomidine+isoflurane N = 68/75, 

Χ2 = 10.56, df = 3, p-value = 0.014). Importantly, statistical inference revealed that significant 

within-component FC could be established in 17/17 datasets for all 14 components (Figure 4d, 

Supplementary figure 11, Supplementary figure 12). This suggests that network-specific 

inferences can be probed in all rsfMRI datasets, and that drICA is a powerful approach enabling 

robust FC detection in all datasets, including those that may not robustly exhibit distal 

connectivity patterns. 
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Figure 4 | Group-level independent component analysis (ICA) estimated across 98/255 “specific 

FC” scans reveals canonical murine components (a). All components presented a marked 

bilateral organisation. Nine components were found to overlap principally with the isocortex 

including regions attributed to latero-cortical, salience and DMN networks by SBA, 3 

components overlapped with the striatum, one with the hippocampal areas, and one with the 

thalamus. Detailed representations of the Cingulate / Retrosplenial area component (Cg/RSP 

b). Remaining components are presented in Supplementary figure 9, 10. FC relative to 

Cg/RSP is found specifically in the anterior cingulate area but not in the primary somatosensory 

in 79% of the individual scans following dual-regression (c). One-sample t-test within datasets 

indicates 100% of datasets presented significant FC (p < 0.05, uncorrected) within the Cg/RSP 

component. Incidence for the remaining components are presented in Supplementary figure 

11, 12. AI = insular area, MO = somatomotor area, SSp = primary somatosensory area, PFC = 

prefrontal cortex, Cg/RSP = cingulate + retrosplenial area, Tea = temporal associative area, CP 

= caudoputamen, ACB = nucleus accumbens, PAL = pallidum, HIP = hippocampal region, TH = 

thalamus.  

 

Discussion 

Rodent rsfMRI has been a growing research field in neuroscience over the past 10 years 

(Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016; Hoyer et al., 2014; Jonckers et al., 

2015, 2013; Pan et al., 2015). The fast-paced development of the field has yielded a number of 

exciting results, yet the comparability of these findings remains unclear. The results presented 

here indicate that, despite major differences in cross-site equipment, scan conditions, sedation 

protocols and experience in the implementation of these procedures, mouse rsfMRI networks 

converge toward spatially defined motifs encompassing previously described neuroanatomical 
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systems of the mouse brain. Importantly, we also highlight the possibility to use rsfMRI to probe 

distributed network systems of high translational relevance, including a rodent DMN, salience 

network, and latero-cortical network. While not reliably identified in all datasets and scan 

conditions, these large-scale networks were found to colocalize into well delineated boundaries 

in the majority of scans and datasets respectively, recapitulating previous descriptions in 

rodents (Gozzi and Schwarz, 2016; Lu et al., 2012; Sforazzini et al., 2014; Stafford et al., 2014), 

monkeys (Hutchison and Everling, 2012) and humans (Buckner et al., 2008).  

 

Interestingly, most (70%) of the datasets converged toward spatially defined common RSN 

when long-range FC relative to a seed was assessed. When the analysis was restricted to local 

connectivity, all datasets converged. These results indicate that group-level, or second-level 

inferences, may be assessed irrespective of acquisition protocol or animal handling procedures 

in all datasets using robust analysis strategies. At the subject level, “specific FC” relative to the 

DMN was found in 38% of the scans, indicating that first-level inference on long-range FC is 

within reaches in some, but not all datasets. Sedation and equipment performance leading to 

increased SNR were the major factors associated with both FC sensitivity and specificity, 

together with breathing conditions. Awake animals presented higher FC overall, however 

datasets acquired with medetomidine+isoflurane combination together with mechanical 

ventilation were associated with greater specificity within elements of the DMN. Importantly, the 

results converged irrespective of sedation or awake protocols. This underlines that all datasets 

should be examined with the same expectations and criteria to further enhance results 

comparability. Hence, the set of standards provided here (e.g. spatial maps and FC parameter 

distributions), will allow the calibration of future multi-centre projects and assist in designing 

meta-analysis and replication studies, the gold standards in evidence-based research.  

 

In addition to acquisition procedures, the adoption of analysis standards must be encouraged. A 

MRI template (Dorr et al., 2008) transformed into the AIBS standard space provides a common 

space that extends beyond animal MRI studies, including the seamless implementation of AIBS 

resources (Bergmann et al., 2016; Grandjean et al., 2017b; Oh et al., 2014; Richiardi et al., 

2015; Stafford et al., 2014). Moreover, analysis based on robust methods (Zuo and Xing, 2014), 

such as drICA (Filippini et al., 2009), together with considerations for statistical analysis (Eklund 

et al., 2016), and sharing datasets on online repositories (Nichols et al., 2017) provide a 

comprehensive evidence-based roadmap to improve the comparability of acquisitions carried 

out between centres and enhance the robustness and reproducibility of future results. In 
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particular, all the dataset analyzed in the context of this study will be shared and therefore 

provide references for scientists developing customized rsfMRI protocols. 

 

Several major limitations within this study should be acknowledged. First and foremost, the lack 

of consensus quality assurance parameters for the estimation of FC led us to devise a strategy 

to examine FC specificity. Because this study grouped together a set of existing scans, factors 

were not entirely orthogonal and it was not possible to model a number of potentially relevant 

effects impacting FC metrics, such as specific sequence parameters (e.g. number of volumes), 

as well as biologically relevant factors including sex, age, and mouse strain. Finally, lack of 

distal FC in some datasets could not be attributed to specific animal handling protocols or 

equipment performance. This indicates that additional experimental factors not considered here 

may be better predictors estimating this particular kind of FC. For example, the implementation 

of procedures to control the arterial level of carbon dioxide may be critical to prevent 

hypercapnic conditions, a feature that is associated with reduced FC connectivity (Biswal et al., 

1997) and that is often observed in freely breathing anesthetized rodents. Despite these 

limitations, the work presented here is likely to enhance the true scientific value of mouse 

rsfMRI by establishing standards and how to attain them. With these, the field is set to meet its 

goals toward the establishments and understanding of the cellular and molecular mechanisms 

of large-scale brain functional reorganisation in the healthy and diseased brain. 
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Material and methods 

Comparison dataset acquisition 

All animal experiments were carried out with explicit permits from local regulatory bodies. 

Seventeen datasets, consisting of 15 individual pre-acquired rsfMRI scans each, were acquired 

with parameters reflecting each centre standards. A summary of equipment, acquisition 

parameters, and animal handling procedures is listed in Supplementary table 1. Scans were 

acquired on dedicated Bruker magnets operating at 4.7T (N = 1 dataset), 7T (N = 8), 9.4T (N = 

6), 11.7T (N = 2), with either room-temperature coils (N = 7) or cryoprobes (N = 10). Gradient-

echo echo planar imaging (EPI) sequences were used to acquire all datasets, with repetition 

time (TR) ranging 1000 - 2000 ms, echo time (TE) 10 - 25 ms, and number of volume 150 - 

1000. Acquisitions were performed on awake (N = 1) or anesthetized C57Bl/6J mice (both male 

and female) with either isoflurane 1-1.25% (N = 5), halothane 0.75% (N = 1), medetomidine 0.1-

0.4 mg/kg bolus and 0.2-0.8 mg/kg/h infusion (N = 5), or a combination of isoflurane 0.2-0.5% 

and medetomidine 0.05-0.3 mg/kg bolus and 0-0.1 mg/kg/h infusion (N = 5). Awake mice were 

fitted with a non-magnetic head implant to fix the heads to a compatible cradle (Yoshida et al., 

2016). Animals were either freely-breathing (N = 12) or mechanically ventilated (N = 5). 

Datasets are publicly available in BIDS format on openneuro.org (project ID : 

Mouse_rest_multicentre, https://openneuro.org/datasets/ds001720). 

 

Data preprocessing 

Volumes were analysed in their native resolution. Firstly, image axes were reoriented into LPI 

orientation (3dresample, Analysis of Functional NeuroImages, AFNI_16.1.26, 

https://afni.nimh.nih.gov) (Cox, 1996). Temporal spikes were removed (3dDespike), followed by 

motion correction (3dvolreg). Brain masks (RATS_MM, https://www.iibi.uiowa.edu) (Oguz et al., 

2014) were estimated on temporally averaged EPI volume (fslmaths). Motion outliers were 

detected based on relative framewise displacement estimated during motion correction. 

Volumes with spikes or framewise displacement greater than 0.100 mm, corresponding to 

approximately 0.5 voxel of the average in-plane resolution, were labelled in a confound file to be 

excluded from later seed-based analysis and dual-regression. Linear affine parameters and 

nonlinear deformations with greedy SyN diffeomorphic transformation (antsIntroduction.sh) were 

estimated relative to a reference T2 MRI template (Dorr et al., 2008) registered into the AIBS 

Common Coordinate Framework (CCF v3, http://www.brain-map.org/) resampled to 0.200 mm3. 

Normalisation to AIBS space was carried out on brain masked EPI directly using ANTS 

(Advanced Normalization Tools, http://picsl.upenn.edu/software/ants/) (Avants et al., 2014, 
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2011). Anatomical scans corresponding to each EPI acquisition were not available in all cases. 

Despite this limitation, plausible registrations of murine EPI directly onto a T2 MRI template 

were rendered possible due to the relatively simple structure of the lissencephalic cerebrum and 

high EPI quality. Individual registered brain mask were multiplied (fslmaths) to obtain a study 

mask. The analysis was bounded within this study mask, i..e the brain areas covered by all 

individual scans. References to anatomical areas are made with respect to the AIBS atlas. All 

brain masks and registrations were visually inspected and considered plausible.  

 

Six different denoising approaches were applied: i) 6 motion parameters regression (MC), or the 

following together with motion parameters, ii) white matter (WM), iii) ventricle (VEN), iv) vascular 

(VASC), v) vascular + ventricle (VV), or vi) global (GSR) signal regression. White matter and 

ventricle masks were adapted from the AIBS atlas (Supplementary figure 4cd), a vascular 

mask was obtained by averaging and thresholding hand-selected individual-level independent 

components registered to AIBS space (Supplementary figure 4b). Inverse transformations 

were applied to each mask. Average time series within masks were extracted (fslmeants) and 

regressed out (fsl_regfilt). Finally, spatial smoothing was applied with a isotropic 0.45 mm kernel 

(3dBlurInMask), and bandpass filtering was applied between 0.01 - 0.1 Hz (3dBandpass). The 

smoothing kernel was selected to correspond approximately to 1.5 x voxel dimension of the 

lowest in-plane resolution. The bandpass filter was applied to all datasets to enhance 

comparability between datasets, despite indications that medetomidine leads to a shift in resting 

fluctuation frequencies (Grandjean et al., 2014a; Kalthoff et al., 2013; Paasonen et al., 2018). 

The denoised and filtered individual scans were normalised to AIBS reference space 

(WarpTimeSeriesImageMultiTransform).  

 

Noise was estimated by extracting the signal standard deviation from manually defined regions-

of-interest (ROIs) in the upper corners of at least 3 slices, carefully avoiding ghosting artefacts 

or tissues (brain or otherwise). Mean signal was extracted from the 20th acquisition volume 

using a cortical mask spanning over the whole isocortex (defined by AIBS atlas) and registered 

in individual spaces to estimate signal-to-noise ratio (SNR). The same cortical mask was used 

to extract standard deviation of temporal signals to estimate temporal SNR (tSNR).  

  

Seed-based analysis and independent component analysis 

Seeds on the left hemisphere were defined in AIBS space based on the AIBS atlas using 0.300 

mm3 spheres, corresponding to 27 voxels (Figure S1a). Mean BOLD signal time series within a 
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seed were extracted (fslmeants) and regressed into individual scans to obtain z-statistic maps 

(fsl_glm). Multi-session temporal concatenation ICA was carried out using MELODIC 

(Multivariate Exploratory Linear Optimized Decomposition into Independent Components, v3.14) 

using 20 components. Group-level component classification was adapted on a set of rules 

defined in (Zerbi et al., 2015). The following were considered plausible resting-state networks: 

(i) components with either bilateral organisation or (ii) unilateral components with a 

corresponding separate contralateral component, (iii) minimal crossing of relevant brain 

boundaries such as white matter tracts, (iv) spatial extent covering more than one slice. The 

following were considered as implausible resting-state networks: (i) components overlapping 

mainly with either white matter, ventricle, or vascular masks (Supplementary figure 4bcd), (ii) 

components mainly localised on brain edges. Dual-regression was carried out using the 

eponymous FSL function to obtain individual-level representations of 14 selected plausible 

group-level components (Filippini et al., 2009).  

 

Statistical analysis and data representation 

Voxelwise statistics were carried out in FSL using either non-parametric permutation tests 

(randomise) for across datasets one-sample t-tests using 5000 permutations and voxelwise 

correction, or uncorrected parametric one-sample t-tests for within-dataset comparisons 

(fsl_glm). Voxelwise statistical maps are shown as colour-coded t-statistics overlays on the ABI 

template resampled at 25μm3 isotropic using MRIcron (Rorden et al., 2007). Statistical analysis 

carried out on parameters extracted from ROIs was performed in R (v3.4.4, “Someone to Lean 

on”, R Foundation for Statistical Computing, Vienna, Austria, https://R-project.org) using a linear 

model (lm). A simplified model was designed including the following fixed effects: breathing 

conditions (2 levels: ventilated or free-breathing), sedation conditions (4 levels: awake, 

isoflurane/halothane, medetomidine, medetomidine + isoflurane combination), SNR (continuous 

variable), mean FWD (continuous variable). Interactions effects between these factors were not 

modeled. Fixed effects significance was tested using likelihood ratio test. Scan parameter 

occurrence rates were assessed with Chi-square test (chisq.test). Residual analysis was 

performed with QQ-plots to inspect normal distribution, Tukey–Anscombe plots for the 

homogeneity of the variance and skewness, and scale location plots for homoscedasticity (i.e., 

the homogeneity of residual variance). The assumption of normality of the residuals was 

considered plausible in all statistical tests. Plots were generated using ggplot2 (v2.1.0) package 

for R. Significance level was set at p<=0.05 one-tailed with family-wise error correction at a 
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voxelwise level, unless specified otherwise. Descriptive statistics are given as mean ± 1 

standard deviation.  
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Meltem KARATAŞ 

Analyse longitudinale des réseaux cérébraux par Imagerie de Résonance 

Magnétique (IRM) dans un modèle murin de dépression induite par la douleur 

neuropathique 

 

Résumé 

Les douleurs chroniques développent souvent des troubles de l’anxiété et des états dépressifs. Malgré 
des recherches cliniques considérables, les mécanismes sous-jacents à cette comorbidité restent 
inconnus. Nous avons mené une étude d'imagerie non-invasive, par Imagerie de Résonance 
Magnétique (IRM), pour étudier les changements dans la connectivité structurelle et fonctionnelle dans 
un modèle murin de dépression induite par la douleur neuropathique. Nous avons utilisé deux 
méthodes d'IRM pour étudier les voies fonctionnelles de communication (en utilisant l’imagerie 
fonctionnelle de repos-IRMfr) ainsi que leurs substrats microstructuraux (imagerie du tenseur de 
diffusion) de manière longitudinale. Les résultats obtenus dans le cadre de ce projet démontrent des 
modifications structurels et fonctionnels remarquables des réseaux cérébraux suite à l'induction de la 
douleur neuropathique et à l'émergence de comportements dépressifs. En combinant un modèle 
animal pertinent et l’IRM cérébrale in-vivo nous avons identifié la signature de la dépression induite 
par la douleur et son évaluation longitudinale sur la connectivité cérébrale, impliquant des altérations 
dans le cadre des circuits de la récompense, avec un impact majeur sur la connectivité des deux 
centres : le CCA et l’ATV. Les résultats principales d’IRLfr montrent une modification considérable 
dans les réseaux englobant le MPD et le circuit de récompense, qui sont impliqués à la fois dans les 
pathologies de la douleur chronique et de la dépression. Il est maintenant nécessaire d’étudier la 
relation causale entre la dépression induite par la douleur et ses changements fonctionnels qui font 
partie de la perspective long-termes de ce projet. 

Mots-clés : douleur neuropathique, dépression, modèle murin, IRM, connectivité cérébrale 

Abstract 

Chronic pain conditions frequently lead to anxiety and depressive disorders. Despite considerable 
clinical research, the mechanisms underlying this comorbidity remain elusive. We conducted a non-
invasive brain imaging study to investigate changes in structural and functional connectivity in a mouse 
model of neuropathic pain-induced depression. We employed two methods of magnetic resonance 
imaging (MRI) to investigate functional communication pathways (using resting state functional MRI-
rs-fMRI) as well as their microstructural substrates (diffusion MRI) in longitudinal manner. Brain 
networks demonstrate remarkable structural and functional modifications following the induction of 
neuropathic pain and the emergence of depressive phenotype. Combining a relevant preclinical model 
and in vivo brain MRI, we identified a brain connectivity signature of pain-induced depression and its 
evolution over time, involving alterations in reward circuits, with a major impact of the two centers: 
ACA and VTA. The main results of functional imaging reveal considerable changes in the networks 
encompassing the reward circuit and DMN, which are known to be involved in both chronic pain 
pathologies and major depression. The long-term perspective of this project is to investigate the causal 
relationship between pain and depression, reaching a mechanistic explanation for the comorbidity. 

Keywords: neuropathic pain, depression, mouse model, MRI, brain connectivity 

 


