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Abstract

Background Drosophila melanogaster is a genetic model organism that allows the
exploration of many biological processes such as development, brain function,
transcription or host defense against infections.

Objective The overarching goal of this work is to better understand host defenses
against the human opportunistic fungus Aspergillus fumigatus (Af).

Method 1) An infection model has been reestablished in the genetic model organism
Drosophila melanogaster. Some mycotoxins might be involved in pathogenesis which
known to be secreted by Af also been tested by injection. 2) A large-scale genetic
screen has been implemented to identify transgenic RNAi1 mutant lines susceptible to
Af infection in survival experiments.

Result 1) Only flies mutant for the immune response Toll pathway gene MyD8S§
succumb to the injection of a handful of conidia even though Af is unable to
disseminate throughout its host. 2) Restrictocin, verruculogen, fumitremorgin C,
bromocriptine mesylate differentially kill MyD&88 and not wild-type flies. Gliotoxin
killed flies without difference, helvolic acid and fumagillin cannot kill flies. 3) 6,471
lines have been screened and 241 candidate genes identified, few of which are known
to act in the immune response.

Conclusion 1) This work revealed that it is not the immune response that plays a
cardinal role in host defense but its resilience capacity to the exposure to Af and some

mycotoxins secreted by Af. 2) The large-scale screen has contributed to identifying



numerous genes involved in host resilience to Af and to some of its mycotoxins.

Key words: Aspergillus fumigatus, Drosophila melanogaster, Toll pathway, Resilience

to infection, Mycotoxin



INTRODUCTION

Aspergillus fumigatus, a serious Public Health Threat

Aspergillus fumigatus (A. fumigatus) is a rather ubiquitous saprotrophic fungus able to
withstand high temperatures and to grow at 55°C. It thus is able to bypass the major
barrier to fungal infections in warm-blooded animals: high body temperature. The
dispersal form of 4. fumigatus in the environment is the airborne conidium, the small
size of which allows it to penetrate deeply in the airways of animals. Indeed, humans
inhale daily hundreds to thousands of conidia (1), yet, mostly immunodeficient
patients suffer from invasive aspergillosis. Of note, some cases of invasive
aspergillosis affect apparently immunocompetent patients (2, 3). Invasive aspergillosis
remains a major challenge to clinicians due to late diagnostic and high morbidity and
mortality of this infectious disease.

A. fumigatus has a complex genome that allows it to adapt to varied environmental
conditions and also to host defenses as well as to antifungal drugs (4). For instance, a
range of efflux pumps and transporters protects it against toxic compounds, including
possibly azoles used to cure invasive aspergillosis (5). The virulence strategies of 4.
fumigatus are being deciphered and include intracellular germination of the ingested
conidium that leads to mechanical lysis of the phagocyte. A characteristic of
Aspergillus species is their rich secondary metabolism that allow them to produce a
rich variety of metabolites, including mycotoxins. It has been hypothesized that the in

vivo production of specific secondary metabolites by A. fumigatus contributes to its



pathogenicity, particularly during hyphal growth. Gliotoxin (6), fumagillin (7),
helvolic acid (8), restrictocin (9), verruculogen (10), ergot alkaloids (11) and
fumitremorgins (12) are mycotoxins secreted by A. fumigatus (Fig 1).

Gliotoxin. The biological activity of gliotoxin is based on an internal disulfide bridge
that can bind and inactivate proteins via a sulfide/thiol exchange as well as ROS
produced by redox cycling between oxidized and reduced forms of the toxin. /n vitro
studies of gliotoxin function have identified multiple immunosuppressive activities
including: i) an inhibition of macrophage phagocytosis, mitogen-activated T-cell
proliferation, mast cell activation, and cytotoxic T-cell responses (13-17); ii) the
suppression of immune cell reconstitution following sublethal irradiation (18); iii) the
slowing of ciliary beat frequency and induction of epithelial cell damage (19); iv) the
induction of apoptosis in lymphocytes, phagocytes, dendritic cells, liver cells,
fibroblasts, and cancer cells (16, 20-26). Previously reported mechanisms of apoptosis
induction include the induction of TNF-mediated cell death, activation of caspase-3
and ROS, inhibition of NF-kB activation, and activation of Bak, which in turn
activates ROS production, mitochondrial pore formation, and cell death (27-29).
Gliotoxin has also been shown to inhibit antigen presentation by monocytes and
dendritic cells to effector T cells, limiting the subsequent expansion of an
antigen-specific adaptive response. Furthermore, gliotoxin may prevent the formation
of the NADPH oxidase complex in neutrophils (30, 31). Together, these studies reveal
the broad nature of gliotoxin immunosuppression by preventing cellular effector

functions or inducing cellular apoptosis. Up to now, gliotoxin is considered as the



most important mycotoxin produced by A. fumigatus.

Fumagillin, which targets methionine aminopeptidase-2 (32, 33) has been used to
treat corneal microsporidial keratitis (34) and has also been identified as an
angiogenesis inhibitor (35, 36). It can also be used to treat microsporidia-infested
Drosophila stocks.

Helvolic acid is a nortriterpenoid antibacterial compound that inhibits translation
elongation factor 2 and the oxidized low-density lipoprotein metabolism of bacteria
(37, 38).

Restrictocin is a protein produced by Aspergilli that belongs to the superfamily of
ribonucleases and specifically cleave 28S ribosomal RNA at a specific loop (39, 40).
These fungal ribotoxins are being developed into anticancer drugs (41).

Verruculogen and fumitremorgins are prenylated indole alkaloid metabolites of
Aspergilli which are tremorogenic. Their chemical structures are similar:
fumitremorgin B can be converted into verruculogen by the FtmOx1 enzyme (42).
They function similarly and act by reducing GABA levels in the central nervous
system thereby inducing tremors, as GABA is the major inhibitory mediator of the
nervous influx (43, 44); they also inhibit the M phase of cell cycle to inhibit the cell
proliferation (45).

Ergot alkaloids are produced by many fungal species (46). One ergot alkaloid,
festuclavine, interferes with several mammalian regulatory systems via its ability to
bind to serotonin, to dopamine, and to a-adrenaline receptors (47). Although genes

regulating the production of clavine ergot alkaloids have been identified for A.



fumigatus, the role of these metabolites in the pathogenesis of IA has yet to be

explored (48-50).

Detection of A. fumigatus

Pattern recognition receptors (PRR) can detect some invariant features shared by
groups of microorganisms. Common components of fungal surfaces are [3-glucans,
and mannans. There are several PRRs involved in detection of A. fumigatus: secreted
PRRs, which comprehends pentraxin 3, collectins, and complement factors; endocytic
and transmembrane PRRs, which encompasses DC-SIGN, the mannose receptor, and
Dectin-1; signaling PRRs, TLRs, Dectin-1, NOD-2. Then, these PRRs activate
through the CARDY adapter transcription factors belonging to the NF- B family to

induce the expression of cytokines and effector genes.

Innate immune effectors against A. fumigatus

Here, I will focus on mammalian factors that have been much more studied (Fig 2). In
immunocompetent hosts, most of the invading 4. fumigatus were recognized and
cleared by innate immunity (51, 52). The major entry route of conidia of 4. fumigatus
to get into the mammalian body is via the airways. Most of the inhaled conidia are
eliminated by sneezing, cough, and ciliary beating of the mucous epithelium. As
countermeasures, A. fumigatus secretes a series of proteinases which will damage the
smooth surface of tissue to make the attached conidia more difficult to be cleared

Some of the secondary metabolites a A. fumigatus will impair the ciliary beating (11,



19, 53, 54). In addition, epithelial and endothelial cells have been shown to internalize
conidia, serving as putative foci of infection (55, 56). In animal models, penetration at
the epithelial level is common (57, 58). The research on the function of the lung
epithelium against A4. fumigatus as the first barrier of innate immunity is
well-developed. The alveolar macrophages will efficiently engulf and kill the conidia
that have reached the alveoli. Macrophages are able to take up dormant or swollen
spores, but kill only swollen spores. The dormant spores become active and swell in
the phagolysosomal compartment upon ingestion, a major mechanism for
macrophages to eliminate all invading microorganisms. Macrophages cannot kill the
germinated spores that have formed hyphae (59). Neutrophils can release the contents
of their granules into the extracellular medium to eliminate the extracellular A.
fumigatus hyphae. The recruitment of neutrophils is a cardinal process to eliminate A4.
fumigatus. Lung surfactant plays a protective role against pathogens before the spores
of A. fumigatus arrived to the alveoli. Some studies reported that the hydrophilic
surfactant proteins A and D enhanced agglutination, phagocytosis, and killing of
conidia of 4. fumigatus by alveolar macrophages and neutrophils (60).

Antimicrobial molecules produced by the cells of the upper and lower airways are
also involved in the inhibition and elimination of A4. fumigatus: hypochloric acid
(HOC), superoxide anion radical (O27), Secretory Leukoprotease Inhibitor (SLPI),
pre-elafin trappin-2d serine protease inhibitors, lactoferrin, ubiquicidin, elastase,
cathepsinG, chitinases, Drosomycin-like defensin (DLD). These molecules may act

directly as endogenous antibiotics, or indirectly, by facilitating the elimination of

10



infectious agents by phagocytes. Phagocytosis is central to eliminate invading A.
Sfumigatus. Oxidative mechanisms involving reactive oxygen species and reactive
nitrogen species derived from nitric oxide (NO) are important effectors within the
phagolysosomal vacuole. The enzymes involved in the production of reactive oxygen
species during phagocytosis include nicotinamide adenine dinucleotide phosphate
(NADPH) and oxidase myeloperoxidase (MPO), responsible for the production of
superoxide anions and hypochloric acid (HOCI), respectively. Of note, the former
diffuses farther away than the latter and therefore induces more collateral damage to
the host cell. An in vitro study has shown that the macrophages from mice lacking
NADPH oxidase (p47phox-/-) lose their fungicidal activities, which implied that
reactive oxygen species are essential for macrophages to kill fungi (59). In another in
vivo investigation, the absence of MPO led to higher mortality rates in 4. fumigatus
infected mice (61). These findings confirm those of an in vivo study demonstrating
that mice lacking NADPH oxidase are more susceptible to infection with 4. fumigatus
(61). They explain why invasive pulmonary aspergillosis is the leading cause of death
in patients with chronic granulatomous disease (CGD), a disease characterized by the
absence of NADPH oxidase from neutrophils and macrophages. However, the
production and efficacy of reactive nitrogen species during A. fumigatus infection
remain to be demonstrated. Studies of macrophages from mice lacking NO synthase
(iINOS -/-) have shown that the fungicidal activity of macrophages is independent of
the production of NO derivatives (59). The SLPI and pre-elafin trappin-2d serine

protease inhibitors can be produced by epithelial cells, macrophages and neutrophils,
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which anticipate the process of maintenance of the protease/antiprotease balance in
the respiratory tract. A study identified their activity against A. fumigatus in particular
(62). Lactoferrin produced by neutrophils and epithelial cells can inhibit the
proliferation of 4. fumigatus by binding to an element essential for its growth, iron
(63). In vitro research that compared the activity of several antimicrobial peptides
confirmed the antifungal effects of lactoferrin (64). This work suggested the possible
use of peptides derived from lactoferrin or from ubiquicidin, another antimicrobial
peptide produced by respiratory epithelial cells, as novel agents for the treatment of
aspergillosis. FElastase and cathepsin G are stored in azurophilic granules of
neutrophils. These serine proteases have been reported to be active against Aspergillus
and mice lacking either one of these enzymes are more susceptible to A. fumigatus
infection (65). Chitinases, produced by epithelial cells and macrophages, are
endo- P -1,4-N-acetylglucosaminidases capable of degrading chitin, an essential
component of the cell wall of 4. fumigatus (66). Although it was shown that DLD, the
human homolog of the Drosophila antimicrobial peptide Drosomycin has a specific
antifungal activity on filamentous fungi such as A. fumigatus, it appears to be mostly
present in the skin (67).

Thrombosis and hemorrhagic infarction occurred when hyphae invade the vascular
system. In humans, platelets attach to the cell walls of the invasive hyphal form of 4.
fumigatus and become activated during attachment to hyphae (68). Several
anti-Aspergillus functions, including direct cell wall damage and enhancement of

neutrophil-mediated fungicidal effects, have been associated with platelets.
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Adaptive immune response against A. fumigatus

Some pattern-recognition receptors (PRR) at the surface of dendritic cells will favor
the orientation of the immune response towards Th17 and Thl cellular immune
responses, involving the two phagocytes described in the previous part, respectively
neutrophils and macrophages. Even if the cellular immune response in the most
adapted to fight against fungal infections, the humoral response, with production of
antibodies, may be a complementary facet of the adaptive immune response, as it was
also shown with the demonstration of the antibody-mediated inhibition of the hyphal

development and metabolic activity of Aspergillus (69).

Host defense: resistance and resilience to infections

Host defense against infection has evolved to preserve living organisms from
infections and parasitism. A much-studied aspect of host defense is immunity, which
encompasses both innate and adaptive arms. It involves directly fighting off potential
pathogens and parasites by mobilizing an armamentarium of distinct weapons, from
antimicrobial peptides to phagocytosis by specialized effector cells such as
macrophages and neutrophils and the selection of high affinity antibodies and
receptors carried by immune cells that allow the specific detection and elimination of
pathogens or infected cells. Nevertheless, evolutionary pressure aims at perpetuation
of the species to the next generation, and still, living organisms are often parasitized,

thus underlining the limits of immune defenses, even when they encompass adaptive
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immune responses. Furthermore, our current understanding of immunity does not
satisfactorily account for healthy carriers of pathogens (70). In our own studies of
intestinal infections of the model genetic organism Drosophila melanogaster by the
Gram-negative entomopathogenic bacterium Serratia marcescens (Sm), we
encountered an unexpected phenomenon: most of the candidate genes we identified in
a genome-wide survival screen to Sm ingestion were not obviously involved in innate
immunity and we could demonstrate that at least some of these were required to
maintain the homeostasis of the midgut epithelium (71), a phenomenon that we called
resilience to mirror the active repair mechanisms that are at work during infections
(72). Actually, a rather similar observation had already been made by plant
pathologists at the eve of the 20th century (73). They found that some wheat cultivars
were still able to produce relatively abundant crops despite heavy rust infections. This
property was named tolerance and is now also found in the animal literature (70, 74,
75), even though it is a source of confusion with immunological tolerance and
tolerance to the microbiota. Furthermore, it etymologically implies a rather passive
ability to endure infection and does not account for the active processes that are
involved (72). The field of tolerance/resilience is just starting to be deciphered in
molecular terms. The first studies in animals considered tolerance more in terms of
ecological immunity, in keeping with plant immunology. For instance, infecting
several strains of mice with distinct strains of Plasmodium chabaudi revealed genetic
variations in resistance and tolerance (76). The infection of red blood cells by the

Plasmodium parasites leads to the release of free heme in the blood, the toxicity of
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which is alleviated by heme oxygenase 1, which protects hepatocytes from
TNF-induced apoptosis (77). More recent studies have further deepened our
understanding of this mechanism (78) also illustrated the importance of tissue-repair
in the case of double viral and bacterial infections (79). We want here to briefly relate
an outstanding piece of work that epitomizes the concept of resilience (80). Septic
shock is a major clinical problem that kills hundreds of thousands of patients each
year in hospitals. It is caused by a systemic inflammatory reaction triggered by a
"cytokine storm" resulting from the detection of an infection and that provokes
multiple tissue and organ failures. Antibiotics treatment is often inefficient, as it is
given too late. The authors have shown that treating mice with anthracyclines in a
model of septic shock protects them. Anthracyclines trigger the DNA damage
response and ultimately autophagy. The induction of autophagy in lungs is sufficient
to protect mice from sepsis, even when septic shock has already developed.
Remarkably, in this cecal ligation and puncture model of sepsis, anthracycline
treatment functions without decreasing the bacterial burden. Thus, this study
illustrates how triggering a stress response pathway contributes significantly to host
defense through its resilience arm. Thus, whereas resistance aims to directly attack
pathogens, we define resilience as being the mechanisms that allow a host to
withstand and/or actively repair damages inflicted either by the pathogen or by the
host's own immune response.

In practical terms, a host strain will be deemed to be more "resilient" than another if it

presents a better fitness when confronted to a similar pathogen load, usually measured
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in colony forming units (81). However, care should be taken to establish that the
microbe is in the same physiological condition in both strains, i.e., that they express
the same virulence programs, a condition that has not been checked in most studies
(82). Indeed, one might think that the host may either downregulate virulence
programs or alternatively increase the virulence of the invading pathogen, for instance
by producing antimicrobial peptides (AMPs) that are sensed by the bacteria (83, 84).
Resilience is unlikely to affect the evolution of microbes in the way resistance to the
immune response has been selected for in pathogens because it is not thought to exert
pressure on the pathogen (81). In summary, resilience may be thought of as the
intersection between host defense against infectious disease and homeostasis
mechanisms of the host, at levels ranging from the cell to the whole organism. It may
take unexpected forms as exemplified by our recent characterization of the enterocyte
purge, which is triggered by the exposure of the intestinal epithelium to bacterial
pore-forming toxins, a mechanism that ultimately involves the organism as a whole

(85).

The Drosophila melanogaster genetic model organism

The genetic study of infectious diseases in mammalian models is severely hampered
by cost, space, and ethical considerations. Genetic model organisms provide
interesting alternatives as they allow direct large-scale screens. In this way, "public"
virulence factors can be identified, that is factors required for pathogenesis in multiple

hosts. They also allow the identification of "private" virulence factors (that is
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virulence factors required only to infect successfully the model organism and not
other hosts), which have then to be understood in the context of the peculiarities of the
host immune system. More generally, genome-wide approaches are a workable option
in which it is possible to ask such broad questions as which genes are required for
host defense against a given fungal pathogen, in essence a functional genomics
approach that can be implemented only in model genetic organisms. Most of our
knowledge on the biology of model organisms such as D. melanogaster or
Caenorhabditis elegans derives directly or indirectly from unbiased genetic screens.
For instance, our current understanding of Drosophila innate immunity is largely
dependent on the completion of genome-wide genetic screens aimed at understanding
the humoral immune response (86). The Strasbourg laboratory has largely participated
to this endeavor (87-91).

The fruit fly Drosophila melanogaster is one of the most studied metazoan, thanks to
over a century of research (92). It is small, grows rapidly, produces an important
offspring, and is relatively cheap to raise. Its genome, as well as that of more than 20
other Drosophila species, is available and provides a wealth of evolutionary
information. With more than a century of investigations, Drosophila is a potent
genetic model that allows easily characterizing biological processes from the scale of
the molecule to that of the whole organism, including population biology as well as
evolutionary studies. It has led to many major breakthroughs in our understanding of
life, for instance to cite only Nobel Prizes, the chromosomal theory of heredity

(Thomas Morgan, 1933), the discovery of the mutagenic effects of X-rays (Hermann
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Muller, 1946), the identification of developmental genes (Ed Lewis, Christiane
Niisslein-Volhard, Eric Wieschaus, 1995), the activation of innate immunity (Jules
Hoffmann, 2011), and the molecular mechanisms of biological rhythms (Jeffrey Hall,
Michael Rosbach, Michael Young, 2017). Besides the large body of knowledge
generated by the community and easily accessible on the Flybase web site, a large
palette of genetic tools is available to express, inactivate almost any gene in a
time-dependent, cell type and tissue-specific manner, for instance using the Gal4/UAS
system combined with dsRNA or shRNA transgenes (93). Gene products can be
further tagged or edited using a variety of techniques, including CRISPR-Cas9
(94-96). Of note, our Institute in Guangzhou is developing a CRISPR-Cas9 mutant
platform. Reporter transgenic lines are available, as well as Gal4 drivers that are
expressed in specific tissues, including distinct neuronal sets (97, 98). Importantly,
many stocks can directly be ordered from stock centers or sent by investigators upon
request, a tradition that has made the fly field so strong. The RNAi methodology is
especially well-developed and allows bypassing developmental lethality through the
use of conditional expression. The first strategy was to generate transgenic long
double RNA hairpins that would target the endogenous transcripts through the dsSRNA
degradation pathway. Two genome-wide collections are available at the Vienna
Drosophila RNAi Center (VDRC) (99). A more recent strategy has been developed
by Dr. Ni and Perrimon and involves shRNAs that trigger the miRNA pathway (100).
A large collection is housed partially at Tsinghua University and the whole collection

is available at the Bloomington stock center in the US.
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Innate immunity in Drosophila

Epidermal defense is the first line of host defense in Drosophila. The exoskeleton of
insect is constituted of cuticle that is secreted by the underlying hypoderm, is an
efficient physical barrier to prevent environmental microbes from invading the aseptic
body-cavity of insect. Except for entomopathogenic fungi and some nematodes
carrying invasive bacteria as biological weapons, most environmental microbes
cannot pierce the protection of the cuticle (101, 102). The cuticle also covers the
respiratory system and large parts of the intestinal tract. In addition, the entrances of
the respiratory tract are protected by spiracles which prevent the microorganisms from
entering into even the major tracheal trunks (72). Thanks to this elaborate protection
system, up to now, there are no reported infection models of the Drosophila
respiratory tract. Local AMP expression, ROS production and TEPs expression are
also play important roles in epidermal defense (103, 104) .

In wild environment, damage to the exoskeleton of insects is commonly observed.
When microorganisms are introduced or invade the cavity of Drosophila, they will
face three major arms of the insect host defense: the melanization response, the
cellular response, and the systemic humoral immune response (Fig 3).

Coagulation and melanization are immediate immune responses in Drosophila which
happened after the physical puncture of the cuticle (Fig 5). Coagulation consists in the
formation of clots that limit the loss of hemolymph, and the next step the melanization

and epithelial movements to heal the wound (105) . Melanization is the process of
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synthesis of melanin, which plays an important role in wound healing, encapsulation,
control of the dissemination of microorganisms, and the production of toxic reactive
oxygen species intermediates that are speculated to kill invading microorganisms (106,
107). The key enzyme of melanization is phenol oxidase (PO) which is activated by
the cleavage of its pro-form pro-phenoloxidase (PPO). There are three PPOs (PPO1, 2,
and 3) in Drosophila, PPO1 and 2 are produced by crystal cells that contribute to
hemolymph melanization in larvae, whereas PPO3 is produced by lamellocytes
involved in the encapsulation of parasitic wasp eggs during larval development (108,
109). In adults, unpublished data from Lucas Walzer suggest that some 8% of adult
hemocytes express PPOs. The initiation of a protease cascade leads to the cleavage of
enzymatically inactive PPOs into active PO and is performed by at least three serine
proteases: MP1, MP2/Sp7/PAE1, and Hayan (110-113). The molecular mechanism
involved in triggering PO activation remains poorly understood in Drosophila, and
there are at least two ways to initiate the cascade: one is wounding that possibly
activates Hayan to cleave PPOs, the other is Toll pathway-dependent way to active
Hayan to cleave PPOs, there also has a possibility is that an attack complex forms
targeted by PRRs and bringing PO in proximity to the pathogen (113-115) (Fig 2).
Former research showed PPOs play different roles in against infection, on the one
hand there is the formation of a melanic plug at the point of injection that involves
both PPO1 and PPO2 and on the other there is a pathogen killing activity, which in
the case of Staphylococcus aureus depends on PPOI1. Of note, for Pseudomonas

aeruginosa and Metarhizium anisopliae (M. anisopliae), likely A. fumigatus, it is

20



PPO2 and PPOI1 are required to neutralize the proliferation and the virulence of
pathogens, whereas PPO1 is only required to control the virulence (pathogen
proliferate but no longer kill the HOST) (116, 117). During the synthesis of melanin,
reactive oxygen species (ROS) and other cytotoxic metabolic intermediates eg.
quinones are produced and may participate in killing the pathogens (118).

The cellular response mainly involves phagocytosis and encapsulation, both of which
are mediated by hemocytes. Drosophila hemocytes can be divided into three types
which are plasmatocytes, crystal cells, and lamellocytes, the latter type being
normally not found in normal development but differentiates upon the injection of a
parasitic wasp egg in larvae (119). The wasp egg will be encapsulated first by
plasmatocytes and then by lamellocytes prior to the the melanization of the resulting
capsule. The parasite egg will also be killed by ROS and other cytotoxins produced in
melanization cascade (120). Phagocytosis is mainly performed by plasmatocytes,
which will respond to and engulf both microorganisms and apoptotic cells. There are
several receptor proteins playing roles in phagocytosis, which include the scavenger
receptor family (dSR-CI), the EGF-domain protein Eater, and other receptors of the
Nimrod family. Encapsulation is another cellular response which mediated by
lamellocytes in Drosophila larvae.

The Toll pathway was initially found as an early Drosophila embryonic development
pathway (121). A genetic analysis of dorsal-ventral patterning of the embryo has
defined the series of genes that constitute the Toll-Dorsal pathway (122). Because

Dorsal is a Drosophila homolog of NF-kB and that NF-xB is a central player of
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mammalian innate immunity and inflammation, the Drosophila Toll-Dorsal pathway
has been hypothesized to also play a role in Drosophila immunity parallel to its
developmental function. Although in 1995, Toll (Toll-1) had been identified as an
immune activator in vitro (123), the demonstration of the Spétzle-cactus cassette in
vivo in the antifungal response from spdtzle to cactus was published one year later
(124). One Toll-like receptor (TLR) was shown to function in mammalian innate
immunity one year later (125, 126). In Drosophila, the activation of the Toll pathway
is different from that occurring in mammals, in which TLRs directly sense some
conserved structures of the microbial cell wall from microorganisms such as the
lipopolysachharide of the Gram-negative bacterial cell wall. The Drosophila
microbial sensors are divided into two family by their structures: the
peptidoglycan-recognition proteins (PGRPs) and the Gram-negative binding proteins
(GNBPs). In Toll pathway, GNBP1 sensing Gram positive bacteria by Lysine-type
peptidoglycans (Lys-type PGNs) and PGRP-SA cooperate to detect some Lys-type
PGNs (87, 127). GNBP3 plays the key role in sensing the -(1,3)-glucans from fungal
cells (115). The GNBP3 and PGRP-SA/GNBP1 sensors activate a proteolytic cascade
that includes the MoDSP, Grass, and Hayan and Persephone, the latter two appearing
to function redundantly (113, 128-130). There is another sensing system independent
from the microbial cell wall component sensors by Persephone, which senses the
proteolytic activity of secreted microbial virulence factors (88, 129, 131). The signal
from these receptors will active the Spitzle-Processing Enzyme (SPE) to cleave the

proSpitzle into Spétzle. Spitzle is the ligand of Toll receptor (132, 133).
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In Drosophila, the Toll pathway plays the most important role in the humoral response
against fungi and some Gram-positive bacteria. Toll is a transmembrane receptor
(134). The intracytoplasmic region of Toll is Toll-IL-1R (TIR) domain, which
complexes with three main intracytoplasmic partners: MyD88, tube and pelle (135,
136). These partners are all have death domain region, MyD88 and tube are adaptor
proteins, pelle is a serine-threonine kinase. The Toll receptor-adaptor complex signals
to a latent transcriptional factor of the NF-kB—Rel family of inducible transactivators.
The ankyrin-repeat inhibitor protein Cactus associates with this factor, which
dissociates from the factor upon its Toll signal-dependent phosphorylation (137). The
transcriptional factor is made by two Rel proteins: Dorsal and Dorsal-related
immunity factor (Dif), the former playing a role in development an dnot so much in
the immune response (138). After Cactus’s dissociation and proteolysis, Dif gets into
nucleus to activate the transcriptions of several genes during the immune response.
The expression of some potent antimicrobial peptides (AMPs) is regulated by the Toll
pathway: Drosomycin and Metchnikowin, and possibly Cecropins have antifungal
activity (139-141).

The Immune deficiency (IMD) pathway is another important component of the
humoral response against Gram-negative bacteria. The activation of IMD pathway is
initiated by the recognition of the di-aminopimelic acid (DAP)-type of PGN present in
the cell wall of Gram-negative bacteria as well as Gram-positive bacilli. Upon binding
DAP-PGN, PGRP-LC recruits IMD and thereby initiates an intracellular signaling

pathways that ultimately activates the NF-«xB Relish factor in two complementary
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ways: 1- cleavage through the DREDD caspase thus liberating it from the
ankyrin-repeat cytoplasmic anchor present in its C-terminal domain and thereby
allowing nuclear uptake; 2- phosphorylation of the N-terminal domain by the I-xB
Kinase complex that enables the transcription initiation transactivation properties of
this transcription factor (142). The IMD pathway regulates the expression of several
AMPs, for example Diptericin and Drosocin (Fig 5). It also activates the expression of
other AMP families such as Cecropins, Attacins, and Defensin, with an input from the
Toll pathway (143, 144). Indeed, upon persistent infections with pathogens, the Toll
pathway gets activated even by Gram-negative bacteria, either through the secretion
of proteases sensed by Persephone or through PGRP-SA, which does bind DAP-PGN,

albeit with a lower affinity than LYS-PGN.

Fungal pathogens in the Drosophila model

As mentioned above, the Toll pathway provides a major defense against fungal
infections in flies. One major AMP controlled by the Toll pathway is Drosomycin,
which is synthesized in very high concentrations by the fat body (100uM). It is active
against filamentous fungi such as Aspergillus fumigatus, but inactive against Candida
and entomopathogenic fungi (88, 140, 145). Several studies have used Toll pathway
mutants to investigate the virulence of several fungi (124, 146, 147). For instance, the
Candida glabrata (C. glabrata) pathogenic yeast is able to kill Toll pathway mutants
but not flies deprived of a cellular immune response (148). Interestingly, hemocytes

form the major remaining host defense in Toll pathway mutants. Of note, C. glabrata
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injected in wild-type flies are not cleared and remain present, albeit with no net
proliferation, suggesting that the immune response against such yeasts is fungistatic
(148). The immunocompromised Toll mutant as background was used to identify
relevant virulence factors among 500 C. glabrata mutants generated within a
European Research network and correlated with findings in mice (149). A limitation
of this approach is that it relies on the use of human and not insect-specific pathogens
so that the fungi are introduced in the hemocoel by septic injury. In contrast, spores of
entomopathogenic fungi such as Beauveria bassiana (B. bassiana) and M. anisopliae
(now called M. robertsi) penetrate insects by enzymatically boring a hole through the
cuticle in a natural infection model in which conidia are deposited on the surface of
the insect cuticle (150). These fungi have been widely studied for their use as pest
control agents in agriculture and are also used to kill mosquito vectors of malaria (151,
152). The extensive literature on these fungi has relied mostly on insect pests as
infection models. In contrast, the Drosophila model has been used mostly to analyze
the host response. Two major host defenses are required to slow down M. anisopliae
infection, the Toll pathway and the cellular immune response, in accordance with
results obtained with B. bassiana (88, 124, 153). Historically, the first stage of the
analysis of the pathogenicity of these entomopathogenic fungi was biochemistry on
large insects in the late 80's and early 90's. It led to the characterization of proteins
present on spores and blastospores, of the secreted chitinase and protease enzymes
required to penetrate the cuticle, and of toxins such as B. bassiana Beauvericin or M.

anisopliae destruxins. More recently, EST libraries have been established using
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spores incubated in hemolymph and the genome of fungi such as B. bassiana and M.
anisopliae is now available (101, 102). This should pave the way for a thorough
genetic investigation of these fungi, which will be useful for our long-term goal of
studying host-pathogen relationships of M. anisopliae in the Drosophila model.

Like in mammals, B(1,3) glucans appear to be the major cell wall constituent detected
by the fly immune system, although in insects this is achieved by a circulating Pattern
Recognition Receptor, GNBP3, that triggers humoral responses (AMPs, melanization)
whereas in mammals the Dectin lectin is membrane-bound and activates phagocytosis
as well as signaling (88, 154). The cell wall composition varies according to the
developmental stage: both C. albicans and A. fumigatus yeast forms, respectively
conidia, display distinct types of glycans as compared to hyphae (155). Furthermore,
the size of the fungus is an important parameter for phagocytosis: hyphae render the
fungus too large to be internalized by phagocytes (156). Interestingly, AMPs active
against filamentous fungi (e.g., Drosomycin) but not against yeasts have been
identified, although a cluster of some 10 potential AMPs has been identified at locus
55C and is likely to mediate much of the effect of the Toll pathway (157). The theme
of concealment of molecules eliciting the immune response is also at play in M.
anisopliae, the blastospore of which is coated by Mcp-1 (158), a collagen-like protein,
which in Drosophila is induced only in the injection model and makes the fungus less
susceptible to the cellular immune response. Studies on the antifungal response in
mammals have focused on the cellular immune response, mediated by two key

phagocyte populations, short-lived neutrophils able to elaborate a ROS-burst and
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macrophages. Whether Drosophila adult hemocytes are akin to macrophages or
neutrophils can be debated and it appears that a ROS-burst does not take place within
the phagosome (159, 160). Whether in mammals or in insects, resilience remains an
understudied area of research. A couple of genetic approaches (direct screen of
transposon insertion lines, probing of polymorphic lines isogenized from natural
populations) implemented using M. anisopliae has identified a spate of loci involved
in resistance/susceptibility to this fungus (161, 162). Only one line appeared to
involve resilience/tolerance, as flies from that line succumbed in the absence of
significant fungal growth during the final stage of the disease. However, a major
limitation of these studies was that it required the genes under study to be viable,
which excludes most strong alleles of signaling pathways.

Aspergillus fumigatus infection on Drosophila

In contrast to these natural pathogens of Drosophila, Aspergillus fumigatus is a
fungus of medical interest and although it is likely that flies encounter it, it does not
appear to be a major pathogen, as wild-type flies are resistant to this infectious
challenge. A. fumigatus is the fungus that was initially used to demonstrate that Toll
pathway mutants are sensitive to fungal infections, with a now famous picture on the
cover of Cell showing a diseased fly with hyphae coming out of the thorax of the
cadaver. Of note, high concentrations of A4. fumigatus conidia were used for
inoculation. Because Drosomycin is induced to very high concentrations (0.1 pM)
within 24 hours under the control of the Toll pathway, it was thought that Drosomycin

is the Toll pathway effector that controls 4. fumigatus in wild-type flies (140).
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Indeed, the overexpression of Drosomycin from a transgene provides some protection
against A. fumigatus to a Toll pathway mutant that is otherwise highly susceptible to
this infection (145). Finally, a mutant line devoid of several AMP genes, including
Drosomycin, exhibits some susceptibility to an 4. fumigatus challenge (163).

Unexpectedly, few studies have been performed to investigate other host defenses and
some have been conducted on other insects such as Galleria mellonella (164-166). A
study reported that Toll pathway mutants could be infected by three different routes,
injection, natural infection, and feeding (167), a somewhat unexpected finding since
hardly any studies have documented a fungal infection through the Drosophila
digestive tract, which is strongly protected by cuticle or its peritrophic matrix.
Furthermore, it is not readily apparent that Aspergillus has the ability upon
germination on the cuticle to form an appressorium, the structure used by fungi to
invade the epidermis of their hosts.-Toll pathway mutants have been used in a limited
manner to identify some virulence factors such as gliotoxin, siderophores or volatile
compounds emitted by the pathogen (168). Six mutant strains displayed a similar
degree of attenuated virulence in mice and in flies (169). In the case of the gliotoxin
deletion strain, it is noteworthy that this strain was less virulent in mice
immunosuppressed by corticoids but not in neutropenic mice (170). Like in flies, this
result is somewhat paradoxical in that one target of gliotoxin is the activation of the
NF-kappaB pathway, which is suppressed both in Toll flies and mice exposed to
glucocorticoids; gliotoxin should therefore be dispensable as a virulence factor in

these models.
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GOALS of this thesis

A medical doctor by training, I have a strong interest in infectious respiratory disease.
As Drosophila is a powerful model, I decided to join SFHI at Guangzhou Medical
University to get the opportunity to study A. fumigatus infection in fruit flies, as I am
convinced that we are far from a thorough understanding of its pathogenesis. Indeed,
A. fumigatus is able to infect apparently immuno-competent patients. Conversely,
some patients endure an unusually high fungal burden yet exhibit rather mild
symptoms and survive the infection (personal communication with Axel Brakhage) .
I thus redeveloped a coherent infection model in Drosophila, a process that led me to
revisit the current understanding of its host defense against this fungus. An
overarching goal of the host team is to perform a large-scale genetic screen to identify
host factors involved in the Drosophila host defense against fungal infections.

Hence, there will be three parts in this thesis: the first part is about a project
which revealed that MyD88 plays an essential role in the resilience to Aspergillus
Jfumigatus infection in Drosophila melanogaster but does not appear to be
required to prevent the dissemination of the fungus in the infection paradigm I
developed; the second parts reports our efforts in implementing a large-scale
genetic screen, A. fumigatus being one of the five pathogens tested for the whole
large-scale screen performed in parallel at the Sino French Hoffmann Institute;
finally I will report a preliminary study on the CycK/Cdk12-Nrf2 axis, which

was one of the first interesting candidate identified in the large-scale screen.
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Figure 1: Major mycotoxins produced by A. fumigatus and their main functions.
Blue arrows indicate that the toxins be produced by hyphae (all except family
fumitremorgin), black arrows show only verruculogen and ergot alkaloid can also be
produced by conidia. Restrictocin is the only mycotoxin that is a protein and not a
secondary metabolite; fumitremorgins and verruculogen are produced through a common
biochemical pathway; ergot alkaloids in 4. fumigatus are fumigaclavins. ATP, adenosine
triphosphate; GABA, y-aminobutyric acid;, CNS, central nervous system, RNA,
ribonucleic acid.
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Fig 2
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Figure 2: Mechanisms of innate immunity against A. fumigatus in
mammals. There germination of 4. fumigatus starts from resting conidia that
then swells prior to the growth of hyphae. Most of the inhaled conidia are
eliminated by ciliary beating of epithelial cells in the airway or coughing, the
conidia in alveoli are engulfed by alveolar macrophages and neutrophils.
Neither alveolar macrophages nor neutrophils can phagocytose hyphae,
however neutrophils can release its contents to attack hyphae. Alveolar
epithelial cell, alveolar macrophages and neutrophils produce a series of
products to help detect and kill the conidia and hyphae of A. fumigatus. Platelet
attach to the hyphae that invade vessel and damage the cell wall of 4. fumigatus
directly also enhance the neutrophil-mediated fungicidal effects. HOCY/,
hypochloric acid; O?, superoxide anion radical; SLPI, secretory leukoprotease
inhibitor, DLD, Drosomycin-like defensin.
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Fig 3
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Figure 3: Overview of the Drosophila innate immune response to systemic
infections. Coagulation and melanization are immediate immune responses in
Drosophila that occur after the physical puncture of the cuticle. Cellular responses in
adult Drosophila essentially is phagosytosis performed by a category of hemocytes,
the plasmatocytes. The systemic immune response is triggered by the sensing of
pathogens by sensors that active NF-kB mediated immune pathways, eg. Toll or/and
IMD pathway, to produce the antimicrobial peptides. DIM, Drosophila immune
induced molecular:
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Fig 4
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Figure 4: Overview of melanization. Physical injury active Hayan by
proteolytic cleavage, that then to the pro-phenoloxidase 1 (PPO1) or PPO2 to
inatiate the process of melanization. Fungi and Gram-positive bacteria induce
the expression of Hayan by pattern recognition receptors (GNBP3 for fungi,
GNBP1/PGRP-SA for Gram-positive bacteria) via a part of the Toll pathway.
Serine proteases cleave the PPOs into phenol oxidases (POs), POs are play the
key role in synthesis of melanin. There are multiple byproducts made during
the synthesis of melanin. Some of the melanogenic intermediates are cytotoxic
and may eliminate the invading pathogens.
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Figure 5: Model of Toll and IMD pathway activation. Different pathogens
are detected by distinct pattern recognition receptors: the recognition of lysine-
type peptidoglycan from Gram-positive bacteria mediated by GNBP1 and
PGRP-SA, B-glucan from fungal cell walls is recognized by GNBP3.
Persephone is proteolytically matured by virulence factors from fungi and
bacteria, necrotic is a hemolymphatic serpin inhibit the activity of persephone.
DAP-type peptidoglycan produced by Gram-negative bacteria is recognized by
PGRP-LC, and PGRP-LE which is an intracellular receptor mainly exist in gut.
Monomeric peptidoglycan is recognized by PGRP-LCx, PGRP-LCa and
PGRP-LE, whereas polymeric peptidoglycan is recognized by PGRP-LCx. In
Toll pathway, after Grass-SPE-Spatzle cascade initiated, serine protease cleaves
proSpitzle into Spéatzle. Spétzle is the ligand of Toll receptor. The signal is
transduced within fat body cell by Toll receptor, then via MyD88, tube, pelle to
active DIF to regulate the transcription of antimicrobial peptides. In IMD
pathway, the NF-kB Relish factor activated by two complementary ways: one
is cleavage through the Dredd caspase thus liberating it from the ankyrin-repeat
cytoplasmic anchor present in its C-terminal domain and thereby allowing
nuclear uptake; the other phosphorylation of the N-terminal domain by the I-
kB Kinase complex that enables the transcription initiation transactivation
properties of this transcription factor. In total, more than 230 genes regulated
by Toll and IMD pathways. DAP, diaminopimelic acid; GNBP, Gram-negative
bacteria binding protein; PGRP, peptidoglycan recognition protein; Dredd,
Death related ced-3/Nedd2-like caspase.
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Abstract

Host defense encompasses two complementary dimensions, resistance, the immune
response that results in the neutralization and killing of invading pathogens, and
resilience/tolerance, the homeostatic reactions that participate in enduring and
repairing damages inflicted either by pathogen's virulence factors or the host's own
immune response.

Aspergillus fumigatus is a major human opportunistic pathogen that causes high
morbidity and mortality in immunodeficient patients. As reported previously, A.
fumigatus does kill Toll pathway immunodeficient MyDS8$ flies but not wild-type flies.
However, we observed that the fungal burden hardly increases in the mutant flies,
even upon death, in contrast to other fungal infections. Some 250 injected conidia
suffice to kill MyDS&S8 flies, in the absence of invasion of most fly tissues. In contrast,
a mutant defective for melanization displays a reduced level of containment of the
fungus, which then disseminates throughout the host body, yet is only weakly
susceptible to 4. fumigatus infection. Since A. fumigatus kills with a low fungal
burden restricted to the injection site, we have therefore tested whether mycotoxins
might be involved in pathogenesis and found that some of the many toxins known to
be secreted by A. fumigatus differentially kill MyD8S8 and not wild-type flies. We
conclude that resilience to specific A. fumigatus mycotoxins and not the control of
fungal dissemination appears to be the preponderant host defense against this

infection. Future experiments will tell whether this host defense involves the Toll
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pathway and whether it has also been conserved during evolution as has been the case

for its function in resistance.
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Introduction

Aspergillus fumigatus (A. fumigatus) is a rather ubiquitous saprotrophic fungus able to
withstand high temperatures and to grow at 55°C (1). It thus is able to bypass the
major barrier to fungal infections in warm-blooded animals: high body temperature.
The dispersal form of A. fumigatus in the environment is the airborne conidium, the
small size of which allows it to penetrate deeply in the airways of animals. Indeed,
humans inhale daily hundreds to thousands of conidia (2), yet, mostly
immunodeficient patients suffer from invasive aspergillosis (IA). Of note, some cases
of TA affect apparently immunocompetent patients (3, 4). [A remains a major
challenge to clinicians due to late diagnostic and high morbidity and mortality of this
infectious disease.

A. fumigatus has a complex genome that allows it to adapt to varied environmental
conditions and also to host defenses as well as to antifungal drugs. For instance, a
range of efflux pumps and transporters protects it against toxic compounds, including
possibly azoles used to cure IA (5). The virulence strategies of 4. fumigatus are being
deciphered and include intracellular germination of the ingested conidium that leads
to mechanical lysis of the phagocyte (6). A characteristic of Aspergillus species is
their rich secondary metabolism that allow them to produce a rich variety of
metabolites, including mycotoxins. It has been hypothesized that the production of
specific secondary metabolites by 4. fumigatus in vivo contributes to its pathogenicity,

particularly during hyphal growth. Gliotoxin (7), fumagillin (8), helvolic acid (9),
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restrictocin (10), verruculogen (11), ergot alkaloids (12) and fumitremorgins (13) are
mycotoxins secreted by A. fumigatus. Studies of gliotoxin revealed its
immunosuppressive properties by inhibiting cellular effector functions or inducing
cellular apoptosis (13-25). Up to now, gliotoxin is considered as the most important
toxin produced by A. fumigatus. Fumagillin, which targets methionine
aminopeptidase-2 (26, 27) has been used to treat corneal microsporidial keratitis (28)
and has also been identified as an angiogenesis inhibitor (29, 30). Helvolic acid is a
nortriterpenoid antibacterial compound that inhibits translation elongation factor 2
and oxidized low-density lipoprotein metabolism of bacteria (31, 32). Restrictocin is a
protein produced by Aspergilli that belongs to the super family of ribonucleases and
specifically cleave 28S ribosomal RNA at a specific loop (33, 34). These fungal
ribotoxins are being developed into anticancer drugs (35). Verruculogen and
fumitremorgin are prenylated indole alkaloids metabolites of Aspergilli which are
tremorogenic. Their chemical structures are similar: fumitremorgin B can be
converted into verruculogen by the FtmOx1 enzyme (36). Both act by reducing
GABA levels in the central nervous system and as a result of reduced inhibition of the
nervous system, tremors are induced (37, 38); they also inhibit the M phase of cell
cycle to inhibit the cell proliferation (39). Ergot alkaloid are produced by many fungal
species (40). One ergot alkaloid, festuclavine, interferes with several mammalian
regulatory systems via its ability to bind to serotonin, to dopamine, and to

a-adrenaline receptors (41). Although genes regulating the production of clavine ergot
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alkaloids have been identified for A. fumigatus (42-44), the role of these metabolites
in the pathogenesis of IA has yet to be explored.

Drosophila melanogaster is a genetic model organism that allows the exploration of
many biological processes such as development, brain function, transcription or host
defense against infections. Discoveries made in this model are often relevant to an
understanding of our own biology; this may be linked to the relatively high degree of
conservation during the evolution of animals, with up to 75% of genes known to
cause disease in humans having a Drosophila homolog (45, 46). Drosophila host
defense against systemic bacterial or fungal infections relies on both humoral and
cellular arms (47). An invertebrate-specific host defense is melanization, which relies
on the catalytic activity of phenol oxidase (PO) enzymes that are themselves activated
by a proteolytic cleavage of their pro-forms. Active PO catalyzes the formation of
melanin, for instance at wounds. A major protease required for proPO cleavage is
Hayan (48). The cellular immune response depends on hemocytes that carry on their
surface potential phagocytic receptors such as Eater (49). The most studied
antimicrobial responses are those mediated by potent antimicrobial peptides (AMPs),
most of which have been identified through biochemical characterization of their
activities. The expression of most AMPs is induced by immune challenges and
regulated at the transcriptional level by two NF-«B pathways, Immune deficiency
(IMD) and Toll that function in the fat body, a tissue with mixed characteristics of
hepatocytes and adipocytes, and hemocytes as well as barrier epithelia (IMD only)

(50). The Toll pathway is essentially required for host defense against two strikingly
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distinct types of microorganisms (51), Gram-positive bacteria harboring LYS-type
peptidoglycan on their cell walls on the one hand, and fungi on the other, including 4.
fumigatus. The Toll pathway is activated by extracellular proteolytic cascades
triggered either by the detection of B(1-3) glucans or sensing of the proteolytic
activity of fungal virulence factors (52). These proteolytic cascades converge and
ultimately lead to the processing of Spitzle into an active Toll receptor ligand (53).
Toll then activates the NF-xB transcription factor Dorsal-related Immune Factor (DIF)
through an intracellular pathway in which MyD88 plays a cardinal role (54). This
pathway regulates the expression of tens of genes, the exact function in host defense
of most of which remains to be delineated. A major readout of Toll pathway
activation is Drosomycin mRNA expression. This gene encodes a potent AMP active
against filamentous fungi. Other potential effectors of the Toll pathway include
Drosophila-induced Immune Molecules (DIM)-encoding genes, first identified
through mass-spectrometry analysis (55-57).

In this study, we characterize in detail the infectious process of A. fumigatus after the
injection of a limited number of conidia into adult flies. Unexpectedly, we report that
the fungus does not appear to grow to high levels, even in immunodeficient MyD88
mutants that nevertheless succumb to the infection. Our investigations reveal that the
effective host defense against A. fumigatus does not consist in limiting the
dissemination of the fungus within the host but rather depends on being able to
withstand or neutralize the action of mycotoxins, a process belonging to resilience

(also known as tolerance) rather than resistance.
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Results

Characterization of A. fumigatus in wild-type and MyD88 flies

As we have not been able to infect flies by incubating them in contact with conidia or
by feeding them conidia (58), we have resorted to the classical injection model and
first performed a dose-response analysis in both wild-type and MyDS8S
immunodeficient flies (Fig. 1A, Fig. S1A). As reported previously, wild-type flies
were not killed by any dose of injected conidia, up to 500 conidia per fly. In contrast,
as few as five injected conidia per fly were sufficient to efficiently kill MyDS§S flies
within a week. We also tested several different wild-type 4. fumigatus strains and
obtained similar results for a dose of 250 injected conidia. Next, we examined the
development of a GFP-labeled fungus within its host. The small size of conidia yields
a low-intensity signal that makes them difficult to detect and we managed to observe a
handful of swollen, maturing conidia in either wild-type or MyD88 flies. In contrast,
hyphae were detected next to the injection site by 20 hours after infection in about
half of the flies (Fig.1, B-D). We did not detect any difference of behavior of A.
fumigatus between wild-type or mutant flies. We next monitored the fungal burden on
single flies 24 and 48 hours post-infection. Strikingly, the number of colony-forming
units (CFUs) did not increase after injection in wild-type or MyDS&8 flies, in contrast
to other pathogens controlled by the Toll pathway (Fig. 1E, F). This was observed for
two injected doses, 250 and 5000 conidia. To exclude the possibility of a late

proliferation of the fungus occurring just prior to the fly demise, we performed a
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Fungal Load Upon Death (FLUD) analysis on single flies and found that the number
of colony-forming units did not increase much: about 200 CFUs whether we injected
a low or a higher dose of conidia (Fig. 1G). Next, we monitored the expression of
Drosomycin as read-outs of Toll pathway activation. Only the injection of 500 live
conidia yielded a strong induction of Drosomycin that was MyDS88-dependent (Fig.
1H). UV-killed conidia were hardly inducing Drosomycin expression, suggesting that
the B-(1-3)-glucan of the fungal cell wall is well hidden, possibly by hydrophobins. In
conclusion, in contrast to most infections studied to date in Drosophila, a limited
number of Colony-Forming Units appears to be sufficient to kill MyD8&S flies.

Hayan appears to mediate a host defense that limit the dissemination of the fungus
within the fly

As MyD&8's role in controlling the proliferation of injected A. fumigatus is limited at
best, we investigated other host defenses. We first tested the IMD pathway component
Kenny, which encodes fly NEMO/IKKYy. Indeed, Relish has been reported to be
sensitive to some fungal infections. We found that key flies were somewhat
susceptible to injected A. fumigatus (Fig. 2A). Of note, we never observed any fungus
emerging from cadavers, in contrast to MyDS88 mutants. Our attempts to measure the
FLUD on those flies revealed only a few CFUs (Fig. 2B), suggesting that flies did not
directly succumb to fungal infections or at least to uncontrolled fungal proliferation.
Next, we tested a possible contribution to the host defense against 4. fumigatus of the
cellular immune response. To this end, we tested two mutant combinations in which

the expression of the putative phagocytic receptor Eater is ablated and found no
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increased susceptibility to infection (Fig. 2C). We then saturated the phagocytic
apparatus by the prior injection of nondegradable polystyrene beads and obtained
similar results (Fig. 2D). Finally, we generated flies in which hemocytes are killed
during development by the expression of the pro-apoptotic genes reaper and head
involution-defective (59, 60). These flies were as resistant as wild-type flies to the 4.
fumigatus challenge (Fig. 2E).

The Hayan protease is required for the activation of pro-phenol oxidases into mature,
active phenol oxidases that catalyze multiple steps that lead to the deposition of
melanin at the wound site and also possibly on the pathogens. The enzymatic
reactions are also thought to release Reactive Oxygen Species. Hayan mutant flies
displayed a moderate susceptibility to injected A. fumigatus conidia (Fig. 2F).
Unexpectedly, we found that Hayan flies displayed a much-enhanced fungal load
upon death as compared to MyDS88 flies (Fig. 2G). PPO2 mutant flies displayed a
survival similar to that of MyDS&8 flies after A. fumigatus infection (Fig. 2H). This
finding may mirror a requirement for another protease besides Hayan to activate
PPO2. We noted that whereas A. fumigatus mycelium developed only on the thorax of
MyD88 cadavers as reported previously, most of the body of the deceased Hayan flies
was covered by the fungus (Fig. 2I-J). We corroborated this finding by observing the
development of the fungus during infection using a GFP-labeled strain. In contrast to
MyDS8S8 flies, hyphae observation was not limited to the thorax and extended to both
head and abdomen (Fig. S2). We conclude that Hayan is required to limit the

dissemination of 4. fumigatus away from the wound site.
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MyD88 is required for resilience to A. fumigatus foxins

A. fumigatus is known to produce an armamentarium of toxins such as gliotoxin and
fumagillin. We first tested an A. fumigatus mutant devoid of any secondary
metabolism, Appt4 and found this mutant to be avirulent (Fig. 3A), even though we
were able to detect hyphae next to the wound site (Fig. S3). The fungal burden was
however reduced for the mutant as compared to the virulent strain (Fig. 3B).
Gliotoxin has been reported to be a virulence factor of A. fumigatus both in mice and
flies. Under our conditions, however, a AgliP strain affecting the non-ribosomal
peptide synthetase that catalyzes the first step of the gliotoxin biosynthesis pathway
displayed a wild-type virulence (Fig. S4A). We also injected the gliotoxin at various
concentrations and were unable to find a concentration that would preferentially kill
MyDSS8 flies (Fig. S4B). The injection of fumagillin or helvolic acid did not kill
wild-type or MyD&8 flies at the tested concentrations (Fig. S5). In contrast, the
injection of restrictocin at three concentrations only killed MyDS&S8 flies (Fig. 3C). The
injection of a low concentration (0.1 mg/ml) of verruculogen did not kill MyDS&8 or
wild-type flies. Interestingly, verruculogen at higher concentrations (I or 5 mg/ml)
killed MyD&S flies faster than wild-type flies whereas a 10 mg/ml concentration killed
both fly strains within a day (Fig. 3D). An ergot alkaloid derivative killed only
MyDS8S8 flies when delivered at a concentration of 1 or 10 mg/ml whereas a dose of
150 mg/ml was lethal to both (Fig. 3F). Finally, fumitremorgin C at 1 mg/ml killed
only MyD&8 flies (Fig. 3F). These experiments had been performed at 29°C. When

we repeated them at 18°C, the effect was still present, although it was delayed, in
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keeping with similar results obtained after the injection of 4. fumigatus conidia (Fig.
S6). As we sometimes found a few bacteria in the hemolymph of injected flies (Fig.
S7), to ensure that immuno-deficient MyD88 flies were truly killed by the toxins and
not by opportunistic infections triggered by toxin injection, originating for instance
from the microbiota, we repeated these experiments on antibiotics-treated or axenic
flies and obtained similar results (Fig. S8). Thus, MyD§8§ flies succumb to the effect
of the toxin, even in the absence of the microbiota.

To determine whether the injection of toxins may activate the Toll pathway, we
monitored the expression of Drosomycin (Fig. 3G). There was no significant

induction by any of the toxins.
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Discussion

The function of the Drosophila Toll pathway in host defense was first revealed in a
landmark study in which the susceptibility of several Toll pathway mutants to A.
fumigatus infection was correlated to an impaired expression of Drosomycin in these
mutants, an observation in keeping with the antifungal activity of Drosomycin on
hyphae (61, 62). Further genetic investigations showed that the overexpression of
Drosomycin in a Spdtzle mutant background provided limited but nevertheless
significant protection against A. fumigatus (63). A recent study has also reported a
mild sensitivity of flies devoid of most AMP-encoding genes, including Drosomycin
and Metchnikowin (64). The inoculation load in these studies is difficult to assess as it
relied on pricking flies with a needle previously dipped into a concentrated conidial
solution. An open possibility is that the dose used in these studies may have been
much higher than those in our work, possibly close to 20,000 conidia (58). It is
possible that higher doses of the fungi may reveal a fungicidal or fungistatic action of
host defenses regulated by the Toll pathway mediated by Drosomycin, Metchnikowin,
and/or DIMs. The fungal load has not been determined in neither of these previous
studies. In contrast, using a “rolling” assay, Lionakis ef al. reported an increased
fungal burden in Toll pathway mutants infected in the “rolling” assay (58). They
nevertheless did not comment their data showing not an increasing but a decreasing
fungal load as the infection proceeded, in both wild-type and Toll mutants. Under our

low inoculum conditions, the Toll pathway does not appear to be required to limit the
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proliferation of the invading fungus. Indeed, a dose of 50 injected conidia suffices to
kill MyD&88 flies yet does not trigger a detectable activation of the Toll pathway in
wild-type flies. In contrast, melanization appears to be important to prevent the
dissemination of the fungus, a finding in keeping with a recent study documenting a
similar role in host defense against a low inoculum of S. aureus (65). Strikingly,
Hayan melanization-deficient flies, even though they harbor a higher fungal load
upon death, are nevertheless much more resistant to A. fumigatus than MyDS8 flies. It
follows that the control of the dissemination of the fungus is not a critical parameter
of the host defense against this infection, even though it is often the case, for instance
with Candida glabrata or Enterococcus faecalis.

Rather, our data suggest that the ability to cope with the exposure to mycotoxin is the
relevant host defense present in wild-type and hayan flies, but lacking in MyDS&8 flies,
even when the Toll pathway does not appear to be stimulated in the case of a low
inoculum dose. Furthermore, the injection of toxins did not trigger an increased
expression of Drosomycin. Our finding that an A. fumigatus strain devoid of
secondary metabolism is less virulent supports this hypothesis, even though the
restrictocin protein is still expected to be produced in this strain. Of note, many toxins
appear to be produced predominantly by hyphae and not conidia (66); hyphae appear
to be formed at the site of injection of conidia and our data suggest that a limited
quantity of hyphae is sufficient to kill the flies in the absence of the invasion of tissues.
Thus, we envision that they are able to release enough mycotoxins to kill the flies.

Indeed, some fungal mycotoxins target the nervous system; for instance, verruculogen
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decreases the levels of the major inhibitory mediator of neural activity, GABA.
Altering GABA levels may lead to uncontrolled behavior and seizures. Within six
hours of the injection of verruculogen, 60-80% of the flies cannot keep their gait and
balance and fall down on the fly food, unable to stand and walk, yet frantically
moving their legs in the air. Although their sports ability seems did not impaired, their
legs struggling vehemently, but none of them can stand or run. This behavior lasts
between 24 to 72 hours until the ultimate demise of the flies. The same behavior,
including its duration, is observed in 20 to 50% of flies infected by A4. fumigatus,
suggesting that indeed some neurotoxins affect the brains of a significant fraction of
the hosts. Future studies will determine whether different toxins synergize in killing
the host. To this end, it will be important to generate fungal strains unable to produce
subsets of toxins. Nevertheless, the injection of mycotoxins establishes that MyDS88
flies are more sensitive than wild-type to some but not all 4. fumigatus secreted
mycotoxins.

At this stage, it is not clear whether the sensitivity to some mycotoxins is shared by
mutants affecting other components of the Toll pathway. As most of these Toll
pathway mutants (Spdtzle, Toll, Tube, pelle) were sensitive to A. fumigatus infections
(62), at least to a high dose, it is likely that these mutants will also display a
sensitivity to these mycotoxins. It will also be interesting to determine whether flies
harboring a deficiency that removes a cluster of ten DIM genes and that phenocopies
the Toll pathway infection sensitivity phenotype are also sensitive to the same set of

mycotoxins (55). At present, however, we cannot formally exclude that MyD8&8 itself
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is not causing this effect, which might be due to a second site mutation on the
chromosome, a possibility being currently tested. Even if this were the case, our
present data clearly establish that the important phenotype of MyDS88 flies is not a
defective immune response but an impaired resilience to mycotoxins. As MyD§88 flies
are sensitive to very low doses of 4. fumigatus that do not trigger the Toll pathway, it
is likely that the resilience function is constitutive and not inducible by infection,
unless wounding in itself does trigger a response that is distinct from the AMP one. It
will be important to determine whether MyD&§ flies have impaired detoxification
functions, which in flies are predominantly regulated by the Nrf2 and HR96
transcription factors. Systematic unbiased genetic analysis will provide further clues
to decipher how Drosophila is able to prevent, elude or neutralize mycotoxins.
Hopefully, these mechanisms have been conserved throughout evolution and our
current work may lead to a better understanding as to how mammals and humans cope
with these mycotoxins. An open possibility is that some immunocompetent patients

suffering from IA may actually have a defective resilience to mycotoxin action.
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Material and methods

Pathogens culture. Aspergillus fumigatus was cultured on potato dextrose agar (PDA)
medium + 0.1g/l chloramphenicol (Huankai Microbio Tech) in a tissue culture

incubator under 5% CO> at 29 °C. Conidia were harvested at 4-7 days of the culturing.
The conidial suspension was purified by filtration on cheese cloth to eliminate hyphae

and other impurities. Our standard wild-type Aspergillus fumigatus (we used Af as its

symbol in our research) is a kind gift from Drs. Anne Beauvais and Jean-Paul Latge

(Institut Pasteur, Paris), the other wild-type strains which include D141 (background

of D141-GFP), Af293, ATCC46645, CEAI7AakuB%*%" (background of AgliP) ,

A1160 (background of 4pptA), GFP labeled strain (D141-GFP) and 4pptA4 (secondary

metabolites free mutant) (67), 4gliP (gliotoxin free mutant) (6) mutants Aspergillus

Sfumigatus are kind gifts from Dr. Axel Brakhage (Friedrich-Schiller-Universitit

Jena).

Micrococcus luteus (M. luteus) was cultured in Tryptic soy broth (TSB) at 37 °C for

24h, and centrifuged at 3000 round per minute for 10 minutes, after that we discarded

supernatant, and resuspended M. [uteus with 1 ml PBS. Repeated this protocol twice

to eliminate medium and then measured OD value by spectrophotometer (Amersham

Biosciences).

Toxins preparation. Restrictocin (Sigma) was resuspended in phosphate buffer

saline (PBS) pH = 7.2, gliotoxin (Sigma), helvolic acid (Sigma), fumagillin (Sigma),

verruculogen (Abcom), fumitremorgin C (Sigma), bromocriptine mesylate (Sigma)
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were dissolved in pure Dimethyl sulfoxide (DMSO) (Sigma) at a concentration of 10
mg/ml for restrictocin, gliotoxin, helvolic acid, fumagillin, and verruculogen, 1 mg/ml
fumitremorgin C, 150 mg/ml bromocriptine mesylate as the stock to store in -20°C.
Working concentrations in pure DMSO (1 mg/ml vestrictocin, 1 mg/ml verruculogen,
I mg/ml fumitremorgin C, 30 mg/ml bromocriptine mesylate) were stored at -20°C.
The working concentrations were used for injection unless otherwise indicated. They
were thawed at room temperature for one hour prior to use. As multiple freeze/thaw
cycles reduce the virulence of the toxins, care was taken not to use an aliquot more
than five times and aliquots were not stored for more than a month.

Fly strains. Fly lines were raised on media at 25 °C with 65% humidity. For 25 | of
fly food medium, 1.2 kg cornmeal (Priméal), 1.2 kg glucose (Tereos Syral), 1.5 kg
yeast (Bio Springer), 90 g nipagin (VWR Chemicals) diluted into 350 ml ethanol
(Sigma-Aldrich), 120 g agar-agar (Sobigel) and water qsp were used.

w31 flies were used as wild-type control and the mutants MyD88", Hayan™", key”
are all from Exelixis (68), eater] is a kind gift from Dr. Bruno Lemaitre (69), eaterA is
crossed by two mutant lines Df(3R)TI-I, e'/TM3, Ser' (BDSC1911) and
Df(3R)D605/TM3, Sb! Ser' (BDSC823) which from Bloomington Drosophila Stock
Center in our lab. Canton-S (BDSC64349), w///8 (VDRC60000), y'w’ were used as
wild-type controls.

hmlA Gal4 UAS-eGFP is an reported line (70), UAS-rpr-UAS-hid flies is crossed by

a reported line w;;P[UAS-hid] with w!!'%; P{UAS-rpr.C} 14 (BDSC5824) which from
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Bloomington Drosophila Stock Center in our lab (59, 60). Were crossed and hatched
in 29 °C.

To obtain axenic flies, eggs were collected, washed with water and then 70% ethanol
prior to dechorionation by pipetting up and down eggs in a solution of 50% bleach
until the chorion disappeared. Eggs were transferred into sterile vials containing
media and a mix of antibiotics: ampicillin, chloramphenicol, erythromycin and
tetracycline. Once emerged, adult flies were crushed and tested on LB-,
bacitracin-heated blood-, MRS and yeast peptone dextrose-agar plate to observe any
contamination by bacteria, fungi or yeast. Of note, no anaerobic microorganisms have
been detected in the Drosophila microbiota.

Flies were treated with antibiotics mix, which contain Ampicillin, Tetracycline,
Chloramphenicol, Erythromycin, Kanamycin. The antibiotics mix was added into fly
food which the final concentration is 50 pg/ml for each. Females were collected after
two generations cultured on the fly food with antibiotics. The micro-biotic test is same
to axenic flies.

Aspergillus fumigatus infection. For Aspergillus fumigatus infection, spores were
prepared freshly for each infection. Unless otherwise stated, spores were injected into
the thorax, precisely into the mesopleuron on adult flies at a concentration of 250
spores in 4.6 nl PBS containing 0.01% Tween20 (PBST) using a microcapillary
connected to a Nanoject II Auto-Nanoliter Injector (Drummond). The same volume of
PBS-0.01% Tween20 was injected for control experiments. All experiments were

performed at 29 °C unless otherwise indicated. Before all the experiments, the flies
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were put in tubes with only 100 mM sucrose solution to do a 48 hours
amino-starvation unless otherwise indicated.

Toxins injection. Toxins injection were pereformed as for A. fumigatus injection,
except that a toxin solution was used instead of a spore suspension.

Saturation of phagocytosis. Latex beads treatment was performed as previously
described (51). We put the treated flies on 100 mM sucrose solution for 48 hours and
then do the injection.

Survival tests. Survival tests were performed using 20 flies per vial in biological
triplicates. Adult flies used for survival tests were 5—7-days old from 25 °C stock. For
survival tests using RNAi-silencing genes, flies were kept for 5 more days at 29 °C to
allow the expression of the RNAIi transgene prior to the experiment. Flies were
counted every day. Each experiment shown is representative of at least three
independent experiments.

Fungus quantification. Fungus quantification was determined using single adult flies
per condition. Flies were transferred into multi-tubes (Starstedt) containing two
1.4-mm ceramic beads (Dominique Dutcher) in 100 pul PBS-0.01% Tween20. Single
flies was smashed by shaker (F. Kurt Retsch GmbH & Co. KG) with 30/min, 30
seconds for twice. Then we plated the smashed suspension on potato dextrose agar
(PDA) + antibiotic plates. After that, the plates were enclosed with parafilm and
cultured at 29 °C with 65% humidity, after 48 h to count the colonies by eyes. FLUD

was performed as described (71).
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In vivo checking of conidial development. Flies were sacrificed and dissected in
8-well diagnostic microscope slides (Thermo Scientific) and analyzed under Zeiss
stereomicroscope microscope (Carl Zeiss). D141 UVITEX was used for negative
staining of A4 pptA’s hyphae, by adding to each well 5 pl UVITEX for 30 seconds at
room temperature. Flies injected by D141-GFP and 4ppt4 were dissected and
observed under a fluorescent Zeiss axioscope microscope (Carl Zeiss) each hour after
the injection.

Hemolymph extraction. Hemolymph was extracted by microcapillary connected to a
Nanoject II Auto-Nanoliter Injector (Drummond) to injected into the thorax, precisely
into the mesopleuron on adult flies. The hemolymph from single fly or 5 flies was
expelled into 100 ul PBS-0.01% Tween20 and mixed gently by pipettes. We plated 50
ul of the hemolymph suspension on LB-yeast peptone dextrose-agar plates. The plates
were put in a tissue culture incubator under 5% CO; at 29 °C for 48h and count the
bacterial single colony by eyes.

UV-killed pathogens preparation. A. fumigatus: The conidial suspension was plated
on potato dextrose agar (PDA) + 0.1g/l chloramphenicol plates, exposed to the
UV-light after the plates dry for 3 h twice. Enclosed plates with parafilm and cultured
at 29 °C with 65% humidity, after 48 h to check the colonies. Sort the plates without
any colony, resuspend the dead conidia to measure the concentration and then do the

injection.
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M. luteus: bacterial suspension was plated on Tryptic soy broth (TSB) plates, exposed
to the UV-light after the plates dry for 3 h. The rest protocols are same to the A.
fumigatus.

Scanning electron microscope. Treat flies in the mixture as follows: 500 pL
phosphate buffer 0,2M pH 7.2, 250 uL. ddH,O, 100 pL glutaraldehyde 25% (2.5%
final), 150 pL paraformaldehyde 16% (2.4% final) in room temperature for more than
one hour. Then fix flies with resin and do the observation by SEM (ZEISS).
Drosomycin expression measurement. Expression of Drosomycin was measured by
RT-qPCR as as described previously (62).

Statistical analysis and reproducibility. All statistical analyses were performed
using Prism 7 (GraphPad Software). The Mann-Whitney and/or Kruskall-Wallis tests
were used unless otherwise indicated. For survival experiments, we use log-rank test.
When using parametric tests (analysis of variance (ANOVA) and t-test), a Gaussian
distribution of data was checked using either D’Agostino-Pearson omnibus or
Shapiro-Wilk normality tests. All experiments were performed at least three times.

Significance values: *P < 0.05; **P < 0.01; ***P <0.001; ****P < (0.0001.
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Figure legends

Figure 1: A. fumigatus does not proliferate in MyD88 mutants.

(A) Survival of MyDS8S flies exposed to several doses of injected A. fumigatus conidia.
There was no significant difference in survival between control flies injected with
PBST (Phosphate buffer saline containing 0.01% Tween20) and flies injected with 1
conidium on average per fly (c/f) (P = 0.9230). All other injected doses of A.
fumigatus led to the demise of infected flies as compared to control flies (P <0.0001).
(B-D) Flies were injected with conidia of the D141-GFP A. fumigatus strain and
hyphae (arrows) directly observed at the injection point with a fluorescence
microscope 24 hours afterwards. (B-B’): wild-type (w?) flies injected with 500 conidia;
B: bright field, B’: fluorescence observed using a set of GFP filters. (C-D)
respectively low (50 conidia) and high (500 conidia) doses injected into MyDS$ flies.
Note that more hyphae were repeatedly detected using the low dose. The fungus was
detected only at the injection point in all conditions.

(E-F) Fungal burden measured at the indicated time points using a plating assay (cfu:
colony forming unit) of single wt or MyDS&8 flies after the injection of a low (250
conidia) (E) or a high (5000 conidia) 4. fumigatus inoculum. NS: not significant. ****:
(P <0.0001).

(G) Fungal load upon death of single flies injected with the indicated doses of A.
fumigatus conidia (1x10 [7] = 50 conidia per fly, 5x10 [7] = 250 conidia per fly, and

10 [8] =500 conidia per fly). ***: (P =0.0002), ****: (P < 0.0001).
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(H) Drosomycin expression levels as measured by RTqPCR after the injection of
either live or killed 4. fumigatus at different concentrations (10 [7] = 50 conidia per
fly, 10 [8] = 500 conidia per fly). PBST-injected flies were used as a negative control,
and all the data were normalized to the M. /uteus injected group set at a value of 100.
The Drosomycin expression levels of wt after the injection of 500 conidia are similar
to those induced by the injection of M. luteus (P = 0.9314); in contrast, all other
groups do not display a significant induction of Drosomycin expression (P < 0.0001),
including the injection of 50 live conidia.

All the survival data were analyzed using the log-rank test, the fungal burden and
Drosomycin expression level data were analyzed using the Kruskall-Wallis with
post-hoc tests to compare specific pairs. All experiments have been performed at least

three independent times.

Figure 2: Hayan, and not other host defenses, limits the dissemination of A.
Jfumigatus within the fly.

(A) Survival of key flies exposed to 500 conidia per fly of injected A. fumigatus. key
flies after the injection of A. fumigatus are died faster than control flies injected with
PBST (Phosphate buffer saline containing 0.01% Tween20) (P <0.0001).

(B) Fungal burden measured at the indicated time points using a plating assay (cfu:
colony forming unit) of single key or MyDS&$ flies after the injection of 500 conidia of

A. fumigatus. NS: not significant. ****: (P <0.0001).
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(C-E) Survival of cellular response deficient flies exposed to 500 conidia per fly of
injected A. fumigatus. (C) There was no significant difference in survival between

control wild-type (wf) flies and eater mutant flies eater!

and eat’ injected with A.
fumigatus (P = 0.9990). (D) There was no significant difference in survival of latex
beads saturated wt flies between control injected with PBST and injected with A.
fumigatus (P = 0.9992). (E) There was no significant difference in survival between
control wt flies and phago-hemoless UAS-rpr-UAS-Hid flies injected with A.
Sfumigatus (P = 0.9984).

(F) Survival of Hayan flies exposed to 500 conidia per fly of injected A. fumigatus.
Hayan flies after the injection of A. fumigatus are died faster than control flies
injected with PBST (P <0.0001), but died slower than MyD&88 injected with A.
Sfumigatus (P <0.0001).

(G) Fungal load upon death of single flies injected with 500 conidia per fly of A.
Sfumigatus. NS: not significant. ****: (P < 0.0001). D141-GFP was used in this test, it
have the similar virulence with our standard A. fumigatus, but less colonies when
plating.

(H) Survival of PPO2 flies exposed to 500 conidia per fly of injected A. fumigatus.
PPO2 flies after the injection of 4. fumigatus are died faster than control flies injected
with PBST (P <0.0001).

(I) Hyphae on the surface of bodies of MyD88 flies are only exist on the thorax

(arrow).
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(J) Hyphae on the surface of bodies of Hayan flies can be observed on the head
(upper right arrow), thorax (upper left arrow), abdomen (lower left arrow) and legs
(lower right arrow).

All the survival data were analyzed using the log-rank test, the fungal burden data
were analyzed using the Kruskall-Wallis with post-hoc tests to compare specific pairs.

All experiments have been performed at least three independent times.

Fig. 3: MyD88 is sensitive to some A. fumigatus toxins.

(A) Survival of MyDS88 flies exposed to 500 conidia per fly of injected ApptA
(secondary metabolites free mutant) 4. fumigatus. MyDS8S flies after the injection of
ApptA A. fumigatus are died slower than control flies injected with wild-type (wf) 4.
Sfumigatus (P <0.0001).

(B) Fungal burden measured at the indicated time points using a plating assay (cfu:
colony forming unit) of single MyDS88 or wt flies after the injection of 500 conidia of
ApptA A. fumigatus. ****: (P = 0.0001), ****: (P <0.0001).

(C-F) Survival of MyD88 and wt flies exposed to several doses of injected
mycotoxins. (C) MyD&8 flies after injected with indicated doses of restrictocin (R) (1
mg/ml = 5 ng per fly, 5 mg/ml = 25 ng per fly, 10 mg/ml = 50 ng per fly) died faster
than the wr flies injected with restrictocin (P < 0.0001), and the control MyDS88 flies
injected with PBST (Phosphate buffer saline containing 0.01% Tween20) (P <
0.0001). (D) MyDS&8 flies after injected with 1 or 5 mg/ml verruculogen (V) died

faster than the wr flies injected with verruculogen (P < 0.0001), and the control

73



MyDS88 flies injected DMSO (Dimethyl sulfoxide) (P < 0.0001). There was no
significant difference in survival between control MyD&S8 flies injected with DMSO
and MyD&8 flies injected with 0.1 (P = 0.6368) or 10 (P = 1) mg/ml of verruculogen
(0.1 mg/ml = 0.5 ng per fly). (E) MyDS88 flies after injected with 5 or 10 mg/ml
Bromocriptine mesylate (B) died faster than the wt flies injected with Bromocriptine
mesylate (P < 0.0001), and the control MyD8&8 flies injected DMSO (P < 0.0001).
There was no significant difference in survival between MyDS88 flies injected with
DMSO and MyDS&8 flies injected with 150 (P = 1) mg/ml of Bromocriptine mesylate
(150 mg/ml = 750 ng per fly). (F) MyD88 flies after injected with 1 mg/ml
fumitremorgin C (FC) died faster than the wt flies injected with fumitremorgin C (P <
0.0001), and the control MyDS&8 flies injected DMSO (P < 0.0001).

(G) Drosomycin expression levels as measured by RTqPCR after the injection of
restrictocin (R, 5 ng per fly), verruculogen (V, 5 ng per fly), Bromocriptine mesylate
(B, 150 ng per fly), fumitremorgin C (FC, 5 ng per fly). PBST or DMSO -injected
flies were used as negative controls, and all the data were normalized to the M. luteus
injected group set at a value of 100. The Drosomycin expression level of wt after the
injection of restrictocin is similar to those induced by the injection of PBST (P =
0.9314). The Drosomycin expression levels of wt after the injection of verruculogen
(P = 0.1615), Bromocriptine mesylate (P = 0.1672), fumitremorgin C (P = 0.2224)
are similar to those induced by the injection of DMSO.

All the survival data were analyzed using the log-rank test, the fungal burden and

Drosomycin expression level data were analyzed using the Kruskall-Wallis with
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post-hoc tests to compare specific pairs. All experiments have been performed at least

three independent times.
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Figure 3
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Supplement figures and figure legends
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Fig. S1: Wild-type flies dose response and test of different A. fumigatus strains in MyD88
mutant flies.

(A) Survival of indicated wild-type flies exposed to several doses of injected A. fumigatus
conidia. There was no significant difference in survival between control flies injected with
PBST (Phosphate buffer saline containing 0.01% Tween20) and flies injected with indicated
doses of 4. fumigatus (P = 0.9880).

(B) survivals of MyD88 flies exposed to different wild-type A. fumigatus strains by injection.
There was no significant difference in MyD&88 flies injected with 250 conidia per fly of
indicated A. fumigatus strains (P = 0.8753).

Data were analyzed using log-rank test. All experiments have been performed at least three
independent times.
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S3

Fig. S3: Hyphae of ApptA A. fumigatus in wt and MyD88 flies.

(A) Hyphae of 4pptA (secondary metabolites free mutant) A. fumigatus observed in
thorax of wr flies (arrow) after UVITEX negative staining, sacs and tracheae stained by
UVITEX (arrow heads).

(B) Hyphae of 4pptA A. fumigatus observed in thorax of MyD$88 flies (arrow), sacs and
tracheae stained by UVITEX (arrow heads).

All experiments have been performed at least three independent times.
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Fig. S4: Gliotoxin is not required nor sufficient to differentially kill MyD88 mutant
flies.

(A) Survival of MyD88 and wild-type (w?) flies exposed to several doses of injected
AgliP (gliotoxin free mutant) and (CEA 1 74akuBXu$0, background of AgliP) A. fumigatus
conidia. There was no significant difference in survival between MyD88 flies injected
with AgliP A. fumigatus and those injected CEA17 A. fumigatus with indicated doses of
250 conidia per fly (c¢/f) (P =0.9216), 50conidia per fly (P =0.9027), 25 conidia per fly
(P =0.6883).

(B) Survival of MyD88 and wild-type (wt) flies exposed to several doses of injected
gliotoxin. There was no significant difference between wild-type flies and MyDS8S8 flies
with injected indicated doses 1.25 mg / ml (6.25 ng per fly, P = 0.6443), 2.5 mg / ml
(12.5 ng per fly, P = 0.6814), 5 mg / ml (25 ng per fly, P=0.1199), 10 mg / ml (50 ng
per fly, P = 1) of gliotoxin.

Data were analyzed using log-rank test. All experiments have been performed at least
three independent times.
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Fig. S5: Helvolic acid and fumagillin are not required for killing flies.

(A) Survival of MyD88 and wild-type (w?) flies exposed to several doses of injected
helvolic acid. There was no significant difference between wild-type flies and MyD88
flies with injected indicated doses 0.5 mg / ml (2.5 ng per fly, P = 0.0806) and 10 mg /
ml (50 ng per fly, P = 0.3173) of helvolic acid.

(B) Survival of MyD&8 and wild-type (w?) flies exposed to several doses of injected
fumagillin. There was no significant difference between wild-type flies and MyDS88 flies
with injected indicated doses 0.5 mg / ml (P = 0.1689) and 10 mg / ml (P = 0.6995) of
fumagillin.

Data were analyzed using log-rank test. All experiments have been performed at least
three independent times.
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Fig. S6: Temperature is a relevant factor of 4. fumigatus infection and injection of

toxins.

(A) Survival of MyD88 and wild-type (wr) flies exposed to 500 conidia per fly of injected 4.
Sfumigatus in different temperatures. MyDS88 flies after the injection of A. fumigatus and kept
in 29°C are died faster than those in 18°C (P <0.0001).

(B) Survival of MyDS88 mutant flies injected with restrictocin (R, 5 ng per fly),
verruculogen (V, 5 ng per fly), Bromocriptine mesylate (B, 150 ng per fly), fumitremorgin
C (FC, 5 ng per fly) in different temperatures. MyDS88 flies after the injection of restrictocin
(P = 0.0006), verruculogen (P = 0.0139), fumitremorginC (P = 0.0019) and kept in 29°C are
died faster than those in 18°C, however MyD&S flies injected with Bromocriptine mesylate

(P =10.0919) are similar in both temperatures.

Data were analyzed using log-rank test. All experiments have been performed at least three

independent times.
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MyD88 PBST 18°C
MyD88 PBST 29°C
MyD88 Af 18°C
MyD88 Af 29°C

MyD88 DMSO 18°C
MyD88 R 18°C
MyD88V 18°C
MyD88 FC 18°C
MyD88 B 18°C
MyD88 DMSO 29°C
MyD88 R 29°C
MyD88V 29°C
MyD88 FC 29°C
MyD88 B 29°C



S7

2500+
20001 n
7]
2
n
2 1000-
IS
o |
5004
o _#_ T
D
S o
& &
)
B A\ )
1000
8004 [ ]
>
= 600+ u
3
w4001
(&)
]
2004 E
[ S0V VS S e .

Fig. S7: Bacterial load in hemolymph of fly to check if there is bacterial
proliferation during A. fumigatus infection.

(A) Bacterial burden was measured at the indicated time points using a plating assay
(cfu: colony forming unit) after injection of 4. fumigatus, 5 MyDS88 flies for each
sample. The bacterial load of 48h after injection is higher than Oh’s (P = 0.0286).

(B) Bacterial burden measured at the indicated time points using a plating assay (cfu:
colony forming unit) of single MyDS&8 flies after injection of A. fumigatus. There are
only 25 percent (4/16) samples of the bacterial burden increased in the single fly test,
which implied bacterial contamination happened but only minority after injection.

All experiments have been performed at least three independent times.
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Fig. S8: Antibiotics and axenic flies tests. MyD388 flies and wild-type (wf) without
any treat (No treatment), the antibiotics treated (AB) are the normal MyD88 mutant
flies been treated by antibiotics mixture for two generations and been tested no
bacteria left in their body, and axenic flies are the normal MyD88 mutant flies been
treated and proved microbiota free, PBST (Phosphate buffer saline containing 0.01%
Tween20) was the vehicle control for restrictocin, DMSO (Dimethyl sulfoxide) was
the vehicle control for verruculogen, Bromocriptine mesylate, fumitremorgin C.
Survivals of no treatment, AB and axenic MyD88 flies injected with restrictocin,
verruculogen, Bromocriptine mesylate, and fumitremorgin C have similar trend.

All the experiments were triplicated at least.

87



Table

Table 1
head thorax
0% 50%
MyDss (0/30) (50/100)
Havan 42.5% 100%
y (17/40) (40/40)

abdomen

1%
(1/100)

95%
(38/40)

Table 1: Quantification of the hyphae exist positions after infection. The table shows the rate
of position which found fluorescent hyphae in both MyD&8 and Hayan mutant flies, D141-GFP

strain was used for injection.
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Chapter 2 An unbiased genome-wide RNAI
screen on Aspergillus fumigatus infections in

Drosophila melanogaster

Foreword

Chuqgin Huang and Rui Xu have collaborated on a large-scale unbiased screen
launched at SFHI to identify genes involved in host defense against some fungal and
viral infections. This represents a major undertaking of two SFHI teams and is by its
very nature a collaborative effort. Rui Xu has developed the 4. fumigatus infection
conditions and optimized various parameters in the pre-screen. He started the
large-scale primary screen and performed the first round of retests of the beginning of
the screen. Chuqin Huang was trained by Rui Xu. She took the primary screen over
and performed a substantial fraction of the retests described in this Chapter. As this is
a common project, it would make little sense for each to write a separate Chapter to
describe this screen. Rather, data have been pooled and the Chapter has been written

together.
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Introduction

Large-scale screens are at the heart of the power of Drosophila genetics and are
critical for a thorough understanding of a biological process by identifying the players
involved in it. Ideally, it should be genome-wide. This type of strategy, as it makes no
presupposition as to what type of genes might be involved in the process limits some
of the biases made in other approaches. When studying host defense to infections,
several endpoints can be chosen. For instance, first or second-generation screens were
monitoring the induction of the Toll and IMD pathways using reporter transgenes
(171, 172). One might also decide to monitor the microbial load. However, not all
pathogens are effectively tackled by the systemic immune response, a consideration of
special importance in the case of A. fumigatus, and the microbial load is technically
time-consuming to determine and again, not so relevant in the case of A. fumigatus.
Third generation screens monitor the survival to infection. The question asked is as
follows: is this gene required in host defense against this pathogen? This strategy was
not manageable when chemical mutagenesis was used, as it was too difficult to
genetically map a mutation using survival assays. One advantage of monitoring
survival is that it should allow us identifying genes involved in the host resistance and
resilience to infections. Monitoring death as an endpoint is less biased; however, one
should always keep in mind that there are many causes that lead to death and that a
line exhibiting an enhanced susceptibility may do so because of an indirect effect of

the mutation. In some cases, some mutant flies may succumb rapidly to the infection,

90



as for instance MyD&8 mutants after A. fumigatus challenge, even though it does not
play a major role in preventing the dissemination of the fungus throughout the body.
Conversely, a mutant that affects the dissemination of the fungal pathogen may
nevertheless succumb only slowly, as is the case for Hayan mutant flies (Chapter 1).
It is thus essential to have gained a good understanding of the basic biological
processes that underlie infection by a given pathogen. For instance, the first survival
screen performed at the genome scale used survival to ingested Serratia marcescens
as a read-out (71). A significant proportion of hits corresponded to "long-lived"
phenotypes in which mutant flies survived longer to the ingestion of these bacteria,
and about a quarter of those were related to metabolism. It was understood only later
that flies in this infection model succumb to the conjunction of the pathogen and of
starvation as the bacteria on the filter compete with flies for sucrose. Also, the
researchers were unaware of an important process, which takes place early on only for
a few hours, the extrusion of the apical cytoplasm of enterocytes followed by a rapid
recovery (85). An important limitation of screens using chemical mutagenesis or
transposon insertion lines is as follows. One third of genes are essential and thus there
are simply no null mutant adults, as the mutants succumb during development. To
bypass this problem, a powerful approach consists in expressing only at the adult
stage a transcript that will form an RNA hairpin designed to target specifically a given
gene by RNA interference. To this end, we have been using the UAS-Gal4 system,
which has been modified so as to allow controlling its activity through the

temperature of incubation of the fly line through the use of a thermosensitive Gal4
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repressor known as Gal80%. Several RNAI libraries are now available: two in Vienna
based on the dsRNA interference pathway (99), one in Japan, and one in the US based
on miRNA interference (TRiP lines), which was developed by Prof. Ni when he was a
post-doctoral researcher in the laboratory of Prof. N. Perrimon (173). As obtaining fly
lines from abroad in China may be unexpectedly difficult, and as the large-scale
screen requires thousands of lines, it was decided to start initially the screen with the
collection established by Prof. Ni at Tsinghua University. This collection contains
currently some 6400 lines. Limitations of the RNAI line strategy include off-target
effects, which are limited in the TRiP library, and a variable efficiency of
knock-down of target gene expression. Proteins that are very stable and thus have a
low turnover may also be difficult to affect significantly. Finally, this strategy rarely
allows uncovering unambiguously the genetic null phenotype. However, processes
that involve redundant homologous genes are unlikely to be missed and genome-wide

screens have yielded important results.
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Implementation of the screen

A large-scale screen mobilizes important human resources, time, and requires an
efficient organization to ensure optimized logistics. The ordering of a large number of
lines has also a cost. Thus, it makes sense to improve the output of the process by
testing multiple pathogens in parallel. Prof. Ferrandon's group is interested in
understanding fungal infections while that led by Prof. Peng focuses on viral
infections. Thus, two fungal pathogens have been selected: the medically relevant A.
fumigatus, which is not a major pathogen of Drosophila since it cannot kill wild-type
flies, and the entomopathogenic fungus Metarhizium anisopliae, which is used as a
biocontrol agent, of mosquitoes for instance. Importantly, the latter can infect flies by
crossing the cuticle once spores are deposited on its surface or can be introduced
through septic injury. Here, the first solution was chosen as it may be occurring more
often in nature, and that we will refer later to as “natural” infection. Three viruses
have been selected for testing in the screen, Drosophila C virus, a natural fly pathogen,
Sindbis virus, which can infect both invertebrates and vertebrates, and Dengue virus,
a medically-important arbovirus.

The genetic scheme used in the screen is shown in Fig. 1. The principle is to cross
several virgin females collected in a driver line stock that has been amplified to males
sorted from the library collection. The cross is made at 25°C for three days to ensure
efficient fertilization of the virgin females by males. The adults are then transferred to
another tube while the tube containing the eggs is moved to 18°C to bypass

developmental lethality by shutting off the expression of the driver line (the Gal80ts
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repressor is active), although some embryos that have begun their development at
25°C may already have been killed when essential genes are targeted, hence lowering
the amount of progeny in this case. Once development is achieved and that the adults
have hatched, the vials are moved to 29°C for five days prior immune challenge to
initiate the RNA interference (RNAi). At this step, flies are sorted and the males
discarded, as the assays are more sensitive when performed on females (M.
anisopliae), which are easier to inject and more resistant to injury. In the case of 4.
fumigatus, the fungus is sensitive to one of the preservatives added in the regular food,
in this case sorbitol. For this reason, since the flies were kept on regular fly food
before infection, they were transferred to tubes containing only a sucrose solution for
two days so that the sorbitol was washed out of the fly organism. After the infection,
the flies were transferred on fly food without sorbitol for the duration of the survival
experiment.

Even though the crossing scheme is in principle very simple as it involves a single
cross, it nevertheless requires an optimization of each single parameter that then need
to be put together and tested under real conditions. This is the reason why a pre-screen
step was first implemented. It helps training the investigators and identifying
problems that may not have been foreseen. One of its goals is also to establish the
maximal capacity of the organization in terms of the number of lines that needs to be
processed. The aim is also to establish an invariable schedule that will remain the

same throughout the duration of the screen.
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An important step is thus to establish a list of all of the parameters that are involved in
the screen, from ordering of the mutant stocks to the management of stocks once they
have been tested, including space and incubator issues (see below the section about

the technical aspects of the screen).
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Results from the screen

After the pre-screen, we refined the genetic scheme with more details (Fig. 2), and
then started the primary screen. A survival curve of a batch of flies with relatively few
lines assayed in parallel from the primary screen is shown as an example on Fig. 3.
We also did some retests during the primary screen to check the efficiency. In 25
months, we screened 6741 lines in the primary test, and performed 1154 retests
(Table 1, 2). 245 interesting hits were sorted from retests (about 20% confirmation
rate from primary test to retest), the degree of severity of their phenotype having been
scored from one to three stars. The genes scored at least two stars are considered to
give a strong phenotype. There are 57 genes with 2 stars (Table 3), 5 genes with 2.5
stars (Table 4), 9 genes with 3 stars (Table 5), and the remaining hits gave a weak
phenotype (Table 6). There are 151 lines that have a shortened life span and are likely
essential for viability, 87 lines sensitive to wound, and 671 lines for which the
phenotype was not confirmed (see Fig. 3 for examples of phenotypic categories
observed during the screen). Of note, we found CrebA as a strong hit in our screen.
Interestingly, a study of fly transcriptomic response to 10 bacteria was published right
after our discovery, in which CrebA was described as an important gene for resilience
to infection (174). This result partially validates our screen (Fig. 4). Rui Xu has
further validated the CycK hits and associated genes (Chapter 3) and Chuqin Huang
has performed a thorough work on the Mediator complex, several subunits of which

were picked-up in the screen (Personal communication).
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We made an overlap analysis to the hits obtained in the parallel screens with the
different microbes in this project, except for dengue virus which did not give any hit
in the retest so far (Fig. 5). To our surprise, the two fungi did not overlap much with
27 common hits, but around 1/5 of A. fumigatus hits, that is 36 genes, are overlapping
with Drosophila C Virus (DCV) hits. This implies that the host response to fungal
infection is very different between A. fumigatus and M. anisopliae. According to our
experience in fungal counts after infection, we found that A. fumigatus is not
proliferating much in the Drosophila body, in contrast to M. anisopliae that
proliferates intensely in the final 24 hours of the infection. A. fumigatus virulence is
likely to depend more on its secreted secondary metabolites and their mycotoxins than
on colonization, perhaps explaining the difference we observed. In addition, the RNAi
screen was done by injection for A. fumigatus, although M. anisopliae infection was
performed by natural infection. This may also lead to a different behavior from the
host response.

Gene ontology (GO) analysis of 4. fumigatus hits shows that the regulation of
transcription by RNA polymerase Il is the strongest related process, followed by actin
filament-based process (Fig. 6A). Of note, the enrichment of genes involved in
regulation of transcription by RNA polymerase II does not simply reflect the
identification of Mediator complex subunits, since only two of them were found as
hits through this screen. We got some groups that were expected, like regulation of
response to stress, but few genes involved in classical immunity (bona fide immunity

hits were Grass and Dif). The actin filament-based process, membrane trafficking and
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endocytosis may be related to cellular immunity. Regulation of transcription and
transport of small molecules would allow the secretion of soluble antifungal effectors.
The fact we did not find many immunity-related genes can be due to the redundancy
of the effectors, meaning that the knockdown of one of them would not affect enough
the global immune response of the host. Another possibility is that we may have
identified some genes involved in new resilience mechanisms, that would make them
interesting to further study.

In the few common genes between the two fungi, we can find Grass, a serine protease
involved downstream of GNBP3 and PGRP-SA in the activation of the Toll pathway,
that was expected as Grass is playing a role downstream of fungal recognition factors
(Fig. 5B). Two genes, Splenito and CG34404, are involved in the wingless (wnt)
pathway: this signaling pathway may be part of a yet uncharacterized antifungal
mechanism that could be further analyzed in the context of fungal infection. An
inhibitor of the Jak-Stat pathway, Su(var)2-10, is also involved in both fungal
infections (Fig. 5B).

Finally, the GO analysis also showed there is some difference between the hits giving
strong and weak phenotypes. Hits with a strong phenotype are more related to
regulation of transcription by RNA polymerase II, multicellular organismal process,
locomotion, and actin filament organization (Fig. 6B), but membrane trafficking, stem
cell population maintenance, protein phosphorylation related genes are more
important for the hits with a weak phenotype (Fig. 6C). These weak signals may be

worth pursuing. For instance, there are only two active types of stem cells in the adult
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female fly, stem cells in the gonads and intestinal stem cells. It may be worth
determining whether A. fumigatus infection impacts oogenesis and whether it may
affect the homeostasis of the intestinal epithelium by measuring the proliferation rate

of intestinal stem cells.
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Conclusions

The results presented in this Chapter should still be considered as tentative as more
confirmations are needed to validate the hits. The degree of validation shall depend on
the importance of the mutant as determined from the severity and reproducibility of
the phenotype as well as the biological process in which the hit is likely to be
involved. For instance, hits affecting the nervous system may be especially interesting
in that they may mediate the resilience to fungal mycotoxins that target the host
nervous system. Independent confirmation using other mutants, including
CRISPR-Cas9 null mutants if the gene is not essential, and if possible genetic rescue
by a wild-type copy of the gene carried on a transgene will be central to the final
validation process, using specific-pathogen free lines to exclude a susceptibility to an
opportunistic infection. A thorough phenotypic analysis will be pursued on the most
interesting hits, including determining the susceptibility to other pathogens,
determining whether the Toll pathway is impacted or not, whether the mutants are
sensitive to injected mycotoxins, investigating the fungal load, determining the tissue
in which the hit is important using tissue-specific drivers, e.g., using neuronal,
hemocytic, or fat body-specific drivers of the UAS-RNAI transgene.

With these limitations in mind, one striking result is that flies with an apparent intact
immune system as we understand it today are sensitive to A. fumigatus infection.
They may affect resilience to infection rather than resistance. When placed in the

framework of our current understanding of A. fumigatus infection in Drosophila, that
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is that resilience to toxins is a critical host defense, it will be important to determine
whether these mutants are able to withstand the injection of mycotoxins.

At present, the screen has essentially tested the Tsinghua Trip collection from Prof. Ni.
As more lines have also been generated in Japan, and as all lines are centralized in
Boston and then made available through the Bloomington stock center, the current
effort is to obtain these lines so as to exhaustively test this resource. We shall however
be far from saturation, that is from having tested each gene of the genome.
Furthermore, some important host defense processes may be difficult to identify
through RNAI analysis, for instance if it involves stable proteins. Thus, it will always
remain a possibility that we have missed an essential host defense system.
Nevertheless, the more lines will have been screened, the more valuable this resource
will be to understand host defense against fungal infections.

In the long term, the most interesting hits will need to be tested in a murine infection
model of invasive aspergillosis if the corresponding gene has been conserved during
evolution. Even though the adaptive immune system is able to generate antibodies
that may neutralize the action of antitoxins, it is however a process that may be too
slow to efficiently fight invasive aspergillosis, especially in neutropenic patients. Thus,
it is a stimulating prospect that an innate resilience mechanism against mycotoxins
may have been conserved during evolution and that our large-scale genetic approach

may help uncover it.
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Technical aspects of the screen

In the following, we describe in detail how the screen was organized and give the
parameters that have been chosen to implement the screening strategy following the
pre-screen. As the logistics of the screen are important given the number of lines
analyzed and the five infection screens performed in parallel, fly handling (stock
ordering and maintenance, collection of virgin females, genetic crosses) was
essentially performed by a highly competent team of technicians and the actual
infections, as well as data analysis and decisions about whether a given line should be
retested or considered to be negative in the primary test, were performed by students

distributed in distinct teams according to the tested pathogen.

Technical details and Organization:

1. Three males of UAS-RNAI flies with 6 Ubiquitin-Gal4,tub-Gal80" virgins per
tube were crossed at 25 °C, this on 4 tubes in parallel. After 3 days, the adults were
transferred into new tubes kept at 25°C, whereas the tubes containing the offspring of
the cross (eggs and first to second instar larvae) were placed at 18°C. The adults were
transferred an additional time so as to obtain in total three batches, the first one being
used for actual test and the two other ones as back-ups kept at 18°C. Each batch of the
primary test included usually about 600 random lines. Since 4 tubes were needed for
each line, each tube with 6 virgins, 14,400 Ubiquitin-Gal4,tub-Gal80"* virgins were

needed per batch each week, a massive undertaking.
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2. After 3 weeks at 18°C, most of the pupae hatched. 25 females were sorted in five
vials, one per pathogen to be tested in the primary screen, which did not include any
controls to make it manageable. 125 females were required for retests of a given
pathogen altered survival phenotype since this time three survival to infection were
performed in parallel; also, one uninfected control was added to determine if the gene
is essential for survival, and another one additional control in which flies were
injected with buffer to assess whether the gene might be required to withstand the
effects of a wound. Each batch of primary test involves 600 lines, so 25 x 5 x 600 =
75,000 flies were needed to be sorted for each batch. Thus, more than 750,000 flies
have been sorted for the primary test up to now. The number of retested lines depends
on the results of primary test, so it will be tens to hundreds of lines for each pathogen.

3. The next step consisted in placing the sorted RNAi mutant flies at 29 °C for 5
days to express the RNAI transgene and to leave it the time to act on its target genes,
at least those with a significant protein turnover during this period. In the case of 4.
fumigatus, the flies were kept for three days on fly food, and then for two days on 100
mM sucrose solution deposited on filter paper. These specific tubes were prepared by
the members of the 4. fumigatus group.

4. The A. fumigatus suspension needs to be prepared fresh, at most 6h prior to
injection; therefore, at least 10 plates of A. fumigatus were always prepared, 5 for
direct use, and the others as backup. Furthermore, frozen conidia were kept at -80 C
as the backup. The advantage of this strategy is that the conidia were in an excellent

physiological state. However, a drawback of this approach is that the virulence of teh
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conidia may vary according to the batch. When signs of degeneration or
contamination of our A. fumigatus stock were detected, the cultures were started
afresh from novel frozen aliquots of the fungus.

5. 600 lines were injected in one week, the infected flies were then placed again on
fly food, and then their survival was recorded each day for the following 2 weeks.
During the survival recording, fly food needed to be changed every 3 days. Each
batch of primary screen needed 600 x 5 = 3,000 small vials of food. UAS-mCherry
crossed with Ubiquitin-Gal4, tub-Gal80® virgins constituted the wild-type (negative)
control for all pathogens and were prepared by the technicians. In contrast, MyD88
flies (the positive control) were prepared by the fungal screening team.

6. The survival data were entered in a computer and analyzed after drawing of
survival curves. According to the results of pre-screen, 4. fumigatus cannot kill
wild-type flies, so it was relatively easy to judge if the lines were interesting or not by
monitoring their death rates after two weeks. Actually, more than 80% of the tested
UAS-RNAI lines displayed a survival rate inferior to 80%. Sometimes, the wild-type
control flies also succumbed at a 10-30% rate, reflecting a long observation period of
two weeks after injection. In the pre-screen, around 10% lines got a survival lower
than 50%. In addition, 50% is a classical threshold for survival, so we set 50% as the
threshold for deciding whether a line should be retested.

Note: Step 1, 2 were performed by the technician team whereas the other steps were

performed by members of the different pathogen testing groups.
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Logistics:

1. UAS-RNAI lines ordering. Prof. Ni’s laboratory prepared 200 lines per week
randomly from their collection and shipped the lines to SFHI. Technicians received
and took care of them, checked their condition and recorded the lost lines to be
reordered. When some shipments got lost during shipment, some technicians then
went to Beijing to transfer the stocks with them.

2. Maintenance of transgenic fly stocks. After the UAS-RNAi lines passed
quarantine, the technicians kept them at 18 ‘C and flipped the stocks each month.
There raised a large stock of Ubiquitin-Gal4,tub-Gal80® flies in parallel, one at 25°C
and another other one in 18 °C as backup. Each stock consisted of around 500 big
vials, the quantity necessary to harvest the required numbers of virgins each period of
three weeks. Each month, some stocks were checked for the absence of known
pathogens: hundreds of samples were collected randomly from both UAS-RNAL1 lines
and Ubiquitin-Gal4,tub-Gal80" stock, then checked for the absence of Drosophila C
virus, Nora virus, microsporidia by RT-qPCR, and Wolbachia by classical PCR
coupled to agarose gel electrophoresis. The Trip line stocks were usually
pathogen-free, except for the Nora intestinal virus. The Ubiquitin-Gal4,tub-Gal80'*
line remained pathogen-free over the course of the screen.

3. Supply of fly food. Each week, the whole screen project necessitated at least
15,000 small vials and 1000 big vials to be prepared, that is, more than 100 I of liquid
fly food needed to be prepared. One worker made the food, some technicians and

students helped stoppering the vials. All food ingredients were ordered from the same

105



supplier to keep food quality as consistent as possible during the screen.

4. Dissecting microscopes were used both for fly sorting and for the injection of the
pathogens; four dissecting microscopes were dedicated to sorting, and there was at
least one dissecting scope for each pathogen. Of note, fungal and viral infections were
performed in separate, dedicated rooms. Four dissecting microscopes were present as
a backup. There were two Nanoject II Auto-Nanoliter Injectors to perform the
injection for each of fungal or viral pathogen.

5. To raise the flies and to perform infections, incubators at three temperatures (18,
25, 29 °C) were needed. Five 400L incubators were used to prepare raise the fly
stocks, two of them at 18 °C, one at 25°C, one at 29°C, and one as a backup. These
incubators were located in the storage rooms. Two incubators at 29 °C were required
to incubate the infected flies, one for each infection room (fungus and virus).
Technicians prepared the flies in a single room, and stored the

Ubiquitin-Gal4,tub-Gal80® and UAS-RNAI flies in a dedicated 18°C room.

Quality control

1. Primary screen with either fungi or viruses: survival curves of the bulk as well as
that of the positive (immunodeficient flies) or negative (wild-type flies) controls. Of
note, as in many immunity large-scale screens, these controls were sometimes erratic;
in this case, the mean survival of the tested lines provided an independent parameter:
as the lines were random, the expectation is that the average of many lines will

represent a measure of the wild-type situation. This also allowed to mitigate the
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effects of varying pathogen virulence from batch to batch. In the case of retests, this
measure could not be used as the lines were no longer random as they were selected in
the primary screen. Thus, for many batches, we used two distinct wild-type lines, one
with a UAS-mCherry-RNAi transgene, which we often found to be somewhat
sensitive to the infection, and the other our w% reference stock.

2. Analysis of survival curves: the criteria set for selection a line as a retest
depended on the pathogen (Af: % of surviving flies at day 14 [wt flies should not be
killed]; Ma: LT50 as compared to average LT50 of the batch)

3. Retest line with 3x20 flies in parallel, including noninfected controls and
mock-injected/infected (PBS for A. fumigatus, mock infection with just water:
vortexing, going through drying with a vacuum for M. anisopliae “natural” infection).

4. Definition of criteria for analysis of retests: comparison to wild-type negative
controls (mCherry, A5001: multiple samples), susceptible positive control (multiple
samples, at least 5). Most important, the reproducibility with primary screen data was
deemed essential, even if the phenotype was weak.

5. Perform a second round of retests, analyzed as above: the important parameter is
reproducibility.

6. Procedure to validate confirmed lines after several retest rounds: i) sequence the
insert to check that the targeted gene is indeed that reported on the line name and that
there was no swapping of stocks; to check the vector used for transformation PCR
using appropriate primer set as described below will be performed. The sequence of

half of the hairpin will be Blasted to check the location of the target and the sequence
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will also be compared to sequences provided either by Prof. Ni (Excel file) or
available on the TRiP site (http://fgr.hms.harvard.edu/fly-in-vivo-rnai). Finally,
off-target predictions or each transgenic line of a selected candidate will be checked.
For VALIUM]1, the primers are:

F: 5'-CGCAGCTGAACAAGCTAAAC-3'

R: 5'-CGACTGCGAATAGAAACTCAC-3'

For VALIUM10, the primers are:

F: 5'-CGCAGCTGAACAAGCTAAAC-3'

R: 5'-CTAGACTGGTACCCTCGAATC-3'

For VALIUM?20 and VALIUM21 the primers are:

F: 5'-CGCAGCTGAACAAGCTAAAC-3'

R: 5’>-TAATCGTGTGTGATGCCTACC-3’

For VALIUM?2? the primers are:

F: 5’-GGTGATAGAGCCTGAACCAG-3’

R: 5’-AATCGTGTGTGATGCCTACC-3’

7. For weak phenotypes, if an important off-target effect is predicted, another
independent RNAI transgene will be tested (optional step: only if not too many); the
weak phenotypes are not a priority for analysis, unless many of them are found
belonging to a same pathway/biological process. This list is however useful for Gene
Ontology analysis to pick up weak signals. Also, we shall look whether the genes are
evolutionarily conserved. In the long term, it will be worth determining whether

human patients have SNPs close to their homologues (GWAS analysis).
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8. For the strong phenotypes, confirm the phenotype by using other independent
RNAI lines or existing mutants. Prioritization will take into account on a number of
considerations: besides the severity and reproducibility of a phenotype, the intrinsic
interest of the gene/biological process needs to be assessed. A first step is to look the
gene data on Flybase (when dealing with "metabolic" genes, it is not always easy to
determine the accurate biological function; by looking for human homologues in
human databases through the links provided by Flybase: HUGO or G2F, then use
GeneCards, GeneAtlas. One will also have to take into consideration other available
data e.g., in-house RNAseq data for M. anisopliae and E. faecalis; viruses: Prof.
Jean-Luc Imler has performed numerous transcriptomics analyses for many viruses).
Also, one will need to check the data from other laboratories, for instance by checking
the Reference section of Flybase (this section often indicates Supplemental data/tables
of articles). The phenotype in the other parallel screens will also be looked at to gain
more insight into the gene’s function. If the gene is not obviously lethal,
CRISPR-Cas9 mutants from our facility will be ordered to check the phenotype.
Besides assays fitted to the nature of the gene, it will be a good policy to
systematically investigate the survival to other pathogens not included in the screen,
such as Gram-negative bacteria. It will also be important to determine whether
signaling pathways are affected and check whether the microbial load is altered, an
indication as to whether the gene is involved in resistance or resilience. For genes
studied in depth, overexpression and rescue will be desirable as well as determining

which tissue/cell type is critical for the gene’s role in host defense.
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9. As the outstanding result of the analysis of 4. fumigatus pathogenesis is the
importance of the resilience to mycotoxins, it will likely be worth to perform a
mini-screen on the strong phenotype mutants to determine which ones are sensitive to
the injection of a couple of mycotoxins, restrictocin as it is not a secondary metabolite
and cleaves a ubiquitous target, rRNA, and fumitremorginC as it targets the nervous

system. It will be a strategical priority to investigate hits from this secondary screen.
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Figure legends

Figure 1: Schematic overview of the screen strategy

Figure 2: Scheme of the organization and logistics of the screen

The actions boxed in white were performed by the team of technicians in charge of
handling the logistics of the fly stocks and of making the crosses whereas the
infection parts were handled respectively by the fungal and viral teams of

investigators.

Figure 3: Example of one batch of primary screen. Af 250 conidia/fly injection,
blue curves are negative controls, red curves are positive controls, green curves are

candidates for retests, black curves are lines without phenotype.

Figure 4: Examples of the different categories of phenotypes encountered during
the screen

A. Example of the phenotype of sensitivity to wound: the control flies injected with
the PBST buffer die about at the same rate as infected flies; Af 250 conidia/fly
injection.

B. Example of the lethal phenotype: the uninfected and buffer-injected controls
succumb at the same rate as the infected flies, thus precluding an analysis of the

function of the gene in host defense; Af 250 conidia/fly injection.
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C. Example of a weak phenotype line: only 50% of the flies succumb after two weeks
post-challenge; as this phenotype is weak but reproducible, it was awarded a grade of
one star. Af 250 conidia/fly injection.

D. Example of a strong phenotype line: the flies succumbed even faster than the
positive MyD88 control; as the buffer-injected control also succumbed to the injection,
but at a much slower rate, this line has been graded only as a two star. Af 250
conidia/fly injection.

E. Example of a line exhibiting no phenotype; Af 250 conidia/fly injection.

Figure S: Venn diagram of different pathogens overlap analysis.
A. The overlapping hits between A. fumigatus (Af), M. anisopliae (Ma), Drosophila C
virus (DCV), Vesicular Stomatitis Virus (VSV).

B, C. The overlapping genes between Af, Ma, DCV and VSV are listed in the tables.

Figure 6: Gene ontology analysis

The Metascape online tool had been used to perform Gene ontology analysis (175)

A. Gene ontology analysis of all 245 interesting hits pooled together regardless of the
strength of their phenotypes.

B. Gene ontology analysis of 68 strong phenotype hits ranked with a grade of at least
two stars.

C. Gene ontology analysis of 177 weak phenotype lines graded less than two stars.
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Table 2: Schedule of the screen.

Table 3: Summary of the results of the A. fumigatus screen.

The confirmation rate of lines kept for retest was 21%; about 18% of the lines
analyzed during the primary screen were kept for retests. This apparent low degree of
stringency in the primary screen allows nevertheless identifying genes with a weak
survival phenotype, and occasionally some with a stronger phenotype due to the
variations in survival from experiment to experiment. The false negative rate is
somewhat difficult to estimate. One of us, Chuqin Huang, has focused on the genes
encoding the Mediator complex subunits for a thorough genetic analysis. By
thorough testing in multiple survival experiments, we have identified 19 genes with
a reproducible sensitivity to A. fumigatus infection that were missed in the primary
screen thus yielding a rate of 16% (# Med subunit genes missed in the primary

screen/# of subunit genes screen x 100)

Table 3: List of hits with rank of two stars

Table 4: List of hits with rank of two and a half stars

Table 5: List of hits with rank of three stars

Table 6: List of weak hits with rank lower than two stars
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Figure 2
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Figure 3
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Figure 5
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Ras guanyl-nucleotide exchange factor activity

Cyclin-dependent kinase 9 involved with CyeT in ENA polymerase IT
elongation control

Leucokinin receptor; GPCR. with the product of Lk as alizand. It signals
throughintracellular calcium, andis implicated in ion regulation by the
Malpighian tubules andin feeding control

Nifl; transcription factor thatinteracts with the product of Keapl to regulate
the activation of genes by oxidative stress

alpha subunit of the mitochondrial FIF) ATP synthase complex (complex V).
the final enzyme of the oxidative phosphorylation pathway

Human ortholog= TEXO (testis-expressed )

Uncharacterized protein; High mobility group box domain superfamily
Juvenile hormone Inducible-21: L-amino acid transmembrane transporter
activity

Major facilitator superfamily, sugartransporter-like; human ottholog = 8V2A
Maltase A7

Zinc finger CIJH2 -type

Hormone receptor 4; nuclear receptor that acts bothupstream and downstream
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Table4 & 5
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Chapter 3 Insights of Cyck/Cdk12-Nrf2 axis

Introduction

The expression of genes in higher eukaryotes is not regulated only at the initiation
step. Indeed, many genes are poised for transcription and are actually paused at the
beginning of the transcription unit through an interaction with the NELF complex
(176). RNA polymerase 2 (Polll) elongation is also subject to regulations that are
largely mediated through its C-terminal domain (CTD). The CTD is composed of
dozens of a so-called heptad repeat YSPTSPS. When recruited to a gene, the Polll
CTD is initially hypophosphorylated, then gets phosphorylated on Ser 5. Ser2
phosphorylation is required for productive elongation. Two complexes are required
for the phosphorylation of Ser2 of the heptad repeats. The first one is composed of
Cdk9 complexed to CycT and some models posit that this kinase works for
transcription in the 5' moiety of the transcription unit. This phosphorylation step
releases Polll from its paused state. CycK-Cdk12 would then further phosphorylate
Ser2 during subsequent elongation (177, 178). However, it appears that while the
action of the Cdk9/CycT complex is important for all transcripts, the Cdk12/CycK
complex may be required in mammalian cultured cells for the production of genes
with long transcripts and containing tens of exons (179). An initial study reported that
several genes of the DNA repair pathway such as BRCA2 and FANCI are less

expressed when the mammalian Cdk12/CycK complex is targeted by RNAi. Indeed,
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the Cdk12/CycK complex is required for genomic stability (179, 180) and is involved
in the development of cancers, and depending on the context, it may either act as an
oncogene or as a tumor suppressor (181). An interesting study performed on
Drosophila cultured cells aimed to identify through an RNAi approach the kinases
that are involved in mediating the effects of the Nrf2 transcription factor, originally
identified in flies as Cap and collar (Cnc), a gene encoding multiple isoforms (182).
Cdk12 was the strongest hit of this limited screen (183). Interestingly, RNAi
knock-down of CycK yielded a phenotype highly similar to that of Cdk12. Indeed, the
complex is required for the expression of several validated transcriptional targets of
Nrf2. Thus, there is a dual regulation of Nrf2 target genes: first, by the transcription
factor itself at the initiation of transcription step, and second by the Cdk12/CycK
complex at the elongation step. Of note, it is not clear whether the Cdk12/CycK
complex is itself regulated nor how it recognizes its limited set of target genes (about
50 for activation and 150 for repression). As described further below, Nrf2 is the
major mediator of the response to reactive oxygen species (ROS); the investigators
analyzed by RNAseq gene expression in Drosophila cultured cells after a challenge
with the strong oxidizer paraquat, in the presence or absence of the Cdk12/CycK
complex. They identified 43 genes that encode proteins involved in antioxidant
activity, including those with glutathione transferase or peroxidase activity,
peroxiredoxins, or thioredoxin peroxidase activity (183). The study did not determine
however whether the DNA repair pathway was affected in cells not treated with

paraquat. Interestingly, we have performed an extensive RNAseq experiment at
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different time points of infection by M. anisopliae under a natural infection or septic
injury paradigm. We find that most of the genes identified by Li ef al. are induced
throughout the infection obtained through the injection of conidia but not during
natural infection. Furthermore, genes involved in DNA repair do not appear to be
induced during the infections.

Nrf2 (nuclear factor erythroid 2 related factor 2) is a bZIP transcription factor (184)
that has been intensively investigated because of its major role in the response to
oxidative stress (more than 1,000 references). It orchestrates the regulation of genes
involved in cell cycle homeostasis, cytoprotection, innate immunity, and
tumorigenesis. It also plays a role in inflammation-related disorders and Nrf2-null
mice are highly susceptible to LPS-induced sepsis, an effect partially mediated by
enhanced NF-kappaB and IRF3 signaling (185); Nrf2-binding sites have been found
in the promoters of pro-inflammatory cytokines. Few studies have documented a role
for Nrf2 during bacterial infections (186, 187). They tend to highlight that the innate
immune response is enhanced in Nrf2 null mutant mice, which nevertheless succumb
sooner to infection due to greater tissue damage. As regards viral infections, the
situation is more contrasted and depends on the virus under consideration. Vesicular
stomatitis virus is sensitive to ROS stress in macrophages (188, 189). ROS may also
act indirectly by enhancing innate immune signaling (190). Herpes Simplex Virus 1
brain infections induce noxious ROS production by immune cells; stimulating the
Nrf2 pathway by the plant compound sulforaphane alleviated neurotoxicity associated

to ROS production by microglia cells (191). HIVs gp120 and Tat induce ROS in
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endothelial cells and its associated toxicity can be mitigated by treatment with
N-Acetyl-Cysteine amide (192). In alveolar macrophages of the lung, HIV infection
through gp120 and Tat inhibits Nrf2 activity and thereby impairs their phagocytic
function. Again, the induction of Nrf2 activity by sulforaphane treatment improved
phagocytic function (193). The hepatic viruses HBV and HCV also induce oxidative
stress through some of their regulatory proteins, resulting in the induction of some
Nrf2 target genes. In the case of HBV, this results in the decreased production of the
immunoproteasome, hence promoting viral proliferation by protecting the cell from
ROS stress (194). HCV induced the Nrf2 pathway both through ROS-dependent and
ROS-independent pathways that involve multiple signaling pathways including ERK,
p38, PKC, PI3K, and casein kinase 2 (195). Furthermore, HCV promotes autophagy
by triggering the ROS-induced phosphorylation of the autophagy adaptor p62.
Phosphorylated p62 binds to KEAP1 and releases Nrf2, which is however kept
inactive by being trapped to the ER by its binding partner Maf (see below). Again,
this mechanism promotes viral proliferation (196). In summary, Nrf2 modulates rather
negatively the innate immune response but promotes tissue repair, a resilience
function. Viruses may highjack this system to their own advantage.

Mechanistically, Nrf2 is targeted for ubiquitin-mediated degradation by the
proteasome by the KEAP1 cytoplasmic protein, which anchors it in the cytoplasm
where Nrf2 is therefore present at low levels as long as KEAPI1 is active. Upon
exposure to an oxidative stress or to electrophiles, KEAP1 dissociates from Nrf2 that

then binds to a small bZIP musculoaponeurotic fibrosarcoma protein Maf and
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migrates to the nucleus to initiate transcription of its target genes, including KEAP1,
which contain a consensus binding site in their promoters know as ARE (antioxidant
response elements) (182). Nrf2 can also be regulated once in the nucleus through a
GSK-3B-dependent process that leads to its nuclear export (197). Of note, depending
on the KEAP1 Cysteine residues targeted, at least five distinct categories of natural
products (including sulforaphane) have been shown to trigger Nrf2 activation (198).
Because KEAPI is also forming a complex with PGAMS5 and regulates a novel form
of ROS-triggered, caspase independent cell death known as oxeiptosis (199), much
promise is held by compounds that would specifically disrupt the interaction between
KEAP1 and Nrf2, therefore stimulating anti-oxidant defenses. One must however
remain aware that whereas ROS at high doses are detrimental by affecting lipids,
proteins and nucleic acid, many physiological processes depend signaling mediated
by low levels of ROS, including NF-kappaB signaling.

In the course of the large-scale RNAi screen based on monitoring the survival to an
injection of some 250 Aspergillus fumigatus conidia, one of the first hits we obtained
was CycK, even though its phenotype was not thoroughly established as the mutant is
semi-lethal. Here, I report my investigations on this gene and its potential function in
mediating the Nrf2-dependent response to ROS. An open question is whether ROS are

generated during the course of the 4. fumigatus infection.
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Results

Susceptibility to A. fumigatus infections

We have found that flies in which the CycK gene is targeted by a RNAI transgene at
the adult stage rapidly succumb to A. fumigatus infection, as fast as the Toll pathway
mutant MyDS88 (Fig. 1A). In retests, it became apparent that CycK flies that have been
injected with PBS + 0.01% Tween20 as a control also succumb, like noninfected
mutants, but at a slower rate than infected flies. Thus, this gene is also required for the
viability of adult flies. An enhanced mortality has also been detected using M.
anisopliae or DCV in the parallel screens led at the Sino-French Hofmann Institute. In
these cases however, it is difficult to determine whether this increased susceptibility to
infection reflects a bona fide effect or results just from the addition of the infection to
that of the frailty of the CycK mutants. Interestingly, the 4. fumigatus fungal load did
not increase in these mutants, as is the case for MyD&8 (Fig. 1B-C). Thus, our
preliminary data suggest that CycK may be involved in resilience to at least some
fungal and viral infections. CycK functions in a complex with the Cdk12 kinase.
Cdk12 has been tested in the primary screen and does present a similar phenotype of
enhanced susceptibility to A. fumigatus or VSV infection. One preliminary retest
experiment suggests that the Cdk12 and Nrf2 mutant is also sensitive to A. fumigatus
infection (Fig. 2, 3). Of note, in both cases the uninfected and buffer injection controls
did not succumb at all. Thus, it is unlikely that the phenotype we observe is due to an

off-target effect of the shRNA transgene.
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Susceptibility to mycotoxins

In a preliminary series of experiments, we found all the CycK, Cdk12, and Nrf2
mutant flies to be sensitive to DMSO, thus making the interpretation of any
mycotoxin dissolved in pure DMSO difficult. We used the only toxin, restrictocin,
which is soluble in an aqueous environment, namely PBST, to test the mutant flies.
Only the Cdkl2 RNAi mutant displayed a clear cut sensitivity phenotype, although it
was somewhat delayed (Fig. 5). For CycK and Nrf2, we still need to do a dose
response test to find the optimal concentration to perform a relevant survival

experiment to be able to conclude on their sensitivity to restrictocin (Fig. 4, 6).
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Discussion

As described in chapter 1, we are just beginning to study resilience in animals. In
Drosophila, besides studies on intestinal host defenses, little is known in the context
of systemic infections (200, 201). Indeed, a couple of genetic approaches performed
using a natural infection paradigm by M. anisopliae identified only one line that
appeared to have a lessened resilience (162). One of the reasons for implementing the
large-scale genetic screens was to identify lines displaying an altered resilience. As
mentioned in chapter 2, we have so far identified one such gene in our A. fumigatus
screen, CrebA, which has just been reported to be involved in resilience to bacterial
infections (174). This gene was however not picked up in our M. anisopliae natural
infection survival screen and it is an open possibility that this transcription factor
plays a role in host defense only against pathogens introduced through a septic wound.
Our preliminary data suggest that the CycK/Cdkl12 genes are likely involved in
resilience to at least A. fumigatus and VSV infections. According to these data, our
hypothesis is that ROS are generated during the infection and that the CycK/Cdk12
complex will be required to mediate an anti-oxidant resilience response that will limit
the damages exerted directly by the pathogen virulence factors or more likely
indirectly via the host's own immune response. We further suppose that Nrf2 is also
involved in this response by initiating the transcription of genes with anti-oxidant
activities while the CycK/Cdk12 genes would act as described by controlling the

transcription elongation of Nrf2-regulated genes as well as other genes that remain to
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be identified.

When assessing the literature on ROS and infections, it appears that most of the work
has been performed in cell culture models with an emphasis on the role of the ROS
burst upon phagocytosis of bacteria or fungi. In this case, the link with the physiology
of the whole organism has hardly been studied. As regards viruses, the situation
appears to be highly dependent on the virus under study. It is striking that even though
several studies the existence of a ROS response to viral infections, the molecules
involved in generating this ROS burst have mostly not been identified. It is thus not
clear how cells cope with a ROS exposure that is poorly delineated. While the
antioxidant response and the role of Nrf2 has attracted considerable attention, there is
hardly any specific emphasis to understand how it plays a role in resilience at the
level of the organism during infections. A link between CycK/ Cdk12 and Nrf2 has
only been established in Drosophila cell culture and validated to some extent in vivo
by considering the response to ROS exposure and not to infection (183). We aim in
the future to use the full power of the Drosophila model organism to study in detail
these issues. A strong asset is the ability to test rapidly several conditions and to move
easily from the level of the cell or tissue to that of the whole organism. Thus, one
major original point is the establishment of a link between CycK/Cdk12 and Nrf2 in
the context of infection. A second outstanding merit of the project is the parallel
investigation of a fungal and a viral pathogen. Finally, the combination of reporter
transgenes for ROS or antioxidant genes and functional approaches by tissue-specific

RNAIi will provide an unprecedented glimpse on how ROS exposure arises during

136



infections at the whole organism level. In addition, our genetic tools should allow us
to define how oxidative conditions are triggered during viral infections.

In Drosophila, Nrf2 has a second function. It appears to be a major regulator of the
detoxification response induced by exposure to xenobiotics (202). It is not known
whether the CycK/Cdkl12 complex is also involved in this second function. Our
preliminary experiments yield somewhat disparate results: Nrf2 does not seem to be
sensitive to the action of restrictocin; this result needs to be reproduced while insuring
that there is indeed an Nrf2 phenotype that should be assessed in parallel: induction of
some specific cytochrome P450 genes after exposure to xenobiotics and the most
important, susceptibility to A, fumigatus. The CycK data cannot be interpreted as the
mutant lies were too sensitive to buffer injection in this experiment. Finally, the

enhanced sensitivity of Cdk/2 RNAi mutants needs to be confirmed.
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Material and methods

All the material and methods are the same to the corresponding parts in chapter 1 and

2.
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Figure Legends

Figure 1: Infection traits of Ubi Gal4Gal80>CycKR~Ai mutant flies

A. Survival of Ubi Gal4Gal80>CycKRNA! mutant flies after the injection of 250 Af
conidia per fly; there is a significant difference between not injected (NI) and
PBST-injected control (PBST) on the one hand and A4. fumigatus infected (Af) Ubi
Gal4Gal80>CycK®Ai flies on the other (P < 0.0001). Data were analysed using
log-rank test.

B. Fungal load in different lines after the injection of 250 Af conidia per fly.

C. Fungal load upon death in MyD88 and Ubi Gal4Gal80>CycK®NA! mutant flies, Af
250 conidia/fly injection, there is significant difference between Oh and FLUD in
MyD88 (P < 0.0001) , but not in Ubi Gal4Gal80>CycKR®NAi (P = (0.3375). Data were
analysed using Mann-Whitney test.

Figure 2: Survival of Ubi Gal4Gal80>Cdk12R~Ai mutant flies in retest

Survival of Ubi Gal4Gal80>Cdk12®NA! mutant flies after the injection of Af 250
conidia per fly; there is a significant difference between not injected (NI) and
PBST-injected control (PBST) on the one hand and A4. fumigatus infected (Af) Ubi
Gal4Gal80>Cdk12®NAi flies on the other (P < 0.0001) .Data were analysed using
log-rank test.

Figure 3: Survival of Ubi Gal4Gal80>Nrf2RNAi mutant flies in retest

Survival of Ubi Gal4Gal80>Nrf2®NA mutant flies after the injection of Af 250 conidia

per fly; there is a significant difference between not injected (NI) and PBST-injected
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control (PBST) on the one hand and A. fumigatus infected (Af) Ubi
Gal4Gal80>Nrf2RNAi flies on the other (P < 0.0001). Data were analysed using
log-rank test.

Figure 4: Survival of Ubi Gal4Gal80>CycKR™ mutant flies after the injection of
restrictocin

Survival of Ubi Gal4Gal80>CycK®NA! mutant flies after the injection of 1 mg/ml, 4.6
nl per fly. There is no significant difference between PBST-injected control (PBST)
and restrictocin-injected (R) Ubi Gal4Gal80>CycKRNAi flies (P = 0.1100). Data were
analysed using log-rank test.

Figure 5: Survival of Ubi Gal4Gal80>Cdk12RNAi mutant flies after the injection
of restrictocin

Survival of Ubi Gal4Gal80>Cdk12®NA mutant flies after the injection of 1 mg/ml, 4.6
nl per fly. There is a significant difference between PBST-injected control (PBST)
and restrictocin-injected (R) Ubi Gal4Gal80>Cdk12RNAi flies (P = 0.0003). Data were
analysed using log-rank test.

Figure 6: Survival of Ubi Gal4Gal80>Nrf2RNAi mutant flies after the injection of
restrictocin

Survival of Ubi Gal4Gal80>Nrf2RNAi mutant flies after the injection of 1 mg/ml, 4.6
nl per fly. There is no significant difference between PBST-injected control (PBST)
and restrictocin-injected (R) Ubi Gal4Gal80>Nrf2RNAi flies (P = 0.4386). Data were

analysed using log-rank test.
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Figure 3
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Chapter conclusions

The goal of this thesis was to advance our current understanding of fungal infections,
and especially those mediated by 4. fumigatus. The initial expectation was that the
large-scale genetic screen would yield enough interesting mutants rapidly enough to
focus on some of them for detailed study. However, an initial step was first to
re-establish carefully a valid infection model and then to characterize it in detail. We
then made an unexpected finding discussed more in detail below and decided to focus
on it as this observation has the potential to cause a paradigm shift in the manner we
understand and study A4. fumigatus infection.

In the first part, we demonstrated that MyD&88 does not play a resistance as expected
but more a resilience role in the host defense to against A. fumigatus infection. Indeed,
the overexpression of the most strongly expressed antifungal peptide active on hyphae,
Drosomycin, did only modestly provide some protection to Spdtzle-imd double
mutant flies under conditions of likely high inoculum load (145). A recent study
reported that flies devoid of most known AMPs, including the antifungal peptides
Drosomycin and Metchnikowin, and cecropins, were only slightly more susceptible to
a high inoculum of 4. fumigatus (163). Thus, even under these condition of high
initial fungal burden (likely around 20,000 spores per fly according to Lionakis et al.
(167), it is likely that host defense against A. fumigatus does not rely solely on the
effect of the known antimicrobial peptides but involves other molecules, possibly

unidentified or uncharacterized antifungal peptides such as DIM genes first identified
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through mass-spectrometry analysis or alternatively and nonexclusively a mechanism
akin to that revealed in this work. Under our low inoculum conditions, the Toll
pathway does not appear to be required to limit the proliferation of the invading
fungus. Indeed, a dose of 50 injected conidia suffices to kill MyDS8$ flies yet does not
trigger a detectable activation of the Toll pathway in wild-type flies. In contrast,
melanization appears to be important to prevent the dissemination of the fungus.
Strikingly, Hayan melanization-deficient flies, even though they harbor a higher
fungal load upon death, are nevertheless much more resistant to A. fumigatus than
MyDS8S8 flies. It follows that the control of the dissemination of the fungus is not a
critical parameter of the host defense against this infection. It is however perplexing
that PPO2 mutants display a more severe phenotype than that of Hayan. This issue
deserves more intensive investigations and may reflect a requirement for another
protease to fully mature PPO2 into active PO2. It will be especially interesting to
determine the fungal proliferation in the PPO2 mutant, as compared to that of Hayan.
We suspect that in this mutant the fungal load might be much higher than for Hayan,
in which the fungal burden remains relatively low even though it is higher than in
MyD88 mutants. It would then be interesting to determine whether the immune
response is effective against A. fumigatus in vivo, possibly by overexpressing AMPs
in PPO2 mutants.

Our data suggest that the ability to cope with the exposure to mycotoxin is the
relevant host defense present in wild-type and hayan flies, but lacking in MyD8&8 flies,

even when the Toll pathway does not appear to be stimulated in the case of a low
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inoculum dose. Furthermore, the injection of toxins did not trigger an increased
expression of Drosomycin. Our finding that an A. fumigatus strain devoid of
secondary metabolism is less virulent supports this hypothesis, even though the
restrictocin protein is still expected to be produced in this strain. Our current approach
allows us to determine which toxin is sufficient to kill MyDS&8 flies but fails to address
the question of which one is critically required or whether there is some degree of
redundancy between these toxins. A more careful analysis will be required and
involve fungal mutants in which the synthesis of one toxin or family of toxins is
ablated at a time. It is an open possibility that a combination of such mutations may
be required to abolish the virulence of A. fumigatus in the fly in the case of partial
redundancy. An important goal will be to discriminate between the functions of toxins
that may target the nervous system from those such as restrictocin that may work
ubiquitously in any cell type of the fly since their targets are expressed in all cells.
This approach from the fungal side will require an expertise in the microbiology of 4.
fumigatus that is unavailable at present. One strategy will be to collaborate with a
laboratory interested in this issue or alternatively, we shall have to generate such
strains ourselves after adequate training. We note that some mutants have already
been generated, for instance affecting the verruculogen/fumitremorgin synthesis
pathway but are encountering adverse conditions as the authors of that study have so
far failed to reply positively to our multiple requests. Possibly, metabolomics
approach might have to be implemented to detect the secreted mycotoxins in the

hemolymph or tissues of the host. It may actually be worth attempting hemolymph
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transfer experiments from an infected host nearing its demise to a naive MyDS88 host,
although the transferred quantities are likely to be insufficient to detect some toxicity.

In the future, several venues of investigation from the host side need to be
implemented. A pressing issue is to determine whether the resilience to mycotoxins
phenotype is indeed due to the MyD88 mutation, and next whether it involves the
whole or only part of the Toll pathway. These studies will be important to delineate
how this pathway is involved. We note that most studies on the extracellular arms of
the pathway that lead to the processing of Spétzle through proteolytic cascade
activation did not use A. fumigatus but usually other fungi or Gram-positive bacteria
to analyze their mutant phenotypes. Thus, the careful characterization of 4. fumigatus
infection needs to be repeated for the other members of the pathway, an undertaking
currently underway. A major question to be answered is whether there is an
involvement of the canonical Toll pathway. Besides the genetic approach,
transcriptomics using our low A. fumigatus inoculum at doses that induce or not the
Toll pathway and a comparison to the injection of toxins will need to be implemented,
as it is likely that our usual readouts are not relevant in this context. It will also be
important to determine whether the host xenobiotics detoxification pathways are also
required for the resilience of wild-type flies to mycotoxins. Nrf2 is a transcription
factor mediating most of the detoxification response and has been picked up in our
screen. As discussed further below, it may display this phenotype because of its
function in the response to oxidative stress. Our preliminary trials with the injection of

restrictocin have yielded a rather confusing picture at present. We shall keep in mind
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that the proposed Nrf2/CycK/Cdk12 axis thought to be active in the host defense
against ROS may not work in a similar manner in response to A. fumigatus or
mycotoxins.

In the large-scale screen, we initially refined the strategy then performed it under
optimized high-quality conditions. It involves a considerable organization and amount
of work and we have so far tested about half of the “classical” coding genome, which
comprises some 13,000 protein coding genes. We would like to screen all the
available Trip lines, the barrier to obtaining these lines being administrative. One
striking result is that flies with an apparent intact immune system as we understand it
today are sensitive to A. fumigatus infection. They may affect resilience to infection
rather than resistance, although this is difficult to establish formally. Indeed, the assay
used to diagnostic a resilience function is that flies should succumb in the absence of
an increased microbial burden. As this is already the case for MyDS8S
immunodeficient flies, this criterion cannot readily be used. We shall need to rely on
more indirect criteria, that is, to exclude the possibility that the immune defenses of
the mutant flies are not affected, that is, have a normal induction and secretion of
AMPs, a normal cellular and melanization response. At present, most of our putative
candidates are not known to affect the immune response and therefore constitute
interesting leads to understand resilience. It is important to emphasize at this point
that we are still far away from having formally confirmed these mutants and therefore
we have to be very cautious in interpreting our findings. This is one reason why we

did not delve too much on the function of our present hits a it is somewhat premature.
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It is nevertheless clear that mutations that affect genes involved in nervous system
function represent attractive candidates to investigate the resilience to the tremorgenic
toxins. One roadblock is that three of the toxins need to be resuspended in a toxic
buffer, DMSO. After initial solubilization in DMSO at high concentration, our
attempts at diluting further in an aqueous buffer seemingly lead to the precipitation of
part or the whole of the compound, thereby affecting the rigorous estimation of the
injected doses. We shall try to find secondary solvents that are less toxic to the flies.
We inject 4.6 nl per fly when the amount of hemolymph is estimated to be of about
100 nl.

The identification of the sensitivity to infection of Nrf2, CycK, and Cdkl2 RNAi
mutants open the possibility of having this axis functioning in host defense against
fungi and at least one virus. Besides a potential role in the detoxification of
mycotoxins, the other possibility is that of an involvement in the response to oxidative
stress, which is more in keeping with the fact that these mutants have also been picked
up in the DCV screen, and CycK in the M. anisopliae screen. DCV is unlikely to work
through toxins, although it might be pathogenic especially in some tissue such as the
nervous system. We are however unaware that it proliferates there although a
detection of the virus in some neurons of the nerve chord cannot be excluded. It will
thus be important to determine whether ROS are produced during viral and fungal
infections and whether they play a role. This represents a full research project on its
own in as much as ROS are notoriously difficult to visualize reliably in the fly. The

use of reporter transgenes for different ROS or for the transcriptional activity of Nrf2
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will have to be complemented by biochemical approaches. For instance, the
sensitivity phenotype shall be tested for a possible rescue by exposure to reducing
agents or the overexpression of catalases or peroxidases. As a side not, it will be
interesting to ask whether the hits in common with the DCV screen also have an
antiviral function in cultured S2 cells, a procedure implemented in the group of Prof-
Peng.

In conclusion, the major contributions of this work partially fulfill my initial goals.
On the one hand, I have initiated a large-scale screen that identifies interesting
candidate genes for further study. This screen can be further pursued provided the
access to mutant lines is solved. On the other hand, the finding of the overwhelming
importance of the resilience to mycotoxins in Drosophila host defense opens novel
directions to understand the pathogenicity of this pathogen. While the importance of
mycotoxins in A. fumigatus virulence has been documented for a long time, with
mycotoxins detected in fluids of infected patients, it remains unclear to this day how
the organism is able to cope with this toxin. Hopefully our future findings in
Drosophila will also be relevant to an understanding of our own defenses against 4.

fumigatus mycotoxins.
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Les infections fongiques constituent encore de nos jours une des causes majeures de
mortalit¢ due aux maladies infectieuses. En effet, les champignons font environ 1,6
millions de victimes dans le monde chaque année, plus que le SIDA, la tuberculose ou
les pneumonies. Néanmoins, leur étude est beaucoup moins développée que celle des
autres maladies sus-citées. L'ascomycéte Aspergillus fumigatus est un pathogene
opportuniste particulierement dangereux et a l'origine d'une morbidité et d'une
mortalité importante, 50% des patients succombant a l'infection malgré un traitement
médical souvent administré trop tardivement car non détecté initialement. Un des
atouts essentiels d'A. fumigatus par rapport a la majorité des especes de champignon
est sa capacité a supporter des températures élevées, au-dessus de 50°C, températures
parfois atteintes dans les composts. Il est ubiquitaire et présent dans l'air a raison de
50 spores par m* dans un environnement non contaminé. La petite taille de ses spores,
les conidies, lui permet de pénétrer au plus profond de nos voies respiratoires. Les
neutrophiles sont particulierement efficaces pour prévenir un passage dans la
circulation générale et il est aisé de concevoir la menace qu'il constitue en cas de
neutropénie, par exemple suite a une chimiothérapie. 4. fumigatus est aussi capable
d'infecter d'autres organes comme l'oeil, le tractus gastro-intestinal, la peau et les
ongles, et le systétme nerveux central. Ce champignon filamenteux se développe
essentiellement par un cycle asexuel et les conidies germent pour former un mycélium.
Le champignon est détecté par le systéme immunitaire inné et secondairement par le
systéme immunitaire adaptatif; notamment, un composé de sa paroi, le B(1, 3) glucane
active le récepteur dectin-1; ces composés sont toutefois masqués par des
hydrophobines. Parmi les facteurs de virulence identifiés figurent des toxines émises
par A. fumigatus, dont la plus connue est peut-étre la gliotoxine, laquelle est capable
d'inhiber la voie majeure de l'inflammation, la voie NF-kappaB!~.

La mouche du vinaigre Drosophila melanogaster constitue un modele d'étude tres
puissant, en particulier en raison de sa génétique sophistiquée développée depuis plus
d'un siécle. Son systéme immunitaire est relativement bien étudié. Ainsi, trois types

de réponses sont déclenchés suite a une blessure septique’. La premiére est relayée par



le déclenchement de cascades de protéases qui aboutissent a l'activation d'une ou
plusieurs phénol-oxydases, lesquelles sont requises pour le dépot de mélanine au site
de blessure et pourraient générer des especes oxygénées réactives et radicaux libres
qui pourraient aussi agir sur les microbes introduits au niveau de la blessure. Une
deuxieme réponse est cellulaire et implique la phagocytose des microorganismes par
les hémocytes de la drosophile. La troisiéme est la réponse humorale systémique
laquelle implique deux voies régulatrices de type NF-kappaB*. Alors que la voie
Immune deficiency est déclenchée par des bactéries a Gram-négatif et des bacilles
dont la paroi comprend du peptidoglycane de type di-amino-pimélique, la voie Toll
quant a elle est préférentiellement induite par des infections fongiques et des
infections bactériennes d'especes dont le peptidoglycane est de type Lysine. De
maniére générale, chaque voie est efficace contre les pathogénes qui la déclenche, a
l'exception de certains pathogeénes résistants aux principaux médiateurs de la réponse
humorale, les peptides antimicrobiens. D'autres pathogénes pourraient interférer avec
la réponse NF-kappaB, voire la bloquer. Une des particularités de la voie Toll est
qu'elle est déclenchée par des récepteurs circulants qui détectent soit les B(1,3)
glucanes des parois fongiques soit le peptidoglycane de type Lys®>”. Ils initient alors
des cascades protéolytiques qui aboutissent a activer par clivage le ligand Spitzle
(homologue des neurotrophines humaines) du récepteur Toll. Une deuxiéme cascade
de protéase est quant-a-elle déclenchée par les activités protéolytiques de facteurs de
virulence sécrétés par des pathogénes fongiques ou bactériens’”. Les voies IMD et
Toll aboutissent chacune a l'expression d'un éventail spécifique de génes codant des
peptides antimicrobiens. Ainsi, la Drosomycine dont l'expression est activée par la
voie Toll agit sur certains champignons filamenteux et aboutit a leur lyse, ce qui a pu
étre confirmé in vivo'®!!, Par ailleurs, d'autres peptides dont les génes se retrouvent
dans la région 55C du génome sont actifs contre une variété¢ de pathogenes, y compris
Candida glabrata, une levure pathogénique!?!3. Celle-ci ne prolifére pas et ne tue pas
les drosophiles sauvages. Au contraire, elle se multiplie dans les mouches déficientes
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pour l'activation de la voie Toll'*. En aboutissant au contréle de la prolifération de

certains pathogénes, voire leur lyse, la voie Toll apparait donc comme une voie de



résistance de la défense de I'hdte contre les infections fongiques. La résistance est
une des deux dimensions de la défense de I'hdte contre les infections et aboutit
généralement a la neutralisation ou a l'annihilation des pathogénes: elle correspond a
la réponse immunitaire. Cependant, une deuxiéme dimension de la défense de 1'hote
contre les infections existe et a été¢ nettement moins étudiée: la résilience correspond
a la capacité de 1'hote a endurer et a réparer les dommages occasionnés par l'infection,
soit suite a l'action des facteurs de virulence du pathogene, soit infligés par la propre
réponse immunitaire de I'hote!>. Cette deuxiéme dimension de la réponse immunitaire
n'a presque pas ¢été étudiée dans le cas des infections fongiques.

L'équipe animée par le Pr. Dominique Ferrandon au sein du Sino-French
Hoffmann Institute de la Guangzhou Medical University approche les infections
fongiques chez la drosophile de maniere globale, d'une part a I'aide de mutagéneses
relativement peu biaisées car le parametre suivi est la survie a l'infection fongique, et
d'autre part en étudiant la voie Toll et le réle des génes régulés par cette voie dans la
défense de 1'hote contre les infections fongiques ou bactériennes. En ce qui concerne
les infections fongiques, un premier modéle est le champignon entomopathogénique
Metarhizium anisopliae, lequel tue les drosophiles soit dans un mode¢le d'infection par
injection soit en traversant la cuticule aprés dépot des spores dessus. Compte tenu de
mon parcours médical, j'ai quant a moi décidé de développer un autre modele
d'infection, avec le champignon opportuniste 4. fumigatus. Celui-ci avait été utilisé
comme illustration du réle antifongique de la voie Toll dans la publication princeps
du laboratoire CNRS dirigé par Jules Hoffman a Strasbourg'®. Cependant, peu
d'études sur A. fumigatus dans ce modéle ont été conduites par la suite!”. Il a pu
toutefois étre établi que la surexpression ectopique de la Drosomycine protége
faiblement les mutants Spdtzle contre cette infection'!. De méme, un mutant dans
lequel les principaux génes codant des peptides antimicrobiens sont délétés ne montre
qu'une susceptibilit¢ modeste a l'infection. Pour ma part, j'ai établi un modele
d'infection par injection et caractérisé en détail ce modele, ce qui m'a conduit a une
découverte inattendue; en parallele, j'ai mis en place et commencé un large crible

génétique afin d'identifier des souches mutantes présentant une susceptibilité accrue a



A. fumigatus. Ce crible a été poursuivi en Chine par une autre doctorante, Mme
Chuqgin Huang, lorsque je suis venu en France a Strasbourg pour une année de
recherche ou je me suis concentré sur la mise en évidence d'un nouveau role de la
voie Toll de la drosophile dans la défense de I'hote contre A. fumigatus.

J'lai d'abord établi que la souche d' A. fumigatus que j'utilise n'infecte les
drosophiles que dans un modé¢le d'injection et non par ingestion ou contact avec les
conidies, au rebours d'une étude précédente!’. J'ai ensuite établi des courbes de survie
du mutant MyD88 (un géne essentiel de cette voie agissant en aval du récepteur Toll)
en fonction de différentes doses injectées et montré qu'une dose croissante de conidies
injectées entraine une mort accélérée du mutant. J'ai donc travaillé généralement avec
une dose de 250 conidies injectées par mouche. De maniére inattendue, cette dose
induit la voie Toll que trés faiblement ainsi qu'en atteste l'induction de la
Drosomycine. J'ai confirmé des résultats surprenants rapportés par une étude
précédente, a savoir que le titre d' A. fumigatus n'augmente pas dans les mouches ou la
voie Toll est inactivée bien que ses effecteurs ne soient que peu induits!”. J'ai aussi
confirmé ces résultats par une approche histologique en observant directement une
souche d' A. fumigatus exprimant une protéine fluorescente. Le champignon reste
confiné au site d'injection, essentiellement sous formes d'hyphes. Il commence a
émerger du thorax, site d'injection, quelques heures aprés le déces des mouches
mutantes MyDS&S8. 11 s'agit donc plutét d'un champignon nécrotrophe. Il semble donc
qu'au rebours des autres infections caractérisées jusqu'a présent chez la drosophile, un
nombre limité de conidies suffit a tuer les mouches mutantes pour la voie Toll. La
voie Toll ne contréole pas la prolifération de ce champignon. J'ai identifi¢ la
mélanisation comme étant une des voies essentielles du controle de la prolifération.
Lorsque la mélanisation est bloquée, le champignon prolifere de maniére significative
dans les drosophiles, ce que j'ai pu déterminer en mesurant le titre et en observant la
souche fluorescente in vivo. De maniéere frappante, il émerge de toutes les parties du
corps 24 heures aprés la mort de leur hote, de la téte a I'abdomen. Cependant, un
mutant de mélanisation succombe nettement moins rapidement a l'infection, une

dizaine de jours, qu'un mutant de la voie Toll, lequel succombe en deux-trois jours.



J'en conclus que ['essentiel n'est donc pas de controler la prolifération du
champignon mais qu'une autre défense impliquant la voie Toll joue un role
fondamental. Nous avons raisonné qu'il était vraisemblable que les mouches
succombent non a l'invasion de leurs tissus par le champignon, mais suite a 1'émission
de toxines. Effectivement, un mutant d' A. fumigatus incapable de métabolisme
secondaire, et donc de produire des toxines, perd sa virulence. Je n'ai pas pu confirmer
une ¢tude précédente et ai trouvé qu'un mutant incapable de produire la gliotoxine est
aussi virulent dans nos conditions. L'injection de gliotoxine purifiée tue au méme
rythme les mouches sauvages et les mutants MyDS&S. L'injection de fumagilline ou
d'acide hévolique a abouti a des résultats similaires. Cependant, d'autres toxines
fongiques purifiées tuent les mutants MyDS8S plus rapidement que les mouches
sauvages qui survivent en beaucoup plus grand nombre a leur injection; il s'agit des
fumitromorgines, de dérivés de l'ergot du seigle, du verruculogéne et de la
restrictocine. Mes travaux nous aménent donc a conclure que la fonction essentielle
de la voie Toll dans la défense de I'hote n'est pas la résistance mais la résilience a
l'infection, ce qui ouvre un nouveau domaine de recherche, étant donné l'importance
des toxines fongiques vis-a-vis de la santé humaine, en particulier en ce qui concerne
la contamination de la nourriture'8. Il sera particuliérement intéressant de déterminer
si ces résultats peuvent étre étendus a I'homme.

J'ai mis au point un crible a grande échelle de lignées mutantes de drosophiles en
testant leur survie a l'injection d'une dose de 250 conidies d' A. fumigatus injectée par
mouches. Pour cela, nous utilisons une collection de lignées de drosophiles
transgéniques, chaque lignée portant un microARN ciblant un geéne spécifique du
génome'®. Afin d'éviter une 1étalité précoce liée a une éventuelle fonction du géne
ciblé au cours du développement, les transgénes ne sont exprimés, ubiquitairement,
qu'au stade adulte. Ce crible a nécessité la mise en place d'une infrastructure
importante avec plusieurs techniciens s'occupant de I'entretien des souches mutantes
et en charge d'effectuer les croisements. Comme il s'agit d'une organisation lourde,
nous avons décidé d'optimiser ce crible en testant en paralléle la survie a Metarhizium

anisopliae et a l'injection de trois virus, en collaboration avec une autre équipe. J'ai



pour ma part injecté lors d'un pré-crible pres de 600 lignées et procédé au retest d'une
trentaine de lignées positives. Lors du crible principal, j'ai testé 3967 lignées, la
grande majorité des retests ayant été réalisés par Mme Chuqin Huang qui avait pris
ma suite. A présent, plus de 6471 lignées ont été criblées, lesquelles ciblent
collectivement environ la moitié des génes codant des protéines du génome de la
drosophile; 1163 lignées ont été retestées, et 249 lignées confirmées au cours de ces
retests. Un des premiers mutants identifi¢ affecte la Cycline K, un facteur qui,
complexé avec Cdkl12, est impliqué dans I'élongation de la transcription d'un
ensemble de génes régulés par la voie Nrf22%2!, Ce dernier facteur de transcription est
le chef d'orchestre de la réponse anti-oxydante de l'organisme, ainsi qu'un facteur
requis pour la détoxification de certains composés xénobiotiques?’>. Alors que les
mutants Nrf2/CncC sont effectivement plus sensibles a l'infection par 4. fumigatus,
comme les mutants cdkl2, ils ne présentent toutefois pas une susceptibilité
particuliere a l'injection de toxines fongiques. Ainsi, nous serons amenés a tester
I'importance des réactions oxydatives et de la détoxification de leurs effets néfastes
sur I'organisme dans la défense de I'hote contre A. fumigatus.

En conclusion, mon travail de thése a permis une avancée significative dans notre
compréhension des défenses de I'hdte contre A. fumigatus en soulignant I'importance
de la résilience vis-a-vis des toxines fongiques. Le crible génétique a large échelle en
cours devrait nous permettre de mieux comprendre les différents aspects de la défense

de I'hdte contre ce champignon pathogéne et contre les toxines fongiques.
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la figure de légendes

figure 1: a. fumigatus ne proliférent dans myd88 mutants

a: courbe de dose - réponse, sur myd88 s'en sert af faire l'injection, il n'y a pas de
différence significative entre le pbst et 1 conidie par voler groupe (p = 0.9230), mais
avoir de différence significative entre le pbst et 5 conidie par voler group (p <
00001).les données ont été analysées au moyen du test log - rank.

b: le champ clair chez le type sauvage en hyphes fluorescentes gfp, b « méme poste a
filtre, d141-gfp 50 de conidies par voler l'injection, 20h aprés l'infection (fleche).

c: d141-gfp50 hyphes fluorescentes dans myd88 conidies par voler mouches, injection,
24 h apres l'infection (fleche).

d: dans myd88 hyphes fluorescentes mouches, d141-gfp 500 de conidies par voler
l'injection, 42h apres l'infection (fleche).

e: la charge fongique a faible dose, af 250 de conidies par voler l'injection, chez les
groupes, Oh ont aucune différence significative a 24h (p = 0.8139) et 48 h (p =
0.3703); dans myd88 groupes, Oh ont sensiblement 24h (p < 00001) mais pas a 48
heures (p = 0.1033).les données ont été¢ analysées au moyen du test de mann -

whitney.



f: la charge fongique haute dose, af 5000 de conidies par voler l'injection, il existe une
différence importante entre le wt Oh et 48 h (p < 00001), mais aucune différence
significative entre myd88 Oh et 48 h (p = 0.1009).les données ont été¢ analysées au
moyen du test de mann - whitney.

g: sérum dans myd88 vole, af injection, 10 [7] = 50 de conidies par voler, 5 X 10 [7]
= 250 de conidies par voler, et 10 [8] = 500 de conidies par voler, il y a une différence
entre Oh et de sérum dans 10 [7] (p < 00001) et 5 X 10 [7] (p = 00002), mais pas
dans 10 [8] (p = 0.7821).les données ont été analysées au moyen du test de mann -
whitney.

h: iml niveau d'expression de vivre et tué¢ a. fumigatus conidies injection, a
différentes concentrations de 10 [7] = 50 de conidies par voler, 10 [8] = 500 de
conidies par voler.il n'y a pas de différence significative entre les af 10 [8] et wt m.
lutues (p = 0.9314), d'autres groupes ont sensiblement wt af 10 [8] et wt m. luteus
groupes (p < 00001).les données ont été analysées au moyen du test de mann -

whitney.

figure 2: hayan, et pas les autres défenses de I'hote, limite la diffusion de a. fumigatus
dans la mouche

un taux de survie: clé, af 500 de conidies par voler l'injection, il existe une différence
importante entre les groupes et l'aide (p < 00001).les données ont été¢ analysées au

moyen du test log - rank.



b: la charge fongique, af 500 de conidies par voler l'injection.il y a une différence
entre 0 h et 48 h / 96 h apres groupe infecté dans les mouches (p < 00001), mais pas
dans myd88 mouches (p = 0.5574).1es données ont été analysées au moyen du test de
mann - whitney.

c: eaterl et manger A eater survival, af 500 de conidies par voler l'injection, il n'y a
pas de différence significative entre A eater les eater] et manger des mouches et wt
(p =0.9990).les données ont été analysées au moyen du test log - rank.

d: perles de latex survies wt traitées, af 500 de conidies par voler l'injection, il n'y a
pas de différence significative entre les perles de latex traités wt mouches et wt (p =
0.9992).les données ont été analysées au moyen du test log - rank.

e: phago hemoless samu rpr samu a caché la survie, af 500 de conidies par voler
l'injection, il n'y a pas de différence significative entre phago hemoless mouches et wt
(p = 0.9984).les données ont été analysées au moyen du test log - rank.

f: hayan survival, d141-gfp 500 de conidies par voler l'injection, bleu rouge courbes
courbes sont myd88 wt des mouches, mouches, green courbes sont hayan mouches, il
y a des différences significatives entre les groupes myd88 et wt infectés a hayan
groupe infecté (p < 00001).les données ont été analysées au moyen du test log - rank.
g: sérum hayan, d141-gfp 500 de conidies par voler l'injection, il existe d'importantes
différences entre 0 h apres l'infection et le sérum de hayan mouches (p < 00001), mais
aucune différence significative dans myd88 mouches (p = 0.7030).les données ont été

analysées au moyen du test de mann - whitney.



h: papa survival, af 250 de conidies par vole d'injection, bleu rouge courbes courbes
sont myd88 wt des mouches, mouches, courbes de vert papa vole, il existe
d'importantes différences entre papa et wt mouches dans les af groupes infectés (p <
00001).les données ont été analysées au moyen du test log - rank.

- je: balayage d'hyphes (arrow) sur la surface du corps myd88 de mouches, 48 heures
apres la mort.

j: balayage em des hyphes (arrow) sur la surface du corps hayan de mouches, 48

heures apres la mort.

figure 3: myd88 est sensible a certaines toxines a. fumigatus

un: A ppta survie, les conidies d'af et A ppta était injecté dans myd88 500 mouches,
les conidies par voler, il existe une différence importante entre I'af et A ppta groupes
(p <00001).les données ont été analysées au moyen du test log - rank.

b: uvitex coloration négative des hyphes (fleche).

c: charge fongique du A ppta, 500 de conidies par voler l'injection, voici les
différences importantes entre 0 et 48 heures apres | 'injection de A ppta mutant a.
fumigatus en poids (p < 00001) et myd88 mouches (p = 00001).les données ont été
analysées au moyen du test de mann - whitney.

d: dose - response de la restrictocine injection, bleu rouge courbes courbes sont
myd88 poids mouches, mouches, il y a une différence entre myd88 et wt vole dans
toutes les concentrations (1, 5, 10 mg / ml) la restrictocine injection groupes (p <

00001).les données ont été analysées au moyen du test log - rank.



e: la dose - réponse de le verruculogene injection
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fig s1: wt vole la dose - réponse et l'essai de différentes souches de a. fumigatus
myd88.

a: wt vole la dose - réponse, l'utilisation af faire 1'injection, il n'y a pas de différence
significative entre les différentes lignes de voler le (p = 0.9880).les données ont été
analysées au moyen du test log - rank.

b: survie de différentes souches de a. fumigatus mydS88, il n'y a pas de différence
significative entre les différentes souches de a. fumigatus (p = 0.9972).les données ont

¢été analysées au moyen du test log - rank.

fig. s2: fluorescent (fleche d'hyphes dans hayan vs. myd§88).

fig.s3: la gliotoxine n'est pas nécessaire ni suffisante pour le myd88 tuer des mouches.
un: la survie de la gliotoxine mutant A glip et son contexte ceal7 A akubku80.les
courbes sont le bleu myd88 mouches, mouches courbes de rouge, myd88, il n'y a pas
de différence significative entre les différentes concentrations de A glip et ceal7 A
akubku80 (p = 0.9990).1es données ont été analysées au moyen du test log - rank.

b: survie de la gliotoxine directement l'injection.les courbes sont le bleu myd88
mouches, mouches courbes de rouge, myd88, il n'y a pas de différence significative
entre les concentrations différentes de la gliotoxine injection (p = 0.9890).les données

ont ét¢ analysées au moyen du test log - rank.

tableau s4: helvolic injection d'acide et de la fumagilline



un: la survie de l'acide helvolic directement l'injection.les courbes sont le bleu myd88
mouches, mouches courbes de rouge, myd88, il n'y a pas de différence significative
entre les différentes concentrations d'acide helvolic injection (p = 0.9763).les données
ont ét¢ analysées au moyen du test log - rank.

b: survie de la fumagilline directement l'injection.les courbes sont le bleu myd88
mouches, mouches courbes de rouge, myd88, il n'y a pas de différence significative
entre les concentrations différentes de la fumagilline injection (p = 0.9991).les

données ont ét¢ analysées au moyen du test log - rank.

fig. s5: la température est un facteur qui impliquent dans les deux toxines a. fumigatus
infection et l'injection.

un: la survie dans des températures différentes, af 500 de conidies par voler
l'injection.les courbes sont le bleu myd88 mouches, mouches courbes de rouge.

b: survie de l'injection de toxine a différentes températures sur myd88 des mouches.

fig. s6: charge bactérienne dans I'hémolymphe de mouches ".

a: charge bactérienne dans I'hémolymphe des mouches "aprés 48 heures apres |
'injection, 5 des mouches pour chaque endroit.

b: charge bactérienne dans I'hémolymphe des mouches "aprés 48 heures apres 1

'injection, seul vol test.

Fig. s7: des antibiotiques et des mouches



un: la survie de la restrictocine injection au traitement normal (ab) et axéniques des
mouches.

b: survie de le verruculogene injection normal, antibiotiques traités (ab) et axéniques
de mouches.

c: survie de la bromocriptine mésylate (un dérivé d'alcaloides de l'ergot de seigle)
injection au traitement normal (ab) et axéniques des mouches.

d: survie de fumitremorgin c injection au traitement normal (ab) et axéniques des

mouches.
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Table 1

head thorax

0%

Li}
MyD88 (0130) 50% (50/100)
y 42.5% 100%
ayan (17/40) (40/40)

abdomen

1%
(1/100)

95%
(38/40)

Tableau 1: quantification de la présence de mycélium aprés infection.
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| université ||| || Investigations of Drosophila melanogaster host defenses
[|[ de strasbourg | against Aspergillus fumigatus systemic Infections
Résumé

Le but de ce travail a &é& de mieux comprendre les défenses mises en ceuvre par I’hote infecté par le

champignon opportuniste humain Aspergillus fumigatus (Af).

1) Un mode¢le d’infection a ééredéeloppéchez 1’organisme modele Drosophila melanogaster. Seules les
mouches mutantes pour le géne MyD88 de la voie immunitaire Toll succombent a I’injection d’une poignée de
conidies, sans toutefois qu’Af dissénine dans I’héte. Ce travail a révélé que ce n’est pas la réponse
immunitaire qui joue un role prépondérant dans la défense de I’hdte, mais sa capacité de résilience a

I’exposition a des mycotoxines s&réees par Af.

2) Un crible génétique d’envergure a &é& é&abli pour identifier des lignées transgéniques mutantes ARNi
sensibles a D’infection par Af. 6.471 lignés ont &é criblés et 241 genes-candidats identifiés, dont peu
fonctionnent dans la réonse immunitaire. Ainsi, ce travail a contribué a identifier de nombreux geénes

impliqués dans la résilience de I’hdte a Af et ses mycotoxines.

Mots-clés : Aspergillus fumigatus, Drosophila melanogaster, voie Toll, résilience a [ ’infection, mycotoxine

Résumé en anglais

The overarching goal of this work is to better understand host defenses against the human opportunistic fungus
Aspergillus fumigatus (Af).

1) An infection model has been reestablished in the genetic model organism Drosophila melanogaster. Only
flies mutant for the immune response Toll pathway gene MyD88 succumb to the injection of a handful of
conidia even though Af is unable to disseminate throughout its host. This work revealed that it is not the
immune response that plays a cardinal role in host defense but its resilience capacity to the exposure to
some mycotoxins secreted by Af.

2) A large-scale genetic screen has been implemented to identify transgenic RNAI mutant lines susceptible to
Af infection in survival experiments. 6,471 lines have been screened and 241 candidate genes identified, few of
which are known to act in the immune response. Thus, this work has contributed to identifying numerous genes

involved in host resilience to Af and to some of its mycotoxins.
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