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Abstract 

This thesis concerns the application of the Generative Topographic Mapping (GTM) 

approach to the analysis, visualization, and modeling of Big Data in chemistry. The main 

topics covered in this work are multi-target virtual screening in drug design and large 

chemical libraries visualization, analysis, and comparison. Several methodological 

developments were suggested: (i) an automatized hierarchical GTM zooming algorithm 

helping to resolve the map resolution problem; (ii) an automatized Maximum Common 

Substructure (MCS) extraction protocol improving efficiency of data analysis; (iii) 

constrained GTM-based screening allowing to detect molecules with a desired 

pharmacological profile, and (iv) a parallel GTM technique, which significantly increases 

the speed of GTM training. Developed methodologies were implemented in a software 

package used in both academic (University of Strasbourg, France) and industrial 

(Boehringer Ingelheim Pharma company, Germany) projects. 
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1 Résumé en français 

1.1 Introduction 

De nos jours, les bases de données chimiques telles que CAS, contiennent des 

millions de structures chimiques [1], et ce nombre augmente exponentiellement, grâce à 

l’utilisation de nouvelles technologies de synthèse combinatoire et parallèle, de réacteurs en 

flux continu ou de micro-ondes, entre autres. De plus, des milliards de structures virtuelles 

sont aisément énumérées par ordinateur (166 milliards de composés dans la base de 

données GDB-17 [2]). Ces chiffres restent toutefois modestes comparés au nombre de 

composés dans l’espace chimique d’intérêt thérapeutique, estimé à 10
33

 [3]. L’exploration 

de ces espaces chimiques est un défi pour les chimistes souhaitant comprendre leur 

structure, découvrir les régions inexplorées et analyser les relations structure-activité des 

molécules qu’ils contiennent. 

Les cartes topographiques génératives (Generative Topographic Mapping - GTM) [4] 

permettent de modéliser, d’analyser et de visualiser de grandes bases de données. Leur 

contenu est projeté dans un espace bidimensionnel, qualifié d’ « espace latent ». Cette 

méthode a été appliquée avec succès pour comparer des chimiothèques [5] et pour la 

modélisation de Relations Quantitatives Structure-Activité (QSAR) [6]. Néanmoins, des 

ajustements technologiques et méthodologiques sont nécessaires pour utiliser cette 

approche dans le cas des mégadonnées ( ou « Big Data »). 
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Cette thèse est dédiée à l’amélioration de la GTM et à ses applications dans différents 

contextes de mégadonnées. Cette thèse consiste en 6 Chapitres. Le chapitre 1 est une 

introduction concernant la méthode GTM et ses applications décrites dans la littérature. Le 

chapitre 2 présente les améliorations méthodologiques proposées, telles que le zoom 

hiérarchique, le domaine d’applicabilité double ou encore l’extraction des structures 

maximales communes. Le Chapitre 3 rapporte les résultats de l’utilisation de la GTM pour 

établir le profil de composés sur de multiples cibles simultanément, c’est-à-dire pour un 

criblage virtuel multi-cibles (VS), et des études comparatives de la GTM avec des 

algorithmes d’apprentissage machine éprouvés. Le Chapitre 4 décrit les résultats de la 

comparaison de grandes bases de données publiques (PubChem-17 et ChEMBL-17) avec 

les composés virtuels énumérés dans la FDB-17 [7]. Le Chapitre 5 montre l’application de 

la GTM pour enrichir les collections de produits de la société Boehringer Ingelheim Pharma 

(BI) avec des composés originaux, en tenant compte de l’expérience apportée par les 

projets précédents. Le dernier chapitre (Chapitre 6) est consacré à l’implémentation 

d’algorithmes parallèles pour accélérer les calculs GTM et aborder de nouveaux problèmes 

dans le domaine des mégadonnées. 

1.2 Résultats et discussions 

1.2.1 Criblage virtuel de grandes collections chimiques 

Les Relations Quantitatives Structure-Activité (QSAR) sont un domaine clé de la 

chémoinformatique. Ces modèles visent à sélectionner rationnellement les composés par 

rapport à une activité biologique ou une propriété. Etant donné que la GTM peut être 

utilisée pour créer des modèles QSAR, le premier défi était de l’appliquer à du criblage 

virtuel (VS) sur une cible (mono-cible) puis sur plusieurs cibles simultanément (multi-

cible). Ces techniques ont été appliquées à une grande collection de problèmes de 

classification appelée DUD (Directory of Useful Decoys) [8]. A cette fin, les GTM 

universelles décrites par P. Sidorov et al. [9] ont été utilisées. Ces cartes sont entrainées 

pour modéliser une grande base de données (ChEMBL v23 dans cette étude) et ont été 
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choisies pour leur capacité à prédire plusieurs centaines de propriétés biologiques. La 

méthode a aussi été comparée à d’autres approches d’apprentissage machine éprouvées : la 

recherche par similarité (avec et sans fusion de données), des réseaux de neurones, et une 

forêt aléatoire. Pour mesurer la performance d’une méthode, la moyenne des aires sous la 

courbe ROC (Receiver Operating Characteristic), <AUC>1/2, a été utilisée. Les résultats de 

la validation sur les centaines de cibles utilisées pour choisir les cartes sont présentés en 

Figure 1. 

 

La validation effectuée sur les 9 cibles de la DUD en utilisant des données jamais 

utilisées pour entraîner ou sélectionner les cartes, a montré des performances similaires 

(Figure 2). Les résultats de cette étude ont été publiées [10]. 

 

Figure 1. Le nombre de cibles pour lesquelles le meilleur modèle sur les quatre espaces de 

descripteurs retourne <AUC>1/2 > 0.8. A – Recherche par similarité dans l’espace initial, B 

– Recherche par similarité dans l’espace des responsabilités (description des données par la 

GTM), C – GTM universelle, D – GTM mono-cible, E – Recherche par similarité avec 

fusion de données dans l’espace initial, F – Recherche par similarité avec fusion de données 

dans l’espace des responsabilités, G – Réseau de neurones, H – Forêt aléatoire. 
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Ensuite, l’approche de la GTM universelle a été testée dans l’environnement 

industriel de Boehringer Ingelheim. Tout d’abord, des GTM ont été entrainées sur 25K 

structures chimiques représentatives des collections internes de l’entreprise (le « frame 

set »). Les descripteurs moléculaires et les paramètres de la méthode GTM les plus 

pertinents ont été déterminés en échantillonnant systématiquement leurs valeurs sur une 

grille (le nombre de nœuds est 20*20 ÷ 50*50 avec un pas de 5, le nombre de RBF est 40 ÷ 

70% du nombre de nœuds avec un pas de 10, le coefficient de régularisation est 1.0 ÷ 5.0 

avec un pas de 0.5, et la largeur des RBF est 1.0 ÷ 5.0 avec un pas de 0.5). 

Plus de 230K combinaisons de paramètres ont été essayées, et les 5 meilleures cartes 

ont été sélectionnées (Table 7 ; chapitre 5.2.4). 

Ces cartes ont été validées par validation croisée en 3 paquets sur 2371 problèmes de 

classification concernant l’activité de composés sur des cibles biologiques. Pour mesurer la 

performance d’une carte, la moyenne des aires sous la courbe ROC (<AUC>
3cls

 pour les 

problèmes à 3 classes et <AUC>
bin

 pour les problèmes à 2 classes) a été utilisée (Table 8). 

Figure 2. Comparaison des méthodes de criblage virtuel. Les GTM ont été entraînées et 

validées sur ChEMBL v23. Les cartes utilisées sont celles qui ont montré les meilleures 

performances en termes de ROC AUC, obtenues en validation croisée. 
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La validation croisée montre que ces cartes sont prédictives dans plus de 50% des 

tests proposés (1318 tests), avec une <AUC>
3cls

 ≥ 0.7. Ces cartes ont été utilisées pour 

prédire l’activité sur 42 nouvelles cibles biologiques. Pour 4 d’entre elles, la précision 

balancée (Balanced Accuracy, BA) était supérieure à 0.7. 

1.2.2 Comparaison de bases de données chimiques publiques 

Une base de données couvrant l’espace chimique de composés contenant au plus 17 

atomes lourds a été publiée par J.-L. Reymond et al. [2] (GDB-17). Des molécules 

contenant également au plus 17 atomes lourds ont été échantillonnés dans les bases de 

données ChEMBL (ChEMBL-17) et PubChem (PubChem-17) pour être comparées à un 

échantillon de 10M de composés de la GDB-17, la FDB-17 [7]. L’objectif était d’identifier 

les chémotypes particuliers appartenant à l’une ou à l’autre base en exclusivité. Comme la 

FDB-17 contient des structures chimiques virtuelles énumérées par un algorithme, la 

comparaison avec de véritables composés chimiques (ChEMBL-17, PubChem-17) pourrait 

donner lieu à la découverte de nouveaux chémotypes, qui n’ont encore jamais été 

synthétisés. Une GTM a donc été entrainée sur un frame set de 100K structures, 

sélectionnées au hasard mais avec un ratio égal pour chacun des 3 jeux de données. Puis, 

les données (21.1M de composés) ont été projetées sur cette carte. Les cartes ont été 

annotées en fonction de la prévalence d’une base par rapport à une autre dans une région de 

l’espace chimique représentée par la carte. Ces cartes annotées sont appelées paysages, 

dans la suite. 

Les jeux de données ont été comparés en utilisant (i) des métriques de dissimilarité (le 

coefficient de Bhattacharyya, les distances Euclidienne et de Soergel), (ii) des paysages 

comparant FDB-17 avec PubChem-17/ChEMBL-17, et (iii) des propriétés moléculaires 

(nombre d’atomes lourds, chiralité, LogP, nombre d’atomes aromatiques, etc.) Les résultats 

de l’étude ont été publiés [10]. Pour résumer, la comparaison a montré que les bases de 

données PubChem-17 et ChEMBL-17 sont très similaires, ce qui est expliqué par le fait que 

la première inclut la seconde (Figure 3). 
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Par contraste, la PubChem-17 diffère significativement de la FDB-17. Le paysage 

résultant, illustré par la Figure 4, montre que la PubChem-17 est dominante dans plusieurs 

zones de la carte dans lesquelles les composés avec des groupes nitro attachés à un système 

aromatique et/ou des groupes carboxyl sont localisés (zones rouges). L’absence de ces 

structures dans la FDB-17 est expliquée par les règles que les auteurs de la base de données 

ont appliquées au cours de l’énumération des structures pour restreindre l’espace chimique 

virtuel à des composés qu’ils ont jugés intéressants pour des applications pharmaceutiques 

[7]. 

Figure 3. Diagramme de chaleur représentant les similarités entre trois chimiothèques sur 

la base de GTM. Les métriques utilisées sont (a) le coefficient de Bhattacharyya (1-

SBhattacharyya), (b) le coefficient de Tanimoto (1-STanimoto) et (c) la distance Euclidienne. 
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Au cours de ce travail, un écueil était que les cartes représentaient un si grand nombre 

de composés que chaque élément en couvrait des centaines de milliers, ce qui en 

compliquait l’analyse. Pour résoudre ce problème et analyser plus finement les composés 

dans les zones de l’espace chimique où la FDB-17 se recouvre avec la PubChem-17 (zones 

vertes et jaunes), une technique appelée zoom hiérarchique de GTM (proposée auparavant 

par Nabney et al. [11]) a été appliquée. Elle consiste à extraire les composés d’une région 

de l’espace chimique représentée par une zone délimitée sur la carte et d’entrainer une 

nouvelle GTM en utilisant les mêmes paramètres que ceux de la carte principale (Figure 5). 

Cette technique a permis d’identifier de nouveaux châssis moléculaires absents de la base 

de données PubChem. Les structures contenant ces châssis et présentées en Figure 5 ont été 

extraites de la collection FDB-17. Aucune molécule similaire n’est présente dans la base de 

données PubChem. 

 

Figure 4. Paysage comparant les bases de données FDB-17 et PubChem-17. 
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Pour finir, les bases de données ont été comparées en termes de 6 propriétés calculées 

sur les structures chimiques à l’aide du logiciel MOE : l’entropie de la distribution des 

éléments composant la molécule (a_ICM), le nombre d’atomes lourds (a_heavy), la 

chiralité (chiral), la lipophilicité (LogP), le nombre d’atomes aromatiques (a_aro), et le 

statut de quasi-fragment ASTEX (ast_fraglike_ext) [12]. Les résultats sont représentés sur 

la Figure 6. Les paysages de propriétés correspondants au nombre d’atomes lourds dans les 

molécules de ChEMBL-17 et de PubChem-17 (Figure 6) sont similaires. Toutefois, 

PubChem-17 contient un excès d’entrées de plus haut poids moléculaire (en rouge sombre). 

Ceci résulte de deux biais de composition des bases de données : d’une part, PubChem est 

composé de structures chimiques sélectionnées pour être à priori bio-actives puisqu’elles 

sont soumises à des bancs de tests biologiques. Les très petits composés ne pouvant pas 

former de complexes très stables avec des protéines (et en dépit de leur éventuelle efficacité 

en tant que ligand) sont rares dans PubChem. 

Figure 5. Zoom hiérarchique de GTM sur l’espace chimique occupé par la FDB-17 (en 

bleu) et la PubChem-17 (en rouge). Pour une zone délimitée sur une carte, un modèle local 

de GTM est reconstruit en utilisant uniquement sur les molécules y résidant. Sous la carte 

zoomée sont montrés des exemples de composés extraits d’une zone peuplée exclusivement 

par des composés de la FDB-17 sur une carte zoomée. Ces composés n’ont pas d’analogues 

dans la base de données PubChem. 
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Figure 6. Paysages de propriété pour a_ICM (entropie de la distribution des éléments de la 

molécule), a_heavy (nombre d’atomes lourd), chiral (chiralité), LogP (lipophilicité), a_aro 

(nombre d’atomes aromatiques), et ast_fraglike_ext (Satut de quasi-fragment ASTEX) [12]. 
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D’autre part, on peut remarquer que l’échantillon de la FDB-17 a été spécifiquement 

conçu pour équilibrer le nombre d’entrées correspondant à des molécules de tailles 

différentes. Les composés ayant un nombre d’atomes lourds intermédiaire ont été 

volontairement sur-échantillonnés. Autrement, pour des raisons évidentes de combinatoire, 

l’énumération systématique des composés ayant au plus 17 atomes lourds est dominé par 

les structures contenant exactement 17 atomes lourds. 

Le paysage de l’entropie de la distribution des éléments (indice a_ICM de MOE) dans 

les molécules est similaire pour les jeux de données ChEMBL-17 and PubChem-17, alors 

que FDB-17 contient des structures moins diverses, au sens qu’il y a un biais de 

composition en faveur des chaines hydrocarbures en comparaison de fonctions chimiques 

plus élaborées. Des règles élémentaires de stabilité chimique empêchent la concaténer des 

hétéroatomes dans les structures de la base de données GDB-17, ce qui explique que les 

chaînes carbonées soient prédominantes. Mais, les chimiothèque de molécules 

effectivement synthétisées incluent des groupes fonctionnels chimiques élaborés qui 

apportent de la réactivité et des propriétés physico-chimiques intéressantes. Ces biais sont 

bien mis en évidence sur les cartes. 

1.2.3 Enrichissement de librairie structurale pour Boehringer Ingelheim 

En prenant en compte l’expérience apportée par les projets précédents, la GTM a 

démontré une bonne efficacité en criblage virtuel et pour la comparaison de chimiothèques. 

Dans cette étude, cette technique a été utilisée pour augmenter la diversité chimique de la 

collection interne de composés de Boehringer Ingelheim (BI). Pour ce faire, une carte GTM 

a été utilisée pour comparer cette collection BI au catalogue de l’entreprise Aldrich-Market 

Select (AMS) référençant plus de 8M de produits. Pour entraîner la carte, un jeu de données 

représentatif de 25,000 structures de diversité chimique contrôlée (ne présentant pas plus de 

deux structures chimiques plus similaires qu’une valeur seuil) a été constitué à partir de la 

base de données AMS. Pour commencer, un paysage de classification a été construit pour 

comparer les distributions des composés dans chaque chimiothèque (Figure 7). 
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Afin de découvrir de nouveaux châssis moléculaires, l’approche du zoom 

hiérarchique de GTM a été automatisée pour être appliquée systématiquement sur les zones 

de la carte dans lesquelles les composés AMS étaient le plus surreprésentés. Les collections 

ainsi identifiées ont été analysées pour en extraire les sous-structures maximales communes 

(Figure 8).  

Figure 7. Comparaison des bases de données BI Pool vs AMS: (a) paysage de densité BI 

Pool, (b) paysage de densité AMS, et (c) paysage de prépondérance AMS contre BI Pool. 

Les régions blanches sont non peuplées, et la transparence est proportionnelle à la densité 

de population. 
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De la sorte, un total de 45.5K nouvelles sous-structures ont été extraites de la base de 

données AMS ce qui a permis d’identifier 401K composés dans ce catalogue. La plupart de 

ces composés sont conformes aux règles de Lipinski et peuvent donc être considérés 

comme biodisponibles par voie orale (Figure 9). De plus, des GTM universelles entrainées 

sur la version 24 de la base de données ChEMBL ont été appliquées pour estimer le profil 

biologique de ces structures pour 749 cibles. Plus de 1.2K composés ont été identifiés pour 

avoir une activité potentielle sur différentes cibles avec une probabilité supérieure à 80%.  

Figure 8. Un exemple d’analyse de zoom hiérarchique de GTM. Ici, une nouvelle sous-

structure de la collection Aldrich-Market Select (AMS) a été découverte en utilisant un 

zoom à 2 niveaux. L’espace blanc indique des zones non peuplées, et la transparence 

correspond à la densité de la population. 
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Figure 9. Histogrammes représentant le nombre de donneurs et d’accepteurs de liaison 

hydrogène, de lipophilicité (LogP), de poids moléculaires, et de surface polaire topologique 

(TPSA) calculés pour l’extrait de 401K composés de la base de données AMS. Les lignes 

pointillées rouges matérialisent les règles de Lipinski [13]. 
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Des exemples de ces touches virtuelles sont montrés en Figure 10. 

 

Figure 10. Exemples de structures prédites actives et identifiées dans l’extrait de 401K de 

la base de données AMS. 



25 

 

Les structures découvertes ont été recommandées à l’entreprise afin d’être achetées 

pour alimenter leurs collections. Le papier rapportant les résultats de cette étude a été 

accepté à la publication « Journal of Computer-Aided Molecular Design ». 

1.2.4 GTM parallèle 

Les avantages de la GTM ont été montrés dans différentes applications dans le 

contexte des mégadonnées. Cependant, il reste encore quelques limitations techniques et 

méthodologiques qui en restreignent l’usage à des quantités de données plus grandes que 

quelques dizaines de millions de molécules. Pour surmonter ces limites, le concept de GTM 

parallèle a été proposé. Le concept général est décrit par la Figure 11. 

 

Figure 11. Représentation schématique de l’algorithme GTM Parallèles. 
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Il consiste à entrainer des GTMs sur différentes parties du jeu de données en parallèle. 

Une fois que les nappes intermédiaires ont été ajustées à leurs données respectives, elles 

sont fusionnées dans une nappe unique. A cette fin, trois stratégies sont envisagées: 1) 

moyenner les matrices de paramètres décrivant chaque nappe et moyenner la largeur de la 

distribution gaussienne, 2) faire des moyennes pondérées par la vraisemblance issue de 

chaque nappe, et 3) faire des moyennes au travers d’une GTM. Celle-ci consiste à entraîner 

une nouvelle GTM à partir d’un jeu de données artificiel composé par les nœuds des GTM 

intermédiaire dans l’espace initial. 

Cette approche a été testée en utilisant un jeu de composés extraits de la base de 

données ChEMBL (v24), pour lesquels les valeurs d’IC50 sur la prothrombine 

(CHEMBL204) étaient connues. La GTM parallèle a aussi été comparée à l’algorithme 

classique et incrémental de la GTM (telle que décrit par C. Bishop et al. [4]). La qualité des 

modèles obtenus a été mesurée sur leur capacité prédictive concernant l’activité biologique 

sur la prothrombine et le temps d’exécution. Les résultats de cette étude comparative ont 

montré que la GTM parallèle produit des modèles aussi prédictifs (les précisions balancées 

sont similaires avec une déviation d’environ 0.02) mais que les temps de calculs sont 

divisés par un facteur 2. En comparaison, les GTM incrémentales et parallèles utilisent des 

jeux de données bien plus gros (plus de 100,000 composés) et bénéficient d’une réduction 

des temps de calcul d’un facteur pouvant aller jusque 6. 

1.3 Conclusions 

1) La méthode GTM (Generative Topographic Mapping) a été testée pour le 

criblage virtuel (VS) mono-cible et multi-cible. Les études comparatives ont montré que les 

modèles GTM ont des performances similaires aux autres méthodes d’apprentissage 

machine. Mais elle possède plusieurs avantages comme la possibilité de visualiser l’espace 

chimique. 

2) La méthode GTM a été testée avec succès pour comparer de grandes bases 

de données de composés réels et virtuels (PubChem-17, ChEMBL-17, FDB-17). Il a été 
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montré que la GTM permet de visualiser facilement des millions de points de données et de 

localiser les zones de l’espace chimiques où ces ensembles de molécules se recouvrent. 

3) La technique de zoom hiérarchique de GTM a été proposée comme une 

solution pour analyser plus finement le contenu des zones de l’espace chimique les plus 

peuplées. Elle augmente la capacité de la GTM à distinguer différents chémotypes. Ceci 

donne lieu à une extraction plus efficace de châssis et de sous-structures maximales 

communes. 

4) Un nouveau protocole d’extraction de sous-structures maximales communes 

a été proposé. Ce protocole a été intégré à la technique de zoom hiérarchique de GTM. 

L’outil développé a été utilisé avec succès pour enrichir la collection interne de la société 

Boehringer Ingelheim Pharma (45.5K nouvelles sous-structures, 401K molécules analysées 

et une liste de composés recommandés pour être achetés ou synthétisés par la société). 

5) Le concept de GTM parallèle a été proposé. Il a été testé sur un jeu de 

données extrait de la base de données ChEMBL. Il a été montré que la GTM parallèle 

propose à l’utilisateur des modèles dont les performances sont conservées tout en divisant 

par 2 les temps de calcul. 
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2 Introduction 

The number of synthesized chemical structures increases exponentially because of the 

implementation of parallel and combinatorial synthesis approaches, as well as new 

experimental techniques like flow or microwave reactors. CAS Registry is the largest 

chemical database of registered compounds that have been synthesized since the 1800s, and 

it already contains 154 million organic and inorganic substances [14]. Yet, it covers just a 

part of chemical space. Thus, Reymond et al. [2] virtually enumerated a new database 

(GDB-17) of 166 billion small molecules containing no more than 17 heavy atoms. 

According to the estimation made by P. Polishchuk et al. [3], the drug-like chemical space 

includes at least 10
33

 molecules. These studies demonstrated that modern chemistry enters 

the era of Big Data. 

Among various definitions of “Big Data”, the most pertinent, to our opinion, belongs 

to A. De Mauro et al. [15] who defined this as “the information asset characterized by such 

high Volume, Velocity, and Variety to require specific technology and analytical methods 

for its transformation into value”. Lusher et al. [16] included in this description “Veracity”  

and “Value” criteria thus completing the 5 “V’s” definition. Specifically for chemical data, 

Bajorath et al. [17] suggested also to use the Complexity and Heterogeneity criteria. 

The value of Big Data in chemistry is determined by the knowledge which can be 

extracted via large chemical databases analysis and modeling. In this context, data 

visualization and analysis plays an important role in modern chemistry and, especially, in 
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drug-discovery. This helps a chemist to decide by combining human and artificial 

intelligence. 

Nowadays, three groups of methods are used for chemical data analysis, visualization 

and modeling: (i) graph-based, (ii) descriptors-based, and (iii) combined methods. The 

graph-based approaches represent a molecule as a graph where the nodes represent atoms 

and the edges play a role of chemical bonds. A general way to analyze graph-based 

chemical space stands on the concept of a molecular framework (scaffold) defined as the 

part of a structure which remains after all terminal chains have been removed [18]. 

Scaffolds can be used to group structures in a hierarchical scaffold tree which allows to 

visualize data and even to model structure-activity relationship (SAR) [19]. Maximum 

Common Substructure (MCS) – based algorithms are used in chemoinformatics to extract 

the largest connected or disconnected subgraph shared by a pair or a group of structures. Its 

application can be also found in data clustering and SAR studies [20]. Matched Molecular 

Pairs (MMP) method [21] represents another popular way for SAR analysis. 

In contrast to the graph-based methods, the descriptors-based approaches consider a 

molecule as a vector of numbers (descriptors) that describe a compound in terms of 

structural and/or physical or chemical properties (e.g., structural fragments, molecular 

weight, LogP, etc.). These descriptors vectors are used as input in various machine-learning 

approaches, among which the dimensionality reduction techniques reside a huge variety of 

multi-dimensional data visualization and modeling. Nowadays, dozens of dimensionality 

reduction methods are reported in the literature [22]: Multi-Dimensional Scaling (MDS) 

[23], Sammon mapping [24], Principal Component Analysis (PCA) [25–27], Self-

Organizing Maps (SOM) [28], Laplacian Eigenmaps [29], Canonical Correlation Analysis 

[30], Independent Component Analysis [31], Exploratory Factor Analysis [32], Isomaps 

[33], Locally Linear Embedding [34], Auto-encoder based dimensionality reduction [35], 

etc. These methods became popular due to their efficiency and capabilities. For instance, 

SOM is providing the user with a nice 2D map which is based on a non-linear model, 

whereas PCA is able to represent the data in 2D or 3D PC space. However, these popular 
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methods have some clear drawbacks. Thus, PCA can efficiently be applied to process huge 

datasets with linearly dependent features, but it is less effective with nonlinear data 

distributions [36]. As a consequence, this approach fails to represent the cluster structure of 

vast multidimensional data [37]. MDS is also a linear technique, which for the case of 

Euclidean distances gives equivalent results to PCA [38]. Sammon maps have no explicit 

mapping function and, therefore, do not allow one to place any new data on an already 

existing map. In that case, a new map must be rebuilt from scratch [39]. Besides, 

calculation and storage of all inter-point distances are required; this imposes severe 

restrictions on many practical applications dealing with large amounts of data or 

incremental data flow. The SOM approach has no well-defined objective function to be 

optimized during the training procedure [40, 41] and, therefore, no theoretical framework to 

prove its convergence and to select the method’s parameters can be defined. This leads to 

some ambiguity in the selection of the “best” SOMs. 

In an attempt to overcome the drawbacks mentioned above, a probabilistic extension 

of SOM named Generative Topographic Mapping (GTM) [4] was proposed. Unlike its 

predecessor, GTM considers the likelihood of training data points as the objective function. 

Also, a data point is not associated with one particular node but it is represented as a 

probability distribution over the entire latent space. Cumulating the probabilities over the 

data set, it is possible then to create continues chemical landscape which might serve for 

data sets visualization and comparison as well as for the building of regression and 

classification models. 

The last group of methods can be illustrated on the example of Chemical Space 

Networks (CSN) [42] which combines both graph- and descriptors-based approaches. The 

idea is to represent chemical space as a huge graph where the nodes represent individual 

molecules, and the edges between the nodes are created as a function of either pairwise 

molecular similarity threshold or Matched Molecular Pair relations. CSN can be used to 

visualize a target-specific data set as an interactive graph where active and inactive 

molecules are grouped. These networks can efficiently be used for SAR exploration, and 
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they provide a depiction of target promiscuity, scaffold hopping [43] and/or similarity cliffs 

[44], where a single target exhibits activity for more than one class of compounds. 

Despite the availability of a large number of various tools of chemical space analysis, 

only a few of them are suitable to be applied to Big Data. In our work, we focused on GTM 

possessing clear advantages over other methods because of its versatility, easy 

implementation and the possibility to combine options of data visualization, analysis, and 

modeling. A detailed description of GTM is given in the next section. 
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3 Generative Topographic Mapping (GTM) 

Overview 

GTM is a dimensionality reduction algorithm well described in the literature [4, 5, 

45]. Briefly speaking, the algorithm injects a 2D hypersurface (manifold) into an initial D-

dimensional data space. The manifold is fitted to the data distribution by the Expectation-

Maximization (EM) algorithm which minimizes the log-likelihood of the training data. 

Once the fitting is done, each item from the data space is projected to a 2D latent grid of K 

nodes. In the latent space, the objects are described by the corresponding vector of 

normalized probabilities (responsibilities). In turn, the entire data set can be represented by 

cumulative responsibilities. These cumulative responsibilities can be further visualized as a 

GTM Landscape or used to create regression or classification model. 

3.1 Basics 

3.1.1 Original GTM Algorithm 

The algorithm was proposed by C. Bishop et al [4] in 1998. As it was already 

mentioned, GTM is a probabilistic extension of SOM where log-likelihood is utilized as an 

objective function. The manifold used to bind a data point t* in the data space and its 

projection x* in the latent space (Figure 12) is described by a set of M Radial Basis 

Function (RBF; Gaussian functions are used in the current implementation) centers. 
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To map the items from the initial space to the latent grid, the mapping function Y is 

used. It is described by K x M matrix (𝚽) containing the RBF positions in the latent space 

with respect to the nodes, and the M x D parameter matrix (W) characterizing the position 

of the manifold in the initial space: 

 𝐘 = 𝚽𝐖 

 

(3.1). 

The first step of the GTM training procedure is parameter matrix (W) initialization 

which can be done by randomization of the initial values or application of PCA where the 

first two principal components are used: 

 𝐖 = 𝚽−1(𝐗𝐔) (3.2). 

Here, U is 2 x D matrix of the first two eigenvectors, and X is K x 2 matrix of nodes’ 

coordinates in the latent space. The initialized manifold is inserted to the data space, and the 

initial log-likelihood value LLh(W, β) is computed using the 3
rd

 eigenvalue as an initial 

guess of β
-1

: 

 

LLh(𝐖, β) =
1

N
∑ ln {

1

K
∑ p(𝐭n|𝐱k, 𝐖, β)

K

k=1

}

N

n=1

 (3.3), 

 
p(𝐭n|𝐱k, 𝐖, β) = (

β

2π
)

−𝐷/2

exp (−
β

2
‖𝐲k − 𝐭n‖2) 

 

(3.4), 

Figure 12. The basic idea of the GTM. Here, the data point t* from the multi-dimensional 

data space (right) is projected to x* the 2D latent space (left) using the manifold which is 

injected into the data space and described by a set of Radial Basis Functions (RBF). 
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On the second step, the EM algorithm is run which, first, computes the corresponding 

responsibilities rn, and then updates the parameter matrix W and β
-1

: 

In the equation (3.7), T is N x D matrix describing N data points in the initial D-

dimensional space, λ is the regularization coefficient, and I is M x M unit matrix. The 

algorithm recomputes the LLh(𝐖̃, β̃) using the updated 𝐖̃ and β̃, and compare it with the 

LLh(W, β) obtained in the previous iteration. It can be seen from the equation (3.4) that the 

algorithm uses gradient descent minimizing the distance between the nodes and the data 

points. The manifold is considered to be trained enough when the EM algorithm achieves a 

certain threshold of convergence (e.g., LLhnew − LLhold ≤ 0.001). Then, each data point is 

described on the 2D latent grid by its LLh and corresponding vector of responsibilities rk. 

3.1.2 Incremental GTM Algorithm 

The “Big Data” term is used to describe data sets of millions of data points. Such data 

sets can hardly be handled by the classical GTM algorithm due to the huge matrix of 

responsibilities (R, equation (3.5)). In the case of large data sets (e.g. more than 50K 

compounds) it cannot be fully stored in the computer’s RAM. In order to solve this issue, C. 

Bishop et al. have proposed to use an incremental GTM [40]. Within this approach, the 

manifold is initialized by a randomly chosen subset. Next, the data set is split into a series 

of blocks of a certain size which are used to train the manifold sequentially. In this scenario, 

the M step described in 3.1.1 is changed (equations (3.7) and (3.8)), and 𝐖̃ and β̃ are 

E-step 

rkn =
p(𝐭n|𝐱k, 𝐖, β)

∑ p(𝐭n|𝐱k′ , 𝐖, β)K
k′=1

 

 

(3.5), 

gkk = ∑ rkn

N

n=1

 

 

(3.6), 

M-step 

𝐖̃ = (𝚽T𝐆𝚽 + λ𝐈)−1𝚽T𝐑𝐓 (3.7), 

1

β̃
=

1

ND
∑ ∑ rkn‖y(𝐱k, 𝐖̃) − 𝐭n‖

2
K

k=1

N

n=1

 

 

(3.8). 
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computed using two types of responsibilities: 1) new (R
*

new) and old (R
*
old) responsibilities 

of N
 *

 structures produced for the new data block Tnew, and 2) responsibilities Rold 

computed for N structures from the previous block Told: 

 𝐖̃ = (𝚽T𝐆𝚽 + λ𝐈)−1𝚽T{𝐑old𝐓old + (𝐑new
∗ − 𝐑old

∗ )𝐓new} (3.9), 

 1

β̃new

=
1

βold
+

1

DN∗
∑ ∑(𝐫new,kn

∗ − 𝐫old,kn
∗ )‖y(𝐱k, 𝐖̃) − 𝐭n

∗ ‖
2

K

k=1

N∗

n=1

 

 

(3.10). 

The next block of compounds is taken into the process only if convergence for the 

current one was achieved (LLhi−LLhi-1 ≤ 0.001). The incremental GTM algorithm was 

implemented by H. Gaspar et al. and tested in a compound library comparison project [5]. 

Its performance is discussed in chapter 3.4.2. 

3.1.3 GTM Landscapes 

To visualize and model chemical data, the GTM landscape is used [6, 45, 46]. With 

respect to different types of information, one can define three types of landscapes: 1) class 

landscape, 2) property landscape, and 3) density landscape. The examples are illustrated in 

Figure 13. 

 
Figure 13. The example of class, property and density landscapes. The map was trained on 

vascular endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K 

compounds. Here, (a) represents class landscape which demonstrates the distribution of 

molecules of two classes (active, inactive), (b) – property landscape (solubility, LogS), and 

(c) – density landscape providing the information about the nodes’ population. 
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The class landscape represents a combination of classes’ probabilities ci computed as: 

 
P(ci|𝐱k) =

P(𝐱k|ci) ∗ P(ci)

∑ P(𝐱k|cj) ∗ P(cj)j

 

 

(3.11), 

 
P(𝐱k|ci) =

∑ rkn𝐶𝑖
N
n=1

Nci

 
(3.12), 

 
P(ci) =

Nci

Ntotal
 

 

(3.13), 

where Nci
 is the number of items for the class ci, Ntotal is the total number of training items, 

and rkn is the responsibilities of the members of the class ci in the node k computed 

according to the equation (3.5). To predict a class for a new compound q, the equation (3.14) 

is used: 

 

P(ci|𝐭q) = ∑ P(ci|𝐱k) ∗ rkq

K

k=1

 

 

(3.14), 

To visualize the landscape, normalized probability of the class c2 is used as a color 

code (only a binary class landscape can be visualized at the moment). To consider the 

density of the nodes’ population, transparency is added. In the case of a multi-class task 

(more than 2), GTM projections (the average positions of the items in the latent space) can 

be used instead of fuzzy GTM landscapes. 

The second type of the GTM landscape is the property landscape which is used to 

visualize the distribution of a property over the latent space and which might serve as a 

regression model. The property landscape is defined by a list of property values 

corresponding to a particular node: 

 
pk =

∑ pn ∗ rkn
N
n=1

∑ rkn
N
n=1

 

 

(3.15), 

where pn is the property value for the compound n, and pk is the mean property value for the 

node k. 
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The prediction of a property p for a new structure q is done similar to class prediction: 

 

pq = ∑ rkq ∗ pk

K

k=1

 

 

(3.16). 

To visualize the property landscape, pk value is interpreted as a color code. 

The last type of the GTM landscape – density landscape – is a special case of the 

property landscape where pk is represented as a sum of responsibilities in the node k. This 

landscape is used to analyze the data distribution over the map which is not always obvious 

via the landscape’s transparency. 

3.2 GTM Parameters Tuning 

GTM has four parameters (number of nodes, number of RBFs, regularization 

coefficient, RBF’s width) needed to be optimized according to some scoring function. 

Besides these parameters, a “suitable” descriptors space and the frame set (usually a subset 

of representative compounds used to train the manifold; FS) size should be chosen. Two 

approaches are applied: grid search (brute force) and Genetic Algorithm (GA) [47]. The 

former investigates all possible combinations of 4 parameters. This approach is 

deterministic but it takes too much time and computational power. In contrast, GA is a 

stochastic approach but it allows the user to reach maximal fitness trying just a range of 

combinations which might lead to different endpoints in different runs. The workflow of 

the GA used to tune the GTM parameters and to select the suitable descriptors space and 

the frame set size is illustrated in Figure 14. 

 The details of the algorithm are already described in several publications [48–50]. 

Briefly speaking, GA generates a set of chromosomes composed randomly. All the attempts 

are cross-validated using the “selection” set (a set which differs from the FS and possesses 

activity/property values), and the mean Balanced Accuracy (BA) is computed. Next, the 

crossover and mutation of some attempts are applied, and the new attempts are computed. 
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The algorithm stops in case if it achieved the convergence (there is no attempt with larger 

BA during the two last generations) or the total number of attempts is exceeded. 

 

3.3 GTM-based Applicability Domain 

Applicability Domain (AD) plays an important role in any machine-learning method. 

It allows the researcher to avoid costly wrong predictions in prospective virtual screening. 

For GTMs, five AD definitions were reported [46, 51]: 1) likelihood-based, 2) density-

based,  3) class-dependent density, 4) predominant class AD, and 5) class entropy AD. 

Within the likelihood-based concept, an item is considered out of AD if it is too far 

from the manifold in the initial data space. To filter such items, the LLh cutoff is 

determined. The approach to compute this cutoff is quite straightforward: the compounds 

Figure 14. Evolutionary map selection scheme. 
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from the frame set are ordered accordingly to their LLhs, and it is assumed that the last n% 

of compounds are out of AD. Thus, the LLh cutoff is taken as the highest LLh out of this 

bottom n%. The density-based AD discards the nodes on the GTM landscape where the 

cumulative responsibility is below a certain threshold. This allows using only populated 

zones to make the predictions. The class-dependent density (CDD) AD is similar to the 

density-based AD. The difference is that the CDD AD checks only the density of the 

winning class cbest in the node, which has the highest conditional node probability P(xk|cbest) 

(equation (3.12). 

The predominant class AD is based on the selection of a dominant class in a node to 

which the maximal probability in this node corresponds. To control the predominance, a 

new class prevalence factor (CPF) was introduced. The idea is to discard the nodes in the 

latent space where the ratio of the classes’ probabilities in a node is below the CPF. 

Herewith, the CPF becomes an additional degree of freedom which should be optimized to 

obtain a good model in terms of predictive performance. 

The last approach is the class entropy-based AD. The class entropy S of the q
th

 

molecule is computed as: 

 Sq = − ∑ P(ci|q) log(P(ci|q)

i

 

 

(3.17). 

The entropy of the molecule is compared to the maximal entropy Smax = log(Nc) 

where Nc is the number of classes. The decision to discard the compound is made using the 

class-likelihood factor (CLF) computed as Sq / Smax. Thereby, CLF is high for the 

compounds with similar P(ci|q) for all classes, and low for the compounds with some 

dominant class (i.e. the P(ci|q) for this class is about 0.8-1.0). Thus, the compound is 

considered as out of AD if its CLF is above some threshold varying between 0 (all 

compounds are out of the AD) and 1 (all compounds are in AD). 
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3.4 Maps Application and Analysis 

GTM is in practice a Swiss army knife of chemoinformatics, because it may serve in 

applications ranging from data visualization to libraries comparison, (multi-task) predictive 

modeling and AD control, de novo design, conformational space analysis, etc. (Figure 15). 

Here, we discuss some of them that were described in the literature so far. 

 

3.4.1 Obtaining of Classification and Regression Models with GTM 

GTM has been already successfully applied as a tool for QSAR and QSPR modeling 

in many projects. In the paper by N. Kireeva et al. [52], the authors have demonstrated the 

application of the classification GTM to predict the melting point of ionic liquids. Three 

data sets were modeled, and the mean accuracy of the models in 5-folds cross-validation 

varied from 0.81 to 0.87. H. Gaspar et al. [6] have applied the regression GTM to model 

stability constants for metal binders, aqueous solubility, and activity of thrombin inhibitors. 

The authors compared the predictive performance of the regression GTM models to other 

machine-learning approaches, namely Self-Organizing Maps [41], Random Forest (RF) 

[53], k-nearest neighbors [54], M5P regression tree [55], and partial least squares [56]. 

External validation showed that RF overcomes the GTM in some cases (the difference of 

Figure 15. Areas of GTM application. 



42 

 

the determination coefficients in cross-validation ΔQ
2
 is up to 0.24). At the same time, the 

likelihood-based applicability domain (chapter 3.3) improved the performance and reduced 

the ΔQ
2
 down to 0.1. A similar trend was demonstrated in the paper of T. Gimadiev et al. 

[57] where the authors applied GTM to model 21 inhibition activity for efflux and influx 

transporters. 

Across many projects, it was demonstrated that GTM produces target- and property-

specific models which quality is comparable to other methods. However, in contrast to 

other popular machine-learning approaches, GTM is an unsupervised method that trains its 

manifold using the unlabeled chemical data. Therefore, it can build a map not for a 

particular activity/property but for a given database which includes thousands and millions 

of compounds. This idea was extended and tested by P. Sidorov et al. [9] which have 

proposed a concept of a universal map. The authors aimed to cover a large chemical space 

of around 1.3M compounds (ChEMBL database of version 20) using a single map. The 

descriptors space and the GTM parameters were selected using the Genetic algorithm 

described in chapter 3.2. The results showed that the universal approach is able to cover 

efficiently large range of chemotypes. Several tests (“challenges”) were done to prove its 

performance. For instance, the best map selected by GA was cross-validated on 410 

ChEMBL targets, and about 80% of the targets were predicted with the mean Balanced 

Accuracy of 0.7. 

The universal approach described in [9] has demonstrated that GTM is ready to 

model Big Data, and it can be also used in multi-target machine learning where the 

universal map can predict several activities/properties without training a new model. This 

also opened the door to large-scale Virtual screening (VS). In the context of the given work, 

Virtual Screening is defined as an application of QSAR to model and predict Big Data. 

Very recently, GTM was shown as a nice tool for VS [58]. The authors trained GTMs in 

different descriptors spaces on ChEMBL data. It was established that one descriptors space 

is not sufficient, and at least 7 fragmentation schemes are needed. It was also shown that 
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the consensus approach made on several maps gives better accuracy than single-map 

predictions. 

3.4.2 Data Analysis and Chemical Libraries Comparison 

Besides QSAR/QSPR studies, GTM was applied to visualize and analyze chemical 

data. For instance, GTM was used to visualize and cluster the data on motor unit action 

potential [59]. The authors of the study trained GTM on nine data sets and then used the 

latent grid as a basis for data clustering. In the paper of D.M. Maniyar et al. [37], the 

authors applied hierarchical GTM [11] to visualize the distribution of active and inactive 

classes for five data sets (GPCRs and Kinase) obtained from different high-throughput 

screens. They trained a manifold using these five data sets, and, if the map resolution was 

not sufficient to distinguish the compounds from different classes, they extracted the 

compounds from such a “mixed” area and retrained a “child” manifold. GTM has even 

been proposed for nonlinear fault identification in a chemical process [60].  

Also, an attempt to combine the GTM method with Chemical Space Networks (CSN) 

[42] was done [61]. The authors proposed the two-layered SAR visualization concept for 

SAR exploration of increasingly large compound data sets. The underlying idea is to first 

generate global “bird’s eye” views of the activity landscapes of large data sets to identify 

SAR-informative regions for more detailed analysis. Then, selected regions were further 

analyzed by the CSN at the level of individual compounds. The GTM-CSN technique was 

applied to analyze three relatively small activity-specific compound series (up to 2.2K 

compounds) extracted from BindingDB [62, 63] and big antimalarial screening (up to 13K 

compounds) data set [64]. The authors checked structural modifications resulting in 

potency changes and discussed it in the example of several analogs where such 

modifications increased the pKi value (e.g. from 6.1 to 8.1 pKi). 

Despite a large number of different GTM applications, yet, it was used to analyze 

only relatively small data sets (up to 20-30K compounds). The first attempt to visualize 

large data sets (2.2M compounds) was done by H. Gaspar et al. [5]. The authors applied the 
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incremental GTM (chapter 3.1.2) to compare 36 commercial libraries and the NCI database 

in terms of molecular properties (molecular weight, number of H-bond donors and 

acceptors, chirality, logP, TPSA, etc.), similarity (Tanimoto coefficient), and compounds 

distribution over the 2D latent space. The libraries were also compared using meta-GTM 

where a map was trained on all 37 libraries. Each library was considered as a single object 

represented by cumulated responsibilities or property landscape values at nodes xk. The 

authors also showed that some regions of interest can be detected in the landscape using the 

desired property landscapes. This brought us closer to Big Data, but still, the analysis of the 

structures residing the nodes was done manually. 

To automate that, the Responsibility Pattern (RP) term was introduced by K. 

Klimenko et al. [65]. The idea was to group structures that reside neighboring nodes on the 

map using their responsibilities. RPs allowed to detect and to extract compounds that are 

similar in the latent space automatically to search then for privileged structural motifs 

(PSM). 

The concept of “privileged substructures” was originally introduced by B.E. Evans et 

al. [66], referring to core structures that are recurrent in compounds active against a given 

target family and, therefore, associated with that biological activity. Privileged 

substructures are thought to be selective toward a given target family but not individual 

family members. Most of the earlier studies focused on the exploration of molecular core 

structures or scaffolds, and some privileged scaffolds have been proposed for drugs and 

natural products. However, it was shown in [65] that common structural motifs may vary 

from precisely defined scaffolds or even substituted scaffolds, to fuzzier ensembles of 

related, interchangeable scaffolds, to even fuzzier ‘pharmacophore-like’ patterns.  

The PSM approach allowed chemists to relate a particular activity/property to a 

certain chemical pattern. The PSM technique was also applied in modeling and analysis of 

antimalarial compounds [49]. The authors highlighted some of the specific privileged 

patterns linked to antimalarial activity (e.g., naphthoquinones and 4-aminoquinolines). 

Later, the method was modified by the application of retrosynthetic rules (RECAP) [67]. 
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The authors tried to extract the “frequent” RECAP cores to identify PSMs for inhibitors of 

protease, kinase, and GPCRs. However, the workflow where the PSM was implemented 

still includes some steps that must be done manually (PSM are extracted by hands). This 

limits the workflow and restricts it in the analysis of larger data sets. 

3.4.3 GTM for Conformational Space Analysis 

Another application of GTM was found in the analysis of conformational space. 

Conformational sampling is the key to the fundamental understanding of molecular 

properties. It plays an important role in medicinal chemistry since different conformations 

may possess different biological activities (in terms of IC50, EC50 or Ki). Several 

techniques are applied in conformational sampling [68–70]. However, GTM has a clear 

advantage in the context of conformational space visualization. 

The general idea of GTM application in conformational sampling was described by D. 

Horvath et al. [71]. One can train a map using “contact” or “interaction” fingerprints as well 

as torsion angles as descriptors to predict total, non-bonded and contact energies, surface 

area or fingerprint darkness. For this purpose, a set of (previously generated) conformers 

with known score values (e.g. total energy computed by AMBER force field [72]) can be 

used to prepare frame, color and test sets. Next, the Genetic Algorithm (see chapter 3.2) is 

run to tune the GTM parameters. Once the algorithm achieved convergence (e.g. root mean 

square deviation does not change a lot), the obtained map can be used to visualize and 

analyze the corresponding conformational space as well as to predict the energy of a new 

conformer or to sample conformers using the property landscape as a basis in the reverse 

task (projection from the latent space back to the initial space). 

The described approach was evaluated by the authors in the task of monitoring the 

conformational space of dipeptides [73]. Later, it was applied to the docking problem [74]. 

The concept was illustrated by a docking study into the ATP-binding site of CDK2. The 

maps trained on contact fingerprints and hybrid descriptors (contact fingerprints in 

combination with ligand fragment descriptors) were used to discriminate native from non-
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native ligand poses and to distinguish ligands by their potency. It was shown that the maps 

trained on hybrid descriptors possess higher prioritization performance (the Area Under the 

Receiver Operating Characteristics Curve is above 0.8) and, thus, they can be efficiently 

used in Virtual Screening campaigns. 

3.4.4 GTM in De Novo Design 

Besides data analysis and modeling, GTM is also used in de novo design of new 

structures. In 2014, K. Mishima et al. [75] applied GTM in a loop of biological activity 

assessment of virtually enumerated structures. The seed structures were selected from the 

activity landscape and modified in various ways to generate new structures. The generated 

structures were filtered after by the same GTM activity landscape and used (in case of 

success) as new seeds. The loop stops when enough structures are generated. This 

algorithm was also applied by S. Takeda et al. [76] to generate a set of drug-like molecules. 

Another attempt to use GTM in the generation of chemical structures with desirable 

activity(ies) was made by introducing the Stargate GTM [77]. Here, GTM was used to bind 

descriptors and activities spaces by training two manifolds in both spaces in parallel. The 

defined “reverse” mapping function allowed to “jump” from the activities space back to 

descriptors space and, hence, to determine the desirable descriptors vectors. Next, one can 

generate structures with high similarity to the returned vectors assuming that these new 

structures will possess the requested activity profile. 

Besides, GTM was also combined with auto-encoder where the map was trained on 

the generated latent descriptors. B. Sattarov et al. [78] analyzed the binding potency of 

automatically generated 394 ligands for the Adenosine A2a receptor. These ligands were 

docked to the binding site using S4MPLE docking method [79]. It was shown that the 

average docking score of the generated structures is even better than the average docking 

score of real active molecules. 
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3.5 Conclusion 

In recent studies carried out in the Laboratory of Chemoinformatics, Generated 

Topographic Mapping designed by C. Bishop as a data visualization approach was 

significantly extended on the modeling and analysis of chemical data. This PhD project 

represents a continuation of these studies. Our main challenge concerned the further 

extension of GTM toward Big Data, which, in turn, may require using large frame sets (FS) 

in combination with large dimensionality of the initial data space for manifold construction.  

Since the capacity of earlier reported classical and incremental algorithms for manifold 

construction was limited, our goal was to design a new more efficient algorithm.  

In earlier studies, relatively small FSs were used to build GTM for large chemical 

databases. However, a systematic investigation of GTM performance as a function of FS 

size was never performed. This question was considered in our work. 

In this thesis, we also tackled some other methodological problems. The first one 

concerned a rational determination of the log-likelihood threshold used for defining the 

applicability domain of GTM-based models. The second one dealt with an automatized 

protocol of Maximum Common Substructures extraction from the ensemble of structures 

populated selected area on the map.  

Some earlier reported options of GTM-based data analysis were fully automatized in 

this work. It concerns (i) selection of zones of interest [5] and, (ii) hierarchical GTM 

zooming [11, 37]. 

Developed algorithms and tools were used in three projects: (i) application of GTM to 

virtual screening (VS), (ii) comparison of large databases, and (iii) enrichment of 

proprietary library. 
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4 Methodological Developments 

4.1 Descriptor normalization for GTM 

The Generative Topographic Mapping (GTM) method is sensitive to the descriptors 

and its preprocessing. For instance, the PCA, which is the first step of GTM, requires the 

descriptors to be centered. Therefore, it is needed to find a suitable scheme of descriptors 

preprocessing which provides the user with a better map. For this purpose, five 

preprocessing schemes were compared to each other and the scenario when no 

preprocessing was done: 

1) No preprocessing; 

2) Standardization (centering and division by its standard deviation); 

3) Centering; 

4) Scaling to [-1;1]; 

5) Scaling to [-1; 1] and centering. 

To see the impact of different preprocessing schemes, a set of 98 compounds active 

against the tyrosine kinase inhibitors (SRC) and 980 decoys were extracted from the 

Directory of Useful Decoys (DUD) [8]. The structures were standardized (aromatized, 

explicit hydrogens were removed, common chemical groups like nitro group were 

transformed, etc.), and ISIDA descriptors were generated (atom-centered sequences of 

atoms and bonds with a length of 1 to 3 atoms) [80]. The descriptors were preprocessed 

according to 5 scenarios mentioned above, and a GTM was trained using the following 

parameters: 625 nodes, 144 RBFs, RBF’s width is 2.82, and the regularization coefficient is 
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1.0. The 2/3 part of the data set was used to build the class landscape, and the rest was used 

as a test set to assess the predictive performance in terms of Balanced Accuracy (BA) and 

Area Under the Receiver Operating Characteristics Curve (ROC AUC).  

Table 1. Validation results of the GTMs trained for the SRC data set with different 

preprocessing schemes. A probability threshold of 0.5 was used for BA assessment. 

Preprocessing scheme BA ROC AUC 

No preprocessing 0.71 0.88 

Standardization 0.72 0.88 

Centering 0.74 0.66 

Scaling to [-1;1] 0.49 0.72 

Scaling to [-1;1] and centering 0.52 0.91 

 

Figure 16. GTM projections of the SRC data set with (a) no descriptors preprocessing, (b) 

descriptors standardization, (c) centering of the descriptors, (d) scaling the descriptors, and 

(e) scaling and centering the descriptors. 
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The results in Table 1 and Figure 16 demonstrate that the GTM trained with the 

original descriptors performs similarly to those built on standardized descriptors. On the 

other hand, the items are better spread on the former map (Figure 16a) than on the others. 

Notice that the above results correspond to a particular data set and descriptors type.   

4.2 GTM Applicability Domain (AD) 

The Applicability Domain (AD) topic was already discussed in chapter 3.3. The 

approaches described in [51] use tunable parameters which bring an additional degree of 

freedom to the model optimization procedure. So far, the predominant class AD needs the 

class prevalence factor (CPF) for each GTM landscape to ignore the mixed nodes which, in 

turn, decreases the density of the landscape. The class entropy AD needs a threshold for the 

class-likelihood factor (CLF). These ADs make the GTM tuning procedure described in 

chapter 3.2 more complicate. 

In the author’s opinion, the likelihood-based AD described in chapter 3.3 is the most 

simple and intuitive approach. Predictions made for the compounds which are away from 

the manifold will be worse in terms of confidence than for the compounds which are closer 

to it. The shape of the LLh distribution of the frame compounds (the axis X represents the 

LLh, and the axis Y represents the number of compounds) is similar to the shape of a 

shifted Gaussian distribution. The LLh values vary from -∞ to 0, and the peak of this 

distribution corresponding to the major part of the frame set situates near 0. The right part 

of the distribution is very short since no compounds can be predicted with LLh>0. In 

contrast, the left part possesses a very long “tail” (the blue line in Figure 17). 

If the LLh distribution would perfectly follow the normal distribution, the top 95% 

(i.e. 5% beyond the threshold) of the frame compounds would form an area under the 

Gaussian curve where the last one is cut in the μ ± 2σ range. However, this LLh distribution 

is not perfectly normal (besides the fact that it is shifted). Many attempts to fit a Gaussian 

to the LLh distribution minimizing the root mean square error (RMSE) were done. The 

schematic example is shown in Figure 17, and RMSE was computed as: 
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RMSE = √∑ (𝑁𝑐𝑖
𝐺𝑇𝑀 − 𝑁𝑐𝑖

𝐺𝑎𝑢𝑠𝑠)
2𝑁𝐿

𝑖=1

𝑁𝐿
 

 

(4.1), 

where NL is the number of unique LLh with a non-zero number of the frame compounds, 

and 𝑁𝑐𝑖
𝐺𝑇𝑀 and 𝑁𝑐𝑖

𝐺𝑎𝑢𝑠𝑠 are the numbers of the frame compounds given by GTM and fitted 

Gaussian at particular log-likelihood value LLhi (𝑁𝑐𝑖
𝐺𝑇𝑀 − 𝑁𝑐𝑖

𝐺𝑎𝑢𝑠𝑠 is named “deviation” 

in Figure 17). It was found that the RMSE is always above zero. Therefore, to determine 

the meaningful AD, a Gaussian approximation is needed. 

 

4.3 Automatized Hierarchical GTM Zooming 

The map resolution is a known problem of GTM in Big Data. The molecules of 

different classes might be projected to the same zone on the map. This makes the zone 

uncertain (mixed). As it was described in chapter 3.3, an attempt to discard such mixed 

zones was already made considering them as out of the applicability domain. This removes 

the uncertainty but it also reduces the number of populated nodes on the landscape. 

Figure 17. An example of a Gaussian (red line) fitted to the log-likelihood data distribution 

(blue line) of “Thrombin” (CHEMBL204) data set. GTM Applicability Domain is 

identified here by log-likelihood threshold LLhthreshold = LLhpeak – 3σ. Here, LLhpeak and σ 

are, respectively, the peak position and the width of the Gaussian function. 
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I. Nabney and P. Tino [11] suggested solving the resolution problem by training a 

new GTM manifold using the items of a selected area as a training set. The compounds 

used to train the “child” manifold are selected manually using projections on a “parent” 

map where each structure is represented as a single point. The authors created a multi-level 

hierarchical GTM tree and tested it on toy data sets. It was also tested in a task of analysis 

of GPSR activities [37]. In this project, we propose an automatized GTM zooming 

approach where individual projections are replaced by a class landscape (see chapter 3.1.3). 

Thus, a compound is extracted from a zone of interest (e.g. a square cluster of nine nodes) 

basing on the sum of its responsibilities in this zone which has to be larger than a certain 

threshold (e.g. 0.8). The child manifold is trained then using these compounds as a frame 

set with the same descriptors and GTM parameters. The likelihood-based AD described in 

chapter 4.2 can be then applied if needed. The approach was tested in the project of private 

chemical collection enrichment (see chapter 7; Figure 18). 

 

It is shown in Figure 18 that the second level of zooming discovered some areas 

populated exclusively by the private compounds (black nodes), whereas the parent area was 

shown in red (mostly public data). 

Figure 18. An example of the hierarchical GTM zooming approach applied to large public 

and private chemical databases comparison. Here, the map is trained to cover Aldrich-

Market Select (AMS, 8.5M compounds) data set and the in-house collection of Boehringer 

Ingelheim (BI Pool, 1.7M compounds; see chapter 7). 
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Within the automated procedure, the zones can be selected accordingly to two 

scenarios: 1) the grid of nodes can be simply divided into a set of joined square clusters of 

3x3 nodes (Figure 19a), or 2) the zones can occupy the grid sharing the nodes on the 

borders between each other (Figure 19b). The advantage of the second scenario is that the 

items which locate on the border of a zone and are not considered as members of this zone 

due to the responsibility threshold, they will be taken by the neighboring zone. This 

generates more zones than the simple strategy but it can be easily reduced by increasing the 

zone size. In turn, the second strategy brings more items to the subsets than simple division, 

and, thus, more chemotypes can be analyzed further. 

 

As soon as the zones are delineated, the decision to zoom or not to zoom is made 

based on the number of extracted compounds (for instance, at least 1000 items must be 

extracted). Child GTMs are trained then using these subsets as frame sets. In the case of 

large subsets (i.e. larger than 10,000 items), the frame set size should be controlled. 

Therefore, not the entire subset but only 10% of it (but not less than 1000 items) are used to 

Figure 19. Zones selection schemes: (a) simple division of a grid of nodes (GTM landscape) 

into a set of square clusters of 9 nodes where the zones’ borders are highlighted by orange 

lines; (b) zones selection using overlap. The zones on the scheme (b) have their own nodes 

in the white-areas as well as the nodes on the borders shared with the neighboring zones 

(orange). 
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train the manifold. After, the analysis of zones of a child manifold is repeated, and if the 

population of some zone is still too high, the zooming procedure repeats. 

4.4 Automatized Maximum Common Substructures 
Extraction from GTM 

The GTM provides chemists with a chemical landscape that can be visualized and 

analyzed. However, no relation between structural patterns and particular zone on the map 

is provided. For this purpose, the responsibility patterns (RP) method has been proposed to 

group the compounds which were then analyzed by the Scaffold Hunter tool to identify 

common scaffolds/substructures [49, 65]. Compounds sharing the same RP will typically 

share some common structural features that are further manually processed to annotate the 

map. This is a tedious and error prone-task. As an alternative, we propose to exploit the 

Maximum Common Substructure (MCS) search to automatically highlight shared features. 

Our solution is based on ChemAxon’s JChem engine [81]. The MCS extraction protocol is 

described in Figure 20. 

Here, an arbitrarily selected structure in the list of N items is compared to the other 

N-1, resulting in N-1 connected MCSs. A size filter keeps only the MCS covering at least 

30% of the heavy atoms in both structures of a pair. Then, duplicate MCSs are grouped and 

the unique MCSs are sorted according to their occurrence in the list. The most frequent 

MCS is selected. Structures featuring the selected MCS are removed from the list, and a 

new iteration is started. 

K. Klimenko et al. [65] demonstrated that common structural motifs may range from 

precisely defined scaffolds or even specifically substituted scaffolds, to fuzzier ensembles 

of related, interchangeable scaffolds, and to even fuzzier ‘pharmacophore-like’ patterns. 

Therefore, the perspective here is to use the disconnected MCS which would describe the 

molecular core as well as the substituents. 
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4.5 Constrained Screening 

Nowadays, searching for drug candidates quite often involves screening of chemical 

libraries of sizes ranging within 10K ÷ 10M compounds. Many different methods of 

machine-learning are applied to treat big real and virtual chemical libraries [82–86]. In this 

case, the usual virtual screening (VS) procedure includes many steps where each of them 

tends to decrease the size of a screening pool, in discarding the unappropriated compounds 

according to the methodology at that step. Faster and less accurate steps proceed first, 

operating on the entire library – sophisticated ones later, operating only on subsets passing 

the fast ones.  However, the large size of the potential drug-like space makes us change our 

Figure 20. Maximum Common Substructure search protocol. 
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vision of virtual screening. Instead of saving some milliseconds per compound, we should 

optimize the VS algorithms. The idea of screening the entire pool against the required 

profile (desirable and/or undesirable activities, ADME properties, etc.) once brings us to the 

concept of Constrained Screening (CS). 

CS is based on a universal GTM trained for a large data set (see chapter 3.4.1). The 

manifold produced by the universal approach covers a wide range of chemotypes and it is 

applicable to model different biological activities and properties. In particular, on a given 

GTM landscape describing a property (activity), P one can easily select some zones 

populated by molecules for which the property varies in the range Pmin< P <Pmax, where 

Pmin and Pmax are the user-defined thresholds. Such zones were named “regions of interest” 

and described in [5]. As it was mentioned in the paper, to identify the location of molecules 

possessing desirable profile {P1, P2, …, PN}, one can superimpose corresponding property 

landscapes. Then, these regions can be analyzed and/or corresponding compounds can be 

extracted. 

The concept of zones of interest was also applied in [57] where the authors trained a 

map for human intestinal transporters. It allowed delineating the areas on the map 

populated either by molecules exhibiting inhibition but not transport activity or vice versa. 

In this project, we automatized the zones of interest selection. Since these zones may 

overlap fully or partially, we also propose a concept of a Query Landscape which describes 

zones populated by molecules possessing desirable profile entirely (all Pi are confined in 

user-defined intervals) or partially (some Pi are out of the range).  

In Figure 21, an example of the query landscape is shown where the vascular 

endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K compounds 

was used to train the manifold. For the demonstration purpose, the request on 

CHEMBL279 activity, solubility (LogS) and the number of H-bond donors was modeled. 
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Figure 21. An example of a query landscape where the map is trained on Vascular 

endothelial growth factor receptor 2 (CHEMBL279) data set (6.7K compounds) using 

ISIDA fragment descriptors [10, 58]. Here, the query is set to find areas where the 

probability to be active varies from 50% to 100%, LogS is between -2.0 and 0.0, and 

number of H-bond donors ranges within 2-4. The first line represents the individual GTM 

landscapes, the second line represents the areas of interest on the individual landscape, and 

the last one is the query landscape. 
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The corresponding GTM landscapes were built, and a query was prepared: the 

probability to be active in the range of 50-100%, LogS varies from -2.0 to 0.0, and the 

number of H-bond donors ranges from 2 to 4. Next, the GTM landscapes were filtered 

according to the query, and the zones of interest were shown (red areas in the middle line of 

landscapes Figure 21). The overlaying of these zones results in a query landscape where the 

red areas satisfy all the conditions in the query, yellow ones correspond only to two out of 

three, and blue areas represent the zones where only one out of three conditions is satisfied. 

The white areas on the query landscape represent the zones where no training molecules 

with desirable activities/properties were found. 

Query Landscape can be applied (i) to select a focused subset from the database used 

for GTM construction, and (ii) for virtual screening of an external database. In the latter 

case, a satisfaction score is assigned to each compound in the pool which means how well 

the compound fits the query. The approach was implemented as a web-tool. It is described 

in chapter 8.5. 

4.6 Parallel GTM (PGTM) 

Generative Topographic Mapping (GTM) [4] is a perspective tool used to visualize, 

analyze and model chemical data. Its advantages in comparison to other dimensionality 

reduction methods were already demonstrated in several projects [6, 45, 65]. The maps 

trained on data sets of a regular size (up to 10,000 items) as well as the ones trained to 

describe millions of compounds were presented [5, 9, 10, 50, 58]. The demonstrated results 

show that GTM can be successfully applied to large chemical databases visualization and 

comparison as well as in virtual screening campaigns. However, the limitation on the 

number of training data points restricts GTM to treating millions of structures during the 

training procedure. To overcome the limit, a frame set (FS) is gathered which is supposed 

to represent the chemical space sparsely. This FS of few thousand data points (e.g. 25,000 

structures) is used to set the initial position and to fit the manifold in the initial data space. 

Once the manifold is fitted, the entire data set is projected and filtered using the likelihood-
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based GTM Applicability Domain (AD). Further, these projections can be used to build a 

classification or regression GTM landscape which can serve as a QSAR or QSPR model [6]. 

GTM does not require the chemical space to be dense to train the manifold, and, 

hence, the chemical space of some million structures can be easily represented by some 

thousands. At the same time, the potential global chemical space of drug-like molecules is 

estimated as 10
33

, and it can hardly be described just by some thousands of structures [3]. 

Therefore, a new strategy to treat larger frame sets is needed. 

 FS size is limiting in several ways: by (i) the amount of RAM used to store the large 

matrix of responsibilities, and (ii) the time spent to perform some matrix operations 

implemented in the GTM algorithm. An attempt to accelerate the algorithm was already 

made by parallelization of it using Message Passing Interface (MPI) technique [87–89]. To 

this purpose, the matrix of responsibilities was decomposed and its parts were distributed 

over the CPUs to be updated by small chunks of the data set iteratively. The disadvantage 

of this approach is the dependency of the code on the certain architecture of a machine used 

to run the calculations. Namely, a single machine or a highly organized cluster that supports 

the MPI technology has to be used for calculations, and the RAM has to be shared between 

the machines to store the whole matrix of responsibilities. If the first issue can be solved by 

purchasing a better machine, the second one will limit the calculations as in terms of storing 

the objects as in terms of speed (the mpi technology will spend some time to transmit the 

data from one machine to another). Besides that, this does not solve the problem of 

manifold overfitting which was detected by D. Ormoneit and V. Tresp [90]. It was shown 

that the Expectation-Maximization algorithm tends to overfit the Gaussians-mixture model. 

In this chapter, we present a new attempt to parallelize the GTM which is supposed to 

speed up the calculations, to solve the problem of overfitting and to support the use of 

larger frame sets. 
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4.6.1 Method 

The limitation of the classical GTM algorithm is the memorization of the large 

matrixes of responsibilities (R) and descriptors (T). To control the size of R, incremental 

GTM was proposed by H. Gaspar et al. [5]. Within the incremental approach (chapter 3.1.2), 

the equations (3.7) and (3.8) were modified to (3.9) and (3.10), respectively. Thus, the 

initial data set was divided into a batch of blocks of a certain size (e.g. 10,000 items) and 

treated sequentially. This solved the problem of the R size but the order of the chemotypes 

coming from different blocks begins to impact the shape of the manifold. So far, the initial 

manifold position is determined only by the first block, and then the manifold learns the 

shape of data distribution analyzing each block sequentially. As a result, the impact of the 

middle blocks on the final shape of the manifold becomes lower in comparison to the later 

ones. This brings us to the phenomenon when the chemotypes allocating in the middle of a 

data set might be forgotten by the manifold since the final shape of it is mainly formed by 

the first and the last blocks. 

To overcome the limits of the classical GTM algorithm and to solve the problems of 

the incremental algorithm, we propose the new Parallel GTM (PGTM) approach. The basic 

idea of it is described in Figure 22. 

Within this approach, we distinguish the manifold initialization and manifold training 

procedures. To initialize the manifold, the incremental Principal Components Analysis 

(PCA) is applied to the entire data set where the two first components are computed. To do 

so, the covariance matrix is computed incrementally followed by the Eigenvalue 

decomposition [91] using a graphical card (the scikit-cuda library in Python was applied) 

[92]. Once the PCA is done, the initial W and β are computed, and the manifold is trained 

on different blocks of the data set in parallel. The fact that the same initial manifold and the 

same GTM parameters are used to treat the blocks, the tasks can be independently 

distributed to different machines with no preferable architecture. In addition, no RAM 

sharing is needed since the size of a particular matrix R is determined only by the size of a 

block. 
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The last step is to merge the produced intermediate GTM manifolds into the global 

one. For this purpose, simple averaging of W and β is used in this study. The output of the 

method is a single “final” manifold which potentially should cover the given data space. 

4.6.2 Data 

In this project, ChEMBL database of version 23 was used to perform the 

benchmarking study [93]. The structures were standardized: removed explicit hydrogens, 

aromatized using the basic rule, some functional groups were transformed (e.g. nitro group), 

etc. The ISIDA descriptors that were used to train the first universal GTM in [58] were 

computed: sequences of 2 and 3 atoms, labeled by their CVFF [94] force field types and 

Figure 22. The scheme of the Parallel GTM. 



63 

 

formal charge flag using all paths (IA-FF-FC-AP-2-3) [80, 95]. The descriptors were 

standardized (centered and divided by its standard deviation) and filtered by its variance 

(987 out of 5,161 descriptors were kept; the threshold was 2% of the maximal standard 

deviation in the data set). 

To cross-validate the maps, the mean Balanced Accuracy (BA) and the Area Under 

the Receiver Operating Characteristics Curve (ROC AUC) were used as metrics. The labels 

“active/inactive” were assigned accordingly to the procedure described in the previous 

studies [10, 58]. 

4.6.3 Benchmarking Strategy 

The benchmarking study was split into two parts. First, the GTM approaches 

(classical, incremental and parallel) were compared in terms of execution time and 

predictive performance (BA) where maps were trained on a target-specific set of 

compounds (CHEMBL204, Thrombin) with and without “decoys” (100K random 

compounds with unknown activity). To train the manifold, the GTM parameters 

corresponding to the first universal GTM described in [10, 58] were used: 41*41 nodes, 

23*23 RBFs, regularization coefficient is 1.122018, RBF width is 1.1. To validate the map, 

a 3-fold cross-validation procedure was run where the number of actives and inactives was 

controlled (463 actives and 1440 inactives per fold; decoys were not taken for cross-

validation). As an additional option, two blocks’ sizes were tried: 500 and 1000 compounds. 

The number of blocks treated in parallel was limited to 14 due to the occupancy of a 

machine used to run the benchmarking tests. 

The second part was devoted to algorithms comparison using Frame Sets (FS) of 

different sizes: 1K, 5K, 10K, 20k, 30K, 50K, 100K, 200K, 400K, 750K, 1M, 1.7M (entire 

ChEMBL) compounds. The FSs were gathered controlling the diversity for the compounds 

using pairwise Soergel distance (1-Tanimoto). The algorithm to collect the compounds was 

the following: the first compound was selected randomly, and the next compounds were 

compared to the ones that were already selected. A compound was added to the FS in case 
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if the minimal Soergel distance among all pairwise comparisons between the compound 

and others from the FS was larger than a threshold (e.g. 0.95). If the loop finished but the 

required number of items in the FS was not reached yet, the threshold was decreased (e.g. 

down to 0.9), and the loop started again. Thus, each FS possessed its own value of 

dissimilarity. The corresponding minimal pairwise Soergel distances are shown in Table 2. 

Table 2. Minimal pairwise Soergel distance corresponding to different Frame Sets.  

Frame set size, compounds Corresponding minimal pairwise Soergel 

distance (1-Tanimoto) within the FS 

1K 0.8 

5K 0.7 

10K 0.7 

20K 0.65 

30K 0.6 

50K 0.55 

100K 0.45 

200K 0.4 

In the second part, the maps were also compared in terms of data coverage 

(percentage of compounds passed the log-likelihood threshold), normalized Shannon 

entropy [5] characterizing the distribution of the compounds over the latent space, number 

of targets with mean BA ≥ 0.7 and number of targets with mean ROC AUC ≥ 0.7. The 

protocol used in this work to compute the likelihood threshold is described in chapter 4.2. 

To cross-validate the maps, more than 600 ChEMBL targets were used. 

4.6.4 Results and Discussion 

First, the GTM was trained on 5,710 ChEMBL compounds using a target-specific 

series of compounds with known activities against the Thrombin target (CHEMBL204). 
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The obtained maps were cross-validated. The results are shown in Table 3. One can see that 

the classical algorithm produces a better model (the mean BA is 0.73) since no 

approximations were done. In this context, the incremental and parallel algorithms produce 

models with comparable predictive performance (BA=0.7±0.015). 

Table 3. Benchmarking results using “Thrombin” data set (5,710 compounds). 

Description Block size 
Balanced Accuracy 

Time, h:m 
1
 

Fold 1
 

Fold 2 Fold 3 Mean 

Classical GTM - 0.74 0.73 0.73 0.73 3:07 

Incremental GTM 
500 0.7 0.69 0.69 0.69 2:28 

1000 0.69 0.72 0.69 0.7 0:33 

Parallel GTM 
500 0.70 0.69 0.68 0.69 0:41 

1000 0.71 0.72 0.72 0.72 0:43 

1
 Approximate execution time recorded during manifold training. 

 

Figure 23. The fuzzy class landscapes for the “Thrombin” data set of 5,710 compounds: (a) 

the classical GTM, the incremental GTM with blocks of (b) 500 and (c) 1,000 items, and 

the parallel GTM with blocks of (d) 500 and (e) 1,000 items. Here, the transparency 

corresponds to the density. 
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The models trained by the incremental GTM with blocks of 500 and 1000 compounds 

do not differ significantly in terms of BA as well as the ones trained with the parallel 

approach. The GTM class landscapes were built and visualized (Figure 23). One can see 

that the incremental algorithm visualizes the data space differently for the different block 

sizes, whereas the parallel GTM returns the same landscape for both sizes. A comparison of 

the likelihood distribution (Figure 24) shows that PGTM covers the data as well as the 

classical algorithm. In contrast, the incremental algorithm has worse data coverage which 

can be seen in the GTM landscape (Figure 23b and Figure 23c). 

 

Next, the methods were tested on the larger data set where 100K random “decoys” 

(ChEMBL compounds with unknown activity) were added. The maps were rebuilt on 

105,710 structures. The results of the cross-validation are given in Table 4. 

In comparison with the first experiment, the acceleration of GTM by the parallel 

algorithm now is more significant. The parallel algorithm trained the manifold 5 times 

faster than the incremental one keeping the same level of the predictive performance 

(BA=0.67±0.02). The likelihood distribution in Figure 25 demonstrates that the PGTM 

covers the data similar to the incremental GTM. 

Figure 24. Log-likelihood distribution for the compounds from “Thrombin” data set 

produced by the classical (green), incremental (blue), and parallel (red) GTMs. 
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Table 4. Benchmarking results where “decoys” were added to the Thrombin data set. 

Description Block size 
Balanced Accuracy 

Time, h:m 
1
 

Fold 1
 

Fold 2 Fold 3 Mean 

Incremental GTM 
5000 0.65 0.65 0.64 0.65 23:57 

10000 0.67 0.67 0.68 0.67 28:52 

Parallel GTM 
5000 0.65 0.65 0.65 0.65 5:48 

10000 0.69 0.68 0.69 0.69 10:33 
1
 Approximate execution time recorded during manifold training. 

 

Although parallel GTM algorithm leads to similar predictive performance and LLh 

distribution as incremental GTM, their manifold shapes, and, hence, the data distribution on 

the maps are pretty different (Figure 26). 

 

Figure 25. Log-likelihood distribution for the “Thrombin” data set with random 100K 

decoys produced by the incremental (blue), and parallel (red) GTMs. 
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Finally, the algorithms were compared in terms of mean BA, mean ROC AUC, data 

coverage, normalized Shannon entropy, number of targets with mean BA ≥ 0.7 and number 

of targets with mean ROC AUC ≥ 0.7 using frame sets of different sizes. The results are 

shown in Figure 27 and Figure 28. 

One can see that a larger frame set leads to lower data coverage (Figure 27). This can 

be explained by the Applicability Domain (AD) which is wide in the case of general FS 

(1K compounds; the most diverse compounds are selected), and, in contrast, it becomes 

more narrow by adding similar compounds. In the latter case, the map focuses more on the 

dense groups of compounds which are presented in the FS by a larger number of items. 

Thus, GTM pays less attention to the chemical families represented by some items, or these 

families can be even ignored in the case of a huge FS (e.g. 200K). At the same time, the 

entropy and the predictive performance grow. It can be also seen that the FS of 5K 

compounds is already enough to describe ChEMBL23 containing 1.7M compounds, 

whereas it is not clear how big should be the FS in case of larger databases, such as 

PubChem (96M), Zinc (1.3B), and GDB-17 (166B). 

Figure 26. The fuzzy class landscapes where “Thrombin” data set of 5,710 compounds. 

Here, the manifold were trained by (a) incremental and (b) parallel GTM algorithms using 

“Thrombin” data set with random 100K decoys (105,710 compounds) as a Frame set. 
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Figure 27. Data coverage, normalized Shannon entropy [5], and mean Balanced Accuracy 

(BA) computed for classical, incremental and parallel GTMs where frame sets of different 

sizes were used to train the manifolds. 
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Figure 28. Mean ROC AUC, number of targets with mean BA ≥ 0.7 and number of targets 

with mean ROC AUC ≥ 0.7 computed for classical, incremental and parallel GTMs where 

frame sets of different sizes were used to train the manifolds. 
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Comparing the predictive performance of the GTM algorithms, it is shown that all of 

them possess the same level of BA and ROC AUC (Figure 28). However, PGTM is much 

faster than Incremental GTM, and, therefore, it is able to treat larger FSs than both classical 

and incremental algorithms. 

4.7 Conclusion 

GTM is an efficient tool applied in different contexts. However, some methodological 

developments were needed to adopt the method to the Big Data case. First, the impact of 

different preprocessing schemes was checked using the SRC data set (tyrosine kinase 

inhibitors). The strategies of descriptors preparation were compared in terms of Balanced 

Accuracy (BA) and Area under the Receiver Operating Characteristics Curve (ROC AUC). 

It was demonstrated that the highest predictive performance is achieved by descriptors 

standardization (centering and division by its standard deviation). 

Some applicability domain (AD) concepts have already been proposed for GTM 

(chapter 3.3), and their drawbacks have been discussed here. For instance, the predominant 

class AD needs the CPF value to ignore the mixed nodes which, in turn, decreases the 

density of the landscape. As an alternative, a new approach to compute the log-likelihood 

cutoff was proposed and applied in this work. 

To solve the problem of the map resolution and the problem of the mixed zones, a 

hierarchical GTM zooming approach was automatized. Two strategies for zones generation 

were implemented. The developed tool was coupled with a new Maximum Common 

Substructure (MCS) extraction protocol proposed for zone-specific substructures search. 

The tool was applied in the project of chemical library enrichment which was done in 

cooperation with Boehringer Ingelheim company (the results are described in chapter 7). 

Finally, the idea of Constrained Screening (CS) and Parallel GTM approaches were 

presented. As it was described, CS allows screening the database querying not a single 

activity/property but a desirable profile. The returned compounds possess the satisfaction 

score which can be used to rank the structures and to select the hits. 
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Parallel GTM allows training the GTM manifold with larger data sets. It initializes 

the manifold using the incremental PCA and then trains it on a series of blocks in parallel. 

The method was compared to the incremental approach in terms of speed of calculations 

and predictive performance (BA). It was established that Parallel GTM trains the manifold 

5-6 times faster producing the models with the same BA. 

Implementation of Parallel GTM allowed us to perform a comparison of the 

predictive performance of classification models as a function of a Frame set size. It has 

been demonstrated that the FS of 5,000 structures is sufficient to prepare a GTM for the 

entire ChEMBL23 database containing more than 1.7M compounds. 
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5 GTM as a Tool for Virtual Screening 

Virtual Screening (VS) is a common technique in drug discovery used in different 

projects [96–98]. Its goal is to select potential hits from the chemical database using 

knowledge retrieved from the existing data. Usually, the so-called VS funnel has several 

layers differentiating in terms of accuracy. Thus, the methods with lower accuracy (e.g. 

similarity filters) but higher speed stand at the beginning and the more accurate methods 

(e.g., docking) are run at the end since they are restricted in terms of compounds that these 

methods can handle. 

In this chapter, we discuss the application of GTM to virtual screening. The first part 

of the chapter describes the benchmarking results done for single-target and multi-target VS 

on public data. Next, the obtained knowledge was applied to industrial data to test the GTM 

in the industrial drug discovery process. 

5.1 Multi-Target Virtual Screening 

5.1.1 Introduction 

GTM is a data visualization and analysis tool which can successfully be used to train 

classification and regression models. The benchmarking studies done so far show that GTM 

provides similar predictive performance to other machine-learning methods (SVM, 

Random Forest, Neural Networks) [6]. This makes GTM attractive to be used in virtual 

screening (VS) campaigns. 
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The predecessor of GTM – Self-Organizing Maps (SOM) – was already tested as a VS 

technique in several studies [84–86]. For instance, it was used to identify several purinergic 

receptor agonists [86]. Later, SOM was compared to the similarity search with data fusion, and, 

despite the poor predictive performance, in principle, SOM can be used as a tool for the VS 

tasks [84]. Since GTM may perfectly mimic SOMs – by narrowing RBF width to ensure 

that item responsibility focuses 100% on the nearest manifold grid point – but also can 

outperform it by applying fuzzy logics, GTM is a better VS tool than SOM. 

GTM has never been applied to multi-target virtual screening (virtual profiling) 

where a model is used to select the compounds in terms of several biological activities. This 

can be achieved on the hand of universal GTMs, a concept introduced by P. Sidorov et al. 

[9]. Herein, a manifold is optimized not for one single, but with respect to the largest 

possible panel of target-specific series of compounds (ChEMBL database of v.20 in 

reference [9]). The obtained map is used then to make predictions for an extended pool of 

activities/properties (including ones not used for manifold optimization but seen to be 

properly supported by the manifold nevertheless).  

In this project, GTM was tested as a single-target and multi-target virtual screening 

technique. Its predictive performance was compared to two popular single-target 

approaches: Random Forest and Neural Network. As a baseline, the similarity search with 

data fusion was used. The results were published in our article in the Journal of Computer-

Aided Molecular Design [10] (see below). 
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5.1.2 Conclusion 

The universal GTM was tested as a tool for single-target and multi-target virtual 

screening tasks. It was shown that local GTM possesses better predictive performance than 

the universal approach. Even so, the universal GTM predicted almost 500 ChEMBL targets 

with ROC AUC > 0.8 in the internal validation. In the external validation, 8 out of 9 targets 

were predicted with ROC AUC > 0.7. In terms of the enrichment factor, only half of the 

DUD targets were predicted well. 

In contrast, the single-target GTM approach demonstrates high predictive 

performance which is comparable to other VS techniques described in the paper. Almost 

500 ChEMBL targets were predicted with ROC AUC > 0.8 in the internal validation. In the 

virtual screening of the DUD database, local GTM even overcomes the MLP with one 

hidden layer, and it is comparable to RF. The same tendency is also demonstrated by the 

enrichment factor. 

The results show that GTM can be efficiently applied as a filter in the VS funnel. Its 

speed and predictive performance are comparable to other popular VS techniques, whereas 

it has the advantage of visualization support. 

5.2 Virtual Screening in Industrial Context 

5.2.1 Introduction 

The benchmarking results presented above demonstrate that the universal GTM can 

be applied in VS campaigns. One or several universal maps can easily work a with wide 

range of assays and cover different chemotypes. Therefore, it was decided to test GTM in 

the industrial environment of Boehringer Ingelheim Pharma company (BI). For this purpose, 

their proprietary database of 1.7M compounds was used to train the manifold. Next, the 

map is used to predict more than 2.3K assays as well as some ADME properties. 
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5.2.2 Data 

1.7M structures were standardized by ChemAxon Standardizer [81] using the 

following protocol: 

1) Dearomatization; 

2) Remove stereo; 

3) Remove explicit hydrogens; 

4) Remove solvents; 

5) Aromatization; 

6) Normalize default ChemAxon Standardizer chemotypes (nitro, azide, diazo, 

phosphonic, etc.). 

To validate the GTM models, BI bio profile was used where a list of IC50/EC50 

values was given. 6848 assays were presented in the profile but only 3320 assays 

containing more than 100 records were taken. The labels assignment protocol described in 

Figure 29 was applied to split the data into 3 classes: active, weakly active and inactive. 

First, the algorithm optimizes the threshold for the “active” class to collect at least 15 

compounds. The active threshold ranges within 10 and 1000 nM (not systematically; see 

Figure 29). Next, it tunes the threshold for the “inactive” class maximizing the number of 

items but keeping the ratio of the thresholds (InactIC50 / ActIC50) at least 10 folds or greater. 

Here, the inactive threshold varies from 1 μM to 10 μM with a step of 1 μM. Once 30% of 

compounds are collected as inactives (at least 15), the ratio of the thresholds is checked 

again, and, if it is larger than 10, the active threshold (ActIC50) is increased in a way that it 

becomes to be 10 times smaller than the inactive threshold (InactIC50). 

2371 assays associated with sufficiently large (at least 30 compounds/series) and 

conveniently balanced (no less than 15 actives and 15 inactives) structure-activity series 

were selected. The external validation was performed using new data points measured in BI 

6 months later. 
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5.2.3 Method 

To find a suitable universal map(s), a grid search was run. Within this search, 4 GTM 

parameters (Table 5) and descriptor space were optimized. Here, 100 fragmentation 

schemes supported by the ISIDA Fragmentor software [80, 95] were used as a starting pool 

for the search of a suitable descriptor space. These 100 fragmentation schemes were 

gathered according to the experience of previous works [9, 50]. 

To build the GTM manifold, a Frame set (FS) of 25K compounds was prepared. Here, 

the FS is fixed to reduce the number of tunable parameters. To gather the FS, clustering 

procedure with Tanimoto=0.7 was performed (done by BI earlier). As a result, more than 

Figure 29. Labels assignment protocol which bases on IC50 value of compounds. Here, 

ActIC50 is the threshold on IC50 for active compounds; InactIC50 is the threshold on IC50 for 

inactive compounds. 
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135K clusters were found. 25K clusters out of it were chosen randomly, where one random 

compound represents each particular cluster. 

Table 5. GTM parameters ranges set for the grid search. 

Name of the parameter Starting value Ending value Step 

Number of nodes (root value), k 20 50 5 

Number of RBF centers 

(root number), m 

40% out of the 

number of nodes 

70% out of the 

number of nodes 
10 

Regularization coefficient, l 1.0 5.0 0.5 

Width of an RBF center, w 1.0 5.0 1.5 

Once the descriptors were computed, they were normalized and filtered according to 

their standard deviation (rare columns for which its standard deviation is lower than 2% of 

the value range were removed). To train the manifold, the incremental GTM algorithm with 

5K items in a block was used (chapter 3.1.2) [5]. 

The goal of this virtual screening was to distinguish 3 classes: actives, weakly actives 

and inactives. Therefore, classification models with 3 classes as well as with 2 classes (just 

active and inactive) were built. To evaluate the models, a 3-folds cross-validation procedure 

was performed for 500 random assays (the validation on the entire set of assays is time-

consuming). As a score, the mean area under the Receiver Operating Characteristic (ROC 

AUC) was computed for each class within one fold: actives against others, inactives against 

others, and middle compounds against others. The result was averaged over the 3 folds, and 

then over 500 assays. This ROC AUC was used to estimate the quality of the map(s) 

(< 𝐴𝑈𝐶 >3 𝑐𝑙𝑠 and < 𝐴𝑈𝐶 >𝑏𝑖𝑛 for 3 classes and 2 classes, respectively). 
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In addition to the mean ROC AUC values, some other scores were used: 

 Number of assays for which the mean ROCAUC ≥ 0.5; 

 Number of assays for which the mean ROCAUC ≥ 0.6; 

 Number of assays for which the mean ROCAUC ≥ 0.7 (main score used in 3 

classes classification to select the best map); 

 Number of assays for which the mean ROCAUC ≥ 0.8; 

 Number of assays for which the mean ROCAUC ≥ 0.9. 

Once the top-5 maps are chosen, they will be checked using all 2371 assays. 

5.2.4 Results and Discussion 

In the grid search, more than 226K GTMs were trained and cross-validated. The ROC 

AUC scores obtained for the best maps with different map resolution are shown in Figure 

30. One can see that the map with 25*25 nodes is already enough to perform 2 classes 

classification, whereas for 3 classes higher map resolution is better. 

 

Figure 30. The grid search progress. Here, the number of models aligned along the Y axe 

corresponds to the best map with the current map resolution. 
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The maps were sorted according to the number of assays predicted with the mean 

AUC over the 3 classes (< 𝐴𝑈𝐶 >3 𝑐𝑙𝑠) larger than 0.7. The best 5 maps were selected 

(Table 7). The explanation of the corresponding descriptors is given in Table 6. 

Table 6. Descriptors explanation [80, 95]. 

Descriptors abbreviation Description 

IB--FC-AP-2-11 Sequences of bonds of length 2 to 11 using formal 

charges and all paths 

III-PH-3-6 Triplets of length 3 to 6 using pharmacophores 

IB--FC-2-11 Sequences of bonds of length 2 to 11 using formal 

charges 

These maps were then validated on the entire set of 2371 assays. The results are in 

Table 8. 

One can see from Table 7 that the best map in 3 classes cross-validation successfully 

predicted 59% of given assays (294 out of 500). In 2 classes validation, the result is even 

better (80%). The same trend was demonstrated in cross-validation on the entire set (1318 

out of 2371 assays were predicted well by the map 1; Table 8). 
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To validate the maps in ADME properties, the latter ones were classified, and 

< 𝐴𝑈𝐶̅̅ ̅̅ ̅̅ >3 𝑐𝑙𝑠  and < 𝐴𝑈𝐶̅̅ ̅̅ ̅̅ >𝑏𝑖𝑛  were computed (Table 9). The < 𝐴𝑈𝐶̅̅ ̅̅ ̅̅ >3 𝑐𝑙𝑠  values 

demonstrate that the map 1 stays at the top in both 3 classes and 2 classes classification. 

The average < 𝐴𝑈𝐶̅̅ ̅̅ ̅̅ >3 𝑐𝑙𝑠 for the map 1 varies from 0.65 to 0.72. 

Table 9. Validation results for ADME properties. 

ADME property Map 1 
a 

Map 2 Map 3 Map 4 Map 5 

<
𝐴

𝑈
𝐶

>
3 

𝑐𝑙
𝑠  

<
𝐴

𝑈
𝐶

>
𝑏𝑖

𝑛
 

<
𝐴

𝑈
𝐶

>
3 

𝑐𝑙
𝑠  

<
𝐴

𝑈
𝐶

>
𝑏𝑖

𝑛
 

<
𝐴

𝑈
𝐶

>
3 

𝑐𝑙
𝑠  

<
𝐴

𝑈
𝐶

>
𝑏𝑖

𝑛
 

<
𝐴

𝑈
𝐶

>
3 

𝑐𝑙
𝑠  

<
𝐴

𝑈
𝐶

>
𝑏𝑖

𝑛
 

<
𝐴

𝑈
𝐶

>
3 

𝑐𝑙
𝑠  

<
𝐴

𝑈
𝐶

>
𝑏𝑖

𝑛
 

Caco2_Efflux 0.69 0.76 0.68 0.76 0.68 0.76 0.68  0.77 0.66 0.74 

CL_Mouse 0.67 0.75 0.64 0.7 0.66 0.73 0.65  0.75 0.65 0.7 

CL_Rat 0.66 0.75 0.64 0.72 0.65 0.73 0.65  0.75 0.62 0.72 

HHEP 0.66 0.71 0.69 0.76 0.68 0.77 0.67  0.74 0.68 0.77 

HLM 0.65 0.72 0.62 0.69 0.62 0.69 0.63  0.71 0.62 0.67 

MDCKBCRP_Efflux 0.66 0.73 0.68 0.75 0.7 0.78 0.65  0.74 0.68 0.75 

MDCKPGP_Efflux 0.69 0.76 0.68 0.75 0.68 0.75 0.67  0.74 0.67 0.73 

MHEP 0.68 0.75 0.69 0.74 0.68 0.74 0.68  0.75 0.7 0.74 

MLM 0.68 0.76 0.66 0.75 0.66 0.74 0.67  0.76 0.65 0.72 

PPBhuman 0.72 0.82 0.7 0.8 0.7 0.79 0.7 0.8 0.69 0.79 

PPBmouse 0.72 0.82 0.72 0.83 0.69 0.79 0.7  0.79 0.7 0.8 

RHEP 0.67 0.75 0.66 0.78 0.65 0.73 0.67  0.75 0.65 0.73 

RLM 0.65 0.74 0.62 0.68 0.62 0.68 0.64  0.72 0.61 0.66 

SOL68 0.66 0.7 0.63 0.66 0.63 0.66 0.65  0.68 0.62 0.65 

Mean 0.68 0.75 0.66 0.74 0.66 0.74 0.66  0.75 0.66 0.73 

a
 See Table 7. 
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The last step was to externally validate the maps using new data for 42 assays. The 

Balanced Accuracy in 3 classes classification was above 0.5 for 30 assays. 

5.2.5 Conclusion 

Five GTMs were trained and selected out of 236K maps produced by grid search 

optimizer. They were cross-validated on more than 2.3K assays from BI. The cross-

validation demonstrated that about 55% of the assays are predicted with ROC AUC ≥ 0.7. 

The external validation on 42 assays for which new data were received showed that 30 out 

of 42 assays are predicted well (Balanced Accuracy ≥ 0.5 in 3 class classification). 
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6 Public Chemical Databases Comparison 

6.1 Introduction 

Chemical databases are huge, and they grow each year since new records are added to 

public and private chemical databases. Nowadays, the largest public chemical resources 

(PubChem, CAS, Zinc) contain millions and even hundreds of millions of compounds. 

However, the potential of the full chemical space is much larger. So far, P. Polishchuk et al. 

[3] have guesstimated the drug-like space as 10
33

 compounds. 

Analysis of large chemical space is a real challenge that requires suitable 

chemoinformatics tools. Generative Topographic Mapping (GTM) has been already tested 

as a tool to analyze big data sets (up to 2M items). In this project, we raise the bar (up to 

20M compounds) and test GTM in the task of big chemical libraries analysis and 

comparison. For this purpose, a data set of existing compounds from PubChem database 

with no more than 17 heavy atoms were compared to virtually generated compounds from 

the FDB-17 database [7]. The data sets were compared using (i) Bhattacharyya, Soergel and 

Euclidean distances, (ii) GTM class landscapes, and (iii) GTM property landscapes. To 

resolve the problem of GTM resolution and to find unique for a given database chemotype, 

hierarchical GTM zooming technique described in chapter 4.3 was applied, see below our 

publication in ChemMedChem [50]. 
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6.2 Conclusion 

The Generative Topographic Mapping (GTM) method was trained and applied to 

analyze and compare large public chemical databases. It was shown that ChEMBL-17 is 

very similar to PubChem-17 since the first one is a part of the PubChem database. At the 

same time, virtually generated FDB-17 differs significantly (Soergel distance to PubChem-

17 is about 0.55). The GTM class landscape demonstrated that there are some areas on the 

map populated only by PubChem-17 compounds. Scaffold analysis showed that the 

chemotypes allocated in these areas were discarded by the authors of the FDB-17 collection 

due to the rules used to gather the last one. 

An example of the application of hierarchical GTM zooming was also demonstrated 

to increase the map resolution. With the help of this technique, a mixed zone populated 

equally by PubChem-17 and FDB-17 compounds was zoomed. The multilevel zooming 

discovered some chemotypes presented in FDB-17 but missed by the PubChem database. 

Thus, GTM becomes an attractive tool that can be efficiently applied for novelty analysis. 

Finally, the data sets were compared in terms of molecular properties (LogP, chirality, 

number of aromatic atoms, etc.). It was shown that FDB-17 is richer in terms of chirality 

and it is more homogenous in terms of heavy atoms’ types in a molecule (more or less the 

same atom types are used in the virtual structures). 
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7 Chemical Library Enrichment 

7.1 Introduction 

Structural library enrichment is an important task for the pharmaceutical industry. 

The number of hits in screening campaigns depends on drug-likeness and diversity of the 

underlying screening set. To be efficient in drug-discovery, the existing screening pool 

needs to be regularly updated to include new chemotypes.  

One can suggest two different scenarios of the screening pool enrichment with new 

chemical matter: computer-aided enumeration of virtual structures under some constraints 

(e.g. molecular weight, LogP, etc.), or selection of existing structures from an external 

database. Recently, several attempts were made to create a workflow for an efficient 

molecular de novo design [2, 78, 99–101]. However, synthetic feasibility of virtual 

structures including synthetic routes and optimization of reaction conditions still needs to 

be assessed. The second scenario is more practical because new structures selected as a 

result of a comparison of two data sets (a reference set and an external set) do exist and can 

be purchased or synthesized following the reported in the literature procedure.  

Different approaches to chemical database comparison were reported so far: cell-

based clustering [102], pairwise distance analysis [103], and some dimensionality reduction 

methods (Principle Component Analysis or PCA [27], Self-Organizing Maps or SOM [104], 

Generative Topographic Mapping or GTM [45]) providing with the visualization support. 
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GTM is a method of choice in this study because of its clear advantage over PCA and SOM 

approaches.  

Recently we demonstrated that GTM represents an efficient tool for comparison of 

large chemical libraries FDB-17 and PubChem-17 [50]. The hierarchical GTM zooming 

technique [11] was successfully applied in [50] in order to analyze the chemotypes of 

molecules populated selected zones and to highlight the scaffolds present exclusively in 

FDB-17. 

In this study, the zooming technique was automatized and coupled to a Maximum 

Common Substructure (MCS) extraction protocol (“AutoZoom” tool). The developed tool 

was used for the enrichment of the in-house collection of Boehringer Ingelheim (further on 

referred to as the “BI Pool”) by the compounds from the commercial Aldrich-Market Select 

(AMS) database. A drug-likeness and an activity profile of selected AMS compounds 

against 749 biological targets were assessed using the ChEMBL data-driven predictor based 

on Universal GTMs [10, 58]. The paper reporting these results has been recently accepted 

in J. Computer-Aided Molecular Design. 

7.2 Data 

Boehringer Ingelheim (BI) is steadily committed to innovation in medicinal 

chemistry and is hence interested in new compounds featuring new scaffolds. At the same 

time, new structures have to be synthesizable and should have the potential to be active. 

As a basis in this work, we used the in-house collection of drug-like compounds 

provided by BI (BI Pool) which contained more than 1.7M structures. The source for novel 

compounds was the publicly available Aldrich-Market Select (AMS) collection of 

purchasable compounds containing more than 8.2M items 

(http://www.aldrichmarketselect.com). The data was standardized by ChemAxon’s 

standardizer tool using a list of rules, such as aromatization, removing stereo labels, the 

standard representation of N-oxides including nitro group, etc.[105] 

http://www.aldrichmarketselect.com/
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7.3 Method 

The computational workflow consists of three parts. First, the mapping of AMS 

chemical space was undertaken by calibrating a pertinent GTM manifold, followed by 

projection of entire AMS and BI Pool collections. Then, the hierarchical GTM zooming 

was performed for selected areas of the map followed by MCSs extraction. The most of 

interest represented some zones exclusively populated by AMS compounds. The latter was 

extracted and profiled using universal GTMs described in our previous papers [10, 58]. To 

this purpose, the publicly available virtual screening webserver of the Laboratory of 

Chemoinformatics (http://infochim.u-strasbg.fr/webserv/VSEngine.html) was employed. In 

addition, simple molecular properties, like LogP, number of H-bond donors and acceptors, 

molecular weight, and TPSA, were computed using ChemAxon’s JChem engine [81]. 

7.3.1 GTM training 

The Generative Topographic Mapping (GTM) method relates the data points 

positions in the initial N-dimensional space and in the latent 2D space. The GTM algorithm 

is described in a range of publications [4, 6, 45, 50]. Briefly speaking, GTM injects a 2D 

hypersurface (manifold) into a multidimensional data space populated by a set of 

representative items (the Frame Set, FS). The algorithm fits the manifold to the FS data 

distribution by changing the positions of Radial Basis Function centers and, hence, 

maximizing the data log-likelihood (LLh). At the next stage, the data points are projected 

on the manifold followed by the manifold unbending. Each compound in the latent space is 

represented by a vector of normalized probabilities (responsibilities) computed in the nodes 

of a square grid superposed with the manifold. In turn, the entire data set can be 

characterized by a vector of cumulative responsibilities. This enables the user to perform an 

efficient data sets comparison as well as QSAR/QSPR studies [6, 45, 49]. 

In our early study [50], the frame set compounds were randomly selected from large 

chemical libraries. Here, a FS containing 25K AMS compounds of controlled diversity 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
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(featuring no two compounds more similar than a given threshold) was prepared. To 

measure the dissimilarity, Soergel distance [106] basing on Morgan fingerprints [107, 108] 

of radius 4 was computed. FS compounds are expected to represent a non-redundant, 

representative “core” of spanned chemical space. They are not subjected to any other 

specific constraints, meaning that any state-of-art molecular descriptor/dissimilarity metric 

can be equally well used for selection.  

The GTM manifold was trained using an incremental algorithm described by H. 

Gaspar et al.[5] The parameters were taken from the previous study [50]. The experience of 

previous projects [9, 50, 109] showed that the usage of ISIDA descriptors is a good choice 

for GTM training. The initial descriptor space features ISIDA counts of sequences of 2 and 

3 atoms, colored by their CVFF [94] force field types and including formal charge 

information (IA-FF-FC-2-3) [80, 95]. Fragmentation of the FS compounds produced 6142 

distinct fragments. However, the vast majority thereof is sparsely populated: only 798 terms 

were considered for actual manifold construction (the descriptors for which standard 

deviation over the FS compounds exceeds 2% of their value range width). This (or closely 

related) fragmentation schemes were often selected by evolutionary [48] map tuning 

procedures [50, 58]. Other adopted map parameters include resolution (841 nodes), the 

number of RBFs (324), the regularization coefficient (3.236), RBF width (0.4), and 

incremental block size (10K compounds).  

When the Expectation-Maximization algorithm used to train the manifold has 

achieved a certain level of convergence (𝐿𝐿ℎ𝑛𝑒𝑤 − 𝐿𝐿ℎ𝑝𝑟𝑒𝑣 ≤ 0.001), the entire data was 

projected, and the compounds considered as out of Applicability Domain (the structures 

positioned far away from the manifold) were removed. To do so, a new strategy for GTM 

Applicability Domain (AD) identification was suggested where a Gaussian is fitted to the 

FS compounds distribution minimizing the root mean square error. Once the fitting is done, 

the LLh threshold is determined as the LLh value with the highest population (peak) minus 

three Gaussian widths (“3σ” rule, Figure 31). 
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For visualization and analysis purposes, property and fuzzy class landscapes are used 

to “color” the map. To this goal, the mean class/property value in each node is taken as 

responsibility-weighted means of class labels/property values of resident items [6]. In 

consequence, areas of interest (for example, clusters of nodes exclusively populated by 

AMS compounds) can be easily highlighted. 

 

7.3.2 Zooming 

GTM landscape analysis is the following step in the library comparison process. The 

goal is to bind a certain chemotype to a particular area on the map. In simple cases, map 

zones (square clusters of nine nodes) do indeed contain structurally quite homogeneous 

populations of residents. If so, it is straightforward to search for common scaffolds or 

maximum common substructures (MCSs). However, if too many compounds (e.g. more 

than 1000 items) reside in one zone, searching for common scaffolds or MCSs is not 

efficient. Therefore, when the algorithm detects highly populated zones, zooming is 

automatically applied. For this purpose, the compounds for which the sum of its 

responsibilities within the zone is higher than 0.95 are selected and used as frame set source 

for the fitting of a new GTM manifold (using the same setups as those of the global map). 

Figure 31. GTM Applicability Domain is identified by log-likelihood threshold LLh0 = 

LLhpeak – 3. Here, LLhpeak and σ are, respectively, a position and with of a Gaussian 

function which fits the LLh distribution. 
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For this purpose, the FS - of minimal 1000, but maximal 10% of the local compound pool 

size - is randomly selected. The “submap” is likewise checked for the zones with a 

population exceeding 1000 items. If necessary, the procedure is repeated (multi-level 

zooming). If a zone contains less than 1000 compounds, it will be analyzed as such, without 

further zooming. 

7.3.3 Maximum Common Substructure (MCS) searching 

The responsibility patterns (RP) method has been used to identify the shared 

underlying features  (scaffolds, substructures, pharmacophore patterns) for a chosen area on 

the map [49, 65]. Compounds sharing the same RP will typically share some common 

structural features that are further manually processed to annotate the map. This is a tedious 

and error-prone task. As an alternative, it is proposed here to exploit the MCS search to 

automatically highlight shared features. Our solution is based on ChemAxon’s JChem 

engine [81]. 

The problem of MCS searching for a set of compounds was already discussed earlier 

by Hariharan et al.[110]. The authors showed that in some situations, the intersection of 

pairwise MCS search is empty or results in small, non-specific substructure, while the 

molecules in a given set share large and complex substructures. The problem is that such a 

common substructure of a compound set is not the maximum common substructure of any 

compounds pair. As a solution, Hariharan et al enumerated all maximal cliques for each 

pair of molecules, and then intersected the generated lists. The so-called multi-MCS is the 

largest of the identified substructure that is common to all compounds in the set. 

However, when the molecule set is very large, the idea to return a single multi-MCS 

does not work anymore. In this case, we aimed at identifying lists of frequent substructures. 

In our approach, an arbitrarily selected structure in the list of N items is compared to the 

other N-1, resulting in N-1 connected MCS (Figure 32). Since we are working with large 

sets, this already results in a large list of chemically relevant substructures, although the list 
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might not be exhaustive. Additionally, a size filter keeps only the MCS covering at least 30% 

of the heavy atoms in both structures of a pair. Then, duplicate MCSs are removed from the 

list and sorted according to their occurrence in the list. The most frequent MCS is selected. 

Structures featuring the selected MCS are removed from the list, and a new iteration is 

started. In contrast with the previous scenarios, the new strategy returns a list of MCSs 

which is more relevant in the context of Big Data. 

 

The entire workflow is implemented in Python3 language using NumPy [111, 112] 

and Plotly [113] libraries. When the MCSs absent in the BI pool were found, the structures 

Figure 32. MCS extraction protocol. 
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containing these MCSs were retrieved from the AMS collection, and their biological profile 

was predicted using previously developed universal GTMs [13]. 

7.3.4 Virtual Profiling of Novel Compound Candidates 

The approach supported on the public property prediction server (http://infochim.u-

strasbg.fr/webserv/VSEngine.html) utilizes consensus prediction of the activity class 

(active or not) of a compound with respect to 749 biological targets for which structure-

activity records found in ChEMBL v.24 were considered to be sufficiently robust to 

provide for meaningful activity class landscapes on the seven distinct “universal” GTMs of 

drug-like space. Each candidate is iteratively projected onto each of the seven universal 

maps [58], and its projection is then placed in the context of the map-specific activity 

landscapes of each of the 749 targets. For each target, the compound is assigned a 

probability to belong to the “active” class, which corresponds to the relative excess of 

“active” population in its residence zone (or zero if the target-specific data from ChEMBL 

do not occupy at all this residence area). Herewith, a consensus probability 𝑃̅ to be active 

on a target is taken as the mean of the seven predictions of the complementary universal 

maps. This mean is penalized by the standard deviation of the seven estimations, to signal 

that mutual agreement of predictions enhances the trustworthiness of consensus: 

 

Pcorrected = P̅ − √
1

6
∑(Pi − P̅)2

7

i=1

 

 

(7.1). 

where P̅ – the mean probability over the 7 universal maps; Pi – the probability to be active 

on a map i; Pcorrected – the corrected consensus probability. 

The tool supports processing of up to a few million compounds, operating on the 

HPC cluster of the University of Strasbourg, in order to return a virtual profile matrix of 

input compounds × 749 predicted consensus probabilities. 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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7.4 Results and Discussion 

To train the GTM manifold, a Frame set (FS) of 25K compounds needed for the 

manifold construction was diversity-picked from the AMS library with the dissimilarity 

threshold equal to 0.4. At the next stage, the log-likelihood threshold LLh = -2501.52 was 

determined as described in Figure 31 in order to delineate the GTM Applicability Domain 

(AD). With this threshold, 95.5% of the FS items passed the AD criteria (23.9K compounds 

out of 25K). Figure 33 visualizes the distribution of the FS compounds over the map. The 

density landscape shows that the FS covers most parts of the map, and the maximal 

population of compounds in each node doesn’t exceed 5% of the entire FS. 

 

To understand how the two chemical collections relate to each other, they were 

projected on the map and rendered as individual density landscapes and a fuzzy 

classification landscape, respectively (Figure 34). Some 94.1% of the BI Pool and 95.8% of 

the AMS collections passed the LLh threshold which means that the frame set extracted 

from AMS is diverse enough to describe both databases. We assume that as far as the frame 

set is diverse enough to span the relevant chemical space zone, its explicit composition is of 

rather little importance – a recurrent conclusion in all our GTM studies, notably the creation 

Figure 33. Frame set density landscape. Here, the white space means non-populated areas. 

Both color intensity (transparency) and color choice are associated to local density values 

(red areas have no transparency). 
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of “universal” maps [9] where a frame set of the order of 10K random compounds was 

shown to suffice for the coverage of ChEMBL chemical space and supporting robust 

predictive activity models for hundreds of independent targets.  The density landscapes in 

Figure 34a-b show that the libraries are globally similar since they both mostly reside in the 

same areas. However, there are some areas where the AMS library has a strong presence 

and even fills some “holes” of the BI Pool. In the fuzzy class landscape, AMS-dominated 

areas are dark red (Figure 34c). 

 

Figure 34. BI Pool vs AMS comparison: (a) BI Pool density landscape, (b) AMS density 

landscape, and (c) fuzzy class landscape. Here, the white space means non-populated areas, 

and the transparency corresponds to the density. 
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The dark-red areas can serve as a source of new chemotypes for the BI collection. 

However, even mixed zones might also contain some structural patterns not shared by both 

libraries [50]. To investigate this possibility, 187 zones were checked whereby 151 zones 

were zoomed (the maximal level of zooming was up to 4). The procedure took 

approximately 7 days using 48 CPUs. An example of multi-level zooming is given in 

Figure 35. 

 

In total, more than 222K substructures were processed. This set included some 45.5K 

MCS present only in AMS collection. More than 401K structures containing these MCSs 

were extracted from the AMS collection and projected onto the map. The density landscape 

with some examples of the most popular new AMS substructures is given in Figure 36. 

Figure 35. An example of zooming analysis. Here, a new substructure from AMS 

collection was discovered using 2-levels zooming.  The white space means non-populated 

areas, and the transparency corresponds to the density of population. 
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Comparing the density landscape from Figure 36 and the fuzzy class landscape from 

Figure 34, we see that most of the compounds came from the areas where AMS dominated. 

At the same time, several thousands of structures also came from mixed areas (green and 

yellow). This was achieved by the application of zooming. 

 

To check the drug-likeness of the extracted structures, simple molecular properties, 

namely the number of H-bond donors and acceptors, LogP, molecular weight, and TPSA 

were computed (Figure 37). 

Figure 36. Density landscape for the new 401K structures. Here, several most popular 

(within the particular zone) new substructures are shown. The number of corresponding 

compounds is presented here as a popularity score. 
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Figure 37. Histograms represent the number of H-bond donors and acceptors, LogP, 

molecular weight, and Topological Polar Surface Area (TPSA) computed for the extracted 

401K AMS compounds. Here, the red dashed line represents Lipinski’s thresholds [13]. 
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Accordingly to Lipinski’s rule of five [13], most of the extracted compounds can be 

classified as drug-like. These structures were also virtually profiled against 749 ChEMBL 

targets. 109.5K compounds were predicted as active against at least one out of 749 

ChEMBL targets with a probability score Pcorrected>0.5. 

About 1.2K compounds out of it were predicted according to equation (7.1) as active 

with Pcorrected>0.8 and passed BRENK [114], PAINS [115] and NIH [116, 117] filters. The 

four examples with the highest corrected consensus probability to be active in one of the 

CHEMBL targets are shown in Figure 38, where the compounds are predicted as active 

against Photoreceptor-specific nuclear receptor (CHEMBL4374), Cholecystokinin B 

receptor (CHEMBL3508), Muscarinic acetylcholine receptor M4 (CHEMBL317), and 

Pyruvate dehydrogenase kinase isoform 1 (CHEMBL4766) [93]. 

The type of the source of the structures (a chemical online store) allows us to say that 

these compounds are potentially synthesizable or even purchasable (the real 

synthesizability depends on a supplier since some suppliers just claim that it can be 

synthesized if a client asks). This and the number of predicted actives demonstrate that the 

revealed substructures are new and useful for the pharma company. Also, it supports the 

statement that GTM is a powerful method for the efficient library comparison and 

enrichment (in terms of structural diversity). 
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Figure 38. Examples of structures predicted as actives and taken from the extracted 401K 

AMS compounds. Here, the probability to be active returned by the web server is computed 

according to equation (7.1). 
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7.5 Conclusion 

Generative Topographic Mapping was enabled to provide automated hierarchical 

analysis of large libraries, by means of the herein described “AutoZoom” tool. This 

integrates automated zooming and a new MCS extraction protocol and was successfully 

applied to diversify the in-house collection of Boehringer Ingelheim (BI). Some 45.5K 

substructures were found to be absent in the BI collection. The corresponding structures 

(401K items) were checked for Lipinski’s rule compliance and classified as drug-like. In 

addition, they were virtually profiled against 749 ChEMBL targets. More than 1.2K 

compounds were predicted active against different targets with a corrected consensus 

probability (removing a standard deviation) higher than 80%. The discovered structures 

were recommended to the company to be imported as novel chemical matter that would be 

useful in diversifying the in-house collection. 
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8 Software Development 

Several tools were developed during this PhD project. These tools are used to 

preprocess the descriptors, to assign the labels, to visualize the GTM landscapes, etc. They 

are written in Python3 and Java languages and available by a request to the Laboratory of 

Chemoinformatics.  

8.1 GTM Preprocessing 

8.1.1 Descriptor Standardization 

As it was described in chapter 4.1, GTM is sensitive to preprocessing. Therefore, the 

standardization scheme was implemented using Java programming language 

(standardizeDescriptors.jar). The incremental algorithm to compute the mean values and 

variances is used in the program: 

 
x̅i = x̅i−1 +

xi − x̅i−1

i
 

 

(8.1), 

 vari = vari−1 + i ∗ (i − 1) ∗ (x̅i − x̅i−1)2 

 

(8.2), 

where x̅i and vari are the mean value and the variance of a descriptor after passing the i
th

 

molecule, respectively. Next, the standard deviation is computed as a square root out of the 

variance, and the settings file containing the number of descriptors, mean values, variances 

and standard deviations is created. This settings file can be used later to transform other 

data sets which should be projected to the map. 
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8.1.2 Descriptors Filtering 

Dimensionality reduction is a hot topic since large chemical data sets are complicated 

objects, and the molecules in these data sets cannot be well described only by few 

descriptors. At the same time, even the most effective techniques such as PCA, SOM or 

GTM cannot handle millions of descriptors which might happen in the case of Big Data. 

Therefore, dimensionality reduction should be split into at least two steps: (a) conditional 

descriptors selection, and (b) exhaustive dimensionality reduction. The last one can be done 

by PCA, SOM or GTM, whereas the first step should be simple and straightforward. As one 

of the possible solutions, descriptor filtering accordingly to its standard deviation was 

proposed. 

First, the settings file containing mean values and standard deviations for the given 

data set should be generated by standardizeDescriptors.jar (chapter 8.1.1). Next, the initial 

SVM file, as well as the header file (in case of ISIDA fragment descriptors generated by 

ISIDAFragmentor2017 tool [95]) are filtered accordingly to the threshold on standard 

deviation set by the user. This threshold is a percentage out of the maximal standard 

deviation detected across the file (2% by default). So, if a descriptor possesses the deviation 

which is less than the threshold, such descriptor will be removed from the SVM file. 

Since the standardization process of a large number of descriptors (>100K) is a 

computationally heavy task, it is recommended first to generate the settings file using 

standardizeDescriptors.jar, then to filter the descriptors using filterISIDAdescriptors.jar, 

and after to standardize the filtered SVM file using the filtered settings file. 

8.2 Likelihood-Based GTM Applicability Domain 
Implementation 

The likelihood-based GTM Applicability Domain (AD) is already described in 

chapter 4.2 and its basic idea is to discard the items which log-likelihood (LLh) is lower 

than a certain threshold. As was mentioned, in this project we propose to generate the 
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threshold fitting a Gaussian minimizing a root mean square error (RMSE). The workflow 

consists of four steps: 

1) Sorting and clustering the data set accordingly to its LLh with step=1; 

2) Initialize the parameters of the Gaussian function (the width ω
init

, the amplitude 

A
init

, and the peak position μ
init

); 

3) Fit the Gaussian minimizing the RMSE; 

4) Compute the LLh threshold. 

The Gaussian function is determined as: 

 
Di

′ = A ∗ exp (−
LLhi − μ

2ω2
) 

 

 

(8.3), 

where Di
′ is the predicted number of items at the LLhi. Here, A is initialized as the largest 

number of items possessing the same LLh, and μ is initialized as: 

 
μinit =

∑ LLhi ∗ Ni
n
i=1

n
 

 

 

(8.4), 

where n is the number of items in the data set, and Ni is the number of items corresponding 

to the LLhi. Thus, ω is initialized as: 

 
ωinit =

stdv

2
 

 

 

(8.5), 

 

stdv = √
∑ (LLhi − μinit)2n

i=1

n − 1
 

 

(8.6). 

To optimize the Gaussian parameters, brute force is used. For each combination μ-A-

ω rmse is computed using the equation (8.3), where μ ⸦ [μ
init

; LLh(A
init

)*0.95], A ⸦ [A
init

 * 

0.9; A
init

 * 1.1], and ω ⸦ [ω
init

; ω
init

 * 3]. In order to boost the calculations, the algorithm 

checks the ω values until RMSEnew – RMSEold ≤ 0.001. For A and μ, all values are checked. 

Once the grid search is finished, the attempt with the minimal RMSE is selected, and 

the LLh threshold (LLhthreshold) is computed as: 
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 𝐿𝐿ℎ𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 − 3 ∗ 𝜔 

 

 

(8.7). 

The described algorithm is implemented in Python3 and can be easily used as a 

Python library. As input, it needs only the file with the responsibilities generated by the 

GTMapTool. 

8.3 GTM Landscape Building and Visualization 

The concept of GTM landscapes is already discussed in chapter 3.1.3. Here, we 

describe the tool which is used to build and to visualize the landscape, to make the 

QSAR/QSPR predictions, and to validate the model. The tool named GTM2018.py is 

written in Python3 and it has two dependencies: Plotly [113] and SciKit-Learn [118].  

The tool is mainly used to build classification, regression and density landscapes. The 

output landscape is saved as an XML file which can be used later to make the predictions 

for the new compounds. The landscape can be also visualized in an interactive way. For this 

purpose, an HTML page is generated which can be customized by the user adding smooth 

and transparency which, in turn, corresponds to density, changing the map size (width and 

height), setting the minimal and maximal property values used to compute the color scale, 

etc. Note that the tool uses dynamic transparency thresholds to display density using the 

minimal Density threshold. 

In addition, the tool is able to compute basic statistics used in QSAR studies, namely 

determination coefficient (R
2
), Balanced Accuracy (BA) and Area Under the Receiver 

Operating Characteristics Curve (ROC AUC). For this purpose, a test file with its 

responsibilities and known labels/property values are specified. 

8.4 AutoZoom 

To analyze and to compare large chemical collections, the AutoZoom tool was 

developed. This tool takes the manifold and GTM class landscape (chapter 3.1.3) built for 
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the libraries as input matter. Also, it requires the responsibilities, the list of smiles and the 

descriptors for each library separately. 

The algorithm implemented in the AutoZoom tool first scans the landscape in order to 

find the zones which are needed to be zoomed (chapter 4.3). If such are found, it runs 

recursive (multilevel) zooming until the density in the cluster satisfies the required 

threshold. Next, the algorithm runs Maximum Common Substructure (MCS) search 

described in chapter 4.4. The discovered MCSs are then collected and stored as a pickle 

archive (Python package to work with binary files). Besides that, the tool collects the 

information on the parent nodes (the full path to the node where the MCSs were extracted 

from) and smiles returned these MCSs. 

The program has several dependencies, such as NumPy, Plotly, GTMapTool, and 

ChemAxon’s JChem cartridge. 

8.5 GTM Constrained Screening 

The tool developed for Constrained Screening (CS) is web-based. The backend part is 

written in Python where the GTM2018.py tool is used as a library (see chapter 8.3). The 

server is run by Django software [119]. The frontend part is done in JavaScript, HTML5, 

and JQuery. The new page is shown in Figure 39. 
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To use the tool, the manifold file, and the classes/properties landscapes must be 

specified. To add more landscapes, the user should use the “+” button. To remove a 

landscape, the user should use the “−“ button. Once the files are given, the X range (the 

desirable range for the given activity/property) for each landscape is specified. The query 

landscape can be built by pressing the “Build” button (Figure 40). The user can then 

continue the analysis of the query landscape in the Plotly’s cloud or he/she can download it 

using the “Download” button. The numbers on the right side of the color bar represent the 

satisfaction score. This score means how much the nodes match the given query and it 

ranges from 0 to the number of conditions in the user’s query. Thus, the score equal to 2 

means that only 2 conditions are satisfied.  

Figure 39. The client side of the Constrained Screening web tool. 
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In case if the user wants to predict new compounds, he/she chooses the SVM file with 

the corresponding descriptors in the “Input file” field and pushes the “Submit” button. The 

tool will show the top-10 compounds with their order number and satisfaction score (Figure 

41). The rest can be downloaded by the user using the “Download” button in the “Output 

table” section.  

Figure 40. Training of the query landscape. 
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Figure 41. Predicting new compounds using the query landscape. 



141 

 

9 Conclusion and Perspectives 

In this work, we dealt with: (i) methodological developments, (ii) design of 

algorithms for automatized maps analysis, (iii) GTM application to different 

chemoinformatics tasks (libraries comparison, library enrichment, and virtual screening) 

and, (iv) software development. 

Methodological developments. Treatment of Big Data in chemistry is a challenge for 

any machine learning method, in particular, for GTM, which may need to use large frame 

sets (FS) in combination with large dimensionality of the initial data space. Since the 

capacity of earlier reported algorithms for manifold construction (classical and incremental) 

was limited, we designed the “Parallel GTM” algorithm based on simultaneous training of 

several manifolds on different FSs followed by their merging into one sole manifold. The 

developed algorithm allowed us to build a GTM for the ChEMBL-23 database (1.7 M 

compounds) using the entire database as a FS. Benchmarking of predictive performance of 

classification models, which were built on the manifolds obtained with different algorithms 

and FS sizes varying from 1K to 1.7M molecules, demonstrated that (i) the parallel 

algorithm performs similarly to classical and incremental ones, and (ii) a small frame set of 

5000 molecules (i.e., 0.003% of ChEMBL) is sufficient for obtaining well-performing 

manifold. 

The log-likelihood (LLh) threshold is often used to delimit an applicability domain of 

GTM-based classification and regression models. In order to calculate the “optimal” the 
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LLh threshold, we proposed to use the width of the Gaussian function which fits the LLh 

distribution. 

 Using the existing pairwise Maximum Common Substructure (MCS) algorithm, we 

suggested a new protocol of MCS extraction from the ensemble of structures. Its efficiency 

was tested on different sets up to 1000 molecules. 

Automatized maps analysis. Two new algorithms performing automatized maps 

analysis were developed: (i) selection of zones of interest [5] and, (ii) hierarchical GTM 

zooming. The zones of interest on GTM represent selected areas populated by molecules 

possessing a given activity (property) profile. They result from the superposition of a 

certain number of class and/or activity (property) landscapes. The developed algorithm 

automatically selects the zones, which entirely or partially correspond to the desired profile. 

Notice that the ensemble of these zones over the map form Query Landscape, which can be 

used in virtual screening by selecting hits dropping in the zones of interest. 

The hierarchical GTM zooming approach proposed by Nabney et al. [11] in view of 

improving map’s resolution, becomes desirable, in some cases strictly required for GTMs 

accommodating large volumes of data. The developed algorithm first screens the map in 

order to select rectangular zones susceptible to zooming procedure according to the data 

density threshold. Two scenarios were considered: overlapping and non-overlapping zones. 

The former allows increasing the overall size of zoomed areas because of the possibility to 

overcome the density threshold.  

Applications. Developed tools were used in three projects: (i) application of GTM to 

virtual screening (VS), (ii) comparison of large databases, and (iii) enrichment of 

proprietary library.  

In the VS project, two types of GTMs for the ChEMBL23 database were used: 

“universal” and “local”. The formers were trained in a multitask manner to obtain 

simultaneously classification models for 236 activities, whereas the latter were trained 
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individually for each activity. The developed maps and class landscapes were benchmarked 

with several machine-learning techniques (similarity search with data fusion, neural 

network, and random forest) in virtual screening of the DUD database. It has been 

demonstrated that local GTMs perform similarly or even better than popular machine-

learning approaches. In terms of predictive performance, “universal” GTMs were less 

efficient, but still acceptable. On the other hand, the models derived from the “universal” 

map have a larger applicability domain.  

In another project, GTM was challenged to analyze large chemical data set of more 

than 21M compounds resulted from merging of 3 databases: ChEMBL-17 (100K 

compounds), PubChem-17 (11M compounds) and FDB-17 (10M compounds). Two former 

databases contained only existing molecules, whereas the latter contained virtual structures 

containing no more than 17 heavy atoms. The databases were compared using (i) 

Bhattacharyya, Soergel and Euclidean distances, (ii) GTM class and (iii) GTM property 

landscapes. The data analysis with the help of GTM allowed us to identify structural motifs 

exclusively present only in one of the considered databases. 

In the 3
rd

 project, the proprietary collection of Boehringer Ingelheim (1.7 M 

molecules) was superposed on GTM with commercial Aldrich-Market Select database (8.2 

M). Analysis of non-overlapping zones revealed 1.2K commercial structures containing 

fully new cores, passed drug-like filters and predicted as active against at least one 

ChEMBL target. The corresponding molecules were recommended to BI to be synthesized 

or purchased. 

Software development. New methodology and algorithms developed in this work 

were implemented as a command line and web-based software tools. Thus, the hierarchical 

GTM zooming technique was coupled with the MCS extraction protocol and presented as 

the “AutoZoom” tool written in Python3 language. The algorithm helping to delineate 

zones of interest was implemented as a web-based tool within the Django framework. The 

tools for the construction of GTM-based classification and regression models were prepared 
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using FreePascal and Python3 programming languages. These tools are accessible from the 

Laboratory of Chemoinformatics by a request. 

Perspectives. Some projects initiated in this work have not been completed. Still, the 

Query Landscapes technique needs to be validated in virtual screening experiments. 

Another project may concern an application of the hierarchical GTM zooming to GTM-

based classification and regression tasks. 

In its current state, the MCS extraction protocol operates only with connected graphs. 

However, common structural motifs may range from specifically substituted scaffolds to 

fuzzier ‘pharmacophore-like’ patterns [65]. Therefore, the extension of our algorithm on 

disconnected MCS could improve the structural data analysis. 

The manifold “fusion” protocol in Parallel GTM needs to be optimized. Thus, in the 

current version of the program, the manifold merging strategy simply computes the average 

positions of the RBFs. Weighted by likelihood merging could, in principle, be used as an 

alternative.  

Studied in this work datasets of some 20 M molecules represent a small portion of all 

existing molecules (some 200 M). An application of GTM to larger datasets is an obvious 

extension of this work. 
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11  List of Abbreviations 

AD  Applicability Domain 

ADME  
An abbreviation in pharmacokinetics and pharmacology for 

"Absorption, Distribution, Metabolism, and Excretion" 

AMS  Aldrich-Market Select 

ANN  Artificial Neural Network 

AUC (ROC AUC)  Area Under the Receiver Operating Characteristics Curve 

BA  Balanced Accuracy 

BI  Boehringer Ingelheim 

CLF  Class-Likelihood Factor 

CPF  Class Prevalence Factor 

CPU  Central Processing Unit 

CS  Constrained Screening 

CVFF  Consistent Valence Force Field 

DUD  Directory of Useful Decoys 
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EC50  Half maximal Effective Concentration 

EM  Expectation-Maximization algorithm 

FS  Frame Set 

GA  Genetic Algorithm 

GTM  Generative Topographic Mapping 

IC50  Half maximal Inhibitory Concentration 

kNN  k-Nearest Neighbors 

LLh  Logarithm of Likelihood 

MCS  Maximum Common Substructure 

MDS  Multi-Dimensional Scaling 

MPI  Message Passing Interface technique 

PCA  Principal Component Analysis 

PGTM  Parallel Generative Topographic Mapping 

PSM  Privileged Structural Motif 

Q
2 

 Determination coefficient in cross-validation 

QSAR  Quantitative Structure-Activity Relation 

QSPR  Quantitative Structure-Property Relation 

R
2
  Determination coefficient 

RAM  Random Access Memory 
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RBF  Radial Basis Function 

RF  Random Forest 

RMSE  Root Mean Square Error 

RP  Responsibility Pattern 

SAR  Structure-Activity Relationship 

SOM  Self-Organizing Map 

SRC  Tyrosine kinase inhibitors 

SVM (format)  Support-Vector Machine 

SVM (method)  Sparse Vector Matrix 

TPSA  Topological Polar surface Area 

uGTM  Universal Generative Topographic Map 

VS  Virtual Screening 

  



158 

 

  



159 

 

Appendix 1 

Supplementary Material for section 5.1 

  



160 

 

Table S1. List of 618 ChEMBL (v. 23) targets used for unievrsal GTM training and 

validation. 

CHEMBL1075104 CHEMBL1293266 CHEMBL1790 CHEMBL1859 CHEMBL4633 

CHEMBL1075145 CHEMBL1293267 CHEMBL1795139 CHEMBL1860 CHEMBL4641 

CHEMBL1075167 CHEMBL1293289 CHEMBL1795186 CHEMBL1862 CHEMBL4644 

CHEMBL1075189 CHEMBL1293293 CHEMBL1801 CHEMBL1864 CHEMBL4657 

CHEMBL1075322 CHEMBL1615381 CHEMBL1804 CHEMBL1865 CHEMBL4660 

CHEMBL1163101 CHEMBL1741176 CHEMBL1808 CHEMBL1867 CHEMBL5084 

CHEMBL1163125 CHEMBL1741186 CHEMBL1811 CHEMBL1868 CHEMBL5103 

CHEMBL1255126 CHEMBL1741207 CHEMBL1821 CHEMBL1871 CHEMBL5113 

CHEMBL1275212 CHEMBL1741215 CHEMBL1822 CHEMBL1873 CHEMBL5122 

CHEMBL1287628 CHEMBL1781 CHEMBL1824 CHEMBL1878 CHEMBL5137 

CHEMBL1293222 CHEMBL1782 CHEMBL1825 CHEMBL1881 CHEMBL5141 

CHEMBL1293224 CHEMBL1785 CHEMBL1827 CHEMBL1889 CHEMBL5147 

CHEMBL1293255 CHEMBL1787 CHEMBL1829 CHEMBL1892 CHEMBL5776 

CHEMBL1833 CHEMBL1900 CHEMBL1947 CHEMBL1899 CHEMBL5794 

CHEMBL1835 CHEMBL1901 CHEMBL1949 CHEMBL2003 CHEMBL5804 

CHEMBL1836 CHEMBL1902 CHEMBL1951 CHEMBL2007 CHEMBL5600 

CHEMBL1844 CHEMBL1903 CHEMBL1952 CHEMBL2007625 CHEMBL5608 

CHEMBL1850 CHEMBL1904 CHEMBL1957 CHEMBL2008 CHEMBL5627 

CHEMBL1853 CHEMBL1906 CHEMBL1908 CHEMBL2016 CHEMBL5646 

CHEMBL1856 CHEMBL1907 CHEMBL1913 CHEMBL202 CHEMBL5650 

CHEMBL1968 CHEMBL1966 CHEMBL1914 CHEMBL2028 CHEMBL5658 

CHEMBL1916 CHEMBL203 CHEMBL1974 CHEMBL2243 CHEMBL5678 

CHEMBL1917 CHEMBL2035 CHEMBL1977 CHEMBL225 CHEMBL5697 

CHEMBL1918 CHEMBL2039 CHEMBL1978 CHEMBL2250 CHEMBL4767 

CHEMBL1921 CHEMBL204 CHEMBL1980 CHEMBL226 CHEMBL4769 

CHEMBL1929 CHEMBL2041 CHEMBL1981 CHEMBL2265 CHEMBL4777 

CHEMBL1936 CHEMBL2047 CHEMBL1985 CHEMBL227 CHEMBL4789 

CHEMBL1937 CHEMBL2055 CHEMBL1987 CHEMBL2276 CHEMBL4791 

CHEMBL1940 CHEMBL2056 CHEMBL1991 CHEMBL2285 CHEMBL4792 

CHEMBL1941 CHEMBL206 CHEMBL1994 CHEMBL2288 CHEMBL4793 

CHEMBL1942 CHEMBL2061 CHEMBL1995 CHEMBL2292 CHEMBL4796 

CHEMBL1944 CHEMBL2068 CHEMBL1997 CHEMBL230 CHEMBL5409 

CHEMBL208 CHEMBL2069 CHEMBL2000 CHEMBL231 CHEMBL5443 

CHEMBL2083 CHEMBL2073 CHEMBL2001 CHEMBL2318 CHEMBL5455 

CHEMBL2085 CHEMBL2074 CHEMBL2002 CHEMBL2319 CHEMBL5469 

CHEMBL209 CHEMBL232 CHEMBL220 CHEMBL2553 CHEMBL5485 

CHEMBL210 CHEMBL2326 CHEMBL2208 CHEMBL256 CHEMBL5491 

CHEMBL2107 CHEMBL233 CHEMBL221 CHEMBL2563 CHEMBL5493 

CHEMBL211 CHEMBL2334 CHEMBL2216739 CHEMBL2568 CHEMBL6101 

CHEMBL2219 CHEMBL2337 CHEMBL2123 CHEMBL258 CHEMBL6115 

CHEMBL222 CHEMBL2343 CHEMBL213 CHEMBL2581 CHEMBL6120 

CHEMBL2231 CHEMBL2345 CHEMBL2146302 CHEMBL259 CHEMBL6136 
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CHEMBL2147 CHEMBL2349 CHEMBL248 CHEMBL2593 CHEMBL5818 

CHEMBL2148 CHEMBL235 CHEMBL2487 CHEMBL2595 CHEMBL5819 

CHEMBL215 CHEMBL236 CHEMBL2492 CHEMBL2598 CHEMBL5847 

CHEMBL216 CHEMBL237 CHEMBL250 CHEMBL2599 CHEMBL5855 

CHEMBL2163176 CHEMBL2373 CHEMBL2508 CHEMBL260 CHEMBL4900 

CHEMBL2169736 CHEMBL238 CHEMBL251 CHEMBL261 CHEMBL4973 

CHEMBL217 CHEMBL2386 CHEMBL2514 CHEMBL2611 CHEMBL4977 

CHEMBL2179 CHEMBL239 CHEMBL2525 CHEMBL2617 CHEMBL5024 

CHEMBL218 CHEMBL2390810 CHEMBL2527 CHEMBL262 CHEMBL5027 

CHEMBL2185 CHEMBL240 CHEMBL253 CHEMBL2635 CHEMBL5028 

CHEMBL2189110 CHEMBL241 CHEMBL2534 CHEMBL2637 CHEMBL5038 

CHEMBL2424 CHEMBL2413 CHEMBL2535 CHEMBL2652 CHEMBL5073 

CHEMBL2426 CHEMBL2414 CHEMBL2543 CHEMBL2664 CHEMBL5703 

CHEMBL2431 CHEMBL242 CHEMBL255 CHEMBL267 CHEMBL5719 

CHEMBL2434 CHEMBL268 CHEMBL2820 CHEMBL2996 CHEMBL5742 

CHEMBL2439 CHEMBL2689 CHEMBL2828 CHEMBL3004 CHEMBL5747 

CHEMBL2468 CHEMBL2693 CHEMBL283 CHEMBL3009 CHEMBL5203 

CHEMBL2474 CHEMBL2695 CHEMBL2850 CHEMBL301 CHEMBL5247 

CHEMBL3553 CHEMBL2716 CHEMBL288 CHEMBL3012 CHEMBL5251 

CHEMBL3559 CHEMBL2717 CHEMBL2888 CHEMBL3023 CHEMBL5857 

CHEMBL3568 CHEMBL2730 CHEMBL2889 CHEMBL3024 CHEMBL5879 

CHEMBL2731 CHEMBL289 CHEMBL3025 CHEMBL3231 CHEMBL5896 

CHEMBL2736 CHEMBL2896 CHEMBL3032 CHEMBL3234 CHEMBL5903 

CHEMBL2742 CHEMBL290 CHEMBL3045 CHEMBL3238 CHEMBL5936 

CHEMBL275 CHEMBL2903 CHEMBL3055 CHEMBL3243 CHEMBL5938 

CHEMBL2778 CHEMBL2916 CHEMBL3060 CHEMBL325 CHEMBL5971 

CHEMBL2781 CHEMBL2938 CHEMBL3070 CHEMBL3250 CHEMBL5979 

CHEMBL2782 CHEMBL2939 CHEMBL308 CHEMBL3267 CHEMBL5366 

CHEMBL2789 CHEMBL2955 CHEMBL3094 CHEMBL3268 CHEMBL5378 

CHEMBL279 CHEMBL2959 CHEMBL3106 CHEMBL3272 CHEMBL5393 

CHEMBL2793 CHEMBL2964 CHEMBL3116 CHEMBL3286 CHEMBL5407 

CHEMBL2801 CHEMBL2971 CHEMBL3130 CHEMBL3308 CHEMBL5408 

CHEMBL2803 CHEMBL2973 CHEMBL3142 CHEMBL331 CHEMBL6009 

CHEMBL2808 CHEMBL298 CHEMBL3145 CHEMBL3310 CHEMBL6014 

CHEMBL2815 CHEMBL299 CHEMBL3180 CHEMBL332 CHEMBL6030 

CHEMBL3181 CHEMBL333 CHEMBL3522 CHEMBL3710 CHEMBL6032 

CHEMBL3192 CHEMBL3338 CHEMBL3524 CHEMBL3714130 CHEMBL5518 

CHEMBL3201 CHEMBL335 CHEMBL3529 CHEMBL3717 CHEMBL5522 

CHEMBL3202 CHEMBL3351 CHEMBL3535 CHEMBL3721 CHEMBL5524 

CHEMBL321 CHEMBL3356 CHEMBL3864 CHEMBL3729 CHEMBL5543 

CHEMBL3227 CHEMBL3357 CHEMBL3869 CHEMBL3746 CHEMBL5545 

CHEMBL3230 CHEMBL3359 CHEMBL3880 CHEMBL3759 CHEMBL5568 

CHEMBL3385 CHEMBL3589 CHEMBL3764 CHEMBL3886 CHEMBL6003 

CHEMBL3397 CHEMBL3590 CHEMBL3772 CHEMBL3890 CHEMBL6007 

CHEMBL3399910 CHEMBL3616 CHEMBL3776 CHEMBL3891 CHEMBL6154 
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CHEMBL340 CHEMBL3622 CHEMBL3778 CHEMBL3892 CHEMBL4895 

CHEMBL3401 CHEMBL3629 CHEMBL3785 CHEMBL3898 CHEMBL4896 

CHEMBL3426 CHEMBL3636 CHEMBL3788 CHEMBL3902 CHEMBL4897 

CHEMBL3437 CHEMBL3650 CHEMBL3795 CHEMBL3905 CHEMBL4898 

CHEMBL3438 CHEMBL3663 CHEMBL3807 CHEMBL3906 CHEMBL4899 

CHEMBL3468 CHEMBL3683 CHEMBL3816 CHEMBL3911 CHEMBL4444 

CHEMBL3474 CHEMBL3687 CHEMBL3819 CHEMBL3913 CHEMBL4461 

CHEMBL3475 CHEMBL3691 CHEMBL3820 CHEMBL3920 CHEMBL4462 

CHEMBL3476 CHEMBL3961 CHEMBL3829 CHEMBL3922 CHEMBL4465 

CHEMBL3510 CHEMBL3965 CHEMBL3831 CHEMBL3935 CHEMBL4478 

CHEMBL3514 CHEMBL3969 CHEMBL3835 CHEMBL3959 CHEMBL4481 

CHEMBL3836 CHEMBL3972 CHEMBL4051 CHEMBL4203 CHEMBL4482 

CHEMBL3837 CHEMBL3973 CHEMBL4068 CHEMBL4204 CHEMBL4501 

CHEMBL3861 CHEMBL3974 CHEMBL4071 CHEMBL4223 CHEMBL4506 

CHEMBL3863 CHEMBL3975 CHEMBL4072 CHEMBL4224 CHEMBL4801 

CHEMBL3572 CHEMBL3976 CHEMBL4073 CHEMBL4225 CHEMBL4803 

CHEMBL3582 CHEMBL3979 CHEMBL4079 CHEMBL4227 CHEMBL4804 

CHEMBL3587 CHEMBL3982 CHEMBL4080 CHEMBL4234 CHEMBL4816 

CHEMBL3983 CHEMBL4081 CHEMBL4237 CHEMBL4422 CHEMBL4581 

CHEMBL3991 CHEMBL4093 CHEMBL4247 CHEMBL4426 CHEMBL4599 

CHEMBL4005 CHEMBL4101 CHEMBL4261 CHEMBL4427 CHEMBL4600 

CHEMBL4015 CHEMBL4123 CHEMBL4270 CHEMBL4439 CHEMBL5261 

CHEMBL4016 CHEMBL4128 CHEMBL4273 CHEMBL4441 CHEMBL5282 

CHEMBL4018 CHEMBL4142 CHEMBL4282 CHEMBL4714 CHEMBL5285 

CHEMBL4026 CHEMBL4145 CHEMBL4296 CHEMBL4718 CHEMBL5314 

CHEMBL4029 CHEMBL4147 CHEMBL4302 CHEMBL4722 CHEMBL5330 

CHEMBL4036 CHEMBL4158 CHEMBL4303 CHEMBL4761 CHEMBL5331 

CHEMBL4040 CHEMBL4176 CHEMBL4306 CHEMBL4766 CHEMBL6164 

CHEMBL4045 CHEMBL4179 CHEMBL4315 CHEMBL4608 CHEMBL6166 

CHEMBL4374 CHEMBL4191 CHEMBL4338 CHEMBL4617 CHEMBL6175 

CHEMBL4375 CHEMBL4198 CHEMBL4361 CHEMBL4618 CHEMBL4698 

CHEMBL4376 CHEMBL4202 CHEMBL4367 CHEMBL4625 CHEMBL4699 

CHEMBL4393 CHEMBL4508 CHEMBL4662 CHEMBL4630 CHEMBL4852 

CHEMBL4394 CHEMBL4516 CHEMBL4674 CHEMBL4576 CHEMBL4829 

CHEMBL4398 CHEMBL4523 CHEMBL4681 CHEMBL4578 CHEMBL4835 

CHEMBL4408 CHEMBL4525 CHEMBL4683 CHEMBL4708 CHEMBL4601 

CHEMBL4822 CHEMBL4575 CHEMBL4685   
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Table S2. PubChem biological targets used for GTM map selection. 

PubChem ID PubChem BioAssay name * 

1012 Tissue non-specific alkaline phosphatase precursor [Homo sapiens] 

1159524 HTS for Foot and Mouth Disease Virus Antivirals 

1490 
QHTS Assay For Inhibitors Of Bacillus Subtilis Sfp Phosphopantetheinyl 

Transferase (PPTase) 

1721 
QHTS Assay For Inhibitors Of Leishmania Mexicana Pyruvate Kinase 

(LmPK) 

1981 
A Screen For Inhibitors Of The PhoP Regulon In Salmonella 

Typhimurium Using A Modified Counterscreen 

2100 
qHTS Assay for Inhibitors and Activators of Human alpha-Glucosidase 

Cleavage of Glycogen 

2289 qHTS Assay for Modulators of miRNAs and/or Inhibitors of miR-21 

2314 
Cycloheximide Counterscreen For Small Molecule Inhibitors Of Shiga 

Toxin 

2315 A QHTS For Small Molecule Inhibitors Of Shiga Toxin 

2451 
qHTS Assay for Inhibitors of Fructose-1,6-bisphosphate Aldolase from 

Giardia Lamblia 

2546 
VP16 Counterscreen QHTS For Inhibitors Of ROR Gamma 

Transcriptional Activity 

2551 QHTS For Inhibitors Of ROR Gamma Transcriptional Activity 

2842 
HTS Of A Putative Kinase Compound Library To Identify Inhibitors Of 

Mycobacterium Tuberculosis H37Rv 

410 Cytochrome P450, family 1, subfamily A, polypeptide 2 [Homo sapiens] 

485313 Niemann-Pick C1 protein precursor [Homo sapiens] 

485364 Thioredoxin glutathione reductase [Schistosoma mansoni] 

485367 ATP-dependent phosphofructokinase [Trypanosoma brucei] 

504466 ATAD5 protein [Homo sapiens] 
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PubChem ID PubChem BioAssay name * 

504847 Vitamin D3 receptor isoform VDRA [Homo sapiens] 

521 
Protein tyrosine phosphatase, non-receptor type 7 isoform 2 [Homo 

sapiens] 

588342 Luciferase [Photinus pyralis] 

624173 Hypothetical protein, conserved [Trypanosoma brucei] 

624330 Rac GTPase-activating protein 1 [Homo sapiens] 

651635 Ataxin-2 [Homo sapiens] 

651724 CtBP interacting protein CtIP [Homo sapiens] 

652105 
qHTS for Inhibitors of phosphatidylinositol 5-phosphate 4-kinase 

(PI5P4K) 

686971 
qHTS for induction of synthetic lethality in tumor cells producing 2HG: 

qHTS for the HT-1080-IDH1KD cell line 

686978 TDP1 protein [Homo sapiens] 

* PubChem BioAssay target name corresponds to its description or target name on 

PubChem 

Table S3. PubChem biological targets used for GTM map validation. 

PubChem ID PubChem BioAssay name * 

686979 
qHTS for Inhibitors of human tyrosyl-DNA phosphodiesterase 1 (TDP1): 

qHTS in cells in presence of CPT 

720504 
qHTS for Inhibitors of PLK1-PDB (polo-like kinase 1 - polo-box domain): 

Primary Screen 

720580 
qHTS for Stage-Specific Inhibitors of Vaccinia Orthopoxvirus: Venus 

Reporter Primary qHTS 

720708 
qHTS for Antagonist of cAMP-regulated guanine nucleotide exchange 

factor 2 (EPAC2): primary screen 

743255 Inhibitors Of USP1/UAF1: Primary Screen 
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PubChem ID PubChem BioAssay name * 

743279 
qHTS for Inhibitors of Inflammasome Signaling: IL-1-beta AlphaLISA 

Primary Screen 

778 Cytochrome P450, family 2, subfamily C, polypeptide 19 [Homo sapiens] 

1443 
uHTS for the identification of compounds that potentiate TRAIL-induced 

apoptosis of cancer cells 

1619 
Inhibitors of Plasmodium falciparum M17- Family Leucine 

Aminopeptidase (M17LAP) 

1903 
Identification of SV40 T antigen inhibitors: A route to novel anti-viral 

reagents 

2401 
A Counter Screen To Identiry Small Molecule Screen For Inhibitors Of The 

PhoP Regulon In Salmonella Typhimurium 

485297 QHTS Assay For Rab9 Promoter Activators 

504327 QHTS Assay For Inhibitors Of GCN5L2 

504329 Discovery Of Small Molecule Probes For H1N1 Influenza NS1A 

504332 QHTS Assay For Inhibitors Of Histone Lysine Methyltransferase G9a 

504333 
QHTS Assay For Inhibitors of bromodomain adjacent to zinc finger domain 

2B [Homo sapiens] 

504339 
Chain A, Jmjd2a Tandem Tudor Domains In Complex With A 

Trimethylated Histone H4-K20 Peptide 

504832 
Primary QHTS For Delayed Death Inhibitors Of The Malarial Parasite 

Plastid, 48 Hour Incubation 

540267 Small Molecules That Selectively Kill Giardia Lamblia: QHTS 

588453 
QHTS Assay For Inhibitors Of Mammalian Selenoprotein Thioredoxin 

Reductase 1 (TrxR1): QHTS 

588579 QHTS For Inhibitors Of Polymerase Kappa 

624171 QHTS Of Nrf2 Activators 

624202 QHTS Assay To Identify Small Molecule Activators Of BRCA1 
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PubChem ID PubChem BioAssay name * 

Expression 

651725 QHTS Assay For Inhibitors Of The Six1/Eya2 Interaction 

* PubChem BioAssay target name corresponds to its description or target name on 

PubChem 

 

 

Figure S1. GTM property landscapes for b_1RotR (fraction of rotatable single bonds), 

TPSA, and Log S. 
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Figure S2. GTM property landscapes for a_nF (number of fluorine atoms), a_nCl (number 

of chlorine atoms), a_nBr (number of bromine atoms), and a_nI (number of iodine atoms). 



169 

 

 

Arkadii LIN 

Cartographie Topographique Générative: un 
outil puissant pour la visualisation, l'analyse 

et la modélisation de données chimiques 
volumineuses 

 

 

Résumé 

Cette thèse concerne l’utilisation de Cartographie Topographique Générative (Generative 
Topographic Mapping – GTM) pour l’analyse, la visualisation et la modélisation de grands volumes 
de données chimiques. Les principaux sujets traités dans ces travaux sont le criblage virtuel multi-
cibles dans la conception de médicaments et la visualisation, l’analyse et la comparaison de grandes 
chimiothèques. Plusieurs développements méthodologiques ont été proposés : (i) un algorithme de 
zoom hiérarchique automatisé pour la GTM afin d’aider à résoudre le problème de la résolution des 
cartes ; (ii) un protocole d’extraction automatisé des Sous-structures Maximum Communes (MCS) 
pour améliorer l’efficacité de l’analyse de données ; (iii) un criblage contraint basé sur la GTM 
permettant de détecter les molécules avec un profil pharmacologique souhaité, et (iv) une technique 
de GTM parallèle, qui réduit significativement le temps nécessaire pour construire une carte. Les 
méthodologies développées ont été implémentées sous forme de logiciel, utilisé à la fois dans des 
projets académiques (Université de Strasbourg, France) et industriels (Compagnie Boehringer 
Ingelheim Pharma, Allemagne). 

Mots-clés : GTM, grand volumes de données en chimie, comparaison de grandes chimiothèques, 
visualisation de données, QSAR, criblage virtuel 

 

Résumé en anglais 

This thesis concerns the application of the Generative Topographic Mapping (GTM) approach to the 
analysis, visualization, and modeling of Big Data in chemistry. The main topics covered in this work 
are multi-target virtual screening in drug design and large chemical libraries visualization, analysis, 
and comparison. Several methodological developments were suggested: (i) an automatized 
hierarchical GTM zooming algorithm helping to resolve the map resolution problem; (ii) an 
automatized Maximum Common Substructure (MCS) extraction protocol improving efficiency of data 
analysis; (iii) constrained GTM-based screening allowing to detect molecules with a desired 
pharmacological profile, and (iv) a parallel GTM technique, which significantly increases the speed of 
GTM training. Developed methodologies were implemented in a software package used in both 
academic (University of Strasbourg, France) and industrial (Boehringer Ingelheim Pharma company, 
Germany) projects. 

Key words: GTM, Big Data in chemistry, libraries comparison, data visualization, QSAR, virtual 
screening 
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