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Abstract

This thesis concerns the application of the Generative Topographic Mapping (GTM)
approach to the analysis, visualization, and modeling of Big Data in chemistry. The main
topics covered in this work are multi-target virtual screening in drug design and large
chemical libraries visualization, analysis, and comparison. Several methodological
developments were suggested: (/) an automatized hierarchical GTM zooming algorithm
helping to resolve the map resolution problem; (i7) an automatized Maximum Common
Substructure (MCS) extraction protocol improving efficiency of data analysis; (iii)
constrained GTM-based screening allowing to detect molecules with a desired
pharmacological profile, and (iv) a parallel GTM technique, which significantly increases
the speed of GTM training. Developed methodologies were implemented in a software
package used in both academic (University of Strasbourg, France) and industrial

(Boehringer Ingelheim Pharma company, Germany) projects.
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1 Résumé en francais

1.1 Introduction

De nos jours, les bases de données chimiques telles que CAS, contiennent des
millions de structures chimiques [1], et ce nombre augmente exponentiellement, grace a
I’utilisation de nouvelles technologies de synthése combinatoire et parall¢le, de réacteurs en
flux continu ou de micro-ondes, entre autres. De plus, des milliards de structures virtuelles
sont aisément énumérées par ordinateur (166 milliards de composés dans la base de
données GDB-17 [2]). Ces chiffres restent toutefois modestes comparés au nombre de
composés dans I’espace chimique d’intérét thérapeutique, estimé a 10°° [3]. L’exploration
de ces espaces chimiques est un défi pour les chimistes souhaitant comprendre leur
structure, découvrir les régions inexplorées et analyser les relations structure-activité des

molécules qu’ils contiennent.

Les cartes topographiques génératives (Generative Topographic Mapping - GTM) [4]
permettent de modéliser, d’analyser et de visualiser de grandes bases de données. Leur
contenu est projeté dans un espace bidimensionnel, qualifi¢ d’ « espace latent ». Cette
méthode a été appliquée avec succes pour comparer des chimiothéques [5] et pour la
modélisation de Relations Quantitatives Structure-Activité (QSAR) [6]. Néanmoins, des
ajustements technologiques et méthodologiques sont nécessaires pour utiliser cette

approche dans le cas des mégadonnées ( ou « Big Data »).
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Cette thése est dédi¢e a I’amélioration de la GTM et a ses applications dans différents
contextes de mégadonnées. Cette thése consiste en 6 Chapitres. Le chapitre 1 est une
introduction concernant la méthode GTM et ses applications décrites dans la littérature. Le
chapitre 2 présente les améliorations méthodologiques proposées, telles que le zoom
hiérarchique, le domaine d’applicabilit¢ double ou encore 1’extraction des structures
maximales communes. Le Chapitre 3 rapporte les résultats de 1’utilisation de la GTM pour
établir le profil de composés sur de multiples cibles simultanément, c’est-a-dire pour un
criblage virtuel multi-cibles (VS), et des études comparatives de la GTM avec des
algorithmes d’apprentissage machine éprouvés. Le Chapitre 4 décrit les résultats de la
comparaison de grandes bases de données publiques (PubChem-17 et ChEMBL-17) avec
les composés virtuels énumérés dans la FDB-17 [7]. Le Chapitre 5 montre 1’application de
la GTM pour enrichir les collections de produits de la société Boehringer Ingelheim Pharma
(BI) avec des composés originaux, en tenant compte de l’expérience apportée par les
projets précédents. Le dernier chapitre (Chapitre 6) est consacré a I’implémentation
d’algorithmes paralléles pour accélérer les calculs GTM et aborder de nouveaux problémes

dans le domaine des mégadonnées.

1.2 Résultats et discussions

1.2.1 Criblage virtuel de grandes collections chimiques

Les Relations Quantitatives Structure-Activité (QSAR) sont un domaine clé¢ de la
chémoinformatique. Ces modeles visent a sélectionner rationnellement les composés par
rapport & une activité biologique ou une propriété. Etant donné que la GTM peut étre
utilisée pour créer des modeles QSAR, le premier défi était de ’appliquer a du criblage
virtuel (VS) sur une cible (mono-cible) puis sur plusieurs cibles simultanément (multi-
cible). Ces techniques ont été appliquées a une grande collection de problémes de
classification appelée DUD (Directory of Useful Decoys) [8]. A cette fin, les GTM
universelles décrites par P. Sidorov et al. [9] ont été utilisées. Ces cartes sont entrainées

pour modéliser une grande base de données (ChEMBL v23 dans cette étude) et ont été

12



\ J4

choisies pour leur capacité a prédire plusieurs centaines de propriétés biologiques. La
méthode a aussi été comparée a d’autres approches d’apprentissage machine éprouvées : la
recherche par similarité (avec et sans fusion de données), des réseaux de neurones, et une
forét aléatoire. Pour mesurer la performance d’une méthode, la moyenne des aires sous la
courbe ROC (Receiver Operating Characteristic), <AUC>),, a été utilisée. Les résultats de
la validation sur les centaines de cibles utilisées pour choisir les cartes sont présentés en

Figure 1.

700

600
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400
300
200
100:'
A B C D E F G H

Figure 1. Le nombre de cibles pour lesquelles le meilleur modele sur les quatre espaces de

Le nombre de cibles avec <AUC>,, > 0.8

descripteurs retourne <AUC>,, > 0.8. A — Recherche par similarité dans 1’espace initial, B
— Recherche par similarité dans 1’espace des responsabilités (description des données par la
GTM), C — GTM universelle, D — GTM mono-cible, E — Recherche par similarité avec
fusion de données dans I’espace initial, F — Recherche par similarité avec fusion de données

dans I’espace des responsabilités, G — Réseau de neurones, H — Forét aléatoire.

La validation effectuée sur les 9 cibles de la DUD en utilisant des données jamais
utilisées pour entrainer ou sélectionner les cartes, a montré des performances similaires

(Figure 2). Les résultats de cette étude ont été publiées [10].
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Figure 2. Comparaison des méthodes de criblage virtuel. Les GTM ont été entrainées et
validées sur ChREMBL v23. Les cartes utilisées sont celles qui ont montré les meilleures

performances en termes de ROC AUC, obtenues en validation croisée.

Ensuite, I’approche de la GTM universelle a été testée dans 1’environnement
industriel de Boehringer Ingelheim. Tout d’abord, des GTM ont été entrainées sur 25K
structures chimiques représentatives des collections internes de 1’entreprise (le « frame
set »). Les descripteurs moléculaires et les parametres de la méthode GTM les plus
pertinents ont été¢ déterminés en échantillonnant systématiquement leurs valeurs sur une
grille (le nombre de nceuds est 20%20 + 50*50 avec un pas de 5, le nombre de RBF est 40 +
70% du nombre de nceuds avec un pas de 10, le coefficient de régularisation est 1.0 ~ 5.0

avec un pas de 0.5, et la largeur des RBF est 1.0 + 5.0 avec un pas de 0.5).

Plus de 230K combinaisons de paramétres ont été essayées, et les 5 meilleures cartes

ont été sélectionnées (Table 7 ; chapitre 5.2.4).

Ces cartes ont été validées par validation croisée en 3 paquets sur 2371 problémes de
classification concernant 1’activité de composés sur des cibles biologiques. Pour mesurer la
performance d’une carte, la moyenne des aires sous la courbe ROC (<AUC>*** pour les

problémes a 3 classes et <AUC>"™" pour les problémes a 2 classes) a été utilisée (Table 8).
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La validation croisée montre que ces cartes sont prédictives dans plus de 50% des
tests proposés (1318 tests), avec une <AUC>® > 0.7. Ces cartes ont été utilisées pour
prédire 1’activité sur 42 nouvelles cibles biologiques. Pour 4 d’entre elles, la précision

balancée (Balanced Accuracy, BA) était supérieure a 0.7.

1.2.2 Comparaison de bases de données chimiques publiques

Une base de données couvrant I’espace chimique de composés contenant au plus 17
atomes lourds a été publiée par J.-L. Reymond et al. [2] (GDB-17). Des molécules
contenant ¢galement au plus 17 atomes lourds ont été échantillonnés dans les bases de
données ChEMBL (ChEMBL-17) et PubChem (PubChem-17) pour étre comparées a un
¢chantillon de 10M de composés de la GDB-17, la FDB-17 [7]. L’objectif était d’identifier
les chémotypes particuliers appartenant a I’une ou a ’autre base en exclusivité. Comme la
FDB-17 contient des structures chimiques virtuelles énumérées par un algorithme, la
comparaison avec de véritables composés chimiques (ChEMBL-17, PubChem-17) pourrait
donner lieu a la découverte de nouveaux chémotypes, qui n’ont encore jamais ¢€té
synthétisés. Une GTM a donc été entrainée sur un frame set de 100K structures,
sélectionnées au hasard mais avec un ratio égal pour chacun des 3 jeux de données. Puis,
les données (21.1M de composés) ont été projetées sur cette carte. Les cartes ont été
annotées en fonction de la prévalence d’une base par rapport a une autre dans une région de
I’espace chimique représentée par la carte. Ces cartes annotées sont appelées paysages,

dans la suite.

Les jeux de données ont été comparés en utilisant (i) des métriques de dissimilarité (le
coefficient de Bhattacharyya, les distances Euclidienne et de Soergel), (ii) des paysages
comparant FDB-17 avec PubChem-17/ChEMBL-17, et (iii) des propriétés moléculaires
(nombre d’atomes lourds, chiralité, LogP, nombre d’atomes aromatiques, etc.) Les résultats
de I’étude ont été publiés [10]. Pour résumer, la comparaison a montré que les bases de
données PubChem-17 et ChEMBL-17 sont trés similaires, ce qui est expliqué par le fait que

la premiere inclut la seconde (Figure 3).
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Figure 3. Diagramme de chaleur représentant les similarités entre trois chimiothéques sur
la base de GTM. Les métriques utilisées sont (a) le coefficient de Bhattacharyya (1-

SBhattacharyya)> (b) le coefficient de Tanimoto (1-Stanimoto) €t (¢) la distance Euclidienne.

Par contraste, la PubChem-17 difféere significativement de la FDB-17. Le paysage
résultant, illustré par la Figure 4, montre que la PubChem-17 est dominante dans plusieurs
zones de la carte dans lesquelles les composés avec des groupes nitro attachés a un systeme
aromatique et/ou des groupes carboxyl sont localisés (zones rouges). L’absence de ces
structures dans la FDB-17 est expliquée par les régles que les auteurs de la base de données
ont appliquées au cours de I’énumération des structures pour restreindre I’espace chimique

virtuel a des composés qu’ils ont jugés intéressants pour des applications pharmaceutiques

[7].
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Figure 4. Paysage comparant les bases de données FDB-17 et PubChem-17.

Au cours de ce travail, un écueil était que les cartes représentaient un si grand nombre
de composés que chaque élément en couvrait des centaines de milliers, ce qui en
compliquait ’analyse. Pour résoudre ce probléme et analyser plus finement les composés
dans les zones de 1’espace chimique ou la FDB-17 se recouvre avec la PubChem-17 (zones
vertes et jaunes), une technique appelée zoom hiérarchique de GTM (proposée auparavant
par Nabney et al. [11]) a été appliquée. Elle consiste a extraire les composés d’une région
de I’espace chimique représentée par une zone délimitée sur la carte et d’entrainer une
nouvelle GTM en utilisant les mémes paramétres que ceux de la carte principale (Figure 5).
Cette technique a permis d’identifier de nouveaux chéssis moléculaires absents de la base
de données PubChem. Les structures contenant ces chassis et présentées en Figure 5 ont été
extraites de la collection FDB-17. Aucune molécule similaire n’est présente dans la base de

données PubChem.
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21 millions de composés 650 000 composés 2 500 composés

PubChem-17

FDB-17

Zoom (niveau 2)

OH NH,

Figure 5. Zoom hiérarchique de GTM sur I’espace chimique occupé par la FDB-17 (en
bleu) et la PubChem-17 (en rouge). Pour une zone délimitée sur une carte, un modele local
de GTM est reconstruit en utilisant uniquement sur les molécules y résidant. Sous la carte
zoomée sont montrés des exemples de composés extraits d’une zone peuplée exclusivement
par des composés de la FDB-17 sur une carte zoomée. Ces composé€s n’ont pas d’analogues

dans la base de données PubChem.

Pour finir, les bases de données ont été¢ comparées en termes de 6 propriétés calculées
sur les structures chimiques a ’aide du logiciel MOE : I’entropie de la distribution des
¢léments composant la molécule (a ICM), le nombre d’atomes lourds (a heavy), la
chiralité (chiral), la lipophilicité (LogP), le nombre d’atomes aromatiques (a_aro), et le
statut de quasi-fragment ASTEX (ast fraglike ext) [12]. Les résultats sont représentés sur
la Figure 6. Les paysages de propriétés correspondants au nombre d’atomes lourds dans les
molécules de ChEMBL-17 et de PubChem-17 (Figure 6) sont similaires. Toutefois,
PubChem-17 contient un exces d’entrées de plus haut poids moléculaire (en rouge sombre).
Ceci résulte de deux biais de composition des bases de données : d’une part, PubChem est
compos¢ de structures chimiques sélectionnées pour €tre a priori bio-actives puisqu’elles
sont soumises a des bancs de tests biologiques. Les trés petits composés ne pouvant pas
former de complexes tres stables avec des protéines (et en dépit de leur éventuelle efficacité

en tant que ligand) sont rares dans PubChem.
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ChEMBL-17 PubChem-17 FDB-17

Figure 6. Paysages de propriété pour a ICM (entropie de la distribution des ¢léments de la
molécule), a_heavy (nombre d’atomes lourd), chiral (chiralit¢), LogP (lipophilicité), a aro

(nombre d’atomes aromatiques), et ast_fraglike ext (Satut de quasi-fragment ASTEX) [12].
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D’autre part, on peut remarquer que I’échantillon de la FDB-17 a été spécifiquement
congu pour équilibrer le nombre d’entrées correspondant a des molécules de tailles
différentes. Les composés ayant un nombre d’atomes lourds intermédiaire ont ¢été
volontairement sur-échantillonnés. Autrement, pour des raisons évidentes de combinatoire,
I’énumération systématique des composés ayant au plus 17 atomes lourds est dominé par

les structures contenant exactement 17 atomes lourds.

Le paysage de I’entropie de la distribution des éléments (indice a ICM de MOE) dans
les molécules est similaire pour les jeux de données ChEMBL-17 and PubChem-17, alors
que FDB-17 contient des structures moins diverses, au sens qu’il y a un biais de
composition en faveur des chaines hydrocarbures en comparaison de fonctions chimiques
plus élaborées. Des regles élémentaires de stabilité chimique empéchent la concaténer des
hétéroatomes dans les structures de la base de données GDB-17, ce qui explique que les
chaines carbonées soient prédominantes. Mais, les chimiothéque de molécules
effectivement synthétisées incluent des groupes fonctionnels chimiques ¢laborés qui
apportent de la réactivité et des propriétés physico-chimiques intéressantes. Ces biais sont

bien mis en évidence sur les cartes.

1.2.3 Enrichissement de librairie structurale pour Boehringer Ingelheim

En prenant en compte 1’expérience apportée par les projets précédents, la GTM a
démontré une bonne efficacité en criblage virtuel et pour la comparaison de chimiotheques.
Dans cette étude, cette technique a été utilisée pour augmenter la diversité chimique de la
collection interne de composés de Boehringer Ingelheim (BI). Pour ce faire, une carte GTM
a ¢été utilisée pour comparer cette collection BI au catalogue de I’entreprise Aldrich-Market
Select (AMS) référencant plus de 8M de produits. Pour entrainer la carte, un jeu de données
représentatif de 25,000 structures de diversité chimique controlée (ne présentant pas plus de
deux structures chimiques plus similaires qu’une valeur seuil) a été constitué a partir de la
base de données AMS. Pour commencer, un paysage de classification a été construit pour

comparer les distributions des composés dans chaque chimiotheéque (Figure 7).
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Figure 7. Comparaison des bases de données BI Pool vs AMS: (a) paysage de densité BI
Pool, (b) paysage de densit¢ AMS, et (c) paysage de prépondérance AMS contre BI Pool.
Les régions blanches sont non peuplées, et la transparence est proportionnelle a la densité

de population.

Afin de découvrir de nouveaux chassis moléculaires, 1’approche du zoom
hiérarchique de GTM a été automatisée pour étre appliquée systématiquement sur les zones
de la carte dans lesquelles les composés AMS étaient le plus surreprésentés. Les collections

ainsi identifiées ont été analysées pour en extraire les sous-structures maximales communes

(Figure 8).
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Figure 8. Un exemple d’analyse de zoom hiérarchique de GTM. Ici, une nouvelle sous-
structure de la collection Aldrich-Market Select (AMS) a été découverte en utilisant un
zoom a 2 niveaux. L’espace blanc indique des zones non peuplées, et la transparence

correspond a la densité de la population.

De la sorte, un total de 45.5K nouvelles sous-structures ont été extraites de la base de
données AMS ce qui a permis d’identifier 401K composés dans ce catalogue. La plupart de
ces composés sont conformes aux régles de Lipinski et peuvent donc étre considérés
comme biodisponibles par voie orale (Figure 9). De plus, des GTM universelles entrainées
sur la version 24 de la base de données ChEMBL ont été appliquées pour estimer le profil
biologique de ces structures pour 749 cibles. Plus de 1.2K composés ont été identifiés pour

avoir une activité potentielle sur différentes cibles avec une probabilité supérieure a 80%.

22



200
180
160
140
120
100
80
60
40
20

Nombre des composés, milles

90
80
70
60
50
40
30
20
10

Nombre des composés, milles

140

120

100

80

60

40

0 1 2

20

a2

b

4 5 6

Nombre de donneurs de liason H

200

01 23 45 6 7 8 91011
Nombre de accepteurs de liason H

180
160

140

3-2-101 2

Nombre des composés, milles

3 4

LogP

160
140
120
100
80
60
40
20
0

56 78 910

120
100
80
60
40
20

100 200 300 400 500 600 700 800
Masse moléculaire

0 20 40 60 80 100120140160 180200
TPSA

Figure 9. Histogrammes représentant le nombre de donneurs et d’accepteurs de liaison

hydrogene, de lipophilicité (LogP), de poids moléculaires, et de surface polaire topologique

(TPSA) calculés pour I’extrait de 401K composés de la base de données AMS. Les lignes

pointillées rouges matérialisent les régles de Lipinski [13].
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Des exemples de ces touches virtuelles sont montrés en Figure 10.
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Figure 10. Exemples de structures prédites actives et identifiées dans I’extrait de 401K de

la base de données AMS.
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Les structures découvertes ont ét¢ recommandées a 1’entreprise afin d’étre achetées
pour alimenter leurs collections. Le papier rapportant les résultats de cette étude a été

accepté a la publication « Journal of Computer-Aided Molecular Design ».

1.2.4 GTM parallele

Les avantages de la GTM ont ét¢ montrés dans différentes applications dans le
contexte des mégadonnées. Cependant, il reste encore quelques limitations techniques et
méthodologiques qui en restreignent 1’'usage a des quantités de données plus grandes que
quelques dizaines de millions de molécules. Pour surmonter ces limites, le concept de GTM

parallele a été proposé. Le concept général est décrit par la Figure 11.

Les données

PCA externe J

Manifold
initial

Bloc 1 Entrainement Entrainement Bloc n
de manifold 1 de manifold n
Entrainement Entrainement
Bloc 2 de manifold 2 de manifold ... Bloc

Entrainement
de manifold 3

Manifold
final

Bloc 3

Figure 11. Représentation schématique de I’algorithme GTM Parall¢les.
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Il consiste a entrainer des GTMs sur différentes parties du jeu de données en paralléle.
Une fois que les nappes intermédiaires ont été ajustées a leurs données respectives, elles
sont fusionnées dans une nappe unique. A cette fin, trois stratégies sont envisagées: 1)
moyenner les matrices de paramétres décrivant chaque nappe et moyenner la largeur de la
distribution gaussienne, 2) faire des moyennes pondérées par la vraisemblance issue de
chaque nappe, et 3) faire des moyennes au travers d’une GTM. Celle-ci consiste a entrainer
une nouvelle GTM a partir d’un jeu de données artificiel composé par les nceuds des GTM

intermédiaire dans 1’espace initial.

Cette approche a été testée en utilisant un jeu de composés extraits de la base de
données ChEMBL (v24), pour lesquels les valeurs d’IC50 sur la prothrombine
(CHEMBL204) étaient connues. La GTM parallele a aussi été comparée a 1’algorithme
classique et incrémental de la GTM (telle que décrit par C. Bishop et al. [4]). La qualité des
modeles obtenus a été mesurée sur leur capacité prédictive concernant I’activité biologique
sur la prothrombine et le temps d’exécution. Les résultats de cette ¢tude comparative ont
montré que la GTM parallele produit des modeles aussi prédictifs (les précisions balancées
sont similaires avec une déviation d’environ 0.02) mais que les temps de calculs sont
divisés par un facteur 2. En comparaison, les GTM incrémentales et paralleles utilisent des
jeux de données bien plus gros (plus de 100,000 composés) et bénéficient d’une réduction

des temps de calcul d’un facteur pouvant aller jusque 6.

1.3  Conclusions

1) La méthode GTM (Generative Topographic Mapping) a été testée pour le
criblage virtuel (VS) mono-cible et multi-cible. Les études comparatives ont montré que les
modeles GTM ont des performances similaires aux autres méthodes d’apprentissage
machine. Mais elle possede plusieurs avantages comme la possibilité de visualiser I’espace
chimique.

2) La méthode GTM a été testée avec succeés pour comparer de grandes bases

de données de composés réels et virtuels (PubChem-17, ChEMBL-17, FDB-17). 11 a été
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montré que la GTM permet de visualiser facilement des millions de points de données et de
localiser les zones de 1’espace chimiques ou ces ensembles de molécules se recouvrent.

3) La technique de zoom hiérarchique de GTM a été proposée comme une
solution pour analyser plus finement le contenu des zones de I’espace chimique les plus
peuplées. Elle augmente la capacité de la GTM a distinguer différents chémotypes. Ceci
donne lieu a une extraction plus efficace de chassis et de sous-structures maximales
communes.

4) Un nouveau protocole d’extraction de sous-structures maximales communes
a ¢té proposé€. Ce protocole a été intégré a la technique de zoom hiérarchique de GTM.
L’outil développé a été utilisé avec succes pour enrichir la collection interne de la société
Boehringer Ingelheim Pharma (45.5K nouvelles sous-structures, 401K molécules analysées
et une liste de composés recommandés pour étre achetés ou synthétisés par la société).

5) Le concept de GTM parallele a été proposé. Il a été testé sur un jeu de
données extrait de la base de données ChEMBL. Il a ét¢ montré que la GTM parallele
propose a I’utilisateur des modeles dont les performances sont conservées tout en divisant

par 2 les temps de calcul.
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2 Introduction

The number of synthesized chemical structures increases exponentially because of the
implementation of parallel and combinatorial synthesis approaches, as well as new
experimental techniques like flow or microwave reactors. CAS Registry is the largest
chemical database of registered compounds that have been synthesized since the 1800s, and
it already contains 154 million organic and inorganic substances [14]. Yet, it covers just a
part of chemical space. Thus, Reymond et al. [2] virtually enumerated a new database
(GDB-17) of 166 billion small molecules containing no more than 17 heavy atoms.
According to the estimation made by P. Polishchuk et al. [3], the drug-like chemical space
includes at least 10* molecules. These studies demonstrated that modern chemistry enters

the era of Big Data.

Among various definitions of “Big Data”, the most pertinent, to our opinion, belongs
to A. De Mauro et al. [15] who defined this as “the information asset characterized by such
high Volume, Velocity, and Variety to require specific technology and analytical methods
for its transformation into value”. Lusher et al. [16] included in this description “Veracity”

2

and “Value” criteria thus completing the 5 “V’s” definition. Specifically for chemical data,

Bajorath et al. [17] suggested also to use the Complexity and Heterogeneity criteria.

The value of Big Data in chemistry is determined by the knowledge which can be
extracted via large chemical databases analysis and modeling. In this context, data

visualization and analysis plays an important role in modern chemistry and, especially, in
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drug-discovery. This helps a chemist to decide by combining human and artificial

intelligence.

Nowadays, three groups of methods are used for chemical data analysis, visualization
and modeling: (i) graph-based, (if) descriptors-based, and (iii) combined methods. The
graph-based approaches represent a molecule as a graph where the nodes represent atoms
and the edges play a role of chemical bonds. A general way to analyze graph-based
chemical space stands on the concept of a molecular framework (scaffold) defined as the
part of a structure which remains after all terminal chains have been removed [18].
Scaffolds can be used to group structures in a hierarchical scaffold tree which allows to
visualize data and even to model structure-activity relationship (SAR) [19]. Maximum
Common Substructure (MCS) — based algorithms are used in chemoinformatics to extract
the largest connected or disconnected subgraph shared by a pair or a group of structures. Its
application can be also found in data clustering and SAR studies [20]. Matched Molecular

Pairs (MMP) method [21] represents another popular way for SAR analysis.

In contrast to the graph-based methods, the descriptors-based approaches consider a
molecule as a vector of numbers (descriptors) that describe a compound in terms of
structural and/or physical or chemical properties (e.g., structural fragments, molecular
weight, LogP, etc.). These descriptors vectors are used as input in various machine-learning
approaches, among which the dimensionality reduction techniques reside a huge variety of
multi-dimensional data visualization and modeling. Nowadays, dozens of dimensionality
reduction methods are reported in the literature [22]: Multi-Dimensional Scaling (MDS)
[23], Sammon mapping [24], Principal Component Analysis (PCA) [25-27], Self-
Organizing Maps (SOM) [28], Laplacian Eigenmaps [29], Canonical Correlation Analysis
[30], Independent Component Analysis [31], Exploratory Factor Analysis [32], Isomaps
[33], Locally Linear Embedding [34], Auto-encoder based dimensionality reduction [35],
etc. These methods became popular due to their efficiency and capabilities. For instance,
SOM is providing the user with a nice 2D map which is based on a non-linear model,

whereas PCA is able to represent the data in 2D or 3D PC space. However, these popular

30



methods have some clear drawbacks. Thus, PCA can efficiently be applied to process huge
datasets with linearly dependent features, but it is less effective with nonlinear data
distributions [36]. As a consequence, this approach fails to represent the cluster structure of
vast multidimensional data [37]. MDS is also a linear technique, which for the case of
Euclidean distances gives equivalent results to PCA [38]. Sammon maps have no explicit
mapping function and, therefore, do not allow one to place any new data on an already
existing map. In that case, a new map must be rebuilt from scratch [39]. Besides,
calculation and storage of all inter-point distances are required; this imposes severe
restrictions on many practical applications dealing with large amounts of data or
incremental data flow. The SOM approach has no well-defined objective function to be
optimized during the training procedure [40, 41] and, therefore, no theoretical framework to
prove its convergence and to select the method’s parameters can be defined. This leads to

some ambiguity in the selection of the “best” SOMs.

In an attempt to overcome the drawbacks mentioned above, a probabilistic extension
of SOM named Generative Topographic Mapping (GTM) [4] was proposed. Unlike its
predecessor, GTM considers the likelihood of training data points as the objective function.
Also, a data point is not associated with one particular node but it is represented as a
probability distribution over the entire latent space. Cumulating the probabilities over the
data set, it is possible then to create continues chemical landscape which might serve for
data sets visualization and comparison as well as for the building of regression and

classification models.

The last group of methods can be illustrated on the example of Chemical Space
Networks (CSN) [42] which combines both graph- and descriptors-based approaches. The
idea is to represent chemical space as a huge graph where the nodes represent individual
molecules, and the edges between the nodes are created as a function of either pairwise
molecular similarity threshold or Matched Molecular Pair relations. CSN can be used to
visualize a target-specific data set as an interactive graph where active and inactive

molecules are grouped. These networks can efficiently be used for SAR exploration, and
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they provide a depiction of target promiscuity, scaffold hopping [43] and/or similarity cliffs

[44], where a single target exhibits activity for more than one class of compounds.

Despite the availability of a large number of various tools of chemical space analysis,
only a few of them are suitable to be applied to Big Data. In our work, we focused on GTM
possessing clear advantages over other methods because of its versatility, easy
implementation and the possibility to combine options of data visualization, analysis, and

modeling. A detailed description of GTM is given in the next section.
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3 Generative Topographic Mapping (GTM)
Overview

GTM is a dimensionality reduction algorithm well described in the literature [4, 5,
45]. Briefly speaking, the algorithm injects a 2D hypersurface (manifold) into an initial D-
dimensional data space. The manifold is fitted to the data distribution by the Expectation-
Maximization (EM) algorithm which minimizes the log-likelihood of the training data.
Once the fitting is done, each item from the data space is projected to a 2D latent grid of K
nodes. In the latent space, the objects are described by the corresponding vector of
normalized probabilities (responsibilities). In turn, the entire data set can be represented by
cumulative responsibilities. These cumulative responsibilities can be further visualized as a

GTM Landscape or used to create regression or classification model.

3.1 Basics

3.1.1 Original GTM Algorithm

The algorithm was proposed by C. Bishop et al [4] in 1998. As it was already
mentioned, GTM is a probabilistic extension of SOM where log-likelihood is utilized as an
objective function. The manifold used to bind a data point t* in the data space and its
projection x* in the latent space (Figure 12) is described by a set of M Radial Basis

Function (RBF; Gaussian functions are used in the current implementation) centers.
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Latent space Data space
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Figure 12. The basic idea of the GTM. Here, the data point t* from the multi-dimensional
data space (right) is projected to x* the 2D latent space (left) using the manifold which is
injected into the data space and described by a set of Radial Basis Functions (RBF).

To map the items from the initial space to the latent grid, the mapping function Y is
used. It is described by K x M matrix (®) containing the RBF positions in the latent space
with respect to the nodes, and the M x D parameter matrix (W) characterizing the position

of the manifold in the initial space:
Y = ®dW (3.1).

The first step of the GTM training procedure is parameter matrix (W) initialization
which can be done by randomization of the initial values or application of PCA where the

first two principal components are used:

Here, U is 2 x D matrix of the first two eigenvectors, and X is K x 2 matrix of nodes’
coordinates in the latent space. The initialized manifold is inserted to the data space, and the
initial log-likelihood value LLh(W, B) is computed using the 31 eigenvalue as an initial

guess of f:

N

K
LLh(W, ) = %Z In {%Z p(ty|x, W, B)} 3.3),
k=1

n=1

-D/2 (3.4),

p(talxW.8) = (3=)  exp (= 5llvic— )

2T
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On the second step, the EM algorithm is run which, first, computes the corresponding

responsibilities r,, and then updates the parameter matrix W and B

i p(ty|x, W, B) (3.5),
o =
! 2?’:1 p(tnlxk"wr B)
E-step
N
3.6),
8kk = Z I'kn (3.6)
n=1
W = (&TGP + A '®TRT (3.7),
M-step

1 N K
N_E 2 Fin [y (10 W) — | (3.8).
n=1 k=1

In the equation (3.7), T is N x D matrix describing N data points in the initial D-

'wzl =

dimensional space, A is the regularization coefficient, and I is M x M unit matrix. The
algorithm recomputes the LLh(W, B) using the updated W and B, and compare it with the
LLh(W, B) obtained in the previous iteration. It can be seen from the equation (3.4) that the
algorithm uses gradient descent minimizing the distance between the nodes and the data
points. The manifold is considered to be trained enough when the EM algorithm achieves a
certain threshold of convergence (e.g., LLhpey — LLhgg < 0.001). Then, each data point is

described on the 2D latent grid by its LLh and corresponding vector of responsibilities ry.

3.1.2 Incremental GTM Algorithm

The “Big Data” term is used to describe data sets of millions of data points. Such data
sets can hardly be handled by the classical GTM algorithm due to the huge matrix of
responsibilities (R, equation (3.5)). In the case of large data sets (e.g. more than 50K
compounds) it cannot be fully stored in the computer’s RAM. In order to solve this issue, C.
Bishop et al. have proposed to use an incremental GTM [40]. Within this approach, the
manifold is initialized by a randomly chosen subset. Next, the data set is split into a series
of blocks of a certain size which are used to train the manifold sequentially. In this scenario,

the M step described in 3.1.1 is changed (equations (3.7) and (3.8)), and W and f are
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computed using two types of responsibilities: 1) new (R new) and old (R 1) responsibilities
of N " structures produced for the new data block T.w, and 2) responsibilities Rgyq

computed for N structures from the previous block Tg:

W = ((bTG(D + }\D_lq)T{RoldTold + (R;ew - Rt)ld)Tnew} (3'9)’
1 1 1 e
* * (A7 * 2 . .
B - + DN* z Z(rnew,kn - laold,kn) ||Y(Xk' W) - tn (3 10)
Brew  Bola n=1k=1

The next block of compounds is taken into the process only if convergence for the
current one was achieved (LLh;—LLh;; < 0.001). The incremental GTM algorithm was
implemented by H. Gaspar et al. and tested in a compound library comparison project [5].

Its performance is discussed in chapter 3.4.2.

3.1.3 GTM Landscapes

To visualize and model chemical data, the GTM landscape is used [6, 45, 46]. With
respect to different types of information, one can define three types of landscapes: 1) class
landscape, 2) property landscape, and 3) density landscape. The examples are illustrated in

Figure 13.
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Figure 13. The example of class, property and density landscapes. The map was trained on
vascular endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K
compounds. Here, (a) represents class landscape which demonstrates the distribution of
molecules of two classes (active, inactive), (b) — property landscape (solubility, LogS), and

(c) — density landscape providing the information about the nodes’ population.
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The class landscape represents a combination of classes’ probabilities ¢; computed as:

P(xlc;) * P(c;)
P(c; _ (3.11),
(€ MICATHERIC)
N
P(xy[c)) = 2n=1\1] IjknCi (3.12),
N..
P(c) = G (3.13),
(Cl) Ntotal

where N, is the number of items for the class ci, Ny 1 the total number of training items,
and ry, is the responsibilities of the members of the class ¢; in the node k computed
according to the equation (3.5). To predict a class for a new compound ¢, the equation (3.14)

s used:

K
P(clty) = z P(ci %10 * Tiq (3.14),
k=1

To visualize the landscape, normalized probability of the class c; is used as a color
code (only a binary class landscape can be visualized at the moment). To consider the
density of the nodes’ population, transparency is added. In the case of a multi-class task
(more than 2), GTM projections (the average positions of the items in the latent space) can

be used instead of fuzzy GTM landscapes.

The second type of the GTM landscape is the property landscape which is used to
visualize the distribution of a property over the latent space and which might serve as a
regression model. The property landscape is defined by a list of property values

corresponding to a particular node:

b = Yh=1Dn * I'kn (3.15),
= 2n=1Pn * Tkn
Z§=1 rkn

where p, is the property value for the compound n, and p is the mean property value for the

node k.
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The prediction of a property p for a new structure q is done similar to class prediction:

K

pq = Z Fiq * Pi (3.16).

k=1
To visualize the property landscape, px value is interpreted as a color code.

The last type of the GTM landscape — density landscape — is a special case of the
property landscape where pi is represented as a sum of responsibilities in the node k. This
landscape is used to analyze the data distribution over the map which is not always obvious

via the landscape’s transparency.

3.2 GTM Parameters Tuning

GTM has four parameters (number of nodes, number of RBFs, regularization
coefficient, RBF’s width) needed to be optimized according to some scoring function.
Besides these parameters, a “suitable” descriptors space and the frame set (usually a subset
of representative compounds used to train the manifold; FS) size should be chosen. Two
approaches are applied: grid search (brute force) and Genetic Algorithm (GA) [47]. The
former investigates all possible combinations of 4 parameters. This approach is
deterministic but it takes too much time and computational power. In contrast, GA is a
stochastic approach but it allows the user to reach maximal fitness trying just a range of
combinations which might lead to different endpoints in different runs. The workflow of
the GA used to tune the GTM parameters and to select the suitable descriptors space and

the frame set size is illustrated in Figure 14.

The details of the algorithm are already described in several publications [48—50].
Briefly speaking, GA generates a set of chromosomes composed randomly. All the attempts
are cross-validated using the “selection” set (a set which differs from the FS and possesses
activity/property values), and the mean Balanced Accuracy (BA4) is computed. Next, the

crossover and mutation of some attempts are applied, and the new attempts are computed.
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The algorithm stops in case if it achieved the convergence (there is no attempt with larger

BA during the two last generations) or the total number of attempts is exceeded.
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Figure 14. Evolutionary map selection scheme.

3.3 GTM-based Applicability Domain

Applicability Domain (4D) plays an important role in any machine-learning method.
It allows the researcher to avoid costly wrong predictions in prospective virtual screening.
For GTMs, five AD definitions were reported [46, 51]: 1) likelihood-based, 2) density-

based, 3) class-dependent density, 4) predominant class AD, and 5) class entropy AD.

Within the likelihood-based concept, an item is considered out of AD if it is too far
from the manifold in the initial data space. To filter such items, the LLh cutoff is

determined. The approach to compute this cutoff is quite straightforward: the compounds
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from the frame set are ordered accordingly to their LLhs, and it is assumed that the last n%
of compounds are out of AD. Thus, the LLh cutoff is taken as the highest LLh out of this
bottom n%. The density-based AD discards the nodes on the GTM landscape where the
cumulative responsibility is below a certain threshold. This allows using only populated
zones to make the predictions. The class-dependent density (CDD) AD is similar to the
density-based AD. The difference is that the CDD AD checks only the density of the
winning class cpest in the node, which has the highest conditional node probability P(xk|Chest)

(equation (3.12).

The predominant class AD is based on the selection of a dominant class in a node to
which the maximal probability in this node corresponds. To control the predominance, a
new class prevalence factor (CPF) was introduced. The idea is to discard the nodes in the
latent space where the ratio of the classes’ probabilities in a node is below the CPF.
Herewith, the CPF becomes an additional degree of freedom which should be optimized to

obtain a good model in terms of predictive performance.

The last approach is the class entropy-based AD. The class entropy S of the q"

molecule is computed as:

Sq = —Z P(ci|q) log(P(ci]q) (3.17).

The entropy of the molecule is compared to the maximal entropy Smax = log(Nc)
where N; is the number of classes. The decision to discard the compound is made using the
class-likelihood factor (CLF) computed as Sq / Smax. Thereby, CLF is high for the
compounds with similar P(ci|q) for all classes, and low for the compounds with some
dominant class (i.e. the P(ciq) for this class is about 0.8-1.0). Thus, the compound is
considered as out of AD if its CLF is above some threshold varying between 0 (all

compounds are out of the AD) and 1 (all compounds are in AD).
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3.4  Maps Application and Analysis

GTM is in practice a Swiss army knife of chemoinformatics, because it may serve in
applications ranging from data visualization to libraries comparison, (multi-task) predictive
modeling and AD control, de novo design, conformational space analysis, etc. (Figure 15).

Here, we discuss some of them that were described in the literature so far.

Conformational space analysis Data visualisation and analysis
(\x\
g (/\ Libraries comparison
Ligand to Protein docking \ 4 )
;v\w;mwmmmmmmmﬂ . .
; Library design

Virtual Screening

Drugs repurposing

% Structure-Activity modeling
N,
b |

de novo design
Figure 15. Areas of GTM application.

3.4.1 Obtaining of Classification and Regression Models with GTM

GTM has been already successfully applied as a tool for QSAR and QSPR modeling
in many projects. In the paper by N. Kireeva et al. [52], the authors have demonstrated the
application of the classification GTM to predict the melting point of ionic liquids. Three
data sets were modeled, and the mean accuracy of the models in 5-folds cross-validation
varied from 0.81 to 0.87. H. Gaspar et al. [6] have applied the regression GTM to model
stability constants for metal binders, aqueous solubility, and activity of thrombin inhibitors.
The authors compared the predictive performance of the regression GTM models to other
machine-learning approaches, namely Self-Organizing Maps [41], Random Forest (RF)
[53], k-nearest neighbors [54], M5P regression tree [55], and partial least squares [56].

External validation showed that RF overcomes the GTM in some cases (the difference of
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the determination coefficients in cross-validation AQ” is up to 0.24). At the same time, the
likelihood-based applicability domain (chapter 3.3) improved the performance and reduced
the AQ” down to 0.1. A similar trend was demonstrated in the paper of T. Gimadiev et al.
[57] where the authors applied GTM to model 21 inhibition activity for efflux and influx

transporters.

Across many projects, it was demonstrated that GTM produces target- and property-
specific models which quality is comparable to other methods. However, in contrast to
other popular machine-learning approaches, GTM is an unsupervised method that trains its
manifold using the unlabeled chemical data. Therefore, it can build a map not for a
particular activity/property but for a given database which includes thousands and millions
of compounds. This idea was extended and tested by P. Sidorov et al. [9] which have
proposed a concept of a universal map. The authors aimed to cover a large chemical space
of around 1.3M compounds (ChEMBL database of version 20) using a single map. The
descriptors space and the GTM parameters were selected using the Genetic algorithm
described in chapter 3.2. The results showed that the universal approach is able to cover
efficiently large range of chemotypes. Several tests (“challenges”) were done to prove its
performance. For instance, the best map selected by GA was cross-validated on 410
ChEMBL targets, and about 80% of the targets were predicted with the mean Balanced

Accuracy of 0.7.

The universal approach described in [9] has demonstrated that GTM is ready to
model Big Data, and it can be also used in multi-target machine learning where the
universal map can predict several activities/properties without training a new model. This
also opened the door to large-scale Virtual screening (VS). In the context of the given work,
Virtual Screening is defined as an application of QSAR to model and predict Big Data.
Very recently, GTM was shown as a nice tool for VS [58]. The authors trained GTMs in
different descriptors spaces on ChEMBL data. It was established that one descriptors space

is not sufficient, and at least 7 fragmentation schemes are needed. It was also shown that

42



the consensus approach made on several maps gives better accuracy than single-map

predictions.

3.4.2 Data Analysis and Chemical Libraries Comparison

Besides QSAR/QSPR studies, GTM was applied to visualize and analyze chemical
data. For instance, GTM was used to visualize and cluster the data on motor unit action
potential [59]. The authors of the study trained GTM on nine data sets and then used the
latent grid as a basis for data clustering. In the paper of D.M. Maniyar et al. [37], the
authors applied hierarchical GTM [11] to visualize the distribution of active and inactive
classes for five data sets (GPCRs and Kinase) obtained from different high-throughput
screens. They trained a manifold using these five data sets, and, if the map resolution was
not sufficient to distinguish the compounds from different classes, they extracted the
compounds from such a “mixed” area and retrained a “child” manifold. GTM has even

been proposed for nonlinear fault identification in a chemical process [60].

Also, an attempt to combine the GTM method with Chemical Space Networks (CSN)
[42] was done [61]. The authors proposed the two-layered SAR visualization concept for
SAR exploration of increasingly large compound data sets. The underlying idea is to first
generate global “bird’s eye” views of the activity landscapes of large data sets to identify
SAR-informative regions for more detailed analysis. Then, selected regions were further
analyzed by the CSN at the level of individual compounds. The GTM-CSN technique was
applied to analyze three relatively small activity-specific compound series (up to 2.2K
compounds) extracted from BindingDB [62, 63] and big antimalarial screening (up to 13K
compounds) data set [64]. The authors checked structural modifications resulting in
potency changes and discussed it in the example of several analogs where such

modifications increased the pKi value (e.g. from 6.1 to 8.1 pKi).

Despite a large number of different GTM applications, yet, it was used to analyze
only relatively small data sets (up to 20-30K compounds). The first attempt to visualize

large data sets (2.2M compounds) was done by H. Gaspar et al. [5]. The authors applied the
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incremental GTM (chapter 3.1.2) to compare 36 commercial libraries and the NCI database
in terms of molecular properties (molecular weight, number of H-bond donors and
acceptors, chirality, logP, TPSA, etc.), similarity (Tanimoto coefficient), and compounds
distribution over the 2D latent space. The libraries were also compared using meta-GTM
where a map was trained on all 37 libraries. Each library was considered as a single object
represented by cumulated responsibilities or property landscape values at nodes xi. The
authors also showed that some regions of interest can be detected in the landscape using the
desired property landscapes. This brought us closer to Big Data, but still, the analysis of the

structures residing the nodes was done manually.

To automate that, the Responsibility Pattern (RP) term was introduced by K.
Klimenko et al. [65]. The idea was to group structures that reside neighboring nodes on the
map using their responsibilities. RPs allowed to detect and to extract compounds that are

similar in the latent space automatically to search then for privileged structural motifs
(PSM).

The concept of “privileged substructures” was originally introduced by B.E. Evans et
al. [66], referring to core structures that are recurrent in compounds active against a given
target family and, therefore, associated with that biological activity. Privileged
substructures are thought to be selective toward a given target family but not individual
family members. Most of the earlier studies focused on the exploration of molecular core
structures or scaffolds, and some privileged scaffolds have been proposed for drugs and
natural products. However, it was shown in [65] that common structural motifs may vary
from precisely defined scaffolds or even substituted scaffolds, to fuzzier ensembles of

related, interchangeable scaffolds, to even fuzzier ‘pharmacophore-like’ patterns.

The PSM approach allowed chemists to relate a particular activity/property to a
certain chemical pattern. The PSM technique was also applied in modeling and analysis of
antimalarial compounds [49]. The authors highlighted some of the specific privileged
patterns linked to antimalarial activity (e.g., naphthoquinones and 4-aminoquinolines).

Later, the method was modified by the application of retrosynthetic rules (RECAP) [67].
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The authors tried to extract the “frequent” RECAP cores to identify PSMs for inhibitors of
protease, kinase, and GPCRs. However, the workflow where the PSM was implemented
still includes some steps that must be done manually (PSM are extracted by hands). This

limits the workflow and restricts it in the analysis of larger data sets.

3.4.3 GTM for Conformational Space Analysis

Another application of GTM was found in the analysis of conformational space.
Conformational sampling is the key to the fundamental understanding of molecular
properties. It plays an important role in medicinal chemistry since different conformations
may possess different biological activities (in terms of IC50, EC50 or Ki). Several
techniques are applied in conformational sampling [68—70]. However, GTM has a clear

advantage in the context of conformational space visualization.

The general idea of GTM application in conformational sampling was described by D.
Horvath et al. [71]. One can train a map using “contact” or “interaction” fingerprints as well
as torsion angles as descriptors to predict total, non-bonded and contact energies, surface
area or fingerprint darkness. For this purpose, a set of (previously generated) conformers
with known score values (e.g. total energy computed by AMBER force field [72]) can be
used to prepare frame, color and test sets. Next, the Genetic Algorithm (see chapter 3.2) is
run to tune the GTM parameters. Once the algorithm achieved convergence (e.g. root mean
square deviation does not change a lot), the obtained map can be used to visualize and
analyze the corresponding conformational space as well as to predict the energy of a new
conformer or to sample conformers using the property landscape as a basis in the reverse

task (projection from the latent space back to the initial space).

The described approach was evaluated by the authors in the task of monitoring the
conformational space of dipeptides [73]. Later, it was applied to the docking problem [74].
The concept was illustrated by a docking study into the ATP-binding site of CDK2. The
maps trained on contact fingerprints and hybrid descriptors (contact fingerprints in

combination with ligand fragment descriptors) were used to discriminate native from non-

45



native ligand poses and to distinguish ligands by their potency. It was shown that the maps
trained on hybrid descriptors possess higher prioritization performance (the Area Under the
Receiver Operating Characteristics Curve is above 0.8) and, thus, they can be efficiently

used in Virtual Screening campaigns.

3.4.4 GTM in De Novo Design

Besides data analysis and modeling, GTM is also used in de novo design of new
structures. In 2014, K. Mishima et al. [75] applied GTM in a loop of biological activity
assessment of virtually enumerated structures. The seed structures were selected from the
activity landscape and modified in various ways to generate new structures. The generated
structures were filtered after by the same GTM activity landscape and used (in case of
success) as new seeds. The loop stops when enough structures are generated. This

algorithm was also applied by S. Takeda et al. [76] to generate a set of drug-like molecules.

Another attempt to use GTM in the generation of chemical structures with desirable
activity(ies) was made by introducing the Stargate GTM [77]. Here, GTM was used to bind
descriptors and activities spaces by training two manifolds in both spaces in parallel. The
defined “reverse” mapping function allowed to “jump” from the activities space back to
descriptors space and, hence, to determine the desirable descriptors vectors. Next, one can
generate structures with high similarity to the returned vectors assuming that these new

structures will possess the requested activity profile.

Besides, GTM was also combined with auto-encoder where the map was trained on
the generated latent descriptors. B. Sattarov et al. [78] analyzed the binding potency of
automatically generated 394 ligands for the Adenosine A2a receptor. These ligands were
docked to the binding site using S4MPLE docking method [79]. It was shown that the
average docking score of the generated structures is even better than the average docking

score of real active molecules.
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3.5 Conclusion

In recent studies carried out in the Laboratory of Chemoinformatics, Generated
Topographic Mapping designed by C. Bishop as a data visualization approach was
significantly extended on the modeling and analysis of chemical data. This PhD project
represents a continuation of these studies. Our main challenge concerned the further
extension of GTM toward Big Data, which, in turn, may require using large frame sets (FS)
in combination with large dimensionality of the initial data space for manifold construction.
Since the capacity of earlier reported classical and incremental algorithms for manifold

construction was limited, our goal was to design a new more efficient algorithm.

In earlier studies, relatively small FSs were used to build GTM for large chemical
databases. However, a systematic investigation of GTM performance as a function of FS

size was never performed. This question was considered in our work.

In this thesis, we also tackled some other methodological problems. The first one
concerned a rational determination of the log-likelihood threshold used for defining the
applicability domain of GTM-based models. The second one dealt with an automatized
protocol of Maximum Common Substructures extraction from the ensemble of structures

populated selected area on the map.

Some earlier reported options of GTM-based data analysis were fully automatized in
this work. It concerns (i) selection of zones of interest [5] and, (if) hierarchical GTM

zooming [11, 37].

Developed algorithms and tools were used in three projects: (i) application of GTM to
virtual screening (VS), (i) comparison of large databases, and (iii) enrichment of

proprietary library.
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4 Methodological Developments

4.1 Descriptor normalization for GTM

The Generative Topographic Mapping (GTM) method is sensitive to the descriptors
and its preprocessing. For instance, the PCA, which is the first step of GTM, requires the
descriptors to be centered. Therefore, it is needed to find a suitable scheme of descriptors
preprocessing which provides the user with a better map. For this purpose, five
preprocessing schemes were compared to each other and the scenario when no
preprocessing was done:

1) No preprocessing;

2) Standardization (centering and division by its standard deviation);
3) Centering;

4) Scaling to [-1;1];

5) Scaling to [-1; 1] and centering.

To see the impact of different preprocessing schemes, a set of 98 compounds active
against the tyrosine kinase inhibitors (SRC) and 980 decoys were extracted from the
Directory of Useful Decoys (DUD) [8]. The structures were standardized (aromatized,
explicit hydrogens were removed, common chemical groups like nitro group were
transformed, etc.), and ISIDA descriptors were generated (atom-centered sequences of
atoms and bonds with a length of 1 to 3 atoms) [80]. The descriptors were preprocessed
according to 5 scenarios mentioned above, and a GTM was trained using the following

parameters: 625 nodes, 144 RBFs, RBF’s width is 2.82, and the regularization coefficient is
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1.0. The 2/3 part of the data set was used to build the class landscape, and the rest was used

as a test set to assess the predictive performance in terms of Balanced Accuracy (BA) and

Area Under the Receiver Operating Characteristics Curve (ROC AUC).

Table 1. Validation results of the GTMs trained for the SRC data set with different

preprocessing schemes. A probability threshold of 0.5 was used for BA assessment.

Preprocessing scheme BA ROC AUC
No preprocessing 0.71 0.88
Standardization 0.72 0.88
Centering 0.74 0.66
Scaling to [-1;1] 0.49 0.72
Scaling to [-1;1] and centering 0.52 0.91
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Figure 16. GTM projections of the SRC data set with (a) no descriptors preprocessing, (b)

descriptors standardization, (c) centering of the descriptors, (d) scaling the descriptors, and

(e) scaling and centering the descriptors.
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The results in Table 1 and Figure 16 demonstrate that the GTM trained with the
original descriptors performs similarly to those built on standardized descriptors. On the
other hand, the items are better spread on the former map (Figure 16a) than on the others.

Notice that the above results correspond to a particular data set and descriptors type.

4.2 GTM Applicability Domain (AD)

The Applicability Domain (AD) topic was already discussed in chapter 3.3. The
approaches described in [51] use tunable parameters which bring an additional degree of
freedom to the model optimization procedure. So far, the predominant class AD needs the
class prevalence factor (CPF) for each GTM landscape to ignore the mixed nodes which, in
turn, decreases the density of the landscape. The class entropy AD needs a threshold for the
class-likelihood factor (CLF). These ADs make the GTM tuning procedure described in

chapter 3.2 more complicate.

In the author’s opinion, the likelihood-based AD described in chapter 3.3 is the most
simple and intuitive approach. Predictions made for the compounds which are away from
the manifold will be worse in terms of confidence than for the compounds which are closer
to it. The shape of the LLh distribution of the frame compounds (the axis X represents the
LLh, and the axis Y represents the number of compounds) is similar to the shape of a
shifted Gaussian distribution. The LLh values vary from - to 0, and the peak of this
distribution corresponding to the major part of the frame set situates near 0. The right part
of the distribution is very short since no compounds can be predicted with LLh>0. In

contrast, the left part possesses a very long “tail” (the blue line in Figure 17).

If the LLh distribution would perfectly follow the normal distribution, the top 95%
(i.e. 5% beyond the threshold) of the frame compounds would form an area under the
Gaussian curve where the last one is cut in the p + 26 range. However, this LLh distribution
is not perfectly normal (besides the fact that it is shifted). Many attempts to fit a Gaussian
to the LLh distribution minimizing the root mean square error (RMSE) were done. The

schematic example is shown in Figure 17, and RMSE was computed as:
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where NL is the number of unique LLh with a non-zero number of the frame compounds,
and Ncf™ and Ncf"SS are the numbers of the frame compounds given by GTM and fitted
Gaussian at particular log-likelihood value LLh; (Ncf™ — Nc¢fSS is named “deviation”

in Figure 17). It was found that the RMSE is always above zero. Therefore, to determine

the meaningful AD, a Gaussian approximation is needed.
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Figure 17. An example of a Gaussian (red line) fitted to the log-likelihood data distribution
(blue line) of “Thrombin” (CHEMBL204) data set. GTM Applicability Domain is
identified here by log-likelihood threshold LLhyeshoia = LLhpeak — 30. Here, LLhpeax and o

are, respectively, the peak position and the width of the Gaussian function.

4.3  Automatized Hierarchical GTM Zooming

The map resolution is a known problem of GTM in Big Data. The molecules of
different classes might be projected to the same zone on the map. This makes the zone
uncertain (mixed). As it was described in chapter 3.3, an attempt to discard such mixed
zones was already made considering them as out of the applicability domain. This removes

the uncertainty but it also reduces the number of populated nodes on the landscape.
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I. Nabney and P. Tino [11] suggested solving the resolution problem by training a
new GTM manifold using the items of a selected area as a training set. The compounds
used to train the “child” manifold are selected manually using projections on a “parent”
map where each structure is represented as a single point. The authors created a multi-level
hierarchical GTM tree and tested it on toy data sets. It was also tested in a task of analysis
of GPSR activities [37]. In this project, we propose an automatized GTM zooming
approach where individual projections are replaced by a class landscape (see chapter 3.1.3).
Thus, a compound is extracted from a zone of interest (e.g. a square cluster of nine nodes)
basing on the sum of its responsibilities in this zone which has to be larger than a certain
threshold (e.g. 0.8). The child manifold is trained then using these compounds as a frame
set with the same descriptors and GTM parameters. The likelihood-based AD described in
chapter 4.2 can be then applied if needed. The approach was tested in the project of private

chemical collection enrichment (see chapter 7; Figure 18).
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Figure 18. An example of the hierarchical GTM zooming approach applied to large public
and private chemical databases comparison. Here, the map is trained to cover Aldrich-
Market Select (AMS, 8.5M compounds) data set and the in-house collection of Boehringer
Ingelheim (BI Pool, 1.7M compounds; see chapter 7).

It is shown in Figure 18 that the second level of zooming discovered some areas
populated exclusively by the private compounds (black nodes), whereas the parent area was

shown in red (mostly public data).
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Within the automated procedure, the zones can be selected accordingly to two
scenarios: 1) the grid of nodes can be simply divided into a set of joined square clusters of
3x3 nodes (Figure 19a), or 2) the zones can occupy the grid sharing the nodes on the
borders between each other (Figure 19b). The advantage of the second scenario is that the
items which locate on the border of a zone and are not considered as members of this zone
due to the responsibility threshold, they will be taken by the neighboring zone. This
generates more zones than the simple strategy but it can be easily reduced by increasing the
zone size. In turn, the second strategy brings more items to the subsets than simple division,

and, thus, more chemotypes can be analyzed further.

D Unique nodes

. Shared nodes

(@) (b)

Figure 19. Zones selection schemes: (a) simple division of a grid of nodes (GTM landscape)
into a set of square clusters of 9 nodes where the zones’ borders are highlighted by orange
lines; (b) zones selection using overlap. The zones on the scheme (b) have their own nodes
in the white-areas as well as the nodes on the borders shared with the neighboring zones

(orange).

As soon as the zones are delineated, the decision to zoom or not to zoom is made
based on the number of extracted compounds (for instance, at least 1000 items must be
extracted). Child GTMs are trained then using these subsets as frame sets. In the case of
large subsets (i.e. larger than 10,000 items), the frame set size should be controlled.

Therefore, not the entire subset but only 10% of it (but not less than 1000 items) are used to
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train the manifold. After, the analysis of zones of a child manifold is repeated, and if the

population of some zone is still too high, the zooming procedure repeats.

4.4 Automatized Maximum Common Substructures
Extraction from GTM

The GTM provides chemists with a chemical landscape that can be visualized and
analyzed. However, no relation between structural patterns and particular zone on the map
is provided. For this purpose, the responsibility patterns (RP) method has been proposed to
group the compounds which were then analyzed by the Scaffold Hunter tool to identify
common scaffolds/substructures [49, 65]. Compounds sharing the same RP will typically
share some common structural features that are further manually processed to annotate the
map. This is a tedious and error prone-task. As an alternative, we propose to exploit the
Maximum Common Substructure (MCS) search to automatically highlight shared features.
Our solution is based on ChemAxon’s JChem engine [81]. The MCS extraction protocol is

described in Figure 20.

Here, an arbitrarily selected structure in the list of N items is compared to the other
N-1, resulting in N-1 connected MCSs. A size filter keeps only the MCS covering at least
30% of the heavy atoms in both structures of a pair. Then, duplicate MCSs are grouped and
the unique MCSs are sorted according to their occurrence in the list. The most frequent
MCS is selected. Structures featuring the selected MCS are removed from the list, and a

new iteration is started.

K. Klimenko et al. [65] demonstrated that common structural motifs may range from
precisely defined scaffolds or even specifically substituted scaffolds, to fuzzier ensembles
of related, interchangeable scaffolds, and to even fuzzier ‘pharmacophore-like’ patterns.
Therefore, the perspective here is to use the disconnected MCS which would describe the

molecular core as well as the substituents.
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Figure 20. Maximum Common Substructure search protocol.

4.5 Constrained Screening

Nowadays, searching for drug candidates quite often involves screening of chemical
libraries of sizes ranging within 10K + 10M compounds. Many different methods of
machine-learning are applied to treat big real and virtual chemical libraries [82—86]. In this
case, the usual virtual screening (VS) procedure includes many steps where each of them
tends to decrease the size of a screening pool, in discarding the unappropriated compounds
according to the methodology at that step. Faster and less accurate steps proceed first,
operating on the entire library — sophisticated ones later, operating only on subsets passing

the fast ones. However, the large size of the potential drug-like space makes us change our
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vision of virtual screening. Instead of saving some milliseconds per compound, we should
optimize the VS algorithms. The idea of screening the entire pool against the required
profile (desirable and/or undesirable activities, ADME properties, etc.) once brings us to the

concept of Constrained Screening (CS).

CS is based on a universal GTM trained for a large data set (see chapter 3.4.1). The
manifold produced by the universal approach covers a wide range of chemotypes and it is
applicable to model different biological activities and properties. In particular, on a given
GTM landscape describing a property (activity), P one can easily select some zones
populated by molecules for which the property varies in the range Ppin< P <P, where
Pmin and Py are the user-defined thresholds. Such zones were named “regions of interest”
and described in [5]. As it was mentioned in the paper, to identify the location of molecules
possessing desirable profile {Py, P2, ..., Pn}, one can superimpose corresponding property
landscapes. Then, these regions can be analyzed and/or corresponding compounds can be

extracted.

The concept of zones of interest was also applied in [57] where the authors trained a
map for human intestinal transporters. It allowed delineating the areas on the map

populated either by molecules exhibiting inhibition but not transport activity or vice versa.

In this project, we automatized the zones of interest selection. Since these zones may
overlap fully or partially, we also propose a concept of a Query Landscape which describes
zones populated by molecules possessing desirable profile entirely (all P; are confined in

user-defined intervals) or partially (some P; are out of the range).

In Figure 21, an example of the query landscape is shown where the vascular
endothelial growth factor receptor 2 (CHEMBL279) data set containing 6.7K compounds
was used to train the manifold. For the demonstration purpose, the request on

CHEMBL279 activity, solubility (LogS) and the number of H-bond donors was modeled.
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Figure 21. An example of a query landscape where the map is trained on Vascular
endothelial growth factor receptor 2 (CHEMBL279) data set (6.7K compounds) using
ISIDA fragment descriptors [10, 58]. Here, the query is set to find areas where the
probability to be active varies from 50% to 100%, LogS is between -2.0 and 0.0, and
number of H-bond donors ranges within 2-4. The first line represents the individual GTM
landscapes, the second line represents the areas of interest on the individual landscape, and

the last one is the query landscape.
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The corresponding GTM landscapes were built, and a query was prepared: the
probability to be active in the range of 50-100%, LogS varies from -2.0 to 0.0, and the
number of H-bond donors ranges from 2 to 4. Next, the GTM landscapes were filtered
according to the query, and the zones of interest were shown (red areas in the middle line of
landscapes Figure 21). The overlaying of these zones results in a query landscape where the
red areas satisfy all the conditions in the query, yellow ones correspond only to two out of
three, and blue areas represent the zones where only one out of three conditions is satisfied.
The white areas on the query landscape represent the zones where no training molecules

with desirable activities/properties were found.

Query Landscape can be applied (7) to select a focused subset from the database used
for GTM construction, and (i) for virtual screening of an external database. In the latter
case, a satisfaction score is assigned to each compound in the pool which means how well
the compound fits the query. The approach was implemented as a web-tool. It is described

in chapter 8.5.

4.6 Parallel GTM (PGTM)

Generative Topographic Mapping (GTM) [4] is a perspective tool used to visualize,
analyze and model chemical data. Its advantages in comparison to other dimensionality
reduction methods were already demonstrated in several projects [6, 45, 65]. The maps
trained on data sets of a regular size (up to 10,000 items) as well as the ones trained to
describe millions of compounds were presented [5, 9, 10, 50, 58]. The demonstrated results
show that GTM can be successfully applied to large chemical databases visualization and
comparison as well as in virtual screening campaigns. However, the limitation on the
number of training data points restricts GTM to treating millions of structures during the
training procedure. To overcome the limit, a frame set (FS) is gathered which is supposed
to represent the chemical space sparsely. This FS of few thousand data points (e.g. 25,000
structures) is used to set the initial position and to fit the manifold in the initial data space.

Once the manifold is fitted, the entire data set is projected and filtered using the likelihood-
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based GTM Applicability Domain (AD). Further, these projections can be used to build a

classification or regression GTM landscape which can serve as a QSAR or QSPR model [6].

GTM does not require the chemical space to be dense to train the manifold, and,
hence, the chemical space of some million structures can be easily represented by some
thousands. At the same time, the potential global chemical space of drug-like molecules is
estimated as 10°°, and it can hardly be described just by some thousands of structures [3].

Therefore, a new strategy to treat larger frame sets is needed.

FS size is limiting in several ways: by (i) the amount of RAM used to store the large
matrix of responsibilities, and (i1) the time spent to perform some matrix operations
implemented in the GTM algorithm. An attempt to accelerate the algorithm was already
made by parallelization of it using Message Passing Interface (MPI) technique [87-89]. To
this purpose, the matrix of responsibilities was decomposed and its parts were distributed
over the CPUs to be updated by small chunks of the data set iteratively. The disadvantage
of this approach is the dependency of the code on the certain architecture of a machine used
to run the calculations. Namely, a single machine or a highly organized cluster that supports
the MPI technology has to be used for calculations, and the RAM has to be shared between
the machines to store the whole matrix of responsibilities. If the first issue can be solved by
purchasing a better machine, the second one will limit the calculations as in terms of storing
the objects as in terms of speed (the mpi technology will spend some time to transmit the
data from one machine to another). Besides that, this does not solve the problem of
manifold overfitting which was detected by D. Ormoneit and V. Tresp [90]. It was shown

that the Expectation-Maximization algorithm tends to overfit the Gaussians-mixture model.

In this chapter, we present a new attempt to parallelize the GTM which is supposed to
speed up the calculations, to solve the problem of overfitting and to support the use of

larger frame sets.
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4.6.1 Method

The limitation of the classical GTM algorithm is the memorization of the large
matrixes of responsibilities (R) and descriptors (T). To control the size of R, incremental
GTM was proposed by H. Gaspar et al. [5]. Within the incremental approach (chapter 3.1.2),
the equations (3.7) and (3.8) were modified to (3.9) and (3.10), respectively. Thus, the
initial data set was divided into a batch of blocks of a certain size (e.g. 10,000 items) and
treated sequentially. This solved the problem of the R size but the order of the chemotypes
coming from different blocks begins to impact the shape of the manifold. So far, the initial
manifold position is determined only by the first block, and then the manifold learns the
shape of data distribution analyzing each block sequentially. As a result, the impact of the
middle blocks on the final shape of the manifold becomes lower in comparison to the later
ones. This brings us to the phenomenon when the chemotypes allocating in the middle of a
data set might be forgotten by the manifold since the final shape of it is mainly formed by

the first and the last blocks.

To overcome the limits of the classical GTM algorithm and to solve the problems of
the incremental algorithm, we propose the new Parallel GTM (PGTM) approach. The basic

idea of it is described in Figure 22.

Within this approach, we distinguish the manifold initialization and manifold training
procedures. To initialize the manifold, the incremental Principal Components Analysis
(PCA) is applied to the entire data set where the two first components are computed. To do
so, the covariance matrix is computed incrementally followed by the Eigenvalue
decomposition [91] using a graphical card (the scikit-cuda library in Python was applied)
[92]. Once the PCA is done, the initial W and B are computed, and the manifold is trained
on different blocks of the data set in parallel. The fact that the same initial manifold and the
same GTM parameters are used to treat the blocks, the tasks can be independently
distributed to different machines with no preferable architecture. In addition, no RAM
sharing is needed since the size of a particular matrix R is determined only by the size of a

block.
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Figure 22. The scheme of the Parallel GTM.

The last step is to merge the produced intermediate GTM manifolds into the global
one. For this purpose, simple averaging of W and f is used in this study. The output of the

method is a single “final” manifold which potentially should cover the given data space.

4.6.2 Data

In this project, ChEMBL database of version 23 was used to perform the
benchmarking study [93]. The structures were standardized: removed explicit hydrogens,
aromatized using the basic rule, some functional groups were transformed (e.g. nitro group),
etc. The ISIDA descriptors that were used to train the first universal GTM in [58] were

computed: sequences of 2 and 3 atoms, labeled by their CVFF [94] force field types and
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formal charge flag using all paths (IA-FF-FC-AP-2-3) [80, 95]. The descriptors were
standardized (centered and divided by its standard deviation) and filtered by its variance
(987 out of 5,161 descriptors were kept; the threshold was 2% of the maximal standard

deviation in the data set).

To cross-validate the maps, the mean Balanced Accuracy (BA) and the Area Under
the Receiver Operating Characteristics Curve (ROC AUC) were used as metrics. The labels
“active/inactive” were assigned accordingly to the procedure described in the previous

studies [10, 58].

4.6.3 Benchmarking Strategy

The benchmarking study was split into two parts. First, the GTM approaches
(classical, incremental and parallel) were compared in terms of execution time and
predictive performance (BA) where maps were trained on a target-specific set of
compounds (CHEMBL204, Thrombin) with and without “decoys” (100K random
compounds with unknown activity). To train the manifold, the GTM parameters
corresponding to the first universal GTM described in [10, 58] were used: 41*41 nodes,
23*23 RBFs, regularization coefficient is 1.122018, RBF width is 1.1. To validate the map,
a 3-fold cross-validation procedure was run where the number of actives and inactives was
controlled (463 actives and 1440 inactives per fold; decoys were not taken for cross-
validation). As an additional option, two blocks’ sizes were tried: 500 and 1000 compounds.
The number of blocks treated in parallel was limited to 14 due to the occupancy of a

machine used to run the benchmarking tests.

The second part was devoted to algorithms comparison using Frame Sets (FS) of
different sizes: 1K, 5K, 10K, 20k, 30K, 50K, 100K, 200K, 400K, 750K, 1M, 1.7M (entire
ChEMBL) compounds. The FSs were gathered controlling the diversity for the compounds
using pairwise Soergel distance (1-Tanimoto). The algorithm to collect the compounds was
the following: the first compound was selected randomly, and the next compounds were

compared to the ones that were already selected. A compound was added to the FS in case
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if the minimal Soergel distance among all pairwise comparisons between the compound
and others from the FS was larger than a threshold (e.g. 0.95). If the loop finished but the
required number of items in the FS was not reached yet, the threshold was decreased (e.g.
down to 0.9), and the loop started again. Thus, each FS possessed its own value of

dissimilarity. The corresponding minimal pairwise Soergel distances are shown in Table 2.

Table 2. Minimal pairwise Soergel distance corresponding to different Frame Sets.

Frame set size, compounds | Corresponding minimal pairwise Soergel
distance (1-Tanimoto) within the FS

1K 0.8

5K 0.7

10K 0.7

20K 0.65

30K 0.6

50K 0.55

100K 0.45

200K 0.4

In the second part, the maps were also compared in terms of data coverage
(percentage of compounds passed the log-likelihood threshold), normalized Shannon
entropy [5] characterizing the distribution of the compounds over the latent space, number
of targets with mean BA > 0.7 and number of targets with mean ROC AUC > 0.7. The
protocol used in this work to compute the likelihood threshold is described in chapter 4.2.

To cross-validate the maps, more than 600 ChEMBL targets were used.

4.6.4 Results and Discussion
First, the GTM was trained on 5,710 ChEMBL compounds using a target-specific

series of compounds with known activities against the Thrombin target (CHEMBL204).
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The obtained maps were cross-validated. The results are shown in Table 3. One can see that

the classical algorithm produces a better model (the mean BA is 0.73) since no

approximations were done. In this context, the incremental and parallel algorithms produce

models with comparable predictive performance (BA=0.7+0.015).

Table 3. Benchmarking results using “Thrombin” data set (5,710 compounds).

Balanced Accuracy
Description Block size Time, h:m '
Fold1 | Fold2 | Fold3 Mean
Classical GTM - 0.74 0.73 0.73 0.73 3:07
500 0.7 0.69 0.69 0.69 2:28
Incremental GTM
1000 0.69 0.72 0.69 0.7 0:33
500 0.70 0.69 0.68 0.69 0:41
Parallel GTM
1000 0.71 0.72 0.72 0.72 0:43
! Approximate execution time recorded during manifold training.
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Figure 23. The fuzzy class landscapes for the “Thrombin” data set of 5,710 compounds: (a)
the classical GTM, the incremental GTM with blocks of (b) 500 and (c) 1,000 items, and
the parallel GTM with blocks of (d) 500 and (e) 1,000 items. Here, the transparency

corresponds to the density.
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The models trained by the incremental GTM with blocks of 500 and 1000 compounds
do not differ significantly in terms of BA as well as the ones trained with the parallel
approach. The GTM class landscapes were built and visualized (Figure 23). One can see
that the incremental algorithm visualizes the data space differently for the different block
sizes, whereas the parallel GTM returns the same landscape for both sizes. A comparison of
the likelihood distribution (Figure 24) shows that PGTM covers the data as well as the
classical algorithm. In contrast, the incremental algorithm has worse data coverage which

can be seen in the GTM landscape (Figure 23b and Figure 23c).
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Figure 24. Log-likelihood distribution for the compounds from “Thrombin” data set

produced by the classical (green), incremental (blue), and parallel (red) GTMs.

Next, the methods were tested on the larger data set where 100K random “decoys”
(ChEMBL compounds with unknown activity) were added. The maps were rebuilt on

105,710 structures. The results of the cross-validation are given in Table 4.

In comparison with the first experiment, the acceleration of GTM by the parallel
algorithm now is more significant. The parallel algorithm trained the manifold 5 times
faster than the incremental one keeping the same level of the predictive performance
(BA=0.67£0.02). The likelihood distribution in Figure 25 demonstrates that the PGTM

covers the data similar to the incremental GTM.
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Table 4. Benchmarking results where “decoys” were added to the Thrombin data set.

Balanced Accuracy

Description Block size Time, h:m '
Fold1 | Fold2 | Fold 3 Mean

5000 0.65 0.65 0.64 0.65 23:57
Incremental GTM

10000 0.67 0.67 0.68 0.67 28:52

5000 0.65 0.65 0.65 0.65 5:48
Parallel GTM

10000 0.69 0.68 0.69 0.69 10:33

! Approximate execution time recorded during manifold training.
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Figure 25. Log-likelihood distribution for the “Thrombin” data set with random 100K

decoys produced by the incremental (blue), and parallel (red) GTMs.

Although parallel GTM algorithm leads to similar predictive performance and LLh
distribution as incremental GTM, their manifold shapes, and, hence, the data distribution on

the maps are pretty different (Figure 26).
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Figure 26. The fuzzy class landscapes where “Thrombin” data set of 5,710 compounds.
Here, the manifold were trained by (a) incremental and (b) parallel GTM algorithms using

“Thrombin” data set with random 100K decoys (105,710 compounds) as a Frame set.

Finally, the algorithms were compared in terms of mean BA, mean ROC AUC, data
coverage, normalized Shannon entropy, number of targets with mean BA > 0.7 and number
of targets with mean ROC AUC > 0.7 using frame sets of different sizes. The results are

shown in Figure 27 and Figure 28.

One can see that a larger frame set leads to lower data coverage (Figure 27). This can
be explained by the Applicability Domain (AD) which is wide in the case of general FS
(1K compounds; the most diverse compounds are selected), and, in contrast, it becomes
more narrow by adding similar compounds. In the latter case, the map focuses more on the
dense groups of compounds which are presented in the FS by a larger number of items.
Thus, GTM pays less attention to the chemical families represented by some items, or these
families can be even ignored in the case of a huge FS (e.g. 200K). At the same time, the
entropy and the predictive performance grow. It can be also seen that the FS of 5K
compounds is already enough to describe ChEMBL23 containing 1.7M compounds,
whereas it is not clear how big should be the FS in case of larger databases, such as

PubChem (96M), Zinc (1.3B), and GDB-17 (166B).
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Figure 27. Data coverage, normalized Shannon entropy [5], and mean Balanced Accuracy

(BA) computed for classical, incremental and parallel GTMs where frame sets of different

sizes were used to train the manifolds.
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Figure 28. Mean ROC AUC, number of targets with mean BA > 0.7 and number of targets

with mean ROC AUC > 0.7 computed for classical, incremental and parallel GTMs where

frame sets of different sizes were used to train the manifolds.
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Comparing the predictive performance of the GTM algorithms, it is shown that all of
them possess the same level of BA and ROC AUC (Figure 28). However, PGTM is much
faster than Incremental GTM, and, therefore, it is able to treat larger FSs than both classical

and incremental algorithms.

4.7 Conclusion

GTM is an efficient tool applied in different contexts. However, some methodological
developments were needed to adopt the method to the Big Data case. First, the impact of
different preprocessing schemes was checked using the SRC data set (tyrosine kinase
inhibitors). The strategies of descriptors preparation were compared in terms of Balanced
Accuracy (BA) and Area under the Receiver Operating Characteristics Curve (ROC AUC).
It was demonstrated that the highest predictive performance is achieved by descriptors

standardization (centering and division by its standard deviation).

Some applicability domain (AD) concepts have already been proposed for GTM
(chapter 3.3), and their drawbacks have been discussed here. For instance, the predominant
class AD needs the CPF value to ignore the mixed nodes which, in turn, decreases the
density of the landscape. As an alternative, a new approach to compute the log-likelihood

cutoff was proposed and applied in this work.

To solve the problem of the map resolution and the problem of the mixed zones, a
hierarchical GTM zooming approach was automatized. Two strategies for zones generation
were implemented. The developed tool was coupled with a new Maximum Common
Substructure (MCS) extraction protocol proposed for zone-specific substructures search.
The tool was applied in the project of chemical library enrichment which was done in

cooperation with Boehringer Ingelheim company (the results are described in chapter 7).

Finally, the idea of Constrained Screening (CS) and Parallel GTM approaches were
presented. As it was described, CS allows screening the database querying not a single
activity/property but a desirable profile. The returned compounds possess the satisfaction

score which can be used to rank the structures and to select the hits.
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Parallel GTM allows training the GTM manifold with larger data sets. It initializes
the manifold using the incremental PCA and then trains it on a series of blocks in parallel.
The method was compared to the incremental approach in terms of speed of calculations
and predictive performance (BA). It was established that Parallel GTM trains the manifold

5-6 times faster producing the models with the same BA.

Implementation of Parallel GTM allowed us to perform a comparison of the
predictive performance of classification models as a function of a Frame set size. It has
been demonstrated that the FS of 5,000 structures is sufficient to prepare a GTM for the

entire ChEMBL23 database containing more than 1.7M compounds.
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5 GTM as a Tool for Virtual Screening

Virtual Screening (VS) is a common technique in drug discovery used in different
projects [96-98]. Its goal is to select potential hits from the chemical database using
knowledge retrieved from the existing data. Usually, the so-called VS funnel has several
layers differentiating in terms of accuracy. Thus, the methods with lower accuracy (e.g.
similarity filters) but higher speed stand at the beginning and the more accurate methods
(e.g., docking) are run at the end since they are restricted in terms of compounds that these

methods can handle.

In this chapter, we discuss the application of GTM to virtual screening. The first part
of the chapter describes the benchmarking results done for single-target and multi-target VS
on public data. Next, the obtained knowledge was applied to industrial data to test the GTM

in the industrial drug discovery process.

5.1  Multi-Target Virtual Screening

5.1.1 Introduction

GTM is a data visualization and analysis tool which can successfully be used to train
classification and regression models. The benchmarking studies done so far show that GTM
provides similar predictive performance to other machine-learning methods (SVM,
Random Forest, Neural Networks) [6]. This makes GTM attractive to be used in virtual

screening (VS) campaigns.
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The predecessor of GTM — Self-Organizing Maps (SOM) — was already tested as a VS
technique in several studies [84-86]. For instance, it was used to identify several purinergic
receptor agonists [86]. Later, SOM was compared to the similarity search with data fusion, and,
despite the poor predictive performance, in principle, SOM can be used as a tool for the VS
tasks [84]. Since GTM may perfectly mimic SOMs — by narrowing RBF width to ensure
that item responsibility focuses 100% on the nearest manifold grid point — but also can

outperform it by applying fuzzy logics, GTM is a better VS tool than SOM.

GTM has never been applied to multi-target virtual screening (virtual profiling)
where a model is used to select the compounds in terms of several biological activities. This
can be achieved on the hand of universal GTMs, a concept introduced by P. Sidorov et al.
[9]. Herein, a manifold is optimized not for one single, but with respect to the largest
possible panel of target-specific series of compounds (ChEMBL database of v.20 in
reference [9]). The obtained map is used then to make predictions for an extended pool of
activities/properties (including ones not used for manifold optimization but seen to be

properly supported by the manifold nevertheless).

In this project, GTM was tested as a single-target and multi-target virtual screening
technique. Its predictive performance was compared to two popular single-target
approaches: Random Forest and Neural Network. As a baseline, the similarity search with
data fusion was used. The results were published in our article in the Journal of Computer-

Aided Molecular Design [10] (see below).
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Abstract

The previously reported procedure to generate “universal” Generative Topographic Maps (GTMs) of the drug-like chemical
space is in practice a multi-task learning process, in which both operational GTM parameters (example: map grid size) and
hyperparameters (key example: the molecular descriptor space to be used) are being chosen by an evolutionary process in
order to fit/select “universal” GTM manifolds. After selection (a one-time task aimed at optimizing the compromise in terms
of neighborhood behavior compliance, over a large pool of various biological targets), for any further use the manifolds are
ready to provide “fit-free” predictive models. Using any structure—activity set—irrespectively whether the associated target
served at map fitting stage or not—the generation or “coloring” a property landscape enables predicting the property for
any external molecule, with zero additional fitable parameters involved. While previous works have signaled the excellent
behavior of such models in aggressive three-fold cross-validation assessments of their predictive power, the present work
wished to explore their behavior in Virtual Screening (VS), here simulated on hand of external DUD ligand and decoy series
that are fully disjoint from the ChEMBL-extracted landscape coloring sets. Beyond the rather robust results of the univer-
sal GTM manifolds in this challenge, it could be shown that the descriptor spaces selected by the evolutionary multi-task
learner were intrinsically able to serve as an excellent support for many other VS procedures, starting from parameter-free
similarity searching, to local (target-specific) GTM models, to parameter-rich, nonlinear Random Forest and Neural Network
approaches.

Keywords Generative topographic mapping - Multi-task learning - Ligand-based virtual screening - Big data - Universal
maps - ChEMBL - DUD - Neural networks

Abbreviations Introduction

GTM Generative topographic mapping

UGTM  Universal generative topographic mapping Generative Topographic Mapping (GTM) [1] is a dimen-
GA Genetic algorithm sionality reduction method corresponding to a probabilistic
CV Cross-validation extension of Self-Organizing Maps (SOM) [2]. In order to
DUD Directory of Useful Decoys project the data onto a 2D latent space, the method injects a
NN Neural network 2D hyperplane, called manifold, into the descriptor space,
RF Random forest in which each item of the “Frame Set” (FS) spanning this

space corresponds to a point defined by its high-dimensional
descriptor vector. The manifold is mathematically described
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is built, each compound is characterized by its LLh value
and is described by the vector of its probabilities to “reside”
in each node. This vector, R,,;, representing the probability
of compound £ to reside in node # is called the responsibility
vector. Since any compound is certain to reside somewhere
on the map, »;, R, = 1.Vk. A library of several compounds
can be described by the vector of cumulated responsibilities
CR of its members k, CR, = ', R,;.. Given compounds of
known property or bioactivity values, an activity/property
Landscape can be created and visualized. This is useful
not only for data visualization and analysis but also as a
QSAR/QSPR model. After projecting a new compound on
it, the class/property value can be easily predicted from the
landscape.

Initially, GTM was tested as a tool for Quantitative
Structure—Activity Relation (QSAR) tasks on typical struc-
ture—property sets [4, 5], where the known actives and inac-
tives of the set were used both as FS and as property set for
coloring of the herewith fitted manifold. From this perspec-
tive, the initial descriptor space yielding the top predictive
manifold could be freely tuned, together with the manifold
parameters (number of nodes, number of Gaussians, Gauss-
ian width and Regularization term). The resulting GTM thus
represents a predictive model fully dedicated to a specific
QSPR problem, and exclusively trained on specific QSPR
data. Tt is the results of a typical single-task learning process,
like many other in Ligand-Based Virtual Screening: Deci-
sion Trees, Artificial Neural Networks (ANN), Support Vec-
tor Machine, Similarity search on binary fingerprints, etc.
[6, 7] In addition to this list, SOM method was also tried as
a VS technique in many studies [8—10]. For instance, it was
used to identify several purinergic receptor agonists [10].
Later, SOM was compared with a Similarity search with
data fusion, and, despite a poor predictive performance, the
results of such comparison show that in principle SOM can
be used as a tool for the VS tasks [8].

However, GTM was also tested successfully as a tool for
large public chemical database (PubChem-17, ChREMBL-17
and FDB-17) visualization and analysis [3]. In 2015, Sidorov
et al. [11] used GTM in order to create a compound set-
independent “universal” map of Chemical Space (CS).
The manifold and its underlying descriptor space were not
selected with respect to any peculiar property but were
aimed at representing the best possible consensus, ensuring a
broad “polypharmacological competence”, i.e. ability to host
predictive property landscapes for a maximum of diverse
properties. Conceptually, this is a form of Multi-Task Learn-
ing (MTL): based on a generic FS randomly picked to cover
the entire ChEMBL CS, structure—activity data from about
100 unrelated target-specific series of ligands of known pK;
values were used to challenge each manifold in terms of its
ability to “host” predictive activity landscapes for each of
these series. Selection with respect to the mean predictive

@ Springer

performance over all series produced not an optimal mani-
fold dedicated to a given QSPR problem, but a best-compro-
mise manifold of optimal robustness and ability to host any
arbitrary property landscape, all while maintaining a certain
predictivity level. This ability was eventually validated in
showing that it can easily distinguish active from inactive
compounds for more than 400 ChEMBL targets (others than
the ~ 100 used for selection). Results report an Balanced
Accuracy (BA) higher than 0.6 for all the targets (none of
which served for map parameter selection).

The above approach is thus related to MTL [12, 13], con-
sisting in learning the choices (descriptors, GTM grid size,
etc.) leading to a “consensual” manifold, i.e. learning the
choices that are generally relevant to QSPR in drug design,
all targets confounded.

MTL is a wide-spread strategy in chemoinformatics and
is embodied by numerous distinct approaches from the use
of calculated properties by a previously fitted model as input
descriptor to a higher-order model (feature nets [14], FN),
to multiple-output multilayered ANNs [13] to strategies
in which both ligands and targets are descriptor-encoded
(computational chemogenomics [15-19]). Conceptually, the
“universal” map approach is different from all the above
and is closest related to the multiple-output multilayered
ANNs. Manifold building conceptually matches the fitting
of parameters of the common layers of the ANN, crystalliz-
ing the knowledge of the common features that are impor-
tant to all the learning tasks. Landscape creation by coloring
with specific data sets, followed by prediction, matches the
task-specific output neurons of the ANNs—with the notable
difference that the latter may still be fine-tuned to improve
task-specific predictability. By contrast, at given manifold,
coloring of a landscape by projection of a property set and
thereupon-based prediction is deterministic and parameter-
free. Thus, there is no perfect analogy between the “univer-
sal” GTM style of MTL and above-mentioned classical MTL
methods. Unlike chemogenomics approaches, “universal”
manifolds do not require at all any injection of informa-
tion about the considered targets, which can be of arbitrary
diversity. While chemogenomics focusses on groups of
related activities (i.e. for biologically related targets) “uni-
versal” manifolds were successfully hosting landscapes for
completely unrelated chemical and biological properties,
ranging from target-specific activities to cell- or organism-
based screen results. Learning features that are “universally”
important in structure—activity relationships ensures, on one
hand, the generality of “universal” GTMs (UGTM:s). On the
other, generality will unsurprisingly result in lesser predic-
tive propensity for some targets, as the inductive transfer of
knowledge operating at manifold construction step basically
resumes to a generic ability to span drug-relevant CS.

So far, no comparison of GTMs and—in particular—
of UGTM to other VS methods was undertaken. In order
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to evaluate the quantitative benefits of building “univer-
sal” manifolds, their performance in VS was compared
to—firstly—single-task “local” GTMs, dedicated to each
biological properties, and also to state-of-art single-task
machine learning methods, namely Similarity search and
Similarity search with data fusion, Neural Networks (NN),
and Random Forest (RF).

Methods
Data

For this project two public databases are used: ChEMBL
(version 23) [20] and Directory of Useful Decoys (DUD)
[21]. To extract the data, the previously described [11] tar-
get-specific structure—activity series extraction protocol has
been reenacted on the later release 23 of the ChEMBL data-
base. A total of 618 human single proteins were retained,
after “categorization” of ChEMBL-reported activity
scores into “actives” and “inactives”, respectively. To this
purpose, a set of activity classification rules embodied in
scripts (available in Supplementary Material of the cited
paper) were applied. Compounds with reported percentage
of inhibition were considered inactive if values were below
50%, otherwise they were ignored. If dose-response activity
measures were available, various cutoffs ranging from low
nanomolar to micromolar range were tried out. Compounds
better than the threshold were labeled “active” (a minimum
of 15 required), the ones of activity weaker that the ten-fold
threshold value were “inactives™ (at minimum 50), with in-
between molecules being ignored (in order to facilitate the
separation problem). The actual target-specific cutoff even-
tually retained was the one ensuring a reasonable balance,
closest to one active (or more) for four inactives (but never
exceeding parity one active: one inactive—series having, at
all considered cutoffs, more reported actives than inactives
were discarded). Files (labeled Target-ChEMBLID.smi_ID_
class) reporting, for each target, the standardized SMILES
string, compound ChEMBL ID and assigned class are now
provided as Supplementary Material for the nine targets of
the VS simulation, together with their corresponding DUD
files. Equivalent data for the remaining 609 targets used in
internal validation are available upon request.

Next, DUD data were used to extract independent, exter-
nal compound series, by focusing on the subset of ChEMBL
targets that are also present in DUD and pruning all DUD
compounds already encountered in the ChEMBL series.
This often meant elimination of virtually all the actives from
the DUD series, thus failure to obtain an external data set.
However, in nine cases (Table 1) the DUD target-specific
series contained sufficiently numerous original actives and

Table 1 A list of nine DUD targets taken for the external validation

Target ID Target name

CHEMBL1827 Phosphodiesterase SA

CHEMBL1952 Thymidylate synthase

CHEMBL251 Adenosine A2a receptor

CHEMBL260 MAP kinase p38 alpha

CHEMBL279 Vascular endothelial growth factor receptor 2
CHEMBL301 Cyclin-dependent kinase 2

CHEMBLA4282 Serine/threonine-protein kinase AKT
CHEMBL4338 Purine nucleoside phosphorylase
CHEMBL4439 TGF-beta receptor type [

were retained for external validation of ChEMBL-trained
models (Table 2).

Structure standardization, assignment of activity classes
(active vs. inactive) for structures associated to human tar-
gets, and rejection of targets with too small or too imbal-
anced structure—activity series were employed as already
described. DUD compounds were likewise standardized, and
their given activity class labels (active vs. inactive = decoy)
were adopted as such. At the end, 1.5 M unique ChEMBL
compounds and 914K DUD molecules were kept after
curation.

Molecular descriptors

One hundred different fragmentation schemes supported
by the ISIDA Fragmentor software, [22, 23] and gathered
according to the experience of previous works [3, 11] were
used as a starting pool for the search of suitable descriptor
space. Recall that descriptor space selection is a key meta-
parameter of the evolutionary map sampling tool.

Universal (multi-task) GTM manifolds

For technical reasons (the release of a major, faster ver-
sion of the GTM software), the already published ‘“univer-
sal” map selection protocol has been rerun, with another
important change with respect to the previously published
version; the use of structure—activity class series as selec-
tion sets instead of the originally employed (less data-rich)
structure-pK; (continuous) affinity data. Out of the 618
ChEMBL structure—activity series, 236 were randomly
designed as selection sets (see file “selection.targets” in the
zipped dataset repository in Supplementary Material) for
UGTM training (attached “external.targets” enumerates the
remaining 382 targets not involved in selection). The FSs
were constructed as sets of random ChEMBL samples of
different sizes (between 8.5K and 26K compounds). Here, a
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Genetic Algorithm [24] was used to optimize GTM param-
eters, such as the number of nodes, the number of Gaussian
functions (RBF), the regularization coefficient and the width
of an RBF. In addition to the best descriptors set and the
best GTM parameters, GA also has chosen the most suitable
descriptors normalization scheme. At a given GTM parame-
ter set, the manifold training procedure is run in incremental
mode [25]. The size of each block was 10,000 compounds.
Then, for each selection set, a threefold cross-validation of
the current manifold was performed, where landscapes are
iteratively built based only on 2/3 of the ChEMBL set, while

the remaining tier will be projected into the landscape and
ranked by a probability to be active, representing the “color”
(relative population of actives vs. inactives) in their target
area. For technical details about the rigorous formalism to
construct and predict with class and activity landscapes,
please refer to our previous GTM publications. According
to this selection criterion of mean threefold cross-validated
BA of prediction, four best universal maps, each based on a
different descriptor space, with the mean BA ranging within
0.7-0.75 have been selected (Table 3). Corresponding GTM
parameters and FS sizes are presented in Table 4.

Table 2 The datasets used for

. Target ID DUD data sets ChEMBL data sets Thresholds®
the screening procedure
Actives  Inactives  Total Actives  Inactives  Total  K/IC/ECs, (nM)
CHEMBLI1827 170 25.334 25,504 691 824 1515 50
CHEMBL1952 63 6113 6176 124 455 579 1000
CHEMBL251 79 28,001 28,080 1303 3618 4921 100
CHEMBL260 100 32,925 33,025 1453 2567 4020 100
CHEMBL279 94 22,595 22,689 2047 4663 6710 100
CHEMBL301 189 25,675 25,864 638 2305 2943 500
CHEMBL4282 52 14,228 14,280 725 2619 3344 500
CHEMBL4338 102 6334 6436 100 111 211 50
CHEMBL4439 82 8013 8095 282 385 667 50

*Compounds with dose-response affinity value below or equal to threshold (in nM) are considered active,
while those with values exceeding the 10-fold threshold value are inactives. At intermediate activities,
compounds are discarded from the ChEMBL set. Note that the DUD definition of “actives” does not com-
ply to the same rules—they routinely include co-crystallized ligands, irrespective of their affinities

Table 3 The best selected descriptors sets [22]

Map Abbreviation Definition Descrip-
tor set
size

1 [A-FF-FC-AP-2-3  Sequences of atoms with a length of two to three atoms labeled by force field type and formal charge 987

flag, using all paths

2 [IRAB-FF-1-2 Atom-centered fragments of restricted atom and bonds of a length one to two atoms labeled by force 1029

field types

3 [AB-PH-FC-AP-2-4 Sequences of atoms and bonds of a length two to four atoms labeled by pharmacophoric atom types and 779

formal charges using all paths

4 [A-2-7 Sequences of atoms of a length two to seven atoms 728

T'al:ile 4 Sé;c@d GTM méta- Map FS size Number of Number of Regularization =~ RBF width Normaliza-

parameters for the four best nodes per line ~ RBF per line coefficient tion scheme®

chromosomes chosen by the

genetic illgOI‘i'[hm [24] 1 17,000 41 23 1.122 1.1 2

2 17,000 47 29 0.018 1.6 1
3 25,500 37 19 0.017 2.1 2
4 25,500 38 19 3.55 1.9 2

*The standardization schemes: 1—centering on the mean value; 2—Z-normalization (centering on the
mean value and division by the standard deviation)
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Monitored success scores

In this benchmarking study, the mean area under the
Receiver Operating Characteristic (ROC AUC) when pre-
dicting half of the compound series based on landscapes
colored (or models learned, for other methods—vide infra)
on the other half is used in the internal validation proce-
dure. This further on named <AUC>,,, criterion will be
consistently used to compare models (except for single-
query similarity searching, where it cannot be defined—
see following subsection). The mean is taken over ten
independent repeats of the above procedures, where split-
ting into training and kept-out compounds is fully rand-
omized. No specific care is taken to ensure that each com-
pound is strictly kept out once and only once per iteration.

Internal validation results were alternatively depicted as
density distribution plots of the ROC AUC values over the
training subsets (Figs. 1, 2, vide infra). For each method
each ChEMBL target-specific set returns the ten distinct
ROC AUC values from the randomized internal validation
experiments described in the “Methods” section. Plotting the
density (number of targets) in counting each target 10 times,
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into the specific bins matching each of its ROC AUC values
achieved on the random splits (and followed by a normali-
zation of the density to compensate for multiple counts)—
would however produce one *“global” histogram, with no
information on the expected fluctuation of density bar
heights. Estimating those error bars is however of paramount
importance, in order to ensure that the histogram shape is
not an artefact of the peculiar randomized choice of training/
test splits. For this specific purpose, this work proceeds to
first generate “‘splitting accident-prone’ histograms, consid-
ering each target-specific compound set to be represented by
one randomly picked ROC AUC out of the 10. Depending on
the pick, the set will be counted in a lower or higher bin, i.e.
its localization on the X axis will reflect the intrinsic uncer-
tainly induced by the train/test splitting. Every set is counted
exactly once—only its X-axis bin may fluctuate. Therefore,
every such “splitting accident-prone” histogram will differ
in shape. One thousand of these are generated, which allows
a thorough monitoring of the expected fluctuation of bar
heights as a consequence of splitting artefacts. Eventually,
the plot shows the mean bar heights (which converge to the
above-mentioned “global” histogram) with associated error
bars (if readable—occasionally, fluctuations are too small).
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Fig. 1 ROC AUC values for the selection set and rest targets: a map |, b map 2, ¢ map 3, d map 4
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Fig. 2 Internal validation results on 618 ChEMBL targets: single- f latent spaces, g NN, and h RF. Here, Desc. 1-4 correspond to the
query Similarity search in a descriptors and b latent spaces, ¢ UGTM, descriptors sets shown in the Table 3
d local GTM, Similarity search with data fusion in e descriptors and
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In actual virtual screening, the DUD series is projected
onto the “complete” landscape generated from the entire
ChEMBL set. To estimate the predictive performance
of a particular map, ROC AUC (further on referred to as
VSAUC) is computed, after ranking DUD compounds as
above-mentioned [26].

Benchmarked models

For each of the 618 targets, single-task (local) models
were set up in each out of four descriptors spaces chosen in
Table 3 using the following methods:

Regular (local) GTM

Similarity search

Similarity search with data fusion
RF

NN

Depending on the nature of the model, setting it up
requires distinct protocols, involving parameter selection or
fitting (local GTM, PF, NN) or decisions on used similarity
scoring, etc. These aspects will be detailed in the dedicated
paragraphs below, while the same success score monitoring
procedure outlined above was applied to all models. The
descriptors normalization scheme was not changed and cor-
responds to the one that is shown in Table 4.

The parameters of local GTM were not optimized, but
were taken by default: the number of nodes is 625 (25 x25),
the number of Gaussian functions is 144 (12 x 12), the width
of a Gaussian function is 2.82, the regularization coefficient
is 1.0. To perform the experiments with NN and RF, SciKit
Learn implementations of Multi-Layer Perceptron (MLP)
(https://scikit-learn.org/stable/modules/neural_netwo
rks_supervised.html) and RandomForestClassifier (https:/
scikit-learn.org/stable/modules/ensemble.html#forest) were
employed [26-29]. Here, the MLP parameters are taken by
default: the number of hidden layers is I, the number of
the nodes in a layer is 100, the rectified linear unit function
(relu) is used as an activation function [30], and the “adam”
solver is used for the weights optimization [31]. Backpropa-
gation approach is applied to train the net [26-28]. In case of
RF, an ensemble of trees is built on a random half of com-
pounds where the original ratio actives/inactives is kept. All
the parameters are taken by the default, mentioned in SciKit
Learn (https://scikit-learn.org/stable/modules/ensemble.html
#forest), where the number of trees in a forest is 10.

As a gold standard for the VS tasks, Similarity search
and Similarity search with data fusion were chosen. Both
these methods are based on a simple similarity principle:
similar compounds should share similar activity. Therefore,
the idea of similarity searching is to find compounds out of a

screening pool which are similar to the reference point with
a known label (i.e. active). While there are better suited cri-
teria [32, 33] to specifically monitor neighborhood behavior
compliance, herein the generally applicable ROC AUC crite-
rion is used to score the potential predictive performance of
the method, after ranking candidates in decreasing similarity
order (Tanimoto scores) to the used query. Also, as an alter-
native to a simple similarity searching, similarity searching
with data fusion is taken. Within this approach the screening
pool is compared not to one but to N reference compounds
(in this project the pool of reference compounds was chosen
to embody a randomly picked 50% of all ChREMBL actives
available for a target). To rank a candidate, the highest Tani-
moto score is taken out of the N computed values. As it
was done earlier, in order to ensure reproducible results,
averaging out the dependence on the randomly picked query
compound(s), all similarity-based calculations were repeated
10 times, and the mean ROC AUC was computed for each
target. In single-query searches, the <AUC>_ value resulted
from 10 individual similarity ranking simulations using 10
randomly picked active queries. With data fusion, 10-fold
repeats of searches employing one half of the pool of actives
generate the corresponding <AUC>,,, criterion that will be
directly compared with equivalent <AUC>,, criteria of the
other VS methods, and the single-search <AUC> .

Eventually, the DUD pool was screened to obtain a
VSAUC score using only the data fusion-based strategy, i.e.
ranked according to their Tanimoto score with respect to
their nearest neighbor of the entire corresponding ChEMBL
series.

In order to measure the impact of dimensionality reduc-
tion/information loss by the GTM transformation of initial
descriptors into responsibility vectors, similarity searching
was performed in both descriptor and GTM responsibility
vector spaces.

Results and discussion
Internal validation of the new UGTM versions

For above-cited technical reasons, this article introduces
new, refitted “universal” GTM manifolds using a new GTM
software release and extended selection sets of 236 (ran-
domly picked) ChEMBL structure—activity class series
associated to as many single protein targets. This under-
taking is completely independent of the herein presented
VS benchmark, as it focuses on the “multi-task” learn-
ing of the optimal compromise in terms of neighborhood
behavior compliance over a large panel of targets, and even
though this by no means a preparation step of the actual VS,
UGTM performance analysis must be briefly discussed here.
First, it must not be forgotten that, out of the 618 ChEMBL
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target-specific series exploited by this study, 236 have a spe-
cial status with respect to UGTMs: they served as selection
sets for the optimal UGTM manifolds. This concerns two
of the nine targets used in the VS simulation are included
here (CHEMBL4439 and CHEMBL1952). By contrast, the
remaining 382 external sets (including the other seven VS
targets) were never used in UGTM tuning. It is thus legiti-
mate to verify whether these 236 targets are favored—better
predicted—by UGTMs, with respect to the latter. Figure 1
reports the distribution of “selection” versus “external” tar-
get-specific sets with respect to the internal validation ROC
AUC values (see density distributions plots, in the Scoring
section of methods). While the histograms show the expect-
able shift in favor of better results for the selection sets, this
trend is very limited. Therefore, in the following analysis, no
further distinction between selection and external ChEMBL
sets will be done—statistics will indiscriminately refer to the
set of 618 target-specific series. Furthermore, this observa-
tion is interesting, as it proves that MTL over ~200 struc-
ture—activity sets associated to fully non-related biological
properties allows to cartograph the drug-relevant CS with
a precision that is sufficient to ensure a same level of pre-
diction accuracy for a large number of distinct biologically
relevant targets to date.

Last but not least, let it be noted that even for the two
targets CHEMBL4439 and CHEMBL 1952 which served at
map selection stage, the external validation by VS is no less
rigorous than for any other of the herein benchmarked mod-
els. Any predictive model issued from supervised learning
uses target-related information for calibration, and then is
challenged to predict an independent compound set—as is
the case here (DUD molecules filtered in order to ensure
that they do not include any ChEMBL members). For all the
nine targets, “coloring” of UGTM manifolds with ChEMBL
data is the prerequisite to predict the likelihood to be active
for the external DUD compounds—this is the equivalent of
aforementioned model “calibration”, except that it occurs in
a deterministic and non-supervised manner—the manifold
being already given. To resume, for two targets the injec-
tion of training information into UGTM models implies
both manifold fitting and coloring, whilst for the seven oth-
ers it implies only non-supervised manifold coloring. In
either case, external validation concerns independent, never
encountered compounds.

Internal validation benchmark

Comparative internal validation results for the various meth-
ods in terms of the above-defined <AUC>,, (<AUC> for
single-query similarity screening) are given in Fig. 2. The
poorest results come from single-query similarity, which
is normal because the quantity of injected knowledge
(one active reference) is minimal. Things are even worse

@ Springer

after dimensionality reduction: moving to responsibilities
decreases performances even more. Nevertheless, with 50%
of the mass of known actives used to color GTM fuzzy class
landscapes, predictivity increases dramatically over single-
query searches, and in spite of moving into the responsibility
vector space.

Local maps are, as expected, better than universal maps.
To begin with, they are already based on molecular descrip-
tors known—thanks to the MTL of UGTM hyperparam-
eters—to be generally pertinent choices, for a large pool
of targets, Even though their control parameters were set to
default values (likewise, the parameters of UGTMS being
locked to the ones defining the best compromise neighbor-
hood behavior), the degrees of freedom controlling the
“bending” of their manifolds are now free to adjust specifi-
cally in response to the dedicated structure—activity series.
Local maps might presumably be improved even more if
their hyperparameters would be optimized.

Yet, similarity with data fusion, which is comparable
to the GTM-based approach in terms of input SAR knowl-
edge—50% of the actives—outperforms the former when
driven in the original descriptor spaces: projection on a map
inexorably costs in terms of information loss.

Eventually, NNs and RFs, are machine-learning
approaches featuring a wealth of tunable parameters—unlike
the fixed Universal and local GTM manifolds. Therefore,
they are clearly the better performers.

In view of virtual screening of the DUD series, the
best map for each target has been selected basing on its
<AUC>,,, score. The number of targets for which the best
map/descriptors space achieves a <AUC>,,> 0.8 have been
counted for each method (Fig. 3).
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Number of targets with <AUC>y/, > 0.8
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Fig.3 The number of targets for which the best model over the four
descriptor spaces returns <AUC>,,>0.8. If, for a target, at least one
of the four models of given type, based on the four descriptor spaces
reaches this threshold, then the target will be added to the type bin:
A—similarity search in initial space, B—similarity search in respon-
sibility space, C—UGTM, D—local GTM, E—similarity search with
data fusion in initial space, F—similarity search with data fusion in
responsibility space, G—NN, H—RF
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The bar chart in Fig. 3 keeps the trend seen in Fig. 1
and demonstrates that RF and NN outperform the GTM
approach. At the same time, local GTM demonstrates the
ability to be used successfully for 490 targets which makes
it comparable with Similarity search with data fusion, which
successfully handles 555 of the targets.

Virtual screening simulation using DUD compounds

The last part of the project is devoted to the retrieval, by
VS, of actives among DUD compounds, with the ChEMBL-
data-driven models. As it was described earlier, nine targets
were found in common for DUD and ChEMBL (Tables 1,
2), where the smallest series includes more than 6000 com-
pounds from DUD and more than 200 compounds from
ChEMBL. The most data-rich target contains more than
33,000 compounds from DUD and more than 6000 com-
pounds from ChEMBL.

Note that the DUD classification into actives and (pre-
sumably) inactive decoys is conceptually different from the
classifications employed in the training sets. DUD actives
may, for example, include co-crystallized ligands of high
micromolar to millimolar potency, which are far from
qualifying as “actives” by ChEMBL standards. This fact
is potentially harmful for the external “prediction” perfor-
mance monitored here—yet, this class of artefacts generally
applies to classification models, which are the last recourse
in response to highly heterogenous affinity measures that
cannot be directly compared unless they are converted to
“classes” according to more or less rigorous criteria. How-
ever, relative comparison of method performances should
still be possible—if extrapolation from ChEMBL data to
the DUD set is successfully accomplished by at least some
methods, failure to do so by others cannot be ascribed to
classification artefacts. This is the case in the present work.

To screen the DUD pool, the best maps were chosen
based on their mean ROC AUC value obtained in internal-
validation (Table 5).

In this VS simulation, the QSAR-based approaches
were used, with the hypothesis (colored landscape, learned
model) being based on the entire ChEMBL series of the nine
above-mentioned targets. Single-query similarity searching
was not considered here, as its intrinsic limitations due to the
poverty of injected knowledge (a single active) were clear
from internal validation results. In addition to ROC AUC,
an Enrichment Factor (EF) within the 10% of top ranked
compounds was added as a second criterion to estimate the
quality of the predictions. The results of the external valida-
tion are shown in the Figs. 4 and 5.

Here, the predictive performance for the UGTM approach
varies within 0.55+0.9 in terms of ROC AUC and within
0.2-6.2 in terms of the EF. Local GTMs show much bet-
ter performance (ROC AUC ranges within 0.75-0.9, EF
ranges within 2.2-8.2). While NNs were on par with RF
and outperformed GTM models in terms of internal valida-
tion results, it appears that they are no longer systematically
among top performers in VS, where similarity searching,
RF and local GTM models are often much more robust. The
activity landscapes and the DUD projections done for the
target CHEMBLA4282 and presented in Fig. 6 show that most
of the DUD compounds are within the occupied zones (in
other words, within the GTM applicability domain).

It is also seen from the DUD and ChEMBL activity land-
scapes that active DUD compounds are projected onto active
zones of ChEMBL, which makes the ROC AUC and EF
very high.

Discussion

The construction procedure of “universal” maps supporting
multiple predictive landscapes on a same GTM manifold
is a novel strategy in MTL. It is atypical in several aspects:

e First, it includes both operational parameters of the GTM
model and hyperparameters. The key hyperparameter
here is the choice of the molecular descriptor space,

Table 5 ROC AUC values and

. . Target ID UGTM Local GTM Similarity search ~ Similarity search NN RF

Ljorrespondmg descriptors space in initial space in latent space

for the best models computed

within the internal validation CHEMBLI827  0.89/4°  0.88/2 0.92/2 0.82/4 097/1 0971
CHEMBLI1952  0.88/4 0.84/4 0.85/4 0.76/4 0.92/1 0.92/3
CHEMBL251 0.84/3 0.84/2 0.91/2 0.81/3 0952 0.96/3
CHEMBL260 0.76/2 0.7772 0.9/3 0.81/3 0.95/3  0.95/1
CHEMBL279 0.74/2 0.71/3 0.89/3 0.76/3 0.93/3  0.93/4
CHEMBL301 0.82/4 0.83/4 0.9172 0.8/3 09472 0.95/3
CHEMBL4282  0.83/3 0.88/2 0.94/2 0.83/3 0.96/2  0.96/2
CHEMBL4338  0.83/1 0.86/3 0.85/3 0.78/3 0.94/2  0.93/2
CHEMBL4439  0.88/2 0.9/2 0.89/2 0.87/3 0.94/2  0.94/3

*Mean ROC AUC/No. of a map/descriptors space corresponded to Table 3
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Fig. 4 The comparison of

the VS methods, where each
column corresponds to the best
map in terms of its ROC AUC
value computed in the internal
validation (see Table 5)

Fig. 5 The EF for different VS
approaches where the EF value
is given for the map with the
highest ROC AUC value com-
puted in the internal validation
(see Table 5)

12

® Universal GTM

- [ Neural Networks

m Random Forest

m Sim. search with data

fusion in initial space

M Sim. search with data
fusion in resp. space

M Local GTM

E Universal GTM

ONeural Networks

VS Enrichment Factor

allowing the procedure to select those descriptor spaces
which remain neighborhood behavior-compliant after
GTM-driven dimensionality reduction

Second, its multi-task nature is given by the construction
of a common manifold, which is, per se, an unsupervised
learning process aimed at maximizing the coverage of
FS compounds by this manifold. This common manifold
is challenged to host fuzzy classification landscapes for
many different biological targets. Each of them is a clas-
sical single-task model for the property associated to the
ligands that were used to color the specific landscape.
However, since these landscape-based predictive mod-
els do not feature any specific fitable parameters, their
quality can be regarded as an intrinsic property of the
underlying common manifold. Creation of the manifold
implicitly provides access to as many landscape-driven
predictive models as available property-annotated ligand
series. The MTL—here primarily consisting in selecting
optimally suited descriptor spaces and optimally asso-
ciated GTM grid size, manifold flexibility parameters,
etc.—was directed by the goal of discovering (hyper)
parameter combinations maximizing the mean quality of

@ Springer

ERandom Forest

W Sim. search with data
fusion ininitial space

W Sim. search with data
fusion inresp. space

W Local GTM

236 distinct “selection” series of target-specific activity-
annotated ligands

Third, it does not focus on specific transfer of knowledge
within biologically related targets, such as is the case in
computational chemogenomics. This MTL simultane-
ously addressed the rather exhaustive set of all human
protein targets with sufficient activity annotations in
ChEMBL, all protein families confounded. Neither
the 236 “selection” series of target-specific activity-
annotated ligands, nor the remaining 382 series used
for external validation (with comparable success rate
to the former 236) include any intended family-specific
bias in terms of biological targets. Here, MTL would
not target typical questions like “What are the common
features of kinase binders?”, but more general “What are
the common features of bioactive molecules, all targets
confounded?”

Uncovering the few ISIDA fragmentation schemes that

are optimally suited for this endeavor is a first key result
of this atypical multitask learning setup. Since descriptor
spaces cannot host predictive GTM models unless they are,
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Fig.6 Fuzzy class landscape representations of the (ChEMBL and respectively DUD) sets associated to target CHEMBL4282 on universal map

3 (left) versus the local GTM (right)

per se, neighborhood behavior-compliant, it is unsurprising
to observe that all the alternative approaches—from data-
fusion-driven similarity searching to target-dedicated local
GTM, RF and NN models—were rather successful, both in
terms of internal validation and external VS. There was no
need to rescan, for each predictive method, the entire set of
available molecular descriptor spaces—the choices of the
evolutionary UGTM builder were appropriate. Note that the
100 different descriptor spaces out of which the four herein
used were selected have themselves emerged as a histori-
cal accumulation of descriptor spaces that were used in the
past [3, 11], on rather unrelated problems such as library
comparison, and were seen to be successful. In this sense,
if we declare all the cases in which knowledge from pre-
vious experiences is actively used to restrain the scope of
effectively considered working hypotheses as some form of
“multi task” learning, then MTL is rather the rule than the
exception in chemoinformatics.

UGTM models are remarkably robust in VS—for
models with zero adjustable parameters, albeit they are

systematically outperformed—in particular with respect
to enrichment of the top selection—by the equally param-
eter-free data-fusion similarity searching, not affected by
information loss upon dimensionality reduction. However,
UGTM models are specifically failing to rank a significant
number of actives among the top 100 candidates—they are
not effective in ensuring high EF values in VS. By contrast,
their global ROC AUC scores show that they do, overall,
manage to eventually rank actives ahead of most of the inac-
tives, only slightly less effective than the other methods—
without systematically placing actives at the top of the list.

Responsibility vectors are still maintaining some degree
of neighborhood behavior-compliance, but their use in
similarity searching is not recommended, as landscape-
driven prediction on UGTM manifolds is the more power-
ful method. Note that data fusion-based similarity screening
with Q actives being used as queries would scale like QxN
in terms of computational effort required to virtually screen
a database on N candidates. By contrast, landscape-based
prediction effort is simply proportional to N and does not
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depend on the training set size used to create the predictive
landscape. Thus, the latter would become computationally
more interesting after a given Q value—not to mention all
the benefits stemming from intuitive visualization provided
by the GTM approach.

Conclusions

The previously reported strategy to generate “universal”
maps, able to support predictive models for a broad spectrum
of biological activities represents a generic MTL approach,
where optimal molecular descriptors are selected alongside
with optimal operational parameters of the GTM algorithm.
A first important outcome of the approach is uncovering
“multicompetent” molecular descriptor spaces that remain
neighborhood behavior-compliant even after the dimension-
ality reduction process—Ileading to GTM responsibility vec-
tors and ultimately to a (x, y) point in 2D GTM latent space.
These tend to correspond to ISIDA fragmentation schemes
restricted to rather small fragment sizes but incorporating
information-rich atom labels such as pH-dependent phar-
macophore types or CVFF force field types.

It could be shown that descriptors herewith selected are
not only an excellent support for GTMs, but also for many
other predictive models—starting with plain similarity
screening. In this sense, all models here implicitly benefit-
ted from the initial MTL, which provided a pool of four
descriptor spaces that turned out to be highly relevant for
all the envisaged QSAR model building procedures for more
than 600 completely independent targets.

Tanimoto-score-based similarity screening (using a data
fusion scenario, thus ensuring that the amount of informa-
tion injected into it—active examples—matches the sizes of
the training sets used by other approaches) is actually more
successful than UGTM-driven predictions, as information
loss upon dimensionality reduction is unavoidable.

Local GTMs, where manifolds are allowed to focus on
the chemical subspace populated by a single target-specific
ligand series, are unsurprisingly better performers than their
universal, consensus-oriented counterparts. Note, however,
that the latter would always represent a better choice when-
ever the activity-annotated data set pertaining to a target of
interest is not sufficient to support the fitting of local maps.
The same holds true for parameter-rich non-linear RF and
NN models.
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5.1.2 Conclusion

The universal GTM was tested as a tool for single-target and multi-target virtual
screening tasks. It was shown that local GTM possesses better predictive performance than
the universal approach. Even so, the universal GTM predicted almost 500 ChEMBL targets
with ROC AUC > 0.8 in the internal validation. In the external validation, 8 out of 9 targets
were predicted with ROC AUC > 0.7. In terms of the enrichment factor, only half of the

DUD targets were predicted well.

In contrast, the single-target GTM approach demonstrates high predictive
performance which is comparable to other VS techniques described in the paper. Almost
500 ChEMBL targets were predicted with ROC AUC > 0.8 in the internal validation. In the
virtual screening of the DUD database, local GTM even overcomes the MLP with one
hidden layer, and it is comparable to RF. The same tendency is also demonstrated by the

enrichment factor.

The results show that GTM can be efficiently applied as a filter in the VS funnel. Its
speed and predictive performance are comparable to other popular VS techniques, whereas

it has the advantage of visualization support.

5.2  Virtual Screening in Industrial Context

5.2.1 Introduction

The benchmarking results presented above demonstrate that the universal GTM can
be applied in VS campaigns. One or several universal maps can easily work a with wide
range of assays and cover different chemotypes. Therefore, it was decided to test GTM in
the industrial environment of Boehringer Ingelheim Pharma company (BI). For this purpose,
their proprietary database of 1.7M compounds was used to train the manifold. Next, the

map is used to predict more than 2.3K assays as well as some ADME properties.
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5.2.2 Data
1.7M structures were standardized by ChemAxon Standardizer [81] using the

following protocol:

1) Dearomatization;

2) Remove stereo;

3) Remove explicit hydrogens;

4) Remove solvents;

5) Aromatization;

6) Normalize default ChemAxon Standardizer chemotypes (nitro, azide, diazo,

phosphonic, etc.).

To validate the GTM models, BI bio profile was used where a list of IC50/EC50
values was given. 6848 assays were presented in the profile but only 3320 assays
containing more than 100 records were taken. The labels assignment protocol described in

Figure 29 was applied to split the data into 3 classes: active, weakly active and inactive.

First, the algorithm optimizes the threshold for the “active” class to collect at least 15
compounds. The active threshold ranges within 10 and 1000 nM (not systematically; see
Figure 29). Next, it tunes the threshold for the “inactive” class maximizing the number of
items but keeping the ratio of the thresholds (Inacticsg / Acticso) at least 10 folds or greater.
Here, the inactive threshold varies from 1 uM to 10 uM with a step of 1 uM. Once 30% of
compounds are collected as inactives (at least 15), the ratio of the thresholds is checked
again, and, if it is larger than 10, the active threshold (Acticso) is increased in a way that it

becomes to be 10 times smaller than the inactive threshold (Inact;cso).

2371 assays associated with sufficiently large (at least 30 compounds/series) and
conveniently balanced (no less than 15 actives and 15 inactives) structure-activity series
were selected. The external validation was performed using new data points measured in Bl

6 months later.
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Figure 29. Labels assignment protocol which bases on IC50 value of compounds. Here,
Acticsp 1s the threshold on IC50 for active compounds; Inacticso is the threshold on IC50 for

inactive compounds.

5.2.3 Method

To find a suitable universal map(s), a grid search was run. Within this search, 4 GTM
parameters (Table 5) and descriptor space were optimized. Here, 100 fragmentation
schemes supported by the ISIDA Fragmentor software [80, 95] were used as a starting pool
for the search of a suitable descriptor space. These 100 fragmentation schemes were

gathered according to the experience of previous works [9, 50].

To build the GTM manifold, a Frame set (FS) of 25K compounds was prepared. Here,
the FS is fixed to reduce the number of tunable parameters. To gather the FS, clustering

procedure with Tanimoto=0.7 was performed (done by BI earlier). As a result, more than



135K clusters were found. 25K clusters out of it were chosen randomly, where one random

compound represents each particular cluster.

Table 5. GTM parameters ranges set for the grid search.

Name of the parameter Starting value Ending value Step
Number of nodes (root value), k 20 50 5
Number of RBF centers 40% out of the 70% out of the

(root number), m number of nodes number of nodes 10
Regularization coefficient, 1 1.0 5.0 0.5
Width of an RBF center, w 1.0 5.0 1.5

Once the descriptors were computed, they were normalized and filtered according to
their standard deviation (rare columns for which its standard deviation is lower than 2% of
the value range were removed). To train the manifold, the incremental GTM algorithm with

5K items in a block was used (chapter 3.1.2) [5].

The goal of this virtual screening was to distinguish 3 classes: actives, weakly actives
and inactives. Therefore, classification models with 3 classes as well as with 2 classes (just
active and inactive) were built. To evaluate the models, a 3-folds cross-validation procedure
was performed for 500 random assays (the validation on the entire set of assays is time-
consuming). As a score, the mean area under the Receiver Operating Characteristic (ROC
AUC) was computed for each class within one fold: actives against others, inactives against
others, and middle compounds against others. The result was averaged over the 3 folds, and

then over 500 assays. This ROC AUC was used to estimate the quality of the map(s)

(< AUC >3¢5 and < AUC >P™ for 3 classes and 2 classes, respectively).
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In addition to the mean ROC AUC values, some other scores were used:

e Number of assays for which the mean ROCAUC > 0.5;

e Number of assays for which the mean ROCAUC > 0.6;

e Number of assays for which the mean ROCAUC > 0.7 (main score used in 3
classes classification to select the best map);

e Number of assays for which the mean ROCAUC > 0.8;

e Number of assays for which the mean ROCAUC > 0.9.

Once the top-5 maps are chosen, they will be checked using all 2371 assays.

5.2.4 Results and Discussion

In the grid search, more than 226K GTMs were trained and cross-validated. The ROC
AUC scores obtained for the best maps with different map resolution are shown in Figure
30. One can see that the map with 25*25 nodes is already enough to perform 2 classes

classification, whereas for 3 classes higher map resolution is better.
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Figure 30. The grid search progress. Here, the number of models aligned along the Y axe
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The maps were sorted according to the number of assays predicted with the mean
AUC over the 3 classes (< AUC >3¢) larger than 0.7. The best 5 maps were selected

(Table 7). The explanation of the corresponding descriptors is given in Table 6.

Table 6. Descriptors explanation [80, 95].

Descriptors abbreviation Description

IB--FC-AP-2-11 Sequences of bonds of length 2 to 11 using formal

charges and all paths

III-PH-3-6 Triplets of length 3 to 6 using pharmacophores
IB--FC-2-11 Sequences of bonds of length 2 to 11 using formal
charges

These maps were then validated on the entire set of 2371 assays. The results are in

Table 8.

One can see from Table 7 that the best map in 3 classes cross-validation successfully
predicted 59% of given assays (294 out of 500). In 2 classes validation, the result is even
better (80%). The same trend was demonstrated in cross-validation on the entire set (1318

out of 2371 assays were predicted well by the map 1; Table 8).
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To validate the maps in ADME properties, the latter ones were classified, and
< AUC >3 and < AUC >P™ were computed (Table 9). The < AUC >3° values
demonstrate that the map 1 stays at the top in both 3 classes and 2 classes classification.

The average < AUC >3 ¥ for the map 1 varies from 0.65 to 0.72.

Table 9. Validation results for ADME properties.

ADME property Map 1° Map 2 Map 3 Map 4 Map 5

3 g 3 g 3 g 3 |8 3 g

N AN AN AN AN R A A A
EIRIEIEBIR|EBIEIEI|R

\V \% \V \% \Vi \Y% Vi \Y% Vi \V
Caco2_ Efflux 0.69 [0.76 [0.68 [0.76 [0.68 [0.76 [0.68 0.770.66 [0.74
CL Mouse 0.67 [0.75 [0.64 | 0.7 ]0.66 [0.73 [0.65 [0.75(0.65 | 0.7
CL Rat 0.66 |0.75 [0.64 |0.72 [0.65 |[0.73 ]0.65 |0.75]0.62 [0.72
HHEP 0.66 [0.71 [0.69 |0.76 [0.68 [0.77 [0.67 |0.74|0.68 [0.77
HLM 0.65 [0.72 10.62 |0.69 [0.62 [0.69 [0.63 |0.710.62 |0.67

MDCKBCRP_Efflux [0.66 {0.73 [0.68 [0.75 [ 0.7 |0.78 [0.65 [0.74]0.68 [0.75

MDCKPGP_Efflux [0.69 [0.76 [0.68 [0.75 [0.68 [0.75 |0.67 |0.74 (0.67 |0.73

MHEP 0.68 |0.75 ]0.69 [0.74 |0.68 |0.74 0.68 |0.75]0.7 |0.74
MLM 0.68 |0.76 10.66 |0.75 [0.66 |0.74 |0.67 |0.76|0.65 [0.72
PPBhuman 0.72 10.82 0.7 | 0.8 |0.7 [0.79 |0.7 |0.8 [0.69 |0.79
PPBmouse 0.72 10.82 ]0.72 {0.83 [0.69 [0.79 | 0.7 10.79]0.7 | 0.8
RHEP 0.67 |10.75 10.66 |0.78 [0.65 |0.73 |0.67 |0.75]0.65 |0.73
RLM 0.65 |0.74 10.62 |0.68 [0.62 |0.68 |0.64 |0.72]0.61 [0.66
SOL68 0.66 | 0.7 10.63 |0.66 [0.63 |0.66 |0.65 |0.68(0.62 |0.65
Mean 0.68 |0.75 |0.66 |0.74 [0.66 |0.74 |0.66 |0.75]0.66 |0.73
* See Table 7.
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The last step was to externally validate the maps using new data for 42 assays. The

Balanced Accuracy in 3 classes classification was above 0.5 for 30 assays.

5.2.5 Conclusion

Five GTMs were trained and selected out of 236K maps produced by grid search
optimizer. They were cross-validated on more than 2.3K assays from BI. The cross-
validation demonstrated that about 55% of the assays are predicted with ROC AUC > 0.7.
The external validation on 42 assays for which new data were received showed that 30 out

of 42 assays are predicted well (Balanced Accuracy > 0.5 in 3 class classification).
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6 Public Chemical Databases Comparison

6.1 Introduction

Chemical databases are huge, and they grow each year since new records are added to
public and private chemical databases. Nowadays, the largest public chemical resources
(PubChem, CAS, Zinc) contain millions and even hundreds of millions of compounds.
However, the potential of the full chemical space is much larger. So far, P. Polishchuk et al.

[3] have guesstimated the drug-like space as 10°° compounds.

Analysis of large chemical space is a real challenge that requires suitable
chemoinformatics tools. Generative Topographic Mapping (GTM) has been already tested
as a tool to analyze big data sets (up to 2M items). In this project, we raise the bar (up to
20M compounds) and test GTM in the task of big chemical libraries analysis and
comparison. For this purpose, a data set of existing compounds from PubChem database
with no more than 17 heavy atoms were compared to virtually generated compounds from
the FDB-17 database [7]. The data sets were compared using (i) Bhattacharyya, Soergel and
Euclidean distances, (ii) GTM class landscapes, and (iii) GTM property landscapes. To
resolve the problem of GTM resolution and to find unique for a given database chemotype,
hierarchical GTM zooming technique described in chapter 4.3 was applied, see below our

publication in ChemMedChem [50].
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Mapping of the Available Chemical Space versus the
Chemical Universe of Lead-Like Compounds

Arkadii Lin,” Dragos Horvath,* Valentina Afonina,™ " Gilles Marcou,”
Jean-Louis Reymond,'” and Alexandre Varnek*™

This is, to our knowledge, the most comprehensive analysis to
date based on generative topographic mapping (GTM) of frag-
ment-like chemical space (40 million molecules with no more
than 17 heavy atoms, both from the theoretically enumerated
GDB-17 and real-world PubChem/ChEMBL databases). The
challenge was to prove that a robust map of fragment-like
chemical space can actually be built, in spite of a limited (<
10°) maximal number of compounds (“frame set”) usable for
fitting the GTM manifold. An evolutionary map building strat-
egy has been updated with a “coverage check” step, which
discards manifolds failing to accommodate compounds out-

Introduction

Nowadays, chemical databases include millions of chemical
structures, and this number exponentially increases because of
the implementation of parallel and combinatorial synthesis ap-
proaches, as well as new experimental techniques like flow or
microwave reactors. Yet, these databases cover only a small
part of chemical space or the “universe” of all possible mole-
cules. The exploration of this chemical space is a challenge for
chemists seeking to understand its structure, to discover its
unexplored regions, and to analyze the structural relationships
between the compounds that it encompasses. Chemoinformat-
ics,"! representing compounds as molecular graphs and encod-
ing them as vectors of descriptors, is the paramount tool for
rational navigation of this chemical space. Associating struc-
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side the frame set. The evolved map has a good propensity to
separate actives from inactives for more than 20 external struc-
ture-activity sets. It was proven to properly accommodate the
entire collection of 40 M compounds. Next, it served as a library
comparison tool to highlight biases of real-world molecules
(PubChem and ChEMBL) versus the universe of all possible
species represented by FDB-17, a fragment-like subset of GDB-
17 containing 10 million molecules. Specific patterns, proper
to some libraries and absent from others (diversity holes), were
highlighted.

tures to recorded experimental properties and learning from
this big data®?' is a key challenge of chemoinformatics.

The key to successful chemical space mapping is compliance
with the similarity principle similar compounds, which are
expected to have similar properties, must appear as neighbor-
ing entities on the chemical space map, irrespective of how it
was built. There are various strategies to represent the chemi-
cal space with chemoinformatics support, and these depend
primarily on the manner in which the chemical information is
represented: graph-based or descriptor-based. In graph-based
approaches, data visualization is based on substructures/scaf-
folds and their hierarchical relationships (the scaffold tree’® or
scaffold network). In the case of descriptor-based chemical
spaces, each molecule is represented by a D-dimensional
vector. Based on this fact, two popular approaches can be
used: similarity network graphs™ (with nodes representing
molecules that are connected, that is, “neighbors”, if their simi-
larity exceeds a user-defined threshold) or dimensionality re-
duction (objects from the D-dimensional chemical space are
transferred into a latent space of two or three dimensions). Un-
fortunately, the use of large sets of data imposes a limit on the
list of methods that can be used for data visualization. Three
basic methods fit these restrictions: principal component anal-
ysis (PCA),® self-organizing Kohonen mapping (SOM),*'? and
generative topographic mapping (GTM).""' The main draw-
back of PCA is that it is a linear method of dimensionality re-
duction, and in some cases, a small number of principal com-
ponents (at most three, in order to obtain a human-readable
projection) explains only a small part of data variance. Another
problem comes from the low information content of PCA
plots, which results from the tendency to concentrate most of

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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the data points in a certain region in the form of a Gaussian
cloud, while the rest of the plot is left poorly populated. The
second approach, SOM, does not have this drawback because
it is a nonlinear dimensionality reduction method. Unfortunate-
ly, in case of this method, the output information is truncated
to the assignment of a molecule into its residence node and
the indication of how well it fits into this node.

Brief introduction to generative topographic mapping

Generative topographic mapping, as a probabilistic extension
of SOM,"” does not have above-mentioned disadvantages. In-
tuitively, it consists of inserting a two-dimensional manifold, to
be imagined as a flexible “rubber sheet”, into the high-dimen-
sional descriptor space. The manifold is mathematically de-
scribed by a square grid of reference points (“nodes”) and a
set of radial basis functions (RBFs); the number of nodes and
the number of RBFs are key operational parameters to be
specified at input. This rubber sheet is then “bent” in order to
cover, as closely as possible, the descriptor space points corre-
sponding to the “frame” molecules provided as input. Mole-
cules are thus fuzzily associated to the closest grid nodes of
the bent manifold: the degrees of association of each molecule
to a node are called “responsibilities”. Eventually, the rubber
sheet is again “flattened out” as a regular grid of nodes in a
2D plane, and the molecules from the initial descriptor space
can now be localized on this map based on their responsibili-
ties. Therefore, GTM could be used not only as a chemical data
visualization tool but also to build classification and regression
structure—property models.

The formal methodology will be briefly described in the fol-
lowing paragraphs. GTM is a nonlinear dimensionality reduc-
tion approach that maps points from the D-dimensional data
space to a two-dimensional latent space (the actual “map”).
These spaces are connected by a nonlinear, parametric func-
tion y(x,W). The latent space is represented by a squared KxK
grid. Every point of the data space is mapped on the latent
space with the generation of the corresponding probability
distribution, that is, responsibilities with respect to the nodes
of grid. This is, as already hinted, achieved by nonlinearly em-
bedding a two-dimensional manifold in the D-dimensional
space. The nodes x, on the regular grid in the latent space are
mapped to the corresponding centers of Gaussians y, in data
space, by using a parameterized, nonlinear mapping function
Vi = y(x,W)."* Therefore, an instance t in data space (a mole-
cule represented as a point of coordinates t according to a mo-
lecular descriptor) will be more strongly associated to any
node x, the closer its point t is situated with respect to the
image y, of the latent space node, as described by Equa-
tion (1), in which t, is a data instance and 3 is the common in-
verse variance of the distribution.

D/2
P, 5. W. ) :f’—exp(/;nyk - rnnZ) (1)

2

The manifold may be distorted in order to match frame set
compound coordinates t, as closely as possible, in optimizing
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the “log likelihood” parameter described by Equation (2).

LW.p) = Z/n{%zpmm, W,ﬂ)} 2)

After optimization, the normalized probability of association of
an instance n (a molecule) represented by descriptor vector t,
to a node x, is labeled R,, and called the responsibility vector
of instance n [Eq. (3)].

p(tnlxkv W"ﬂ)

Ry = Lo P
S (talxi W)

(3)

To enable GTM usage for big data, it is necessary to avoid the
need to upload the entire compound descriptor matrix for the
entire frame set of N compounds. A set of NxD-dimensional
vectors, in which D may be of the order of 10* quickly be-
comes prohibitive in terms of memory requirements. To
bypass this bottleneck, the incremental version of the GTM al-
gorithm (iGTM) is used."™ Instead of updating the model
with the entire data matrix, iGTM divides the data into blocks
and updates the model block by block until convergence of
the log likelihood function.

Analysis of a compound library after GTM projection relies
on three main tools: class maps, property landscapes, and den-
sity maps. In density maps, individual responsibility vectors of
library compounds are added, and the local color intensity can
be used as marker of cumulated responsibility.

Class maps and property landscapes imply some previous
learning to associate specific classes/property values with map
coordinates. In this process, the molecular property is “trans-
ferred” from the landscape training items to the nodes, which
are being assigned the responsibility-weighted mean of prop-
erties P of the herein-residing molecules [Eq. (4)]."

P _ E:;I:1 Pann 4
k — N ( )
Zn—l Rk”

Property P may be any measured or calculated molecular prop-
erty, leading to the respective “property landscapes”, but it
could also represent a binary classification label. In the latter
case, for example, with P=1 representing “inactives” and P=2
representing “actives”, the mean P values of the node will
make up a “fuzzy” classification landscape, which represents
the predicted probability of a node resident to belong to
either of the two classes. Note that, if the two classes are
highly imbalanced, the most numerous one will implicitly dom-
inate the landscape, and it is preferable to assign node P
values reflecting the relative enrichment of the node in terms
of residents of every class. To this purpose, it is sufficient to
scale up the responsibilities of the items of the minority class
by a factor equal to the ratio of the population sizes of the
majority and minority classes."* This normalization, which has
no impact unless the two classes are imbalanced, is systemati-
cally applied in all fuzzy classification landscapes in this work.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Any density landscape (cumulated responsibility vector) or
property landscape as defined above represents a signature
(vector) of a compound collection. Therefore, any compound
collection no longer needs to be characterized by its individual
molecules but may simply be rendered by this synthetic GTM-
based characteristic projection pattern vector. The simplest
synthetic descriptor of a compound collection G is the cumu-
lated responsibility vector CumR,(C), defined as the sum of R,
values of the library members neC. Therefore, a comparison
of two compound libraries amounts to the extremely fast com-
parison of two (or several, if several viewpoints based on differ-
ent landscape coloring schemes are desired) vectors, rather
than the calculation of similarity scores between every possible
compound pair from the libraries.

To be able to compare databases of different sizes, the cu-
mulated responsibilities CumR,(C) can be normalized by divi-
sion over n, as suggested by Fechner et al." The overlap of li-
braries in the latent space can be estimated by means of cova-
riance/distance measures of cumulated responsibilities: the Ta-
nimoto coefficient, the Bhattacharyya coefficient,"” and the Eu-
clidean distance.

So far, GTM has been successfully used in various proof-of-
concept studies in chemical space analysis, specifically by ex-
ploiting a very strong feature of GTM, that is, the ability to
combine chemical mapping and compound property analysis/
prediction within the same intuitive framework. Commercial
compound library analysis and comparison has been success-
fully applied to collections with an order of magnitude of
101" Eventually, an evolutionary procedure for selecting
maps''® of optimal polypharmacological competence was de-
signed, and this led to “universal” maps of drug-like space.
GTM is a unsupervised process that requires the specification
of a frame set of compounds encoded by their molecular de-
scriptors. These two essential degrees of freedom will be called
“metaparameters” because they are of general relevance for
map-building problems. In addition, a series of operational pa-
rameters (map size, number of RBFs, etc.) are specific to the
GTM algorithm. The key strength of the evolutionary tuning
procedure is the simultaneous combined search through both
meta- and operational parameter space, which leads to the
best “global” GTM construction options. For the winning maps,
chosen from the very many possible ways to construct a GTM-
based map, the claim of “universality” is supported by their
ability to map bioactive compound sets, such as to discrimi-
nate actives from inactives, for a vast majority of the distinct
and unrelated ChEMBL-reported"” bioactivities. In other words,
those maps were selected for their propensity to correctly pre-
dict the property or class of a compound by mapping it onto
the “landscape” created on the basis of other examples of mol-
ecules of known property or class and then “reading” the pre-
diction from the map, for a vast spectrum of different proper-
ties.

Goal of the study

Commercial and bioactive compounds are, however, just a tiny
minority of the universe of possible compounds, a fact that, so
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far, has not been considered in any of the above-mentioned
mapping attempts. A groundbreaking enumeration of all possi-
ble organic compounds with less than 18 heavy atoms, the
GDB-17"% database represents an opportunity to now expand
GTM-driven mapping, with all the benefits emerging from
property projections into this much larger realm of chemical
structure. Mapping the entire set of 166 billion compounds,
albeit technically feasible, would come at computational costs
beyond availability. The present work focused merely on a se-
lection of 10 million lead- and fragment-like compounds®”
from GDB-17 this subset is hereafter referred to simply as
“FDB-17" unless explicit reference is made to the entire 166 bil-
lion compound collection. FDB-17, composed of molecules
that are significantly smaller than most typical drugs, could be
considered to represent the entire universe of lead- and frag-
ment-like compounds. This was, first, a technical challenge, be-
cause the so-far manageable order of magnitude of 10° com-
pounds was clearly not sufficient, incremental GTM construc-
tion algorithm notwithstanding."® The bottleneck here clearly
lies at the map construction stage: the manifold needs to be
calibrated on the basis of a frame set of compounds, which
must be representative of the ensemble of the chemical space
zone to be spanned by the map. It is very difficult to a priori
predict the minimal size of such a diverse, representative
frame set.

Also, by contrast with the above-mentioned construction of
“universal” maps of drug-like space, the quality of which was
estimated from quantitative property prediction challenges,
the universe of theoretically feasible compounds would, by
definition, be void of associated experimental data; the ques-
tion of the relevance of the map for those chemical space re-
gions has to be rethought. The parameter describing how
close a given molecule (e.g., its corresponding point in the ini-
tial descriptor space) is to the fitted manifold is called the “log
likelihood”. This was now systematically used to verify whether
relevant compounds that were not included in the frame set
were properly described by the fitted manifold. The herein de-
fined “coverage” criterion was, however, not necessarily a
simple log likelihood cutoff, because the absolute values there-
of strongly depend on the choice of the operational parame-
ters of the map. After exploration of several working strategies
(not detailed here), a self-adaptive log likelihood cutoff (func-
tion of the typical values found for frame set compounds) was
employed.

Mapping by coverage-controlled evolutionary strategy

Maps of lead- and fragment-like compound spaces were thus
constructed on the basis of frame sets, including subsets of
FDB-17, but also of compounds of less than 18 heavy atoms
from the two major databases PubChem!" and ChEMBL."”
The respective subsets are named PubChem-17 (11 million
compounds) and ChEMBL-17 (0.1 million compounds). The in-
clusion of the latter compounds, some of which form com-
pound series with associated bioactivity data, enabled the
usage of the already cited polypharmacological competence
criterion to select the most relevant maps.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Descriptor selection concerned the choice of the optimal
ISIDA fragmentation schemes,?**? out of the large panel of
possibilities (sequences/circular fragments/atom pairs, colored
by atom label/pharmacophore type/force field type, etc.) sup-
ported by the Fragmentor software. By contrast to our typical
strategy in modeling drug-like compounds (relying on frag-
mentation schemes having proven usefulness in previous
drug-discovery-related work), the smaller sizes of compounds
herein required an ab initio assessment of appropriate frag-
mentation schemes.

The employed “frame” sets were subsets of varying sizes of
above-mentioned molecules, whereas distinct, large “coverage”
subsets were used to assess the coverage criterion of the gen-
erated manifolds; the log likelihood values of coverage com-
pounds should not be significantly worse than the typical dis-
tribution of actual frame set compounds. If the contrary ap-
plied, it meant that the manifold specifically spanned the
frame set but not other relevant chemical space zones: the
GTM build-up attempt as encoded by the current set of opera-
tional and metaparameters was aborted.

Eventually, map fitness was assessed by the polypharmaco-
logical competence criterion, within the limits of the available
structure—activity data for compounds with less than 18 heavy
atoms, as above-mentioned.

Confirmation of the generality of the obtained map

The full FDB-17, PubChem-17, and ChEMBL-17 sets were even-
tually projected on selected “winning” maps, to ensure that
the employed coverage sets were significant and that the
manifold provided a correct coverage of the entire subsets. In
addition, two further 10 million compound samples from the
entire 166 billion GDB-17 collection were subjected to the
mapping exercise, for validation purposes. One of the two al-
ternative sets, herein named “FDB_bis-17" was sampled ac-
cording to the same protocol that led to the lead- and frag-
ment-like FDB-17 subset.””! By contrast, the other set, “GDB_
rand-17", was a plain random subset and was thus dominated
by 17-atom species, which are by far the most numerous. If
the built map is relevant, then library comparison should show
that the FDB-17 and FDB_bis-17 subsets have a virtually identi-
cal coverage of chemical space, whereas GDB_rand-17 will dis-
play a different space coverage pattern.

Library comparison and characterization by mapping

The ultimate topic of this work was to use the above-generat-
ed maps to directly compare the mentioned compound collec-
tions and to learn from the discrepancies between the un-
biased “universe” of molecules, as represented by FDB-17, and
the chemical subspace populated by the to-date existing mole-
cules from the public databases PubChem-17 and ChEMBL-17.
Several methods were used in this sense:

1) Direct comparison of the libraries, represented by their cu-
mulated responsibility vectors on the map;
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2) Construction and visual comparison of property landscapes
(size, chirality, aromaticity, hydrophobicity, and (predicted)
solubility) and library density profiles, and the detection of
“diversity holes” (lowly or unpopulated regions specific to
each library);

3) Extraction of specific or “privileged” map zones populated
by above-expectation levels of compounds from one spe-
cific library, and their chemical interpretation.

Methods
Compounds and standardization

All compounds, irrespective of their source (see below) were
submitted to the same “classical” standardization protocol im-
plemented on our virtual screening web server and parallelized
on the cluster of the Strasbourg High-Performance Computing
Center in order to cope with tens of millions of compounds.
This protocol included counterion strip-off, standardization®
to ChemAxon basic aromatic forms and consistent representa-
tion of N-oxides (including nitro groups) with split charges,
generation of the ChemAxon-predicted major tautomer® and
major microspecies® at pH 7.4, and conversion to a stereo-
chemistry-depleted representation. The herein-used molecular
descriptors were not stereochemistry sensitive, so assessment
of structural uniqueness after removal of stereochemical infor-
mation was important to avoid fake “duplicate” descriptor
lines in input files and also to cross-check for common occur-
rences of the same compound in several of the data sources
mentioned below.

GDB-17 is a database that was formed by enumerating or-
ganic molecules of up to 17 (inclusive) atoms of C, N, O, S, and
halogens, based on first principles and by starting from mathe-
matical graphs, irrespective of pre-existing building blocks to
avoid historical bias in structure selection.”™ The complete
GDB-17 database contains 166.4 billion organic molecules.
GDB-17 reaches into molecular sizes compatible with many
drugs (367 approved drugs comprise <17 atoms) and typical
for “lead” compounds and molecules used in “fragment-based
drug design” (100 < molecular weight < 350 Da).”! FDB-17 is a
"fragment-like” subset of GDB-17 containing 10 million mole-
cules with a limited number of functional groups and spanning
evenly across molecular size and stereochemical and functional
group complexity.?” FDB-17 has intentionally limited functional
group diversity to focus the structural diversity on scaffolds.
For example, halogen atoms and non-aromatic double bonds
are omitted because they resemble methyl and ethyl groups,
respectively, in the first approximation, and therefore, they are
partly redundant because of their saturated carbon analogues.
Furthermore, no more than one positive and one negative
charge at neutral pH value is allowed in FDB-17 molecules be-
cause multiply charged molecules tend to dominate in the
fully enumerated database GDB-17. This set was employed as
the source of frame and coverage subsets at the map building
stage and was also the subject of the subsequent detailed
chemical space analysis.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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FDB_bis-17 and GDB_rand-17 represent, as already hinted,
additional subsets of the 166 billion total collection of feasible
compounds, separate from the 10 million compounds above.
Herein, they were used for map validation purposes. FDB_bis-
17 was built by following the above-mentioned “flat” random
picking protocol, in as far as possible: at low N values, all the
existing compounds with N heavy atoms were already admit-
ted into the reference FDB-17 database. By contrast, GDB_
rand-17 is the result of unbiased random picking from the
166 billion compound set: it is therefore statistically composed
of a majority of 17-atom compounds.

PubChem™® and ChEMBL"”' are public databases of organic
ligands and other organic compounds, with biological activity
annotations. The Pubchem-17 and ChEMBL-17 size-limited sub-
sets (as extracted from the web servers in March 2017) were
used as representatives of real organic fragment-like and lead-
like molecules, which are of relevance, or at least thought to
be of relevance (interesting enough to be synthesized and
tested), in various stages of drug discovery. This actual or as-
sumed relevance is the main source of human knowledge-in-
duced bias in characterizing these selections, relative to the
plain, unbiased FDB-17 subsets. Pubchem-17 contains up to 1
million compounds (after removal of molecules also reported
in ChEMBL; see paragraph about standardization above). There
are some 0.1 million compounds in the smaller ChEMBL-17 set.
All of these compounds have some kind of activity annotation,
but only the compound series of sufficient size (>90 mole-
cules), sharing the same activity measure, and containing a
minimum of 30 active compounds could be used for cross-vali-
dated map coloring/property prediction.

Frame, coverage, and selection sets: Frame and coverage
set compounds were randomly selected. The evolutionary map
tuner supported various frame set options in order to pick the
best suited one: a pool of frame set candidates was provided
by a selection of 100000 compounds, randomly taken form
the entire pool of >40 million compounds above (FDB-17,
FDB_bis-17, GDB_rand-17, PubChem-17, and ChEMBL-17). Out
of this pool, the evolutionary map tuner was enabled to
choose either one of the halves (50000 each) or one of the
tiers (33000 compounds each) of this pool. Coverage sets in-
cluded distinct randomly selected subsets of 50000 com-
pounds from each of the five above-mentioned libraries and
were not included in the frameset pool. Coverage was thus
monitored with respect to 0.3 million compounds.

Selection and external validation sets were structure—proper-
ty series that were used, by cross-validated projection on a
map, to create a property landscape able to predict the prop-
erties of left-out compounds and, hence, to quantitatively vali-
date the map. Maps simultaneously supporting high-quality
landscapes for a large number of selection sets associated with
various properties were preferred by the evolutionary map
tuner (herein, active versus inactive classification landscapes
were used specifically). Selection sets were created by an auto-
mated data curation procedure applied to the PubChem data-
base:
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1) For each PubChem assay, the results were retrieved under
csv file format. Only lines reporting half-maximal inhibitory
concentration (ICsp) or inhibition constant (K) values were
kept. If there were less than 200 such entries, the assay was
no longer considered. No analysis of the actual ICs, or K;
values was undertaken, but the PUBCHEM_ACTIVITY_OUT-
COME field was taken as such, in order to assign com-
pounds into either the “active” or “inactive” category.

2) By using the reported PubChem compound identifications
(CIDs) as a key, assay results were matched against the list
of standardized PubChem compounds with less than 18
heavy atoms. Note that several distinct PubChem CIDs
might correspond to the same standardized structure. Only
PubChem-17 structures receiving an unambiguous flag as
either “active” or “inactive” with respect to this assay were
kept at this step.

3)Next, it was checked whether the assay-specific standar-
dized structure-activity class table contained (a) more than
30 “active” entities and (b) at least twice as many “inactive”
entities as “active” ones. For large sets with more than
5000 entries, a random subset of 5000 entries was picked.
If the initial set contained less than 1000 “active” com-
pounds, then the “inactive” ones were specifically discarded
until a final set size of 5000 was obtained; otherwise, repre-
sentatives of both classes were discarded on a pro rata
basis.

All the hereby extracted data sets are provided (as SMILES-ac-
tivity class label text files, PubChemID.smi_class) in the Sup-
porting Information. Next, a modelability study of the resultant
structure-activity class sets was undertaken: all these sets
were encoded under the form of the various herein-considered
ISIDA fragment descriptor sets (see below) and subjected to an
evolutionary Support Vector Machine (SVM) classification
model tuner If the latter succeeded in finding at least one
combination of molecular descriptor scheme and SVM parame-
ters supporting a model with threefold cross-validated bal-
anced accuracy (BA) above 0.65, the set was declared “modela-
ble” and, thus, eligible as either a map selection set or an ex-
ternal validation set. The 28 selection sets, randomly picked
out of the pool of modelable sets, were mapped/cross-validat-
ed for every GTM manifold that the evolutionary tuner at-
tempted to build, and their cross-validated classification profi-
ciency entered the map fitness score calculation (map fitness is
the mean of the selection-set-specific cross-validated BA
values, empirically penalized by 0.5xthe standard deviation of
set-specific BA values). External sets were mapped and cross-
validated on the final map only; they have no influence what-
soever on its construction. The Supporting Information also
features the list of modelable sets, as well as the one of ran-
domly picked selection sets, as a list of PubChem IDs versus
the cross-validated balanced accuracy scored in the modelabili-
ty study.
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Molecular descriptors

Two software packages, ISIDA”” and MOE,*” were used as the
source for the herein-employed molecular descriptors. The
former served to generate candidate descriptor sets, out of
which to pick the optimal choice for manifold construction, as
detailed below. The latter served to calculate descriptors repre-
senting calculated properties (logF, log solubility) and other in-
terpretable molecular descriptors that were of direct chemical
interest, to allow these to be rendered as property landscapes
on the map, for library analysis. MOE descriptors were comput-
ed by using the MOE v.2015.10 software.?”

The ISIDA Fragmentor®” software may generate a vast
choice of fragment count descriptors, based on various frag-
mentation schemes (from “fine-grained” circular fragments,
featuring bond order information, to “coarse” atom pair
counts) and employing various atom coloring strategies as a
means to enable capturing specific chemical information.
Meaningful fragmentation schemes yielding descriptors that
were proven useful in various drug-design-related endeavors
may not be automatically appropriate for the current study fo-
cusing on the universe of significantly smaller lead- and frag-
ment-like compounds. Therefore, a systematic scan of possible
fragmentation schemes was undertaken as follows:

1) Given a randomly picked subset of 5000 compounds (from
the five concerned collections), a systematic search was
performed. The search looped over 1) all possible fragmen-
tation types (sequences, circular fragments); 2) considered
fragment coloring schemes”" (by atom type, by pharmaco-
phore feature, and by CVFF®" force field type); 3) toggles
of Formal Charge, Atom Pair, and All-Paths options (please
refer to the Fragmentor manual?” for details): and 4) mini-
mal and maximal fragment sizes to be enumerated. For
each combination of the above choices (more than 800
were scanned), the fragmentation scheme with maximal
fragment size that resulted in descriptor vectors of dimen-
sionality below 5000 was memorized.

2) The above-memorized fragmentation schemes were all sys-
tematically applied to the frame set pool of 100000 com-
pounds. In the default “open-ended” fragmentation mode,
the ISIDA Fragmentor added newly encountered substruc-
tures that are not present in the initial 5000 molecules as
novel elements to the descriptor vector. If the dimensionali-
ty of the vector exceeded 7500, the fragmentation scheme
was discarded. Otherwise, the fragmentation scheme was
declared as a valid choice for the evolutionary map tuner.

All other relevant sets for map building (i.e., coverage and se-
lection sets) were subjected to fragmentation according to the
above-validated (72 per total) fragmentation schemes by using
the -StrictFrg Fragmentor option and no longer admitting pre-
viously unseen substructures into the descriptor vector. The
series of 72 considered candidate descriptor schemes is avail-
able (as an ISIDA Fragmentor command line file) upon request.
For practical reasons, the complete five databases were only
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fragmented (again, in -StrictFrg mode) according to the
scheme selected by the evolutionary map tuner as the most
appropriate, in view of their projection on the optimal GTM
manifold.

Technical enhancements of the evolutionary parameter
choice strategy: The coverage criterion

In this work, the previously designed evolutionary map selec-
tion scheme was updated to include a “coverage control” step
(the new block in the red frame of Figure 1).

After the construction of the manifold according to the pa-
rameters defined in the “chromosome” (parameter vector),
frame set compounds fitted on the manifold were sorted by
their log likelihood.® The threshold value topping the log like-
lihood values of the bottom 5% frame set molecules less well
matched by the manifold (logL5) was recorded. Next, above-
mentioned “coverage sets” were projected on the manifold
and the percentage of “badly” mapped compounds (in the
sense of log likelihood < loglL5) was monitored. This fraction
should never exceed an empirical threshold, herein set to 15 %.
Otherwise, map construction was stopped and the attempt
counted as a failure of the evolutionary procedure: the current
manifold did not extrapolate well into chemical space regions
not covered by the frame set. If each of the (herein, ten dis-
tinct) coverage sets passed the test, the manifold was assessed
in terms of predictive power, by means of the “classical” three-
fold cross-validated cycle of projection—coloring-prediction of
selection sets, that is, compound sets with known biological
activities.

Map analysis tools

Tools used for a posteriori map analysis included state-of-the-
art quantitative library comparison indices (overlap scores), vis-
ualization of density-modulated class and property landscapes,
and a novel “zooming” procedure (see below), in order to
highlight specific structural patterns associated with given
map locations.

Quantitative library comparison

Quantitative indices that can be derived from a GTM model in
order to characterize any compound collection all rely on the
cumulated responsibility vector of the collection; this is a cen-
tral concept in GTM theory and, as such, has already been dis-
cussed in the Introduction. The similarity of two libraries may
thus be quantitatively measured by applying different similari-
ty scores calculated with CumR,(C) vectors, for example, the Ta-
nimoto coefficient, Bhattacharyya coefficient," and Euclidian
distance.

Landscapes

The algorithms employed to generate density-modulated land-
scapes have already been described in various previous publi-
cations,"*'®3? and will not be revisited here. Color and density
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Figure 1. Evolutionary map selection scheme.

in the inter-nodal continuum are obtained by polynomial inter-
polation (on the basis of the four closest nodes). The color in-
tensity was modulated by the total compound density at a
node, so that color rendering can be tuned from completely
transparent (if the total density is below a minimal threshold)
to full saturation (if the density exceeds a maximal threshold),
with range-wise interpolation in between. Practically, when
comparing landscapes of collections of different sizes, it is
more useful to modulate the intensity by the relative com-
pound density, that is, the ratio between the actual CumR,(C)
value in a node, and its default value of (library size)/(total
number of nodes). Thus, nodes harboring identical fractions of
a library will light up at identical color intensity.

GTM hierarchical zooming

Map resolution, that is, the number of nodes, is a tunable pa-
rameter that can be chosen such as to ensure meaningful,
cross-validating property landscapes for selection sets. Howev-
er, such sets of biologically tested compounds are intrinsically
small. The evolutionary algorithms showed that a limited
number of nodes is sufficient to ensure cross-validated separa-
tion of actives versus inactives. Yet, the number of items that
can be mapped a posteriori with GTM is unlimited. For each
node, the subset of compounds that is significantly associated

ChemMedChem 2018, 13, 540 - 554 www.chemmedchem.org 546

with it (Ry, > threshold) may become too numerous for a
simple visual inspection or common substructure analysis to
be sufficient to highlight the common structural patterns char-
acterizing it"¥ Tino et al.®*¥ suggested the use of several maps
built on the same descriptor set, in which one of them is the
main map obtained for the entire initial data set and the
others are for the subsets extracted from zones of the first
map that are too dense. This approach was called “hierarchical
GTM” and was applied to some “toy” data sets that contained
no more than 3000 items. Herein, we applied this technique to
“zoom” into the projection of 21 million compounds from FDB-
17, PubChem-17, and ChEMBL-17 in order to perform more ex-
haustive structural analysis.

The idea of hierarchical GTM, or zooming, is to extract the
molecules from one node or a cluster of nodes (e.g., an area of
nine nodes) in which the researcher is interested and to build
a new GTM manifold just for this subset, with the same opera-
tional parameters and descriptor set. Moreover, this process is
iterative, so, if necessary, it can be repeated on the built
submap. Thus, multilayer zooming can be applied to big data,
when we deal with millions of compounds, to avoid costly cal-
culations. If the number of molecules does not exceed some
constant number (e.g., 100 molecules), a usual structure analy-
sis method, such as scaffold analysis,*” can be applied.
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Results and Discussion

Map generation by the evolutionary algorithm

Evolutionary optimization, after 741 generations, led to a best
map that fulfilled the coverage criterion for all coverage and
selection sets, with the following parameters: square root of
the number grid nodes 29x 29, number of RBF centers 18x 18,
width of RBF 0.4, regularization coefficient 3.236, size of frame
set 100000 compounds, and descriptor space |A-FF-FC-2-3 (se-
quences of 2 and 3 atoms, colored by their CVFF force field
types and including formal charge information;?” this repre-
sented a sparse, 6142-dimensional vector). The propensity of
the map to discriminate between actives and inactives in the
28 selection sets, calculated by means of a threefold, quite ag-
gressive cross-validation procedure (see below), resulted in a
mean balanced accuracy criterion of 0.645.

External validation and consistency check of winning map

Once the map manifold is generated with the above-men-
tioned so-far best parameter setup, it is ready to project any
other chemical compound.

Manifold quality control

The first implicit external validation was to entirely project all
five libraries on the map and to estimate the fractions of com-
pounds not properly “covered” by the manifold, in the sense
of the herein-defined coverage criterion. Figure 2 shows the
distribution of log likelihood values in the five libraries, in par-
allel with that of the frame set molecules. None of the libraries
display any extreme increase in the fraction of compounds
with low log likelihood values. All collections easily pass the
imposed threshold maximum 15 % of compounds not properly
covered by the manifold. In fact, their distributions are striking-
ly identical to that of the frame set compounds, and the frac-
tion of compounds not properly covered (with log likelihood <
logL5) is always much closer to 5%, which is the fraction of

50
45
40
35
30
25
20 =
15
10

compounds at given log likelihood / %

log likelihood

~@=ChEMBL-17 === PubChem-17
~+~—GDB_rand-17 —@— FDB_bis-17

== Frame_set
=>é=FDB-17

Figure 2. Log likelihood distributions within considered databases and the
frame set.
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frame set compounds at which logL5 was defined. Thus,
50000 randomly picked representatives serving as the frame
set successfully spanned the relevant chemical space contain-
ing more than 40 million lead- and fragment-like compounds.

Validation of the map propensity to support predictive
classification models for external structure—activity sets not
seen at the map-tuning stage

For each of the 24 external structure/activity class data sets,
the propensity of the map to separate actives from inactives
was assessed by following the same threefold cross-validation
scheme that was used, with selection sets, during evolutionary
optimization. Two thirds of the external set members were
projected on the map, in order to “color” it by class; nodes in
which the number of “residing” active compounds exceeds the
statistical expectation were colored as “active” nodes, whereas
the others were labeled as “inactive”. Eventually, the remaining
unmapped third of the current data set was mapped onto the
colored manifold, and each of its compounds was associated
with a class, depending on the class(es) of the neighboring
node(s). The herewith predicted classes were compared to the
actual experimental labels of the compounds, which allowed,
after cycling over the data set tiers that were kept out, cross-
validated BA scores to be estimated for each of the 28 and 24
targets associated with the selection and validation data sets,
respectively. As can be seen from Figure 3, 90% of the targets
achieved balanced accuracies above 0.6, which is a robust
result. Notably, in the context of the relatively small data sets
(which is a consequence of limiting size to 17 atoms and less),
the aggressive threefold cross-validation was perhaps too chal-
lenging a choice; five- or tenfold schemes would yield better
statistics. There was no significant difference in distribution of
BA values between selection sets and external sets, respective-
ly; the latter were as accurately accommodated on the map
exclusively selected on the basis of the former.

Map consistency check: Comparison of FDB-17 to the
alternative samples FDB_bis-17 and GDB_rand-17

Even though these processed chemical libraries represent, to
our knowledge, the largest to be successfully mapped so-far
by using GTM technology, it cannot be denied that tens of mil-
lions of compounds represent a vanishingly small part of the
166 billion GDB-17 compounds. Furthermore, FDB-17 is a spe-
cially designed subset of fragment-like compounds: How rep-
resentative is it? To what extent would alternative samples of
10 million compounds from GDB-17 cover the same chemical
space as FDB-177 Is a sample of 10 million compounds mean-
ingful, or does it completely ignore entire chemical space
zones? If so, then alternative samples, stochastically visiting
different subspaces, should be weakly overlapping. Is the
degree of overlap sensitive to the library sampling protocol?
The alternative samples FDB_bis-17 and GDB_rand-17 were in-
troduced to address these questions, with the former being
produced by following the same protocol® as FDB-17 and the
latter being a plain random subset of GDB-17.
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Figure 3. Cross-validated balanced accuracy (BA) proving the effectiveness
of active versus inactive separation on the GTM manifold for a) 28 selection
targets and b) 24 validation targets. For an explanation of the target identi-
ties, see Tables S1 and 52 in the Supporting Information.

Fuzzy class landscapes, with FDB-17 compounds arbitrarily
assigned into a “blue” class and the alternative sample labeled
as “red”, are shown in Figure 4. Herein, the zones predominant-
ly populated by the members of either library are colored by
the extreme colors of the spectrum. Residents of dark blue and
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Figure 4. Fuzzy classification landscapes showing GDB subset overlaps:
a) FDB-17 (blue) versus FDB_bis-17 (red); b) FDB-17 (blue) versus GDB_rand-
17 (red); c) density-modulated color samples.

red areas of the landscape are FDB-17 members to an extent
of >90% and < 10%, respectively (extreme colors should not
be interpreted as a complete absence of members of the other
library). In areas that are equally well populated by both, the
color is in the intermediate spectral range of orange/yellow/
green. The latter tones completely dominate the FDB-17
versus FDB_bis-17 landscape, which proves that a subset of 10
million compounds sampled according to the same protocol
does indeed reproducibly cover the relevant chemical space.
FDB-17 and FDB_bis-17 are, grossly, redundant sublibraries.
The subtle differences do not impact on this conclusion be-
cause, as already mentioned, the extremely small compounds
were all co-opted into FDB-17 and are therefore absent from
FBD_bis-17. FDB-17 and GDB_rand-17, however, are not the
same thing; as expected, the latter is dominated by the most
numerous 17-atom species. Furthermore,”” highly complex
molecules in GDB-17 (rich in stereocenters and heteroatoms)
were excluded from FDB-17. The library comparison by map-
ping perfectly matched our expectations; it confirmed the rep-
resentativity of FBD-17 for the fragment-like universe of com-
pounds and displayed the expected dependence on sublibrary
selection protocols.
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Quantitative assessment of library similarity

In terms of quantitative the inter-library distance scores based
on the respective cumulated responsibility vectors, ChEMBL-17
clearly stood out because of its much smaller size (by nearly
two orders of magnitude). Its raw, not normed, cumulated re-
sponsibility values are significantly smaller, which implicitly
triggered important Euclidean distances in comparison with
FDB-17 and PubChem-17. The dissimilarity metrics reflecting
the covariance scores of two vectors (1—Spnimoe OF
T—Sghattachanyya) Were, however, less affected by the amplitude
differences. Nevertheless, the conclusion that can be drawn
from Figure 5 is the same, irrespective of the used metric: Pub-
Chem-17 has a significantly distinct density pattern with re-
spect to the “unbiased” FDB-17, in spite of their comparable
sizes, whereas ChEMBL-17 displays an even more marked dis-
crepancy, as expected on the basis of its small size. ChEMBL
and PubChem are rather strongly correlated, which is not sur-

a) FDB-17  PubChem-17 ChEMBL-17
| 1 |
FDB-17-
PubChem-17
ChEMBL-17
b) FDB-17  PubChem-17 ChEMBL-17
L 1
09
FDB-17- o
07
-0.6
PubChem-17 =] 05
-04
03
hEMBL-17 .
ChEMBL-17 — aie
0
c) FDB-17  PubChem-17 ChEMBL-17
|
FDB-17~
PubChem-17 —|
ChEMBL-17—

Figure 5. Heat maps representing similarities between three libraries on the
two-dimensional GTM map by using the GTM-based: a) Bhattacharyya coeffi-
cient (1—Sgyauacharyya) i+ b) Tanimoto coefficient (1—Sy,yme); and ) Euclidean
distance as a metric.
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prising because they actually share many compounds. Yet, at
only 70 % of Tanimoto similarity, they are not redundant collec-
tions; PubChem harbors much more primary high-throughput
screening data of large (sometimes combinatorial) compound
collections, whereas ChEMBL prioritizes publications reporting
small homogeneous compound series.

In-depth library comparison
Comparative chemical space overlap

The three libraries were compared by means of fuzzy class
landscapes (Figure 6), by following the principle already men-
tioned in the map consistency check section above. The “pre-
dominance of one collection over the other needs to be un-
derstood in the context of the relative library sizes; for exam-
ple, a map zone might be occupied by a significant fraction of
ChEMBL-17 compounds and be very sparsely populated by
PubChem-17 molecules!™ Yet, because the latter are
100 times more numerous, it may be that, in absolute num-
bers, there will be more PubChem-17 than ChEMBL-17 resi-
dents in that area (see Figure 6a). Predominance is thus de-
fined after normalization with respect to total library sizes,
which is relevant only for ChEMBL-17, because PubChem-17
and FDB-17 are equally large.

Overlap landscapes are perfectly suited to highlight FDB-17
diversity holes that are nevertheless populated by PubChem

- PubChem-17

ChEMBL-17
PubChem-17

FDB-17

100-80%
80-50%
50-30%
30-10%
10-0.0%

Figure 6. Fuzzy classification landscapes monitoring library overlap:

a) ChEMBL-17 (blue) versus PubChem-17 (red); b) FDB-17 (blue) versus Pub-
Chem-17 (red); and ¢) density-modulation of color intensity; white spots are
devoid of compounds.
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compounds (Figure 6b). These holes are clearly visible in the
combined perspective of an overlap map (FDB-17 versus Pub-
Chem-17). Regions in red are well populated in PubChem17
but correspond to underpopulated or outright empty zones in
FDB-17. At the same time, there are some regions populated
principally by FDB-17 (in blue). In Figure 7, some examples are
shown for the particular red and blue areas. Therein, the FDB-
17 dominant species are primary, secondary, and tertiary
amines and nitriles. Red zones, which correspond to PubChem-
17 compounds, mostly contain N-substituted amino acids,
esters containing aromatic nitro derivatives, and triazoles con-
nected to thiophenes by an aliphatic linker (L). Note that the
structures associated to each zone have a clear structural sig-
nature that defines them as chemical families, even though
this signature is not necessarily a single common scaffold, in
the strict sense employed by scaffold-analysis software. Similar-
ly to observations in previous works,”” the underlying structur-
al patterns were not predefined but emerged from the infor-
mation in the molecular descriptors as a result of the mapping
process.

Empty regions in FDB-17 might be explained by two main
reasons:

N
N

FDB-17 PubChem-17

Figure 7. Some examples of PubChem-17 and FDB-17 molecules extracted
for the pure PubChem-17 (red) and FDB-17 (blue) zones.

21 million compounds

650 000 compounds
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1) FDB-17 represents < 0.1% of the entire collection of feasi-
ble compounds. Even though it was shown to be represen-
tative of the fragment-like universe in terms of chemical
space overage, this does not imply that it will contain every
single possible chemotype.

2) The FDB-17 selection process'?” filtered out several chemi-
cal elements (Cl, Br, |, and F) present in the entire GDB and
various combinations of functional groups that would sys-
tematically violate the fragment-likeness “rules of three”.
GDB-17 itself is a “complete” enumeration only within the
frame established by the rules of its enumeration protocol.
It does not contain P or Si atoms, in contrast to PubChem
and ChEMBL, or “black-listed” reactive groups that may, in
certain chemical contexts, be nevertheless stable enough
for medicinal chemistry purposes.

Hierarchical GTM and chemotype detection

Direct analysis of compound subsets associated to specific
map zones by displaying associated structures and identifying
their common patterns, as exemplified above, is no longer fea-
sible if the subset size exceeds the magnitude order of thou-
sands. Zooming into these subsets by remapping them on a
detailed GTM model, dedicated to that chemical subspace
zone, may help the user to browse through the otherwise
overwhelming wealth of chemical data. This concept was ex-
emplified for one mixed area, populated by both FDB-17 and
PubChem-17 compounds (Figure 8). It contains 9 nodes, and
650000 compounds were extracted by the following rule: the
molecule is taken into account only if the sum of its responsi-
bilities in the chosen area is higher than 0.8.

Based on a “local” frame set randomly chosen from the
650000 selected residents of the zone, a zone-specific GTM
manifold was built with the same operational parameters as
the initial one (see above). This means that the 29x29 square
mesh of nodes initially used to cover the entire fragment-like
chemical space is now “refocused” on the above-selected
zone.

On the much finer scale of the obtained local map, the new
class landscape (Figure 8, middle map) displays a much more
effective separation of the PubChem-17 and FDB-17 residents.

/E

',\

.
&r-‘i- 3

2 500 compounds

Figure 8. Hierarchical GTM zooming of the chemical space occupied by FDB-17 (blue) versus PubChem-17 (red, on the fuzzy classification maps). For each
handpicked zone on a map, a local GTM model with identical parameters is refitted for the local residents only.
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A second zooming iteration on a still heavily populated area
dominated by PubChem-17 (2500 compounds) led to a clear
separation of the compounds (right-hand map).

The minority of FDB-17 compounds that required two suc-
cessive zooming stages in order to be separated from Pub-
Chem-17 co-residents form the central blue spot on the right-
hand map. They were parsed by the Scaffold Hunter tool™
and shown to be various furan derivatives (Figure 9). In addi-
tion, two structures were extracted from the center of this area
(Figure 10), and a similarity search in PubChem (as implement-
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Figure 9. Scaffold Hunter view of the compounds extracted from the FDB-
17/PubChem-17 map as a result of hierarchical GTM zooming. These com-
pounds are unique for the FDB-17 data set and are not presented in Pub-
Chem-17.

ZX

Figure 10. Examples of compounds extracted from the pure FDB-17 area on
the zoomed FDB-17/PubChem-17 GTM map. These compounds have no
similar neighbors in the PubChem database.

ed on the PubChem server) retrieved no results for them. In
other words, the PubChem-17 co-residents were not similar to
these compounds, in terms of the PubChem web server defini-
tion of molecular similarity. The compounds are, in this sense,
original, which does not preclude the fact that, according to
different similarity measures, they may have many near neigh-
bors in PubChem-17. In terms of pharmacophore patterns, for
example, they are zwitterionic amino acids, a quite ubiquitous
motif that explains why two zooming iterations were needed
to eventually separate this class. This shows how hierarchical
GTM may help for in-depth big data analysis, because there is
no single map offering both complete chemical space cover-
age and detailed separation of relevant chemotypes.
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Property landscapes

Property landscapes are a synthetic way to highlight similari-
ties or differences in terms of the distribution of various chemi-
cal properties in libraries.

The landscapes of the number of heavy atoms for ChEMBL-
17 and PubChem-17 (Supporting Information Figure 11) are
similar. However, PubChem-17 possesses a more distributed
excess of the top size molecules (strong red) than FDB-17. This
is the result of two sources of bias. On one hand, PubChem is
subject to a bioactivity-driven selection bias: very small com-
pounds, which cannot possibly be strong ligands (in spite of
putatively high ligand efficiency, per heavy atom), are rare in
PubChem. On the other, the current selection of FDB-17 was
specifically sampled with the goal of achieving a balanced
number of participants for all compound sizes: it has voluntari-
ly oversampled compounds in the middle of the heavy-atom
number range, whereas the entire collection of feasible com-
pounds is, for obvious combinatorial reasons, completely do-
minated by 17-atom structures.

The landscapes for the entropy of the element distribution
(the a_ICM index of MOE) in a molecule are similar for
ChEMBL-17 and PubChem-17, whereas FDB-17 contains less di-
verse structures, in the sense of a bias in favor of carbon
chains over functional groups. Elementary chemical stability
rules prevent arbitrary concatenations of heteroatoms to be
enumerated in GDB-17, and carbonated chains are statistically
predominant. By contrast, in libraries of existing compounds,
reactivity- and property-yielding functional groups were volun-
tarily introduced, at an important energetic cost. This subtle
bias is clearly highlighted by the maps.

In contrast to PubChem-17, FDB-17 is characterized by a
large number of molecules with two or more chiral centers
(Figure 11). It is statistically easy to obtain branched chiral
chains by theoretical enumeration but difficult to separate dia-
stereomers after synthesis. Human selection of compounds is
clearly biased against chirality, and this can be clearly read
from the maps as well.

The distribution of the log of the octanol/water partition co-
efficient (as estimated by the associated MOE descriptor serv-
ing as the “property” for map coloring) is almost the same,
except for two small regions of very low logP in PubChem-17.
The property landscapes of the log of the aqueous solubility
(logS, again, as predicted by MOE, see Figure S1 in Supporting
Information) are also rather similar, with some increase of al-
leged insoluble compounds in PubChem. This is intriguing: Do
chemists prefer to synthesize insoluble molecules amongst the
feasible ones? This could be tentatively explained by compari-
son of the property landscapes for the number of aromatic
atoms and chiral centers.

The spread of aromatic compounds over the chemical space
shows that PubChem-17 is clearly richer in this respect than
FDB-17. By contrast, the latter is significantly richer in chiral
compounds, as already mentioned. This clearly highlights the
preference of chemists for aromatic, “flat” achiral compounds,
simply for reasons of synthetic facility. However, the former are
also reputed to be more insoluble (or, at least, the MOE de-
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ChEMBL-17 PubChem-17 FDB-17

Figure 11. GTM property landscapes for the a_ICM (entropy of the element distribution in a molecule), a_heavy (number of heavy atoms), chiral (chirality),
logP, a_aro (number of aromatic atoms), and ast_fraglike_ext (ASTEX Fragment-like Status) distributions.

scriptor estimating the log of solubility used here as a mapped With regard to the ASTEX Fragment-like Status as calculated
property was probably trained to account for such a correla- by the MOE package,®® the ChEMBL-17 database contains
tion)." Thus, the observed increase in aromaticity and (pre- more fragment-like compounds than PubChem-17, which is
dicted) decrease in solubility are probably related. not a surprise, considering that ChEMBL-17 was created in
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order to accumulate such compounds. The fragment-likeness
of the FDB-17 compounds is also quite high (this independent
assessment indirectly confirms the effort to orient the FDB-17
library toward fragment-like molecules), and this library also
covers some high lead-likeness zones that are not well repre-
sented in ChEMBL-17 or PubChem-17.

Thus, the findings with respect to these directly available
global structural features or easily predictable physicochemical
properties, as they can be “read” from the maps, perfectly
matched the already reported trends by Reymond’s team!"®?*”
from distribution histograms, but they are more intuitively ren-
dered and, furthermore, directly searchable. Chemotypes asso-
ciated with zones of specific property values, or property value
differences between libraries, can be easily highlighted as such
or after hierarchical zooming. Such in-depth analysis is, howev-
er, beyond the scope of this paper.

Conclusions

This work concerns the visualization and analysis of a large
data set of more than 40 million compounds from GDB-17,
PubChem-17, and ChEMBL-17 and represents, to our knowl-
edge, the most complete GTM-based analysis of fragment-like
chemical space to-date. The goals of the study were multiple:

1) To prove that a significant and robust map of fragment-like
chemical space that can successfully accommodate tens of
millions of species can actually be built, in spite of the tech-
nical constraints on the maximal frame set size and relative
sparseness of structure-activity data (providing selection
sets for the evolutionary map optimization). To this pur-
pose, the evolutionary map building strategy has been up-
dated to include a “coverage check” step, to ensure that
the size-limited frame sets used to build the map were ac-
tually representative for the entire chemical space populat-
ed by compounds that were ignored at the map-building
stage. Eventually, the algorithm supported the generation
of a useful map, based on force-field-type-colored ISIDA
atom pair counts. The map has a robust propensity to sep-
arate actives from inactives, in as far as the rather sparse af-
finity data associated with lead-like compounds of this size
can tell us. Unlike previous work that benefitted from the
full information richness of entire drug-like compound col-
lections, this exploration of the universe of lead-like com-
pounds was less well supported by criteria based on struc-
ture-affinity relationship success. Nevertheless, map-sup-
ported classification models for external structure-activity
sets, associated with completely new biological properties,
were shown to cross-validate as well as the sets on the
basis of which the map was selected. The map was then
shown to properly accommodate the entire collection of 40
million compounds, theoretically enumerated and real com-
pounds alike. All of these compounds returned log likeli-
hood values (an intrinsic measure of their distances to the
manifold on which they are projected) comparable to the
ones of the frame set items used to fit the manifold. It was
thus proven that a frame set of the order of 10* com-
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pounds suffices to span a manifold that properly covers the
entire fragment-like chemical space.

2) To assess how far the targeted selection of 10 million com-
pounds in the fragment- and lead-like FDB-17 subset of the
166 billion compounds in the theoretical GDB-17 represents
a significant sample of fragment-like molecules. Map-based
comparison of FDB-17 to the similarly sampled but distinct
FDB_bis-17 showed that the extraction protocol of FDB-17
is reproducible: if repeated, it leads to an equivalent library
of similar chemical space coverage. By contrast, a plain
random sample of 10 million GDB-17 compounds showed
a slightly different signature in terms of coverage, which
validated the fact that coverage analysis is sensitive to the
nature of the employed library subsetting protocol. There-
fore, coverage analysis based on the present map is validat-
ed as a library comparison tool.

3)To actively use the map as a library comparison tool in
order to highlight systematic differences and biases of real-
world molecules in PubChem-17 and ChEMBL-17 versus the
universe of all possible fragment-like species, as represent-
ed by FDB-17. The findings here were in perfect agreement
with the results obtained from classical property distribu-
tion histogram comparisons, but their rendering was much
more intuitive and could be directly linked to examples of
the chemotypes underlying every zone of interesting prop-
erty values. The comparisons clearly evidenced that current
synthetic chemistry is biased in favor of aromatic com-
pounds, relative to the background of putative feasible
species. However, aromaticity perse is not necessarily
wanted (and is potentially associated with low solubility)
but is rather a “refuge” from the much higher synthetic
effort needed to tackle the production of polycyclic chiral
molecules.

4)To identify some specific structural patterns, proper to
some libraries and absent from others (diversity holes). A
hierarchical zooming technique was applied, which actually
builds a new map for items residing in the interesting area
of the main (initial) map. This allowed, for example, the
highlighting of FDB-17-specific structures that are not yet
present (as such or in the form of structurally close ana-
logues) in public databases. Conversely, the study also re-
vealed diversity holes in FDB-17, accounted for by the sys-
tematic exclusion of certain atom types/functional groups
that are present in PubChem-17.
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6.2 Conclusion

The Generative Topographic Mapping (GTM) method was trained and applied to
analyze and compare large public chemical databases. It was shown that ChREMBL-17 is
very similar to PubChem-17 since the first one is a part of the PubChem database. At the
same time, virtually generated FDB-17 differs significantly (Soergel distance to PubChem-
17 is about 0.55). The GTM class landscape demonstrated that there are some areas on the
map populated only by PubChem-17 compounds. Scaffold analysis showed that the
chemotypes allocated in these areas were discarded by the authors of the FDB-17 collection

due to the rules used to gather the last one.

An example of the application of hierarchical GTM zooming was also demonstrated
to increase the map resolution. With the help of this technique, a mixed zone populated
equally by PubChem-17 and FDB-17 compounds was zoomed. The multilevel zooming
discovered some chemotypes presented in FDB-17 but missed by the PubChem database.

Thus, GTM becomes an attractive tool that can be efficiently applied for novelty analysis.

Finally, the data sets were compared in terms of molecular properties (LogP, chirality,
number of aromatic atoms, etc.). It was shown that FDB-17 is richer in terms of chirality
and it is more homogenous in terms of heavy atoms’ types in a molecule (more or less the

same atom types are used in the virtual structures).
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7 Chemical Library Enrichment

7.1 Introduction

Structural library enrichment is an important task for the pharmaceutical industry.
The number of hits in screening campaigns depends on drug-likeness and diversity of the
underlying screening set. To be efficient in drug-discovery, the existing screening pool

needs to be regularly updated to include new chemotypes.

One can suggest two different scenarios of the screening pool enrichment with new
chemical matter: computer-aided enumeration of virtual structures under some constraints
(e.g. molecular weight, LogP, etc.), or selection of existing structures from an external
database. Recently, several attempts were made to create a workflow for an efficient
molecular de novo design [2, 78, 99-101]. However, synthetic feasibility of virtual
structures including synthetic routes and optimization of reaction conditions still needs to
be assessed. The second scenario is more practical because new structures selected as a
result of a comparison of two data sets (a reference set and an external set) do exist and can

be purchased or synthesized following the reported in the literature procedure.

Different approaches to chemical database comparison were reported so far: cell-
based clustering [102], pairwise distance analysis [103], and some dimensionality reduction
methods (Principle Component Analysis or PCA [27], Self-Organizing Maps or SOM [104],

Generative Topographic Mapping or GTM [45]) providing with the visualization support.
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GTM is a method of choice in this study because of its clear advantage over PCA and SOM

approaches.

Recently we demonstrated that GTM represents an efficient tool for comparison of
large chemical libraries FDB-17 and PubChem-17 [50]. The hierarchical GTM zooming
technique [11] was successfully applied in [50] in order to analyze the chemotypes of
molecules populated selected zones and to highlight the scaffolds present exclusively in

FDB-17.

In this study, the zooming technique was automatized and coupled to a Maximum
Common Substructure (MCS) extraction protocol (“AutoZoom” tool). The developed tool
was used for the enrichment of the in-house collection of Boehringer Ingelheim (further on
referred to as the “BI Pool”) by the compounds from the commercial Aldrich-Market Select
(AMS) database. A drug-likeness and an activity profile of selected AMS compounds
against 749 biological targets were assessed using the ChEMBL data-driven predictor based
on Universal GTMs [10, 58]. The paper reporting these results has been recently accepted

in J. Computer-Aided Molecular Design.

7.2 Data

Boehringer Ingelheim (BI) is steadily committed to innovation in medicinal
chemistry and is hence interested in new compounds featuring new scaffolds. At the same

time, new structures have to be synthesizable and should have the potential to be active.

As a basis in this work, we used the in-house collection of drug-like compounds
provided by BI (BI Pool) which contained more than 1.7M structures. The source for novel
compounds was the publicly available Aldrich-Market Select (AMS) collection of

purchasable compounds containing more than 8.2M items

(http://www.aldrichmarketselect.com). The data was standardized by ChemAxon’s
standardizer tool using a list of rules, such as aromatization, removing stereo labels, the

standard representation of N-oxides including nitro group, etc.[105]
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7.3 Method

The computational workflow consists of three parts. First, the mapping of AMS
chemical space was undertaken by calibrating a pertinent GTM manifold, followed by
projection of entire AMS and BI Pool collections. Then, the hierarchical GTM zooming
was performed for selected areas of the map followed by MCSs extraction. The most of
interest represented some zones exclusively populated by AMS compounds. The latter was
extracted and profiled using universal GTMs described in our previous papers [10, 58]. To
this purpose, the publicly available virtual screening webserver of the Laboratory of

Chemoinformatics (http://infochim.u-strasbg.fr/webserv/VSEngine.html) was employed. In

addition, simple molecular properties, like LogP, number of H-bond donors and acceptors,

molecular weight, and TPSA, were computed using ChemAxon’s JChem engine [81].

7.3.1 GTM training

The Generative Topographic Mapping (GTM) method relates the data points
positions in the initial N-dimensional space and in the latent 2D space. The GTM algorithm
is described in a range of publications [4, 6, 45, 50]. Briefly speaking, GTM injects a 2D
hypersurface (manifold) into a multidimensional data space populated by a set of
representative items (the Frame Set, FS). The algorithm fits the manifold to the FS data
distribution by changing the positions of Radial Basis Function centers and, hence,
maximizing the data log-likelihood (LL4). At the next stage, the data points are projected
on the manifold followed by the manifold unbending. Each compound in the latent space is
represented by a vector of normalized probabilities (responsibilities) computed in the nodes
of a square grid superposed with the manifold. In turn, the entire data set can be
characterized by a vector of cumulative responsibilities. This enables the user to perform an

efficient data sets comparison as well as QSAR/QSPR studies [6, 45, 49].

In our early study [50], the frame set compounds were randomly selected from large

chemical libraries. Here, a FS containing 25K AMS compounds of controlled diversity
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(featuring no two compounds more similar than a given threshold) was prepared. To
measure the dissimilarity, Soergel distance [106] basing on Morgan fingerprints [107, 108]
of radius 4 was computed. FS compounds are expected to represent a non-redundant,
representative “core” of spanned chemical space. They are not subjected to any other
specific constraints, meaning that any state-of-art molecular descriptor/dissimilarity metric

can be equally well used for selection.

The GTM manifold was trained using an incremental algorithm described by H.
Gaspar et al.[5] The parameters were taken from the previous study [50]. The experience of
previous projects [9, 50, 109] showed that the usage of ISIDA descriptors is a good choice
for GTM training. The initial descriptor space features ISIDA counts of sequences of 2 and
3 atoms, colored by their CVFF [94] force field types and including formal charge
information (IA-FF-FC-2-3) [80, 95]. Fragmentation of the FS compounds produced 6142
distinct fragments. However, the vast majority thereof is sparsely populated: only 798 terms
were considered for actual manifold construction (the descriptors for which standard
deviation over the FS compounds exceeds 2% of their value range width). This (or closely
related) fragmentation schemes were often selected by evolutionary [48] map tuning
procedures [50, 58]. Other adopted map parameters include resolution (841 nodes), the
number of RBFs (324), the regularization coefficient (3.236), RBF width (0.4), and

incremental block size (10K compounds).

When the Expectation-Maximization algorithm used to train the manifold has
achieved a certain level of convergence (LLhye,, — LLhyye, < 0.001), the entire data was
projected, and the compounds considered as out of Applicability Domain (the structures
positioned far away from the manifold) were removed. To do so, a new strategy for GTM
Applicability Domain (4D) identification was suggested where a Gaussian is fitted to the
FS compounds distribution minimizing the root mean square error. Once the fitting is done,
the LLh threshold is determined as the LLh value with the highest population (peak) minus

three Gaussian widths (“36” rule, Figure 31).
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For visualization and analysis purposes, property and fuzzy class landscapes are used
to “color” the map. To this goal, the mean class/property value in each node is taken as
responsibility-weighted means of class labels/property values of resident items [6]. In
consequence, areas of interest (for example, clusters of nodes exclusively populated by

AMS compounds) can be easily highlighted.
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Figure 31. GTM Applicability Domain is identified by log-likelihood threshold LLhy =
LLhpeak — 30. Here, LLh,ek and o are, respectively, a position and with of a Gaussian

function which fits the LLh distribution.

7.3.2 Zooming

GTM landscape analysis is the following step in the library comparison process. The
goal is to bind a certain chemotype to a particular area on the map. In simple cases, map
zones (square clusters of nine nodes) do indeed contain structurally quite homogeneous
populations of residents. If so, it is straightforward to search for common scaffolds or
maximum common substructures (MCSs). However, if too many compounds (e.g. more
than 1000 items) reside in one zone, searching for common scaffolds or MCSs is not
efficient. Therefore, when the algorithm detects highly populated zones, zooming is
automatically applied. For this purpose, the compounds for which the sum of its
responsibilities within the zone is higher than 0.95 are selected and used as frame set source

for the fitting of a new GTM manifold (using the same setups as those of the global map).
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For this purpose, the FS - of minimal 1000, but maximal 10% of the local compound pool
size - is randomly selected. The “submap” is likewise checked for the zones with a
population exceeding 1000 items. If necessary, the procedure is repeated (multi-level
zooming). If a zone contains less than 1000 compounds, it will be analyzed as such, without

further zooming.

7.3.3 Maximum Common Substructure (MCS) searching

The responsibility patterns (RP) method has been used to identify the shared
underlying features (scaffolds, substructures, pharmacophore patterns) for a chosen area on
the map [49, 65]. Compounds sharing the same RP will typically share some common
structural features that are further manually processed to annotate the map. This is a tedious
and error-prone task. As an alternative, it is proposed here to exploit the MCS search to
automatically highlight shared features. Our solution is based on ChemAxon’s JChem

engine [81].

The problem of MCS searching for a set of compounds was already discussed earlier
by Hariharan et al.[110]. The authors showed that in some situations, the intersection of
pairwise MCS search is empty or results in small, non-specific substructure, while the
molecules in a given set share large and complex substructures. The problem is that such a
common substructure of a compound set is not the maximum common substructure of any
compounds pair. As a solution, Hariharan et al enumerated all maximal cliques for each
pair of molecules, and then intersected the generated lists. The so-called multi-MCS is the

largest of the identified substructure that is common to all compounds in the set.

However, when the molecule set is very large, the idea to return a single multi-MCS
does not work anymore. In this case, we aimed at identifying lists of frequent substructures.
In our approach, an arbitrarily selected structure in the list of N items is compared to the
other N-1, resulting in N-1 connected MCS (Figure 32). Since we are working with large

sets, this already results in a large list of chemically relevant substructures, although the list
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might not be exhaustive. Additionally, a size filter keeps only the MCS covering at least 30%
of the heavy atoms in both structures of a pair. Then, duplicate MCSs are removed from the
list and sorted according to their occurrence in the list. The most frequent MCS is selected.
Structures featuring the selected MCS are removed from the list, and a new iteration is
started. In contrast with the previous scenarios, the new strategy returns a list of MCSs

which is more relevant in the context of Big Data.

Initial data set

|

Dataset |  New iteration if [ Remove the query and
: structures featuring the
N(rest comp-s)>1 L most frequent MCS

splitting

First compound  The rest (N-1)
as a query compounds

Pairwise

comparison

N-1 MCSs

Natoms(MCS)) >= Nyoms(query)*0.3 | Yes ( select the most | The most

| AND | frequent MCS ) frequent MCS

|

\Nytoms(MCS;) >= Nyioms(compound)*0.3
~

Result list of
MCSs

\
Ignore the pair 7

Figure 32. MCS extraction protocol.

The entire workflow is implemented in Python3 language using NumPy [111, 112]

and Plotly [113] libraries. When the MCSs absent in the BI pool were found, the structures
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containing these MCSs were retrieved from the AMS collection, and their biological profile

was predicted using previously developed universal GTMs [13].

7.3.4 Virtual Profiling of Novel Compound Candidates

The approach supported on the public property prediction server (http://infochim.u-

strasbg.fr/webserv/VSEngine.html) utilizes consensus prediction of the activity class
(active or not) of a compound with respect to 749 biological targets for which structure-
activity records found in ChEMBL v.24 were considered to be sufficiently robust to
provide for meaningful activity class landscapes on the seven distinct “universal” GTMs of
drug-like space. Each candidate is iteratively projected onto each of the seven universal
maps [58], and its projection is then placed in the context of the map-specific activity
landscapes of each of the 749 targets. For each target, the compound is assigned a
probability to belong to the “active” class, which corresponds to the relative excess of
“active” population in its residence zone (or zero if the target-specific data from ChEMBL
do not occupy at all this residence area). Herewith, a consensus probability P to be active
on a target is taken as the mean of the seven predictions of the complementary universal
maps. This mean is penalized by the standard deviation of the seven estimations, to signal

that mutual agreement of predictions enhances the trustworthiness of consensus:

7
1 P)2
5).B=P
i=1

where P — the mean probability over the 7 universal maps; P; — the probability to be active

Peorrected = P

(7.1).

on a map 1; P.orrecteq — the corrected consensus probability.

The tool supports processing of up to a few million compounds, operating on the
HPC cluster of the University of Strasbourg, in order to return a virtual profile matrix of

input compounds x 749 predicted consensus probabilities.
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7.4 Results and Discussion

To train the GTM manifold, a Frame set (FS) of 25K compounds needed for the
manifold construction was diversity-picked from the AMS library with the dissimilarity
threshold equal to 0.4. At the next stage, the log-likelihood threshold LLh = -2501.52 was
determined as described in Figure 31 in order to delineate the GTM Applicability Domain
(AD). With this threshold, 95.5% of the FS items passed the AD criteria (23.9K compounds
out of 25K). Figure 33 visualizes the distribution of the FS compounds over the map. The
density landscape shows that the FS covers most parts of the map, and the maximal

population of compounds in each node doesn’t exceed 5% of the entire FS.
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Figure 33. Frame set density landscape. Here, the white space means non-populated areas.
Both color intensity (transparency) and color choice are associated to local density values

(red areas have no transparency).

To understand how the two chemical collections relate to each other, they were
projected on the map and rendered as individual density landscapes and a fuzzy
classification landscape, respectively (Figure 34). Some 94.1% of the BI Pool and 95.8% of
the AMS collections passed the LLh threshold which means that the frame set extracted
from AMS is diverse enough to describe both databases. We assume that as far as the frame
set is diverse enough to span the relevant chemical space zone, its explicit composition is of

rather little importance — a recurrent conclusion in all our GTM studies, notably the creation
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of “universal” maps [9] where a frame set of the order of 10K random compounds was
shown to suffice for the coverage of ChEMBL chemical space and supporting robust
predictive activity models for hundreds of independent targets. The density landscapes in
Figure 34a-b show that the libraries are globally similar since they both mostly reside in the
same areas. However, there are some areas where the AMS library has a strong presence
and even fills some “holes” of the BI Pool. In the fuzzy class landscape, AMS-dominated

areas are dark red (Figure 34c).
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Figure 34. BI Pool vs AMS comparison: (a) BI Pool density landscape, (b) AMS density
landscape, and (c) fuzzy class landscape. Here, the white space means non-populated areas,

and the transparency corresponds to the density.
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The dark-red areas can serve as a source of new chemotypes for the BI collection.
However, even mixed zones might also contain some structural patterns not shared by both
libraries [50]. To investigate this possibility, 187 zones were checked whereby 151 zones
were zoomed (the maximal level of zooming was up to 4). The procedure took
approximately 7 days using 48 CPUs. An example of multi-level zooming is given in

Figure 35.
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Figure 35. An example of zooming analysis. Here, a new substructure from AMS
collection was discovered using 2-levels zooming. The white space means non-populated

areas, and the transparency corresponds to the density of population.

In total, more than 222K substructures were processed. This set included some 45.5K
MCS present only in AMS collection. More than 401K structures containing these MCSs
were extracted from the AMS collection and projected onto the map. The density landscape

with some examples of the most popular new AMS substructures is given in Figure 36.
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Comparing the density landscape from Figure 36 and the fuzzy class landscape from
Figure 34, we see that most of the compounds came from the areas where AMS dominated.
At the same time, several thousands of structures also came from mixed areas (green and

yellow). This was achieved by the application of zooming.
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Figure 36. Density landscape for the new 401K structures. Here, several most popular
(within the particular zone) new substructures are shown. The number of corresponding

compounds is presented here as a popularity score.

To check the drug-likeness of the extracted structures, simple molecular properties,
namely the number of H-bond donors and acceptors, LogP, molecular weight, and TPSA

were computed (Figure 37).
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Figure 37. Histograms represent the number of H-bond donors and acceptors, LogP,

molecular weight, and Topological Polar Surface Area (TPSA) computed for the extracted
401K AMS compounds. Here, the red dashed line represents Lipinski’s thresholds [13].
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Accordingly to Lipinski’s rule of five [13], most of the extracted compounds can be
classified as drug-like. These structures were also virtually profiled against 749 ChEMBL
targets. 109.5K compounds were predicted as active against at least one out of 749
ChEMBL targets with a probability score Peorrected™0.5.

About 1.2K compounds out of it were predicted according to equation (7.1) as active
with Peorrectea™>0.8 and passed BRENK [114], PAINS [115] and NIH [116, 117] filters. The
four examples with the highest corrected consensus probability to be active in one of the
CHEMBL targets are shown in Figure 38, where the compounds are predicted as active
against Photoreceptor-specific nuclear receptor (CHEMBL4374), Cholecystokinin B
receptor (CHEMBL3508), Muscarinic acetylcholine receptor M4 (CHEMBL317), and
Pyruvate dehydrogenase kinase isoform 1 (CHEMBL4766) [93].

The type of the source of the structures (a chemical online store) allows us to say that
these compounds are potentially synthesizable or even purchasable (the real
synthesizability depends on a supplier since some suppliers just claim that it can be
synthesized if a client asks). This and the number of predicted actives demonstrate that the
revealed substructures are new and useful for the pharma company. Also, it supports the
statement that GTM is a powerful method for the efficient library comparison and

enrichment (in terms of structural diversity).
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AMS structure ID 41419963 AMS structure ID 414778192
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Figure 38. Examples of structures predicted as actives and taken from the extracted 401K
AMS compounds. Here, the probability to be active returned by the web server is computed

according to equation (7.1).
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7.5  Conclusion

Generative Topographic Mapping was enabled to provide automated hierarchical
analysis of large libraries, by means of the herein described “AutoZoom” tool. This
integrates automated zooming and a new MCS extraction protocol and was successfully
applied to diversify the in-house collection of Boehringer Ingelheim (BI). Some 45.5K
substructures were found to be absent in the BI collection. The corresponding structures
(401K items) were checked for Lipinski’s rule compliance and classified as drug-like. In
addition, they were virtually profiled against 749 ChEMBL targets. More than 1.2K
compounds were predicted active against different targets with a corrected consensus
probability (removing a standard deviation) higher than 80%. The discovered structures
were recommended to the company to be imported as novel chemical matter that would be

useful in diversifying the in-house collection.
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8 Software Development

Several tools were developed during this PhD project. These tools are used to
preprocess the descriptors, to assign the labels, to visualize the GTM landscapes, etc. They
are written in Python3 and Java languages and available by a request to the Laboratory of

Chemoinformatics.

8.1 GTM Preprocessing

8.1.1 Descriptor Standardization

As it was described in chapter 4.1, GTM is sensitive to preprocessing. Therefore, the
standardization scheme was implemented wusing Java programming language
(standardizeDescriptors.jar). The incremental algorithm to compute the mean values and

variances is used in the program:

Xj — Xj-
X, = Xi_q S (8.1),

var; = varj_y +1* (i — 1) * (X — Xj_1)* (8.2),

where X; and var; are the mean value and the variance of a descriptor after passing the i"
molecule, respectively. Next, the standard deviation is computed as a square root out of the
variance, and the settings file containing the number of descriptors, mean values, variances
and standard deviations is created. This settings file can be used later to transform other

data sets which should be projected to the map.
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8.1.2 Descriptors Filtering

Dimensionality reduction is a hot topic since large chemical data sets are complicated
objects, and the molecules in these data sets cannot be well described only by few
descriptors. At the same time, even the most effective techniques such as PCA, SOM or
GTM cannot handle millions of descriptors which might happen in the case of Big Data.
Therefore, dimensionality reduction should be split into at least two steps: (a) conditional
descriptors selection, and (b) exhaustive dimensionality reduction. The last one can be done
by PCA, SOM or GTM, whereas the first step should be simple and straightforward. As one
of the possible solutions, descriptor filtering accordingly to its standard deviation was

proposed.

First, the settings file containing mean values and standard deviations for the given
data set should be generated by standardizeDescriptors.jar (chapter 8.1.1). Next, the initial
SVM file, as well as the header file (in case of ISIDA fragment descriptors generated by
ISIDAFragmentor2017 tool [95]) are filtered accordingly to the threshold on standard
deviation set by the user. This threshold is a percentage out of the maximal standard
deviation detected across the file (2% by default). So, if a descriptor possesses the deviation

which is less than the threshold, such descriptor will be removed from the SVM file.

Since the standardization process of a large number of descriptors (>100K) is a
computationally heavy task, it is recommended first to generate the settings file using
standardizeDescriptors.jar, then to filter the descriptors using filterISIDAdescriptors.jar,

and after to standardize the filtered SVM file using the filtered settings file.

8.2 Likelihood-Based GTM Applicability Domain
Implementation

The likelihood-based GTM Applicability Domain (AD) is already described in
chapter 4.2 and its basic idea is to discard the items which log-likelihood (LLh) is lower

than a certain threshold. As was mentioned, in this project we propose to generate the
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threshold fitting a Gaussian minimizing a root mean square error (RMSE). The workflow
consists of four steps:

1) Sorting and clustering the data set accordingly to its LLh with step=1;

2) Initialize the parameters of the Gaussian function (the width ™, the amplitude
A™" and the peak position pu™);

3) Fit the Gaussian minimizing the RMSE;

4) Compute the LLh threshold.

The Gaussian function is determined as:

LLh; — u) (8.3),

D{ = Axexp (— o

where D is the predicted number of items at the LLh;. Here, A is initialized as the largest

number of items possessing the same LLh, and p is initialized as:

Lizy LLh; * Ni (8:4),
n

init _

where n is the number of items in the data set, and N;j is the number of items corresponding

to the LLh;. Thus, o is initialized as:

it — ﬂ (8.5),
2
stdv = \/ i1 (LLh; — pinit)2 (8.6).
n—1

To optimize the Gaussian parameters, brute force is used. For each combination p-A-
o rmse is computed using the equation (8.3), where p = [uW™; LLh(A™)*0.95], A = [A™" *
0.9; A™ * 1.1], and © < [0™; ©™ * 3]. In order to boost the calculations, the algorithm

checks the ® values until RMSE,,.,, - RMSE;4 <0.001. For A and p, all values are checked.

Once the grid search is finished, the attempt with the minimal RMSE is selected, and

the LLh threshold (LLhhreshold) 18 computed as:
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LLh¢preshola =M — 3 * w (8.7).

The described algorithm is implemented in Python3 and can be easily used as a
Python library. As input, it needs only the file with the responsibilities generated by the
GTMapTool.

8.3 GTM Landscape Building and Visualization

The concept of GTM landscapes is already discussed in chapter 3.1.3. Here, we
describe the tool which is used to build and to visualize the landscape, to make the
QSAR/QSPR predictions, and to validate the model. The tool named GTM2018.py is

written in Python3 and it has two dependencies: Plotly [113] and SciKit-Learn [118].

The tool is mainly used to build classification, regression and density landscapes. The
output landscape is saved as an XML file which can be used later to make the predictions
for the new compounds. The landscape can be also visualized in an interactive way. For this
purpose, an HTML page is generated which can be customized by the user adding smooth
and transparency which, in turn, corresponds to density, changing the map size (width and
height), setting the minimal and maximal property values used to compute the color scale,
etc. Note that the tool uses dynamic transparency thresholds to display density using the

minimal Density threshold.

In addition, the tool is able to compute basic statistics used in QSAR studies, namely
determination coefficient (R?), Balanced Accuracy (BA) and Area Under the Receiver
Operating Characteristics Curve (ROC AUC). For this purpose, a test file with its

responsibilities and known labels/property values are specified.

8.4 AutoZoom

To analyze and to compare large chemical collections, the AutoZoom tool was

developed. This tool takes the manifold and GTM class landscape (chapter 3.1.3) built for
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the libraries as input matter. Also, it requires the responsibilities, the list of smiles and the

descriptors for each library separately.

The algorithm implemented in the AutoZoom tool first scans the landscape in order to
find the zones which are needed to be zoomed (chapter 4.3). If such are found, it runs
recursive (multilevel) zooming until the density in the cluster satisfies the required
threshold. Next, the algorithm runs Maximum Common Substructure (MCS) search
described in chapter 4.4. The discovered MCSs are then collected and stored as a pickle
archive (Python package to work with binary files). Besides that, the tool collects the
information on the parent nodes (the full path to the node where the MCSs were extracted

from) and smiles returned these MCSs.

The program has several dependencies, such as NumPy, Plotly, GTMapTool, and
ChemAxon’s JChem cartridge.

8.5 GTM Constrained Screening

The tool developed for Constrained Screening (CS) is web-based. The backend part is
written in Python where the GTM2018.py tool is used as a library (see chapter 8.3). The
server is run by Django software [119]. The frontend part is done in JavaScript, HTMLS,

and JQuery. The new page is shown in Figure 39.
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Generative Topographic Mapping (GTM) Profiling

Manifold: Q No Landscape..

Choaosethefile No file

Landscapes:
[=]

Choosethefile No file <=X<=

Input file:

Choosethefile  Nofile Submit

Output table:

1D Score

Figure 39. The client side of the Constrained Screening web tool.

To use the tool, the manifold file, and the classes/properties landscapes must be
specified. To add more landscapes, the user should use the “+” button. To remove a
landscape, the user should use the “—* button. Once the files are given, the X range (the
desirable range for the given activity/property) for each landscape is specified. The query
landscape can be built by pressing the “Build” button (Figure 40). The user can then
continue the analysis of the query landscape in the Plotly’s cloud or he/she can download it
using the “Download” button. The numbers on the right side of the color bar represent the
satisfaction score. This score means how much the nodes match the given query and it
ranges from 0 to the number of conditions in the user’s query. Thus, the score equal to 2

means that only 2 conditions are satisfied.
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Generative Topographic Mapping (GTM) Profiling

Manifold:

Choosethefile  umap1.xml

Landscapes:

Choosethefile target...e.xml 06 <=X<=10

Choosethefile  LogP_..exml 25 <=X<=50

oama ©
™

Choosethefile  Toxici..exm| 250 <=X<= 500

m Download L5

Export to plot.ly »

Input file:

Choosethefile No file
Output table:

ID Score

Figure 40. Training of the query landscape.

In case if the user wants to predict new compounds, he/she chooses the SVM file with
the corresponding descriptors in the “Input file” field and pushes the “Submit” button. The
tool will show the top-10 compounds with their order number and satisfaction score (Figure
41). The rest can be downloaded by the user using the “Download” button in the “Output

table” section.
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Generative Topographic Mapping (GTM) Profiling

Manifold:

Choosethefile  umap1.xml
’

Landscapes:

Choosethefile  target..exml 06 <=X<=11.0

Choosethefile  LogP_...exml 25 <=X<=50
_ | 50

oEma ©

Choosethefile  Toxici..exml 250/ <=X<= 500

M Download

Export to plotly »

Input file:

Choosethefile  tes.vm
Output table:
’

1D Score
13 299
11 298
8 2.24
5 216
12 20
6 192
9 192
2 17
4 169
3 16

Figure 41. Predicting new compounds using the query landscape.
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9 Conclusion and Perspectives

In this work, we dealt with: (i) methodological developments, (ii) design of
algorithms for automatized maps analysis, (iii) GTM application to different
chemoinformatics tasks (libraries comparison, library enrichment, and virtual screening)

and, (iv) software development.

Methodological developments. Treatment of Big Data in chemistry is a challenge for
any machine learning method, in particular, for GTM, which may need to use large frame
sets (FS) in combination with large dimensionality of the initial data space. Since the
capacity of earlier reported algorithms for manifold construction (classical and incremental)
was limited, we designed the “Parallel GTM” algorithm based on simultaneous training of
several manifolds on different FSs followed by their merging into one sole manifold. The
developed algorithm allowed us to build a GTM for the ChEMBL-23 database (1.7 M
compounds) using the entire database as a FS. Benchmarking of predictive performance of
classification models, which were built on the manifolds obtained with different algorithms
and FS sizes varying from 1K to 1.7M molecules, demonstrated that (i) the parallel
algorithm performs similarly to classical and incremental ones, and (i7) a small frame set of
5000 molecules (i.e., 0.003% of ChEMBL) is sufficient for obtaining well-performing

manifold.

The log-likelihood (LLh) threshold is often used to delimit an applicability domain of

GTM-based classification and regression models. In order to calculate the “optimal” the
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LLh threshold, we proposed to use the width of the Gaussian function which fits the LLh

distribution.

Using the existing pairwise Maximum Common Substructure (MCS) algorithm, we
suggested a new protocol of MCS extraction from the ensemble of structures. Its efficiency

was tested on different sets up to 1000 molecules.

Automatized maps analysis. Two new algorithms performing automatized maps
analysis were developed: (i) selection of zones of interest [5] and, (i7) hierarchical GTM
zooming. The zones of interest on GTM represent selected areas populated by molecules
possessing a given activity (property) profile. They result from the superposition of a
certain number of class and/or activity (property) landscapes. The developed algorithm
automatically selects the zones, which entirely or partially correspond to the desired profile.
Notice that the ensemble of these zones over the map form Query Landscape, which can be

used in virtual screening by selecting hits dropping in the zones of interest.

The hierarchical GTM zooming approach proposed by Nabney et al. [11] in view of
improving map’s resolution, becomes desirable, in some cases strictly required for GTMs
accommodating large volumes of data. The developed algorithm first screens the map in
order to select rectangular zones susceptible to zooming procedure according to the data
density threshold. Two scenarios were considered: overlapping and non-overlapping zones.
The former allows increasing the overall size of zoomed areas because of the possibility to

overcome the density threshold.

Applications. Developed tools were used in three projects: (i) application of GTM to
virtual screening (VS), (ii) comparison of large databases, and (ii/) enrichment of
proprietary library.

In the VS project, two types of GTMs for the ChEMBL23 database were used:

“universal” and ‘“local”. The formers were trained in a multitask manner to obtain

simultaneously classification models for 236 activities, whereas the latter were trained
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individually for each activity. The developed maps and class landscapes were benchmarked
with several machine-learning techniques (similarity search with data fusion, neural
network, and random forest) in virtual screening of the DUD database. It has been
demonstrated that local GTMs perform similarly or even better than popular machine-
learning approaches. In terms of predictive performance, “universal” GTMs were less
efficient, but still acceptable. On the other hand, the models derived from the “universal”

map have a larger applicability domain.

In another project, GTM was challenged to analyze large chemical data set of more
than 21M compounds resulted from merging of 3 databases: ChEMBL-17 (100K
compounds), PubChem-17 (11M compounds) and FDB-17 (10M compounds). Two former
databases contained only existing molecules, whereas the latter contained virtual structures
containing no more than 17 heavy atoms. The databases were compared using (i)
Bhattacharyya, Soergel and Euclidean distances, (i7) GTM class and (iii) GTM property
landscapes. The data analysis with the help of GTM allowed us to identify structural motifs

exclusively present only in one of the considered databases.

In the 3" project, the proprietary collection of Boehringer Ingelheim (1.7 M
molecules) was superposed on GTM with commercial Aldrich-Market Select database (8.2
M). Analysis of non-overlapping zones revealed 1.2K commercial structures containing
fully new cores, passed drug-like filters and predicted as active against at least one
ChEMBL target. The corresponding molecules were recommended to BI to be synthesized

or purchased.

Software development. New methodology and algorithms developed in this work
were implemented as a command line and web-based software tools. Thus, the hierarchical
GTM zooming technique was coupled with the MCS extraction protocol and presented as
the “AutoZoom” tool written in Python3 language. The algorithm helping to delineate
zones of interest was implemented as a web-based tool within the Django framework. The

tools for the construction of GTM-based classification and regression models were prepared
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using FreePascal and Python3 programming languages. These tools are accessible from the

Laboratory of Chemoinformatics by a request.

Perspectives. Some projects initiated in this work have not been completed. Still, the
Query Landscapes technique needs to be validated in virtual screening experiments.
Another project may concern an application of the hierarchical GTM zooming to GTM-

based classification and regression tasks.

In its current state, the MCS extraction protocol operates only with connected graphs.
However, common structural motifs may range from specifically substituted scaffolds to
fuzzier ‘pharmacophore-like’ patterns [65]. Therefore, the extension of our algorithm on

disconnected MCS could improve the structural data analysis.

The manifold “fusion” protocol in Parallel GTM needs to be optimized. Thus, in the
current version of the program, the manifold merging strategy simply computes the average
positions of the RBFs. Weighted by likelihood merging could, in principle, be used as an

alternative.

Studied in this work datasets of some 20 M molecules represent a small portion of all
existing molecules (some 200 M). An application of GTM to larger datasets is an obvious

extension of this work.
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11 List of Abbreviations

AD

ADME

AMS

ANN

AUC (ROC AUC)

BA

BI

CLF

CPF

CPU

CS

CVFF

DUD

Applicability Domain

An abbreviation in pharmacokinetics and pharmacology for

"Absorption, Distribution, Metabolism, and Excretion"

Aldrich-Market Select

Artificial Neural Network

Area Under the Receiver Operating Characteristics Curve

Balanced Accuracy

Boehringer Ingelheim

Class-Likelihood Factor

Class Prevalence Factor

Central Processing Unit

Constrained Screening

Consistent Valence Force Field

Directory of Useful Decoys
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EC50

EM

FS

GA

GTM

IC50

kNN

LLh

MCS

MDS

MPI

PCA

PGTM

PSM

Half maximal Effective Concentration

Expectation-Maximization algorithm

Frame Set

Genetic Algorithm

Generative Topographic Mapping

Half maximal Inhibitory Concentration

k-Nearest Neighbors

Logarithm of Likelihood

Maximum Common Substructure

Multi-Dimensional Scaling

Message Passing Interface technique

Principal Component Analysis

Parallel Generative Topographic Mapping

Privileged Structural Motif

Determination coefficient in cross-validation

Quantitative Structure-Activity Relation

Quantitative Structure-Property Relation

Determination coefficient

Random Access Memory
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RBF

RF

RMSE

RP

SAR

SOM

SRC

SVM (format)

SVM (method)

TPSA

uGTM

VS

Radial Basis Function

Random Forest

Root Mean Square Error

Responsibility Pattern

Structure-Activity Relationship

Self-Organizing Map

Tyrosine kinase inhibitors

Support-Vector Machine

Sparse Vector Matrix

Topological Polar surface Area

Universal Generative Topographic Map

Virtual Screening
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Supplementary Material for section 5.1
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Table S1. List of 618 ChEMBL (v. 23) targets used for unievrsal GTM training and

validation.

CHEMBL1075104 | CHEMBL1293266 CHEMBL1790 CHEMBLI1859 CHEMBL4633
CHEMBL1075145 | CHEMBL1293267 | CHEMBL1795139 CHEMBL1860 CHEMBL4641
CHEMBL1075167 | CHEMBL1293289 | CHEMBL1795186 CHEMBL1862 CHEMBLA4644
CHEMBL1075189 | CHEMBL1293293 CHEMBL1801 CHEMBL1864 CHEMBLA4657
CHEMBL1075322 | CHEMBL1615381 CHEMBL1804 CHEMBL1865 CHEMBL4660
CHEMBL1163101 | CHEMBL1741176 CHEMBL1808 CHEMBL1867 CHEMBL5084
CHEMBLI1163125 | CHEMBL1741186 CHEMBL1811 CHEMBL1868 CHEMBL5103
CHEMBLI1255126 | CHEMBL1741207 CHEMBL1821 CHEMBL1871 CHEMBL5113
CHEMBLI1275212 | CHEMBL1741215 CHEMBLI1822 CHEMBLI1873 CHEMBL5122
CHEMBL1287628 CHEMBL1781 CHEMBLI1824 CHEMBLI1878 CHEMBL5137
CHEMBL1293222 CHEMBL1782 CHEMBLI1825 CHEMBL1881 CHEMBL5141
CHEMBL1293224 CHEMBL1785 CHEMBL1827 CHEMBL1889 CHEMBL5147
CHEMBL1293255 CHEMBLI1787 CHEMBLI1829 CHEMBL1892 CHEMBL5776
CHEMBL1833 CHEMBL1900 CHEMBL1947 CHEMBL1899 CHEMBL5794
CHEMBLI1835 CHEMBL1901 CHEMBL1949 CHEMBL2003 CHEMBL5804
CHEMBL1836 CHEMBL1902 CHEMBL1951 CHEMBL2007 CHEMBL5600
CHEMBL1844 CHEMBL1903 CHEMBL1952 CHEMBL2007625 CHEMBL5608
CHEMBL1850 CHEMBL1904 CHEMBL1957 CHEMBL2008 CHEMBL5627
CHEMBL1853 CHEMBL1906 CHEMBL1908 CHEMBL2016 CHEMBL5646
CHEMBLI1856 CHEMBL1907 CHEMBLI1913 CHEMBL202 CHEMBL5650
CHEMBL1968 CHEMBL1966 CHEMBL1914 CHEMBL2028 CHEMBL5658
CHEMBLI1916 CHEMBL203 CHEMBL1974 CHEMBL2243 CHEMBL5678
CHEMBL1917 CHEMBL2035 CHEMBL1977 CHEMBL225 CHEMBL5697
CHEMBLI1918 CHEMBL2039 CHEMBL1978 CHEMBL2250 CHEMBL4767
CHEMBL1921 CHEMBL204 CHEMBL1980 CHEMBL226 CHEMBL4769
CHEMBL1929 CHEMBL2041 CHEMBL1981 CHEMBL2265 CHEMBLA4777
CHEMBL1936 CHEMBL2047 CHEMBL1985 CHEMBL227 CHEMBLA4789
CHEMBL1937 CHEMBL2055 CHEMBL1987 CHEMBL2276 CHEMBLA4791
CHEMBL1940 CHEMBL2056 CHEMBL1991 CHEMBL2285 CHEMBL4792
CHEMBL19%41 CHEMBL206 CHEMBL1994 CHEMBL2288 CHEMBLA4793
CHEMBL1942 CHEMBL2061 CHEMBL1995 CHEMBL2292 CHEMBL4796
CHEMBL1944 CHEMBL2068 CHEMBL1997 CHEMBL230 CHEMBL5409
CHEMBL208 CHEMBL2069 CHEMBL2000 CHEMBL231 CHEMBL5443
CHEMBL2083 CHEMBL2073 CHEMBL2001 CHEMBL2318 CHEMBL5455
CHEMBL2085 CHEMBL2074 CHEMBL2002 CHEMBL2319 CHEMBL5469
CHEMBL209 CHEMBL232 CHEMBL220 CHEMBL2553 CHEMBL5485
CHEMBL210 CHEMBL2326 CHEMBL2208 CHEMBL256 CHEMBL5491
CHEMBL2107 CHEMBL233 CHEMBL221 CHEMBL2563 CHEMBL5493
CHEMBL211 CHEMBL2334 CHEMBL2216739 CHEMBL2568 CHEMBL6101
CHEMBL2219 CHEMBL2337 CHEMBL2123 CHEMBL258 CHEMBL6115
CHEMBL222 CHEMBL2343 CHEMBL213 CHEMBL2581 CHEMBL6120
CHEMBL2231 CHEMBL2345 CHEMBL2146302 CHEMBL259 CHEMBL6136

160




CHEMBL2147 CHEMBL2349 CHEMBL248 CHEMBL2593 CHEMBL5818
CHEMBL2148 CHEMBL235 CHEMBL2487 CHEMBL2595 CHEMBL5819
CHEMBL215 CHEMBL236 CHEMBL2492 CHEMBL2598 CHEMBL5847
CHEMBL216 CHEMBL237 CHEMBL250 CHEMBL2599 CHEMBLS5855
CHEMBL2163176 CHEMBL2373 CHEMBL2508 CHEMBL260 CHEMBL4900
CHEMBL2169736 CHEMBL238 CHEMBL251 CHEMBL261 CHEMBLA4973
CHEMBL217 CHEMBL2386 CHEMBL2514 CHEMBL2611 CHEMBLA4977
CHEMBL2179 CHEMBL239 CHEMBL2525 CHEMBL2617 CHEMBL5024
CHEMBL218 CHEMBL2390810 CHEMBL2527 CHEMBL262 CHEMBLS5027
CHEMBL2185 CHEMBL240 CHEMBL253 CHEMBL2635 CHEMBL5028
CHEMBL2189110 CHEMBL241 CHEMBL2534 CHEMBL2637 CHEMBLS5038
CHEMBL2424 CHEMBL2413 CHEMBL2535 CHEMBL2652 CHEMBLS5073
CHEMBL2426 CHEMBL2414 CHEMBL2543 CHEMBL2664 CHEMBLS5703
CHEMBL2431 CHEMBL242 CHEMBL255 CHEMBL267 CHEMBL5719
CHEMBL2434 CHEMBL268 CHEMBL2820 CHEMBL2996 CHEMBL5742
CHEMBL2439 CHEMBL2689 CHEMBL2828 CHEMBL3004 CHEMBLS5747
CHEMBL2468 CHEMBL2693 CHEMBL283 CHEMBL3009 CHEMBL5203
CHEMBL2474 CHEMBL2695 CHEMBL2850 CHEMBL301 CHEMBL5247
CHEMBL3553 CHEMBL2716 CHEMBL288 CHEMBL3012 CHEMBL5251
CHEMBL3559 CHEMBL2717 CHEMBL2888 CHEMBL3023 CHEMBLS5857
CHEMBL3568 CHEMBL2730 CHEMBL2889 CHEMBL3024 CHEMBL5879
CHEMBL2731 CHEMBL289 CHEMBL3025 CHEMBL3231 CHEMBLS5896
CHEMBL2736 CHEMBL2896 CHEMBL3032 CHEMBL3234 CHEMBL5903
CHEMBL2742 CHEMBL290 CHEMBL3045 CHEMBL3238 CHEMBLS5936
CHEMBL275 CHEMBL2903 CHEMBL3055 CHEMBL3243 CHEMBLS5938
CHEMBL2778 CHEMBL2916 CHEMBL3060 CHEMBL325 CHEMBLS5971
CHEMBL2781 CHEMBL2938 CHEMBL3070 CHEMBL3250 CHEMBLS5979
CHEMBL2782 CHEMBL2939 CHEMBL308 CHEMBL3267 CHEMBL5366
CHEMBL2789 CHEMBL2955 CHEMBL3094 CHEMBL3268 CHEMBLS5378
CHEMBL279 CHEMBL2959 CHEMBL3106 CHEMBL3272 CHEMBL5393
CHEMBL2793 CHEMBL2964 CHEMBL3116 CHEMBL3286 CHEMBL5407
CHEMBL2801 CHEMBL2971 CHEMBL3130 CHEMBL3308 CHEMBL5408
CHEMBL2803 CHEMBL2973 CHEMBL3142 CHEMBL331 CHEMBL6009
CHEMBL2808 CHEMBL298 CHEMBL3145 CHEMBL3310 CHEMBL6014
CHEMBL2815 CHEMBL299 CHEMBL3180 CHEMBL332 CHEMBL6030
CHEMBL3181 CHEMBL333 CHEMBL3522 CHEMBL3710 CHEMBL6032
CHEMBL3192 CHEMBL3338 CHEMBL3524 CHEMBL3714130 | CHEMBLS5518
CHEMBL3201 CHEMBL335 CHEMBL3529 CHEMBL3717 CHEMBLS5522
CHEMBL3202 CHEMBL3351 CHEMBL3535 CHEMBL3721 CHEMBLS5524
CHEMBL321 CHEMBL3356 CHEMBL3864 CHEMBL3729 CHEMBL5543
CHEMBL3227 CHEMBL3357 CHEMBL3869 CHEMBL3746 CHEMBLS5545
CHEMBL3230 CHEMBL3359 CHEMBL3880 CHEMBL3759 CHEMBLS5568
CHEMBL3385 CHEMBL3589 CHEMBL3764 CHEMBL3886 CHEMBL6003
CHEMBL3397 CHEMBL3590 CHEMBL3772 CHEMBL3890 CHEMBL6007
CHEMBL3399910 CHEMBL3616 CHEMBL3776 CHEMBL3891 CHEMBL6154
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CHEMBL340 CHEMBL3622 CHEMBL3778 CHEMBL3892 CHEMBLA4895
CHEMBL3401 CHEMBL3629 CHEMBL3785 CHEMBL3898 CHEMBLA4896
CHEMBL3426 CHEMBL3636 CHEMBL3788 CHEMBL3902 CHEMBLA4897
CHEMBL3437 CHEMBL3650 CHEMBL3795 CHEMBL3905 CHEMBLA4898
CHEMBL3438 CHEMBL3663 CHEMBL3807 CHEMBL3906 CHEMBLA4899
CHEMBL3468 CHEMBL3683 CHEMBL3816 CHEMBL3911 CHEMBLA4444
CHEMBL3474 CHEMBL3687 CHEMBL3819 CHEMBL3913 CHEMBLA4461
CHEMBL3475 CHEMBL3691 CHEMBL3820 CHEMBL3920 CHEMBLA4462
CHEMBL3476 CHEMBL3961 CHEMBL3829 CHEMBL3922 CHEMBLA4465
CHEMBL3510 CHEMBL3965 CHEMBL3831 CHEMBL3935 CHEMBLA4478
CHEMBL3514 CHEMBL3969 CHEMBL3835 CHEMBL3959 CHEMBLA4481
CHEMBL3836 CHEMBL3972 CHEMBLA4051 CHEMBLA4203 CHEMBLA4482
CHEMBL3837 CHEMBL3973 CHEMBLA4068 CHEMBLA4204 CHEMBL4501
CHEMBL3861 CHEMBL3974 CHEMBLA4071 CHEMBLA4223 CHEMBLA4506
CHEMBL3863 CHEMBL3975 CHEMBLA4072 CHEMBLA4224 CHEMBLA4801
CHEMBL3572 CHEMBL3976 CHEMBLA4073 CHEMBLA4225 CHEMBLA4803
CHEMBL3582 CHEMBL3979 CHEMBLA4079 CHEMBLA4227 CHEMBLA4804
CHEMBL3587 CHEMBL3982 CHEMBLA4080 CHEMBLA4234 CHEMBLA4816
CHEMBL3983 CHEMBLA4081 CHEMBLA4237 CHEMBLA4422 CHEMBLA4581
CHEMBL3991 CHEMBLA4093 CHEMBLA4247 CHEMBLA4426 CHEMBL4599
CHEMBLA4005 CHEMBLA4101 CHEMBLA4261 CHEMBLA4427 CHEMBL4600
CHEMBLA4015 CHEMBL4123 CHEMBLA4270 CHEMBLA4439 CHEMBL5261
CHEMBLA4016 CHEMBLA4128 CHEMBLA4273 CHEMBLA4441 CHEMBL5282
CHEMBLA4018 CHEMBLA4142 CHEMBLA4282 CHEMBLA4714 CHEMBLS5285
CHEMBLA4026 CHEMBLA4145 CHEMBLA4296 CHEMBLA4718 CHEMBLS5314
CHEMBL4029 CHEMBLA4147 CHEMBLA4302 CHEMBLA4722 CHEMBLS5330
CHEMBLA4036 CHEMBLA4158 CHEMBLA4303 CHEMBLA4761 CHEMBLS5331
CHEMBL4040 CHEMBLA4176 CHEMBLA4306 CHEMBLA4766 CHEMBL6164
CHEMBLA4045 CHEMBLA4179 CHEMBLA4315 CHEMBLA4608 CHEMBL6166
CHEMBLA4374 CHEMBLA4191 CHEMBLA4338 CHEMBLA4617 CHEMBL6175
CHEMBLA4375 CHEMBLA4198 CHEMBLA4361 CHEMBLA4618 CHEMBL4698
CHEMBL4376 CHEMBLA4202 CHEMBLA4367 CHEMBLA4625 CHEMBL4699
CHEMBL4393 CHEMBLA4508 CHEMBLA4662 CHEMBL4630 CHEMBLA4852
CHEMBL4394 CHEMBLA4516 CHEMBLA4674 CHEMBLA4576 CHEMBL4829
CHEMBLA4398 CHEMBLA4523 CHEMBL4681 CHEMBLA4578 CHEMBLA4835
CHEMBLA4408 CHEMBLA4525 CHEMBLA4683 CHEMBLA4708 CHEMBL4601
CHEMBLA4822 CHEMBLA4575 CHEMBLA4685
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Appendix 2

Supplementary Material for section 6
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Table S2. PubChem biological targets used for GTM map selection.

PubChem ID | PubChem BioAssay name *
1012 Tissue non-specific alkaline phosphatase precursor [Homo sapiens]
1159524 HTS for Foot and Mouth Disease Virus Antivirals
QHTS Assay For Inhibitors Of Bacillus Subtilis Sfp Phosphopantetheinyl
1490 Transferase (PPTase)
QHTS Assay For Inhibitors Of Leishmania Mexicana Pyruvate Kinase
1721 (LmPK)
A Screen For Inhibitors Of The PhoP Regulon In Salmonella
1081 Typhimurium Using A Modified Counterscreen
gHTS Assay for Inhibitors and Activators of Human alpha-Glucosidase
2100 Cleavage of Glycogen
2289 gHTS Assay for Modulators of miRNAs and/or Inhibitors of miR-21
Cycloheximide Counterscreen For Small Molecule Inhibitors Of Shiga
> Toxin
2315 A QHTS For Small Molecule Inhibitors Of Shiga Toxin
qHTS Assay for Inhibitors of Fructose-1,6-bisphosphate Aldolase from
1 Giardia Lamblia
5546 VP16 Counterscreen QHTS For Inhibitors Of ROR Gamma
Transcriptional Activity
2551 QHTS For Inhibitors Of ROR Gamma Transcriptional Activity
HTS Of A Putative Kinase Compound Library To Identify Inhibitors Of
2842 Mycobacterium Tuberculosis H37Rv
410 Cytochrome P450, family 1, subfamily A, polypeptide 2 [Homo sapiens]
485313 Niemann-Pick C1 protein precursor [Homo sapiens]
485364 Thioredoxin glutathione reductase [Schistosoma mansoni]
485367 ATP-dependent phosphofructokinase [Trypanosoma brucei]
504466 ATADS protein [Homo sapiens]
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PubChem ID | PubChem BioAssay name *

504847 Vitamin D3 receptor isoform VDRA [Homo sapiens]

o1 Protein tyrosine phosphatase, non-receptor type 7 isoform 2 [Homo
sapiens]

588342 Luciferase [Photinus pyralis]

624173 Hypothetical protein, conserved [Trypanosoma brucei]

624330 Rac GTPase-activating protein 1 [Homo sapiens]

651635 Ataxin-2 [Homo sapiens]

651724 CtBP interacting protein CtIP [Homo sapiens]

652105 gHTS for Inhibitors of phosphatidylinositol 5-phosphate 4-kinase
(PI5SP4K)

636971 qHTS for induction of synthetic lethality in tumor cells producing 2HG:
qHTS for the HT-1080-IDH1KD cell line

686978 TDP1 protein [Homo sapiens]

* PubChem BioAssay target name corresponds to its description or target name on

PubChem

Table S3. PubChem biological targets used for GTM map validation.

PubChem ID | PubChem BioAssay name *

686979 qHTS for Inhibitors of human tyrosyl-DNA phosphodiesterase 1 (TDP1):
gHTS in cells in presence of CPT

190504 qHTS for Inhibitors of PLK1-PDB (polo-like kinase 1 - polo-box domain):
Primary Screen

720580 qHTS for Stage-Specific Inhibitors of Vaccinia Orthopoxvirus: Venus
Reporter Primary qHTS

120708 qHTS for Antagonist of cAMP-regulated guanine nucleotide exchange
factor 2 (EPAC2): primary screen

743255 Inhibitors Of USP1/UAF1: Primary Screen
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PubChem ID

PubChem BioAssay name *

qHTS for Inhibitors of Inflammasome Signaling: IL-1-beta AlphaLISA

743279
Primary Screen
778 Cytochrome P450, family 2, subfamily C, polypeptide 19 [Homo sapiens]
uHTS for the identification of compounds that potentiate TRAIL-induced
1443 apoptosis of cancer cells
Inhibitors of Plasmodium falciparum M17- Family Leucine
o1 Aminopeptidase (M17LAP)
Identification of SV40 T antigen inhibitors: A route to novel anti-viral
1903 reagents
A Counter Screen To Identiry Small Molecule Screen For Inhibitors Of The
201 PhoP Regulon In Salmonella Typhimurium
485297 QHTS Assay For Rab9 Promoter Activators
504327 QHTS Assay For Inhibitors Of GCNS5L2
504329 Discovery Of Small Molecule Probes For HIN1 Influenza NS1A
504332 QHTS Assay For Inhibitors Of Histone Lysine Methyltransferase G9a
504333 QHTS Assay For Inhibitors of bromodomain adjacent to zinc finger domain
2B [Homo sapiens]
Chain A, Jmjd2a Tandem Tudor Domains In Complex With A
204339 Trimethylated Histone H4-K20 Peptide
Primary QHTS For Delayed Death Inhibitors Of The Malarial Parasite
204832 Plastid, 48 Hour Incubation
540267 Small Molecules That Selectively Kill Giardia Lamblia: QHTS
QHTS Assay For Inhibitors Of Mammalian Selenoprotein Thioredoxin
285453 Reductase 1 (TrxR1): QHTS
588579 QHTS For Inhibitors Of Polymerase Kappa
624171 QHTS Of Nrf2 Activators
624202 QHTS Assay To Identify Small Molecule Activators Of BRCAL1
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PubChem ID | PubChem BioAssay name *

Expression

651725 QHTS Assay For Inhibitors Of The Six1/Eya2 Interaction

* PubChem BioAssay target name corresponds to its description or target name on

PubChem

b_1RotR

TPSA

Log S

ChEMBL-17 PubChem-17

Figure S1. GTM property landscapes for b_1RotR (fraction of rotatable single bonds),
TPSA, and Log S.
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ChEMBL-17 PubChem-17

Figure S2. GTM property landscapes for a_nF (number of fluorine atoms), a_nCl (number

of chlorine atoms), a_nBr (number of bromine atoms), and a_nl (number of iodine atoms).
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Résumé

Cette thése concerne [Iutilisation de Cartographie Topographique Générative (Generative
Topographic Mapping — GTM) pour l'analyse, la visualisation et la modélisation de grands volumes
de données chimiques. Les principaux sujets traités dans ces travaux sont le criblage virtuel multi-
cibles dans la conception de médicaments et la visualisation, I'analyse et la comparaison de grandes
chimiothéques. Plusieurs développements méthodologiques ont été proposés : (/) un algorithme de
zoom hiérarchique automatisé pour la GTM afin d’aider a résoudre le probléme de la résolution des
cartes ; (i) un protocole d’extraction automatisé des Sous-structures Maximum Communes (MCS)
pour améliorer l'efficacité de I'analyse de données ; (iii) un criblage contraint basé sur la GTM
permettant de détecter les molécules avec un profil pharmacologique souhaité, et (iv) une technique
de GTM paralléle, qui réduit significativement le temps nécessaire pour construire une carte. Les
méthodologies développées ont été implémentées sous forme de logiciel, utilisé a la fois dans des
projets académiques (Université de Strasbourg, France) et industriels (Compagnie Boehringer
Ingelheim Pharma, Allemagne).

Mots-clés : GTM, grand volumes de données en chimie, comparaison de grandes chimiothéques,
visualisation de données, QSAR, criblage virtuel

Résumé en anglais

This thesis concerns the application of the Generative Topographic Mapping (GTM) approach to the
analysis, visualization, and modeling of Big Data in chemistry. The main topics covered in this work
are multi-target virtual screening in drug design and large chemical libraries visualization, analysis,
and comparison. Several methodological developments were suggested: (i) an automatized
hierarchical GTM zooming algorithm helping to resolve the map resolution problem; (ii) an
automatized Maximum Common Substructure (MCS) extraction protocol improving efficiency of data
analysis; (iii) constrained GTM-based screening allowing to detect molecules with a desired
pharmacological profile, and (iv) a parallel GTM technique, which significantly increases the speed of
GTM training. Developed methodologies were implemented in a software package used in both
academic (University of Strasbourg, France) and industrial (Boehringer Ingelheim Pharma company,
Germany) projects.

Key words: GTM, Big Data in chemistry, libraries comparison, data visualization, QSAR, virtual
screening
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