
Ecole doctorale de Mathématiques, Sciences de l’Information et de l’Ingénieur

Thèse de doctorat

presentée publiquement le 23 septembre 2019 pour obtenir le grade de

Docteur de l’université de Strasbourg

par

David Braun

Approche combinatoire pour l’automatisation
en Coq des preuves formelles en géométrie

d’incidence projective

Membres du jury

Rapporteurs

M. Jacques Fleuriot Professeur, Université d’Edimbourg
M. Dominique Michelucci Professeur, Université de Bourgogne

Examinateurs

Mme. Dominique Bechmann Professeur, Université de Strasbourg
M. Laurent Théry Chercheur, Inria Sophia Antipolis

Encadrants

M. Nicolas Magaud Maître de conférences, Université de Strasbourg
M. Pascal Schreck Professeur, Université de Strasbourg





Résumé

Ce travail de thèse s’inscrit dans le domaine de la preuve assistée par ordinateur et se place d’un
point de vue méthodologique. L’objectif premier des assistants de preuves est de vérifier qu’une
preuve écrite à la main est correcte ; la question ici est de savoir comment à l’intérieur d’un tel
système, il est possible d’aider un utilisateur à fabriquer une preuve formelle du résultat auquel
il s’intéresse. Ces questions autour de la vérification de preuves, en particulier en certification du
logiciel, et au delà de leur traçabilité et de leur lisibilité sont en effet devenues prégnantes avec
l’importance qu’ont prise les algorithmes dans notre société.

Bien évidemment, répondre à la question de l’aide à la preuve dans toute sa généralité dépasse
largement le cadre de cette thèse. C’est pourquoi nous focalisons nos travaux sur la preuve en
mathématiques dans un cadre particulier qui est bien connu dans notre équipe : la géométrie et
sa formalisation dans le système Coq. Dans ce domaine, nous mettons premièrement en évidence
les niveaux auxquels on peut œuvrer à savoir le contexte scientifique à travers les méthodes de
formalisation mais aussi le contexte méthodologique et technique au sein de l’assistant de preuve
Coq. Dans un second temps, nous essayons de montrer comment nos méthodes et nos idées sont
généralisables à d’autres disciplines.

Nous mettons ainsi en place dans nos travaux les premiers jalons pour une aide à la preuve
efficace dans un contexte géométrique simple mais omniprésent. À travers une approche classique
fondée sur la géométrie synthétique et une approche combinatoire complémentaire utilisant le
concept de rang issu de la théorie des matroïdes, nous fournissons à l’utilisateur des principes
généraux et des outils facilitant l’élaboration de preuves formelles. Dans ce sens, nous comparons
les capacités d’automatisation de ces deux approches dans le contexte précis des géométries
finies avant de finalement construire un prouveur automatique de configuration géométrique
d’incidence.





Remerciements

Je souhaite débuter ce manuscrit en exprimant ma gratitude la plus sincère à toutes les per-
sonnes qui d’une manière ou d’une autre ont contribué à la réussite de ce projet doctoral.

Avant tout, je souhaiterai remercier mes encadrants Nicolas Magaud et Pascal Schreck pour
leur support continu et leur supervision. Je remercie tout particulièrement Pascal pour son dé-
vouement et son implication, ainsi que pour les innombrables discussions sur la recherche et
parfois sur la vie, durant lesquels j’ai énormément appris. Quant à Nicolas, je lui exprime ma
reconnaissance pour sa disponibilité, sa patience et ses conseils avisés qui m’ont guidé tout au
long de cette thèse.

J’adresse la plus vive des gratitudes à l’ensemble de mon jury et tout particulièrement à mes
rapporteurs pour avoir accepté d’évaluer mes travaux : Jacques Fleuriot, Dominique Michelucci,
Dominique Bechmann ainsi que Laurent Théry.

Mes remerciements vont également à Julien, Pierre, Gabriel et Robin pour leur participation
active à ce projet de recherche. Ce fut un plaisir de travailler à leur côté. Cette thèse ne serait pas
la même sans leur contribution. Plus généralement, je voudrais remercier toute l’équipe IGG, et
plus spécialement Dominique Bechmann, pour m’avoir accueilli dans ce cadre de travail agréable
et épanouissant.

L’occasion m’est donnée ici de remercier également mes collègues doctorants actuels et passés
en tentant de n’oublier personne : Alexandre, Cédric, Florian, Geoffrey, Katia, Mélinda, Nico-
las, Noura, Pascal, Pierre et Sabah. Un grand merci à Cédric avec qui je partage mon bureau
depuis trois ans pour sa joie de vivre et toutes les situations comiques que nous avons pu partager.

Finalement, je tiens à remercier mes parents, ma soeur et mon oncle pour leur générosité,
leur discernement et leur soutien inconditionnel. Je leur dédie mes réussites passées et à venir.





Table des matières

Introduction 1

Partie I Deux approches cryptomorphiques pour la mécanisation des
preuves en géométrie d’incidence projective 9

Chapitre I.1 Mécanisation de la démonstration en géométrie d’incidence pro-
jective 11

1 Géométrie d’incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Structure d’incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Description informelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Variante projective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Géométrie d’incidence projective . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Système d’axiomes pour la géométrie d’incidence projective 2D . . . . . . 16

2.1.1 Système d’axiomes standard . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Système d’axiomes alternatif . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Aparté sur la dualité . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Système d’axiomes pour la géométrie d’incidence projective ≥3D et 3D . . 20
2.3 Formalisation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Méthodologie et automatisation de la démonstration en géométrie d’incidence . . 25
3.1 Tests de décidabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Clôture des hypothèses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Résolution ou contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Création d’objets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Identification et application d’un motif . . . . . . . . . . . . . . . . . . . . 30
3.6 Stratégie d’ordonnancement . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Expressivité de la théorie en géométrie synthétique . . . . . . . . . . . . . . . . . 31
4.1 Propriétés fondamentales de la géométrie d’incidence projective . . . . . . 32

4.1.1 Propriété de Desargues . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Propriété de Pappus . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Théorème de Hessenberg . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Étude de l’expressivité avec l’approche en géométrie synthétique . . . . . 36
4.2.1 Exemple du théorème de Desargues en 3D . . . . . . . . . . . . . 36
4.2.2 Expressivité dans une théorie uniforme . . . . . . . . . . . . . . 37

Chapitre I.2 La théorie des matroïdes : une approche combinatoire crypto-
morphique 39

1 Approche combinatoire de la géométrie d’incidence projective . . . . . . . . . . . 41
1.1 Théorie des matroides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.1.1 Les matroïdes pour caractériser la notion d’indépendance . . . . 41

i



ii TABLE DES MATIÈRES

1.1.2 Les matroïdes pour caractériser la notion de rang . . . . . . . . . 42
1.1.3 Les matroïdes pour caractériser la notion de fermeture et de plat 42

1.2 Système d’axiomes fondé sur la notion de rang en 2D . . . . . . . . . . . . 43
1.3 Système d’axiomes fondé sur la notion de rang en ≥3D et 3D . . . . . . . 44
1.4 Formalisation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Deux approches cryptomorphiques . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1 Des rangs vers la géométrie synthétique . . . . . . . . . . . . . . . . . . . 46

2.1.1 Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Sous-Modularité . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Preuve de la propriété Uniqueness . . . . . . . . . . . . . . . . . 48
2.1.4 Implantation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 De la géométrie synthétique vers les rangs . . . . . . . . . . . . . . . . . . 50
2.2.1 Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Techniques de preuve . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3 Preuve de la propriété matroïdale de non-décroissance . . . . . . 53
2.2.4 Implantation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Statistiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Traduction bilatérale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Conclusion partie I 61

Partie II Étude de cas en géométrie finie 65

Chapitre II.1 Formalisation de « petits » modèles finis en géométrie projective 67
1 Introduction aux modèles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.1 Groupe, corps, espace vectoriel, corps fini . . . . . . . . . . . . . . . . . . 70
1.1.1 Groupe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.1.2 Corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.1.3 Espace vectoriel sur un corps . . . . . . . . . . . . . . . . . . . . 71
1.1.4 Corps fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.2 Espace projectif fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2 Génération des modèles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.1 Recherche des modèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2 Construction des modèles finis . . . . . . . . . . . . . . . . . . . . . . . . 76

2.2.1 Plan fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2.2 Espace fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Pré-validation des plans finis . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4 Export des modèles en langage Gallina . . . . . . . . . . . . . . . . . . . . 79

2.4.1 Modèle en géométrie synthétique . . . . . . . . . . . . . . . . . . 79
2.4.2 Modèle exprimé à l’aide des rangs . . . . . . . . . . . . . . . . . 80

3 Vérification formelle des modèles et preuve de la propriété de Desargues . . . . . 82
3.1 Gestion de la complexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.1 Analyse de cas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.2 Formulation et choix de la théorie . . . . . . . . . . . . . . . . . 83
3.1.3 Élagage de l’arbre de preuve . . . . . . . . . . . . . . . . . . . . 84
3.1.4 Hypothèses les plus restrictives . . . . . . . . . . . . . . . . . . . 85
3.1.5 Existence de témoin . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.6 Preuves comme des programmes . . . . . . . . . . . . . . . . . . 86
3.1.7 Pseudo-recherche en profondeur . . . . . . . . . . . . . . . . . . 88



TABLE DES MATIÈRES iii

3.1.8 Relation d’ordre sur les objets . . . . . . . . . . . . . . . . . . . 88
3.1.9 Ingénierie de la preuve . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Automatisation de la preuve de Desargues . . . . . . . . . . . . . . . . . . 90
3.3 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Comparaison avec les prouveurs SMT . . . . . . . . . . . . . . . . . . . . 93

Conclusion partie II 97

Partie III Vers un prouveur généralisé de configuration géométrique
d’incidence 101

Chapitre III.1 Pipeline du prouveur de configuration géométrique d’incidence 103
1 Principe du prouveur par saturation . . . . . . . . . . . . . . . . . . . . . . . . . 106

1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.2 Création de points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.3 Règles de réécriture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.4 Terminaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.5 Correction et validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.6 Extension des règles avec la propriété de Pappus . . . . . . . . . . . . . . 110

2 Implantation du prouveur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.1 Initialisation de l’algorithme . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.2 Boucle de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.3 Mémorisation des déductions . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.4 Fenêtre des derniers noeuds calculés . . . . . . . . . . . . . . . . . . . . . 116
2.5 Reconstruction de la preuve et procédé de marquage . . . . . . . . . . . . 119
2.6 Validation par l’assistant de preuve Coq . . . . . . . . . . . . . . . . . . . 121

3 Mesure de performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.1 Complexité en temps du prouveur . . . . . . . . . . . . . . . . . . . . . . 122
3.2 Complexité en mémoire du prouveur . . . . . . . . . . . . . . . . . . . . . 122
3.3 Complexité en temps de la vérification du certificat . . . . . . . . . . . . . 123
3.4 Complexité en mémoire de la vérification du certificat . . . . . . . . . . . 123
3.5 Conclusion sur les complexités . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.1 Parcours linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2 Ordre des règles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3 Règle de Pappus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4 Heuristique de coloration . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5 Saturation par strate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.6 Notre solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapitre III.2 Un catalogue d’exemples 133
1 Lemmes triviaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

1.1 Restriction à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.2 Colinéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
1.3 Sur-contraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
1.4 Égalité entre points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
1.5 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2 Lemmes intermédiaires de Desargues . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.1 Schéma L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



iv TABLE DES MATIÈRES

2.2 Schéma rABOO’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.3 Schéma subl2rABMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.4 Schéma rCC’O’PC” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.5 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3 Théorème de Desargues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.1 Preuve du théorème de Desargues en 3D . . . . . . . . . . . . . . . . . . . 146
3.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Conjugué harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.1 Preuve du conjugué harmonique . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5 Propriété de Dandelin-Gallucci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1 Preuve de la propriété de Dandelin-Gallucci . . . . . . . . . . . . . . . . . 155
5.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Conclusion partie III 161

Conclusion globale 165

Partie IV Annexes 169

Annexe A : systèmes d’axiomes en géométrie synthétique 171
1 Système d’axiomes 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2 Système d’axiomes ≥ 3D et 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Annexe B : systèmes d’axiomes fondés sur la notion de rang 173
1 Système d’axiomes nD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2 Système d’axiomes 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3 Système d’axiomes ≥ 3D et 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Annexe C : propriété de Desargues et Pappus 175
1 Propriété de Desargues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2 Propriété de Pappus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Annexe D : implantation Coq des systèmes d’axiomes sur les rangs 177

Annexe E : implantation Coq de plusieurs définitions récursives 180
1 Non égalité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
2 Non colinéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3 Non coplanarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Annexe F : Définition Coq de la colinéarité et de la coplanarité 182

Annexe G : Architecture Coq de la bibliothèque ProjectiveGeometry 183

Liste des tableaux, figures et algorithmes 187

Bibliographie 191







Introduction

De la preuve mathématique à la preuve interactive en informatique

Selon le dictionnaire Larousse, une preuve est “un raisonnement qui permet, à partir d’axiomes,
d’établir la validité d’une assertion”. De tels raisonnement utilisent la logique mais incluent aussi
habituellement des éléments du langage naturel en évitant autant que possible d’introduire des
ambiguïtés. Ajoutons qu’une preuve joue deux rôles : premièrement elle convainc le lecteur que
l’énoncé formulé est prouvable ; deuxièmement elle explique en quoi cet énoncé est correct.

En mathématiques, une preuve est irréfutable ; la correction de cette dernière peut être établie
par n’importe qui. Une telle démonstration peut se réduire à une série de très petites étapes
dont chacune est vérifiable simplement et indiscutablement. Ces étapes sont si petites qu’aucun
mathématicien ne fait cela dans la pratique. Cependant, il est généralement admis que les preuves
que nous trouvons dans les livres et les articles sont décomposables de cette manière. Il arrive
parfois qu’une démonstration se révèle être incorrecte 1. Dans ce cas, toutes les étapes n’ont pas
été soigneusement détaillées et vérifiées.

Sans entrer dans les détails, les mathématiciens s’accordent sur la validité des étapes de
preuves élémentaires et sur les méthodes qui permettent de les combiner pour former des preuves
plus grandes. Le problème de la vérification manuelle d’une démonstration est ainsi lié à la
traduction de cette dernière vers un formalisme plus précis. On pourrait penser que cela n’est
pas très important puisque les mathématiciens décrivent déjà leur résultats avec des formules et
un « jargon » technique relativement restreint. Cependant, il existe encore un écart considérable,
en particulier au niveau des détails, entre les démonstrations manuscrites et les preuves qui sont
comprises par un ordinateur.

Étant donné que le rôle premier d’une preuve est de garantir la véracité d’un énoncé ma-
thématique, l’utilisation de systèmes informatiques pour concevoir et vérifier des démonstrations
s’avère parfaitement adaptés. L’idée de mécaniser les preuves de théorèmes grâce aux capacités
des ordinateurs est le fruit d’une longue histoire tant en mathématiques qu’en informatique. Le
premier environnement logique reconnu permettant une mécanisation des preuves, appelé Auto-
math, a été conçu en 1967 [NGdV94] par de Bruijn. Depuis Automath, une multitude d’assistants
de preuves [Wie06] et de prouveurs automatiques [MMZ+01,NOT06] ont vu le jour. Grâce à ces
outils, la machine et l’utilisateur humain peuvent travailler ensemble pour produire une preuve
formelle sachant qu’il existe un large spectre des possibilités d’interactions. À un extrême, l’or-
dinateur ne sert que de vérificateur pour les preuves produites par l’humain, de l’autre nous
disposons de prouveurs automatiques puissants. Malgré les succès du raisonnement automatique
actuel [Jan11,Vor03], les résultats sont encore loin de reproduire le savoir-faire humain. En effet,
l’espace de recherche pour les problèmes complexes explose très rapidement, ce qui les rend soit
trop longs, soit inutiles dans de nombreuses tâches. Au vu des limitations de l’automatisation

1. Exemple célèbre de la démonstration du théorème de Fermat par Andrew Wiles qui incluait une faille dans
la démonstration initiale.

1



2 Introduction

pure, il semble aujourd’hui que la preuve interactive soit le meilleur moyen de démontrer la
plupart des théorèmes non triviaux ou la correction des systèmes informatiques.

Cependant, cette approche nécessite beaucoup d’efforts de la part de l’utilisateur humain.
Non seulement chaque preuve exige une bonne vision de sa structure, mais elle requiert aussi
le traitement méticuleux d’une multitude de détails de bas niveau pouvant nuire à l’élaboration
de la preuve principale. Pour ces raisons, il existe un intérêt croissant pour la démonstration
semi-automatique de théorèmes, où un système intègre des techniques d’automatisation dans
un environnement de démonstration interactif. De cette manière, nous conservons le meilleur
des deux mondes : l’utilisateur peut guider manuellement la preuve lorsque l’automatisation des
fragments simples de la théorie a échoué.

Le système auquel nous nous intéressons est l’assistant de preuve Coq [BC04, Coq02], qui
possède une vaste bibliothèque de théories et des méthodes de preuves automatiques (tactiques
et procédures de décision) combinant simplification et raisonnement classique. Cet outil fondé sur
le langage puissant Gallina associe à la fois une logique d’ordre supérieur 2 et un langage de pro-
grammation fonctionnel fortement typé. Ce langage permet notamment : de définir des fonctions
et des prédicats, d’énoncer des théories mathématiques et des spécifications pour les logiciels,
de développer des preuves formelles interactives, de vérifier ces preuves grâce à un « noyau » de
certification et enfin d’extraire des programmes certifiés dans plusieurs langages de programma-
tions (Caml [LW93], Haskell [Jon03], . . .). Cet assistant fournit aussi des algorithmes de déci-
sions [Cré17,DM01] et un langage de tactique Ltac [Del00] offrant la possibilité de définir ses
propres méthodes de construction de preuves. Ajoutons qu’il existe des connexions logiques entre
cet assistant et différents prouveurs automatiques de théorèmes [AFG+11a,EMT+17,FMM+06].
Cet assistant de preuve sera notre terrain d’expérimentation pour étudier dans cette thèse la
mise en place de la mécanisation plus ou moins complète des preuves en mathématiques.

Formalisation des mathématiques et certification logicielle

Ces vingt dernières années, plusieurs propriétés ont pu obtenir le statut de théorème grâce à
la capacité des assistants de preuves à formaliser des démonstrations toujours plus complexes.
Ces preuves sont si longues et si compliquées que, pour être reconnues par la communauté, leur
formalisation dans des assistants de preuves semblait inévitable. Le résultat le plus célèbre que
l’on peut citer est probablement le théorème des quatres couleurs [AH89]. Ce théorème indique
que tout planisphère peut être colorié en utilisant uniquement quatre couleurs sans que deux
régions adjacentes soient de la même couleur. Cette propriété initialement prouvée à l’aide d’un
programme informatique par Appel et Haken énumérait toutes les combinaisons de cartes planes
possibles. Elle n’a été officiellement acceptée par les mathématiciens lorsque Gonthier et Werner
ont publié cette preuve [Gon05, Gon07] dans l’assistant de preuve Coq. Le théorème de Feit-
Thompson, lui aussi démontré dans l’assistant de preuve Coq par Gonthier [GAA+13], affirme
que chaque groupe fini d’ordre impair est résoluble. La preuve originale publiée par les auteurs du
même nom était longue de plus de deux cent cinquante pages rendant sa compréhension globale
particulièrement difficile. Le dernier résultat mathématique comparable est la démonstration
de la conjecture de Kepler par Hales [Hal98]. De la même manière que pour le théorème des
quatre couleurs, cette preuve initialement réalisée grâce à un outil informatique n’a été accueillie
positivement qu’après sa formalisation [HAB+17] dans HOL-Light [Har96] et Isabelle [NPW02].
D’autres résultats mathématiques importants qui n’ont pas été sujets à ce type de controverse
ont été démontrés avec des assistants à la preuve comme le théorème des nombres premiers
[ADGR05,Har09] ou le théorème de la courbe de Jordan [Hal07].

2. La logique du second ordre est une logique formelle utilisant des variables qui réfèrent à des fonctions ou à
des prédicats. Elle étend le calcul des prédicats.



Introduction 3

À côté de toutes ces grandes démonstrations mathématiques, les assistants de preuve ont
aussi été utilisés pour certifier des programmes informatiques. On assure ainsi que le programme
respecte ses spécifications et ne contient pas de bugs. Dans certains secteurs critiques comme les
banques, la médecine ou l’aéronautique, il est important de garantir qu’aucune perte financière
ou humaine n’est susceptible de se produire. Le travail le plus connu se rattachant à cette certi-
fication logicielle est la preuve formelle du microkernel seL4 [KEH+09]. Cette preuve construite
et vérifiée en Isabelle comporte 200 000 lignes de script pour valider 7 500 lignes de langage
C [KRB84]. Cette validation a permis de découvrir et corriger plus d’une centaine de bugs dans
une des versions initiales de ce noyau. L’autre réalisation considérable que nous souhaitons men-
tionner est la programmation du compilateur CompCert C pour le langage C et sa preuve dans
le langage Coq accomplie par l’équipe de Xavier Leroy [Ler06].

Formalisation de la géométrie

La géométrie, branche des mathématiques millénaire notamment avec les éléments d’Euclide
[EDH02], joue un rôle tout aussi central dans l’évolution des systèmes de preuves. C’est un
candidat idéal proposant un cadre propice à la mise en place de procédés automatiques de
déductions qui a été étudié par de nombreuses équipes de recherche dont la nôtre. En effet, l’étude
de ses fondements par des mathématiciens comme Euclide [EDH02], Hilbert [Hil60] ou Tarski
[Tar59] a apporté des bases solides pour des développements systématiques ayant de nombreuses
applications en mathématiques mais aussi en physique ou en robotique. Nous présentons ainsi
dans la suite quelques formalisations connexes à nos travaux géométriques dans lesquelles la
mécanisation des preuves a été évaluée. Ces formalisations sont réparties selon les deux approches
classiques de la géométrie : synthétique ou analytique.

Avec une approche « synthétique » de la géométrie, un système d’axiomes est défini à partir
de quelques objets géométriques et d’axiomes sur ces objets. L’idée de mécaniser les preuves
géométriques fondées sur l’approche synthétique grâce aux outils informatiques commence au
début des années 1950 avec les travaux de mathématiciens comme H. Gelernter, J.R Hanson
et D. W. Loveland [GHL60]. Quand ces développements n’utilisent pas une axiomatique ad hoc
spécialement conçue pour la tâche, ils s’appuient sur les formalisations axiomatiques modernes
comme celles d’Hilbert [Hil60] ou de Tarski [SST13]. La première formalisation dans un assistant
de preuve de la théorie hilbertienne, issue de l’ouvrage Grundlagen der Geometrie, est réalisée
en Coq par Christophe Dehlinger, Jean-François Dufourd et Pascal Schreck [DDS00]. Dans un
contexte intuitionniste, ils montrent que la décidabilité sur l’égalité et la colinéarité des points
sont nécessaires pour vérifier les preuves de ce livre. Une autre formalisation, proposée par Laura
Meikle et Jacques Fleuriot dans l’assistant de preuve Isabelle, est effectuée quelques années
plus tard [MF03] avant d’être étoffée par Phil Scott [Sco08]. Ces trois articles montrent que
les preuves d’Hilbert présentent des faiblesses, notamment en ce qui concerne le traitement
des conditions de non-dégénérescences. Parallèlement, de nombreux travaux ont été réalisés sur
la géométrie de Tarski et sur ses liens avec Hilbert [BBN16, BN12]. En effet, Pierre Boutry,
Gabriel Braun et Julien Narboux ont longuement étudié la formalisation des fondements de la
géométrie euclidienne en s’appuyant sur le système d’axiomes proposé par Tarski [Nar06b]. La
librairie GeoCoq 3, développée principalement par leur soin, propose la formalisation complète
de l’ouvrage Metamathematische Methoden in der Geometrie [SST13], d’une connexion entre
les différentes formalisations axiomatiques modernes, d’une preuve d’équivalence entre plusieurs
postulats des parallèles ainsi que d’un ensemble de tactiques pour simplifier et automatiser les
démonstrations. À côté de cela, Frédérique Guilhot développe une important librairie Coq sur la

3. Une bibliothèque formalisant les fondements de la géométrie en Coq selon Tarski et Hilbert disponible à
l’adresse : http ://geocoq.github.io/GeoCoq/



4 Introduction

géométrie Euclidienne avec une perspective d’enseignement dans les lycées français [Gui04]. Par
ailleurs, Jean Duprat propose une axiomatique pour la formalisation de la géométrie en utilisant
uniquement la règle et le compas [Dup08].

La formalisation rigoureuse d’une théorie au sein d’un assistant de preuve fait apparaître
rapidement et naturellement un choix qui est celui de travailler en logique intuitionniste ou
en logique classique 4. En considérant uniquement la notion de décidabilité, nous nous plaçons
entre ces deux philosophies. Dans un environnement purement intuitionniste, nous interdisons
le principe du tiers-exclu et les preuves existentielles sont toujours effectuées par la construction
effective d’un témoin. C’est dans ce cadre qu’une formalisation avancée de la géométrie projec-
tive constructiviste décrite par von Plato [VP95] est développée en Coq par Gilles Kahn [Kah95].
Puis plus récemment, Guillermo Calderón implante cette même géométrie dans Agda [BDN09]
en utilisant l’axiomatisation proposée par Mandelkern [Cal18]. Tous ces développements en géo-
métrie synthétique intuitionniste ou non permettent de construire formellement des théories
géométriques avec un haut niveau de confiance où les cas dégénérés doivent être minutieusement
analysés [DDS00,MF03,Nar06b]. Notre travail s’inscrit dans la continuité de ces développements
en géométrie synthétique avec la formalisation de la géométrie d’incidence projective.

En considérant une approche « analytique », on définit un espace Fn à partir d’un corps
F. C’est dans ce cadre que de nombreuses méthodes automatiques algébriques ont vu le jour
pour mécaniser les démonstrations en géométrie. Tarski introduit tout d’abord dans le début
des années 1930 une méthode d’élimination des quantificateurs [Tar98] pour prouver de nom-
breux théorèmes de géométrie élémentaire. Une percée majeure dans l’utilisation des méthodes
algébriques provient de la méthode introduite par Wen-Tsün Wu [Wu78] en utilisant la notion
d’ensemble caractéristique. L’implantation de la version simple de cette méthode a été réalisée
en Coq [GNS11]. Une technique indépendante bien que fondée sur le même concept d’ensemble
caractéristique réalisée par Bruno Buchberger [BW98], appelée base de Gröbner, a aussi été de-
veloppée en Coq [Pot08] et plus récemment en Isabelle [EP11]. Un autre algorithme notable que
l’on peut citer est la méthode des aires présentée par Chou, Gao et Zhang [CGZ94] puis déve-
loppée en Coq [JNQ12,Nar06a]. Finalement, l’algèbre de Grassmann-Cayley [LW03] formalisée
en Coq par Fuchs et Laurent Théry [FT10] permet d’automatiser le raisonnement dans le cas de
la géométrie projective.

Nous invitons le lecteur à se référer à l’article [NJF18] pour un état de l’art très complet et
très détaillé sur la formalisation de la géométrie et sa mécanisation.

Dans cette thèse

Ce travail de thèse s’inscrit dans la problématique très générale de la preuve assistée par or-
dinateur en se plaçant du point de vue méthodologique. La question est de savoir comment à
l’intérieur de ces systèmes, il est possible d’aider l’utilisateur à fabriquer la preuve formelle du
résultat auquel il s’intéresse dans un cadre donné. La mise en place d’une aide à la preuve dans
toute sa généralité est compliquée et hors de portée d’un seul travail de thèse. C’est pourquoi nous
réduisons nos ambitions à la preuve en mathématiques à un thème spécifique bien caractérisé et
bien connu dans notre équipe : la géométrie et sa formalisation dans l’assistant de preuve Coq.
Tous les succès dans le domaine de la preuve interactive nous motivent à considérer et évaluer
la mécanisation des preuves aussi complète que possible dans ce cadre. Pour cela, nous mettons
premièrement en évidence les niveaux auxquels on peut agir, à savoir le contexte scientifique à
travers les méthodes de formalisation, mais aussi le contexte méthodologique et technique au

4. La logique intuitionniste, parfois appelée logique constructive, diffère de la logique classique en reflétant
plus étroitement la notion de preuve constructive.



Introduction 5

sein de l’assistant de preuve Coq. Dans un second temps, nous essayons de montrer comment nos
méthodes et nos idées sont généralisables. Pour simplifier, on peut dire que cette thèse résulte
d’une combinaison de formalisation géométrique et de génie logiciel. Afin de mieux mettre en
évidence les aspects méthodologiques, nous nous plaçons dans un cadre géométrique très simple,
la géométrie d’incidence projective. À travers deux approches complémentaires de cette géomé-
trie, nous fournissons à l’utilisateur des principes généraux et des outils facilitant l’élaboration
de preuves formelles.

La géométrie d’incidence projective est choisie comme base de ce développement pour son
axiomatique simple et ses propriétés méta-mathématiques bien connues, les plus importantes
étant la consistance et la complétude [Cox03]. Le développement formel est effectué dans l’assis-
tant de preuve Coq qui est fondé sur une théorie des types intuitionniste : le calcul des construc-
tions inductives [CP88]. Le lecteur non familier avec cet outil parfaitement adapté pour l’étude
théorique de propriétés mathématiques peut trouver dans [BC04, Chl13, Coq02, GM10,MT17]
une introduction à cet assistant de preuve et ses extensions.

Tous les travaux de formalisation de la géométrie et d’automatisation des preuves décrits
dans ce manuscrit sont intégrés dans une nouvelle librairie Coq appelée ProjectiveGeometry dont
l’architecture globale est détaillée dans l’Annexe G. Dans sa globalité, notre développement,
comportant plus de 600 000 lignes, 1 500 lemmes, 350 définitions, 250 tactiques dont 570 000
lignes ont été engendrées de manière automatique, peut être trouvé à l’adresse suivante :

https ://github.com/ProjectiveGeometry

Les contributions principales de cette thèse peuvent être résumées comme suit :

• Nous formalisons une bibliothèque sur la géométrie d’incidence projective en utilisant deux
approches axiomatiques complémentaires : une approche classique fondée sur la géométrie
synthétique et une approche combinatoire utilisant le concept de rang issu de la théorie des
matroïdes ;

• Nous définissons la bi-interprétation entre les deux théories grâce à un dictionnaire per-
mettant une traduction bidirectionnelle, puis nous prouvons l’équivalence entre les deux
formalisations à la fois en 2D, ≥3D et 3D ;

• Nous mettons en évidence une méthodologie pour mécaniser les preuves en géométrie d’in-
cidence projective en identifiant les étapes clés dans les démonstrations ;

• Nous analysons cette méthodologie de la preuve dans le cadre particulier des géométries
finies définies par extension en énumérant l’intégralité des objets qui les composent. Dans
ce contexte, nous présentons un ensemble de critères d’aide à la preuve généralisables pour
l’automatisation des preuves de modèles et du théorème de Desargues tout en contrôlant
l’explosion combinatoire ;

• Nous implantons un prouveur automatique par saturation utilisant les propriétés matroïdales
issues de la théorie des matroïdes pour produire un certificat contenant la preuve d’un
théorème en incidence pure ;

• Nous exposons dans un catalogue de démonstrations la génération automatique des preuves
pour de grands théorèmes classiques de la géométrie incluant la propriété de Desargues, la
configuration du conjugué harmonique et le théorème de Dandelin-Gallucci.



6 Introduction

Les quatre premières contributions sont déjà synthétisées dans les articles de recherche suivants :

• David Braun, Nicolas Magaud et Pascal Schreck. Two cryptomorphic formalizations of pro-
jective incidence geometry. Annals of Mathematics and Artificial Intelligence, Springer, 2019,
vol. 85, no 2-4, p. 193-212.

• David Braun, Nicolas Magaud et Pascal Schreck. Formalizing Some “Small” Finite Models of
Projective Geometry in Coq. Proceedings of the 13th International Conference on Artificial
Intelligence and Symbolic Computation (AISC’2018), Springer, 2018, Suzhou, China, p. 54-
69.

• David Braun, Nicolas Magaud et Pascal Schreck. An equivalence proof between rank theory
and incidence projective geometry. Automated Deduction in Geometry (ADG 2016), 2016,
p. 62-77.

Les deux dernières contributions correspondent à des travaux qui n’ont pas encore été pu-
bliées. Le reste de cette thèse est divisé en quatre parties de la manière suivante :

La Partie I présente la formalisation de deux approches de la géométrie d’incidence projective :
l’approche classique fondée sur la géométrie synthétique et l’approche combinatoire s’appuyant
sur la théorie des matroïdes [GM12,Oxl06,Wel10]. Après avoir formalisé dans l’assistant de preuve
Coq plusieurs systèmes d’axiomes, nous prouvons, en utilisant la traduction d’une théorie vers
l’autre et vice versa, l’équivalence entre ces deux approches à la fois en 2D, ≥3D et 3D. Dans cette
partie, nous étudions en simultané la méthodologie de la démonstration en géométrie d’incidence
projective en examinant à la fois l’expressivité des énoncés géométriques et les étapes principales
que l’on souhaite mécaniser lors des démonstrations. La mise en place de la preuve d’équivalence
entre les deux théories montre que la fonction de rang issue de la théorie des matroïdes est plus
adaptée pour une automatisation globale des démonstrations dans ce contexte.

La Partie II décrit une étude de cas où les géométries finies [Bat97, BW11, Dem12, RK70,
Ros17] sont utilisées comme un banc d’essai pour l’automatisation des preuves en géométrie
d’incidence projective. Ces géométries exprimées à partir d’un nombre fini de points et définies
par extension en énumérant les objets qui les composent vont permettre de confronter les deux
approches géométriques. Nous étudions la mise en place des procédés d’automatisation et l’effi-
cacité des deux approches pour prouver que les espaces finis sont effectivement des modèles de
la géométrie d’incidence projective respectant par ailleurs les propriétés de Desargues et Pappus.
Pour rendre ces preuves réalisables, nous mettons en exergue un ensemble de critères généraux
qui vont permettre de gérer au mieux l’explosion combinatoire du nombre de cas à traiter et d’op-
timiser les performances de l’assistant de preuve Coq dans le contexte des géométries finies. Par
ailleurs, nous en profitons pour comparer les performances globales des prouveurs automatiques
dans les mêmes démonstrations.

La Partie III est consacrée à l’implantation d’un prouveur automatique par saturation de
configurations géométriques d’incidence. Cet outil d’aide à la preuve s’appuyant sur les propriétés
matroïdales permet d’automatiser et vérifier automatiquement la plupart des raisonnements dans
des preuves géométriques en incidence pure. En analysant et en optimisant les performances de ce
prouveur, nous sommes en mesure de produire automatiquement la preuve détaillée de plusieurs
théorèmes classiques de la géométrie d’incidences.

La Conclusion globale effectue une synthèse des travaux réalisés dans cette thèse et donne
quelques axes de recherche à explorer.

Finalement la Partie IV rassemble une collection de documents annexes dont certains per-
mettent une meilleure lecture (systèmes d’axiomes, théorème de Desargues et Pappus, . . . ).



Introduction 7

Tous les tests de performances présentés dans cette thèse sont effectués sur une machine stan-
dard dont les spécificités sont les suivantes : Intel(R) Core(TM) i5-4460 CPU @3.20GHz avec
16Go de mémoire.

Quelques notations rencontrées au cours de ce manuscrit sont résumées :

• E. C. signifiant explosion combinatoire

• GD signifiant graphe de déductions

• T. E signifiant temps d’exécution

• M. signifiant mémoire

• Nb. signifiant nombre

De plus, nous utilisons une convention de nommage AXYN pour nos systèmes d’axiomes.
Les lettres correspondent à A pour axiome, X pour le numéro de l’axiome, Y peut prendre deux
valeurs (P = projectif, R = rang) et N désigne la dimension.





Première partie

Deux approches cryptomorphiques
pour la mécanisation des preuves en
géométrie d’incidence projective

9





CHAPITRE I.1

Mécanisation de la démonstration en géométrie d’incidence
projective

“Geometry, like arithmetic, requires for its logical development only a small number of simple,
fundamental principles. These fundamental principles are called the axioms of geometry. Geome-
try is the most complete science.“

David Hilbert (1862–1943)

11



12 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

Résumé

Dans ce chapitre, nous présentons le cadre géométrique qui nous permet d’étudier l’aide à la
preuve en introduisant la géométrie d’incidence et la structure qui lui est associée (section 1).
En précisant le concept de droites parallèles, nous clarifions la classe des théorèmes qu’il est pos-
sible de prouver en considérant uniquement la variante projective de la géométrie d’incidence.
Nous formalisons à travers plusieurs systèmes d’axiomes la géométrie d’incidence projective à
la fois en 2D, ≥3D et 3D. Parallèlement, nous décrivons notre implantation hiérarchique de
tous ces systèmes d’axiomes au sein de l’assistant de preuve Coq (section 2). Dans la suite, la
méthodologie de la démonstration en géométrie d’incidence projective est analysée grâce à une
classification des éléments de preuves qui ont été identifiés comme des étapes indépendantes et
nécessaires permettant l’automatisation des preuves (section 3). Puis en examinant l’expressi-
vité de la géométrie synthétique, nous observons qu’il est commode d’introduire de nouvelles
relations d’incidence en fonction de la dimension et de modifier en conséquence à chaque fois la
mécanisation des preuves qui est déjà en soi une tâche bien complexe. Au final, une alternative
intéressante évitant l’ajout de ces nouvelles relations et qui laisse présager une automatisation
plus simple apparaît à travers le concept de rang (section 4).

Contenu
1 Géométrie d’incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Structure d’incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Description informelle . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Variante projective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Géométrie d’incidence projective . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Système d’axiomes pour la géométrie d’incidence projective 2D . . . . 16

2.1.1 Système d’axiomes standard . . . . . . . . . . . . . . . . . . 17
2.1.2 Système d’axiomes alternatif . . . . . . . . . . . . . . . . . . 18
2.1.3 Aparté sur la dualité . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Système d’axiomes pour la géométrie d’incidence projective ≥3D et 3D 20
2.3 Formalisation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Méthodologie et automatisation de la démonstration en géométrie d’incidence 25
3.1 Tests de décidabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Clôture des hypothèses . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Résolution ou contradiction . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Création d’objets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Identification et application d’un motif . . . . . . . . . . . . . . . . . . 30
3.6 Stratégie d’ordonnancement . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Expressivité de la théorie en géométrie synthétique . . . . . . . . . . . . . . . 31
4.1 Propriétés fondamentales de la géométrie d’incidence projective . . . . 32

4.1.1 Propriété de Desargues . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Propriété de Pappus . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Théorème de Hessenberg . . . . . . . . . . . . . . . . . . . . 35

4.2 Étude de l’expressivité avec l’approche en géométrie synthétique . . . 36



13

4.2.1 Exemple du théorème de Desargues en 3D . . . . . . . . . . 36
4.2.2 Expressivité dans une théorie uniforme . . . . . . . . . . . . 37



14 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

Dans ce chapitre, nous précisons le cadre géométrique qui quoique très simple nous permet
dans la suite de ce mémoire d’étudier et d’évaluer nos idées sur l’aide à la preuve. De nombreux
articles traitent de l’automatisation ou de la mécanisation des preuves dans différents contextes
mathématiques (plus de 500 articles ayant le mot « proof automation », « proof mechanization »
ou « automated reasoning » dans leurs mots-clés parmi les publications de la ACM digital library
uniquement), dont voici une sélection : [Bee13,Bou97,BNSB14b,FT10,GNS11,GZND11,JNQ12,
LW03,MF06,MNKJ16,Nar04,Nar06b,NJF18,RG95,SF12,Wu86]. Nombre de ces travaux, dont
certains sont présentés dans le Chapitre Introduction, sont des procédures ou des méthodologies
qui visent à simplifier ou à automatiser des preuves dans un environnement spécifique. Notre
travail s’inscrit dans une démarche similaire puisque nous étudions les possibilités de mécani-
sation dans un contexte géométrique précis en nous aidant du langage Gallina [BC04,Coq02].
Cependant, notre objectif consiste aussi à contribuer plus largement au domaine de l’aide à la
preuve formelle en dégageant des idées qui sortent de ce cadre spécifique.

En effet, comme nous l’avons indiqué dans le Chapitre Introduction, nous cherchons dans
cette thèse à analyser et à mettre en place des mécanismes généralisables d’aide à la preuve en
contexte géométrique. Le choix du terrain d’expérimentation, i.e. dans notre cas le choix du cadre
géométrique, est donc crucial. D’un côté, il est important de considérer un cadre suffisamment
riche pour pouvoir étudier des théorèmes pertinents. De l’autre côté, il ne doit pas multiplier
les concepts pour éviter de masquer la généralité des idées que nous défendons en complexifiant
le contexte. Notons, par ailleurs, que l’étude des fondements axiomatiques de la géométrie fait
partie intégrante de l’ADN de notre petite équipe [BNSB14a,DDS00,MNS11,Nar06a,Nar06b] et
ce travail a aussi pour objectif de contribuer à ce domaine.

Parmi les différentes approches axiomatiques, les éléments d’Euclide, repris plus formelle-
ment par Hilbert, proposaient déjà il y a plus de deux millénaires une structuration où la géo-
métrie euclidienne usuelle est décrite progressivement en l’enrichissant de notions de plus en
plus complexes. Ainsi, dans son ouvrage « Grundlagen der Geometrie » [Hil60], Hilbert propose
une décomposition hiérarchique en cinq groupes d’axiomes qui, en considérant tous les modèles
possibles, définissent des géométries de plus en plus complexes jusqu’à obtenir l’espace euclidien
complet correspondant à R3.

(I) (Incidence) Ce premier groupe introduit les notions de point, droite, plan reliées entre
elles par une relation d’incidence qui doit répondre aux axiomes de ce groupe ;

(II) (Ordre) Ce second groupe enrichit le cadre précédent en permettant de considérer une
relation d’ordre entre les points sur une droite, tout en introduisant l’axiome de Pasch ;

(III) (Congruence) Les axiomes de ce troisième groupe complètent les deux premiers en définis-
sant la notion de congruence et, par là, celle de déplacement. Hilbert caractérise ainsi les
concepts de segments, de demi-droites, de demi-plans, d’ensembles convexes et d’angles ;

(IV) (Parallèles) Ce groupe introduit un unique axiome supplémentaire, celui des parallèles in-
diquant que : « par un point, il passe toujours une unique droite parallèle à une autre » ;

(V) (Continuité) Le dernier groupe ajoute le concept de continuité à travers les axiomes
d’Archimède et d’intégrité linéaire.

En ne retenant que le groupe (I), on obtient une géométrie appelée géométrie d’incidence très
générale et dans laquelle la notion de coordonnée n’est pas pertinente. Cette géométrie purement
synthétique est cependant décrite de manière un peu compliquée, quoique naturelle, par Hilbert
qui introduit la notion de « plan ». Or la géométrie d’incidence, quelque soit la dimension visée,
peut être formalisée en n’utilisant que les notions primitives de « point » et « droite ». On pourra
ensuite considérer les plans en les définissant à l’aide de deux droites concourantes distinctes.



1. Géométrie d’incidence 15

Le cadre obtenu pourtant très simple est suffisamment riche pour étudier de nombreux théo-
rèmes fondamentaux dont certains sont présentés au fil des chapitres.

1 Géométrie d’incidence

Cette section présente une formalisation ainsi qu’une analyse des fondements axiomatiques
de cette géométrie.

1.1 Structure d’incidence

Précisons qu’une géométrie d’incidence est un modèle des axiomes provenant du groupe (I)
qui sont énoncés formellement un peu plus loin. De manière sémantique, une telle géométrie est
définie par un triplet (Ω, ∆, Φ) appelé structure d’incidence où Ω et ∆ sont deux ensembles
d’éléments disjoints liés par la relation binaire d’incidence Φ. Les éléments qui sont en relation
d’incidence constituent un sous-ensemble Φ ⊆ Ω ×∆. En utilisant la terminologie géométrique
usuel : les éléments de Ω sont les points, ceux de ∆ sont les droites. Si A ∈ Ω et δ ∈ ∆ sont tels
que A ∈ δ, on dira, indifféremment, que le point A appartient à la droite δ, que δ passe par A
ou que A et δ sont incidents. Cela permet de redéfinir certaines notions de la géométrie affine
plane comme le parallélisme : deux droites sont parallèles si elles sont égales ou si aucun point
n’est sur les deux simultanément.

Si l’abstraction et la caractérisation de cette structure d’incidence avec ses variantes projec-
tives proviennent de la géométrie, la notion d’incidence trouve des applications dans d’autres
domaines des mathématiques comme la combinatoire et la théorie des graphes mais aussi dans
la vie de tous les jours avec les plans de métro et même des jeux pour enfants comme Dooble 1.

1.2 Description informelle

Tous les exemples que nous venons d’évoquer partagent un ensemble de règles simples. Ces
règles ont été au cours du temps formalisées en des systèmes axiomatiques qui sont détaillés dans
la suite. La notation ∈ provenant de la théorie ensembliste désigne dans la suite l’appartenance
d’un point à une droite.

(I1) Soient deux point distincts A et B du plan, il existe une unique droite l dans le plan tel
que A ∈ l et B ∈ l.

(I2) Soit une droite l du plan, il existe deux points distincts A et B du plan tel que A ∈ l et
B ∈ l.

(I3) Il existe trois points distincts non alignés dans le plan.

Table I.1.1 – Description informelle de la géométrie d’incidence.

La formalisation de ces règles est présentée dans [Hil60] en s’inspirant des travaux d’Hil-
bert. Nous notons lAB l’unique droite dans le plan passant par les points distincts A et B et
∩ l’intersection entre deux droites. À partir des règles de la description I.1.1, nous pouvons dé-
duire deux résultats directs qui sont utilisés dans les preuves le plus souvent sans aucune mention.

1. Dooble est un jeu de société dans lequel les joueurs doivent associer des dessins communs entre deux cartes.
Un tel paquet de cartes est conçu à partir des droites de P 2(K) où K est un corps fini.



16 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

Lemme I.1.1. Soient deux droites distinctes l et m, si X ∈ (l ∩ m), alors l ∩ m = {X}.

Démonstration. Supposons qu’il existe un point A tel que A 6= X et que A ∈ (l ∩ m). D’après
l’axiome (I1), l = lAX = m. Nous obtenons une contradiction avec l’hypothèse que les deux
droites sont distinctes, un tel point A ne peut donc pas exister. Autrement dit, l’intersection
entre nos deux droites est unique.

Lemme I.1.2. Soient trois points non colinéaires A, B et C. Alors A, B et C sont distincts
deux à deux.

Démonstration. Supposons dans un premier temps que les trois points soient égaux A = B = C.
Grâce à l’axiome (I3), il existe un point Q 6= A. En utilisant l’axiome (I1), il existe une droite
l contenant A et Q. Nous déduisons que A, B, C ∈ l et donc que A, B et C sont colinéaires ce
qui est contradictoire avec l’hypothèse.
Dans un second temps, si les trois points forment cette fois-ci une droite, les points A, B et C
sont colinéaires, ce qui est impossible.
Étant donné que les trois points ne peuvent pas être égaux ou alignés, ils déterminent nécessai-
rement un plan où les points sont nécessairement distincts deux à deux.

1.3 Variante projective

Ces deux lemmes illustrent le raisonnement mathématique que l’on peut effectuer dans un
cadre géométrique en incidence pure. Pour compléter cet ensemble de règles, nous définissons le
concept de parallélisme introduit dans le groupe (IV) de la décomposition d’Hilbert. Les deux
principales généralisations des espaces munis d’une structure dite d’incidence sont les espaces
affines et les espaces projectifs. Dans un espace affine, le parallélisme est défini comme l’existence
d’une unique droite parallèle à une autre passant par un point donné. Dans le cas projectif, on
ajoute des points à l’infini pour chaque direction de manière à ce que deux droites strictement
parallèles se coupent en un tel point. La géométrie projective est une complétion de la géométrie
affine sans perte de généralité en ajoutant une droite à l’infini, chaque parallèle se coupant sur
cette droite. Il est donc possible de passer d’une géométrie à l’autre sans difficulté. Dans la suite
de cette thèse, nous privilégions la variante projective de la géométrie d’incidence car elle est
plus simple, il n’est pas nécessaire d’introduire un nouveau concept pour définir le parallélisme.

2 Géométrie d’incidence projective

Cette structure d’incidence offre une alternative pour définir les espaces projectifs. En effet,
étant donné un triplet (Ω, ∆, Φ), représentant un ensemble de points, un ensemble de droites, et
une relation d’incidence, on peut résumer en quelques axiomes, dus à Veblen et Young [VY18]
repris par Coxeter [Cox03], toute l’information de la structure projective en dimension ≥ 1.

2.1 Système d’axiomes pour la géométrie d’incidence projective 2D

Pour décrire la géométrie d’incidence projective plane, nous présentons le système d’axiomes
standard à la Table I.1.2 que nous illustrons dans la Table I.1.3.



2. Géométrie d’incidence projective 17

2.1.1 Système d’axiomes standard

Les deux premiers axiomes (A1P2) (A2P2) concernent la construction des points et des
droites. Le premier permet de créer la droite passant par deux points tandis que le second définit
l’intersection entre deux droites. L’axiome (A2P2) correspond à notre axiome des parallèles en
géométrie projective : deux droites du plan se coupent toujours.

Nous n’avons pas besoin de spécifier que les points impliqués (resp. droites) doivent être diffé-
rents dans l’axiome Line-Existence (resp. Point-Existence). En effet, si les points sont égaux, une
telle droite (resp. point) existe bel et bien. Dans les faits, il existe une infinité de droites (resp.
points) passant par deux points confondus (resp. droites). Ce choix théorique n’est pas sans im-
portance, nous séparons ici la définition d’existence de l’unicité pour les points et les droites. Cela
nous permet d’examiner une géométrie où il est toujours possible de montrer l’existence d’une
droite passant par un point sans étendre notre système d’axiomes même si elle n’est pas toujours
explicitement définie (il n’est pas impossible de choisir une droite parmi une infinité de droites
passant par un point). Grâce à ces considérations, nous pouvons toujours fournir des témoins
d’existence dans certains cas dégénérés lors des démonstrations. Néanmoins dans la plupart des
livres [BR98, Bue95, Cox03], ces conditions de dégénérescence sont exclues pour être cohérent
avec l’introduction des géométries finies où tous les points sont spécifiés distincts. Rajoutons que
ce choix est relié aux fondements de la géométrie (incluant l’approche constructiviste de cette
dernière [VP95]) qui est largement étudiée dans notre équipe. Dans ce cas, la construction d’une
droite à partir de deux points nécessairement distincts n’est qu’un cas dérivé de l’axiome général
que nous introduisons, où les points peuvent être confondus. L’axiomatisation de certaines parties
de la géométrie est un problème contemporain que nous étudions à nouveau à travers la forma-
lisation de ces dernières dans des assistants de preuves [DDS00,FT10,MF03,MNS11,Nar06a].

L’axiome (A3P2) concerne l’unicité de deux objets bien définis. En effet, si deux points sont
incidents aux mêmes deux droites alors soit les points sont égaux, soit les droites sont confon-
dues. Ensuite, l’axiome (A4P2) énonce que chaque droite contient au minimum trois points.
Cet axiome empêche que certains petits systèmes exceptionnels soient appelés plans projectifs.
Finalement, l’axiome (A5P2) exprime qu’il existe toujours deux droites distinctes pour former
au minimum une géométrie planaire, ce qui signifie que la dimension est au moins 2. En couplant
cet axiome avec l’axiome (A2P2), cette formalisation ne décrit que des plans. Par conséquent,
ce système d’axiomes décrit une géométrie d’incidence projective plane.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m : Line, l 6= m

Table I.1.2 – Système d’axiomes standard pour la géométrie projective 2D.



18 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

A1P2 A2P2 A3P2

A Bl
A

l m A CB

A4P2 A5P2

i

j

i′

j′

A

B

m

l

i

j

i′

j′

A Bm

l
l m

Table I.1.3 – Illustrations du système d’axiomes standard pour la géométrie projective 2D.

Pour éliminer certains détails techniques et améliorer la compréhension de nos systèmes
d’axiomes, nous supprimons dans ce manuscrit la distinction entre le quantificateur existentiel
standard exist x et la notation {x | . . .} qui est présente dans notre développement. Cette
seconde syntaxe dénote la quantification existentielle constructive sur la sorte Type noté sig
en Gallina. Les deux définitions diffèrent uniquement au niveau de la hiérarchie des univers en
Coq, là où sig utilise Type, exist utilise Prop. Nous rencontrons des problèmes avec la version
classique de l’existence quand il s’agit de faire des éliminations dans des preuves constructives.
Les règles de type Gallina nous interdisent d’éliminer un motif dont le type appartient à l’univers
Prop, chaque fois que le type du résultat de l’élimination est différent de Prop. Le système de
typage garantit ainsi que les détails des preuves ne peuvent en aucun cas affecter les parties d’un
développement qui ne sont pas aussi marquées comme des preuves. À l’aide de sig, il est possible
d’effectuer une analyse de cas sur des éléments existentiels pour produire des objets dans Set.

Tous ces détails liés à la théorie des univers dans Coq sont disponibles dans le livre de réfé-
rence [BC04]. Des explications plus détaillées sur notre approche constructiviste de la géométrie
d’incidence projective plane sont disponibles dans [MNS11].

2.1.2 Système d’axiomes alternatif

Le système d’axiomes précédent inspiré des travaux [BR98,Cox03] est souvent décrit sous une
forme minimaliste alternative dans la littérature (voir Table I.1.4). Les trois premiers axiomes
(A1P2) (A2P2) et (A3P2) restent strictement identiques. L’axiome (A4P2’) indique qu’il
existe quatre points sans aucun triplet de points colinéaires. L’équivalence entre cet axiome
Four-Points et la décomposition Three-Point, Lower-Dimension est établie dans [MNS11]. Intui-
tivement, l’axiome Four-Points sous-entend que le plan projectif ne peut pas être réduit à une
simple droite et qu’il est possible grâce à l’axiome Point-Existence de construire systématique-
ment un troisième point sur une des droites (voir Table I.1.5). Nous préférons la décomposition
de la Table I.1.2 pour faciliter la décomposition et la mécanisation des preuves. En effet, l’axiome
(A4P2’) est souvent plus compliqué à manipuler dans les preuves.



2. Géométrie d’incidence projective 19

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2’) Four-Points : ∃ A B C D : Point,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
(∀ l : Line,
(A ∈ l ∧ B ∈ l ⇒ C /∈ l ∧ D /∈ l) ∧
(A ∈ l ∧ C ∈ l ⇒ B /∈ l ∧ D /∈ l) ∧
(A ∈ l ∧ D ∈ l ⇒ B /∈ l ∧ C /∈ l) ∧
(B ∈ l ∧ C ∈ l ⇒ A /∈ l ∧ D /∈ l) ∧
(B ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ C /∈ l) ∧
(C ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ B /∈ l) )

Table I.1.4 – Système d’axiomes alternatif pour la géométrie projective 2D.

A4P2’

A

B C

D

Table I.1.5 – Illustration de l’axiome alternatif (A4P2’).

Notons qu’il existe bien d’autres axiomatisations capturant la géométrie d’incidence projec-
tive plane. Il est par exemple possible de considérer la formalisation d’un système d’axiomes à
partir de points et d’une relation d’incidence.

2.1.3 Aparté sur la dualité

Il est bien connu que la géométrie projective plane bénéficie d’un principe de dualité, à savoir
que chaque définition reste significative et chaque théorème reste vrai, lorsque nous échangeons
les objets point et droite. Ce principe est un résultat théorique intéressant qui permet de ma-
nière pratique de prouver pour chaque théorème géométrique son dual en utilisant un foncteur
qui échange les objets et les prédicats. De plus, cette dualité se généralise aux dimensions supé-
rieures en échangeant chaque objet de dimension avec sa co-dimension associée. Dans un espace
de dimension n, les points (dimension 0) correspondent aux hyperplans (codimension 1), les
droites passant par deux points (dimension 1) correspondent à l’intersection de deux hyperplans
(codimension 2), etc.



20 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

2.2 Système d’axiomes pour la géométrie d’incidence projective ≥3D et 3D

De la même manière, nous présentons dans la Table I.1.6 et illustrons dans la Table I.1.7, un
système d’axiomes pour la géométrie en dimension supérieure.

Le système contient toujours cinq axiomes dont trois d’entre eux restent inchangés (A1P3)
(A3P3) et (A4P3). Pasch se substitue à (A2P2) en affirmant que deux droites coplanaires
sont toujours concourantes. De plus, nous modifions l’axiome Lower-Dimension pour définir une
géométrie qui est au moins un espace. Pour cela, nous supposons qu’il existe deux droites qui
ne se coupent pas. Cette fois-ci, l’axiome de Pasch ne nous permet pas de borner la dimension
supérieure, c’est pourquoi nous la qualifions de géométrie ≥3D.

Bien évidemment, il est possible de restreindre la dimension de cette géométrie à l’espace en
ajoutant un axiome optionnel pour limiter la dimension à exactement 3. Cet axiome (A6P3)
spécifie qu’il y a toujours une droite qui coupe trois autres droites non coplanaires.

(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧
B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAD ∧ J ∈ lBC)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ P : Point, P /∈ l ∨ P /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point,
P1 ∈ l1 ∧ P1 ∈ l4 ∧
P2 ∈ l2 ∧ P2 ∈ l4 ∧
P3 ∈ l3 ∧ P3 ∈ l4

Table I.1.6 – Système d’axiomes pour la géométrie projective 3D.



2. Géométrie d’incidence projective 21

A2P3 A5P3 A6P3i

j

i′

j′

A

B C

DJ

I

l

m P

i

j

i′
j′

l1l2

p1 p2 p3

l3

Table I.1.7 – Illustrations du système d’axiomes standard pour la géométrie projective 3D.

2.3 Formalisation Coq

La formalisation Coq de ces quatre systèmes d’axiomes est plutôt immédiate. Par souci de
clarté, nous exposons ci-dessous une version simplifié de notre implantation de la géométrie
d’incidence projective à la fois en 2D, ≥3D et 3D.

Pour améliorer la modularité, nous exploitons le mécanisme de « type classes » [CS12,SO08]
et de foncteurs en Coq. Les classes de types d’abord définies dans Haskell [Jon03] sont un outil
très utile pour écrire des programmes sur des structures abstraites tout en apportant un méca-
nisme de surcharge des notations. Afin d’analyser les dépendances entre les différents systèmes
d’axiomes et observer les équivalences entre différentes variantes d’axiomatisations, nous divi-
sons nos ensembles d’axiomes en différentes classes. Nous examinons ainsi en détails l’équivalence
entre chaque classe d’axiomes avec les deux formalisations de la géométrie d’incidence projective.
De plus, ces classes sont construites incrémentalement en ajoutant les axiomes un à un. Cette
classification nous permet de mettre en évidence le système d’axiomes minimal requis pour dé-
montrer un ensemble de propriétés. Finalement, les classes de types en Coq permettent de vérifier
que nous avons bien réussi à prouver une théorie à partir d’une autre grâce à l’instantiation.

Premièrement, nous créons la classe ProjectiveStructure avec les définitions des deux ob-
jets : point et droite, de la relation d’incidence et de sa décidabilité 2 (voir Table I.1.8). Nous
regroupons ensuite les axiomes communs entre les différentes dimensions à savoir Line-Existence,
Uniqueness et Three-Points dans la Table I.1.10. Enfin, nous construisons trois classes, la pre-
mière capture l’intégralité du plan projectif (voir Table I.1.11), la seconde (voir Table I.1.12)
décrit l’espace projectif ≥3D et la dernière (voir Table I.1.13) formalise exactement l’espace pro-
jectif 3D.

2. {Incid A l} + {∼ Incid A l} est la notation constructive de la décidabilité (Incid A l) ∨ (¬ Incid A l)



22 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

(* Types *)
Class ProjectiveStructure := {

Point : Set;
Line : Set;
Incid : Point -> Line -> Prop;

(* décidabilité pour la relation d’incidence *)
incid_dec : forall (A : Point)(l : Line), {Incid A l} + {~Incid A l}

}.

Table I.1.8 – Classe de types pour la structure projective.

Les questions de décidabilité et les relations d’égalité sont les principales différences entre la
formalisation Coq et les systèmes d’axiomes montrés précédemment.

Étant donné que la logique sous-jacente à Coq est intuitionniste, nous devons explicitement
déclarer quels prédicats sont décidables. Il s’agit d’indiquer au système les concepts qui satisfont
la propriété du tiers-exclu 3 de la logique classique. De cette manière, nous élargissons le fragment
décidable des théorèmes qu’il est possible de prouver. En admettant seulement la décidabilité
du prédicat Incid, nous prouvons la décidabilité de l’égalité à la fois pour les points et pour
les droites [MNS11]. Les trois décidabilités sont toutes reliées à travers la définition de l’axiome
(A3P2) de la géométrie d’incidence projective. Ce choix de conception ne complique en rien les
preuves. Une fois que la décidabilité de l’égalité sur les points ou les droites est démontrée, nous
différencions nos objets comme en logique classique : soit deux objets sont égaux, soit ils ne le
sont pas.

L’autre choix de formalisation que nous avons effectué est que l’égalité sur les points dif-
fère de l’égalité classique de Leibniz 4. Cette égalité sur les points, notée [==], est une relation
d’équivalence qui devient un paramètre de notre théorie formellement défini en amont de la classe
ProjectiveStructure dans la Table I.1.9. Elle permet de rendre transparente la manière dont les
points sont construits. En d’autres termes, l’égalité rend possible la substitution d’un point par
un autre si ils sont constructivement équivalents mais pas nécessairement syntaxiquement égaux.
En associant cette égalité à la non distinction des points lors de la formalisation du premier
axiome (A1P2), il est possible de construire une partie de la géométrie d’incidence projective
avec une approche constructiviste [Kah95,VP95]. Lorsque nous souhaitons rendre une partie de
notre formalisation calculatoire, nous introduisons la décidabilité sur cette égalité paramétrique
qui a été prouvée en utilisant celle sur l’incidence. Pour les droites, un traitement analogue
reste à faire : l’égalité de Leibniz est encore employée pour représenter l’égalité entre les droites.
Nous justifions la non utilisation d’une égalité paramétrique pour les droites de deux manières :
premièrement, les droites ne forment pas un objet primitif de la formalisation de la géométrie
d’incidence projective du Chapitre I.2 ; en effet dans ce cadre les droites seront représentées par
des ensembles de points ; deuxièmement, nous souhaitons mesurer les principales différences entre
les deux égalités dans l’automatisation des preuves. Pour rigoureusement compléter notre librai-

3. Le tiers exclu aristotélicien dit que : si ça n’est pas vrai, c’est faux ; si ça n’est pas faux, c’est vrai ; pas
d’autres possibilités. En d’autres termes, deux propositions contradictoires ne peuvent pas être toutes les deux
fausses. Cette propriété possède des formulations équivalentes comme par exemple la double négation, la loi de
Peirce ou la loi de De Morgan.

4. L’égalité classique respecte les axiomes généraux de l’identité, de la symétrie et de la transitivité. Leibniz
propose le principe suivant comme définition de l’égalite : deux êtres sont égaux lorsque tout ce qui est vrai de
l’un est vrai de l’autre.



2. Géométrie d’incidence projective 23

rie sur la géométrie, une égalité paramétrique pour les droites similaire à celle des points doit être
considérée. Ce détail technique permettant de mieux étudier la logique sous-jacente à l’assistant
de preuve Coq n’empêche en rien la formalisation de la géométrie d’incidence projective ainsi
que les nombreuses preuves qui lui sont associées. Nous n’y reviendrons pas dans la suite de ce
manuscrit.

(* décidabilité sur les points *)
Class EqDecidability ‘(U : Set) := {

(* notation et décidabilité *)
Notation "s [==] t" := (s === t) (at level 70, no associativity).
eq_dec_u : forall A B : U, {A [==] B} + {~ A [==] B}

}.

Table I.1.9 – Classe de types pour l’égalité sur les points.

(* nD *)
Class ProjectiveStructureLEU ‘(PS : ProjectiveStructure) := {

(* A1P2-P3 Line-Existence *)
a1_exist: forall (A B : Point) , exists l : Line, Incid A l /\ Incid B l;

(* A3P2-P3 Uniqueness *)
uniqueness: forall (A B : Point)(l1 l2 : Line), Incid A l1 -> Incid B l1 ->

Incid A l2 -> Incid B l2 -> A [==] B \/ l1 = l2;

(* A4P2-P3 Three-Points *)
a3_1: forall l : Line, exists A : Point, exists B : Point, exists C : Point,

(~ A [==] B /\ ~ A [==] C /\ ~ B [==] C /\
Incid A l /\ Incid B l /\ Incid C l)

}.

Table I.1.10 – Classe de types pour la structure projective indépendante de la dimension.

(* 2D *)
Class ProjectiveStructurePlane ‘(PSLEU : ProjectiveStructureLEU) := {

(* A2P2 Point-Existence *)
a2_exist : forall (l1 l2 : Line), exists A : Point, Incid A l1 /\ Incid A l2;

(* A5P2 Lower-Dimension *)
a3_2 : exists l1 : Line, exists l2 : Line, l1 <> l2;

}.

Table I.1.11 – Classe de types pour le plan projectif.



24 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

(* >= 3D *)
Class ProjectiveSpaceOrHigher ‘(PSLEU : ProjectiveStructureLEU) := {

(* A2P3 Pasch *)
a2: forall A B C D : Point, forall lAB lCD lAC lBD : Line,

~ A [==] B /\ ~ A [==] C /\ ~ A [==] D /\
~ B [==] C /\ ~ B [==] D /\ ~ C [==] D ->
Incid A lAB /\ Incid B lAB ->
Incid C lCD /\ Incid D lCD ->
Incid A lAC /\ Incid C lAC ->
Incid B lBD /\ Incid D lBD ->
(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->
exists J : Point, (Incid J lAC /\ Incid J lBD);

(* A5P3 Lower-Dimension *)
a3_2: exists l1 : Line, exists l2 : Line, forall p : Point,

~(Incid p l1 /\ Incid p l2)

}.

Table I.1.12 – Classe de types pour l’espace projectif au moins en dimension 3.

(* 3D *)
Class ProjectiveSpace ‘(PSH : ProjectiveSpaceOrHigher) := {

Intersect_In (l1 l2 : Line) (P : Point) := Incid P l1 /\ (Incid P l2);

(* A6P3 Upper-Dimension *)
a3_3 : forall l1 l2 l3 : Line, ~ l1 = l2 /\ ~ l1 = l3 /\ ~ l2 = l3 ->

exists l4 : Line, exists J1 : Point, exists J2 : Point, exists J3 : Point,
(Intersect_In l1 l4 J1) /\ (Intersect_In l2 l4 J2) /\ (Intersect_In l3 l4 J3)

}.

Table I.1.13 – Classe de types pour l’espace projectif exactement en dimension 3.



3. Méthodologie et automatisation de la démonstration en géométrie d’incidence 25

3 Méthodologie et automatisation de la démonstration en géo-
métrie d’incidence

Dans cette section, nous décrivons la méthodologie que nous avons suivie pour effectuer des
preuves en géométrie d’incidence ainsi que l’automatisation qu’il est possible d’apporter dans ces
démonstrations. Afin de mécaniser le déroulement des preuves dans un contexte géométrique,
nous devons identifier les étapes clés de démonstration apparaissant de façon récurrente et évaluer
leur difficulté. Ces étapes générales sont ensuite automatisées grâce aux différents outils proposés
par les assistants de preuves. Dans la suite, cette segmentation des démonstrations en petits
morceaux de preuves représentatifs avec les stratégies de mécanisation qui les accompagnent est
appelé « élément de preuves ». Nous divisons la classification de ces élements de preuves en 5
catégories distinctes que nous ne hiérarchisons pas :

• Tests de décidabilité

• Clôture des hypothèses

• Résolution ou contradiction

• Création d’objets

• Identification et application d’un motif

3.1 Tests de décidabilité - difficulté modérée

Cette partie regroupe tous les tests de décidabilité qui sont effectués lors d’une démons-
tration. En effectuant un test de décidabilité, la démonstration est scindée en deux parties à
cause de la disjonction naturelle que l’on retrouve dans la définition de chacune des décidabilités
(points, droites, incidence, . . . ). Ces disjonctions peuvent être provoquées d’une part par des tests
d’égalité entre objets, d’autre part par des tests d’incidence. Les disjonctions sont essentielles
pour traiter séparément les cas dégénérés d’un énoncé géométrique et diviser la démonstration
en plusieurs cas de figure. L’importance de la prise en compte de ces cas dégénérés est soule-
vée lors de l’introduction [BNSB14a,DDS00,MF03,Nar06b]. De plus, ces tests sont bien souvent
mis en œuvre pour avancer dans la démonstration et permettre l’application des autres catégories.

Exemple. ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ A 6= B ⇒ l = m ∨ l 6= m

Afin d’illustrer ce mécanisme de disjonction, nous donnons un exemple de lemme ad hoc
dérivé de l’axiome Uniqueness (A3P2) qui ne contient pas l’hypothèse B ∈ m. Le résultat étant
trivial si la décidabilité de l’égalité sur les droites est prouvée, nous considérons uniquement la
décidabilité de l’incidence dans cet exemple. L’étape clé de cette démonstration est le test de
décidabilité sur l’incidence du point B à la droite m. Soit B ∈ m alors l = m d’après l’axiome
d’Uniqueness. Soit B /∈m alors l 6= m puisqu’il existe un point distinct de A sur l qui n’appartient
pas à m.

Pour finir, l’imbrication des tests de décidabilité subdivise à chaque fois la preuve en deux
(voir Figure I.1.1). Il est donc important d’uniquement considérer les tests qui sont nécessaires
à l’accomplissement de la démonstration pour éviter d’alourdir cette dernière. Nous omettons
pour le moment l’ordre de ces imbrications et l’élagage de l’arbre de tests que nous détaillons
dans le Chapitre II.1.



26 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

l = m ∨ l 6= m

l = m
A = B ∨A 6= B

l = m
A = B

l = m
A 6= B

l 6= m
A = B ∨A 6= B

l 6= m
A = B

l 6= m
A 6= B

Figure I.1.1 – Imbrication des tests de décidabilité.

3.2 Clôture des hypothèses - difficulté modérée

Cette étape consiste à compléter le contexte en déduisant toutes les informations qui sont
simplement des transformations et des manipulations d’hypothèses. Le terme de saturation est
aussi employé pour décrire cette tâche. Pour réaliser cette saturation, il faut déterminer pour
chaque définition de notre théorie les transformations et les propriétés élémentaires qui lui sont
associées. À partir du prédicat de base qu’est l’incidence, il est possible de construire des défi-
nitions plus complexes permettant de représenter une configuration particulière de notre énoncé
géométrie.

Par exemple, en géométrie spatiale, il est très rapidement nécessaire d’introduire des défi-
nitions pour les différentes généralisations d’une relation d’incidence dans un espace projectif
(colinéarité, coplanarité, . . . ). La création de ces définitions est une démarche obligatoire pour
simplifier l’expression des configurations en géométrie d’incidence projective. En effet, pour prou-
ver une relation de coplanarité non dégénérée entre quatre points non alignés, nous devons trouver
une application de l’axiome de Pasch (A2P3) qui compte pas moins de 10 incidences et 6 inéga-
lités entre points. Identifier plusieurs coplanarités en simultané dans notre contexte devient donc
rapidement une tâche laborieuse. Nonobstant, pour être capable de saturer le contexte en utili-
sant ces définitions, nous devons à la fois pouvoir identifier de nouvelles relations d’incidences et
appliquer des propriétés de réflexivité (trivialité), symétrie (permutation) et ”transitivé“ (pseudo-
transitivité) sur ces dernières [BNS15]. Une relation d’incidence de dimension n et d’arité n+ 1
respecte un ensemble de propriétés résumé pour la colinéarité dans la Table I.1.15, pour la co-
planarité dans la Table I.1.16 et de manière généralisée par la Table I.1.17. Remarquons que la
généralisation de la relation d’incidence à la dimension 1 représente l’égalité entre points et pos-
sède uniquement 3 propriétés étant donné que les propriétés de permutations sont équivalentes
(voir Table I.1.14).

Eg-trivial : ∀ A : Point, Eg A A

EG-perm1 : ∀ A B : Point, Eg A B → Eg B A

Eg-ptrans : ∀ X A B : Point,
Eg X A ∧ Eg X B → Eg A B

Table I.1.14 – Propriétés vérifiées par la relation d’incidence Eg d’arité 2.



3. Méthodologie et automatisation de la démonstration en géométrie d’incidence 27

Col-trivial : ∀ A B : Point, Col A A B

Col-perm1 : ∀ A B C : Point, Col A B C → Col B C A

Col-perm2 : ∀ A B C : Point, Col A B C → Col B A C

Col-ptrans : ∀ X Y A B C : Point, X 6= Y
Col X Y A ∧ Col X Y B ∧ Col X Y C → Col A B C

Table I.1.15 – Propriétés vérifiées par la relation d’incidence Col d’arité 3.

Cop-trivial : ∀ A B C : Point, Cop A A B C

Cop-perm1 : ∀ A B C D : Point, Cop A B C D → Cop B C D A

Cop-perm2 : ∀ A B C D : Point, Cop A B C D → Cop B A C D

Cop-ptrans : ∀ X Y Z A B C D : Point, ¬ Col X Y Z
Cop X Y Z A ∧ Cop X Y Z B ∧
Cop X Y Z C ∧ Cop X Y Z D → Cop A B C D

Table I.1.16 – Propriétés vérifiées par la relation d’incidence Cop d’arité 4.

Con-trivial : ∀ X1 X2 . . . Xn−1 : Point, Con X1 X1 X2 . . . Xn−1

Con-perm1 : ∀ X1 X2 . . . Xn : Point, Con X1 X2 . . . Xn → Con Xn X1 . . . Xn−1

Con-perm2 : ∀ X1 X2 . . . Xn : Point, Con X1 X2 . . . Xn → Con X2 X1 . . . Xn

Con-ptrans : ∀ Y1 Y2 . . . Yn−1 X1 X2 . . . Xn : Point, ¬ Con−1 Y1 Y2 . . . Yn−1
Con Y1 Y2 . . . Yn−1 X1 ∧ Con Y1 Y2 . . . Yn−1 X2 ∧ . . . ∧
Con Y1 Y2 . . . Yn−1 Xn−1 ∧ Con Y1 Y2 . . . Yn−1 Xn →
Con X1 X2 . . . Xn−1 Xn

Table I.1.17 – Propriétés vérifiées par la relation d’incidence Con d’arité n.

Ces propriétés forment les lemmes usuels associés à chacune de ces relations d’incidence. Ces
lemmes doivent ensuite être intégrés dans le mécanisme de saturation. Dans la Figure I.1.2, nous
illustrons sur un exemple simple ce mécanisme en saturant la définition de colinéarité on_line
(voir Table I.1.18) indiquant que trois points A, B, C sont alignés sur une droite l. De plus, nous
profitons de l’incidence du point D à la droite l pour découvrir d’autres colinéarités sur la droite



28 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

l. Notons que la clôture déploie aussi récursivement les définitions pour effectuer de nouvelles
déductions. Toutefois, ce mécanisme de saturation ne doit pas surcharger inutilement le contexte
d’hypothèses en empêchant ainsi la suite de la progression de la preuve. Cette étape souvent
terminale doit mettre en évidence un cas absurde ou conclure un but courant.

Definition on_line A B C l := Incid A l /\ Incid B l /\ Incid C l.

Table I.1.18 – Définition de la colinéarité à une droite.

on_line A B C l
Incid D l

}
Hypothses

on_line B C D l
}
But

⇓
on_line A B C l + 5 permutations
Incid D l
Incid A l
Incid B l
Incid C l
on_line A B D l + 5 permutations
on_line A C D l + 5 permutations
on_line B C D l + 5 permutations


Hypothses

on_line B C D l
}
But

Figure I.1.2 – Clôture des hypothèses dans un exemple simple.

3.3 Résolution ou contradiction - difficulté faible

La troisième méthode vient compléter la clôture des hypothèses en terminant la preuve du
but courant. Deux cas de figure se présentent : soit nous réussissons à déduire une hypothèse
identique au but recherché, soit nous sommes en présence d’un contexte incohérent où il n’est pas
possible de prouver le but. Dans ce dernier cas, l’objectif est alors d’identifier deux hypothèses
contradictoires qui permettent de mettre fin à la démonstration. Cette étape relativement courte
est fortement dépendante de la capacité de saturation de la sous-section précédente.

3.4 Création d’objets - difficulté très forte

Les trois premières étapes permettent de faire évoluer un contexte à partir des informations
qui sont déjà connues. Parfois, toute l’ information nécessaire au déroulement d’une preuve n’est
pas encore disponible. Il est nécessaire de créer de nouvelles entités (points, droites, . . . ). Cette



3. Méthodologie et automatisation de la démonstration en géométrie d’incidence 29

création d’objets s’effectue à partir des axiomes disposant d’une quantification existentielle. En
géométrie plane, nous pouvons créer de nouveaux points à partir de (A1P2) (A4P2) et de
nouvelles droites avec (A2P2) (A5P2). En géométrie spatiale, nous construisons de nouveaux
points grâce à (A2P3) (A4P3) et de nouvelles droites avec (A1P3) (A5P3) (A6P3). Nous
remarquons que la quasi-totalité des axiomes permet de créer de nouveaux objets dans des
configurations bien spécifiques. C’est une étape charnière qui est difficile à maîtriser sans intuition
sur la résolution du problème. En effet, trouver l’idée générale d’une preuve en construisant tous
les objets intermédiaires nécessaires à la démonstration est une tâche difficile même pour un
mathématicien.

Dans un système général qui est automatique ; si on applique systématiquement les axiomes
dès que possible, on obtient très rapidement une explosion du nombre d’objets manipulés sans
pour autant garantir la construction des objets nécessaires à la finalisation de la démonstration.
Afin de contrôler cette explosion, il est possible de considérer une construction par niveau de
profondeur où on effectue d’abord toutes les déductions possibles avant de rajouter les nouveaux
objets parmi les hypothèses. En pratique, on se limite au maximum à une profondeur 2 ou 3
comme nous l’illustrons dans I.1.19. Cette limitation n’est cependant pas suffisante dans cer-
taines configurations géométriques compliquées où le niveau de profondeur requis est plus élevé
et l’explosion du nombre d’objets engendrés devient trop importante pour le système.

Table I.1.19 – Illustration de la construction d’objets par niveau de profondeur sur un exemple
à trois points et deux droites. Noir configuration initiale, bleu : 1er niveau, rouge : 2ème niveau,
vert : 3ème niveau.

Niveau 1 : Droites bleues construites à partir de l’axiome (A1P2) ; deux points bleus construits
à partir de l’axiome (A4P2) ;

Niveau 2 : Droites rouges construites à partir de l’axiome (A1P2) ; point rouge construit à
partir de l’axiome (A4P2) ;

Niveau 3 : Droites vertes construites à partir de l’axiome (A1P2) ; point vert construit à
partir de l’axiome (A2P2).



30 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

Il est important de minimiser la création de nouveaux objets pour simplifier l’étape de satura-
tion. Étant donné qu’il est difficile de guider le système pour construire les « bons » objets, nous
préférons confier cette tâche à l’utilisateur. Dans le cadre d’une aide à la preuve qui n’est pas
entièrement automatisée, il est acceptable que l’utilisateur indique les objets qui sont nécessaires
pour continuer la preuve. Cette intuition facilite grandement la tâche pour les autres étapes.
Dans la suite de nos travaux, nous considérons l’hypothèse suivante :

Hypothèse. La construction d’objets complémentaires à l’énoncé est une tâche exclusivement
manuelle qu’on ne va pas chercher à automatiser.

En admettant cette hypothèse, le système a toutes les informations nécessaires à disposition.
Il peut se concentrer uniquement sur les déductions logiques solutionnant le problème.

3.5 Identification et application d’un motif - difficulté forte

La dernière étape consiste à identifier dans les preuves, les pas de démonstrations qu’on peut
factoriser et regrouper dans un lemme. Ces morceaux de preuves doivent être paramétrables et
apparaître plusieurs fois. L’idée sous-jacente est de décomposer une preuve complexe en utilisant
des lemmes intermédiaires. Ces lemmes font partie du mécanisme d’aide à la preuve puisqu’ils
facilitent la compréhension globale et découpent les preuves en petits morceaux réutilisables.

De la même manière que pour la création de points, si l’on souhaite que le système dé-
couvre automatiquement de nouveaux motifs pouvant être regroupés dans un lemme, le système
doit posséder une intuition géométrique. Cette intuition géométrique est une tâche réservée aux
mathématiciens et que l’on retrouve dans des domaines qui sont plutôt relatifs à l’intelligence
artificielle. La conception d’une méthode d’identification automatique de ces motifs sort du cadre
d’aide à la preuve que nous nous sommes fixés. Nous souhaitons assister le mathématicien dans
sa preuve en prenant en charge les étapes triviales et répétitives. Si l’utilisateur identifie et isole
dans un lemme séparé une telle étape, nous voulons l’aider à finaliser la preuve de ce dernier.
Ensuite, nous pouvons continuer les preuves en ajoutant à la base de connaissances du système
ce nouveau lemme. L’application des lemmes inclus dans cette base pour déduire de nouveaux
résultats doit se faire automatiquement lors de la phase de saturation.

3.6 Stratégie d’ordonnancement

Une fois la classification de ces éléments de preuves terminée, il est possible de s’intéresser à
l’ordonnancement de ces derniers. Nous réfléchissons ainsi à l’élaboration d’un premier prototype
de tactique générale qui permet de simplifier les schémas de démonstrations en géométrie d’in-
cidence projective en nous appuyant sur la méthodologie de la démonstration que nous venons
de présenter. Rappelons que l’objectif principal est d’aider l’utilisateur à résoudre la plus grande
classe de problèmes possibles en géométrie d’incidence projective sans négliger l’efficacité. En
éliminant la création d’objets et l’identification d’un nouveau motif du processus automatique,
nous pouvons proposer une ébauche de tactique en ordonnant les éléments de preuves comme
suit :

1. Tests de décidabilité

2. Clôture des hypothèses et application de motifs



4. Expressivité de la théorie en géométrie synthétique 31

3. Résolution ou contradiction

Cet ordonnancement n’est cependant pas parfait. De nombreuses questions sur l’optimisation
et l’ordre de ces éléments de preuves se posent dans le but de minimiser le temps d’exécution
et/ou l’occupation mémoire.

Chaque démonstration est différente et nécessite un cheminement précis (avec des variantes)
pour être menée à son terme. L’application d’un procédé automatique qui teste chacun des
éléments de preuves séquentiellement à différents niveaux de profondeurs ne peut pas être sans
aucun défaut. Une tactique doit être correctement conçue pour résoudre une classe spécifique de
problèmes en manipulant les hypothèses sans jamais les éliminer. Pour optimiser cette tactique,
l’utilisation d’astuces de génie logiciel orienté Coq permet par exemple de limiter le nombre
d’unifications du système ou de fournir un maximum d’informations pouvant aider à la résolution.
Nous détaillons quelque peu ce mécanisme d’unification dans le Chapitre I.2.

Si la terminaison d’une tactique et sa correction ne posent pas de problèmes, il est impossible
de certifier la complétude de cette dernière. En effet, si la tactique appliquée permet d’effectuer
un ensemble de déductions de manière automatique, son échec à résoudre le but courant peut
être interprété de deux façons différentes : soit le design de la tactique n’est pas assez soigné et
général pour prendre en compte ce cas de figure, soit la tactique n’est pas censée résoudre ce
fragment de la théorie et il n’existe donc aucun cheminement possible pour cette dernière. Même
en ayant identifié préalablement les différents éléments de preuves à inclure dans un tel procédé
automatique, la validation d’une telle tactique nécessite beaucoup de vérifications et de tests.

La clôture des hypothèses que nous avons présentée peut être apparentée à une saturation
du contexte avec toutes les informations qu’il est possible de déduire. À partir de là, le système
dispose de toutes les connaissances pour continuer automatiquement la preuve du but courant.
Néanmoins, cette méthode est coûteuse en temps et en espace. Comment optimiser cette clôture
des hypothèses pour ne garder dans le contexte que les hypothèses encore utiles à la démonstra-
tion ?

Bien que nous éliminions l’identification automatique de nouveaux lemmes intermédiaires de
notre prototype, nous souhaitons pouvoir appliquer mécaniquement dès que possible des lemmes
à partir d’une base de connaissances. Comment identifier les parties de preuves qui méritent
d’être segmentées dans un lemme intermédiaire ? Puis dans quel ordre doit-on les appliquer ?

On peut rapidement identifier une boucle de déductions très longue où la clôture permet de
créer de nouvelles hypothèses qui sont utilisées par les lemmes intermédiaires pour déduire eux
aussi de nouveaux résultats et ainsi de suite. Tous ces éléments de preuves sont ainsi entrelacés
et répétés. À quel niveau de profondeur doit-on arrêter les nouvelles déductions ?

Toutes ces questions sont étudiées au chapitre suivant lors de la preuve de l’équivalence entre
les deux formalisations de la géométrie, mais aussi au cours de ce manuscrit dans la formalisation
des géométries finies et la mise en place du prouveur généralisé. Dans la section suivante, nous
nous intéressons plus particulièrement au mécanisme de clôture des hypothèses en géométrie
synthétique en analysant la capacité d’une telle géométrie à exprimer des énoncés de manière
concise.

4 Expressivité de la théorie en géométrie synthétique

La taille d’un énoncé géométrique en nombre d’hypothèses dépend de l’expressivité de notre
approche de la géométrie d’incidence. C’est-à-dire que les concepts de base que nous manipulons
sont souvent mal adaptés pour exprimer des énoncés de haut niveau. En utilisant uniquement
le concept d’incidence, il est très difficile de résoudre des problèmes impliquant des colinéarités



32 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

et des coplanarités entre objets. Il est alors habituel de fabriquer une hiérarchie de concepts
pour améliorer la concision. Afin d’améliorer l’expressivité de l’approche en géométrie synthé-
tique, nous sommes dans la nécessité d’introduire de nouvelles définitions pour les différentes
relations d’incidence (égalité, colinéarité, coplanarité, . . .). De cette manière, nous pouvons di-
minuer le nombre d’hypothèses traitées et l’opération de clôture des hypothèses est plus simple
à réaliser. Nous ne nous limitons pas aux relations d’incidence, nous introduisons des définitions
pour d’autres configurations géométriques plus complexes tel que les hexamys 5 [MNS12,MS06]
pour faciliter l’expression d’un énoncé géométrique. L’inconvénient majeur est que la tactique
générale que nous cherchons à mettre en place pour mécaniser la démonstration en géométrie
d’incidence projective doit être modifiée et adaptée pour chaque définition supplémentaire que
nous incluons. Définir une nouvelle notion implique d’ajouter un ensemble de règles permettant
de faire des déductions et des simplifications sous forme de lemmes intermédiaires dans notre
base de connaissance. En augmentant le nombre de définitions globales et le nombre de lemmes
intermédiaires, nous complexifions sans cesse la méthode de résolution qui doit être capable d’en-
tremêler tous ces nouveaux concepts. Cette géométrie élémentaire axiomatisée à partir de la seule
notion d’incidence montre ici ses limites intrinsèques.

4.1 Propriétés fondamentales de la géométrie d’incidence projective

Pour examiner en détail l’expressivité de la géométrie synthétique sur des exemples précis,
nous étudions plusieurs propriétés classiques de la géométrie d’incidence projective. Ces diffé-
rentes propriétés que nous retrouvons tout au long de ce manuscrit sont tout d’abord rappelées
au lecteur à travers une description générale.

4.1.1 Propriété de Desargues

Nous commençons par énoncer la propriété de Desargues (voir Figure I.1.3) qui est un aspect
fondamental de la géométrie d’incidence projective.

Cette propriété a la particularité d’être toujours vraie dans un espace projectif de dimen-
sion supérieure ou égale à 3 construit sur un corps non forcément commutatif souvent appelé
corps gauche (”skew field“) dans la littérature. Autrement dit, si la propriété de Desargues
est vérifiée alors il est possible de construire un espace projectif sur un corps gauche. Cette
propriété s’énonce uniquement en termes d’incidence ; Hilbert met en évidence dans son livre
« Grundlagen der Geometrie » [Hil60] que ses axiomes du plan similaires à ceux présentés dans
la Table I.1.2 ne suffisent pas pour la démontrer. Cependant, si le plan peut être plongé dans
l’espace, alors les axiomes d’incidence de la géométrie dans l’espace permettent sa démonstration.
En d’autres termes, cette propriété non forcément vérifiée dans le plan devient un théorème en
dimension supérieure. Les plans (affines ou projectifs) où la propriété de Desargues est vérifiée
sont appelés plans désarguésiens (ou arguésiens).

Proprieté I.1.1 (Propriété de Desargues). Soit E un espace projectif ≥ 2 et P, Q, R, P’, Q’, R’
des points de cet espace. Soient PQR et P’Q’R’ deux triangles non aplatis et non confondus. Si
les droites (PP’), (QQ’) et (RR’) sont concourantes en un point O alors α, β et γ sont alignés
avec α ∈ (PR) ∩ (P’R’), β ∈ (QR) ∩ (Q’R’) et γ ∈ (PQ) ∩ (P’Q’).

Description informelle. Si deux triangles sont en perspectives par rapport à un point, alors ils
sont en perspectives par rapport à une droite. Cette droite est la droite d’intersection des plans
des deux triangles.

5. Introduction aux hexamys : http ://hexamys.free.fr/



4. Expressivité de la théorie en géométrie synthétique 33

P

Q

R

O

P ′

R′

Q′

β γ
α

Figure I.1.3 – Une configuration du théorème de Desargues dans l’espace projectif.

Le plan fini de Fano illustré dans la Figure I.1.4 est l’exemple le plus simple de plan désargué-
sien que l’on peut donner. C’est le plus petit plan projectif fini, c’est à dire celui comportant le
plus petit nombre de points et de droites, à savoir 7 de l’un et de l’autre. Ce plan projectif peut
être défini de deux façons, soit comme le plan projectif sur le corps à deux éléments F2 = Z/2Z
noté simplement PG(2,2), soit comme le plus petit plan projectif vérifiant les axiomes d’inci-
dences de la Table I.1.2. Nous détaillons toute la théorie autour de la construction de ces plans
finis et démontrons que ce plan est désarguésien dans le Chapitre II.1.

À contrario, il existe des plans non arguésiens, satisfaisant les axiomes de la géométrie plane
où la propriété de Desargues n’est pas vérifiée tel que le célèbre plan de Moulton [Mou02] (voir
Figure I.1.5). C’est un plan affine dans lequel les droites qui ont une pente négative voient leur
pente doubler lorsqu’elles franchissent l’axe des ordonnées. Le plan de Moulton est fondé sur une
structure d’incidence (P, L, I) vérifiant les propriétés d’un plan affine ; il peut être facilement
étendu en un plan projectif en rajoutant une droite à l’infini [BR98,Cox03]. La figure I.1.5 illustre
une configuration de la propriété de Desargues dans le plan de Moulton où les points α, β et γ
ne sont pas alignés (le point α n’est pas représenté).



34 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

E

F

A

B

HG

C

Figure I.1.4 – Plan projectif fini de Fano.

P
P ′

Q′

Q

R

O

R′

γ

Bβ

Figure I.1.5 – Configuration de Desargues dans le plan de Moulton.

Ajoutons une petite précision en rapport avec la dualité de la géométrie projective plane où
les points correspondent à des droites et la colinéarité des points correspond à la concourance des
droites. L’énoncé de la propriété de Desargues est « auto-dual » : l’axe de perspective devient le
centre de perspective et vice versa.



4. Expressivité de la théorie en géométrie synthétique 35

4.1.2 Propriété de Pappus

Avec une approche axiomatique de la géométrie projective, si on veut construire un espace
projectif cette fois-ci sur un corps commutatif, nous devons ajouter la propriété de Pappus aux
différents systèmes d’axiomes.

Proprieté I.1.2 (Propriété de Pappus). Soit E un espace projectif de dimension ≥ 2 et F un
sous-espace de E formant un plan. Dans ce plan F, soient P, Q, R trois points distincts alignés
sur une droite d, et soient P’ Q’ R’ trois autres points distincts alignés sur une droite d’, alors
les point α β γ sont alignés avec α = (RQ’) ∩ (QR’), β = (PR’) ∩ (RP’) et γ = (PQ’) ∩ (QP’).

Description informelle. La propriété de Pappus est une configuration à 9 points et 9 droites
où chaque droite passe par 3 points et chaque point est l’intersection de trois droites 6.

R

P

Q

P ′

R′
Q′

γ
β

α

Figure I.1.6 – Une configuration du théorème de Pappus dans l’espace projectif.

4.1.3 Théorème de Hessenberg

Le théorème de Hessenberg [Cox03,RK70] montre que la propriété de Desargues se déduit
de la propriété de Pappus en plus des axiomes d’incidence. De manière générale, la propriété de
Pappus est vérifiée pour tout espace projectif construit sur un corps commutatif : on parle d’es-
pace projectif pappusien. Un plan projectif pour lequel la propriété de Pappus n’est pas vérifiée
est soit desarguésien lié à un corps gauche, soit non désarguésien.

6. Toute transformation projective entre deux droites d et d′ est définie par l’image P ′, Q′, R′ de trois points
distincts P , Q, R de d. P ′, Q′, R′ sont aussi tous distincts.



36 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

Théorème I.1.1 (Théorème de Hessenberg). Dans un plan projectif satisfaisant les axiomes
d’incidence et la propriété de Pappus, la propriété de Desargues est vérifiée.

4.2 Étude de l’expressivité avec l’approche en géométrie synthétique

Nous reprenons l’exemple de la propriété de Desargues que nous énonçons formellement de
différentes manières en choisissant des cadres axiomatiques différents. Nous illustrons ainsi les
problèmes d’expressivité introduits au début de la section 4.

4.2.1 Exemple du théorème de Desargues en 3D

Le théorème de Desargues s’exprime à partir des informations suivantes :

• 10 points : 6 points pour les deux triangles, le point de vue O et la construction des points
α β γ qui sont alignés ;

• 10 droites : 3 droites concourantes en O le point de vue, 6 droites pour la construction des
points α β γ et une droite pour l’alignement de ces 3 points ;

• 30 incidences : incidence de chacun des points à exactement 3 droites ;

• Conditions de non dégénérescence : deux triangles non aplatis et non confondus ainsi qu’un
point de vue non coplanaire avec le triangle à la base du tétraèdre.

En regroupant toutes ces informations, nous obtenons l’énoncé Coq de la Table I.1.20.

(* Théorème de Desargues exprimé uniquement en incidence *)
(* Avec les axiomes de la géométrie d’incidence projective *)

Theorem Desargues :
forall O P Q R P’ Q’ R’ alpha beta gamma lP lQ lR lPQ lPR lQR lP’Q’ lP’R’ lQ’R’,
Incid P lPQ /\ Incid Q lPQ /\ Incid gamma lPQ /\
Incid P’ lP’Q’ /\ Incid Q’ lP’Q’ /\ Incid gamma lP’Q’ /\
Incid P lPR /\ Incid R lPR /\ Incid alpha lPR /\
Incid P’ lP’R’ /\ Incid R’ lP’R’ /\ Incid alpha lP’R’ /\
Incid Q lQR /\ Incid R lQR /\ Incid beta lQR /\
Incid Q’ lQ’R’ /\ Incid R’ lQ’R’ /\ Incid beta lQ’R’ /\
Incid O lP /\ Incid P lP /\ Incid P’ lP /\
Incid O lQ /\ Incid Q lQ /\ Incid Q’ lQ /\
Incid O lR /\ Incid R lR /\ Incid R’ lR /\
~ (exists l, Incid O l /\ Incid P l /\ Incid Q l) /\
~ (exists l, Incid O l /\ Incid P l /\ Incid R l) /\
~ (exists l, Incid O l /\ Incid Q l /\ Incid R l) /\
~ (exists l, Incid P l /\ Incid Q l /\ Incid R l) /\
~ (exists l, Incid P’ l /\ Incid Q’ l /\ Incid R’ l) /\
((P<>P’) \/ (Q<>Q’) \/ (R<>R’)) ->
(exists l, Incid alpha l /\ Incid beta l /\ Incid gamma l).

Table I.1.20 – Énoncé Coq du théorème de Desargues exprimé uniquement en incidence.



4. Expressivité de la théorie en géométrie synthétique 37

Pour simplifier l’expression de ce théorème et sa résolution, nous introduisons la colinéarité.
L’énoncé Coq de la Table I.1.20 se simplifie en I.1.21. Notons qu’il n’est pas pratique d’expri-
mer le théorème de Desargues uniquement avec la définition collinear. L’ajout de la définition
on_line permet d’éviter le traitement de certains quantificateurs existentiels en donnant direc-
tement le témoin.

(* Théorème de Desargues exprimé avec la colinéarité *)
(* Avec les axiomes de la géométrie d’incidence projective *)

Definition on_line A B C l := Incid A l /\ Incid B l /\ Incid C l.

Definition collinear A B C := exists l, Incid A l /\ Incid B l /\ Incid C l.

Theorem Desargues :
forall O P Q R P’ Q’ R’ alpha beta gamma lP lQ lR lPQ lPR lQR lP’Q’ lP’R’ lQ’R’,
((on_line P Q gamma lPQ) /\ (on_line P’ Q’ gamma lP’Q’)) /\
((on_line P R beta lPR) /\ (on_line P’ R’ beta lP’R’)) /\
((on_line Q R alpha lQR) /\ (on_line Q’ R’ alpha lQ’R’)) /\
((on_line O P P’ lP) /\ (on_line O Q Q’ lQ) /\ (on_line O R R’ lR)) /\
~collinear O P Q /\ ~collinear O P R /\ ~collinear O Q R /\
~collinear P Q R /\ ~collinear P’ Q’ R’ /\
((P<>P’) \/ (Q<>Q’) \/ (R<>R’)) ->
collinear alpha beta gamma.

Table I.1.21 – Énoncé Coq du théorème de Desargues exprimé avec la colinéarité.

4.2.2 Expressivité dans une théorie uniforme

Bien que l’énoncé de ce théorème soit satisfaisante, la méthode de résolution devient quant à
elle plus complexe en introduisant la notion de colinéarité. Nous souhaitons conserver l’intuition
géométrique apportée par la relation de colinéarité et sa généralisation en dimension supérieure
afin de faciliter l’expression des théorèmes avec l’approche géométrique. Néanmoins, il n’est pas
souhaitable de complexifier l’automatisation des preuves en ajoutant ces notions de colinéarité,
coplanarité, etc.

Une idée que l’on retrouve dans les géométries combinatoires [Bat97,Mao11] consiste à intro-
duire la notion de « rang » d’un espace projectif pour unifier le concept d’incidence et ces rela-
tions. Il est alors possible d’exprimer de manière homogène les relations usuelles de la géométrie
d’incidence projective, non seulement les relations d’incidence qui sont nombreuses (point-droite,
point-plan, droite-plan, point-espace . . . ) mais aussi les relations d’égalité, de colinéarité ou de
coplanarité. Sans formaliser pour le moment cette notion de rang, nous posons que la fonction
rang est égale à la dimension de l’espace projectif plus un :

• Rang d’un espace projectif vide : par convention, rang(∅) = 0

• Rang d’un espace projectif E représentant un unique point : rang(E)= 1

• Rang d’un espace projectif E représentant une droite : rang(E) = 2

• Rang d’un espace projectif E représentant un plan : rang(E) = 3

• Rang d’un espace projectif E représentant un espace : rang(E) = 4



38 I.1. Mécanisation de la démonstration en géométrie d’incidence projective

• . . .

Notons que le rang d’un ensemble de points est égal au rang de l’espace affine engendré par ces
points. Ainsi si deux points distincts définissent une droite, le rang de ces deux points est étendu
à tout l’espace engendré par ces deux points c’est à dire la droite toute entière. En utilisant
cette notion de rang, nous exprimons une nouvelle fois le théorème de Desargues en manipulant
uniquement les points. Le résultat obtenu est présenté dans la Table I.1.22. L’unique fonction
de rang suffit à exprimer l’intégralité des relations d’incidences contenues dans ce problème. En
définissant les règles de simplifications et les lemmes intermédiaires pour ce concept de rang, il
est maintenant envisageable d’établir un mécanisme de résolution homogène plus simple pour les
problèmes de géométrie d’incidence projective. Pour cela, nous devons décrire formellement la
notion de rang en l’axiomatisant. Nous abordons la formalisation de ce concept dans le Chapitre
suivant I.2 grâce à la théorie des matroïdes.

(* Théorème de Desargues exprimé en utilisant les rangs *)
(* Avec un système d’axiomes conçu autour de la notion de rang *)

(* Fonction qui prend en paramètre un ensemble de points et qui renvoie un entier *)
rang : set Point -> nat

Theorem Desargues :
forall O P Q R P’ Q’ R’ alpha beta gamma,
rang(P Q gamma) = 2 /\ rang(P’ Q’ gamma) = 2 /\
rang(P R alpha) = 2 /\ rang(P’ R’ alpha) = 2 /\
rang(Q R beta) = 2 /\ rang(Q’ R’ beta) = 2 /\
rang(O P P’) = 2 /\ rang(O Q Q’) = 2 /\ rang(O R R’) = 2 /\
rang(O P Q) = 3 /\ rang(O P R) = 3 /\ rang(O Q R) = 3 /\
rang(P Q R) = 3 /\ rang(P’ Q’ R’) = 3 /\
( rang(P P’) = 2 \/ rang(Q Q’) = 2 \/ rang(R R’) = 2 ) ->
rang(alpha beta gamma) = 2.

Table I.1.22 – Énoncé Coq du théorème de Desargues exprimé avec le concept de rang.



CHAPITRE I.2

La théorie des matroïdes : une approche combinatoire
cryptomorphique

“Logic is justly considered the basis of all other sciences, even if only for the reason that in
every argument we employ concepts taken from the field of logic, and that ever correct inference
proceeds in accordance with its laws.“

Alfred Tarski (1901–1983)

39



40 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

Résumé

La formalisation de la géométrie d’incidence projective avec l’approche classique présente
quelques limites au niveau de l’expressivité, ce qui rend difficile d’envisager une aide à la preuve
systématique et une automatisation des preuves qui soit complète et efficace en toutes dimen-
sions. Nous apportons une solution élégante dans ce chapitre, en suivant les travaux de Dominique
Michelucci et al. [MS04,MS06], qui décrit comment l’approche matroïdale permet de capturer
et de généraliser les problèmes d’indépendance linéaire que l’on retrouve dans les problèmes géo-
métriques. Cette approche cryptomorphique 1 combinatoire permet de caractériser formellement
la notion de rang présentée précédemment.

Nous commençons par introduire la théorie des matroïdes, plus précisément un fragment de
cette dernière, permettant de formaliser la géométrie d’incidence projective (section 1). Pour va-
lider cette approche et permettre une traduction bilatérale entre les deux théories, nous étudions
la preuve d’équivalence entre les deux théories en dimension quelconque (section 2).

Contenu
1 Approche combinatoire de la géométrie d’incidence projective . . . . . . . . . 41

1.1 Théorie des matroides . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.1.1 Les matroïdes pour caractériser la notion d’indépendance . . 41
1.1.2 Les matroïdes pour caractériser la notion de rang . . . . . . 42
1.1.3 Les matroïdes pour caractériser la notion de fermeture et de

plat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2 Système d’axiomes fondé sur la notion de rang en 2D . . . . . . . . . . 43
1.3 Système d’axiomes fondé sur la notion de rang en ≥3D et 3D . . . . . 44
1.4 Formalisation Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Deux approches cryptomorphiques . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1 Des rangs vers la géométrie synthétique . . . . . . . . . . . . . . . . . 46

2.1.1 Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Sous-Modularité . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Preuve de la propriété Uniqueness . . . . . . . . . . . . . . . 48
2.1.4 Implantation Coq . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 De la géométrie synthétique vers les rangs . . . . . . . . . . . . . . . . 50
2.2.1 Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Techniques de preuve . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3 Preuve de la propriété matroïdale de non-décroissance . . . 53
2.2.4 Implantation Coq . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Statistiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Traduction bilatérale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1. En mathématiques, deux objets et plus spécialement deux systèmes d’axiomes ou leurs sémantiques sont
dit cryptomorphes s’ils sont équivalents mais pas de manière évidente.



1. Approche combinatoire de la géométrie d’incidence projective 41

La notion de rang introduite dans le Chapitre I.1 permet d’exprimer avec efficacité et simpli-
cité toutes les relations d’incidences qui peuvent se présenter dans notre cadre géométrique. Ce
changement d’approche permet d’envisager une aide à la preuve plus adaptée en ne manipulant
qu’un concept à la fois sans pour autant perdre en expressivité. Nous décrivons dans la suite de
cette thèse la formalisation de ce concept en utilisant la théorie des matroïdes.

1 Approche combinatoire de la géométrie d’incidence projective

Pour décrire cette approche combinatoire alternative basée sur la notion de dimension, nous
introduisons le concept de rang provenant de la théorie des matroïdes [GM12,Oxl06,Wel10].

1.1 Théorie des matroides

Les matroïdes ont été introduits dans les années 30 par Whitney dans ses travaux concernant
son approche axiomatique de la dépendance linéaire et algébrique. Comme le nom le suggère,
Whitney décrit les matroïdes comme une généralisation abstraite de la notion d’indépendance
des colonnes d’une matrice. Les matroïdes fournissent un traitement unificateur de la dépendance
en algèbre linéaire et en théorie des graphes. Autrement dit, c’est une structure combinatoire qui
permet de capturer et généraliser les principales propriétés ensemblistes de la dépendance linéaire
dans les espaces vectoriels. Depuis, il a été reconnu que les matroïdes apparaissent naturellement
dans l’optimisation combinatoire et qu’ils peuvent être utilisés comme cadre pour aborder une
étonnante diversité de problèmes. Ainsi cette notion apparaît naturellement dans la théorie des
graphes, des corps, des algorithmes gloutons ou de la topologie. Il existe plusieurs définitions
cryptomorphiques des matroïdes basé sur les concepts d’ensemble des indépendants, des circuits,
des bases, des rangs et des plats. Nous décrivons dans un premier temps l’axiomatisation la plus
fréquente de la théorie des matroïdes définissant la notion d’objets indépendants. Puis, nous
détaillons les systèmes d’axiomes équivalents fondés sur les plats et les rangs que nous utilisons
plus spécifiquement pour décrire les problèmes géométriques.

1.1.1 Les matroïdes pour caractériser la notion d’indépendance

En termes d’indépendance, un matroïde M est un couple (E, ξ) où E est un ensemble fini
et ξ est une famille de sous-ensembles de E qui vérifie les conditions suivantes :

(P1I) ∅ ∈ ξ

(P2I) Si E1 ⊆ E2 et E2 ∈ ξ, alors E1 ∈ ξ

(P3I) Si E1, E2 ∈ ξ et
∣∣E1

∣∣ < ∣∣E2

∣∣, alors ∃ e ∈ E2 \ E1 tel que E1 ∪ {e} ∈ ξ

Table I.2.1 – Axiomatisation des matroïdes avec les indépendants.

Les sous-ensembles de ξ sont appelés les indépendants de M . Un sous-ensemble de E qui
n’est pas dans ξ est dit dépendant. L’axiome (P1I) indique que l’ensemble vide est indépendant.
C’est-à-dire qu’il existe toujours au moins un ensemble de E qui est indépendant ξ 6= ∅. Le
deuxième (P2I) précise que les sous-ensembles d’un ensemble indépendant sont indépendants,
c’est la propriété d’hérédité. Pour finir l’axiome de l’échange (P3I) dit que : Si les ensembles U
et V sont indépendants, et si le cardinal de V est strictement plus grand que celui de U , alors il
est possible de compléter U avec un élément v ∈ V \ U tel que U ∪ {v} reste indépendant.



42 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

1.1.2 Les matroïdes pour caractériser la notion de rang

Soit M = (E, ξ) et X ⊆ E. Le rang de X, noté rk(X), est le cardinal d’un indépendant
contenu dans X et maximal pour l’inclusion, c’est à dire :

rk(X) = max{|Y | : Y ⊆ X, Y ∈ ξ}

L’axiome de l’échange (P3I) permet de dire que cette définition est correcte. Inversement,
on a que la fonction rk est la fonction rang d’un matroïde (E, ξ) avec E un ensemble fini si et
seulement si rk vérifie les conditions suivantes :

(P1R) ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|

(P2R) ∀ X ⊆ Y ⊆ E, rk(X) ≤ rk(Y )

(P3R) ∀ X, Y ⊆ E, rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X) + rk(Y )

Table I.2.2 – Axiomatisation des matroïdes avec les rangs.

L’ensemble des indépendants ξ de M est alors l’ensemble des parties A de E telles que :
rk(A) = |A|. De plus, l’axiome (P1R) indique que le rang est une fonction entière dont la valeur
est toujours positive et inférieure ou égale au cardinal de l’ensemble. L’axiome (P2R) précise
que cette fonction est non décroissante. Le dernier axiome (P3R) est appelée propriété de sous-
modularité.

1.1.3 Les matroïdes pour caractériser la notion de fermeture et de plat

Soit M un matroïde défini sur un ensemble fini E. La fermeture cl(X) d’un sous-ensemble
X ⊆ E est l’ensemble :

cl(X) = {x ∈ E
∣∣ rk(X) = rk(X ∪ x)}

Inversement, on a que la notion de fermeture est complétement caractérisée si et seulement
si les propriétés suivantes sont satisfaites :

(P1F) ∀ X ⊆ E, X ⊆ cl(X)

(P2F) ∀ X ⊆ E, cl(X) = cl(cl(X))

(P3F) ∀ X Y ⊆ E, avec X ⊆ Y , cl(X) ⊆ cl(Y )

(P4F) ∀ a b ∈ E, ∀ X ⊆ E, si a ∈ (cl(Y ∪ {b}) \ cl(Y )) alors b ∈ (cl(Y ∪ {a}) \ cl(Y ))

Table I.2.3 – Axiomatisation des matroïdes par la fermeture.

Les deux premières propriétés (P1F) (P2F) assurent l’extensitivité et l’idempotence. L’axiome
(P3F) indique que la fonction de fermeture est croissante. Enfin (P4F) est un axiome d’échange
connu sous le nom de propriété d’échange de Mac Lane-Steinitz [Oxl06,Wel10].



1. Approche combinatoire de la géométrie d’incidence projective 43

Un ensemble égal à sa fermeture est appelé ensemble fermé ou plat. SoitM un matroïde défini
sur un ensemble fini E et soit F une famille de sous-ensembles de E, cette famille représente les
plats d’un matroïde si et seulement si les propriétés suivantes sont vérifiés :

(P1P) E ∈ F

(P2P) Si F1, F2 ∈ F , alors F1 ∩ F2 ∈ F

(P3P) Si F ∈ F et {F1, F2, . . ., Fk} représente l’ensemble des plats qui couvrent F , alors
{F1 \ F , F2 \ F , . . ., Fk \ F} partitionne E \ F

Table I.2.4 – Propriétés sur les plats.

D’autre part, un ensemble est un plat s’il est maximal pour son rang, ce qui signifie que
l’ajout de tout autre élément à l’ensemble augmenterait le rang. En d’autres termes, le rang d’un
plat E est le cardinal du plus petit ensemble nécessaire pour engendrer E. Dans la Table I.2.5,
nous donnons quelques exemples de rang de plats en géométrie projective.

rk{A, B} = 1 A = B
rk{A, B} = 2 A 6= B
rk{A, B, C} = 2 A, B, C sont colinéaires avec au moins deux points distincts
rk{A, B, C} ≤ 2 A, B, C sont colinéaires
rk{A, B, C} = 3 A, B, C ne sont pas colinéaires
rk{A, B, C, D} = 3 A, B, C, D sont coplanaires mais pas tous collinéaires
rk{A, B, C, D} = 4 A, B, C, D ne sont pas coplanaires

Table I.2.5 – Illustration de la notion de rang sur des ensembles de points.

En utilisant chacune de ces définitions, on peut montrer que tout espace projectif a une struc-
ture matroïdale, la réciproque étant fausse. Pour capturer l’intégralité de la géométrie projective
d’incidence avec la notion de rang, nous avons besoin d’introduire des axiomes supplémentaires
à ceux des matroïdes de la Table I.2.2.

1.2 Système d’axiomes fondé sur la notion de rang en 2D

La Table I.2.6 présente les propriétés matroïdales de la fonction rk qui sont communes à tous
les espaces projectifs de dimension N .

(A1R2-R3) Rk-SubCardinal : ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|

(A2R2-R3) Rk-NonDecreasing : ∀ X ⊆ Y ⊆ E, rk(X) ≤ rk(Y )

(A3R2-R3) Rk-SubModular : ∀ X, Y ⊆ E, rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X) + rk(Y )

Table I.2.6 – Système d’axiomes basé sur les rangs pour la géométrie projective nD.



44 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

Nous présentons ensuite dans la Table I.2.7 le système d’axiomes basé sur les rangs pour
décrire la géométrie projective plane. Les deux premiers axiomes (A4R2) et (A5R2) que l’on
retrouve en dimension quelconque établissent la non dégénérescence de la fonction de rang. Les
autres axiomes (A6R2) (A7R2) (A8R2) sont plus ou moins une traduction directe des axiomes
de la géométrie projective plane de la Table I.1.2.

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R2) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk{P , Q} ≥ 2

(A6R2) Rk-Inter : ∀ A B C D : Point, ∃ J : Point, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C : Point, rk{A, B, C} ≥ 3

Table I.2.7 – Système d’axiomes basé sur les rangs pour la géométrie projective 2D.

1.3 Système d’axiomes fondé sur la notion de rang en ≥3D et 3D

De la même manière, nous définissons un système d’axiomes basé sur les rangs pour décrire
l’espace projectif en dimension 3 et plus dans la Table I.2.8. Une nouvelle fois, nous modifions
seulement les axiomes de Pasch et Lower-Dimension pour capturer au moins une géométrie pro-
jective spatiale (≥3). Pour limiter cette axiomatisation à la 3D, nous devons ajouter l’axiome
(A9R3’) ou l’axiome (A9R3) qui sont deux versions équivalentes plus ou moins directes de
l’axiome (A6P3) de la géométrie synthétique.

(A4R3) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R3) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk{P , Q} ≥ 2

(A6R3) Rk-Pasch : ∀ A B C D : Point, rk{A, B, C, D} ≤ 3 ⇒ ∃ J : Point,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R3) Rk-Lower-Dim : ∃ A B C D : Point, rk{A, B, C, D} ≥ 4

Table I.2.8 – Système d’axiomes basé sur les rangs pour la géométrie projective ≥3D.



1. Approche combinatoire de la géométrie d’incidence projective 45

(A9R3) Rk-Upper-Dim : ∀ A B C D E F , ∃ J1 J2 J3
rk{A, B} = 2 ∧ rk{C, D} = 2 ∧ rk{E, F} = 2 ∧
rk{A, B, C, D} ≥ 3 ∧
rk{A, B, E, F} ≥ 3 ∧
rk{C, D, E, F} ≥ 3 ⇒
rk{A, B, J1} = 2 ∧ rk{C, D, J2} = 2 ∧
rk{E, F , J3} = 2 ∧ rk{J1, J2, J3} ≤ 2

(A9R3’) Rk-Upper-Dim : ∀ A B C D E, rk{A, B, C, D, E} ≤ 4

Table I.2.9 – Système d’axiomes basé sur les rangs pour la géométrie projective 3D.

1.4 Formalisation Coq

L’implantation Coq et le découpage de ces systèmes d’axiomes suit exactement le même
processus que pour la géométrie synthétique : nous utilisons des classes de types pour augmenter
la modularité de notre développement en fonction de la dimension. Pour représenter les ensembles
de points en Coq, nous utilisons la bibliothèque standard Containers [Les11]. Elle permet de
raisonner de manière abstraite sur les ensembles ou de manipuler des implantations comme les
listes ou les AVL 2. Étant donné que nous travaillons avec des ensembles de petite taille, nous
privilégions l’implantation par listes. Pour des questions de performance dans l’environnement
Coq, nous prouvons certains résultats théoriques avec les listes plutôt qu’avec les ensembles
abstraits. L’usage des ensembles abstraits pour effectuer des calculs d’inclusion, d’intersection
ou d’union peut en effet être long principalement à cause du mécanisme d’unification de Coq et
de la vérification des types 3.

L’algorithme d’unification joue un rôle central dans un assistant de preuve tel que Coq [Zil14].
En effet, il infère les termes implicites et les annotations manquantes tout en s’occupant de la
bonne application des lemmes. L’unification est ainsi chargée de mettre en relation et de comparer
le type des arguments de la fonction avec le type des éléments qui sont passés en paramètre à
cette fonction. Par exemple, la tactique apply a pour objectif d’unifier le but courant avec la
conclusion du lemme appliqué.

Nous rapportons dans les Tables I.2.10 et I.2.11 la hiérarchie des classes de types commen-
çant la description de la géométrie d’incidence projective avec les rangs. La formalisation Coq
complète est disponible dans l’Annexe D.

(* Types *)
Class MatroidRk ’(S : FSetSpecs Point) := {

Point : Set;
rk : set Point -> nat

}.

Table I.2.10 – Classe de types pour la structure projective basé sur les rangs.

2. Arbres binaires de recherche automatiquement équilibrés
3. Une optimisation plus poussée de la structure de données manipulée permettrait d’améliorer les perfor-

mances globales de nos méthodes d’automatisation. Nous pourrions par exemple stocker les ensembles sous forme
d’entier binaire en nous appuyant sur l’article suivant [BDL16].



46 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

(* Structure matroïdale *)
Class Matroid ’(MR : MatroidRk) := {

(* A1R2-R3 Rk-SubCardinal *)
matroid1 : forall X, rk X >= 0 /\ rk X <= cardinal X;

(* A2R2-R3 Rk-NonDecreasing *)
matroid2 : forall X Y, Subset X Y -> rk X <= rk Y;

(* A3R2-R3 Rk-SubModular *)
matroid3 : forall X Y, rk(union X Y) + rk(inter X Y) <= rk X + rk Y

}.

Table I.2.11 – Classe de types pour la structure matroïdale.

2 Deux approches cryptomorphiques

Maintenant que nous avons précisé l’axiomatisation de la géométrie d’incidence projective
basée sur les rangs, nous nous intéressons à la preuve de l’équivalence entre ces deux systèmes
d’axiomes : d’un côté, nous avons l’approche par la géométrie synthétique qui permet de décrire de
manière intuitive des problèmes géométriques, de l’autre nous avons une approche combinatoire
utilisant le concept de rang introduit par les matroïdes qui laisse envisager une automatisation
plus efficace au détriment de la lisibilité des preuves.

Dans des travaux précédents [MNS09,MNS12], seule l’implication des rangs vers la géométrie
projective ≥3D a été étudiée. Cette implication était suffisante pour faire une étude de cas sur
la preuve du théorème de Desargues en 3D avec les rangs. Afin d’augmenter les possibilités
d’automatisations dans les preuves et permettre une traduction bidirectionnelle entre ces deux
approches, nous effectuons la preuve complète de cette équivalence. Avant d’établir cette preuve,
nous commençons par définir la bi-interprétation en introduisant les deux dictionnaires I.2.12 et
I.2.13 qui permettent d’effectuer une traduction des objets et relations d’une théorie vers l’autre.
La conception de ces dictionnaires s’inspire de la notion de plat introduite précédemment I.2.5.
Grâce à cette double traduction, nous avons le théorème d’équivalence suivant :

Théorème I.2.1. Les systèmes de la géométrie d’incidence projective avec l’approche en géomé-
trie synthétique et ceux basés sur les rangs sont équivalents respectivement en 2D, ≥3D et 3D.

Pour parvenir à cette preuve, nous divisons la démonstration de l’équivalence en fonction de
la dimension et de la direction.

2.1 Des rangs vers la géométrie synthétique

Nous commençons par l’implication des rangs vers la géométrie d’incidence projective en
2D, ≥3D et 3D. Les preuves sont très similaires quelle que soit la dimension.



2. Deux approches cryptomorphiques 47

2.1.1 Préliminaires

Pour commencer, nous devons caractériser le concept de droite et d’incidence qui n’existe
pas dans le système d’axiomes fondé sur les rangs I.2.12. Nous construisons, en utilisant une
définition inductive, une droite à partir de deux points distincts. Un point P est incident à la
droite l, si le rang du triplet formé par les deux points engendrant la droite et le point P reste
égal à 2. Finalement, deux droites l et m sont égales, si le rang du quadruplet formé par les deux
points engendrant chaque droite reste égal à 2.

(* Caractérisation de la géométrie synthétique à partir des rangs *)

Definition Point := Point.

Inductive LineInd : Type :=
|Cline : forall (A B : Point)(H : ~ A[==]B), LineInd.

Definition Line := LineInd.

Definition Incid (P : point)(l : Line) := rk ((fstP l)(sndP l) P) = 2.

Definition line_eq (l m : Line) := rk((fstP l)(sndP l)(fstP m)(sndP m)) = 2.

Table I.2.12 – Caractérisation de la géométrie synthétique à partir de la notion de rang.

À partir de maintenant, nous pouvons exprimer les énoncés de la géométrie d’incidence pro-
jective classique et les prouver en utilisant les axiomes de rangs.

2.1.2 Sous-Modularité

Nous détaillons quelques techniques de preuves utilisées pour démontrer les cinq axiomes de
la géométrie synthétique à la fois en 2D, ≥3D et 3D.

Premièrement, nous prouvons généralement les égalités entre rangs (rk(a) = rk(b)) en deux
étapes : en premier rk(a) ≤ rk(b), en second rk(a) ≥ rk(b). Deuxièmement, nous travaillons de
manière systématique avec l’axiome de la sous-modularité (A3R2-R3). Déterminer les inter-
sections entre deux ensembles finis de points est un problème, nous devons distinguer tous les
cas possibles d’égalités entre points. La preuve résultante devient plus complexe avec ces distinc-
tions. C’est pourquoi, nous définissons un lemme particulier dérivé de l’axiome (A3R2-R3) qui
ne considère pas l’intersection théorique mais une approximation plus faible de cette intersection
(notée dans la suite u).

Définition (Intersection théorique). Soient L1 et L2 deux ensembles de points. Par définition
L1 ∩ L2 est l’intersection exacte entre les deux ensembles de points considérés. Tous les points
qui sont syntaxiquement identiques ou qui sont égaux par construction apparaissent une seule et
unique fois dans l’ensemble résultat.

Par exemple, soit L1 = {A,C} et L2 = {B,C} deux ensembles de points. Nous ajoutons
l’hypothèse que A = B, alors il est possible de déduire que l’intersection théorique de ces deux
ensembles est L1 ∩ L2 = {A,C} = {B,C}.



48 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

Définition (Intersection littérale). Soient L1 et L2 deux ensembles de points. Par définition L1

u L2 est l’intersection syntaxique entre les deux ensembles de points considérés. Tous les points
qui sont syntaxiquement identiques apparaissent une seule et unique fois dans l’ensemble résultat.
En pratique, nous savons que : L1 u L2 ⊆ L1 ∩ L2. En utilisant (A2R2-R3), nous déduisons
donc que : rk(L1 u L2) ≤ rk(L1 ∩ L2).

Par exemple, soient L1 = {A,C} et L2 = {B,C} deux ensembles de points. Avec l’hypothèse
que A = B, alors l’intersection littérale entre ces deux ensembles de points est L1 u L2 = {C}.

À partir de cette intersection littérale, nous pouvons déduire une version plus appropriée de
l’axiome (A3R2-R3) en ignorant les cas d’égalités entre points :

Lemme I.2.1 (A3R2-R3-lit). ∀ X Y,
rk(X ∪ Y) + rk(X u Y) ≤ rk(X) + rk(Y).

Cependant, le système Coq ne permet pas de facilement définir la notion d’intersection lit-
térale de manière calculatoire. Nous préférons définir une version alternative qui capture le sens
du lemme I.2.1 :

Lemme I.2.2 (A3R2-R3-alt). ∀ X Y I,
I ⊆ (X u Y) ⇒ rk(X ∪ Y) + rk(I) ≤ rk(X) + rk(Y).

Cette version fonctionnelle de la sous-modularité est beaucoup utilisée dans chacune des
preuves. Contrairement à l’intersection, il n’est pas nécessaire de définir une union théorique et
une union littérale puisqu’elles capturent toujours le même ensemble de points indépendamment
des égalités entre points.

Troisièmement, la connaissance du rang d’un ensemble de points est bien souvent incomplète.
Pour représenter sa dimension, nous devons donc définir un intervalle d’entiers en l’absence
d’informations supplémentaires ou de la mise en évidence d’une contradiction. En d’autres termes,
le rang d’un ensemble de points n’est pas toujours déterminé, il n’est pas assez contraint par
l’énoncé ou par la preuve, le système a besoin de plus d’informations ou d’une contradiction
pour continuer. Dans la plupart des cas, la seule méthode possible pour gérer cela est de faire
un raisonnement cas par cas pour chacun des rangs possibles de l’ensemble. La démonstration
de l’axiome Upper-Dimension est un exemple qui illustre parfaitement ce schéma de preuve. Les
trois droites qui sont coupées par une quatrième doivent avoir pour unique contrainte d’être
différentes deux à deux. Pour réaliser cette démonstration, il est obligatoire de distinguer si les
couples de droites sont coplanaires ou non.

2.1.3 Preuve de la propriété Uniqueness

Pour illustrer les mécanismes précédents de preuves, nous détaillons la démonstration de la
propriété Uniqueness en partant des rangs.

Lemme I.2.3 (A3P2-P3). Uniqueness, ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m



2. Deux approches cryptomorphiques 49

Démonstration. Nous commençons la preuve par une distinction de cas sur l’égalité entre les
points A et B :

• Si A = B, alors la conclusion est triviale.
• Si A 6= B, nous déplions les définitions de Line et Incid, il s’ensuit que :

Nous avons A <> B
Soit P ∈ l, Q ∈ l and P <> Q
Soit R ∈ m, S ∈ m and R <> S
Incid A l ⇒ rk{P , Q, A} = 2
Incid B l ⇒ rk{P , Q, B} = 2
Incid A m ⇒ rk{R, S, A} = 2
Incid B m ⇒ rk{R, S, B} = 2


Assumptions

l = m ⇒ rk{P , Q, R, S} = 2
}
Goal

Pour continuer, nous déterminons le rang des deux ensembles suivants en utilisant A3R2-R3-alt :
rk{P , Q, A, B} et rk{R, S, A, B}.

rk({P , Q, A} ∪ {P , Q, B}) + rk({P , Q, A} ∩ {P , Q, B})
≤ rk{P , Q, A} + rk{P , Q, B}
⇒ rk{P , Q, A, B} + rk{P , Q} ≤ rk{P , Q, A} + rk{P , Q, B}
⇒ rk{P , Q, A, B} ≤ 2

De manière analogue, nous calculons que rk{R, S, A, B} ≤ 2. Puis nous établissons que :
rk{P , Q, R, S, A, B} ≤ 2.

rk({P , Q, A, B} ∪ {R, S, A, B}) + rk({P , Q, A, B} ∩ {R, S, A, B})
≤ rk{P , Q, A, B} + rk{R, S, A, B}
⇒ rk{P , Q, R, S, A, B} + rk{A, B} ≤ rk{P , Q, A, B} + rk{R, S, A, B}
⇒ rk{P , Q, R, S, A, B} ≤ 2

En utilisant A2R2-R3, nous prouvons que :

{P , Q, R, S} ⊂ {P , Q, R, S, A, B} ⇒ rk{P , Q, R, S} ≤ rk{P , Q, R, S, A, B}

Donc rk{P , Q, R, S} ≤ 2 et comme l’ensemble {P , Q, R, S} contient au moins deux points
distincts, nous concluons que rk{P , Q, R, S} = 2.

2.1.4 Implantation Coq

Au niveau de l’implantation, pour effectuer les déductions sur les ensembles abstraits, nous
utilisons la tactique fsetdecide fournie par la librairie Coq [Les11]. Cette tactique implémente
une procédure de décision pour les propositions concernant des ensembles finis abstraits. D’autre
part, nous utilisons le type setoid pour effectuer des substitutions en indiquant que les ensembles
sont identiques. Les setoïdes en Coq permettent de déclarer une nouvelle relation d’équivalence
qui peut être utilisée dans certaines tactiques et notamment pendant les réécritures. Quand on
peut prouver que deux termes sont équivalents mais pas nécessairement égaux, il est possible de



50 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

remplacer l’un des termes par l’autre en utilisant les setoïdes. Nous associons ainsi notre égalité
paramétrique qui est une relation d’équivalence pour effectuer des réécritures généralisées dans
les différentes parties de la preuve.

2.2 De la géométrie synthétique vers les rangs

L’implication dans l’autre direction est plus difficile à établir puisque nous devons spécifier
le concept de rang du point de vue de la géométrie projective. Rappelons que la fonction de
rang s’applique à tous les objets de la géométrie d’incidence projective possibles mais aussi à
toutes les incidences : l’égalité entre points, la colinéarité ou la coplanarité. Pour prouver cette
implication, nous utilisons l’implantation reposant sur les listes plutôt que la structure abstraite
pour les raisons de performance mentionnées précédemment.

2.2.1 Préliminaires

Pour définir le rang, il est nécessaire de concevoir plusieurs concepts intermédiaires représen-
tant les différentes valeurs de retour de la fonction de rang. Pour spécifier le rang (voir Table
I.2.13), nous nous inspirons de la caractérisation des matroïdes sur les plats (voir Table I.2.5).
Un ensemble de points est vide, soit il définit un point, une droite, un plan ou un espace.

(* Caractérisation de la notion de rang à partir de la géométrie synthétique *)

Definition rkl s := match s with
| nil => 0
| x :: nil => 1
| s => if contains_four_non_coplanar_points s then 4 else

if contains_three_non_collinear_points s then 3 else
if contains_two_distinct_points s then 2 else 1 end.

Table I.2.13 – Caractérisation de la fonction de rang à partir de la géométrie d’incidence pro-
jective.

Les trois prédicats présentés dans la Table I.2.13 contains_four_non_coplanar_points,
contains_three_non_collinear_points et contains_two_distincts_points (voir l’Annexe
E) définissent les limites sur la dimension de l’ensemble considéré. Le système vérifie en premier
la coplanarité : soit il existe dans l’ensemble un quadruplet de points non coplanaires et la
dimension est donc un espace, ou alors le système continue en analysant la colinéarité. Ces
prédicats forment ce qu’on appelle une couche intermédiaire. Ils aident à effectuer la transition
entre les deux systèmes d’axiomes et sont accompagnés par de nombreux lemmes. Notons qu’il
faut rester vigilant lors du développement de ces définitions pour prendre en compte tous les cas
dégénérés possibles (principalement des points qui coïncident).

Le prédicat récursif contains_four_non_coplanar_points de la Table I.2.14 étudie si un
ensemble contient 4 points qui ne sont pas coplanaires. Pour cela, nous définissons la fonction
coplanar_with_all dans la Table I.2.15 qui teste si le premier point est coplanaire avec tous les
autres. La définition all_triples permet de construire tous les triplets de points possibles en
évitant les permutations (voir l’Annexe E).



2. Deux approches cryptomorphiques 51

(* Test d’existence d’une non coplanarité dans la liste l *)
Fixpoint contains_four_non_coplanar_points l := match l with
| nil => false
| a :: r => if coplanar_with_all a (all_triples r)

then contains_four_non_coplanar_points r else true
end.

Table I.2.14 – Définition récursive du prédicat contains_four.

(* Test de coplanarité entre le point a et la liste l *)
Fixpoint coplanar_with_all a l :=
match l with
| nil => true
| (b,c,d) :: r => if coplanar a b c d then coplanar_with_all a r else false
end.

Table I.2.15 – Définition récursive du prédicat coplanar_with_all.

2.2.2 Techniques de preuve

Maintenant que la notion de rang est caractérisée, nous présentons de manière similaire les
principaux points techniques que nous avons rencontrés lors de la démonstration des 9 axiomes
sur les rangs du point de vue de la géométrie synthétique. Nous exploitons principalement le
mécanisme d’induction sur les entiers pour effectuer une analyse de cas sur le rang de chaque
ensemble de points. La manipulation des trois conditionnelles dans la caractérisation de la fonc-
tion de rang I.2.13 et la gestion des cas dégénérés multiplient le nombre de buts qui doivent être
vérifiés augmentant significativement la taille d’une démonstration. Les preuves résultantes sont
souvent laborieuses et répétitives bien qu’il soit possible d’automatiser de nombreuses étapes.
Dans ce but, nous concevons plusieurs tactiques en utilisant Ltac le langage de tactique fourni
par Coq et permettant à l’utilisateur d’écrire ses propres schémas de preuves.

Pour faire cela, nous identifions des motifs spécifiques parmi les hypothèses et le but que
nous pouvons simplifier par une séquence de tactiques et de lemmes, l’objectif visé étant de
traiter toutes les configurations possibles. Cela nécessite une bonne stratégie d’application des
simplifications, une optimisation de la profondeur de recherche et quelques essais pour résoudre
un problème. Si une tactique simplifie trop rapidement ou trop profondément, elle ne sera pas en
mesure de prouver le résultat, dans le cas contraire l’arbre de recherche peut devenir rapidement
très grand et considérablement ralentir l’utilisation de telles tactiques.

Les tactiques comme celle décrite dans la Table I.2.16 nous permettent de déplier le plus
possible le but tout en introduisant un maximum d’hypothèses dans le contexte. Si le but est
devenu trivial en appliquant une simple contradiction, égalité ou inégalité, le travail est fini.
Autrement, l’utilisateur doit rendre explicite la contradiction parmi les hypothèses en appliquant
d’autres lemmes intermédiaires ou en effectuant des simplifications plus subtiles. La majorité de
ces étapes habituellement réalisées à la main sont regroupées dans la tactique I.2.16.



52 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

(* Tactique de simplification pour la fonction rang *)
Ltac my_rank :=

repeat match goal with
|[H : _ |- _] => progress [intro|intros]
|[H : _ |- _ <-> _] => split
|[H : _ |- _ /\ _] => split
|[H : _ /\ _ |- _] => destruct H
|[H : _ |- _] => solve[intuition]
|[H : _ |- _] => progress contradiction
|[H : ?X :: _ = nil |- _] => inversion H
|[H : false = true |- _] => inversion H
|[H : true = false |- _] => inversion H
|[H : ?X[==]?X -> False |- _] => apply False_ind;apply H;reflexivity

|[H : _ |- (if if ?X then _ else _
then _ else _) = _ \/ _] => case_eq X

|[H : _ |- (if ?X then _ else _) = _ \/ _] => case_eq X
|[H : _ |- (if if ?X then _ else _

then _ else _) = _] => case_eq X
|[H : _ |- (if ?X then _ else _) = _] => case_eq X
|[H : _ |- _ = (if if ?X then _ else _

then _ else _)] => case_eq X
|[H : _ |- _ = (if ?X then _ else _)] => case_eq X
|[H : _ |- (if if ?X then _ else _

then _ else _) >= _] => case_eq X
|[H : _ |- (if ?X then _ else _) >= _ ] => case_eq X
|[H : _ |- (if if ?X then _ else _

then _ else _) <= _] => case_eq X
|[H : _ |- (if ?X then _ else _) <= _ ] => case_eq X
|[H : _ |- _ >= (if if ?X then _ else _

then _ else _)] => case_eq X
|[H : _ |- _ >= (if ?X then _ else _)] => case_eq X
|[H : _ |- _ <= (if if ?X then _ else _

then _ else _)] => case_eq X
|[H : _ |- _ <=(if ?X then _ else _)] => case_eq X
|[H : _ |- _ + (if if ?X then _ else _

then _ else _) >= _] => case_eq X
|[H : _ |- _ + (if ?X then _ else _) >= _ ] => case_eq X
|[H : _ |- _ + (if if ?X then _ else _

then _ else _) <= _] => case_eq X
|[H : _ |- _ + (if ?X then _ else _) <= _ ] => case_eq X

|[H : _ |- (if if ?X then _ else _
then _ else _) + _ >= _] => case_eq X

|[H : _ |- (if ?X then _ else _) + _ >= _ ] => case_eq X
|[H : _ |- (if if ?X then _ else _

then _ else _) + _ <= _] => case_eq X
|[H : _ |- (if ?X then _ else _) + _ <= _ ] => case_eq X
|[H : _ |- _ >= (if if ?X then _ else _

then _ else _) + _] => case_eq X
|[H : _ |- _ >= (if ?X then _ else _) + _] => case_eq X
|[H : _ |- _ <= (if if ?X then _ else _

then _ else _) + _] => case_eq X
|[H : _ |- _ <=(if ?X then _ else _) + _] => case_eq X
end.

Table I.2.16 – Tactique de simplification du contexte Coq impliquant la fonction de rang.



2. Deux approches cryptomorphiques 53

La Table I.2.16 décrit la tactique principale de décomposition, simplification et résolution des
buts de la preuve de l’implication géométrie synthétique vers les rangs. Cette tactique récursive
s’arrête soit si le but a été prouvé, si il n’existe plus aucune simplification à effectuer ou si le
niveau de profondeur Coq par défaut associé à la tactique a été atteint. Ce niveau de profondeur
permet de limiter l’arbre de recherche et de bloquer les tactiques qui se répéteraient indéfiniment.
Le détail des commandes Coq est disponible dans [Coq02] :

• Avec la tactique intro/intros, nous introduisons dans le contexte les hypothèses soit en
début de preuve ou soit après avoir déplié une définition ;

• Avec la tactique split/destruct, nous découpons respectivement le but et les hypothèses ;

• Avec la tactique solve[intuition], nous regardons si le but peut être trivialement prouvé
avec des simplifications mineures. Si le système n’arrive pas à résoudre le but courant, il
annule toutes les modifications qui ont été testées ;

• Avec la tactique progress[contradiction], nous regardons si une contradiction existe dans
les hypothèses tout en conservant les modifications effectués par cette tactique.

• Avec la tactique inversion, nous mettons en contradiction des constructeurs différents ;

• Finalement, avec la tactique case_eq X, nous identifions des motifs de conditionnelles ap-
paraissant dans la définition du prédicat rkl dans la Table I.2.13. Puis nous effectuons une
distinction de cas sur la variable X créant ainsi deux sous-buts à prouver.

2.2.3 Preuve de la propriété matroïdale de non-décroissance

Nous illustrons notre méthodologie pour prouver les axiomes de la théorie des matroïdes à
partir des axiomes de la géométrie synthétique en détaillant la démonstration de la propriété de
non-décroissance.

Lemme I.2.4 (A2R2-R3). Rk-NonDecreasing,
∀ X ⊆ Y ⊆ E, rk(X) ≤ rk(Y )

La caractérisation I.2.13 indique que la fonction de rang peut prendre cinq valeurs différentes
(de 0 à 4) en fonction de la dimension de l’ensemble de points considéré. Cette caractérisation
mène à 25 cas différents lorsque nous effectuons une induction structurelle sur les variables X et
Y qui sont des listes. Premier cas : 0 ≤ 0, deuxième cas : 0 ≤ 1, etc. En utilisant, la tactique
I.2.17 qui calcule automatiquement l’inclusion entre listes, nous éliminons directement 15 cas où
X ⊆ Y . Pour prouver les buts restants, nous mettons en évidence une contradiction au sein du
contexte pour que la tactique my_inAS I.2.17 arrive à traiter cette configuration. Par exemple,
nous montrons clairement qu’une droite ne peut pas contenir un plan rendant l’inégalité suivante
impossible : 3 ≤ 2.

Pour automatiser les preuves dans cet environnement, nous employons le prédicat InA qui
dénote la relation d’inclusion sur un type A dans le cas des listes relativement à une égalité issue
des setoïdes. Dans notre contexte, nous utilisons notre égalité paramétrique [==] qui diffère de
l’égalité classique de Coq. Nous devons donc spécifier pour quel prédicat les réécritures sont
autorisées en utilisant cette égalité. Le prédicat InA accepte seulement les réécritures si l’égalité
fournie est une relation d’équivalence. Nous détaillons ce mécanisme dans la sous-section suivante.

Nous intégrons la manipulation automatique de ce prédicat InA dans la tactique my_inAS
I.2.17 qui fournit un traitement analogue à fsetdecide dans le cas où les ensembles sont repré-
sentés sous forme de listes tout en étant bien plus efficace en temps d’exécution. Effectivement,



54 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

toutes les couches abstraites de la librairie Containers [Les11] sont éliminées facilitant l’unifica-
tion des types et la vérification du terme de preuve.

(* Tactique simple pour du calcul d’inclusion *)
Ltac my_inAS := intuition;unfold inclA in *;unfold equivlistA in *;

repeat match goal with
|[H : _ |- _] => progress [intro|intros]
|[H : _ |- _] => try split;intuition
|[H : InA eq _ (?P :: _ ) |- _] => inversion H;clear H
|[H : _ = _ |- _] => rewrite <-H
|[H : InA eq _ nil |- _] => inversion H | [H : InA eq ?P ( ?Q :: ?R ) -> _ |- _] =>

let T:=fresh in assert(T : InA eq P (Q :: R)) by (my_inAS);
generalize (H T);clear H;clear T;intro

end.

Table I.2.17 – Tactique simple pour du calcul automatique d’inclusion.

La première version de cette tactique permet de traiter les calculs d’inclusions d’une liste
dans une autre lorsqu’aucune opération d’intersection ou d’union entre listes n’est effectuée. Il
est possible de l’étendre pour prendre en compte ces deux cas supplémentaires mais les perfor-
mances de cette dernière se dégradent considérablement. L’inconvénient majeur de la tactique
my_inAS est l’utilisation de la tactique intuition qui est une primitive de haut-niveau regrou-
pant plusieurs stratégies de résolution, elle n’est donc pas spécifiquement conçue pour démontrer
automatiquement nos buts. En effet, certaines des stratégies inclues dans cette tactique ne servent
pas à faire avancer la démonstration dans notre cadre géométrique. Elle a aussi l’inconvénient
de conserver les modifications des hypothèses lorsqu’elle progresse dans ces différentes stratégies
ce qui n’est pas souhaitable dans certaines démonstrations où une trop grande décomposition
complique la terminaison de la preuve. Pour corriger ces problèmes, nous proposons une version
étendue my_inAO I.2.18 qui, selon le motif identifié, applique un lemme intermédiaire adapté.
Cette nouvelle tactique se découpe en 3 parties :

• La tactique solve_equivlistA récursive permettant de mettre en évidence l’inclusion d’un
élément dans une liste. Exemple d’application de cette tactique :

inA B (A :: C :: C :: B :: A :: nil)

• La tactique inv_unifA récursive qui simplifie le contexte au maximum en décomposant les
hypothèses sur les listes impliquant aussi des intersections et des unions. Exemple d’applica-
tion de cette tactique, les notations list_inter et ++ désignent respectivement l’intersection
et l’union entre deux listes :

inclA (B :: nil)(list_inter(A :: C :: B :: nil)(C :: B :: nil ++ A :: nil)) ⇒
inA B (A :: C :: B :: nil) ∧ inA B (C :: B :: nil ++ A :: nil) ⇒
inA B (A :: C :: B :: nil) ∧ (inA B (C :: B :: nil) ∨ inA B (A :: nil))

• La tactique my_inAO qui teste si la combinaison des deux tactiques précédentes aboutit à
une résolution de l’inclusion ou à l’équivalence entre deux listes. Exemple d’application de
cette tactique :

equivlistA (list_inter(A :: C :: nil)(B :: nil)) (C :: B :: nil ++ A :: nil)



2. Deux approches cryptomorphiques 55

(Tactique optimisée pour du calcul d’inclusion *)
Ltac solve_equivlistA :=
first[assumption | apply InA_cons_hd;reflexivity | apply InA_cons_tl;solve_equivlistA].

Ltac inv_unifA := unfold inclA in *; try split; intros;
repeat match goal with
| [H : InA eq _ _ |- _] => inversion H;clear H
| [H: _ = _ |- _] => rewrite <- H in *;

try solve [contradiction|apply eq_sym in H;contradiction];clear H
| [H : InA eq _ nil |- _] => inversion H
| [H : InA eq _ (_++_) |- _] => apply InA_app_iff in H; destruct H
| [H :_ |- InA eq _ (_++_) ] => apply InA_app_iff
| [H : InA eq _ (list_inter _ _) |- _] =>

apply list_inter_split_bis in H; destruct H
| [H : _ |- InA eq _ (list_inter _ _)] => apply list_inter_split_reverse
| [H : InA eq ?P ( ?Q :: ?R ) -> _ |- _] => let T:=fresh in

assert(T : InA eq P (Q :: R)) by (solve_equivlistA);
generalize (H T);clear H;clear T;intro

end.

Ltac my_inAO := solve[inv_unifA ; first[solve_equivlistA]].

Table I.2.18 – Tactique optimisée pour du calcul automatique d’inclusion.

Pour revenir à la démonstration de la propriété matroïdale de non-décroissance, nous pou-
vons maintenant présenter dans la Table I.2.19 le schéma de cette preuve avec les tactiques qui
ont été présentées ci-dessus. Pour rappel, cette preuve comporte 25 cas dont 15 sont directement
simplifiés par l’utilisation de la tactique I.2.16. Les 10 buts restant correspondant à des situations
contradictoires sont prouvés grâce à la mise en évidence d’une contradiction dans les hypothèses.

(* Preuve de la propriété matroïdale de non-décroissance *)
Lemma matroid2 : forall e e’, inclA eq e e’ -> rkl(e)<=rkl(e’).
Proof.

intros;case_eq e;case_eq e’; (* pré-traitement & inductions *)
try my_inAO;my_rank. (* simplification des 15 cas triviaux 0 <= 1, 0 <= 2 ... *)
my_rank;subst;unfold inclA in *;assert(HH := H p);my_inAO. (* cas trivial 1 <= 0 *)

unfold rkl;my_rank;subst. (* pré-traitement & simplification pour les cas non triviaux *)
assert( HH := contains_four_non_coplanar_points_sublist [...];my_rank. (* cas 4 <= 0 *)
assert( HH := contains_four_non_coplanar_points_sublist [...];my_rank. (* cas 4 <= 1 *)
assert( HH := contains_four_non_coplanar_points_sublist [...];my_rank. (* cas 4 <= 2 *)
assert( HH := contains_four_non_coplanar_points_sublist [...];my_rank. (* cas 4 <= 3 *)
assert( HH := contains_three_non_collinear_points_sublist [...];my_rank. (* cas 3 <= 0 *)
assert( HH := contains_three_non_collinear_points_sublist [...];my_rank. (* cas 3 <= 1 *)
assert( HH := contains_three_non_collinear_points_sublist [...];my_rank. (* cas 3 <= 2 *)
assert( HH := contains_two_distinct_points_sublist [...];my_rank. (* cas 2 <= 0 *)
assert( HH := contains_two_distinct_points_sublist [...];my_rank. (* cas 2 <= 1 *)
Qed.

Table I.2.19 – Preuve Coq de la propriété matroïdale de non-décroissance.



56 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

2.2.4 Implantation Coq

Le lemme de sous-modularité, ∀ X, Y ⊆ E, rk(X ∪Y ) + rk(X ∩Y ) ≤ rk(X) + rk(Y ), est la
propriété la plus difficile à démontrer à cause de la gestion des intersections et des unions. Cette
preuve contient de nombreux cas non triviaux qui doivent être décomposés dans des lemmes in-
termédiaires comme illustré dans la Table I.2.20. Le premier exemple indique que si deux droites
sont confondues, il est possible de représenter le problème par une unique droite contenant tous
les points appartenant aux deux droites. Le deuxième spécifie qu’une droite m peut être incluse
dans un plan l pour former un unique objet. Le troisième indique que si deux plans sont confon-
dus, l’union de ces deux plans engendre un plan qui les contient tous les deux. Tous ces lemmes,
décrivant des résultats d’intersection et d’union entre différents objets, sont des configurations
classiques de la géométrie synthétique qui peuvent être déduit à partir des axiomes.

(* L’union de deux droites confondues génère une droite *)
Lemma matroid3_rk2_rk2_interrk2_to_unionrk2 :
forall l m,
rkl l = 2 ->
rkl m = 2 ->
rkl (inter l m) = 2 ->
rkl (l ++ m) = 2.

(* L’union d’un plan et d’une droite de ce plan génère un plan *)
Lemma matroid3_rk3_rk2_interrk2_to_unionrk3 :
forall l m,
rkl l = 3 ->
rkl m = 2 ->
rkl (list_inter l m) = 2 ->
rkl (l ++ m) = 3.

(* L’union de deux plans confondus génère un plan *)
Lemma matroid3_rk3_rk3_interrk3_to_unionrk3 :
forall l m,
rkl l = 3 ->
rkl m = 3 ->
rkl (list_inter l m) = 3 ->
rkl (l ++ m) = 3.

Table I.2.20 – Lemmes intermédiaires sur les cas non triviaux de la sous-modularité.

Finalement, la difficulté principale pendant l’implantation provient de la gestion du méca-
nisme généralisé de réécriture introduit par l’utilisation des setoïdes avec l’égalité paramétrique.
Quand nous définissons un nouveau prédicat en accord avec une égalité qui n’est pas incluse
dans la librairie standard, nous devons formaliser une règle autorisant l’application de cette éga-
lité pour effectuer des réécritures dans les prédicats. Dans la terminologie Coq, on parle ici de
morphisme, nous fournissons à travers ce morphisme la preuve qu’il est possible d’utiliser notre
relation d’équivalence dans ce prédicat. Donc, pour toute définition impliquant le type point, il
sera nécessaire d’établir un morphisme semblable à I.2.21. Cela garantit que notre égalité est
compatible et cohérente avec la définition dans laquelle elle est utilisée. Il est dès lors possible
de substituer un ensemble X par un ensemble Y directement dans la définition du rang.



2. Deux approches cryptomorphiques 57

(* Morphisme pour le prédicat rang *)
Instance rank_morph : Proper (@equivlistA Point eq => (@Logic.eq nat)) rkl.
Proof.
[...]
Qed.

Table I.2.21 – Exemple de morphisme.

Ce morphisme indique que le prédicat rkl doit utiliser l’égalité classique de Coq pour les ré-
écritures si les listes en paramètre sont équivalentes. En dépliant le prédicat Proper, nous devons
prouver le lemme suivant où equivlist indique que deux listes sont égales :

Lemme I.2.5 (rank_morph). ∀ x y : list Point, equivlist x y → rkl x = rkl y

Toutes les preuves de la géométrie synthétique vers les rangs suivent le même modèle. Une
fois que la caractérisation intermédiaire est établie, il suffit de déplier et simplifier à l’aide de la
tactique I.2.16 avant d’utiliser des lemmes intermédiaires caractérisant une situation typique en
géométrie synthétique ou mettre en évidence des contradictions dans les hypothèses en s’aidant
de la tactique I.2.18.

2.3 Statistiques

Nous donnons quelques informations à propos du développement de la librairie Coq qui
inclut cette preuve d’équivalence entre la géométrie synthétique et la théorie des matroïdes.
Cette preuve d’équivalence a été réalisée en deux étapes : la première s’intéresse à la validité
du résultat et la construction de la couche intermédiaire pour formaliser cette démonstration,
la seconde se préoccupe de l’automatisation qu’il est possible d’apporter dans ce contexte et
du développement des tactiques au fur et à mesure du processus. Nous étudions par la même
occasion l’impact de cette automatisation sur les performances et la taille des preuves produites
dans l’assistant de preuve Coq. La preuve de l’équivalence totalise 17 000 lignes décomposées
comme décrit dans la Table I.2.22.

En automatisant la preuve de l’équivalence, grâce à une décomposition systématique en
lemmes intermédiaires et l’utilisation de tactiques, nous avons divisé la taille de la preuve initiale
par un facteur 3. Dans le seul but d’établir cette équivalence et de maximiser l’automatisation,
ce résultat peut être largement amélioré. Ce développement servant aussi de librairie sur la géo-
métrie d’incidence projective, de nombreux résultats intermerdiaires sont conservés.

Des rangs vers la G. S. De la G. S. vers les rangs
2D 3D 2D 3D

Lignes de spécification Coq 250 400 650 1 200
Lignes de preuves Coq 300 1 500 2 600 12 500

Table I.2.22 – Taille de la preuve de l’équivalence selon la direction et la dimension. L’abréviation
G. S. dénote la « Géométrie Synthétique ».



58 I.2. La théorie des matroïdes : une approche combinatoire cryptomorphique

2.4 Traduction bilatérale

La preuve de l’équivalence entre ces deux approches permet de mettre en place un procédé
de traduction bidirectionnel. Il est possible de traduire un énoncé géométrique d’une théorie
vers l’autre en appliquant une tactique de conversion. Cette traduction peut très bien s’effectuer
avant le commencement d’une preuve ou en plein milieu de cette dernière si l’on souhaite changer
de formalisme pour continuer à avancer. Pour faire cette traduction, nous utilisons la Table de
correspondance suivante I.2.23. Rappelons que les prédicats collinear et coplanar sont définis
à partir du prédicat d’incidence Incid dans l’Annexe F.

Configuration géométrique Géométrie synthétique Avec les rangs
Un point X : rk(X) = 1 (facultatif)
Deux points identiques X Y : X = Y rk(X, Y) = 1
Deux points distincts X Y : X <> Y rk(X, Y) = 2
Trois points colinéaires X Y Z : collinear X Y Z rk(X, Y, Z) <= 2
Trois points non colinéaires X Y Z : ¬ collinear X Y Z rk(X, Y, Z) = 3
Quatre points coplanaires X Y Z W : coplanar X Y Z W rk(X, Y, Z, W) <= 3
Quatre points non coplanaires X Y Z W : ¬ coplanar X Y Z W rk(X, Y, Z, W) = 4

Table I.2.23 – Table de correspondance pour la traduction bilatérale entre les deux théories.

Pour compléter cette table de traduction, il faut préciser que les énoncés en géométrie syn-
thétique ne sont plus définis directement à partir de l’incidence, nous utilisons les définitions de
plus haut niveau qui les encapsulent afin de faciliter le processus de traduction. En effet, il est
plus difficile d’identifier dans un énoncé plusieurs points qui sont incidents à une même droite
qu’un simple prédicat de colinéarité. Il est néanmoins toujours possible de revenir à un énoncé
purement exprimé en terme d’incidence en dépliant les définitions. En n’utilisant pas directement
le prédicat Incid, la traduction depuis la géométrie synthétique vers les rangs devient immédiate.

Pour la traduction des rangs vers géométrie synthétique, il suffit d’indiquer comment traiter
la fonction rk qui est d’arité variable. Dans le cas où le nombre de points dans l’ensemble dépasse
l’arité du prédicat correspondant en géométrie synthétique, il suffit de décomposer l’ensemble
en n-uplets de points en respectant la propriété de ptransitivité de la généralisation des rela-
tions de colinéarités (voir I.1.17). Considérons l’ensemble rk(X,Y, Z,W,U) = 2 d’arité 5, nous
souhaitons décomposer cet ensemble selon le prédicat de colinéarité. Pour cela, nous conservons
toujours les points X et Y définissant la droite et nous rajoutons un par un chacun des points
restants pour former une nouvelle règle de colinéarité. Nous obtenons ainsi trois colinéarités :
rk(X,Y, Z) = 2, rk(X,Y,W ) = 2 et rk(X,Y, U) = 2 qui deviendront respectivement collinear
X Y Z, collinear X Y Z et collinear X Y U.

Nous illustrons dans la Table I.2.24 l’application de la tactique de traduction trad sur l’énoncé
en géométrie synthétique translate_test afin d’obtenir l’énoncé équivalent du point de vue des
rangs. Ce changement global de contexte avant et après l’application de la tactique de traduction
dans l’assistant de preuve Coq est détaillé dans la Table I.2.25.



2. Deux approches cryptomorphiques 59

(* Exemple de traduction sur un lemme en Coq *)
Lemma translate_test : forall X Y W Z : Point,
X = Y -> W <> Z -> collinear Y W Z -> collinear X W Z.
Proof.
intros.
trad. (* tactique de traduction )*
[...]

Table I.2.24 – Exemple de traduction en Coq de la géométrie synthétique vers les rangs.

(* Changement de contexte Coq de la géométrie synthétique vers les rangs *)

X, Y, W, Z : Point
H : X = Y
H0 : W <> Z
H1 : collinear Y W Z
______________________________________(1/1)
collinear X W Z

X, Y, W, Z : Point
H : rk (X :: Y :: nil) = 1
H0 : rk (W :: Z :: nil) = 2
H1 : rk (Y :: W :: Z :: nil) <= 2
______________________________________(1/1)
rk (X :: W :: Z :: nil) <= 2

Table I.2.25 – Illustration du changement de contexte Coq suite à l’application de la tactique
de traduction.

Grâce à cette traduction bidirectionnelle, il est possible d’alterner les représentations pour
un même énoncé géométrique. D’un côté, nous utilisons la géométrie synthétique qui est très
intuitive et très visuelle pour exprimer une configuration mais peu propice à l’automatisation.
De l’autre côté, nous considérons l’approche combinatoire avec la fonction de rang permettant
de mécaniser plus simplement les démonstrations autour d’une seule et même notion mais qui
a le désavantage de rendre les énoncés moins lisibles. Dans la conclusion de cette partie, nous
revenons sur les possibilités d’automatisation qui peuvent être envisagées en combinant les deux
approches. Nous donnons pour cela, un aperçu des pistes qui ont été explorées dans les chapitres
suivants.





Conclusion : partie I

Bilan

Dans cette partie, nous avons présenté le simple cadre géométrique choisi pour étudier la
mise en place de l’automatisation et évaluer nos idées sur l’aide à la preuve. Cette géométrie très
simple, appelée géométrie d’incidence projective est définie à partir de points et de droites ainsi
qu’une relation d’incidence liant ces deux objets. La construction de cette dernière est fondée
sur le premier groupe d’axiomes introduit par Hilbert dans l’ouvrage [Hil60] et sa description ne
nécessite qu’un ensemble d’axiomes très restreint. Pour spécifier un peu plus cette géométrie, nous
considérons la variante projective où deux droites du plan se coupent toujours en un point. Nous
formalisons au sein de l’assistant de preuve Coq quatre systèmes d’axiomes en nous inspirant des
travaux de Coxeter [Cox03] : deux pour la géométrie d’incidence projective plane, un pour ≥3D
et un pour la 3D.

Nous nous intéressons ensuite à la méthodologie de la démonstration dans cet environnement
géométrique. Pour cela, nous identifions dans les preuves les différentes étapes de démonstration
apparaissant de manière récurrente et nous évaluons la difficulté pour mécaniser ces dernières.
L’hypothèse forte que nous considérons dans la suite de cette thèse est que la création de nouveaux
objets (principalement des points) est une tâche difficile que nous laissons à l’utilisateur ou à
des systèmes comportant une intelligence artificielle [Sch19,WCA+14]. Nous proposons dès cette
partie une première réflexion sur le méta-problème de l’ordonnancement de ces éléments de
preuves et des stratégies de mécanisation qui les accompagnent.

Cette géométrie synthétique permet d’énoncer un problème géométrique assez simplement
en nous appuyant sur la description visuelle de la figure associée. L’introduction de la relation
de colinéarité et de sa généralisation à la dimension supérieure devient rapidement nécessaire
pour conserver une bonne expressivité dans cette théorie. Cependant, nous observons que la
mise en place des procédés d’automatisation et leur maintien devient plus complexe pour chaque
nouvelle définition prise en compte. Cette constatation nous pousse à considérer une approche
alternative combinatoire fondée sur la notion de rang d’un espace projectif pour mécaniser les
démonstrations.

Ce concept de rang provenant de la théorie des matroïdes permet d’exprimer de façon ho-
mogène toutes les relations usuelles de la géométrie d’incidence projective, non seulement les
relations d’incidences qui sont nombreuses mais aussi les relations d’égalité, de colinéarité ou de
coplanarité. L’utilisation de ce concept en géométrie d’incidence est initialement introduite par
Dominique Michelucci et al. dans leurs travaux [MS04,MS06]. Une fois le fragment de la théorie
des matroïdes définissant le concept de rang formellement exposé, nous présentons trois systèmes
d’axiomes capturant l’intégralité de la géométrie d’incidence projective.

Pour valider cette nouvelle approche et permettre une traduction bidirectionnelle entre les
deux théories, nous étudions la preuve d’équivalence entre ces deux dernières en dimension quel-
conque. Cette preuve d’équivalence est une tâche complexe (preuves des propriétés matroïdales)

61



62 Conclusion partie I

et conséquente (15 000 pas de preuves dans la librairie). De plus, elle apporte une première com-
paraison entre les deux approches tout en analysant l’automatisation dans ces démonstrations.
La contribution importante de cette démonstration est bien évidemment la possibilité de changer
de théorie en fonction des besoins qui sont principalement la lisibilité et l’automatisation.

Perspectives

Le procédé de traduction bidirectionnel détaillé dans cette partie ne représente qu’un pro-
totype fonctionnant sur des exemples géométriques simples. Le but est d’étoffer la tactique de
traduction pour élargir le pipeline du prouveur automatique de la Partie III. À l’heure actuelle,
nous pouvons traduire un énoncé en géométrie synthétique vers un énoncé avec des rangs sur
lequel on peut appliquer nos procédés d’automatisations. L’idée consiste à élargir cette traduc-
tion de contexte d’une théorie vers l’autre à une traduction globale des pas de preuves. Nous
pourrions ainsi obtenir une preuve en géométrie synthétique à partir d’une démonstration qui a
été automatisée avec les rangs et ainsi analyser la lisibilité de la démonstration selon les deux
approches.

Par ailleurs, tous les travaux de formalisation dans l’assistant de preuve Coq détaillés dans
cette partie sont intégrés dans notre librairie sur la géométrie projective. Comme évoqué dans le
Chapitre I.1, nous désirons modifier certains aspects de notre implantation. La première modi-
fication que nous visons est une meilleure séparation entre le développement constructif et non
constructifs de la géométrie d’incidence projective. Le deuxième point technique est le rempla-
cement de l’égalité classique sur les droites par une égalité paramétrique.

Une piste à plus long terme suggérée par les rapporteurs des articles [BMS16, BMS19] est
d’analyser d’autres formalisations cryptomorphiques de la théorie des matroïdes pour l’automa-
tisation des preuves en géométrie d’incidence projective. Notons que la notion de plat utilisée
pour définir l’intuition géométrique de la fonction de rang est déjà considérée dans notre déve-
loppement.

Dans la suite, nous analysons attentivement la manière dont la mécanisation a été mise en
place dans la preuve de l’équivalence et plus particulièrement dans l’implication des rangs vers la
géométrie synthétique. Cette preuve permet d’identifier le coeur du raisonnement en géométrie
d’incidence projective. En effet, ce sont les propriétés matroïdales capturant intrinsèquement
l’inclusion, l’union et l’intersection entre les plats (générés par des ensembles de points) qui re-
présentent la majorité des étapes lors des démonstrations. Dans une optique d’automatisation de
la preuve, il devient alors primordial de mécaniser l’application de ces propriétés pour déterminer
de nouvelles déductions à partir des hypothèses. Cependant, il reste le problème majeur de com-
ment guider l’automatisation vers le calcul d’ensembles de points utiles à la démonstration afin
de diminuer l’explosion combinatoire provenant de la clôture systématisée des hypothèses. En
effet, si nous considérons une configuration géométrique à n points, le calcul du rang pour chaque
ensemble de points de cet énoncé revient à calculer le rang de chaque partie de l’ensemble conte-
nant tous les points à savoir le rang de 2n parties 4. Pour limiter temporairement cette explosion
combinatoire, nous continuons d’observer la mécanisation des preuves dans le contexte précis
des géométries finies définies par extension dans la partie Partie II où la clôture des hypothèses
devient inutile. Nous réintégrons ce mécanisme de clôture à partir des propriétés matroïdales
dans la Partie III lorsque le prouveur automatique de configuration géométrique d’incidence sera
décrit.

4. Remarque qui est vrai en considérant uniquement les propriétés matroïdales. En ajoutant les propriétés sur
la généralisation des relations d’incidence, nous pouvons simplifier le problème et considérer les k-tuples, avec k
≤ 3 en 2D et k ≤ 4 en 3D.







Deuxième partie

Étude de cas en géométrie finie

65





CHAPITRE II.1

Formalisation de « petits » modèles finis en géométrie projective

“Inspiration is needed in geometry, just as much as in poetry“

Aleksandr Sergeyevich Pushkin (1799–1837)

67



68 II.1. Formalisation de « petits » modèles finis en géométrie projective

Résumé

En utilisant à loisir les deux formalisations équivalentes de la géométrie d’incidence projec-
tive, nous étudions une méthologie possible dans le cadre très spécifique des géométries finies. Ces
géométries ne permettent de considérer qu’un nombre fini de points. En outre, la formalisation
des différents modèles de la géométrie finie est réalisée par extension en énumérant l’intégralité
des objets composant le modèle à savoir l’ensemble des points, l’ensemble des droites, l’ensemble
des plans, l’ensemble des incidences, etc. Nous éliminons ainsi la recherche d’informations sup-
plémentaires en donnant dès le départ toutes les données dont le système a besoin pour prouver
un résultat. Dans ce contexte précis, nous étudions l’automatisation des démonstrations que
les espaces finis pg(n, q) sont effectivement des modèles de la géométrie d’incidence projective
respectant de plus les propriétés de Desargues et Pappus.

Nous démarrons ce chapitre par l’introduction du cadre théorique sur les géométries finies en
rappelant notamment la notion de corps de Galois et la méthodologie à suivre pour construire
de tels espaces finis (section 1). Dans la suite, nous décrivons comment ces modèles peuvent
être formalisés algorithmiquement et importés dans l’assistant de preuve Coq (section 2). Puis,
nous détaillons avec soin la vérification formelle de ces modèles en énonçant un ensemble de
critères généraux qui aident à rendre les preuves hautement combinatoires traitables (section 3).
Au final, nous confrontons les résultats obtenus grâce à nos deux formalisations complémentaires
de la géométrie avec la librairie tptp dans le but d’obtenir un point de comparaison avec les
prouveurs automatiques (section 3 suite).

Contenu
1 Introduction aux modèles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.1 Groupe, corps, espace vectoriel, corps fini . . . . . . . . . . . . . . . . 70
1.1.1 Groupe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.1.2 Corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.1.3 Espace vectoriel sur un corps . . . . . . . . . . . . . . . . . . 71
1.1.4 Corps fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.2 Espace projectif fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2 Génération des modèles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.1 Recherche des modèles . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2 Construction des modèles finis . . . . . . . . . . . . . . . . . . . . . . . 76

2.2.1 Plan fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2.2 Espace fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Pré-validation des plans finis . . . . . . . . . . . . . . . . . . . . . . . 79
2.4 Export des modèles en langage Gallina . . . . . . . . . . . . . . . . . . 79

2.4.1 Modèle en géométrie synthétique . . . . . . . . . . . . . . . 79
2.4.2 Modèle exprimé à l’aide des rangs . . . . . . . . . . . . . . . 80

3 Vérification formelle des modèles et preuve de la propriété de Desargues . . . . 82
3.1 Gestion de la complexité . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.1 Analyse de cas . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.2 Formulation et choix de la théorie . . . . . . . . . . . . . . . 83
3.1.3 Élagage de l’arbre de preuve . . . . . . . . . . . . . . . . . . 84



69

3.1.4 Hypothèses les plus restrictives . . . . . . . . . . . . . . . . 85
3.1.5 Existence de témoin . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.6 Preuves comme des programmes . . . . . . . . . . . . . . . . 86
3.1.7 Pseudo-recherche en profondeur . . . . . . . . . . . . . . . . 88
3.1.8 Relation d’ordre sur les objets . . . . . . . . . . . . . . . . . 88
3.1.9 Ingénierie de la preuve . . . . . . . . . . . . . . . . . . . . . 89

3.2 Automatisation de la preuve de Desargues . . . . . . . . . . . . . . . . 90
3.3 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Comparaison avec les prouveurs SMT . . . . . . . . . . . . . . . . . . 93



70 II.1. Formalisation de « petits » modèles finis en géométrie projective

Prouver des propriétés en géométrie projective, notamment que des plans ou des espaces
sont des modèles de cette géométrie, repose sur l’analyse de quelques configurations générales
ainsi que les nombreux cas dégénérées associés. L’utilisation d’un assistant de preuve tel que
Coq [BC04] facilite la tâche de l’utilisateur pour écrire une preuve correcte. En effet, le système
Coq force ce dernier à considérer tous les cas possibles dans une preuve. De plus, tous les détails
de la preuve doivent être fournis, ce qui permet au système de vérifier le terme de preuve. En
retour, l’inconvénient majeur est que le développement de ces preuves nécessite une importante
quantité de travail qui peut être heureusement partiellement automatisée grâce au langage de
tactiques Ltac [Del00].

Dans ce chapitre, nous étudions la mécanisation des preuves en géométrie d’incidence projec-
tive dans le cadre spécifique des géométries finies. Lorsqu’on donne en extension l’ensemble des
points, l’ensemble des droites, et l’ensemble des relations d’incidence, le problème est grande-
ment simplifié, il « suffit » de valider ce système en montrant que c’est un modèle de la géométrie
projective. En utilisant deux descriptions formelles équivalentes de la géométrie projective, nous
vérifions dans quelle mesure chacune de ces théories permet d’obtenir des preuves qui sont lisibles,
faciles à écrire et simples à vérifier. Pour atteindre cet objectif, nous travaillons sur quelques mo-
dèles de la géométrie finie : les plans finis pg(2, 2), aussi connu comme le plan de Fano, pg(2,
3), pg(2, 4), pg(2, 5) et pg(2, 7) ; mais aussi le plus petit espace fini pg(3, 2) et pg(3, 3). Au
fur et à mesure que les modèles devenaient plus grands, nous avons dû optimiser nos techniques
de preuves pour faire face à la complexité intrinsèque de ces modèles et maintenir sous contrôle
l’usage de la mémoire et le temps d’exécution de la recherche d’une preuve.

Bien que l’approche matroïdale ait déjà servi pour effectuer la mécanisation de la preuve
du théorème de Desargues en utilisant uniquement les rangs [MNS09,MNS12], nous comparons
plus précisément l’automatisation des preuves dans notre contexte géométrique grâce aux deux
formalisations. Pour cela, nous analysons non seulement les performances de chaque approche
pour établir des preuves automatiques, mais aussi la facilité de la mise en place du schéma
de preuve et sa généralisation lors du passage au modèle fini selon la dimension supérieure.
Finalement, à titre indicatif, nous comparons notre approche avec des prouveurs automatiques
de la librairie tptp [Sut10].

1 Introduction aux modèles finis

Cette partie vise à donner les principales définitions et propriétés sur les modèles finis que
nous étudions dans ce chapitre. Tous les détails peuvent être trouvés dans [Bat97,BW11,Dem12,
RK70,Ros17].

1.1 Groupe, corps, espace vectoriel, corps fini

Dans cette sous-section, nous rappelons les différentes structures algébriques qui sont néces-
saires pour la définition d’un corps fini.

1.1.1 Groupe

Commençons par rappeler la notion de groupe nécessaire pour la définition d’un corps :

Définition (Groupe). Un groupe est un ensemble G avec une opération binaire « • » (c’est à
dire une fonction de G×G dans G) satisfaisant les propriétés suivantes :

(i) L’opération est associative, ∀a, b, c ∈ G, a • (b • c) = (a • b) • c ;



1. Introduction aux modèles finis 71

(ii) Il existe un élément neutre pour l’opération, ∃e ∈ G, ∀a ∈ G, a • e = e • a = a ;

(iii) Tout élément a de G possède un inverse a-1, a • a-1 = a-1 • a = e.

Un groupe (G, •) est commutatif (abélien) si ∀a, b ∈ G, a • b = b • a. Quelques exemples de
groupes abéliens connus sont : (R, +), (Q, +), (C, +) ou encore (R− {0}, ×).

1.1.2 Corps

Nous définissons ensuite la notion de corps :

Définition (Corps). Un corps est un ensemble F muni de deux opérations « + » et « × »
satisfaisant les propriétés suivantes :

(i) F est un groupe abélien avec la loi de composition interne « + » et l’élément neutre 0 ;

(ii) Les éléments non nuls de F forment un groupe abélien avec la loi de composition interne
« × » et l’élément neutre 1 ;

(iii) La multiplication « × » est distributive pour l’addition, autrement dit ∀ a, b, c ∈ F,
a× (b+ c) = a× b+ a× c.

Le nombre d’éléments dans F définit ce qu’on appelle l’ordre du corps F. Les corps les plus
connus sont infinis tels que les nombres réels R, les rationnels Q ou les nombres complexes C.
Rajoutons qu’il est possible de considérer un corps où la multiplication n’est pas nécessairement
commutative, ces corps sont généralement appelés corps gauche ou anneau de division (”skew
field“).

Un sous-corps de F est un ensemble de F qui est lui-même un corps muni des opérations
d’addition et de multiplication. Q est un sous-corps de R qui est lui-même un sous-corps de C.

1.1.3 Espace vectoriel sur un corps

Puis nous apportons la définition d’un espace vectoriel construit sur un corps :

Définition (Espace vectoriel sur un corps). Un espace vectoriel sur un corps commutatif F est
un ensemble V, dont les éléments sont appelés vecteurs, muni de deux lois :

(i) une loi de composition interne « + » appelée addition ou somme vectorielle ;

(ii) une loi de composition externe à gauche « × » appelée multiplication par un scalaire ;

telles que les propriétés suivantes soient vérifiées pour tous les éléments X, Y , Z ∈ V et tous
les scalaires α, β ∈ F :

• Commutativité de l’addition vectorielle : X + Y = Y + X ;

• Associativité de l’addition vectorielle : (X + Y ) + Z = X + (Y + Z) ;

• Vecteur nul comme élément neutre : X + 0 = 0 + X ;

• Vecteur opposé : X + (−X) = 0 ;

• Associativité du produit scalaire : α(βX) = (βα)X ;



72 II.1. Formalisation de « petits » modèles finis en géométrie projective

• Distributivité de la somme scalaire : (α+ β)X = αX + βX ;

• Distributivité de l’addition vectorielle : α(X + Y ) = αX + αY ;

• L’élément neutre multiplicatif du corps F : 1×X = X.

1.1.4 Corps fini

Un corps fini est un corps contenant un nombre fini d’éléments. À isomorphisme près, un corps
fini est entièrement déterminé par son cardinal, qui est toujours une puissance d’un nombre pre-
mier, ce nombre premier étant sa caractéristique. Les corps finis sont utilisés en théorie algébrique
des nombres mais aussi en théorie des codes ou en cryptographie [Ben12] avec le développement
de l’informatique. Ces corps finis sont aussi appelés corps de Galois, d’après Évariste Galois dont
les travaux furent publiés en 1830 [Gal08].

Définition (Corps fini ou corps de Galois). Un corps fini noté GF (q) ou Fq possède q éléments
où q est une puissance d’un nombre premier. Ce corps fini d’ordre q satisfait les propositions et
propriétés suivantes :

(i) Pour tout x ∈ GF (q), nous avons xq = x ;

(ii) Soit p un nombre premier. Le corps GF (p) est l’ensemble Z/pZ muni de l’addition et de
la multiplication standard ;

(iii) Le corps fini GF (ph) avec h ∈ Z+ peut être construit de la manière suivante. Soit f ∈
GF (p)[x] un polynôme de degré h, irréductible sur GF (p). L’anneau quotient GF (p)[x]/f(x)
forme un corps muni de l’addition et la multiplication standards puisque f est irréductible.
Ce corps est noté GF (ph) et possède ph élément ;

(iv) Le nombre premier p de GF (ph) est appelé la caractéristique du corps ;

(v) GF (pr) est un sous-corps de GF (ph) si et seulement si r divise h ;

(vi) GF (ph) est un espace vectoriel de dimension h sur GF (p) ;

(vii) Les éléments du corps de Galois GF (ph) sont :

GF (ph) = (0, 1, 2, . . ., p− 1) ∪
(p, p+ 1, p+ 2, . . ., p+ p− 1) ∪
(p2, p2 + 1, . . ., p2 + p− 1, p2 + p, p2 + p+ 1, . . ., p2 + p+ p− 1) ∪
. . . ∪
(ph-1, ph-1+1, . . ., ph-1+p−1, ph-1+ph-2, ph-1+ph-2+1, . . ., ph-1+ph-2+. . .+p+p−1)

Le degré de chaque élément est au plus h− 1.

Le corps Galois GF (5) = (0, 1 , 2, 3, 4) est composé de 5 éléments où chacun d’eux a un
polynôme caractéristique de degré 0 (une constante).

Tandis que le corps de Galois GF (23) = (0, 1, 2, 2 + 1 , 22, 22 + 1, 22 + 2, 22 + 2 + 1) est
composé de 8 éléments (0, 1, 2, 3, 4, 5, 6, 7) avec des polynômes caratéristiques de degré 2 au
maximum.



1. Introduction aux modèles finis 73

1.2 Espace projectif fini

Bien qu’il existe de nombreux modèles que l’on peut appeler géométries finies, nous portons
notre attention sur ceux provenant des espaces finis affines et projectifs. De tels espaces sont
constructibles via l’algèbre, c’est à dire en commençant par un espace vectoriel V (n + 1, q) de
dimension n + 1 sur un corps fini GF (q). L’espace projectif pg(n, q) est la géométrie dont les
points, les droites, les plans, . . ., les hyperplans sont les sous-espaces de V (n+1, q) de dimension
1, 2, 3, . . ., n. Un hyperplan est un sous-espace de codimension 1, c’est à dire que sa dimension
est plus petite d’une unité par rapport à la dimension de l’espace tout entier. La dimension d’un
sous-espace de pg(n, q) est un de moins que le rang d’un sous-espace de V (n+ 1, q). Notons que
les espaces construits de cette manière sont tous desarguésiens.

Une question naturelle s’ensuit : est-ce que toutes les géométries projectives finies sont iso-
morphes à un espace projectif pg(n, q) ?

La réponse est « oui » lorsque d ≥ 3 ; ce résultat découle de deux théorèmes importants de
la géométrie et de l’algèbre. Le premier est issu de la géométrie projective : c’est le fameux théo-
rème de Desargues présenté dans le Chapitre I.1. Ce théorème est toujours vrai pour un espace
projectif défini algébriquement à partir d’un corps commutatif ou non [Kod14]. En dimension 3
ou plus, tout espace projectif fini provient nécessairement d’un espace vectoriel sur un corps fini
et est donc désarguésien. Le second théorème est énoncé par Wedderburn en 1905 [MW05], il in-
dique que « La multiplication dans un corps fini est nécessairement commutative », en d’autres
termes « Tout corps fini est commutatif ».

La réponse est « non » en dimension 2 ; le plus petit plan projectif ne découlant pas d’un corps
et qui est donc non desarguésien appartient à une famille de plans appelée « plans de Hughes ».
C’est un plan d’ordre 9 composé de 91 points et 91 droites [LKT91,RK70].

Définition. Un plan projectif d’ordre q est une géométrie qui satisfait les axiomes de la Table
I.1.2 et qui contient q points. Un tel plan projectif d’ordre q vérifie la liste non exhaustive de
propositions et propriétés suivantes :

(i) Les plans projectifs ont q2 + q+ 1 points et q2 + q+ 1 droites. Chaque point réside sur q+ 1
droites et chaque droite contient exactement q + 1 points ;

(ii) Principe de dualité : Pour tout énoncé sur les plans projectifs finis qui est un théorème,
l’énoncé dual obtenu en interchangeant “point” par “droite” et en permutant “point sur une
droite” par “droite passant par un point” est aussi un théorème ;

(iii) Il existe un plan projectif d’ordre ph avec p premier et h un entier positif. Il est possible
de construire méthodiquement avec des coordonnées ces plans projectifs en considérant les
sous-espaces d’un espace vectoriel de dimension 3 sur un corps fini GF (q) ;

(iv) Il n’y a pas de plan projectif connu pour un ordre quelconque qui ne soit pas une puissance
d’un nombre premier. Le plus petit cas qui est un problème ouvert est l’ordre 12. Il a été
prouvé qu’il n’existe aucun plan projectif d’ordre 6 [Bos38,Tar00] ou 10 [Lam96,LTS89]. La
conjecture suivante reste ouverte : “L’ordre d’un plan projectif fini est toujours la puissance
d’un nombre premier”.

(v) Il existe quatre plans projectifs non isomorphiques d’ordre 9, trois d’entre eux (plan de Halls
et Hughes [Hal43,RK70]) sont non désarguésiens ;

(vi) La table II.1.1 résume les faits connus à propos de l’existence des plans projectifs d’ordre q
pour 1 ≤ q ≤ 12 ;



74 II.1. Formalisation de « petits » modèles finis en géométrie projective

(vii) L’existence d’un plan projectif d’ordre q est équivalent à l’existence d’un plan affine d’ordre
q.

Ordre 2 3 4 5 6 7 8 9 10 11 12
Nombre de plans projectifs 1 1 1 1 0 1 1 4 0 ≥ 1 ?

Nombre total de points/droites 7 13 21 31 0 57 73 91 0 133 ?

Table II.1.1 – Nombre de plans projectifs connus d’ordre q.

À toutes ces propriétés sur les plans finis s’ajoutent des formules générales non spécifiques
à la dimension permettant de déterminer précisément le nombre de sous-espaces vectoriels pour
chacune des dimensions d (1 ≤ d ≤ n) d’un plan projectif d’ordre q modulo différentes contraintes
(passage par un point ou appartenance à un hyperplan . . .) [Dem12]. Le théorème suivant qui
est le plus général donne le nombre de sous-espaces appartenant à une dimension spécifique d’un
espace projectif fini.

Théorème II.1.1. Le nombre de sous-espaces de dimension d de pg(n, q) tel que 1 ≤ d ≤ n est
déterminé par le produit suivant : ∏d

i=0
qn+1−i−1
qi+1−1

Pour illustrer ces définitions et propriétés, nous donnons quelques figures de modèles finis
qui sont analysés dans ce chapitre. Nous obtenons la structure d’incidence de la Figure II.1.1 en
fixant n = q = 2. Ce plan fini pg(2, 2) possède un groupe de 168 automorphismes 1. Dans la
figure II.1.2 nous considérons une des 5616 configurations possibles du plan projectif fini d’ordre
3. Finalement, la Figure II.1.3 représente le plus petit modèle fini de dimension 3 : pg(3, 2)
contenant 15 points, 35 droites et 15 plans.

E

F

A

B

HG

C

Figure II.1.1 – Plan projectif fini pg(2, 2) ou de Fano : 7 points et 7 droites.

1. Étude des petits plans projectifs d’ordre connu : http ://ericmoorhouse.org/pub/planes/



1. Introduction aux modèles finis 75

A E F

L B J

K I C

M

G

D

H

Figure II.1.2 – Plan projectif fini pg(2, 3) : 13 points et 13 droites (AEFG, CELM , . . .).

Figure II.1.3 – Plan projectif fini pg(3, 2) illustré par Frans Marcelis.



76 II.1. Formalisation de « petits » modèles finis en géométrie projective

En gardant à l’esprit tous ces résultats théoriques, nous nous concentrons sur la formalisation
de ces modèles finis uniquement avec la caractérisation géométrique qui est purement axioma-
tique. Autrement dit, nous oublions la définition algébrique de ces modèles ; nous n’utilisons à
aucun moment des coordonnées homogènes.

2 Génération des modèles finis

Les modèles finis pg(n, q) fournissent un banc d’essais approprié pour tester nos stratégies
de mécanisation des preuves en Coq. En effet, ces derniers sont bien connus et faciles à engen-
drer, ils proposent un cadre où la combinatoire est élevée permettant d’effectuer des tests de
stress qualitatifs. Mais avant de pouvoir automatiser le raisonnement dans ce cadre, nous devons
d’abord générer ces modèles. Pour cela, il faut spécifier ces modèles dans leur intégralité en énu-
mérant l’ensemble de tous les points, l’ensemble de toutes les droites et l’ensemble de toutes les
incidences.

2.1 Recherche des modèles

La description de chacun de ces modèles diffère selon principalement l’approche axiomatique
mais aussi selon la dimension et l’ordre. D’un côté en géométrie synthétique, nous caractérisons
les points, les droites et la relation d’incidence indiquant quels sont les points appartenant à
chacune des droites. De l’autre côté avec l’approche matroïdale, nous énumérons tous les plats
décrivant le modèle : l’ensemble des points, l’ensemble des droites et l’ensemble des plans. En
donnant un maximum d’informations dès la génération de l’espace fini, nous évitons la recherche
des informations supplémentaires lors des preuves, car l’énumération de tous les objets contient
déjà toute la description du modèle.

Par exemple, pour engender le modèle pg(2, 3) comportant 13 points et 13 droites du point
de vue des matroïdes, il est nécessaire de définir le rang de 339 ensembles : 13 ensembles pour
les points, 78 ensembles pour les points distincts, 13 ensembles pour les droites et 234 triplets de
points ordonnés représentant uniquement des parties du plan. De cette manière, le système n’a
donc pas besoin de vérifier qu’un triplet de points n’appartient pas à une des droites du plan pour
finalement déduire que ce triplet détermine un plan. Néanmoins, cette création du modèle fini de-
vient trop laborieuse pour être réalisée manuellement, surtout si les modèles sont encore plus gros.

La recherche de ces modèles finis et la génération de leur spécification sont effectuées par
un programme externe en langage C [KRB84]. Ce programme permet d’engendrer une structure
candidate à être un plan projectif d’ordre n avant de fabriquer un fichier Gallina décrivant ce
modèle. Nous distinguons la manière dont nous créons ces modèles en fonction de la dimension.
Pour les plans finis pg(2, q), un petit algorithme de recherche brute-force a été réalisé. Il permet
de construire tous les plans finis jusqu’à l’ordre 9 inclus (excepté bien évidemment le plan d’ordre
6 dont la preuve de non existence est disponible dans la littérature [Bos38]). Pour les espaces
finis de dimension 3, la spécification des modèles s’appuie sur des tables d’incidence disponibles
dans la littérature.

2.2 Construction des modèles finis

Nous détaillons dans la suite de cette sous-section la création des modèles finis en fonction
de la dimension.



2. Génération des modèles finis 77

2.2.1 Plan fini

Pour construire ces plans finis sans faire usage d’une méthode algébrique, nous définis-
sons algorithmiquement la table qui lie les points et les droites. En nous inspirant de ces tra-
vaux [Lam96,LKT91], un algorithme simple mais non complet, reprenant certains résultats prove-
nant des carrés latins 2, permet de reconstruire des plans projectifs d’ordre q. Le principe consiste
à créer une table où les lignes contiennent les points du modèle fini et les colonnes représentent
les droites de notre plan fini. Dans chaque ligne, les points sont stockés dans l’ordre croissant
de leur indice. Nous obtenons la Table II.1.2 à l’initialisation pour le calcul du plan projectif
d’ordre 2 contenant 7 points (entre 0 et 6) et 7 droites (une pour chaque colonne). Ce tableau
ne représente pas pour l’instant une configuration valide du modèle fini.

Ligne 1 0 1 2 3 4 5 6
Ligne 2 0 1 2 3 4 5 6
Ligne 3 0 1 2 3 4 5 6

Table II.1.2 – Initialisation de la table de construction du plan fini.

Le principe de l’algorithme consiste à décaler chaque série de points jusqu’à obtenir une
configuration où la règle suivante est respectée : chaque colonne doit contenir une droite qui est
unique, en d’autres termes deux points distincts sont associés l’un à l’autre une seule et unique
fois. Pour obtenir une telle configuration, il est nécessaire d’effectuer un décalage d’une ligne
l + 1 lorsqu’elle rentre en conflit avec l’une des l premières lignes. Si tous les décalages de la
ligne l + 1 posent un problème, l’algorithme revient à l’étape précédente et tente un décalage
supplémentaire de la ligne l.

Sur l’exemple de la Table II.1.2, la première ligne n’est jamais considérée en conflit, elle
est fixe. La deuxième ligne rentre en conflit avec la première, nous décalons de droite à gauche
cette dernière pour obtenir la configuration II.1.3. Aucun conflit n’apparaît entre les deux lignes,
l’algorithme considère que la configuration des deux premières lignes est valide temporairement.

Il passe donc à la ligne suivante qui est la troisième et dernière ligne de notre plan projectif
fini pg(2, 2). L’algorithme décale une première fois la troisième ligne, elle est nécessairement en
conflit avec la deuxième, leur positionnement est identique II.1.4. L’algorithme continue avec un
second décalage de la dernière ligne montré par la Table II.1.5. L’unicité des droites est alors
remise en cause, les points 1 et 2 ne peuvent pas appartenir à la fois à la droite 012 et 123.
L’algorithme doit donc effectuer une rotation supplémentaire présentée par la Table II.1.6. La
configuration obtenue est valide, deux colonnes quelconques n’ont pas deux points en commun
et chaque point apparaît exactement dans 3 droites, le plan d’ordre 2 a été créé avec les droites
013, 124, 235, 346, 045 156 et 026.

Ligne 1 0 1 2 3 4 5 6
Ligne 2 1 2 3 4 5 6 0
Ligne 3 . . . . . . .

Table II.1.3 – Premier décalage de la ligne 2.

2. En combinatoire, un carré latin est un tableau carré n × n rempli avec n symboles distincts. Chacun de ces
symboles apparaît exactement une fois par ligne et une fois par colonne.



78 II.1. Formalisation de « petits » modèles finis en géométrie projective

Ligne 1 0 1 2 3 4 5 6
Ligne 2 1 2 3 4 5 6 0
Ligne 3 1 2 3 4 5 6 0

Table II.1.4 – Premier décalage de la ligne 3.

Ligne 1 0 1 2 3 4 5 6
Ligne 2 1 2 3 4 5 6 0
Ligne 3 2 3 4 5 6 0 1

Table II.1.5 – Deuxième décalage de la ligne 3.

Ligne 1 0 1 2 3 4 5 6
Ligne 2 1 2 3 4 5 6 0
Ligne 3 3 4 5 6 0 1 2

Table II.1.6 – Troisième décalage de la ligne 3.

Il est possible de laisser l’algorithme continuer sa recherche pour construire d’autres plans
qui sont isomorphes au premier. Nous résumons dans l’Algorithme II.1.1 la recherche d’un plan
fini d’ordre q.

Algorithme II.1.1 : Recherche d’un plan fini d’ordre q.
Entrée(s) : L’ordre du plan projectif q
Sortie(s) : Tableau contenant les droites du plan projectif fini d’ordre q

1 Allocation et initialisation du tableau contenant les points et les droites
2 pour chaque ligne l de 2 à q faire
3 si tous les décalages de l n’ont pas encore été testés faire
4 Décalage de la ligne l
5 si la ligne l n’est pas en conflit avec une ligne précédente faire
6 Passage à la ligne l + 1
7 fin si
8 sinon
9 Revenir à la ligne l − 1

10 si l est égal à 1 faire
11 Arrêt de l’algorithme : échec
12 fin si
13 Réinitialiser à la configuration initiale toutes les lignes > l
14 fin si
15 fin pour chaque

2.2.2 Espace fini

La construction des espaces projectifs finis de dimension 3 est bien plus difficile à réaliser de
manière algorithmique. L’espace projectif d’ordre 3 contient presque autant de droites qu’un plan
projectif d’ordre 11. À notre connaissance, la littérature ne propose pas de méthode simple pour
construire de tels espaces sans passer par une méthode algébrique. Pour construire automatique-
ment les modèles finis pg(3, 2) et pg(3, 3), nous concevons un algorithme qui, à partir des tables
d’incidence entre points et droites des articles suivants [Bru11,Pri99], produit automatiquement



2. Génération des modèles finis 79

le modèle dans son intégralité. La vérification formelle du modèle pg(3, 3), construit à partir de
la relation d’incidence provenant de l’article [Pri99], a permis de montrer que cette table publiée
comporte plusieurs erreurs. Nous avons localisé et corrigé ces erreurs en utilisant la propriété qui
indique le nombre de points que doit contenir une droite.

2.3 Pré-validation des plans finis

Une fois la construction du plan projectif achevée, avant de fabriquer un fichier au format
Gallina, quelques vérifications de certains axiomes projectifs sont réalisées sur la table d’inci-
dence associée au plan. La construction de la matrice d’incidence à partir du tableau contenant
les droites du plan projectif est triviale et immédiate. La Table II.1.7 contient la matrice d’inci-
dence associée au plan projectif d’ordre 2 construit précédemment.

L0 L1 L2 L3 L4 L5 L6
P0 1 0 0 0 1 0 1
P1 1 1 0 0 0 1 0
P2 0 1 1 0 0 0 1
P3 1 0 1 1 0 0 0
P4 0 1 0 1 1 0 0
P5 0 0 1 0 1 1 0
P6 0 0 0 1 0 1 1

Table II.1.7 – Exemple de matrice d’incidence du plan projectif d’ordre 2.

Sur cette matrice d’incidence représentant un plan projectif d’ordre q, les propriétés suivantes
sont au minimum vérifiées :

• Chaque ligne possède q + 1 points

• Chaque point appartient à q + 1 droites

• Il existe toujours un unique point commun entre deux droites distinctes

L’algorithme offre la possibilité de vérifier chacun des axiomes du plan projectif ainsi que
la propriété de Desargues (voir l’Annexe C). Cette vérification n’est cependant pas rendue sys-
tématique sachant que l’objectif consiste à exporter le modèle construit afin qu’il soit validé
formellement dans le système Coq.

2.4 Export des modèles en langage Gallina

La fabrication automatique des fichiers en langage Gallina contenant les différents plans et
espaces finis suit un patron permettant de plus facilement réexploiter tous les outils et structures
mis en place pour réaliser les différentes preuves. Tous les modèles ainsi générés sont quasiment
identiques pour l’ordre et la dimension. Cependant, le patron diffère largement en fonction de
l’approche géométrique que nous employons.

2.4.1 Modèle en géométrie synthétique

La génération d’un modèle, décrits avec cette axiomatisation, contient deux types inductifs
pour les points et les droites ainsi qu’un prédicat booléen pour la relation d’incidence (voir Table



80 II.1. Formalisation de « petits » modèles finis en géométrie projective

II.1.8). Cette description contient tous les éléments pour prouver que c’est un modèle de la géo-
métrie projective respectant de plus la propriété de Desargues.

(* Type inductif pour les points *)
Inductive ind_Point : Set := A | B | C | ... | K | L | M.

(* Type inductif pour les droites *)
Inductive ind_line : Set := ABCD | AEFG | AIJM | AHKL | BEHI | BGJL
| BFKM | CELM | CFHJ | CGIK | DEJK | DGHM | DFIL.

(* Prédicat booléen pour la relation d’incidence *)
Définition Incid_bool (P:Point) (l:Line) : bool := match P with

| A => match l with
| ABCD | AEFG | AIJM | AHKL => true
| _ => false

end
[...]

end.

Definition Incid : Point -> Line -> Prop := fun P L => (Incid_bool P L = true).

Table II.1.8 – Application du patron au modèle fini pg(2, 3) en géométrie synthétique.

Tous les modèles finis de plan pg(2, q) suivent exactement le même patron avec plus ou
moins de points et de droites impliqués dans la spécification. Pour la génération des modèles de
dimension 3, il n’est pas nécessaire d’énoncer la notion de plan en géométrie synthétique puisque
les axiomes sont exprimés uniquement à partir de points et de droites (voir l’Annexe A).

2.4.2 Modèle exprimé à l’aide des rangs

Pour l’approche matroïdale de la géométrie, la génération d’un modèle contient uniquement
des points. Cet ensemble de points est ensuite utilisé pour exprimer l’ensemble des plats com-
posant le modèle fini : les plats composés d’un unique point, les plats spécifiant que toute paire
de points distincts du modèle forme une droite, les plats représentant les droites et les plats
définissant les plans (voir Table II.1.9). Pour formaliser les espaces finis, il est indispensable de
considérer l’ajout des plats permettant de capturer l’espace tout entier.



2. Génération des modèles finis 81

(* Paramètre définissant tous les points du modèle *)
Parameter A B C D E F G H I J K L M : Point.

(* Décidabilité sur les points du modèle *)
Parameter is_only_13_pts : forall P, {P=A}+{P=B}+{P=C}+[...]+{P=K}+{P=L}+{P=M}.

(* Plats pour les points *)
Parameter rk_points : rk(A :: nil) = 1 /\ rk(B :: nil) = 1 /\ rk(C :: nil) = 1 /\
[...] /\ rk(M :: nil) = 1.

(* Plats pour les paires de points distincts *)
Parameter rk_distinct_points :
rk(A :: B :: nil) = 2 /\ rk(A :: C :: nil) = 2 /\ rk(A :: D :: nil) = 2 /\
[...] /\ rk(L :: M :: nil) = 2.

(* Plats pour les droites *)
Parameter rk_lines :
rk (A :: B :: C :: D :: nil) = 2 /\ rk (A :: E :: F :: G :: nil) = 2 /\
rk (A :: I :: J :: M :: nil) = 2 /\ rk (A :: H :: K :: L :: nil) = 2 /\
rk (B :: E :: H :: I :: nil) = 2 /\ rk (B :: G :: J :: L :: nil) = 2 /\
rk (B :: F :: K :: M :: nil) = 2 /\ rk (D :: E :: J :: K :: nil) = 2 /\
rk (C :: E :: L :: M :: nil) = 2 /\ rk (C :: F :: H :: J :: nil) = 2 /\
rk (D :: G :: H :: M :: nil) = 2 /\ rk (D :: F :: I :: L :: nil) = 2 /\
rk (C :: G :: I :: K :: nil) = 2.

(* Plats pour les plans *)
Parameter rk_planes :
rk (A :: B :: E :: nil) = 3 /\
rk (A :: B :: F :: nil) = 3 /\
rk (A :: B :: G :: nil) = 3 /\
[...] /\ rk (K :: L :: M :: nil) = 3.
end.

Table II.1.9 – Application du patron au modèle fini pg(2, 3) en utilisant les rangs.

Il est possible de concevoir les modèles de la géométrie synthétique dans un format plus
proche de ceux issus de la théorie des matroïdes en décomposant le prédicat booléen d’incidence
en deux ensembles. Le premier regroupant toutes les incidences d’un point à une droite, le second
rassemblant tous les points non incidents à une droite. Cette décomposition se rapproche plus
de la séparation en plats de l’approche matroïdale mais elle est moins efficace lors des preuves
lorsqu’il s’agit de mettre en évidence une contradiction. En effet, il est nécessaire d’introduire
toutes les hypothèses dans le contexte au lieu de simplement tester le retour du prédicat booléen.

Une fois tous ces modèles exportés dans la syntaxe Gallina, nous étudions l’automatisation
selon les deux formalisations équivalentes de la géométrie d’incidence projective. Pour cela, nous
nous intéressons à la démonstration prouvant que ces géométries finies sont effectivement des mo-
dèles de la géométrie d’incidence projective en vérifiant les différents axiomes et que la propriété
de Desargues est respectée par les plans finis pg(n, q). Il est possible de vérifier d’autres théorèmes
dans ce cadre telle que la propriété de Pappus, mais cette dernière n’apporterait rien de plus
par rapport à Desargues. Rappelons qu’en dimension 3, la propriété de Desargues devient un
théorème que l’on peut prouver avec les deux approches de la géométrie [Kod14,Kus90,MNS12].
Par conséquent tout espace fini de dimension 3 ou plus vérifie cette propriété.



82 II.1. Formalisation de « petits » modèles finis en géométrie projective

3 Vérification formelle des modèles et preuve de la propriété de
Desargues

Nous utilisons les modèles projectifs finis pour étudier d’une part l’automatisation de preuves
de propriétés géométriques et d’autre part la gestion de la complexité dans des démonstrations
dont la combinatoire est très élevée. Parallèlement à cette analyse, les deux approches de la géo-
métrie d’incidence projective sont comparées principalement pour leur capacité et leur efficacité
à prouver des propriétés mais aussi la facilité avec laquelle les procédés d’automatisation peuvent
être mis en place et réutilisés dans les modèles de dimension et d’ordre supérieurs.

Nous démontrons, et ce n’est pas si simple de le faire en pratique, que les axiomes de la
géométrie synthétique sont vérifiés pour les plans pg(2, 2), pg(2, 3), pg(2, 4), pg(2, 5), pg(2, 7)
et les espaces pg(3, 2), pg(3, 3). De la même manière, nous montrons que les axiomes issus de la
théorie des rangs sont respectés pour pg(2, 2), pg(2, 3). Nous détaillons à travers ces exemples
quelques méthodes pour gérer la complexité lors de preuves de grande taille dans l’assistant de
preuve Coq.

Gérer la complexité dans le cadre des assistants de preuve est quelque chose qui est bien
étudiée lors de la formalisation des preuves mais qui n’est pas assez détaillée dans les publi-
cations. En effet, la plupart des formalisations dans le domaine se concentre sur la vérification
d’un résultat mathématique sans mettre en avant les performances en temps d’exécution et en
mémoire. L’objectif principal est d’établir la preuve, si bien que la lisibilité, la segmentation
de la preuve, les performances globales ou la facilité à formuler et prouver un résultat sont
des facteurs moins considérés. De nombreux outils très efficaces sont intégrés aux assistants
de preuve [BTT15,Chl13,GL02,TG15], pour faciliter le développement des preuves, améliorer
les temps d’exécution et diminuer l’occupation mémoire. Néanmoins, il arrive des situations où,
même si la démonstration est finement découpée et optimisée, dominer la complexité de la preuve
reste un challenge et l’objectif principal est alors mis en défaut.

Ce chapitre permet d’observer certaines de ces situations limites où les facteurs tels que la
quantité d’hypothèses, le choix des tactiques et le nombre de configurations à vérifier rendent le
problème difficile à résoudre pour l’utilisateur. Ces trois facteurs peuvent être controlés afin de
limiter le plus possible leur impact sur la complexité des preuves considérées. Nous identifions
pour cela plusieurs critères à travers les différents exemples de modèles ; ces critères peuvent
influencer drastiquement la complexité dans les preuves. L’optimisation simple mais pertinente
de ces critères généraux permet d’obtenir efficacement des preuves dans un contexte hautement
combinatoire. La mise en place de chacun de ces critères permettant d’améliorer l’automatisation
des preuves est dans la plupart des cas réalisée à la main en suivant notre intuition.

3.1 Gestion de la complexité

Toutes les optimisations présentées dans cette partie sont indépendantes les unes des autres
et permettent de démontrer des lemmes où l’explosion combinatoire du nombre de cas à prouver
est omniprésente.

3.1.1 Analyse de cas

Le premier critère très impactant qu’il est primordial d’étudier est l’explosion du nombre de
cas à analyser. Pour prouver un énoncé géométrique en géométrie finie, la démarche classique
consiste à vérifier toutes les configurations possibles de ce théorème, c’est-à-dire qu’il faut effec-
tuer une analyse de cas à la fois sur les points et les droites du modèle. Le plus souvent, une
approche de force brute mène à une multitude de cas à traiter rendant la preuve impossible.
Illustrons ce problème d’analyse de cas sur la propriété Uniqueness (A3P2) de la géométrie



3. Vérification formelle des modèles et preuve de la propriété de Desargues 83

d’incidence projective (voir II.1.10) :

(* Propriété d’unicité en géométrie synthétique *)
Lemma uniqueness : forall A B : Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

Table II.1.10 – Rappel de la propriété d’unicité de la géométrie synthétique.

En considérant le plus petit plan fini pg(2, 2) contenant 7 points et 7 droites, une analyse de
cas basique aboutit à 74 = 2 401 cas à traiter. En passant au plan projectif d’ordre 3 contenant 13
points et 13 droites, nous devons gérer 134 = 28 051 cas. Ces situations ne sont pas encore critiques
et de telles preuves sont encore facilement réalisées. Cela devient néanmoins plus compliqué en
traitant par exemple un plan d’ordre 5 contenant 31 points et droites dans lequel 923 521 cas
sont à étudier. De manière générale, soit q l’ordre du plan projectif, alors nous devons analyser
(q2 + q + 1)4 combinaisons possibles, ces preuves aboutissent seulement pour q petit. Cette
analyse pour la force brute utilisée pour étudier toutes les configurations doit être optimisée le
plus possible en utilisant les hypothèses du contexte et des techniques d’automatisation.

3.1.2 Formulation et choix de la théorie

Un deuxième facteur influençant fortement la complexité est la manière dont les énoncés sont
formulés. Ces questions sont bien connues et étudiées dans la théorie de la complexité spéciale-
ment dans les problèmes SAT [MMZ+01,NOT06]. Des critères tels que la taille des clauses, le
nombre de propositions et l’ordre des propositions a un impact significatif sur le temps de calcul
d’une preuve. Pour illustrer cette importance dans notre cadre, considérons deux définitions de
l’existence de l’intersection dans le plan entre deux droites (voir Table II.1.11), la première ex-
primée en géométrie synthétique, la seconde définie à partir des rangs.

(* Propriété d’existence de l’intersection dans le plan en géométrie synthétique *)
Lemma point_existence : forall (l1 l2 : Line),

exists A : Point, Incid A l1 /\ Incid A l2.

(* Propriété d’existence de l’intersection dans le plan avec les rangs *)
Lemma rk_inter : forall A B C D : Point,

exists J, rk(triple A B J) = 2 /\ rk(triple C D J) = 2.

Table II.1.11 – Différence de formulation de la propriété d’existence d’une intersection entre les
deux approches de la géométrie d’incidence projective.

En considérant le plan fini d’ordre 3, l’analyse de cas dans la première description génère
132 = 169 configurations avant de fournir un témoin pour le quantificateur existentiel alors
que dans la deuxième formulation nous faisons face à 134 = 28 051 cas. Il serait nécessaire
dans cette situation de créer une méthode de résolution de la formule existentielle cent fois plus
rapide avec l’approche matroïdale pour obtenir un temps d’exécution similaire à celui de la
géométrie synthétique. Nous observons ici que le choix de la géométrie synthétique semble plus
prometteur que la théorie des matroïdes puisque l’expression de la même définition nécessite



84 II.1. Formalisation de « petits » modèles finis en géométrie projective

deux quantificateurs universels en moins. Choisir la théorie la plus adaptée pour formuler un
énoncé permet de rendre certaines preuves traitables.

Ce choix ne résout pas tous les problèmes de complexité. La meilleure façon de traiter pro-
prement l’explosion combinatoire du nombre de cas causée par une succession d’analyses de cas
est d’élaguer l’arbre de preuve le plus tôt possible.

3.1.3 Élagage de l’arbre de preuve

Considérons à nouveau la propriété Uniqueness (A3P2) de la géométrie d’incidence projec-
tive et sa preuve dans le plan projectif pg(2, 3) dans la Table II.1.12. Une analyse de cas naïve
sans élagage ou gestion des quantificateurs aboutit aux 28 051 cas expliqués précédemment. La
preuve se décompose en deux parties : tout d’abord une induction est effectuée sur chacun des
quantificateurs universels pour considérer les 134 configurations avant de résoudre tous ces buts
par la mise en évidence d’une contradiction ou d’une reflexivité entre les hypothèses et la partie
gauche ou droite de la disjonction du but de la propriété d’unicité. Une exécution force brute de
cette preuve sur la machine standard 3 prend approximativement 40 secondes dans cette situation.

(* Preuve de l’unicité en géométrie synthétique *)
Lemma uniqueness : forall A B : Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

Proof.
induction A;induction B;induction l;induction m;
try discriminate; try (left;reflexivity);try (right;reflexivity).

Qed.

Table II.1.12 – Exemple d’élagage dans la preuve de la propriété d’unicité de la géométrie
synthétique.

Des stratégies plus élaborées et liées au contexte sont nécessaires pour assurer que la preuve
reste praticable pour un ordre ou une dimension supérieur. La variable A est liée à l dans l’hy-
pothèse Incid A l. Il est alors possible d’élaguer l’arbre de preuve dès la première induction sur
la droite l quand le point A n’est pas incident à la droite l. En réordonnant ainsi les quantifica-
teurs, nous tirons avantage des hypothèses de l’énoncé géométrique. Toutes les hypothèses de cet
énoncé sont symétriques et possèdent le même pouvoir d’élagage. Plus précisément le nombre de
buts qui peuvent être éliminés après l’analyse de cas sur A suivi de l sera identique à l’ordonnan-
cement B puis m ou m puis B. Une autre amélioration notable consiste à valider directement la
partie gauche des buts après l’induction sur B quand l’égalité A = B (autrement dit la partie
gauche de la disjonction) est vérifiée. En effet, il n’est pas utile de continuer l’analyse de cas sur
la variable m si le but peut déjà être validé. On évite ainsi la duplication d’un but en 13x cas
avec x le nombre d’analyse de cas restantes à effectuer si celui-ci peut être validé ou éliminé par
contradiction. En appliquant ces deux ajustements dans la Table II.1.13, nous construisons la
preuve de l’axiome d’unicité en moins d’une seconde avec au plus 400 buts à prouver à chaque
niveau de la démonstration.

3. Spécificités de cette machine : Intel(R) Core(TM) i5-4460 CPU @3.20GHz avec 16Go de mémoire



3. Vérification formelle des modèles et preuve de la propriété de Desargues 85

(* Preuve de l’unicité en géométrie synthétique *)
Lemma uniqueness : forall A B : Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

Proof.
induction A;induction l;try discriminate;
induction B;try discriminate;try (left;reflexivity);
induction m;try discriminate;try (right;reflexivity).

Qed.

Table II.1.13 – Exemple d’élagage amélioré dans la preuve de la propriété d’unicité de la géo-
métrie synthétique.

3.1.4 Hypothèses les plus restrictives

La sous-section précédente montre que l’ordonnancement des quantificateurs en fonction des
hypothèses de l’énoncé peut avoir un impact fort sur la taille de l’arbre de preuve. Autrement
dit, l’ordre dans lequel l’analyse de cas est effectuée doit dépendre du pouvoir d’élagage des
différentes hypothèses. L’idée consiste à considérer le plus tôt possible les hypothèses qui sont
les plus restrictives pour élaguer au maximum l’arbre de preuve du plus grand nombre de cas
possibles. Considérons les deux hypothèses suivantes A 6= B et Incid A l dans le modèle fini
pg(2, 3). En effectuant une analyse de cas sur les deux variables de chacune des hypothèses, nous
obtenons que la première hypothèse permet d’éliminer 13 cas sur 169 alors que dans le second
contexte il est possible de mettre en évidence une contradiction dans 117 cas sur les 169. On
comprend l’intérêt de prendre l’hypothèse d’incidence en priorité pour éliminer rapidement des
buts. S’il est facile de mesurer si une hypothèse est plus élagante qu’une autre (elles peuvent
avoir le même pouvoir d’élagage), il est bien plus difficile d’appliquer ce principe en considérant
des paquets d’hypothèses qui ont une arité non identique et des variables qui sont différentes.
On doit dans ce cas essayer de planifier l’orthogonalité de ces différentes hypothèses pour élaguer
l’arbre de preuve.

3.1.5 Existence de témoin

Certaines propriétés ne sont pas uniquement exprimées à partir de quantifications univer-
selles, elles contiennent aussi une ou plusieurs quantifications existentielles. Pour résoudre ces
dernières, il faut fournir un témoin d’existence qui est l’un des objets (point ou droite) déjà
construit du modèle. Il est possible de trouver naïvement ce témoin en testant tous les objets
du modèle. La quantification est alors traitée comme une quantification universelle supplémen-
taire complexifiant ainsi le calcul de la preuve, ce qui n’est pas désirable. Nous allons montrer
comment il est possible de construire un témoin plus efficacement en utilisant le calcul d’une
fonction. Considérons l’exemple suivant en dimension 3 qui est la propriété d’Upper-Dimension
(A6P3) ; celle-ci indique qu’il existe toujours une quatrième droite coupant trois autres droites
non nécessairement coplanaires (voir II.1.14).



86 II.1. Formalisation de « petits » modèles finis en géométrie projective

(* Propriété de dimension supérieure en géométrie synthétique *)
Lemma upper_dimension : forall l1 l2 l3 : Line,

~ l1 = l2 /\ ~ l1 = l3 /\ ~ l2 = l3 ->
exists l4 : Line,
exists J1 : Point,
exists J2 : Point,
exists J3 : Point,
(Intersect_In l1 l4 J1) /\ (Intersect_In l2 l4 J2) /\ (Intersect_In l3 l4 J3).

Table II.1.14 – Rappel de la propriété d’Upper-Dimension en géométrie synthétique.

Pour construire le témoin d’existence de la quatrième droite exists l4 : Line, nous uti-
lisons le résultat d’une fonction intermédiaire qui calcule automatiquement la droite témoin
intersectant les trois droites fournies en paramètre. Cette fonction II.1.15 est construite dès la
génération du modèle à partir des informations de ce dernier. Nous réduisons ainsi la recherche
d’un témoin d’existence à un simple calcul de fonction sans complexifier l’analyse de cas. À titre
d’information dans le plus petit espace projectif pg(3, 2), une telle fonction possède 42 875 entrées.

(* Fonction calculant la droite qui coupe trois droites quelconques données *)
Definition f_upper_dimension (l1:Line) (l2:Line) (l3:Line) :=
match l3 with
| L0 => match l2 with

| L0 => match l1 with
| L0 => (L0,(P0,P0,P0))
...

end
end

end.

Table II.1.15 – Fonction qui calcule une droite témoin pour la propriété d’Upper-Dimension en
géométrie synthétique.

3.1.6 Preuves comme des programmes

Les techniques précédentes deviennent encore plus importantes lorsque nous traitons des es-
paces projectifs finis de dimension 3. Plaçons nous dans l’espace fini pg(3, 2) contenant 15 points
et 35 droites et prouvons dans ce modèle la propriété de Pasch (A2P3) indiquant que si deux
droites sont coplanaires alors elles se coupent nécessairement dans le plan (voir II.1.16).



3. Vérification formelle des modèles et preuve de la propriété de Desargues 87

(* Propriété d’existence de l’intersection entre deux droites coplanaires *)
Lemma pasch : forall A B C D : Point, forall lAB lCD lAC lBD : Line,

~ A = B /\ ~ A = C /\ ~ A = D /\
~ B = C /\ ~ B = D /\ ~ C = D ->
Incid A lAB /\ Incid B lAB ->
Incid C lCD /\ Incid D lCD ->
Incid A lAC /\ Incid C lAC ->
Incid B lBD /\ Incid D lBD ->
(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->
(exists J : Point, (Incid J lAC /\ Incid J lBD)).

Table II.1.16 – Rappel de la propriété de Pasch en géométrie synthétique.

Une analyse de cas force brute sur un tel énoncé mène à 154×354 = 75 969 140 625 configura-
tions à traiter. Les simplifications pour limiter la taille de l’arbre de preuve, et l’ordre dans lequel
les inductions sont effectuées ne sont plus suffisantes pour obtenir une preuve praticable. Pour
simplifier la combinatoire dans cette situation, nous profitons de la correspondance de Curry-
Howard 4 consistant à considérer les preuves comme des programmes.

L’idée consiste à éliminer l’analyse de cas sur les droites en utilisant l’information générée
par l’analyse de cas sur les points que l’on effectue préalablement. Nous souhaitons construire
un lemme intermédiaire qui fournit la droite effective passant par deux points distincts donnés.
Pour élaborer ce lemme, il est possible d’utiliser l’approche précédente en construisant dès la
génération du modèle une fonction qui calcule cette droite unique. L’autre possibilité retenue,
qui exploite la correspondance de Curry-Howard, consiste à remarquer que cette fonction est
une version simplifiée indépendante de la propriété Line-Existence (A1P3) qui peut être utilisée
directement comme un programme. En effet, l’assistant de preuve Coq permet de construire des
fonctions complètement spécifiées à partir d’une preuve.

Dans la Table II.1.17, nous définissons donc la fonction line_from_points qui extrait à par-
tir de la preuve de la propriété Line-Existence la droite passant par les deux points distincts
T et Z. Cette fonction sert ensuite dans la construction et la preuve du lemme points_line.
Grâce à ce lemme, il est maintenant possible d’extraire x en utilisant une tactique lors de la
preuve de la propriété de Pasch. De cette manière, nous obtenons les droites lAB, lCD, lAC
et lBD sans analyse de cas, et aucun but supplémentaire n’est généré. Nous réduisons ainsi le
nombre de configurations à vérifier à seulement 154 = 50 625 cas, avant d’effectuer l’élimination
de l’hypothèse existentielle exists I : Point, (Incid I lAB / Incid I lCD).

4. Il existe un lien profond entre déduction naturelle et le lambda-calcul typé. Cette correspondance joue un
rôle clé en logique en établissant un pont entre la théorie de la démonstration et l’informatique théorique. Dans
cette approche, démontrer un théorème est identique à écrire un programme ; énoncer un théorème revient à
examiner la spécification partielle d’un programme avec son typage.



88 II.1. Formalisation de « petits » modèles finis en géométrie projective

(* Fonction calculant la droite unique passant par deux points *)
Definition line_from_points (Z : Point * Point) :=

proj1_sig (line_existence (fst Z) (snd Z)).

(* Preuve de la propriété points_line à partir de la fonction line_from_points *)
Lemma points_line : forall T Z : Point, forall x : Line,

Incid T x -> Incid Z x -> ~ T = Z -> x = (line_from_points(T, Z)).

Table II.1.17 – Utilisation de la correspondance de Curry-Howard en géométrie synthétique.

3.1.7 Pseudo-recherche en profondeur

Dans des arbres de preuves où la ramification est trop importante, quand les optimisations
précédentes ne sont plus suffisantes (parce que la consommation mémoire est trop grande), nous
adaptons l’algorithme classique de parcours en largeur des buts en Coq. Considérons la preuve
suivante tac1;tac2;tac3;, par défaut le système Coq applique la tactique 1 sur tous les buts
courants, puis la tactique 2 sur tous les buts générés par la tactique 1 et enfin la tactique 3
s’exécute sur tous les buts issus de l’application de la tactique 2. Naturellement, le système expose
tous les buts courants après l’application de chacune des tactiques et sauvegarde le contexte de
chacun d’eux à chaque étape de la démonstration.

L’idée consiste à ne pas construire toutes les ramifications de l’arbre de preuve directement, en
essayant de résoudre séquentiellement chacune des branches principales de l’arbre de preuve avant
de considérer la suivante. La méthode de résolution d’une branche est ainsi répétée sur chacune
des branches dès leur construction. Pour faire cela, nous exploitons le mécanisme d’associativité
à droite pour réaliser une pseudo-recherche en profondeur afin de limiter le nombre de cas à
considérer à chaque niveau de la démonstration tac1;(tac2;tac3). Le système applique la
tactique 2 puis 3 sur le premier but créé par la tactique 1 avant de passer au but suivant.

3.1.8 Relation d’ordre sur les objets

Dans la plupart des propriétés qui sont prouvées, les points impliqués doivent être nécessai-
rement distincts. Afin de diminuer un peu plus le nombre de cas à étudier, nous ajoutons une
relation d’ordre qui est construite dès la génération du modèle en associant un entier à chacun
des points du modèle (un procédé similaire est appliqué pour les droites). Nous modifions aussi
légèrement les énoncés des propriétés en ajoutant des hypothèses d’ordre sur les points permet-
tant d’éliminer directement les cas où l’ordre entre les points n’est pas respecté. Nous exploitons
de cette manière la symétrie des énoncés.

Nous prouvons ainsi la propriété de Pasch (A2P3) en utilisant un lemme intermédiaire
intégrant cette relation d’ordre sur les points. Pour cela, deux hypothèses contenant le prédicat
leP, qui indique que le premier point doit toujours avoir un indice plus petit que le second, sont
ajoutées au lemme intermédiaire de la Table II.1.18. Nous observons la symétrie de cet énoncé
en remarquant que s’il est vrai pour A = a, B = b, . . . D = d alors il est aussi vrai pour A = b,
B = a, . . . D = d. Une fois la démonstration de ce lemme finie, nous prouvons la propriété
générale de Pasch en utilisant les symétries.

En reprenant le modèle pg(3, 2) possédant 15 points, le nombre de cas par défaut qui est
154 peut être ainsi réduit à 152 × 142. La vérification d’une hypothèse d’ordre est triviale et
immédiate ; elle est le résultat d’une fonction booléenne précisant si l’ordre entre les deux entiers
est respecté. Si l’ordre n’est pas respecté, le but courant est directement éliminé.



3. Vérification formelle des modèles et preuve de la propriété de Desargues 89

(* Propriété d’existence de l’intersection entre deux droites coplanaires *)
Lemma line_existence_order : forall A B C D : Point, forall lAB lCD lAC lBD : Line,

leP A B -> leP C D ->
[...].

Table II.1.18 – Exemple de relation d’ordre dans la propriété de Pasch en géométrie synthétique.

3.1.9 Ingénierie de la preuve

Le dernier aspect purement technique auquel nous nous intéressons est le génie logiciel dans
l’assistant de preuve Coq. Toutes les tactiques ou mot-clés définis dans cette partie sont dé-
taillés dans le manuel d’utilisation Coq et le livre de référence [Coq02]. Une fois que toutes les
simplifications sont réalisées en élaguant l’arbre dès que nécessaire, en minimisant le nombre de
cas à traiter ou en créant les témoins pour les quantificateurs existentiels, il reste à définir la
séquence de tactiques [Del00] qui va résoudre tous les buts avec le plus d’efficacité possible. Bien
souvent, il existe de multiples combinaisons de primitives Coq qui permettent de mener à son
terme une preuve. La question est de trouver un arrangement de tactiques suffisamment puissant
pour résoudre tous les buts qui sont fortement similaires, mais il faut aussi que celui-ci soit peu
coûteux en temps et en mémoire. Pour y parvenir, nous énonçons quelques principes généraux à
suivre en élaborant cette combinaison de tactiques.

L’idée principale consiste à fournir au système le plus d’informations possibles afin de sim-
plifier le mécanisme d’unification [Zil14]. Lorsqu’une tactique est conçue par nos propres soins,
nous connaissons la classe de problèmes qu’elle est susceptible de résoudre et les informations
dont elle aura besoin pour y arriver. En effet, dès qu’il est possible de donner des paramètres à
la tactique ou d’apporter une indication sur les hypothèses que le système doit rechercher dans
le contexte, le système peut conclure bien plus vite.

Considérons l’exemple suivant : si pour simplifier le but courant le système doit trouver une
hypothèse indiquant que deux points ne sont pas égaux, alors il est bien plus évident pour Coq
de trouver cette hypothèse si les points qui doivent être trouvés sont passés en paramètre et que
le motif de l’hypothèse est déjà décrit au sein de la tactique. Parfois il n’est pas toujours faisable
d’être aussi précis, la tactique doit rester assez générale pour simplifier tous les buts ayant un
motif similaire. Il faut faire attention à ne pas trop alourdir en informations une tactique afin que
cette dernière soit performante dans la résolution de sa classe de problèmes (voir Table I.2.17 et
I.2.18).

Dans ce même sens, l’utilisateur doit éviter les tactiques de hauts niveaux déjà intégrées au
système qui permettent de simplifier une large classe de problèmes plus grande que la configu-
ration que l’on cherche à résoudre. Ces dernières priorisent toujours le succès de la tactique par
rapport à son coût.

Cependant développer des tactiques en Coq pour effectuer une automatisation massive est une
tâche ardue. Plus elles doivent être efficaces, plus cette tâche est difficile. Le profiler Ltac [TG15]
apporte une aide précieuse pour localiser les simplifications les plus coûteuses. Un utilisateur
expert de Coq peut être habitué à fortement utiliser des primitives tel que rewrite, intuition
ou omega. Ces tactiques permettent de résoudre une majorité de problèmes sans nécessairement
s’inquiéter de l’impact sur les performances. C’est pourquoi, il est important de revenir aux
tactiques les plus élémentaires du système Coq couplées à des lemmes intermédiaires.

Nous comparons l’application de deux tactiques classiques du systèmes Coq appliquant des
substitutions en cas d’égalité dans un ensemble d’hypothèses grâce au profiler Ltac dans la Table



90 II.1. Formalisation de « petits » modèles finis en géométrie projective

II.1.19. Cet exemple de retour du profiler en remplaçant la tactique intuition par la commande
subst montre qu’il est possible d’obtenir le même résultat en divisant le temps global d’exécu-
tion par un facteur 50. Ce résultat s’explique simplement par le fait que la tactique intuition
possède bien plus de manières de clôturer un but courant. Le profiler Ltac devient rapidement un
outil incontournable pour mesurer le temps d’exécution moyen des tactiques qui sont élaborées
tout en estimant l’impact que peut avoir un simple changement dans le design d’une tactique
sur les performances globales.

(* Tacticque intuition *) local total calls max
--------------------------------------------------------------------
-case_clear_1 ------------------------- X% 100.0% 1 3.120s
--<Coq.Init.Tauto.with_uniform_flags> - X% 99.5% 7 0.456s
--t_tauto_intuit ---------------------- X% 99.5% 7 0.456s

(* Tacticque subst *) local total calls max
--------------------------------------------------------------------
-case_clear_2 -------------------------- X% 100.0% 1 0.060s
--subst ------------------------------- X% 40.0% 7 0.012s

Table II.1.19 – Exemple de retour du profiler Ltac en appliquant deux tactiques sur le même
contexte.

Un autre aspect non négligeable à considérer au sein des preuves est le changement de
contexte. Par défaut, le système refuse de passer au but courant suivant tant que ce dernier
n’est pas prouvé. On a observé qu’il est bénéfique d’élaguer l’arbre de preuve le plus tôt possible
et d’éliminer rapidement certains buts triviaux. Dans cette optique, l’utilisateur peut tester une
séquence de tactiques sur tous les buts grâce au mot clé try. Lorsque cette séquence échoue, le
système change de contexte et essaye d’appliquer cette dernière sur le but suivant. Le système
doit revenir tôt ou tard dans le contexte du premier but qui n’a pas encore été prouvé. Pour
éliminer ce côut de transition entre les différents buts, il est avantageux de résoudre le but dès la
première fois où il est rencontré grâce aux mots clés first et solve. La tactique solve indique au
système que si l’arrangement de tactiques passé en paramètre ne résout pas le but, le système ne
doit pas continuer l’exécution de la preuve. Le mot clé first quant à lui permet d’indiquer que
le système doit appliquer chacune des séquences de tactiques entre crochets dans l’ordre séparés
par des pipes jusqu’à la résolution du but. Si aucune de ces combinaisons n’est concluante, le
système s’arrête et renvoie une erreur.

En complément, nous travaillons avec la tactique abstract qui permet de prouver un but
comme si celui-ci était un lemme séparé afin de diminuer la taille de la preuve courante en
mémoire. Nous simplifions ainsi la structure globale du terme de preuve qui peut devenir trop
conséquente et nous facilitons la vérification de ce dernier à la fin de la preuve. Finalement, pour
paralléliser la preuve dès que l’occupation mémoire le permet, nous dupliquons les instances de
Coq grâce au mot clé par en parallélisant la résolution des buts.

3.2 Automatisation de la preuve de Desargues

Il est bien connu que les plans projectifs pg(2, q) sont désarguésiens étant donné leur construc-
tion via un corps. Nous prouvons que ces plans finis d’ordre 2 et 3 sont désarguésiens avec les
deux approches de la géométrie.



3. Vérification formelle des modèles et preuve de la propriété de Desargues 91

Pour automatiser et prouver la propriété de Desargues dans des modèles finis, toutes les
techniques présentées dans les sous-sections précédentes deviennent encore plus essentielles. La
propriété de Desargues (voir l’Annexe C) s’exprime à partir de 10 points et 10 droites. Les trois
derniers points et la dernière droite sont construits automatiquement à partir du reste de la
configuration. Une analyse de cas dans le plan projectif pg(2, 3) sur les 7 premiers points produit
62 748 517 configurations à traiter sans élagage. L’approche s’appuyant sur les rangs est bien plus
efficace dans ce cadre puisqu’elle permet d’éliminer directement les quantificateurs universels sur
les droites sans devoir extraire les différentes droites en s’aidant de l’information sur les points.
La preuve de cette propriété est néanmoins possible à condition de correctement élaguer l’arbre
de preuve, de méthodiquement découper la preuve et d’exploiter la géométrie.

Pour simplifier la démonstration de la propriété de Desargues, nous tirons largement profit
des nombreuses symétries du problème mais aussi des conditions de non-dégénérescence pour
éliminer les cas non désirables afin de limiter l’explosion combinatoire.

En premier lieu, nous nous servons de la symétrie du problème vis à vis du centre de pers-
pective. En fixant ce centre avec un des points du plan fini et en prouvant que la permutation
des points dans le modèle fini reste encore un modèle, il est possible de vérifier la propriété
de Desargues peu importe le centre de perspective qui a été choisi. Nous démontrons ainsi que
la propriété de Desargues est vraie avec le centre fixé sur un premier point du modèle. Nous
éliminons de cette manière un quantificateur universel de l’analyse de cas. Les autres points du
modèle comme centre de perspective sont ensuite prouvés grâce aux différentes permutations du
modèle en utilisant un foncteur échangeant les différents points.

La deuxième symétrie dont nous nous aidons pour décomposer le problème provient de la
permutation des droites qui sont concourantes au niveau du centre de perspective. Soit A le
centre de perspective ; il est possible de spécifier dès l’énoncé des droites distinctes contenant ce
point A et permettant de former les deux triangles qui sont en perspectives. Ces droites ainsi
contraintes deviennent des hypothèses très restrictives avec un pouvoir d’élagage conséquent. Par
la suite, nous montrons que la permutation de ces droites satisfait toujours la propriété.

Finalement, il est important de bien considérer les conditions de non-dégénérescences de
notre énoncé géométrique. Dans le cas de la propriété de Desargues, il est possible de traiter
une propriété plus générale où les deux triangles peuvent partager jusqu’à deux points. Cette
propriété aboutit à une contradiction dans la spécification de la droite αβγ (plusieurs droites
sont confondues). En restreignant la propriété au cas où les triangles ont au maximum un point
en commun, nous éliminons approximativement un tiers des buts à prouver à chaque niveau de
la démonstration.

Toutes ces optimisations en incluant les techniques décrites précédemment permettent de
rendre les preuves traitables tout en améliorant nettement les performances. La première preuve
globale de Desargues qui a été conçue pour le modèle pg(2, 2) nécessitait 11 minutes pour être
vérifier ; à la fin de cette thèse en utilisant la même configuration une telle preuve n’a besoin que
de 30 secondes.

3.3 Résultats

Nous avons vérifié que des espaces finis pg(n, q) de dimension 2 et 3 sont réellement des
modèles de la géométrie projective et nous prouvons que ces modèles sont aussi désarguésiens.
Ces résultats sont obtenus en utilisant les deux formalisations de la géométrie que nous com-
parons : la géométrie synthétique et l’approche par les rangs. Globalement, ce développement
représente 440 000 lignes de spécifications engendrés dans la majorité automatiquement et 1 500



92 II.1. Formalisation de « petits » modèles finis en géométrie projective

lignes de preuves pour formaliser les 7 modèles 5. Tous les résultats sont résumés dans la Table
II.1.20. Pour chaque modèle, nous présentons le nombre de lignes de spécifications et de pas de
preuves ainsi que le temps d’exécution requis pour compiler ce dernier sur une machine standard.

Formalisation de la géométrie d’incidence projective
avec la géométrie synthétique en utilisant les rangs
Spéc. Preuve T. E. Spéc. Preuve T. E.

pg(2, 2) est un modèle 108 44 2s 110 42 16s
pg(2, 3) est un modèle 150 44 7s 297 77 2055s
pg(2, 4) est un modèle 206 44 35s
pg(2, 5) est un modèle 276 44 90s
pg(2, 7) est un modèle 458 44 7337s E. C.
pg(2, 8) est un modèle E. C.
pg(3, 2) est un modèle 10490 192 1440s
pg(3, 3) est un modèle 420130 250 7623s

Desargues vérifié pour pg(2, 2) 188 205 37s 297 162 26s
Desargues vérifié pour pg(2, 3) E. C. 2089 386 10700s
Desargues vérifié pour pg(2, 4)

. . . E. C.
Desargues vérifié pour pg(3, 3)

Table II.1.20 – Tests de performance pour plusieurs preuves en géométrie finie réalisés sur notre
machine standard. E. C. signifiant « Explosion Combinatoire ».

Rappelons que ces modèles de la géométrie finie sont tous formalisés en suivant un patron
quasiment identique qui est adapté selon la dimension et l’ordre. Les propriétés qui sont prouvées
dans ce cadre suivent exactement la même décomposition et sont optimisées en suivant des
procédés identiques quelque soit la formalisation de la géométrie qui est employée.

L’analyse de ce tableau de résultats suggère que la géométrie synthétique est plus efficace que
la formalisation s’appuyant sur la notion de rang pour prouver que les espaces finis pg(n, q) de
dimension 2 et 3 sont des modèles. Ce résultat s’explique facilement par le critère mentionné pré-
cédemment : « la formulation et choix de la théorie ». L’expression de l’axiome Point-Existence
en géométrie d’incidence plane ne nécessite que deux quantificateurs universels en géométrie syn-
thétique alors qu’il en faut quatre avec de la théorie des matroïdes (voir l’Annexe A et l’Annexe
B). Cette différence en nombre de quantificateurs dans l’expression de la propriété fait augmenter
significativement la combinatoire lors de la preuve avec les rangs dans les différents modèles pg(n,
q) jusqu’à entraîner une explosion combinatoire dès le modèle pg(2, 4). Cette différence se répète
à nouveau pour l’axiome Upper-Dimension en géométrie d’incidence spatiale (3 quantificateurs
universels contre 6) favorisant à nouveau l’utilisation de la géométrie synthétique et provoquant
dès pg(3, 2) une explosion combinatoire avec les rangs. Si nous éliminions des modèles en fonction
de la dimension, la preuve des deux propriétés Point-Existence et Upper-Dimension, nous obser-
verions dans le tableau de résultat un léger avantage dans les temps d’exécution pour l’approche
matroïdale.

Pour la preuve de la propriété de Desargues, la Table II.1.20 montre que les rangs permettent

5. Pour tester les fonctionnalités de l’extension ssreflect [GM10,MT17] (calcul booléen), nous prouvons aussi
que les espaces finis de dimension 3 sont également des modèles de la géométrie d’incidence projective en utilisant
cette bibliothèque. Nous choississons de ne pas détailler les parties techniques issues de ce développement dans ce
manuscrit. Notons que l’architecture globale de notre bibliothèque visible dans l’Annexe G inclut néanmoins ces
résultats.



3. Vérification formelle des modèles et preuve de la propriété de Desargues 93

d’obtenir un meilleur résultat que la géométrie synthétique. Cette propriété ne nécessite que
10 points avec la théorie des matroïdes pour être exprimé contre 10 points et 10 droites en
géométrie classique. Même si les 10 droites peuvent être éliminées de l’analyse de cas en utilisant
une fonction déterminant la droite à partir des points, la preuve est plus difficile à établir. En
utilisant les symétries du problème et les conditions de non-dégénérescence, nous prouvons que
la propriété de Desargues est vraie pour les modèles d’ordre 2 et d’ordre 3 (uniquement avec les
rangs). L’explosion combinatoire du nombre de cas à traiter survient très vite dans les deux cas.
Nous ne traitons pas la démonstration de la propriété de Desargues en dimension 3 sachant que
la preuve générale est disponible dans [MNS09,MNS12].

Nous observons à travers ces résultats que les deux approches sont complémentaires en consi-
dérant uniquement l’objectif de la prouvabilité. La théorie la plus performante est celle qui
nécessite le moins de quantificateurs pour exprimer le même énoncé géométrique. Pour les pro-
priétés simples avec très peu de points, l’approche synthétique est à son avantage puisqu’elle peut
caractériser une droite ou un plan sans passer par la décomposition en points. Lorsque l’énoncé
devient plus complexe et que de nombreux points sont impliqués, l’approche matroïdale semble
plus prometteuse. Il est possible de se dispenser de la notion de droite et de plan étant donné
que les différents ensembles de points du matroïde permettent de prendre en compte ces deux
notions.

3.4 Comparaison avec les prouveurs SMT

Les prouveurs « Satisfiability Modulo Theories » (SMT) [Fon18,MMZ+01,NOT06] sont des
outils permettant de prouver automatiquement des théorèmes exprimés dans un sous-ensemble
très expressif de la logique du premier ordre. Ces prouveurs sont des logiciels pointus qui sont en
constante mutation pour s’adapter aux nouvelles procédures de décision et aux nouvelles théo-
ries. L’évolution très rapide de ces systèmes fait qu’il est dur de vérifier leur bon fonctionnement
entraînant des problèmes de confiance dans les décisions qui sont émises. Pour pallier cet incon-
vénient, de nombreux prouveurs SMT exportent, en plus de la décision, une trace (un témoin
de preuve) qui peut êtré vérifiée par un outil externe [AFG+11b,AFG+11a,BP11,FMM+06]. Ce
témoin de preuve peut être analysé pour certifier que la décision du prouveur est correcte mais
cette preuve est bien souvent incompréhensible et complètement illisible pour un être humain.

Les assistants de preuves sont généralement conçus à partir d’un petit noyau soigneusement
élaboré, uniquement composé de quelques centaines de lignes de code qui sont considérées comme
sûres. Toute preuve construite dans un de ces assistants interactifs doit être certifiée grâce à ce
ce noyau. Pour augmenter grandement la confiance dans les verdicts obtenus par les solveurs
SMT, nous pouvons donc nous appuyer sur la vérification des traces construites par ces derniers
dans les assistants de preuves. Un prouveur automatique externe qui ne fonctionne pas correcte-
ment ou un conduit buggué entre l’assistant de preuves interactif et le solveur a seulement pour
conséquence dans le pire des scénarios de produire un échec dans la vérification du certificat. Il
est donc impossible de certifier un théorème faux de cette manière. Les deux travaux pionniers
concrétisant cette approche pour les solveurs SMT sont les conduits entre HOL-Light et CVC
Lite [Har96,MBG06] et haRVey (prédécesseur de veriT [BdODF09]) et Isabelle [NPW02]. Ce-
pendant, l’intégration de ces outils de déductions automatiques en arrière-plan des assistants de
preuves nécessite des ajustements importants pour qu’ils puissent coopérer : taille et format des
traces, compromis entre trace complète et certificat compressé, gestion des différences théoriques
comme la logique sous-jacente ou encore l’interface à déployer entre les deux outils. Des publi-
cations plus récentes s’intéressent à l’incorporation d’un ensemble de prouveurs automatiques et
solveurs SMT ainsi que du conduit dans les assistants de preuves. Nous pouvons citer non ex-



94 II.1. Formalisation de « petits » modèles finis en géométrie projective

haustivement pour Coq les plugins SMTCoq [EMT+17] et CoqHammer 6 [CK18] et pour Isabelle
l’outil Sledgehammer [BP11] qui est directement intégré.

Afin de mieux évaluer nos tests de performances précédents, nous étudions la capacité de
certains prouveurs SAT/SMT de la librairie tptp [Sut10] à établir que ces géométries finies sont
des modèles de la géométrie d’incidence projective et que ces espaces finis respectent la propriété
de Desargues en utilisant les systèmes d’axiomes de la géométrie synthétique. Cette librairie
permet de tester la résolution d’une conjecture à partir d’axiomes avec 75 prouveurs en utilisant
un langage commun s’adaptant au format de chacun des prouveurs. Nous résumons dans la table
II.1.21 les décisions globales de l’ensemble des prouveurs sur les deux conjectures étudiées : mo-
dèles de la géométrie d’incidence projective et la propriété de Desargues.

Succès Échec Inapproprié
pg(2, 2) est un modèle 24 32 19
pg(2, 3) est un modèle 23 33 19
pg(2, 4) est un modèle 21 35 19
pg(2, 5) est un modèle 21 35 19

Desargues vérifié pour pg(2, 2) 6 50 19
Desargues vérifié pour pg(2, 3) 2 54 19
Desargues vérifié pour pg(2, 4) 3 53 19
Desargues vérifié pour pg(2, 5) 2 54 19

Table II.1.21 – Résumé des décisions de l’ensemble des prouveurs SAT/SMT de la librairie tptp
pour deux conjectures géométriques.

Ces deux conjectures sont étudiées basiquement en suivant le même principe que pour les
espaces finis. Nous énonçons d’abord les différents espaces finis par extension en décrivant l’en-
semble des points, l’ensemble des droites ainsi que toutes les incidences de point à une droite.
Puis nous vérifions que ces descriptions permettent de valider chacune des conjectures.

Les prouveurs classifiés dans la catégorie « Inapproprié » ne disposent pas d’un langage conçu
pour analyser ce type de conjecture. Tous les autres prouveurs aboutissent soit à un succès dans
le temps imparti (15min), soit à un échec parce que le système dépasse le temps ou n’est pas ca-
pable de trouver une solution pour le problème traité. Plus de 50% des prouveurs ne permettent
pas de démontrer la conjecture recherchée alors qu’ils sont en mesure d’étudier sa prouvabilité.
On peut observer que la vérification de la propriété de Desargues est quelque chose de complexe
qui est accessible uniquement à quelques prouveurs SMT (Paradox [CS03], Vampire [KV13] et
Z3 [dMB08, dMKA+15]) à partir de l’ordre 3. Notons que notre expertise dans l’utilisation de
la librairie tptp est relativement limitée et qu’avec de meilleures connaissances de chaque solveur
SMT il est sans doute possible d’obtenir des résultats bien plus satisfaisants. En considérant
uniquement les prouveurs dont la décision est un succès pour la conjecture concernée, nous syn-
thétisons dans la Table II.1.22 le temps moyen, le temps médian et le meilleur temps obtenus.
Précisons que le meilleur temps d’exécution lors de la vérification de la propriété de Desargues
dans le modèle pg(2, 3) est un mystère sachant que la méthode pour formuler le plan fini reste
strictement identique.

6. Le plugin CoqHammer est un outil prometteur très récent qui n’a pas pu être manipulé dans le cadre de
nos travaux sur les géométries finies.



3. Vérification formelle des modèles et preuve de la propriété de Desargues 95

Temps moyen Temps médian Meilleur temps
pg(2, 2) est un modèle 11.75s 0.03s 0.01s
pg(2, 3) est un modèle 14.73s 0.12s 0.01s
pg(2, 4) est un modèle 22.31s 0.15s 0.01s
pg(2, 5) est un modèle 41.11s 0.69s 0.01s

Desargues vérifié pour pg(2, 2) 237.76s 88.7s 0.33s
Desargues vérifié pour pg(2, 3) 130.725s 130.725s 36.14s
Desargues vérifié pour pg(2, 4) 50.14s 3.79s 2.71s
Desargues vérifié pour pg(2, 5) 286.965s 279.325s 17.95s

Table II.1.22 – Tests de performance pour les solveurs SAT/SMT dont la décision est un succès
pour deux conjectures géométriques.

Les résultats montrent que les solveurs SAT/SMT sont plus efficaces pour établir que les
plans finis sont des modèles de la géométrie d’incidence projective que notre approche à travers
l’assistant de preuve Coq. Bien que quelques prouveurs démontrent ce résultat instantanément
jusqu’au plan fini d’ordre 5, on peut constater qu’en moyenne les prouveurs ont un ordre de
grandeur similaire à l’assistant de preuve Coq à quelques secondes près.

Pour la propriété de Desargues, les quelques prouveurs qui réussissent dans le temps imparti
ont besoin de plus d’une centaine de secondes en moyenne pour vérifier cette dernière. Les
moyennes et les médianes deviennent peu représentatives à partir du plan d’ordre 3 puisqu’il n’y
a que deux prouveurs capables de démontrer cette propriété. Le prouveur Paradox [CS03] est le
plus performant dans la librairie tptp, il a besoin uniquement de quelques secondes pour valider
un résultat complexe nécessitant plusieurs heures en Coq.

Nous comparons les performances des solveurs SMT en décomposant la démonstration de la
propriété de Desargues grâce aux symétries décrites précédemment. De cette manière le système
voit les symétries comme des conjectures intermédiaires qui peuvent être utilisées comme de
nouvelles propriétés une fois qu’elles sont démontrées. Cette division bien qu’efficace au sein de
l’assistant de preuve Coq n’est pas très efficiente dans le cas des solveurs SMT. Ces derniers
ne sont pas capables de manipuler des lemmes intermédiaires démontrés aussi complexes pour
prouver la conjecture suivante. Globalement, pour tous les prouveurs SMT cette décomposition
ne fait que rallonger le temps d’exécution pour obtenir une décision.

Sans aucune surprise, les solveurs SMT sont des outils bien plus efficaces pour effectuer des
preuves en géométrie finie, lorsque ces derniers sont capables de résoudre notre classe de pro-
blème. L’automatisation complète de preuves de formules n’est cependant pas toujours possible
dans tous les cas. L’expertise humaine est bien souvent nécessaire pour pouvoir découper une
démonstration. L’idée consiste alors à associer la puissance des solveurs SMT aux assistants de
preuves. Nous discutons cette perspective dans la conclusion de partie qui suit.





Conclusion : partie II

Bilan

Dans cette partie, nous avons présenté une étude de cas sur l’aide à la preuve au sein de
l’assistant de preuve Coq dans le contexte spécifique des géométries finies. Nous commençons
par définir le cadre théorique permettant de construire les espaces finis en fonction de l’ordre et
de la dimension. Nous nous intéressons ensuite à la construction automatique de modèles de la
géométrie finie que nous définissons par extension en énumérant l’ensemble de tous les objets qui
les composent : l’ensemble des points, l’ensemble des droites, l’ensemble des plans, l’ensemble des
incidences, etc. Une fois ces modèles engendrés et importés dans l’assistant de preuve Coq, nous
étudions l’automatisation des démonstrations de ces configurations géométriques spécifiques.

En utilisant deux formalisations équivalentes de la géométrie présentées dans la Partie I, nous
prouvons que ces espaces finis sont réellement des modèles de la géométrie d’incidence projective
et que ces derniers vérifient de plus la propriété de Desargues. Ces démonstrations sont explorées
à travers : les plans finis pg(2, 2), pg(2, 3), pg(2, 4), pg(2, 5) et pg(2, 7) ; mais aussi pg(3, 2) et
pg(3, 3). À mesure que les espaces finis grandissent, la complexité augmente. Nous devons affiner
notre méthodologie d’aide à la preuve pour maîtriser du mieux possible le temps d’exécution et
l’utilisation de la mémoire.

Pour cela, nous identifions trois facteurs majeurs : le nombre de buts à traiter, le nombre d’hy-
pothèses dans le contexte et l’imbrication des tactiques choisies. Dans le cas des géométries finies,
le nombre d’hypothèses que l’on utilise est un facteur qui ne peut pas être réellement contrôlé.
En effet, les modèles sont décrits par extension dans leur intégralité, toutes les informations
énumérées permettent de les caractériser et sont utiles lors des démonstrations. C’est pourquoi,
l’ensemble des critères que nous présentons dans ce chapitre pour limiter la complexité afin de
rendre les preuves praticables sont répartis sur la gestion des deux autres facteurs. Le premier
groupe d’optimisations s’intéresse à l’élagage de l’arbre de preuve en utilisant les hypothèses les
plus restrictives tout en considérant attentivement la formulation de l’énoncé géométrique. La
deuxième catégorie quant à elle se concentre sur le génie logiciel orienté Coq avec l’élaboration de
tactiques efficaces utilisant les preuves comme des programmes. Grâce à toutes ces optimisations,
il est possible d’envisager le traitement de preuves conséquentes comportant des millions de buts
et contenant plusieurs centaines d’hypothèses comme la propriété de Desargues. Mentionnons que
les principes introduits dans cette partie sont suffisamment généraux pour être utilisés dans un
autre cadre que les géométries finies. Tout le génie logiciel orienté Coq est notamment largement
réemployé dans la Partie III.

Un autre aspect qui est analysé ici est la comparaison des deux formalisations lors de l’auto-
matisation des preuves. Uniquement en termes de performances, les deux approches sont complé-
mentaires. Nous avons pu voir à travers le critère du choix de la théorie qu’un énoncé géométrique
peut être spécifié à partir de plus ou moins de quantificateurs. L’approche géométrique utilisant
le moins de quantificateurs pour décrire une configuration géométrique à prouver est de manière

97



98 Conclusion partie II

générale plus efficace lorsqu’il s’agit d’automatiser la démonstration sous-jacente. La géométrie
synthétique est donc à son avantage dans les petits énoncés quand elle peut introduire direc-
tement une droite ou un plan au lieu de définir plusieurs points. Ce bénéfice s’inverse dans les
énoncés de grande taille où la définition des points englobent déjà chacun de ces objets et que
la géométrie d’incidence projective classique doit définir chacune des intersections entre les dif-
férents objets pour pouvoir construire le problème géométrique. Dans ce cas, il est préférable de
tirer profit de la formalisation sur les rangs.

Les deux formalisations de la géométrie d’incidence projective sont équivalentes du point de
vue de la mise en place des procédés d’automatisation et leur maintien lors du passage à la di-
mension supérieure ou l’ordre suivant. Toutes les tactiques conçues sont facilement réemployées
dans chacun des espaces finis étudiés et ne nécessitent presqu’aucun ajustement. Nous estimons
cependant qu’en considérant un cadre plus général, l’approche matroïdale semble plus promet-
teuse. La plupart des tactiques développées pour les géométries finies en utilisant les rangs sont
plus générales dans leur possibilité de réutilisation et moins adaptées aux géométries finies dans
leur design. Pour ce qui est de la lisibilité des preuves, les deux approches permettent d’obtenir
des démonstrations très courtes traitant tous les buts au prix d’une génération automatique des
modèles, des différentes fonctions d’ordre et d’existence de témoin.

Les performances de l’assistant de preuve Coq sont par la suite évaluées à travers une petite
comparaison avec les solveurs SAT/SMT disponibles dans la librairie tptp [Sut10]. Les bench-
marks obtenus pour ces prouveurs automatiques sont sans surprise meilleurs que les résultats de
notre assistant de preuve interactif. Cependant sur les 75 solveurs mis à disposition, très peu sont
capables de prouver la propriété de Desargues ; parmi ces derniers uniquement deux solveurs se
distinguent (Paradox [CS03] et Vampire [KV13]) en prouvant la propriété en quelques secondes.
Ce temps d’exécution doit être néanmoins pondéré par le fait qu’il est encore nécessaire de valider
la décision en analysant la trace qui est éventuellement produite par le solveur.

Perspectives

Une première piste à poursuivre naturellement est l’analyse du temps de vérification des
traces produites par les solveurs SMT dans les assistants de preuves qui n’est pas considéré ici.
Cependant, cette tâche n’est pas triviale puisqu’à notre connaissance, les deux solveurs prin-
cipalement concernés lors de la démonstration de la propriété de Desargues n’ont pas encore
été combinés à l’assistant de preuve Coq. Nous envisageons d’intégrer le plugin SMTCoq pour
étudier les traces qui sont construites lors des démonstrations que les modèles finis sont bien des
modèles de la géométrie d’incidence projective. Une autre solution plus récente à considérer est
l’incorporation du plugin CoqHammer.

Parallèlement à cette intégration, la modélisation de ces espaces finis dans l’assistant de
preuve Isabelle combiné à l’apport de l’outil Sledgehammer permettrait d’inclure le solveur Vam-
pire. Nous pourrions ainsi parfaitement évaluer la validation du certificat produit par ce prouveur
automatique en démontrant la propriété de Desargues. En complément, le développement de ces
modèles dans Isabelle compléterait notre étude de cas en apportant une comparaison à tous les
niveaux entre les deux assistants de preuves : évaluation des facteurs et des critères, différence
de formalisation, analyse des benchmarks obtenus.

Toutes les optimisations réalisées uniquement à l’aide de l’assistant de preuve Coq n’ont pas
permis d’approcher suffisamment les nombreux problèmes ouverts largement étudiés en géomé-
trie finie. Avec les solveurs SMT qui deviennent des outils puissants et incontournables, il est
possible d’envisager la formalisation des plans finis d’ordre 9 de Hugues & Hall [Hal43, RK70]
qui sont non désarguésiens. Une autre perspective intéressante est la preuve de non existence
d’un plan fini pg(2, 6) et pg(2, 10) [Bos38,LTS89]. Par ailleurs, nous pensons qu’il est possible de



Conclusion partie II 99

simplifier la description par extension de nos modèles en reconstruisant l’information manquante
à partir de l’approche par “spreads & packings” [PW98]. Sans rentrer dans les détails, cette so-
lution alternative permet d’étudier le partionnement de l’ensemble des points sur l’ensemble de
droites disjointes.

La piste que nous privilégions en premier lieu et que nous décrivons dans la Partie III de ce
manuscrit est l’automatisation des démonstrations en géométrie d’incidence dans un cadre plus
général que la géométrie finie. Dans ce but, nous retirons la contrainte qui consiste à décrire la
configuration géométrique par extension en énumérant chacun des ensembles dès sa construc-
tion. De cette manière, le système ne se contente pas de manipuler les informations qui sont
directement à disposition. Ce dernier doit être capable de déduire de nouvelles informations dans
un environnement qui n’est pas complètement défini en croisant les différentes hypothèses. Nous
réintégrons ainsi la clôture des hypothèses présentée dans la Partie I. Pour limiter les compli-
cations supplémentaires qui sont engendrées par l’ajout de la phase de déductions au système,
nous nous inspirons du conduit entre solveur SMT et assistant de preuve introduit peu avant.
Nous concevons un prouveur en langage C [KRB84] dont la tâche est de produire un certificat
contenant le cheminement de la preuve. Ce certificat est ensuite exporté en Gallina pour être
vérifié et validé par l’assistant de preuve Coq. Nous détaillons le fonctionnement complet de ce
prouveur généralisé s’appuyant sur l’approche matroïdale dans la Partie III qui suit.





Troisième partie

Vers un prouveur généralisé de
configuration géométrique d’incidence

101





CHAPITRE III.1

Pipeline du prouveur de configuration géométrique d’incidence

“The reward for being a good problem solver is to be heaped with more and more difficult
problems to solve.“

R. Buckminster Fuller (1895–1983)

103



104 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Résumé

Après avoir étudié les performances de l’assistant de preuve Coq pour formaliser des démons-
trations dans ces géométries finies définies in extenso, nous nous intéressons à l’automatisation
des preuves en géométrie d’incidence projective dans un cadre plus général. Nous présentons dans
ce chapitre un prouveur généralisé permettant de résoudre des problèmes d’incidence en géomé-
trie affine et projective. Cet outil d’aide à la preuve permet de suggérer des pistes, de mécaniser
et de vérifier automatiquement les raisonnements les plus simples de notre théorie laissant comme
tâche à l’utilisateur de guider la preuve en créant de nouveaux points dans l’énoncé géométrique
grâce aux axiomes incluant des quantificateurs existentiels.

Nous débutons par la construction d’un prototype pour valider l’automatisation du raison-
nement matroïdal sur des théorèmes simples de la géométrie d’incidence (section 1 et 2). Pour
permettre de démontrer des théorèmes géométriques plus ardus, nous évaluons par la suite les
performances en temps et en mémoire de ce prouveur afin d’optimiser les différentes étapes du
pipeline (section 3). Parmi ces optimisations, nous détaillons en particulier une heuristique de
coloration améliorant significativement les performances lors de la saturation des hypothèses.
Finalement, nous exposons un mécanisme automatique de scission des preuves permettant de
considérer des preuves conséquentes (section 4).

Contenu
1 Principe du prouveur par saturation . . . . . . . . . . . . . . . . . . . . . . . . 106

1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.2 Création de points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.3 Règles de réécriture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.4 Terminaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.5 Correction et validation . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.6 Extension des règles avec la propriété de Pappus . . . . . . . . . . . . 110

2 Implantation du prouveur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.1 Initialisation de l’algorithme . . . . . . . . . . . . . . . . . . . . . . . . 110
2.2 Boucle de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.3 Mémorisation des déductions . . . . . . . . . . . . . . . . . . . . . . . 112
2.4 Fenêtre des derniers noeuds calculés . . . . . . . . . . . . . . . . . . . 116
2.5 Reconstruction de la preuve et procédé de marquage . . . . . . . . . . 119
2.6 Validation par l’assistant de preuve Coq . . . . . . . . . . . . . . . . . 121

3 Mesure de performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.1 Complexité en temps du prouveur . . . . . . . . . . . . . . . . . . . . . 122
3.2 Complexité en mémoire du prouveur . . . . . . . . . . . . . . . . . . . 122
3.3 Complexité en temps de la vérification du certificat . . . . . . . . . . . 123
3.4 Complexité en mémoire de la vérification du certificat . . . . . . . . . 123
3.5 Conclusion sur les complexités . . . . . . . . . . . . . . . . . . . . . . . 124

4 Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.1 Parcours linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2 Ordre des règles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



105

4.3 Règle de Pappus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4 Heuristique de coloration . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5 Saturation par strate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.6 Notre solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



106 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Ce chapitre présente notre prouveur généralisé de problèmes géométriques d’incidence appli-
cable à la fois en géométrie affine et projective. Celui-ci permet d’engendrer automatiquement une
preuve à partir d’un énoncé géométrique que l’on vérifie grâce à l’assistant de preuve Coq. L’al-
gorithme sous-jacent résout l’énoncé en utilisant des règles de réécriture traduisant les axiomes
sur les matroïdes. Il permet de résoudre des configurations géométriques complexes tel que le
conjugué harmonique et le théorème de Dandelin-Gallucci.

L’étude de cas du chapitre précédent nous a permis de mettre en évidence que certaines
preuves géométriques d’incidence sont difficiles à vérifier. Les trois sources majeures de difficulté
sont le nombre de buts, la quantité d’hypothèses ainsi que le choix et l’imbrication des tactiques.
Pour effectuer la description d’un modèle en géométrie finie, il est nécessaire de décrire ce dernier
par extension en énumérant tous les ensembles d’objets.

Nous nous plaçons dans cette partie dans un cadre où le contexte doit être complété en ajou-
tant des points et des informations supplémentaires pour prouver des théorèmes géométriques.
Nous ne disposons pas cette fois-ci de toute la description de la configuration géométrique dès
le commencement de la preuve. Notre prouveur devra ainsi d’abord déduire à partir des hypo-
thèses un maximum d’informations sur le problème géométrique pour le résoudre. Cette phase
de déduction est une complication supplémentaire trop importante pour envisager une résolu-
tion complète et performante directement dans l’assistant de preuve Coq. Nous séparons donc
les tâches du prouveur en deux parties : une phase de déduction que nous appelons saturation
de la configuration géométrique réalisée dans un langage externe de programmation (langage
C [KRB84]) et une phase de vérification de la solution produite par ce langage externe effectuée
par Coq.

Dans ce chapitre, nous présentons tout d’abord le fonctionnement global de notre prouveur
en décrivant la chaîne de traitements dans son ensemble. Nous détaillons ensuite la mise en place
d’un premier prototype permettant de prouver des théorèmes simples en géométrie d’incidence
projective. Puis, nous évaluons à travers une étude des performances, les optimisations nécessaires
pour prouver des théorèmes de plus en plus complexes que nous présentons avec un catalogue
dans le Chapitre III.2.

1 Principe du prouveur par saturation

Nous examinons en premier lieu le principe général de l’algorithme du prouveur avec son
pipeline et les règles utilisées jusqu’à saturation par ce dernier. Dans un second temps, nous
donnons une description intuitive du bon fonctionnement de l’algorithme en analysant sa termi-
naison et sa correction. Finalement, nous enrichissons notre prouveur en y introduisant la règle
de Pappus.

1.1 Présentation

L’algorithme général du prouveur commence par traduire l’énoncé géométrique et ses hypo-
thèses en un treillis d’inclusion avec des données incomplètes sur les rangs en termes de rang
minimum et rang maximum. Un algorithme de saturation est ensuite appliqué pour déterminer
toutes les déductions qu’il est possible d’effectuer dans ce treillis en manipulant uniquement les
propriétés de la Table I.2.6 (voir l’Annexe B). Pour cela, ces propriétés sont transformées en
règles capables de réduire les intervalles de rang possibles. Le prouveur applique ces règles tour
à tour sur tous les ensembles de points de la configuration géométrique pour préciser l’intervalle
entre le rang minimum et maximum : lorsqu’une nouvelle déduction a lieu, le système fait évoluer
le treillis. Le prouveur continue de calculer de nouveaux rangs jusqu’à l’obtention du résultat



1. Principe du prouveur par saturation 107

recherché ou lorsqu’il n’existe plus aucune déduction à effectuer dans ce contexte. Parallèlement,
le prouveur sauvegarde l’application de chacune de ces règles pour pouvoir reconstruire le chemi-
nement des déductions permettant d’établir le nouveau rang d’un ensemble de points. Ce chemin
est ensuite extrait sous la forme d’un certificat qui est vérifié et validé par l’assistant de preuve
Coq. Nous résumons ce processus de création de preuve dans le pipeline du prouveur de la Fi-
gure III.1.1. L’étape de saturation et la sauvegarde du cheminement sont traitées simultanément.

Figure III.1.1 – Pipeline du prouveur par saturation.

Nous faisons remarquer au lecteur que ce prouveur permet de traiter des configurations à
la fois en géométrie affine et en géométrie projective. Nous apportons à travers ce prouveur un
raisonnement qui est en incidence pure. En effet, en considérant uniquement les propriétés ma-
troïdales qui sont indépendantes des axiomes caractérisant l’aspect projectif de notre géométrie,
il est possible d’effectuer un ensemble de déductions qui restent vraies à la fois en géométrie
affine et projective.

1.2 Création de points

Déjà mentionné dans le Chapitre I.1, la contrainte forte de ce prouveur est le choix de ne
pas créer automatiquement de nouveaux objets et en particulier des points. Cette création ne
peut être effectuée sans aide ou guidage de la part d’un mathématicien ou d’une intelligence
artificielle [Sch19,WCA+14] afin d’éviter une explosion combinatoire ou une boucle infinie.

Il est néanmoins possible de réaliser une saturation sur une configuration géométrique conte-
nant plus d’objets que nécessaire. L’importance de certains de ces objets peut être mesurée en
utilisant un découpage géométrique. Si le système privé d’un point aboutit au résultat recherché,
le point en question n’est d’aucune utilité pour la résolution de ce théorème.

Cette hypothèse forte s’inscrit parfaitement dans le cadre d’une aide à la preuve avancée qui
n’est pas complètement automatique. Nous assistons l’utilisateur dans la tâche fastidieuse qu’est
la saturation des hypothèses. Ce même utilisateur garde le contrôle sur la création des objets et
le découpage de l’énoncé géométrique en lemmes.

1.3 Règles de réécriture

Comme nous l’avons identifié dès le Chapitre I.2, la majorité des déductions avec l’approche
combinatoire de la géométrie d’incidence est effectuée en utilisant les propriétés de la fonction
rk de la Table I.2.6 (voir l’Annexe B). Les autres axiomes I.2.9 permettent uniquement de créer
de nouveaux objets ou de borner la dimension. Nous éliminons ainsi des règles utilisées jusqu’à
saturation tous les axiomes contenant un quantificateur existentiel. Tous les points servant à
la résolution du problème doivent donc être créés au préalable pour pouvoir être utilisés dans
l’algorithme.

Nous établissons finalement 8 propriétés qui sont une transformation des inégalités présentes
dans les axiomes (A2R2-R3) (A3R2-R3) (4 propriétés sont définies pour chaque axiome). Ces



108 III.1. Pipeline du prouveur de configuration géométrique d’incidence

propriétés s’appuient sur ces deux axiomes pour faire de la réduction d’intervalles, c’est à dire
la maximisation du rang minimum et la minimisation du rang maximum. Soient X et Y deux
ensembles de points quelconques de l’ensemble de tous les points E, les ensembles X, Y , X ∪ Y
et X ∩ Y doivent vérifier les propriétés décrites dans la Table III.1.1 1.

(PS1) X ⊆ Y ⊆ E, rkMin(Y ) ≥ rkMin(X)

(PS2) Y ⊆ X ⊆ E, rkMin(X) ≥ rkMin(Y )

(PS3) X ⊆ Y ⊆ E, rkMax(X) ≤ rkMax(Y )

(PS4) Y ⊆ X ⊆ E, rkMax(Y ) ≤ rkMax(X)

(PS5) X, Y ⊆ E, rkMax(X ∪ Y ) ≤ rkMax(X) + rkMax(Y )− rkMin(X ∩ Y )

(PS6) X, Y ⊆ E, rkMax(X ∩ Y ) ≤ rkMax(X) + rkMax(Y )− rkMin(X ∪ Y )

(PS7) X, Y ⊆ E, rkMin(X) ≥ rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y )

(PS8) X, Y ⊆ E, rkMin(Y ) ≥ rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(X)

Table III.1.1 – Propriétés utilisées jusqu’à saturation.

À partir de ces propriétés, nous construisons des règles de réécriture appliquées par le prou-
veur permettant de mettre à jour l’intervalle des rangs des différents ensembles de points. Chaque
règle de réécriture de la Table III.1.2 est associée respectivement à la propriété du même numéro
de la Table III.1.1.

1. Les propriétés PS1 et PS2 ou PS3 et PS4 sont identiques lorsqu’on considère une quantification universelle
sur les variables X et Y



1. Principe du prouveur par saturation 109

(RS1) si X ⊆ Y et rkMin(X) > rkMin(Y ) alors rkMin(Y ) ← rkMin(X)

(RS2) si Y ⊆ X et rkMin(Y ) > rkMin(X) alors rkMin(X) ← rkMin(Y )

(RS3) si X ⊆ Y et rkMax(Y ) < rkMax(X) alors rkMax(X) ← rkMax(Y )

(RS4) si Y ⊆ X et rkMax(X) < rkMax(Y ) alors rkMax(Y ) ← rkMax(X)

(RS5) si rkMax(X) + rkMax(Y )− rkMin(X ∩ Y ) < rkMax(X ∪ Y )
alors rkMax(X ∪ Y ) ← (rkMax(X) + rkMax(Y )− rkMin(X ∩ Y ))

(RS6) si rkMax(X) + rkMax(Y )− rkMin(X ∪ Y ) < rkMax(X ∩ Y )
alors rkMax(X ∩ Y ) ← (rkMax(X) + rkMax(Y )− rkMin(X ∪ Y ))

(RS7) si rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ) > rkMin(X)
alors rkMin(X) ← (rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ))

(RS8) si rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(X) > rkMin(Y )
alors rkMin(Y ) ← (rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(X))

Table III.1.2 – Règles de réécriture.

La description de ces règles permet de construire une ébauche du fonctionnement de l’Algo-
rithme par saturation III.1.1 dont le but est de mettre à jour l’intervalle de rangs des différentes
parties X et Y .

Algorithme III.1.1 : Algorithme de saturation.
Entrée(s) : Ensemble des parties
Sortie(s) : Ensemble des parties mis à jour par les règles (RS1) à (RS8)

1 tant que on peut extraire deux parties X Y et appliquer une règle faire
2 Appliquer la règle sur X et Y
3 fin tant que

1.4 Terminaison

Lorsque l’on ne peut plus réduire l’intervalle de valeurs (entre le rang minimum et le rang
maximum) de chaque ensemble de points, la saturation est terminée et il ne reste dans ce cas
aucune déduction possible à réaliser permettant de faire avancer la résolution si le résultat recher-
ché n’a pas encore été trouvé. L’algorithme vient de détecter qu’aucune modification n’a eu lieu
sur les rangs minimum ou maximum lors du dernier parcours de toutes les paires d’ensembles, le
système est saturé et toutes les informations déductibles de ce contexte ont été calculées. L’algo-
rithme n’a plus qu’à reconstruire la liste des déductions sauvegardées qui ont été nécessaires pour
arriver au système saturé ou au résultat recherché. Finalement, l’assistant de preuve Coq vérifie
en un temps fini la liste des pas de preuves générés pour valider ou invalider la démonstration
extraite.

1.5 Correction et validation

Pour ajouter ou modifier les hypothèses, l’algorithme doit appliquer les règles de réécriture
dérivant immédiatement des axiomes sur les matroïdes. Si une règle modifie le rang minimum



110 III.1. Pipeline du prouveur de configuration géométrique d’incidence

ou maximum d’un ensemble de points, l’application de l’axiome correspondant est notée. Une
fois que toutes les déductions possibles ont été effectuées à partir de l’énoncé géométrique, l’al-
gorithme produit un code Gallina traduisant les règles de réécriture qui ont été appliquées. Ce
code est ensuite importé dans l’assistant de preuve Coq pour être vérifié et validé. Si l’énoncé
peut être prouvé en géométrie d’incidence et qu’il est correctement spécifié et complet, nous
obtenons une démonstration valide de l’énoncé géométrique. Si l’énoncé est correctement spécifié
mais incomplet pour finir la démonstration, nous obtenons une démonstration partielle conte-
nant toutes les déductions qu’il est possible de faire dans ce cadre. Si l’énoncé est incorrect,
l’algorithme aboutit à une incohérence lors des déductions (rkMin > rkMax pour un ensemble
de points) et se termine par un échec.

1.6 Extension des règles avec la propriété de Pappus

Ce cadre peut être spécialisé en considérant de nouveaux axiomes qui ne doivent pas contenir
de quantificateur existentiel. Dans la suite, pour étudier une plus grande variété de théorèmes
en géométrie d’incidence projective, nous incorporons la propriété de Pappus dans le prouveur.
Cet ajout permet aussi de mesurer l’évolution du prouveur en additionnant des propriétés géo-
métriques qui ne sont pas directement issues des propriétés matroïdales. Cette propriété est ainsi
traduite sous forme de règle et incluse dans la boucle des règles de réécriture à utiliser. Si une
configuration de Pappus modulo permutation est identifiée et que le résultat (colinéarité de 3
points d’intersection) n’a pas encore été trouvé, le prouveur indique que les points du résultat
sont alignés.

2 Implantation du prouveur

Cette section détaille la mise en place du prototype du prouveur en langage C avec les
différentes étapes de l’algorithme ainsi que les structures de données qui sont manipulées. Sachant
que la saturation possède une complexité exponentielle à la fois en temps et en espace, il n’est
pas envisageable de déployer ce prouveur directement dans l’assistant de preuve Coq.

2.1 Initialisation de l’algorithme

Au lancement de l’algorithme, la seule donnée en entrée dont nous disposons est la descrip-
tion faite à la main de la configuration géométrique avec le nombre de points impliqués. Nous
initialisons à partir de ce nombre le prouveur en construisant l’ensemble des parties de l’ensemble
de tous les points automatiquement. Chaque partie représente un sous-ensemble de points de la
configuration géométrique.

Nous encodons de manière automatique chacune de ces parties par un mot de 32 bits où les
28 premiers bits de poids faible représentent des points syntaxiquement distincts de la configu-
ration géométrique. Pour distinguer les points entre eux, nous utilisons habituellement l’ordre
lexicographique pour les 26 premiers bits en ajoutant 2 caractères supplémentaires ’a’ et ’b’ pour
représenter le 27ème et 28ème point. Si un point appartient à l’ensemble, le nième bit en partant
du bit de poids faible correspondant à la position de la lettre dans l’ordre lexicographique est
positionné à 1. Dans l’exemple III.1.2, les bits 1, 2, 5 et 8 sont initialisés à 1 pour représenter
dans l’ordre respectivement les points A, B, E, H. Les 4 derniers bits servent à représenter le
rang minimum (2 bits) et le rang maximum (2 bits) associé à cet ensemble de points. Le rang
peut donc prendre 4 valeurs différentes de 1 à 4 (nous excluons l’ensemble vide) codées par les
entiers de 0 à 3 comme illustré dans la Figure III.1.2.



2. Implantation du prouveur 111

Figure III.1.2 – Représentation mémoire d’un ensemble de points avec ses rangs.

Cette structure peut facilement être généralisée avec une architecture 64 bits grâce à la mo-
dularité du programme. Notons que la structure pour stocker un ensemble de points avec ses
rangs présentée ici n’est pas la plus efficiente possible au niveau de l’occupation mémoire pour
le cas général où l’on considère systématiquement l’ensemble de toutes les parties. Nous conser-
vons néanmoins cette structure pour des cas où l’on souhaite effectuer une saturation qui ne
s’applique qu’à un sous ensemble de l’ensemble des parties. De plus, la duplication de certaines
informations dans l’élaboration de ce prototype permet de plus facilement retrouver l’historique
de l’application des règles de réécriture lors de la saturation. Nous détaillons l’occupation mé-
moire de cette structure à la section 3 où nous montrons également que ça n’est pas une limitation.

Par défaut, nous bornons le rang de chacune des parties X de E avec un rang minimum de
1 (le rang 0 de l’ensemble vide étant exclu) et un rang maximum égal à min{|X|, 4} grâce aux
axiomes (A1R2-R3) et (A9R3). Il s’ensuit l’ajout des informations complémentaires sur les
rangs apportées par les hypothèses de l’énoncé géométrique qui sont le plus souvent des rangs
exacts. Dans la suite, nous notons (RS0) l’application de cette règle pour initialiser les rangs
d’un ensemble de points. De nouveaux résultats seront déduits pendant la saturation à partir de
ces hypothèses. Nous résumons dans l’Algorithme III.1.2 l’étape d’initialisation.

Algorithme III.1.2 : Étape d’initialisation.
Entrée(s) : Description manuelle de l’énoncé géométrique avec tous les points
Sortie(s) : Ensemble des parties initialisé avec l’application de la règle (RS0)

1 Allocation de l’ensemble des parties à partir de l’ensemble des points E de la
configuration géométrique

2 Initialisation des rangs de chacune des parties X de E
3 - Rang minimum initialisé à 1
4 - Rang maximum initialisé à min{|X|,4}
5 Mise à jour automatique des rangs concernés grâce aux hypothèses de l’énoncé
géométrique

2.2 Boucle de saturation

Après l’étape d’initialisation, l’étape de saturation consiste à appliquer les règles à l’ensemble
des parties. L’idée générale consiste à garder continuellement l’ensemble des parties dans un état
localement correct. Si l’une de ces règles est applicable, on met à jour le rang minimum ou maxi-
mum de la partie concernée. Prenons l’exemple suivant, soient X = {A,B} et Y = {A,B,C}
avec l’hypothèse que rkMin(X) ≥ 2. L’initialisation des ensembles dans le prouveur permet de
dire que rkMin(Y ) ≥ 1 et rkMax(Y ) ≤ 3. La propriété (PS1) n’est pas vérifiée par l’ensemble
X et Y puisque le rang minimum de Y est inférieur au rang minimum de X alors que X ⊆ Y .



112 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Le rang minimum de Y est alors mis à jour en indiquant qu’il est au moins supérieur à celui de
X en appliquant la règle (RS1).

Pour effectuer l’étape de saturation dans son intégralité, l’Algorithme III.1.3 doit appliquer
toutes les règles de réécriture sur toutes les paires d’ensembles de points possibles. Si une règle
est déclenchable, l’algorithme l’active et met à jour le minimum ou le maximum de la partie
concernée. Pour maintenir la correction de l’algorithme, nous modifions uniquement : un rang
minimum en l’augmentant (≥) et un rang maximum en le diminuant (≤) tout en vérifiant que
RkMin ≥ RkMax. Lorsque le rang minimum et maximum d’une des parties sont égaux, nous
avons trouvé le rang exact pour cette partie et il ne devrait plus être modifié. S’il advient que
le rang RkMin soit strictement supérieur au rang RkMax, alors nous sommes en présence d’un
contexte incohérent avec des hypothèses contradictoires et l’algorithme se termine par un échec.
Dans le cas contraire, l’algorithme continue d’appliquer les règles de réécriture sur les parties,
jusqu’à ce que plus aucune modification n’ait lieu lors du dernier parcours complet de toutes les
parties. Dès lors la saturation du problème est complète, toutes les déductions possibles à partir
des propriétés matroïdales dans ce contexte ont été effectuées.

Algorithme III.1.3 : Étape de saturation.
Entrée(s) : Ensemble des parties initialisé
Sortie(s) : Ensemble des parties mis à jour par les règles (RS1) à (RS8)

1 tant que modification au dernier passage faire
2 pour chaque partie X de E faire
3 pour chaque partie Y de E tel que X 6= Y faire
4 pour chaque règle de réécriture faire
5 si la règle est activable faire
6 Appliquer la règle correspondante réduisant l’intervalle des rangs
7 de la partie concernée en vérifiant que RkMin < RkMax
8 fin si
9 fin pour chaque

10 fin pour chaque
11 fin pour chaque
12 fin tant que

2.3 Mémorisation des déductions

En parallèle de l’étape de saturation, le solveur sauvegarde le cheminement des déductions
afin de pouvoir reconstruire ultérieurement une preuve. La production d’une preuve contenant
l’intégralité des déductions effectuées lors de la saturation n’est pas pertinente puisqu’une ma-
jorité d’entre elles ne sont pas utiles pour établir le ou les résultats recherchés. De plus, nous ne
connaissons pas à l’avance les déductions qui sont nécessaires pour conclure la preuve. Notons
que ce cheminement n’est pas unique, il dépend de l’ordre dans lequel les règles sont appliquées
sur les différentes parties et de l’ordre dans lequel les parties sont sélectionnées.

Dans ce but, un graphe orienté acyclique 2, appelé graphe de déductions (GD), est construit.
Chaque noeud de ce graphe représente une partie à laquelle on associe ses rangs courants RkMin
et RkMax ainsi que la règle qui a été appliquée pour construire ce noeud. Au départ, nous
fabriquons un noeud pour chacune des parties avec ses rangs initialisés grâce à l’application
de la règle (RS0). Lorsqu’une des règles fait évoluer l’un des rangs de l’ensemble des parties,

2. En théorie, ce graphe est un hypergraphe où les arêtes sont orientées et étiquetées par les règles de réécritures
appliquées.



2. Implantation du prouveur 113

un nouveau noeud est rajouté au graphe des déductions. Il contient la partie modifiée et ses
nouveaux rangs mis à jour en appliquant l’une des règles de la Table III.1.2. Pour rattacher ce
noeud au graphe des déductions, nous utilisons le contexte de la règle que l’on vient d’appliquer.
La partie est ainsi liée par des arcs indiquant la parenté à toutes les parties qui ont permis
d’établir la modification. De cette manière, il est possible de retracer l’évolution de l’intervalle
entre le rang minimum et maximum au sein d’une même partie en parcourant le noeud parent
possédant la même partie.

Pour illustrer la construction de ce graphe de déductions (GD), nous présentons dans la
Figure III.1.3, un exemple d’application de la règle (RS5). Pour des questions de lisibilité, le
numéro de la règle appliquée sera positionné systématiquement en dessous du noeud. Ce schéma
explique que, si l’intersection d’un plan et d’un point engendre un point alors l’union de ces
deux derniers génèrent au maximum un plan (le rkMax de l’union est décrémenté d’une unité).
Toutes les déductions suivantes opérées par le système prendront en considération ce résultat
si nécessaire. L’information contenue dans le noeud X ∪ Y représentant soit un plan, soit un
espace est désormais inutile. Une même partie peut apparaître au maximum quatre fois avant de
posséder son rang exact final. En effet, la convergence du rang minimum vers le rang maximum
est réalisée dans le pire des cas en 3 étapes. Il est alors possible d’estimer l’espace mémoire
maximum utilisé pour représenter l’intégralité du graphe de déductions.

Figure III.1.3 – Représentation d’une partie du GD avec l’application de la règle RS5.

Afin d’illustrer le fonctionnement complet de la construction du graphe de déductions, nous
présentons dans la Table III.1.3 et la Figure III.1.4 un exemple d’énoncé géométrique simplifié
que l’on souhaite saturer. Considérons un plan ABD où l’on construit sur la droite AD un point
distinct C. Dans ce cas, il est envisageable de déduire que l’espace engendré par les points ABC
est un plan.



114 III.1. Pipeline du prouveur de configuration géométrique d’incidence

(* Exemple de lemme à 4 points que l’on souhaite saturer *)
Lemma example : forall A B C D : Point,
rk(A, B, D) = 3 ->
rk(A, C, D) = 2 ->
rk(A, C) = 2 ->
rk(C, D) = 2 ->
rk(A, B, C) = 3.

Table III.1.3 – Exemple d’énoncé géométrique à saturer.

A

D

B

C

Figure III.1.4 – Illustration de la configuration géométrique de la Table III.1.3.

Avant de saturer cet énoncé géométrique, nous commençons par créer le graphe de déduc-
tions représentant la configuration géométrique initiale (Figure III.1.5). Étant donné que l’énoncé
possède 4 points, la couche initiale du graphe de déductions comporte 24− 1 noeuds où chaque
noeud représente une des parties avec son rang maximum à gauche et minimum à droite.

Figure III.1.5 – GD initialisé associé à la configuration géométrique de la Table III.1.3.

Puis, nous réalisons une première étape de saturation sur l’ensemble des parties en appli-
quant chacune des règles dans l’ordre fixe suivant : RS1 RS3 RS2 RS4 RS5 RS7 RS6 RS8. Nous
discutons l’intêret de choisir un ordre précis pour les règles dans la partie sur l’optimisation de
l’algorithme. Nous obtenons un graphe de déductions partiel (Figure III.1.6) représentant l’en-
semble des modifications effectuées à la fin du premier passage illustré par les noeuds en orange.
La numérotation en rouge juxtaposée indique l’ordre dans lequel les déductions ont été trouvées.



2. Implantation du prouveur 115

Figure III.1.6 – GD partiellement saturé associé à la configuration géométrique de la Table
III.1.3.

Finalement, l’algorithme relance un deuxième parcours pour compléter la saturation. Le
graphe de déductions (GD) résultant est complété par les noeuds de coloration rouge dans la
Figure III.1.7 et permet d’obtenir la conclusion recherchée à savoir que la partie ABC représente
strictement un plan. Nous laissons ici volontairement l’algorithme terminer la saturation en
trouvant une déduction supplémentaire résumée dans le noeud 11 sachant que le résultat a déjà
été trouvé précédemment. Dans cet exemple, le rang minimum et maximum de toutes les parties
après saturation sont égaux. Ce n’est pas toujours le cas, cela dépend fortement des contraintes
initiales de notre configuration géométrique. En effet, déterminer le rang exact d’une partie,
dépend de manière générale de la constriction du problème géométrique. Si le problème est sous-
contraint, le rang exact de chaque partie n’est pas déductible. Cependant si le problème est
bien-contraint ou sur-contraint, cela ne garantit pas que chaque rang exact peut être évalué.
Une partie peut ainsi prendre plusieurs rangs tout en satisfaisant l’ensemble des hypothèses de
l’énoncé géométrique, cette variation dans le rang d’un ensemble de point permet de considérer
tous les cas dégénérés.



116 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Figure III.1.7 – GD complètement saturé associé à la configuration géométrique de la Table
III.1.3.

Nous modifions l’Algorithme III.1.4 de saturation en conséquence pour intégrer la construc-
tion en parallèle du graphe de déductions (GD).

Algorithme III.1.4 : Étape de saturation et construction du GD.
Entrée(s) : GD initialisé
Sortie(s) : GD mis à jour

1 tant que modification au dernier passage faire
2 pour chaque partie X de E faire
3 pour chaque partie Y de E tel que X 6= Y faire
4 pour chaque règle de réécriture faire
5 si la règle est activable faire
6 Mise à jour du rang minimum ou maximum de la partie concernée
7 en construisant un noeud dans le GD mémorisant l’application de
8 la règle et lien avec des pointeurs vers les parties parentes
9 fin si

10 fin pour chaque
11 fin pour chaque
12 fin pour chaque
13 fin tant que

2.4 Fenêtre des derniers noeuds calculés

Pour maintenir à jour le graphe ou rajouter un noeud lors de l’étape de saturation, le temps
d’accès aux différentes parties est minimisé. En effet, étant donné que le graphe peut contenir
jusqu’à 2n×4 noeuds où n est le nombre de points, nous voulons éviter tous les parcours inutiles
de ce dernier. Pour cela, nous construisons une table séquentielle contenant un pointeur vers la
dernière modification de chacune des parties. Dans la Figure III.1.8, la fenêtre est représentée



2. Implantation du prouveur 117

par un tableau de pointeurs vers chaque noeud en violet. Lorsqu’on applique une règle, si l’en-
semble modifié représente l’union ou l’intersection ensembliste, il suffit de faire l’opération bits
à bits correspondante pour obtenir la partie résultante. Ensuite, l’algorithme extrait la valeur
numérique représentée par la chaîne de bits de la partie calculée. Cette valeur numérique permet
d’accéder en temps constant dans la table séquentielle au pointeur sur le noeud contenant la
dernière modification de la partie concernée. Ce tableau séquentiel de pointeurs représente une
fenêtre d’accès aux dernières modifications de toutes les parties de notre configuration géomé-
trique 3. Pour mieux comprendre cette structure, nous illustrons dans la Figure III.1.9 le chemin
d’accès à une partie. À chaque création de noeud, le pointeur correspondant dans la table est mo-
difié par un pointeur sur ce nouveau noeud. L’application de toutes les règles suivantes prendra
uniquement en compte les derniers noeuds qui ont été modifiés. Cet accès direct donne la possi-
bilité de récupérer les rangs de chacune des parties efficacement lors de d’application des règles
pendant la phase de saturation. De plus, cette structure permet d’établir aisément la relation
père-fils lors de la création d’un nouveau noeud. Précisons que cette fenêtre est initialisée par un
pointeur sur chacune des parties du graphe de déductions dans leur état initial (configuration
géométrique initial). L’Algorithme de saturation III.1.5 est modifié pour intégrer la mise à jour
de cette fenêtre des derniers noeuds calculés.

Figure III.1.8 – Fenêtre des derniers noeuds calculés associée à la configuration géométrique de
la Table III.1.3.

3. Cette table représente l’état courant de la fonction rang sur l’ensemble des parties et peut être vue comme
une table des piles



118 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Figure III.1.9 – Cheminement pour accéder aux dernières informations de la partie ABCE.

Algorithme III.1.5 : Étape de saturation, construction du GD et mise à jour de la fenêtre
Entrée(s) : GD initialisé, fenêtre des derniers noeuds calculés
Sortie(s) : GD mis à jour, fenêtre mise à jour

1 tant que modification au dernier passage faire
2 pour chaque partie X de E faire
3 pour chaque partie Y de E tel que X 6= Y faire
4 pour chaque règle de réécriture faire
5 si la règle est activable faire
6 Mise à jour du rang minimum ou maximum de la partie concernée
7 en construisant un noeud dans le GD mémorisant l’application de
8 la règle et lien avec des pointeurs vers les parties parentes
9 Mise à jour du pointeur associé à ce noeud dans la fenêtre

10 fin si
11 fin pour chaque
12 fin pour chaque
13 fin pour chaque
14 fin tant que



2. Implantation du prouveur 119

2.5 Reconstruction de la preuve et procédé de marquage

La troisième étape consiste à reconstruire la preuve du/des résultat(s) recherché(s) grâce au
graphe de déductions construit lors de l’étape précédente. Cette reconstruction est réalisée grâce
à un parcours récursif postfixe en partant du noeud dont on souhaite prouver le rang, ou le noeud
prouvant la contradiction de la figure initiale. Il est en effet nécessaire pour tout noeud du graphe
orienté acyclique de construire au préalable la preuve de chacun de ses fils avant de finalement
pouvoir générer le morceau de preuve qui correspond à l’application de la règle aboutissant à ce
noeud. Rappelons que ce graphe ne possède par définition aucun cycle, le parcours postfixe est
donc comparable à celui d’un arbre en considérant le graphe orienté inverse ou transposé. En
reprenant l’exemple de graphe de déductions précédent, nous illustrons dans la Figure III.1.10
le parcours postfixe de la reconstruction de la preuve que la partie ABC représente strictement
un plan. Les noeuds de coloration verte retrace le parcours postfixe et la numérotation bleue
identifie l’ordre dans lequel les preuves de noeuds sont construites afin d’être réutilisées lors des
déductions suivantes.

Figure III.1.10 – Cheminement de la Reconstruction de la preuve dans le GD associé à la
configuration géométrique de la Table III.1.3.

On peut observer que tous les noeuds du graphe de déductions ne sont pas nécessaires à la
reconstruction, seuls ceux nécessaires à la preuve sont parcourus. En analysant plus précisément
le parcours, on découvre que certains noeuds sont utilisés dans plusieurs preuves et ne doivent
pas être parcouru plusieurs fois. À cette fin, nous rajoutons un système de marquage permettant
de connaître le statut courant d’un noeud. Ce marquage peut prendre les cinq valeurs suivantes :

• 0 : le noeud n’appartient pas à la reconstruction de la preuve.

• 1 : le noeud fait partie de la reconstruction mais n’a pas encore été parcouru.

• 2 : le noeud a déjà été parcouru mais reste en attente des preuves apportées par chacun de
ses fils.



120 III.1. Pipeline du prouveur de configuration géométrique d’incidence

• 3 : la preuve de ce noeud a déjà été reconstruite dans la preuve courante.

• 4 : la preuve de ce noeud a déjà été reconstruite dans un autre lemme.

Le marqueur 0 élimine directement ce noeud de la phase de reconstruction pour ce lemme. Le
marqueur 1 est utilisé lors d’une phase de prémarquage pour parcourir l’intégralité des noeuds
qui sont nécessaires à la construction de ce lemme. L’ajout d’une phase de prémarquage est
obligatoire lorsqu’on souhaite reconstruire la preuve d’un théorème complexe en effectuant un
découpage en lemmes intermédiaires. Le graphe de déductions (GD) est alors découpé en plu-
sieurs couches qui sont prouvées successivement. Nous examinerons et détaillerons cette recons-
truction par couche dans la section 4. Le marqueur 2 indique que la preuve de ce noeud sera
bientôt reconstruite. Le marqueur 3 indique que le noeud a déjà été parcouru et reconstruit
dans la démonstration qui est en cours de reconstruction, le résultat de ce noeud est donc déjà
connu dans le contexte. Sa descendance reste néanmoins utile puisqu’elle peut éventuellement
intervenir dans d’autres reconstructions. Finalement le marqueur 4 intervient lui aussi dans la
reconstruction par couche et permet de distinguer les noeuds qui ont déjà été reconstruits pré-
cédemment dans d’autres démonstrations. Ces démonstrations forment maintenant des lemmes
intermédiaires indépendants que l’on peut réemployer directement dans d’autres reconstructions.

Ensuite, pour effectuer la reconstruction de la preuve, l’algorithme traduit chaque règle appli-
quée en un code Coq générique. Ce code est englobé dans un bloc regroupant l’intégralité des pas
de preuves nécessaires pour établir le rang minimum et maximum du noeud reconstruit. Le bloc
vérifie que la preuve des hypothèses dont il a besoin a déjà été effectuée ou que les hypothèses
existent dans le contexte avant de prouver le résultat. De manière simplifiée, ce code prend la
forme décrite dans la Table III.1.4.

(* Bloc précédent *)
...

(* Bloc du résultat à établir *)
assert(Hx : rk(P1 :: P2 :: P3 :: nil) >= 3).
{

(* Vérification des hypothèses *)
...
(* Préparation de la simplification de l’intersection et de l’union *)
...
(* Application de la règle concernée *)
assert(HT := rule_2 ...);apply HT. (* application de RS7 *)

}
(* Elimination d’hypothèses *)
try clear Hxxx.

(* Bloc suivant *)
...

Table III.1.4 – Illustration d’un bloc correspondant à l’application d’une règle.

L’Algorithme récursif III.1.6 résume la phase de reconstruction pour un noeud. Le prémar-
quage à 1 ou le marquage à 4 lors d’une reconstruction par couche sont effectués au préalable
dans la fonction principale.



2. Implantation du prouveur 121

Algorithme III.1.6 : Étape de reconstruction.
Entrée(s) : Noeud à reconstruire
Sortie(s) : Fichier texte contenant la preuve du noeud

1 si le noeud possède une descendance faire
2 pour chaque fils faire
3 si le marquage du fils est égal à 1 faire
4 Marquage du fils à 2
5 Algorithme III.1.6 sur ce fils
6 fin si
7 fin pour chaque
8 fin si
9 Marquage du noeud à 3

10 Reconstruction du code Coq associée à l’application de la règle stockée dans ce noeud

2.6 Validation par l’assistant de preuve Coq

La preuve par bloc générée à partir du graphe de déductions saturé est ensuite importée dans
l’assistant de preuve Coq pour être vérifiée et validée par ce dernier. L’algorithme de reconstruc-
tion exporte la preuve sous forme de code Gallina générique contenant : la génération de l’énoncé,
l’introduction des hypothèses, la preuve en elle-même et la conclusion. La reconstruction de la
preuve implique le respect de certaines conventions facilitant la génération du certificat : instau-
ration d’une nomenclature sur les hypothèses locales et globales, gestion des hypothèses, gestion
des lemmes intermédiaires et contrôle sur les tactiques manipulées. Certaines de ces conventions
vont aussi permettre d’optimiser le temps d’exécution pour vérifier la preuve et limiter l’occupa-
tion mémoire.

L’utilisation des blocs en Coq permet de gérer les hypothèses de la même façon que les portées
dans bon nombre de langage de programmation. Toutes les hypothèses locales introduites dans
le bloc sont perdues dès que le résultat recherché dans ce bloc est établi. Le système conserve
uniquement l’hypothèse globale déclarée avant l’ouverture du bloc. Pour les hypothèses locales
dans les blocs, il est alors possible d’utiliser la même nomenclature à chaque fois sans problèmes
d’interférences. Pour les hypothèses globales, nous nous servons d’une nomenclature globale in-
cluant les points mis en jeu, le rang minimum et/ou maximum concerné. Nous obtenons ainsi
des exemples d’hypothèses tels que HP3P6P9m2 ou HP4P8P9M3 qui décrivent respectivement le
contenu suivant : rk(P3, P6, P9) ≥ 2 et rk(P4, P8, P9) ≤ 3. Les symboles m et M signifient dans
ce contexte respectivement minimum et maximum.

Cette nomenclature va permettre de gérer les hypothèses en évitant que le contexte soit sur-
chargé inutilement. Dès qu’une hypothèse initiale ou calculée n’est plus utilisée, elle est éliminée
de la preuve. À tout instant, si une hypothèse est encore présente dans le contexte, alors elle doit
encore servir à établir un résultat futur. Nous détaillons ce mécanisme de gestion des hypothèses
dans la partie Optimisation 4. Cette gestion permet à Coq de grandement améliorer ses perfor-
mances lorsqu’il doit rechercher une hypothèse dans le contexte.

Pour optimiser encore les performances, il est souhaitable de découper les preuves en lemmes
intermédiaires qui doivent être référencés et inclus en tant qu’hypothèse globale dès que le sys-
tème en a besoin. Ces lemmes sont automatiquement gérés par la phase de reconstruction en
utilisant le marquage à 4. Ce découpage permet de diminuer la taille de la preuve, de diminuer



122 III.1. Pipeline du prouveur de configuration géométrique d’incidence

le nombre d’hypothèses traitées, et surtout la taille du terme de preuve. Ces lemmes une fois
prouvés servent de résultats intermédiaires pouvant être réutilisés dans d’autres preuves.

Finalement, la validation des blocs par le système Coq doit être la plus efficace possible. Nous
réutilisons pour cela les résultats majeurs établis et observés dans le Chapitre II.1. L’idée générale
consiste à manipuler les tactiques les plus adaptées et les plus simples pour résoudre une tâche
spécifique. Nous diminuons au maximum la charge de travail du système Coq en fournissant
un maximum d’informations aux tactiques pour éviter le plus possible la routine d’unification
effectuée par le système Coq. Nous déportons ainsi au mieux la difficulté et le temps de calcul
dans le certificat produit en C. Nos expérimentations, détaillées dans la suite, nous montrent que
les performances mémoires du système Coq sont comme en géométrie finie le principal goulot
d’étranglements. Toutes ces optimisations permettent de vérifier des preuves pouvant aller jusqu’à
plusieurs dizaines de milliers de lignes et comportant des centaines d’hypothèses.

3 Mesure de performances

Nous abordons maintenant les aspects liés à la complexité pour découvrir les goulots d’étran-
glements dans la chaîne de traitements. Cette étude permet ensuite de mieux envisager les opti-
misations à mettre en place pour résoudre des configurations géométriques complexes.

3.1 Complexité en temps du prouveur

Rappelons que le prouveur fonctionne à partir d’un ensemble fini de règles s’appliquant sur
les paires de l’ensemble des parties de la configuration géométrique. Le temps d’exécution d’un
tel algorithme dépend principalement du nombre de points de la configuration géométrique. En
effet, le nombre de parties à étudier dans le problème vaut 2n où n désigne le nombre de points.
En étudiant toutes les paires différentes de l’ensemble des parties, nous devons analyser 2n×(2n−1)

2
combinaisons. Cette analyse doit être répétée m fois jusqu’à l’obtention du résultat recherché ou
la saturation complète du problème. En résumé, la complexité en temps de l’étape de saturation
du prouveur s’exprime de la façon suivante : m× (22n−1 − 2n−1).

En comparaison, la complexité en temps de l’étape d’initialisation (allocation et initialisation
des structures) et de l’étape de reconstruction (parcours de graphe et écriture dans un fichier)
sont négligeables. Finalement, la complexité en temps de la construction d’une preuve est :m×p2

oùm est le nombre d’étapes jusqu’à la saturation et p le nombre de parties réellement considérées.

À titre d’exemple, cet algorithme exponentiel permet de saturer des configurations géomé-
trique allant jusqu’à 20 points (1 048 576 de parties) en quelques heures sur la machine standard 4.
En cas de succès, nous obtenons à la fin un graphe saturé où il est possible d’extraire la preuve
des rangs de chacune des parties.

3.2 Complexité en mémoire du prouveur

Pour fonctionner le prouveur s’appuie sur deux structures : le graphe des parties et la fenêtre
des derniers noeuds calculés. Nous stockons dans chaque noeud du graphe un mot binaire repré-
sentant la partie et ses rangs, deux entiers pour le marquage et la règle appliquée, ainsi que deux
listes de pointeurs pour les noeuds précédents et suivants. Un noeud représente en mémoire 22-x
octets : 2 octets pour le mot binaire, 8 octets pour les deux entiers, 12-16 octets pour les 2-4
noeuds fils, et 0-x octets pour les noeuds parents. Le nombre de noeuds parents varie : soit le

4. Spécificités de cette machine : Intel(R) Core(TM) i5-4460 CPU @3.20GHz avec 16Go de mémoire



3. Mesure de performances 123

noeud n’a servi dans aucune règle, soit le noeud a servi dans une seule règle (donnant sa propre
évolution par exemple), soit le noeud est utilisé dans plusieurs voire tous les calculs de parties
du graphe. Dans ce dernier cas, le noeud peut avoir au maximum 3× p− 2 noeuds parents où p
est le nombre de parties. Sachant que le nombre de fils par noeud est limité, on peut établir que
chaque noeud possède 4 parents en moyenne, c’est à dire 16 octets. Si un noeud possède plus
de parents que cette moyenne, cela impliquera que d’autres noeuds ont nécessairement moins de
parents. On estime de cette manière qu’un noeud en mémoire occupe en moyenne 42 octets.

Le graphe possède au minimum un noeud pour chacune des parties et dans le pire des cas 4
noeuds pour chaque évolution de la même partie jusqu’à saturation. Le graphe représente ainsi
une taille maximale en mémoire de 42× p× 4 octets avec p le nombre de parties.

Pour la fenêtre, nous stockons dans un tableau de taille p un pointeur vers chacune des par-
ties. La fenêtre représente en mémoire p× 4 octets avec p le nombre de parties.

Sur un énoncé géométrique à 20 points, il faudrait au maximum 176 Mo pour stocker l’intégra-
lité du graphe (172Mo pour le graphe et 4Mo pour la fenêtre). La consommation en mémoire du
prouveur n’est donc pas une limite pour notre algorithme. Il est cependant possible d’optimiser
la structure de données pour minimiser l’occupation mémoire.

3.3 Complexité en temps de la vérification du certificat

La complexité en temps de la vérification du certificat par l’assistant de preuve Coq dépend
de trois facteurs : la taille de la preuve, le nombre d’hypothèses et la complexité des tactiques qui
sont employées. Sachant qu’il est difficile de calculer rigoureusement la complexité en temps et
en mémoire de la vérification d’une preuve de la même manière qu’un algorithme, nous donnons
une intuition de ces complexités avec des ordres de grandeur.

En considérant qu’un maximum d’information est fourni au système et que les tactiques
utilisés sont efficaces, nous estimons le temps d’exécution d’un bloc en Coq correspondant à
l’application d’une règle entre 0.05 sec à 0.2 sec. Le nombre de bloc par preuve varie en fonction
de la difficulté de la preuve et du nombre de points impliqués. En utilisant nos exemples, la taille
d’une preuve à s points peut varier entre s × 10 à s × 10000 lignes. Le nombre de bloc obtenu
dans une preuve à x lignes est x

10 blocs. Et finalement, le temps d’exécution d’une preuve à s
points dans le pire des cas est de s×10 000

10 × 0.2 sec.

En étudiant un énoncé géométrique à 20 points, nous obtenons dans le pire des cas une preuve
de 200 000 lignes contenant 20 000 blocs où le temps de vérification est de 4 000 sec. Dans tous
les cas, ce temps d’exécution reste négligeable par rapport au temps de calcul de la saturation.

3.4 Complexité en mémoire de la vérification du certificat

La complexité mémoire d’une preuve Coq dépend fortement du nombre d’hypothèses, du
nombre de buts courants et surtout de la taille du terme de preuve. Plus la preuve est longue,
plus le système doit mémoriser le cheminement nécessaire pour arriver jusqu’à cette étape de
la démonstration. À notre connaissance, il n’existe pas de travaux qui traitent de l’occupation
mémoire dans les preuves. Pour contourner ce problème de performance en mémoire, la meilleure
solution consiste à segmenter les preuves en utilisant le génie logiciel orienté Coq. Dans notre
cas, la difficulté ne réside pas réellement dans l’application des règles dérivées des axiomes mais
dans la gestion à grande échelle de tous ces blocs. Pour quantifier cette occupation, nous pouvons
uniquement nous baser sur nos expérimentations.



124 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Par exemple, un énoncé géométrique à 15 points possédant 15 000 lignes peut occuper plus de
6Go de mémoire si on ne supprime pas les hypothèses devenues inutiles. Une démonstration de
15 000 lignes correspond à 1500 blocs introduisant 1 500 nouvelles hypothèses dans le contexte.
Si les hypothèses sont supprimées dès que possible, le même énoncé se limite à l’utilisation de
2Go de mémoire. Pour minimiser encore plus l’usage de la mémoire, il est nécessaire d’effectuer
un découpage de la démonstrastion en lemmes afin de restreindre la taille du terme de preuve.

3.5 Conclusion sur les complexités

Toutes ces complexités n’ont pas le même degré d’importance. Le facteur le plus limitant
à considérer actuellement est le temps d’exécution du prouveur afin de produire une solution.
Le cheminement de la preuve n’étant pas connu à l’avance, nous ne pouvons pas prédire l’ordre
de parcours idéal des parties et des règles. Une recherche force brute est donc effectuée sur
l’intégralité des parties et des règles jusqu’à l’obtention du résultat recherché ou jusqu’à ce que
la saturation soit complète. Quelques améliorations et heuristiques sont néanmoins présentées et
testées dans la section suivante pour en évaluer les performances sur le temps d’exécution et la
taille du certificat.

Le deuxième aspect à considérer est l’occupation mémoire lors de vérification du certificat.
Une bonne gestion des hypothèses permet de considérer la vérification de preuves bien plus consé-
quentes sans que l’on se soucie de la mémoire. Cependant, lorsque les preuves dépassent 10 000
lignes, elles ne peuvent plus être traitées en une seule fois et nécessitent un découpage en lemmes
intermédiaires. Ce découpage permet de réduire la taille du terme de preuve et d’augmenter la
modularité dans les grandes preuves. Cette gestion de la mémoire est complètement automatique
et est détaillée dans la section suivante.

4 Optimisations

Afin d’optimiser le temps d’exécution tout en contrôlant la taille de la preuve produite,
nous détaillons plusieurs améliorations sur le parcours des règles et des parties. Toutes ces op-
timisations ne sont pas concluantes mais permettent de mieux cerner le fonctionnement interne
du processus de saturation d’un énoncé géométrique. Une fois l’énoncé saturé, nous décrivons
quelques simplifications qui sont effectuées pour aider le plus possible l’assistant de preuve dans
sa validation de la preuve.

4.1 Parcours linéaire

La première amélioration que nous analysons s’intéresse au parcours de l’ensemble des par-
ties. Avec un algorithme force brute où il est nécessaire d’analyser toutes les paires de parties, la
meilleure méthode reste un parcours linéaire comme nous le rappelons dans l’Algorithme III.1.7.

Algorithme III.1.7 : Parcours de l’ensemble des paires de l’ensemble des parties.
1 pour chaque partie X de E entre 1 et 2n faire
2 pour chaque partie Y de E entre X et 2n faire
3 . . .
4 fin pour chaque
5 fin pour chaque

Nous garantissons ainsi qu’aucune déduction n’a été oubliée. De manière naturelle, nous
considérons l’heuristique suivante : le parcours croissant des parties en commençant avec les



4. Optimisations 125

premiers points de la construction donne un meilleur résultat. Les derniers points qui ont été
introduits possèdent en général très peu d’informations et ne sont pas les points les plus propices
à la propagation de l’information lors de la saturation. En parcourant de manière croissante
(respectivement décroissante) l’ensemble des parties, nous pouvons simplifier l’ensemble des règles
en éliminant les règles RS2 et RS4 (respectivement RS1 et RS3) de la Table III.1.2. Étant donné
que les parties sont triées dans un ordre croissant de 1 à 2n selon leur mot binaire, la propriété
suivante est toujours vérifiée en appliquant l’algorithme III.1.7 sur les parties X et Y :

Proprieté III.1.1. ∀ X Y , motbinaire(X) < motbinaire(Y ) ⇒ Y 6⊂ X

Cette propriété permet de simplifier l’ordonnancement des règles en ne considérant plus que
l’application de 6 règles dans le cas d’un parcours linéaire. Ce parcours peut être soit croissant,
soit décroissant.

4.2 Ordre des règles

L’optimisation suivante provient de l’examen de l’ordonnancement lors de l’application des
règles de réécriture. Le résultat obtenu établit que cet ordre a un impact sur le cheminement
de la preuve mais n’influe aucunement sur la complexité en temps de l’algorithme. Bien souvent
plusieurs démonstrations distinctes peuvent être produites pour résoudre un même problème géo-
métrique, cependant l’idée principale de ces preuves n’est que très rarement modifiée (à condition
que cette preuve ne soit pas trop simple). Cette idée se retrouve lorsque nous effectuons la cor-
respondance entre la démonstration manuscrite et la preuve engendrée automatiquement. Dans
les deux cas, la déduction du rang de quelques ensembles de points clés permet de mener à son
terme la preuve. Les modifications provoquées lorsqu’on change l’ordre des règles interviennent
dans le calcul de certains résultats intermédiaires qui sont déduits de plusieurs manières.

Pour illustrer cette situation, considérons deux ensembles X = {1, 3} et Y = {1, 2, 3}. Le
rang de l’ensemble X évolue en appliquant quatre règles : soit la règle de sous-modularité mo-
difiant directement l’ensemble X (RS7), soit la règle de sous-modularité sur l’intersection entre
X et Y qui n’est autre que l’ensemble X (RS6), soit la règle d’inclusion de X dans Y (RS1 ou
RS3). En fonction de la preuve à résoudre, nous pouvons gagner ou perdre un facteur de 1% à 5%
sur le nombre de lignes. Il n’est pas possible de prédire à l’avance quel ordre donnera le meilleur
résultat en termes de nombre de lignes. La Table III.1.5 donne un aperçu de la variation de la
taille de la preuve en fonction de l’ordonnancement. On peut constater que l’écart en nombre
de lignes entre deux ordonnancements est très anecdotique et que chaque exemple a un ordre
optimal différent. Nous justifions peu après dans la sous-section 4.1 la disparition des règles RS3
et RS4.

Exemple 1 Exemple 2 Exemple 3 Exemple 4
(10 pts) (14 pts) (15 pts) (19 pts)

RS1|RS2|RS5|RS6|RS7|RS8 651 6271 7 495 78116
RS6|RS2|RS8|RS1|RS5|RS7 679 6172 7 316 79422
RS7|RS8|RS1|RS2|RS5|RS6 667 6193 7 522 78113
RS5|RS6|RS7|RS8|RS1|RS2 679 6146 7 437 78318

Table III.1.5 – Taille de la preuve en nombre de lignes en fonction de l’ordre des règles.

En observant plus précisément l’utilisation des règles lors de la saturation sur les exemples
précédents de la Table III.1.5, on constate que quelque soit l’ordonnancement le nombre de règles
de non-décroissance appliquées sur tout l’énoncé géométrique est nettement supérieur au nombre



126 III.1. Pipeline du prouveur de configuration géométrique d’incidence

de règles de sous-modularité (voir Table III.1.6).

Exemple 1 Exemple 2 Exemple 3 Exemple 4
(10 pts) (14 pts) (15 pts) (19 pts)

Règles de non décroissance 1 413 35 949 62 443 945 180
Règles de sous-modularité 322 12 226 31 195 625 623
Total des règles appliquées 1 735 48 175 93 638 1 570 803

Table III.1.6 – Comparaison du nombre de règles appliquées globalement entre les deux princi-
pales propriétés matroïdales.

Nous considérons donc l’heuristique suivante où il est plus probable que les règles RS1 à RS4
modifient le rang de l’ensemble X ou Y que celles issues de la sous-modularité. De cette manière,
l’application des règles RS5 à RS8 profite déjà des modifications. C’est pourquoi, nous posons
dans la suite l’ordre fixe suivant : RS1 (RS3) RS2 (RS4) RS5 RS7 RS6 RS8 appliquant ainsi les
règles de non-décroissance avant les règles de sous-modularité.

4.3 Règle de Pappus

L’introduction de l’axiome de Pappus parmi les règles à vérifier permet d’élargir le nombre
de théorèmes d’incidence que l’on peut prouver. Ce théorème sert principalement à débloquer
des configurations géométriques où les règles sur les matroïdes ne sont plus suffisantes. Néan-
moins, cette règle bien plus complexe ne doit pas être traitée de la même manière que les règles
matroïdales. En effet, ce théorème nécessite de contrôler 8 alignements parmi 9 points modulo
6 permutations possibles afin de valider la bonne application du théorème. Une telle vérification
est bien trop coûteuse et elle échoue dans la majorité des cas. Dans les rares situations où la règle
s’applique, la conclusion est souvent déjà connue. Dans cette optique, nous séparons la règle de
Pappus pour uniquement l’appliquer sur un problème où la saturation par les règles matroïdales
a échoué. Si une ou plusieurs configurations de Pappus permettent de découvrir des résultats non
référencés dans le graphe, nous ajoutons ces informations au graphe avant de relancer une étape
de saturation. Ce processus est répété jusqu’à l’obtention du résultat ou que la règle de Pappus
ne soit plus applicable.

La Table III.1.7 compare les temps d’exécution en fonction du traitement de la règle de Pap-
pus sur différentes configurations géométriques. Notons que l’exemple 4 a obligatoirement besoin
de la propriété de Pappus pour être complété. L’exécution de cet exemple sans Pappus est donc
non pertinente.

Exemple 1 Exemple 2 Exemple 3 Exemple 4
(10 pts) (14 pts) (15 pts) (19 pts)

Sans Pappus 0.113s 43s 2m33s X
Avec Pappus

pendant 0.151s 1m01s 3m40s 43h27m11s
chaque saturation

Avec Pappus
uniquement à la fin 0.120s 47s 2m42s 36h34m48s
de chaque saturation

Gain en % -21% -23% -26% -22%

Table III.1.7 – Temps d’exécution moyen en fonction de l’intégration de la règle de Pappus.



4. Optimisations 127

Nous observons que le traitement de la propriété de Pappus uniquement en fin de satura-
tion apporte un gain non négligeable de 25% sur le temps d’exécution en comparaison avec
une vérification systématique à chaque étape. La différence en temps d’exécution entre la satura-
tion « Sans Pappus » et la saturation « Avec Pappus uniquement à la fin » sur les trois premiers
exemples apparaît lorsque l’algorithme n’est pas arrêté après l’obtention du résultat recherché.
L’algorithme cherche la présence éventuelle d’une configuration de Pappus dans l’énoncé géomé-
trique bien que cette propriété ne soit pas utile pour conclure la démonstration courante. Nous
estimons ainsi le temps que l’algorithme met pour vérifier cette propriété et nous assurons que la
saturation soit complète pour reconstruire plus rapidement d’autres résultats dans ce contexte.
Nous modifions en conséquence l’Algorithme III.1.5 de saturation par l’Algorithme III.1.8 pour
inclure cette optimisation.

Algorithme III.1.8 : Étape de saturation.
1 tant que modification en appliquant la règle de Pappus faire
2 tant que modification au dernier passage faire
3 pour chaque partie X de E faire
4 pour chaque partie Y de E tel que X 6= Y faire
5 pour chaque règle de réécriture faire
6 . . .
7 fin pour chaque
8 fin pour chaque
9 fin pour chaque

10 fin tant que
11 si une configuration de Pappus est identifiée faire
12 Mise à jour du rang minimum ou maximum de la partie concernée
13 fin si
14 fin tant que

4.4 Heuristique de coloration

Il est possible d’optimiser ce parcours linéaire en considérant une heuristique utilisant uni-
quement les parties dont le rang a été modifié au dernier passage dans la boucle de saturation.
L’idée consiste à marquer les parties dont le rang est modifié au passage n par un entier de
valeur n indiquant la dernière fois que la partie a évolué. Cet entier agit comme un marqueur
de coloration. À l’étape n+ 1, si l’entier est égal ou supérieur à n, le noeud est noir et doit être
utilisé dans la saturation. Au contraire, si le marqueur est strictement inférieur à n, le noeud
conserve sa couleur blanche et n’est pas nécessairement manipulé. L’algorithme estime que pour
faire avancer la saturation, au moins une des deux parties de la paire sélectionnée X et Y, leur
union X ∪ Y ou leur intersection X ∩ Y doit avoir un entier égal à n. Si aucune de ces 4 parties
n’a été modifiée récemment, il est impossible de déduire de nouveaux résultats dans ce contexte.
Toutes les déductions ont déjà été réalisées précédemment sur ces noeuds et l’algorithme peut
tout de suite passer à la paire de parties suivante. À ce fonctionnement, nous rajoutons le traite-
ment particulier des hypothèses initiales qui sont toujours considérées comme des noeuds noirs
permanents. Sachant qu’elles peuvent intervenir dans toutes les étapes de saturation, elles ne
doivent jamais changer de couleur.

La Figure III.1.11 résume quelques configurations que l’heuristique de coloration peut ren-
contrer. Le cas n˚1 ne doit pas être traité puisqu’aucune des 4 parties ne possède un marqueur
de coloration noire. Le cas n˚2 représente une configuration où toutes les parties ont évolué
depuis l’étape précédente. L’heuristique n’a pas besoin d’analyser le marqueur de coloration de



128 III.1. Pipeline du prouveur de configuration géométrique d’incidence

chacune des parties, elle se contente d’une évaluation paresseuse : si une des parties possède un
marqueur de coloration noire, plus besoin d’observer la couleur des autres parties. Cette évalua-
tion paresseuse est à nouveau utilisée dans le cas n˚3 où seule la partie X est noire. Le dernier
cas doit être étudié en entier jusqu’à l’analyse du marqueur de la partie X ∩ Y .

Figure III.1.11 – Différentes configurations possibles pour l’heuristique de coloration.

Dans les premières étapes de saturation, cette coloration des parties n’est pas très avan-
tageuse étant donné que presque l’intégralité des parties est juste initialisée. En effet, presque
toutes les parties voient leur rang évoluer rapidement. Puis au fur et à mesure, le nombre de
parties modifiées se restreint, accélérant ainsi le parcours de toutes les parties. Cette approche
permet alors de considérer uniquement des noeuds susceptibles d’apporter de l’information pour
terminer la résolution du problème. À la fin de la saturation, lorsque l’algorithme n’a plus de
déductions à effectuer, autrement dit qu’aucune modification n’a eu lieu pendant une étape de
saturation tous les noeuds sont devenus blancs excepté les hypothèses. La propriété de Pappus
peut être vérifiée avant une éventuelle nouvelle étape de saturation. Cette heuristique apporte un
gain de 25% à 50% sur le temps d’exécution en comparaison avec un parcours linéaire classique
comme illustré dans la Table III.1.8.

Exemple 1 Exemple 2 Exemple 3 Exemple 4
(10 pts) (14 pts) (15 pts) (19 pts)

Parcours linéaire classique 0.120s 47s 2m42s 36h34m48s
Heuristique de coloration 0.092s 21s 2m1s 15h43m53s

Gain en % -23% -55% -25% -57%

Table III.1.8 – Temps d’exécution moyen en fonction de l’heuristique de parcours.

Finalement nous modifions l’Algorithme III.1.7 pour intégrer l’heuristique de coloration dans
l’Algorithme III.1.9.



4. Optimisations 129

Algorithme III.1.9 : Parcours de l’ensemble des paires de l’ensemble des parties.
1 pour chaque partie X de E entre 1 et 2n faire
2 pour chaque partie Y de E entre X et 2n faire
3 si X est noire ‖ Y est noire ‖ X ∩ Y est noire ‖ X ∪ Y est noire
4 . . .
5 fin si
6 fin pour chaque
7 fin pour chaque

4.5 Saturation par strate

La saturation par strate ou par couche consiste à saturer un énoncé géométrique en plusieurs
étapes en introduisant au fur et à mesure les différents points de la construction géométrique.
L’idée consiste à découper l’énoncé en plusieurs paquets de points de plus en plus gros incluant
à chaque fois le paquet de points précédent comme illustré dans la Figure III.1.12. Dans cette
figure, nous incluons les informations de la saturation des 9 points du paquet rose dans la satu-
ration du paquet rouge contenant 16 points avant de finalement saturer l’intégralité du problème
à 19 points. De cette manière, le système peut utiliser l’information qui a été calculée à l’étape
précédente sur un paquet de points restreint en tant que résultat intermédiaire afin d’assurer une
saturation plus efficace et plus rapide de l’étape courante. Cette méthode de saturation permet de
propager plus efficacement l’information sur les nouvelles parties qui sont introduites et élimine
des étapes de preuves qui deviennent inutiles. Considérons l’exemple suivant où une partie X est
complètement saturée avec un rang égal à 3 à l’étape N, la partie Y telle que X ⊂ Y à l’étape
N+1 peut commencer directement avec un rang supérieur ou égal à 3 et ignorer par exemple
l’étape de transition où le rang est supérieur ou égal à 2.

Bien que cette technique minimise la taille de la preuve en utilisant au maximum les informa-
tions de la strate précédente, le temps d’exécution pour chaque strate est cumulé. En découpant
un énoncé géométrique à P points en plusieurs couches, le temps d’exécution de l’algorithme par
couche se rapproche du temps d’exécution cumulé de la saturation de toutes les couches prises
séparément. En effet, le système doit à chaque couche reparcourir l’intégralité des parties afin de
compléter les informations qui peuvent être manquantes.

Dans l’exemple III.1.12, le temps d’exécution global de l’algorithme par couche correspond
à l’addition du temps d’exécution de chacune des strates : rose, rouge et jaune. Cependant, il
est important de noter que le temps d’exécution des strates précédentes est toujours négligeable
en comparaison du calcul de la strate courante. Nous minimisons ainsi la taille de la preuve en
augmentant légèrement le temps d’exécution de l’algorithme en cumulant celui des différentes
couches.



130 III.1. Pipeline du prouveur de configuration géométrique d’incidence

Figure III.1.12 – Stratification d’un énoncé géométrique contenant une application de Pappus.

Le principal intérêt de cette méthode réside dans le futur découpage de la preuve en lemmes
intermédiaires. Lorsque la preuve devient trop longue, il est absolument nécessaire de la diviser
pour qu’elle puisse être vérifiée. L’obtention d’un résultat valide est prioritaire sur l’augmentation
du temps d’exécution. Un découpage manuel d’une preuve de plusieurs dizaines de milliers de
lignes devenant hors de propos, il est nécessaire de mettre en place un mécanisme de scission
automatique qui dans la mesure du possible préserve l’intelligibilité de la preuve.

En observant le graphe dans son intégralité, il est impossible d’indiquer les noeuds qui oc-
cupent un rôle central dans la preuve méritant la création d’un lemme intermédiaire. Pour nous
aider, les deux indicateurs les plus significatifs sont la hauteur dans le graphe ainsi que le nombre
de parents. Si un noeud divise assez la preuve en ayant une hauteur suffisante et qu’il peut être
réutilisé dans le calcul de plusieurs parents, il est souhaitable d’en faire un lemme séparé. La
difficulté réside dans le choix du critère : s’il est trop souple, le nombre de lemmes intermédiaires
est trop élevé, la preuve devient inutilement plus longue. Au contraire, s’il est trop rigide, la
preuve n’est pas assez découpée et la vérification échoue. De plus, ce critère évolue en fonction
de la preuve effectuée, la topologie du graphe associé étant à chaque fois différente. Au final, le
graphe doit être parcouru dans sa globalité pour élaborer un critère pertinent. L’utilisateur n’a
dans ce cas aucun impact sur la sémantique du découpage, celui-ci est complètement automatisé.

4.6 Notre solution

La solution que nous privilégions est d’utiliser la saturation par strate introduite dans la
section précédente en y associant une sémantique géométrique. L’utilisateur contrôle le décou-
page en lemmes intermédiaires en définissant les différentes strates géométriques à saturer dès
l’énonciation du problème. Ce choix des strates se fait intuitivement lors de la construction de la
configuration géométrique. L’utilisateur définit selon l’ordre de construction les différentes strates
au sein du problème. Le nombre de strates et l’écart entre ces dernières définissent naturellement
le critère de subdivision de la preuve.



4. Optimisations 131

Figure III.1.13 – Preuves par couche d’un énoncé géométrique à 3 strates.

En reprenant la stratification en 3 couches d’un énoncé géométrique présenté dans la Fi-
gure III.1.12, nous illustrons le mécanisme de création de lemmes intermédiaires dans le schéma
III.1.13. La saturation de l’énoncé géométrique complet se déroule en 3 étapes correspondant
aux 3 strates de l’énoncé géométrique.

À chaque fois qu’une strate a été saturée, l’algorithme reporte les informations qui ont été
calculées dans la strate courante (inférieure) vers la strate suivante (supérieure) : c’est la pro-
pagation de l’information. Dans l’exemple III.1.13, nous transférons l’information du noeud X
de la strate 1 vers la strate 2. Dans un second temps, nous transférons le noeud X et Y de la
strate 2 vers la strate 3. Ces informations sont ensuite utilisées pour effectuer la saturation de la
nouvelle strate plus efficacement. Tous les noeuds finaux locaux d’une strate, qui sont réutilisés
pour propager l’information dans la strate suivante et qui appartiennent à la preuve, définissent
des lemmes intermédiaires. Ces lemmes sont des résultats intermédiaires servant de base à la sa-
turation suivante. Ces noeuds ne peuvent plus évoluer sans l’éventuelle introduction d’une strate
supplémentaire. Cette méthode a l’avantage de définir des lemmes intermédiaires pertinents qui
sont des résultats finaux locaux pouvant être réemployés dans n’importe quelle preuve d’un ré-
sultat d’une des strates suivantes. Dans la Figure III.1.13, nous souhaitons reconstruire la preuve



132 III.1. Pipeline du prouveur de configuration géométrique d’incidence

du noeud Z. Le parcours de l’arborescence de ce noeud nécessite le calcul du noeud Y de la
strate 2 ainsi que le noeud X de la strate 1. La preuve finale comporte au moins 3 lemmes dont
deux lemmes intermédiaires pour X et Y.

Cette subdivision en couche peut être aisément généralisée à n strates où n est le nombre
de points. Chaque strate correspondant à la saturation de l’énoncé géométrique en rajoutant un
point supplémentaire à la construction. La manipulation d’un découpage aussi fin de l’énoncé
géométrique n’est en pratique pas requis surtout si l’on ne souhaite pas multiplier le nombre de
lemmes intermédiaires à prouver. Le but premier est d’obtenir une preuve suffisamment segmen-
tée dont la vérification n’occupe pas toute la mémoire.

Les optimisations, présentées dans cette section 4, améliorent les performances des diffé-
rentes parties du pipeline de notre prouveur. Elles permettent aussi de considérer et résoudre des
preuves qui deviennent de plus en plus compliquées et conséquentes. Nous illustrons et analysons
l’application de ces dernières sur des théorèmes variés qui ont une difficulté croissante dans le
Chapitre suivant III.2.



CHAPITRE III.2

Un catalogue d’exemples

“Geometry is the art of correct reasoning from incorrectly drawn figures“

Henri Poincare (1854–1912)

133



134 III.2. Un catalogue d’exemples

Résumé

Maintenant que le pipeline du prouveur généralisé a été examiné, nous illustrons les résultats
obtenus à travers un catalogue d’exemples incluant des théorèmes fondamentaux de la géomé-
trie d’incidence projective. Pour cela , nous étudions des configurations géométriques qui sont
de plus en plus compliquées à résoudre. Nous montrons sur les derniers exemples l’apport des
optimisations telles que l’heuristique de coloration et le mécanisme de scission des preuves de
grande taille.

Nous commençons ce catalogue par des exemples triviaux comportant uniquement quelques
points. De cette manière, nous illustrons simplement le fonctionnement des différentes étapes du
pipeline (section 1). Dans la suite, nous analysons la résolution de quelques lemmes intermédiaires
de Desargues qui sont présentés dans [MNS09,MNS12] (section 2). Nous examinons naturellement
la résolution automatique du théorème de Desargues comportant 15 points en dimension 3 en
considérant le cas dégénéré où la figure est aplatie (section 3). Nous traitons ensuite l’unicité de la
construction du point appelé conjugué harmonique par rapport à un triplet de point définissant
la droite projective (section 4). Finalement, nous explorons les limites de notre prouveur en
considérant la propriété de Dandelin-Gallucci comportant 19 points (section 5).

Contenu
1 Lemmes triviaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

1.1 Restriction à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.2 Colinéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
1.3 Sur-contraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
1.4 Égalité entre points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
1.5 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2 Lemmes intermédiaires de Desargues . . . . . . . . . . . . . . . . . . . . . . . 140
2.1 Schéma L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.2 Schéma rABOO’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.3 Schéma subl2rABMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.4 Schéma rCC’O’PC” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.5 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3 Théorème de Desargues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.1 Preuve du théorème de Desargues en 3D . . . . . . . . . . . . . . . . . 146
3.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Conjugué harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.1 Preuve du conjugué harmonique . . . . . . . . . . . . . . . . . . . . . . 151
4.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5 Propriété de Dandelin-Gallucci . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1 Preuve de la propriété de Dandelin-Gallucci . . . . . . . . . . . . . . . 155
5.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



1. Lemmes triviaux 135

Dans ce chapitre, nous illustrons le fonctionnement du prouveur en détaillant la résolution
automatique d’exemples ou de théorèmes classiques de la géométrie d’incidence projective de
plus en plus complexes. Ces exemples permettent de mettre en évidence les limites intrinsèques
de la génération automatique des preuves et de mieux comprendre l’introduction des différentes
optimisations présentées dans la section 4. Pour chaque exemple, nous donnons un énoncé ma-
thématique, une figure associée, une intuition de la preuve ou la démonstration complète, la
traduction de l’énoncé mathématique avec l’approche matroïdale sur les rangs, éventuellement
le graphe de déductions associé (GD) ainsi que les résultats obtenus.

1 Lemmes triviaux

Les premiers exemples traités permettent de vérifier le bon fonctionnement du prouveur sur
des énoncés simples contenant un nombre limité de point.

1.1 Restriction à une droite

Cet exemple illustre la capacité du prouveur à considérer des hypothèses avec des rangs qui
ne sont pas forcément exacts (≤ et ≥).

Lemme III.2.1 (Line unification). Si trois points A, B, C deux à deux distincts ne définissent
pas un plan, alors ces trois points sont alignés.

A

B

C

Figure III.2.1 – Illustration du lemme III.2.1.

Démonstration. Étant donné que les points sont deux à deux distincts, cela signifie que chaque
paire de points engendre une droite. En rajoutant la contrainte que les trois points ne définissent
pas un plan, nous déduisons que les trois droites sont confondues et que les points sont colinéaires.

Lemma line_unification : forall A B C : Point,
rk(A, B) = 2 -> rk(A, C) = 2 ->
rk(B, C) = 2 -> rk(A, B, C) <= 2 ->
rk(A, B, C) = 2.

Table III.2.1 – Énoncé mathématique associé au lemme III.2.1.



136 III.2. Un catalogue d’exemples

Figure III.2.2 – GD complètement saturé associé à la configuration géométrique du lemme
III.2.1.

Une seule règle d’inclusion entre les parties AB et ABC s’applique pendant la saturation de
cette configuration géométrique. Le rang maximum de la partie ABC est initialisé à 2 grâce aux
hypothèses. Il reste à déduire que le rang minimum est 2. Nous donnons à titre d’exemple la
preuve Coq générée à partir de la saturation dans la Table III.2.2.

(* \’{E}noncé du lemme *)
Lemma LP1P2P3 : forall P1 P2 P3 ,
rk(P1 :: P2 :: nil) = 2 -> rk(P1 :: P3 :: nil) = 2 ->
rk(P2 :: P3 :: nil) = 2 -> rk(P1 :: P2 :: P3 :: nil) <= 2 ->
rk(P1 :: P2 :: P3 :: nil) = 2.

(* Introduction des hypothèses *)
intros P1 P2 P3 HP1P2eq HP1P3eq HP2P3M .

(* Application de la règle d’inclusion entre AB et ABC *)
assert(HP1P2P3m2 : rk(P1 :: P2 :: P3 :: nil) >= 2).
{
try assert(HP1P2eq : rk(P1 :: P2 :: nil) = 2) by (...).
assert(HP1P2mtmp : rk(P1 :: P2 :: nil) >= 2) by (...).
assert(Hcomp : 2 <= 2) by (...).
assert(Hincl : incl (P1 :: P2 :: nil) (P1 :: P2 :: P3 :: nil)) by (...).
assert(HT := rule_5 (P1 :: P2 :: nil) (P1 :: P2 :: P3 :: nil) 2 2 _ _ _);apply HT.

}
(* Nettoyage des hypothèses inutiles *)
try clear HP1P2M2. try clear HP1P2m2. try clear HP1P2P3m1.

(* Conclusion et validation de la preuve *)
assert(HP1P2P3M : rk(P1 :: P2 :: P3 :: nil) <= 3) by (...).
assert(HP1P2P3m : rk(P1 :: P2 :: P3 :: nil) >= 1) by (...).
intuition.
Qed.

Table III.2.2 – Preuve Coq associée au lemme III.2.1.

1.2 Colinéarité

Cet exemple illustre la capacité du prouveur à propager la colinéarité dans une configuration
géométrique à partir des hypothèses.

Lemme III.2.2 (Collinearity). Soient quatre points A, B, C, D avec B et C distincts. Si ces
points définissent deux droites ABC et BCD alors les quatre points sont alignés.



1. Lemmes triviaux 137

A

D

B

C

Figure III.2.3 – Illustration du lemme III.2.2.

Démonstration. Les droites ABC et BCD possèdent deux points distincts B et C en commun.
Par pseudo-transitivité de la colinéarité, on déduit que les quatre points sont alignés et définissent
une seule et même droite.

Lemma collinearity : forall A B C D : Point,
rk(B, C) = 2 -> rk(A, B, C) = 2 -> rk(B, C, D) = 2 ->
rk(A, B, C, D) = 2.

Table III.2.3 – Énoncé mathématique associé au lemme III.2.2.

Figure III.2.4 – GD complètement saturé associé à la configuration géométrique du lemme
III.2.2.

En 3 règles, le système déduit que la partie ABCD définit une droite. À partir de ce résultat,
le prouveur déduit la transitivé de la colinéarité sur les parties ABD et ACD. Notons que le
rang des parties AB, AD, CD et BD n’est pas exact à la fin de la saturation. Ce sont les
configurations dégénérées du lemme qui reste toujours vrai, que ces points soient égaux ou non.



138 III.2. Un catalogue d’exemples

1.3 Sur-contraint

Cet exemple illustre la capacité du prouveur à traiter des énoncés contenant plus d’informa-
tions que nécessaires.

Lemme III.2.3 (Overconstrained). Soient deux plans ABC et BCD non coplanaires, on peut
montrer que les points B et C appartenant aux deux plans sont distincts.

A

B

C

D

Figure III.2.5 – Illustration du lemme III.2.3.

Démonstration. Cet énoncé contient deux plans ABC et BCD non coplanaires avec deux points
B et C en commun. Si trois points permettent de définir un plan, alors tout couple de points est
distinct et représente une droite. B et C sont donc distincts et définissent une droite.

Lemma over_constrained : forall A B C D : Point,
rk(A, B, C) = 3 -> rk(B, C, D) = 3 ->
rk(A, B, C, D) = 4 ->
rk(B, C) = 2.

Table III.2.4 – Énoncé mathématique associé au lemme III.2.3.

Figure III.2.6 – GD complètement saturé associé à la configuration géométrique du lemme
III.2.3.

Cet exemple d’intersection entre deux plans permet d’observer qu’il est possible de déduire
rk(B,C) = 2 de plusieurs manières. Pour obtenir ce résultat, la saturation utilise ici l’hypothèse



1. Lemmes triviaux 139

rk(A,B,C) = 3. Sachant que le rang de trois points est égal à 3, on peut conclure que le rang de
deux points parmi trois est nécessairement 2. Il est possible d’effectuer une déduction analogue
à partir des hypothèses rk(B,C,D) = 3 ou rk(A,B,C,D) = 4. L’énoncé géométrique est ici
sur-contraint.

1.4 Égalité entre points

Cet exemple illustre la capacité du prouveur à traiter des égalités entre points comme deux
points syntaxiquement distincts dont le rang est égal à 1.

Lemme III.2.4 (Points equality). Si ABC est un plan et si on construit un point D égal à C
alors la figure ABD définit un plan.

B

C
A

D

Figure III.2.7 – Illustration du lemme III.2.4.

Démonstration. En substituant le point C par le point D qui lui est égal dans le plan ABC,
nous obtenons le plan ABD.

Lemma points_equality : forall A B C D : Point,
rk(A, B, C) = 3 -> rk(C, D) = 1 ->
rk(A, B, D) = 3.

Table III.2.5 – Énoncé mathématique associé au lemme III.2.4.



140 III.2. Un catalogue d’exemples

Figure III.2.8 – GD complètement saturé associé à la configuration géométrique du lemme
III.2.4.

Ce dernier exemple permet d’observer qu’une égalité entre deux points n’interfère pas dans
la construction d’une preuve. L’information que les points C et D sont égaux est au fur et à
mesure propagée dans toutes les parties concernées avant de finalement conclure que le rang de
ABD est égal à 3. Une amélioration notable pour les performances de notre algorithme lors de
l’étape de saturation serait d’éliminer un des points lorsqu’une égalité entre points est détectée.
La difficulté réside dans l’ajustement du graphe de déduction et dans la reconstruction de la
preuve Coq en considérant deux points qui ne sont pas nécessairement égaux dès le départ. Si
cette déduction intervient au milieu d’une preuve, toutes les hypothèses incluant l’un des deux
points doivent être mises à jour au moment où la déduction est effectuée à la fois dans le GD mais
aussi dans la preuve Coq associée. Ce changement fait partie des perspectives d’améliorations de
notre prouveur.

Il est intéressant d’observer que l’on peut utiliser directement l’hypothèse rk(A,B,C) = 3
dans la partie ABCD en utilisant une règle d’inclusion pour obtenir que rk(A,B,C,D) ≥ 3 et
ainsi simplifier deux étapes du graphe de déductions. Pour cela, il est nécessaire d’employer le
parcours avec coloration plutôt qu’un parcours linéaire classique.

1.5 Résultats

Nous ne fournissons aucun résultat pour cette catégorie de lemmes puisque les preuves as-
sociées ne sont pas assez significatives pour analyser le comportement du prouveur dans sa
globalité : la production de la preuve ainsi que sa vérification est immédiate.

2 Lemmes intermédiaires de Desargues

Ces lemmes proviennent de la démonstration du théorème de Desargues en utilisant unique-
ment les rangs [MNS09,MNS12]. Nous conservons le nommage associé à ces lemmes. Ce sont des
configurations intermédiaires qui ont été identifiées pour faciliter la mécanisation de la preuve.
Avant de nous attaquer à la démonstration complète du théorème de Desargues, nous prouvons



2. Lemmes intermédiaires de Desargues 141

automatiquement ces lemmes afin de tester les capacités du prouveur. Les graphes de déductions
associés à des configurations géométriques de 5 points ou plus ne sont plus exposés pour des
questions de lisibilité.

2.1 Schéma L1

Lemme III.2.5 (L1 Scheme). Soit un plan ABO. Si on construit un point A′ différent de O
sur la droitre AO et un point B′ différent de O sur la droite B′O alors la figure A′B′O définit
un plan.

A

B

O
A′

B′

Figure III.2.9 – Illustration du lemme III.2.5.

Démonstration. Par construction les points A′ et B′ sont nécessairement distincts. En effet, ces
deux points sont différents de O qui est l’unique point d’intersection entre les droites AO et BO.
D’une part, nous avons que les trois points A′, B′ et O sont deux à deux distincts et non alignés.
D’autre part, trois points ne peuvent pas déterminer un objet plus grand qu’un plan. Nous en
déduisons que A′B′O détermine exactement un plan.

Lemma l1_scheme : forall A B O A’ B’ : Point,
rk(A, B, O) = 3 -> rk(A, A’, O) = 2 ->
rk(B, B’, O) = 2 -> rk(A’, O) = 2 -> rk(B’, O) = 2 ->
rk(A’, B’, O) = 3.

Table III.2.6 – Énoncé mathématique associé au lemme III.2.5.

2.2 Schéma rABOO’

Lemme III.2.6 (rABOO’ scheme). Soit un espace défini par ABOP . Si on ajoute un point O′

différent de O sur la droite OP alors la figure ABOO′ est un espace.



142 III.2. Un catalogue d’exemples

O PO′

A

B

Figure III.2.10 – Illustration du lemme III.2.6.

Démonstration. Par construction les points O et O′ sont distincts. Le point O′ joue un rôle
similaire au point P . La droite OO′ est confondue avec la droite OP . Le plan AOO′ est similaire
au plan AOP . Et l’objet ABOO′ reste une figure de l’espace.

Lemma rABOO’_scheme : forall A B P O O’ : Point,
rk(A, B, P, O) = 4 -> rk(O, O’, P) = 2 ->
rk(O, O’) = 2 ->
rk(A, B, O, O’) = 4.

Table III.2.7 – Énoncé mathématique associé au lemme III.2.6.

2.3 Schéma subl2rABMP

Lemme III.2.7 (subl2rABMP scheme). Soit un plan défini par ABC et contenant quatre points
quelconques A′, B′, C ′ et O. Si on ajoute un point M égal à l’un de ces quatre points A′, B′, C ′

et O alors la figure ABCM représente un plan.



2. Lemmes intermédiaires de Desargues 143

A

B

C

O M

B′

A′C′

Figure III.2.11 – Illustration du lemme III.2.7.

Démonstration. Le plan ABC est étendu en construisant quatre points quelconques supplémen-
taires A′, B′, C ′ et O 1. Notons ici que les points A′, B′, C ′ sont placés respectivement sur les
droites BC, AC, AB, la preuve reste inchangée pour un cas plus général. En construisant un
point M égal à l’un de ces quatre points, nous ajoutons un point M supplémentaire au plan
déjà existant ABCA′B′C ′O. Les plans représentés par ABC et ABCA′B′C ′O sont identiques
puisqu’ils sont construits à partir de la même base ABC. Nous en déduisons que l’ajout du point
M à ABC définit toujours un plan.

Lemma subl2rABMP_scheme : forall A B C A’ B’ C’ O M : Point,
rk(A, B, C) = 3 -> rk(A, B, C, A’, B’, C’, O) = 3 ->
rk(M, O) = 1 \/ rk(M, A’) = 1 \/ rk(M, B’) = 1 \/ rk(M, C’) = 1 ->
rk(A, B, C, M) = 3.

Table III.2.8 – Énoncé mathématique associé au lemme III.2.7.

2.4 Schéma rCC’O’PC”

Lemme III.2.8 (rCC’O’PC” scheme). Soit un plan ABC contenant quatre points quelconques
A′, B′, C ′ et O avec C ′ différent de C. Nous construisons une droite OO′P avec P un point en
dehors du plan et O′ un point sur cette droite différent de O. Si l’intersection C ′′ existe entre les
droites CO′ et C ′P alors les points de la figure PO′CC ′C ′′ sont coplanaires.

1. La figure associée à cette preuve et les suivantes représentent un cas particulier où les points A′, B′ et C′

appartiennent aux côtés opposés respectifs. Cette configuration particulière n’influe en rien sur les démonstrations
présentées.



144 III.2. Un catalogue d’exemples

A

B

C

O

B′

A′C′

P

O′C′′

Figure III.2.12 – Illustration du lemme III.2.8.

Démonstration. Nous prenons le temps d’analyser la construction de ce lemme 3D qui est un peu
compliqué. La définition du lemme III.2.8 donne une impression de liberté 2 sur l’emplacement
du point O en précisant que celui-ci doit uniquement appartenir au plan ABC et permettre la
construction de la droite OP . Nous obtenons ainsi un exemple de figure III.2.12 qui est dans les
faits une configuration impossible.

La création de l’intersection C ′′ entre les CO′ et C ′P entraîne une contrainte dissimulée sur
le point O. En effet, cette intersection existe si et seulement si le point O est localisé sur la
droite CC ′. En observant la figure III.2.13, on s’aperçoit que les plans OPC en rouge et OPC ′

en bleu ne sont pas confondus. La droite OP représente l’intersection entre ces deux plans. Il
est alors impossible pour la droite CO′ qui coupe une première fois le plan bleu OPC ′ en O′ de
couper à nouveau ce plan en C ′′ excepté si ces plans sont confondus. Pour que les hypothèses
sur l’intersection en un point C ′′ soient vérifiées, le point O est contraint d’appartenir à la droite
CC ′. Il est alors évident que CC ′C ′′PO′ définit un plan.

Pour aller plus loin, on se demande naturellement pourquoi le point O n’est pas inclus dans ce
résultat puisqu’il appartient à la droite CC ′ qui est elle-même incluse dans le plan CC ′C ′′PO′.
En observant de plus près l’énoncé géométrique et les détails obtenus par le prouveur, il est
possible de générer une unique configuration où le point O a la possibilité d’être à l’extérieur de
la droite CC ′. Pour cela, il faut considérer un cas particulier où le point O′ est égal au point P .
Dans ce cas, les droites CO′ et C ′P se coupent automatiquement en C ′′ qui est aussi le point P et
définissent nécessairement un plan comme illustré dans III.2.14. Le point O n’est plus contraint
d’appartenir à la droite CC ′ et peut se placer n’importe où dans le plan ABC tout en conservant
le résultat que CC ′C ′′PO′ détermine un plan.

2. À noter que les points A’ et B’ sont des points complètement libres du plan qui n’interviennent pas dans la
démonstration de ce lemme.



2. Lemmes intermédiaires de Desargues 145

A

B

C
O′

P

C′

O

C′′

A′

B′

Figure III.2.13 – Illustration de la preuve du lemme III.2.8.

A

B

C

O

P

C′

O′C′′

A′

B′

Figure III.2.14 – Illustration de la preuve du lemme III.2.8.



146 III.2. Un catalogue d’exemples

Lemma rCC’O’PC’’_scheme : forall A B C A’ B’ C’ O P O’ C’’ : Point,
rk(A, B, C, A’, B’, C’, O) = 3 -> rk(C, C’) = 2 ->
rk(A, B, O, P) = 4 -> rk(O, O’, P) = 2 -> rk(O, O’) = 2 ->
rk(C, O’, C’’) = 2 -> rk(C’, P, C’’) = 2 ->
rk(C, C’, C’’, P, O’) = 3.

Table III.2.9 – Énoncé mathématique associé au lemme III.2.7.

2.5 Résultats

Nous détaillons les résultats obtenus pour ces lemmes intermédiaires de Desargues dans la
Table III.2.10. Les notations abrégées T.E, M. et Nb. désigne respectivement le temps d’exécu-
tion, l’occupation mémoire sur la machine standard 3 et le nombre d’étapes dans la saturation.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
L1 (5 pts) 0.001s <1% 3 147 1.1s <1%

rABOO’ (5 pts) 0.001s <1% 2 140 0.9s <1%
subl2rABMP (8 pts) 0.001s <1% 3 95 0.9s <1%
rCC’O’PC” (10 pts) 0.157s <1% 4 177 1.15s <1%

Table III.2.10 – Test de performance pour les lemmes intermédiaires de Desargues.

Ces tests de performances sont réalisés en supprimant les hypothèses le plus tôt possible, sans
heuristique de coloration et sans subdivision. On peut remarquer que ces problèmes intermédiaires
ne sont pas encore assez complexes pour atteindre les limites du prouveur. La génération de
preuve et sa vérification sont effectuées en une seconde tout au plus avec une occupation mémoire
négligeable. Ces preuves ne nécessitent donc pas l’utilisation de la coloration ou de la subdivision.
En ce qui concerne la gestion des hypothèses, ces preuves restent suffisamment courtes pour ne
pas être affectées par le choix de suppression des hypothèses ou non.

3 Théorème de Desargues

Nous nous intéressons maintenant à la preuve complète du théorème de Desargues III.2.1 dans
sa version projective sans utiliser les lemmes intermédiaires démontrés précédemment. Rappelons
que la propriété de Desargues est une propriété plane qui peut ne pas être vérifiée par un plan
projectif. C’est le cas du plan de Moulton [Mou02] par exemple. Cependant cette propriété devient
un théorème dans tout plan plongé dans un espace de dimension ≥ 3. En d’autres termes, cet
énoncé a valeur d’axiome en géométrie projective plane alors que dans un espace projectif de
dimension 3 ou plus, cette propriété devient un théorème.

3.1 Preuve du théorème de Desargues en 3D

Théorème III.2.1 (Théorème de Desargues). Soit E un espace projectif et P, Q, R, P’, Q’, R’
des points de cet espace. Soient PQR et P’Q’R’ deux triangles non aplatis. Si les droites (PP’),
(QQ’) et (RR’) sont concourantes en un point O alors α, β et γ sont alignés avec α = (PR) ∩
(P’R’), β = (QR) ∩ (Q’R’) et γ = (PQ) ∩ (P’Q’).

3. Spécificités de cette machine : Intel(R) Core(TM) i5-4460 CPU @3.20GHz avec 16Go de mémoire



3. Théorème de Desargues 147

L’idée générale de cette preuve dans l’espace projectif est assez classique [Kod14] : nous
prouvons premièrement une version du théorème où les deux triangles ne sont pas coplanaires
que nous appelons Desargues 3D illustré par la figure III.2.15. Puis, nous déduisons à partir de
cette preuve, la démonstration du cas particulier en 2D où les deux triangles appartiennent au
même plan comme dans la configuration III.2.16. Pour passer de la figure 2D à la version 3D de
Desargues, nous réalisons une extrusion du triangle P ′Q′R′ grâce au point S situé à l’extérieur
du plan.

P

Q

R

O

R′
P ′

Q′

γ
α

β

Figure III.2.15 – Illustration du théorème III.2.1.

P

Q

R

O

O′

P ′

Q′

R′

S

R′′
P ′′

Q′′

γ
α

β

Figure III.2.16 – Illustration du théorème III.2.1 avec extrusion de la figure 2D.



148 III.2. Un catalogue d’exemples

Démonstration. Preuve du théorème de Desargues en 3D

Nous considérons deux triangles non dégénérés PQR et P ′Q′R′ qui sont en perspectives par
rapport au point O′. Pour éviter les cas dégénérés, nous spécifions que les points P et P ′, Q
et Q′, R et R′ sont distincts deux à deux. Ces deux triangles non coplanaires permettent d’ob-
tenir une figure dans l’espace où nous définissons les trois points α, β et γ de la manière suivante :

α est l’intersection entre les droites PR et PR′,
β est l’intersection entre les droites PQ et PQ′,
γ est l’intersection entre les droites QR et Q′R′.

Sous ces contraintes, nous devons montrer que α, β et γ sont alignés.

• Montrons premièrement que PQRα est un plan :

Sachant que le triangle PQR non dégénéré définit un plan et que le point α appartient à la
droite PR, la figure PQRα détermine toujours un plan. Avec un raisonnement analogue, il est
possible de déduire le même résultat pour PQRβ et PQRγ.

• Montrons deuxièmement que PQRαβ est un plan :

Sachant que PQRα représente un plan et que le point β appartient à la droite PQ, la figure
PQRαβ définit toujours un plan.

• Montrons ensuite que PQRαβγ est un plan :

Sachant que PQRαβ est un plan et que le point γ appartient à la droite QR, la figure
PQRαβγ détermine toujours un plan. Avec un raisonnement purement analogue, nous montrons
que P ′Q′R′αβγ définit aussi un plan.

• D’autre part, montrons que PQRP ′Q′R′αβγ est un espace 3D :

La figure PQRP ′Q′R′, contenant les deux triangles qui sont non coplanaires, détermine un
espace. En ajoutant les différents points d’intersections α, β et γ entre les droites contenues dans
cet espace, il est assez simple de prouver que PQRP ′Q′R′αβγ définit toujours un espace.

• Montrons finalement que αβγ est une droite :

Rappelons qu’en géométrie spatiale projective, l’intersection entre deux plans non confon-
dus est une droite. Nous déduisons à partir de ce théorème que l’intersection entre les plans
PQRαβγ et P ′Q′R′αβγ est une droite. En effet, ces deux plans ne sont pas confondus puisque
PQRP ′Q′R′αβγ représente un espace. De plus, on peut remarquer que ces deux plans possèdent
plusieurs points en commun : α, β et γ. Ces points appartiennent par conséquent à l’intersection
entre ces deux plans. Nous pouvons conclure que αβγ sont situés sur cette droite d’intersection
et que ces trois points sont alignés.

Preuve du théorème de Desargues avec extrusion de la figure 2D



3. Théorème de Desargues 149

La majorité des hypothèses ne sont pas modifiées dans la version 2D. Cependant, nous spéci-
fions cette fois-ci que PQRP ′Q′R′ définit un plan et que les deux triangles sont en perspectives
par rapport au point O′.

Sous ces contraintes, nous devons toujours montrer que α, β et γ sont alignés.

Pour cela, nous devons élever le triangle P ′Q′R′ en un nouveau triangle P ′′Q′′R′′ qui n’est pas
coplanaire avec le triangle PQR afin d’obtenir une configuration de points où le théorème 3D de
Desargues puisse être appliqué. Nous détaillons les principales étapes de cette construction. Nous
commençons par construire un point S à l’extérieur du plan PQRP ′Q′R′P . Nous construisons
ensuite la droite SO′ en considérant un troisième point O sur cette droite distinct de S et O′

grâce à l’axiome Three-Points de la Table I.1.6. Puis, nous construisons P ′′ qui est l’intersection
entre les droites SP ′ et OP . Cette intersection existe grâce à l’axiome de Pasch et le fait que
PP ′ et SO se coupent en O′. Nous construisons de la même manière Q′′ et R′′.

Pour appliquer le théorème de Desargues 3D sur cette figure extrudée, nous devons prouver
que cette dernière n’est pas une configuration dégénérée et que le triangle P ′′Q′′R′′ n’est pas
aplati. Nous devons aussi vérifier que les intersections α, β et γ sont bien définies et correspondent
aux points de la version 3D.

Lemma desargues_3D : forall P Q R P’ Q’ R’ O alpha beta gamma : Point,
rk(P, P’) = 2 -> rk(Q, Q’) = 2 -> rk(R, R’) = 2 ->
rk(P, P’, O) = 2 -> rk(Q, Q’, O) = 2) -> rk(R, R’, O) = 2 ->
rk(P, Q, R) = 3 -> rk(P’, Q’, R’) = 3 -> rk(P, Q, R, P’, Q’, R’) = 4 ->
rk(P, Q, beta) -> rk(P’, Q’, beta) ->
rk(P, R, alpha) -> rk(P’, R’, alpha) ->
rk(Q, R, gamma) -> rk(Q’, R’, gamma) ->
rk(alpha, beta, gamma) = 2.

Table III.2.11 – Énoncé mathématique associé au théorème III.2.1.

Lemma desargues_2D : forall P Q R P’ Q’ R’ P’’ Q’’ R’’ O’ O S alpha beta gamma : Point,
rk(P, P’) = 2 -> rk(Q, Q’) = 2 -> rk(R, R’) = 2 ->
rk(P, P’, O) = 2 -> rk(Q, Q’, O) = 2) -> rk(R, R’, O) = 2 ->
rk(P, Q, R) = 3 -> rk(P’, Q’, R’) = 3 -> rk(P, Q, R, P’, Q’, R’, O’) = 3 ->
rk(P, Q, R, S) = 4 -> rk(P, Q, R, O) = 4 ->
rk(S, O) = 2 -> rk(O’, O, S) = 2 ->
rk(P, P’’, O) = 2 -> rk(Q, Q’’, O) = 2 -> rk(R, R’’, O) = 2 ->
rk(P’, P’’, S) = 2 -> rk(Q’, Q’’, S) = 2 -> rk(R’, R’’, S) = 2 ->
rk(P, Q, beta) = 2 -> rk(P’’, Q’’, beta) ->
rk(P, R, alpha) = 2 -> rk(P’’, R’’, alpha) ->
rk(Q, R, gamma) = 2 -> rk(Q’’, R’’, gamma) ->
rk(alpha, beta, gamma) = 2.

Table III.2.12 – Énoncé mathématique associé au théorème III.2.1 avec extrusion de la figure
2D.



150 III.2. Un catalogue d’exemples

3.2 Résultats

Nous détaillons les résultats obtenus pour la preuve du théorème de Desargues en 3D dans
le cas général et pour l’extrusion de la figure 2D. La Table III.2.13 représente les tests de per-
formances obtenus avec le prouveur en supprimant les hypothèses le plus tôt possible, sans
coloration et sans subdivision. La preuve de la version 2D nécessite 3 minutes pour générer une
preuve d’environ 6 000 lignes qui occupera 10% de la mémoire lors de sa validation. Les temps
d’exécution et l’occupation de la mémoire ne sont pas encore critiques.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq
desargues_3D (10 pts) 0.120s <1% 3 679 3.4s 2%
desargues_2D (15 pts) 2m42s <1% 4 6146 50s 10.8%

Table III.2.13 – Test de performance pour la preuve de Desargues en 3D.

Nous publions dans la Table III.2.14 l’évolution de ces résultats en utilisant l’heuristique
de coloration. Le temps d’exécution de la preuve est ainsi amélioré dans les deux cas. Notons
que la taille de la preuve desargues_3D augmente de manière non négligeable entraînant une
vérification un peu plus longue et plus coûteuse en mémoire. Ce changement de taille dépend du
cheminement que le prouveur utilise pour établir le résultat.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
desargues_3D (10 pts) 0.092s <1% 4 1001 7.6s 2.8%
desargues_2D (15 pts) 2m1s <1% 3 6096 1m8s 12.0%

Table III.2.14 – Test de performance avec coloration de la preuve de Desargues en 3D.

Pour illustrer la différence d’occupation mémoire lors de la validation de la preuve, nous pré-
sentons dans la Table III.2.15 les preuves de la Table III.2.13 sans la suppression des hypothèses
au fur et à mesure de la preuve. Pour la démonstration desargues_3D, ce changement n’a que
très peu d’impact, nous constatons seulement une augmentation de 0.7% de l’occupation mé-
moire. La taille de la preuve Coq n’est pas encore assez conséquente. Dans le cas de la preuve
desargues_2D, nous observons une augmentation significative de la mémoire occupée, elle est
multipliée par un facteur 4. En parallèle, le temps d’exécution de la vérification de la preuve par
l’assistant de preuve Coq est lui aussi directement impacté. La gestion des hypothèses inutiles
devient nécessaire pour vérifier des preuves atteignant plusieurs milliers de lignes.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
desargues_3D (10 pts) 0.120s <1% 3 679 3.9s 2.7%
desargues_2D (15 pts) 2m42s <1% 4 6146 4m14s 41.5%

Table III.2.15 – Test de performance sans suppression d’hypothèses pour la preuve de Desargues
en 3D.

Par ailleurs, la preuve du théorème de Desargues dans le plan en considérant la propriété
de Pappus est actuellement considérée dans le but de vérifier le théorème de Hessenberg I.1.1
introduit dans le Chapitre I.1. Cette preuve difficile nécessite une application triple de la propriété
de Pappus dans le cas spécifique où les deux triangles de la configuration géométrique forme un
triangle cévian 4 [MNS12].

4. Voir http ://mathworld.wolfram.com/CevianTriangle.html



4. Conjugué harmonique 151

4 Conjugué harmonique

Le théorème majeur suivant que nous prouvons automatiquement est la propriété du conjugué
harmonique. Dans le plan euclidien, cette configuration géométrique s’intéresse au birapport 5

entre quatre points disposé sur une même droite. Lorsque ce birapport est égal à −1, on dit que
les quatre points sont en division harmonique. Le quatrième point est alors appelé le conjugué du
troisième point par rapport aux deux premiers. Comme la propriété de Desargues, la propriété
du conjugué harmonique n’est pas forcément vérifiée par un plan projectif mais elle devient un
théorème lorsque ce plan est plongé dans un espace de dimension ≥ 3.

4.1 Preuve du conjugué harmonique

En géométrie projective, le conjugué harmonique d’un triplet de points sur la droite projective
est défini par la construction suivante :

Théorème III.2.2 (Théorème du Conjugué Harmonique). Soit E un espace projectif et A, B,
C trois points colinéaires de l’espace. Soit R un point extérieur à la droite AB et soit une droite
quelconque issue de C coupant RA et RB en Q et P respectivement. Si AP et BQ se coupent en
U et RU coupe AB en D, alors D est indépendant du choix de R et de la droite CPQ. Le point
D est appelé le conjugué harmonique de C par rapport à A et B.

A B C

R

Q

P

U

D

Figure III.2.17 – Illustration du théorème III.2.2.

Démonstration. Pour montrer que le point D reste identique peu importe la position du point
R et quel que soit le choix des droites QR, RP et PQ, nous procédons comme suit en utilisant
la démonstration du livre Principles of Geometry [Bak25].

5. Si A, B, C, D sont quatre points distinct d’une droite, on appelle birapport de (A, B) et (C, D) le rapport

des mesures algébriques suivant : r =
CA

CB

DA

DB

.



152 III.2. Un catalogue d’exemples

Nous construisons de manière semblable à partir de la droite AB un autre plan non confondu
avec le plan ABCR. Nous obtenons les droites Q′R′, R′P ′ et P ′Q′ passant respectivement par
A, B et C comme illustré dans la Figure III.2.18. Nous souhaitons montrer que les points D et
D′ qui sont les intersections des droites RU et R′U ′ avec la droite AB sont identiques.

Dans ce but, nous déduisons que l’intersection entre le plan RAR′ et le plan QPCP ′Q′ est
la droite QQ′. Similairement, nous montrons que l’intersection entre le plan RBR′ et le plan
QPCP ′Q′ est la droite PP ′. Ces droites PP ′ et QQ′ appartiennent au même plan et se coupent
nécessairement grâce à l’axiome de Pasch. Ce point d’intersection doit être obligatoirement situé
sur la droite RR′ contenant tous les points communs aux plans RAR′ et RBR′. Notons O ce
point d’intersection entre les droites PP ′ et QQ′ 6.

D’autre part avec un raisonnement analogue, nous déduisons que l’intersection entre le plan
PAP ′ et le plan QQ′OP ′P est la droite PP ′ et que QQ′ est l’intersection entre les plans QBQ′

et QQ′OP ′P . Ces droites PP ′ et QQ′ appartenant au même plan se coupent en un point situé
sur la droite d’intersection UU ′ entre les plans PAP ′ et QBQ′.

Grâce à l’unicité de l’intersection, nous déduisons que les droites PP ′ et QQ′ se coupent en
un point O à la fois situé sur la droite UU ′ et RR′, nous montrons ainsi que UU ′ et RR′ résident
dans un même plan. Sachant que les droites UU ′ et RR′ sont concourantes, les droites RU et
R′U ′ appartenant respectivement aux plans RAB et R′AB sont elles aussi concourantes et leur
point d’intersection se situe sur la droite AB. Les points D et D′ coïncident (voir Figure III.2.19.

Maintenant supposons la construction d’autres droites dans le plan PQR passant par A, B
et C. Plus précisément, AQ1R1 passant par A, BR1P1 passant par B et CP1Q1 passant par C.
Soient AP1 et BQ1 deux droites concourantes en U1 et la droite R1U1 qui rencontre la droite
AB en D1. Par la déduction précédente, on peut montrer que D1 coïncide avec le point D′

qui lui-même coïncide avec le point D. Nous démontrons ainsi que la position du point D est
indépendante du choix des droites AQR, BRP et CPQ.

6. Pour des soucis de lisibilité et de taille de la figure du conjugué harmonique, le point O n’est pas représenté.



4. Conjugué harmonique 153

A B C

R

Q

P

U

D

R′

Q′

P ′

U′

D′

Figure III.2.18 – Illustration de la preuve du théorème III.2.2.

A B C

R

Q

P

U

D

R′
Q′

P ′

U′

D′

Figure III.2.19 – Illustration de la preuve du théorème III.2.2.



154 III.2. Un catalogue d’exemples

Lemma harmonic_conjugate : forall A B C P Q R P’ Q’ R’ U U’ D D’ O
rk(A, B, C) = 2 -> rk(A, B) = 2 -> rk(A, C) = 2 -> rk(B, C) = 2 ->
rk(P, Q, R) = 3 -> rk(P’, Q’, R’) = 3 -> rk(A, B, R, R’) = 4 ->
rk(A, B, R) = 3 -> rk(A, B, Q) = 3 ->
rk(A, Q, R) = 2 -> rk(B, P, R) = 2 -> rk(C, P, Q) = 2 ->
rk(A, P, U) = 2 -> rk(B, Q, U) = 2 -> rk(D, R, U) = 2 ->
rk(A, B, R’) = 3 -> rk(A, B, Q’) = 3 ->
rk(A, Q’, R’) = 2 -> rk(B, P’, R’) = 2 -> rk(C, P’, Q’) = 2 ->
rk(A, P’, U’) = 2 -> rk(B, Q’, U’) = 2 -> rk(D’, R’, U’) = 2 ->
rk(A, B, C, D, D’) = 2 -> rk(P, P’, O) = 2 -> rk(Q, Q’, O) = 2 ->
rk(D,D’) = 1.

Table III.2.16 – Énoncé mathématique associé au théorème III.2.2.

4.2 Résultats

La preuve de ce lemme à 14 points est comparable à celle de desargues_2D. Le temps d’exé-
cution avoisine la minute pour une preuve de 7437 lignes occupant 12% de la mémoire Coq.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
harmonic (14 pts) 47s <1% 5 7437 53s 12.0%

Table III.2.17 – Test de performance pour la preuve du conjugué harmonique.

Pour la version avec coloration, nous obtenons dans la Table III.2.19 un meilleur temps
d’exécution au détriment d’une preuve générée qui est beaucoup plus longue que dans le cas
d’un parcours linéaire classique. Rappelons que le cheminement retenu ne peut pas être prévu
à l’avance, il est dans ce cas bien moins optimal. Cette augmentation de la taille de la preuve
influe bien évidemment sur le temps d’exécution et la mémoire utilisée au sein de l’assistant de
preuve Coq : 2m31s et 23% respectivement.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
harmonic (14 pts) 21s <1% 5 12779 2m31s 23.3%

Table III.2.18 – Test de performance avec coloration pour la preuve du conjugué harmonique.

Finalement, pour améliorer les performances du logiciel Coq, nous effectuons la démonstra-
tion en utilisant le mécanisme de preuves par couche à trois niveaux. Ce mécanisme permet dans
notre cas de peu impacter le temps d’exécution du prouveur afin de générer des preuves qui sont
plus faciles à valider. Nous obtenons, avec ou sans coloration, des temps d’exécution Coq plus
faibles pour une taille de preuve quasiment identique. La principale différence se situe au niveau
de l’occupation mémoire qui ne dépasse plus les 5%.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
harmonic (no color) 49s <1% 10 9156 31s 4.1%
harmonic (color) 26s <1% 10 10331 36s 4.3%

Table III.2.19 – Test de performance avec subdivision pour la preuve du conjugué harmonique.



5. Propriété de Dandelin-Gallucci 155

5 Propriété de Dandelin-Gallucci

Le dernier exemple que nous traitons est une configuration géométrique peu connue appelée
propriété de Dandelin-Gallucci. Cette configuration implique plusieurs droites transversales 7

non coplanaires. La preuve de cette dernière est un résultat déjà connu mais la majorité des
démonstrations de la littérature utilisent le concept de birapport ou le théorème de Desargues
[BP15, Hor17]. Nous examinons dans ce chapitre la preuve de cette propriété à partir de la
propriété de Pappus. Cette démonstration détaillée dans Principles of Geometry par H. F. Baker
[Bak25] peut être généralisée en considérant le théorème de Dandelin-Gallucci qui indique que
la propriété du même nom et la propriété de Pappus sont équivalentes en géométrie d’incidence
projective. Dans ce manuscrit, seule l’implication de la propriété de Pappus vers la propriété de
Dandelin-Gallucci est étudiée.

5.1 Preuve de la propriété de Dandelin-Gallucci

Si l’axiome de Pappus est admis, la proposition suivante est toujours vérifiée :

Théorème III.2.3 (Propriété de Dandelin-Gallucci). Si trois droites a, b, c quelconques ne se
coupent pas deux à deux et sont coupées chacune par trois autres droites a′, b′, c′ alors toute trans-
versale au premier ensemble de droite a, b, c doit couper toute transversale du second ensemble
de droites a′, b′, c′.

c b a

a′

b′

c′

e

e′

Figure III.2.20 – Illustration de la propriété III.2.3.

Démonstration. Soient a, b, c trois droites quelconques qui ne se coupent pas deux à deux et
a′, b′, c′ trois autres droites quelconques qui ne se coupent pas deux à deux. Chacune de ces trois
droites a′, b′, c′ coupe a, b, c. Les intersections respectives sont P,C,B′ en a′, puis C ′, Q,A en b′

et B,A′, R en c′.

7. Une droite qui coupe un autre ensemble de droites est une droite transversale pour cet ensemble. Il existe
deux droites qui coupent quatre droites transversales deux à deux dans un espace projectif.



156 III.2. Un catalogue d’exemples

Construisons ensuite une transversale e par rapport aux droites a, b, c coupant ces dernières
respectivement en L,M,N . Cette droite ne coupe jamais les droites a′, b′, c′. Pour justifier que e
n’est pas coplanaire avec a′, b′ ou c′ : si e et a′ étaient coplanaires alors les points N,M,B′, C ′

seraient coplanaires impliquant que les droites b et c soient aussi coplanaires. Ce qui est contra-
dictoire.

Puis à partir d’un point N ′ sur la droite c′, construire la transversale e′ par rapport aux
droites e et a′ coupant ces dernières respectivement en O et L′. Nous obtenons la figure III.2.21.
Cette transversale e′ n’est pas coplanaire avec les droites a, b, c en utilisant un raisonnement
analogue à la transversale e. Comme la droite c′ ne coupe pas la droite e, la droite e′ ne coupe
pas les droites a, b, c. Il s’agit de montrer que cette transversale e′ coupe la droite b′

La droite RP n’appartient pas au plan [e, e′] sinon R,P, L′, N ′ seraient coplanaires impli-
quant que les droites a′, c′ soient aussi coplanaires, ce qui est contradictoire. La droite RP coupe
à la fois la droite N ′L dans le plan [a, c′] et la droite NL′ dans le plan [a′, c]. Cette droite RP
représente la droite d’intersection entre les plans [a, c′] et [a′, c]. De plus, nous savons que les
droites N ′L et NL′ appartiennent au plan [e, e′] et donc qu’il existe une intersection non vide
entre ces droites. Cette intersection appartient à la droite RP lorsque cette droite rencontre le
plan [e, e′].

La transversale e′ n’appartient pas au plan [a, b′] puisqu’elle ne coupe pas la droite a. Sup-
posons que l’intersection entre la droite e′ le plan [a, b′] est un point M ′ (voir Figure III.2.22).
Montrons que ce point M ′ appartient forcément à la droite b′.

La droite PQ n’appartient pas au plan [e, e′] sinon P,Q,M,L seraient coplanaires impliquant
que les droites b, a soient aussi coplanaires, ce qui est contradictoire. La droite PQ coupe à la fois
la droite LM ′ dans le plan [a, b′] et la droite L′M dans le plan [a′, b]. Cette droite PQ représente
la droite d’intersection entre les plans [a, b′] et [a′, b]. De plus, nous savons que les droites LM ′ et
L′M appartiennent au plan [e, e′] et donc qu’il existe une intersection non vide entre ces droites.
Cette intersection appartient à la droite PQ au moment où cette droite rencontre le plan [e, e′].

Les points P,Q,R ne sont pas alignés étant donné que les droites N ′L, NL′ et L′M ne
coupent pas en un point unique (sauf dans le cas dégénéré où le point N ′ est confondu avec
le point B). Ces points définissent donc dans le cas général un plan. Il existe donc une droite
d’intersection entre les plans PQR et [e, e′].

L’application de l’axiome de Pappus aux deux triplets de points sur la droite L,M,N et sur
la droite L′,M ′, N ′ aboutit à une droite dans le plan [e, e′] contenant les trois points suivants qui
sont des intersections de droites : (LM ′, L′M), (MN ′, N ′M), (NL′, N ′L). Nous avons montré
que le premier et le troisième points appartiennent respectivement à PQ et PR. Le second point
(MN ′, N ′M) appartient donc aussi au plan PQR en étant sur la même droite que le premier et
troisième points.

La droite MN ′ n’appartient pas au plan PQR sinon MN ′ couperait PQ en un point diffé-
rent de Q. La droite PQ posséderait alors deux points dans le plan [b, c′] et appartiendrait à ce
dernier. La droite PB ou a qui serait donc incluse dans le plan [b, c′] couperait nécessairement
la droite b, ce qui est contradictoire. Cependant la droite MN ′ du plan [b, c′] coupe QR qui est
une droite de ce même plan. Sachant que le point d’intersection (MN ′, N ′M) appartient au plan
PQR, que MN ′ n’appartient pas au plan PQR et que MN ′ coupe QR qui est une droite de



5. Propriété de Dandelin-Gallucci 157

PQR, nous déduisons que la droite M ′N coupe elle aussi QR.

Par conséquent, la droite M ′N appartient au plan NQR ou [b′, c]. Par construction, le point
M ′ appartient aussi au plan [a, b′]. Nous déduisons que le point M ′ appartient à la droite b′. La
transversale e′ construite à partir de N ′ intersectant e et a′ est la même transversale que celle
qui est construite à partir de N ′ pour rencontrer a′ et b′ ; cette dernière coupe donc aussi e.

Nous montrons ainsi que toute transversale du premier ensemble de droites a, b, c coupe toute
transversale du second ensemble de droites a′, b′, c′.

Par cette démonstration, nous prouvons qu’à partir des axiomes de la géométrie projective et
de l’axiome de Pappus, il est possible de prouver la propriété de Dandelin-Gallucci impliquant 19
points (16 points pour la configuration géométrique et 3 points pour l’application du théorème
de Pappus). La réciproque est aussi vraie, la propriété de Dandelin-Gallucci et les axiomes de la
géométrie d’incidence projective permettent de prouver la propriété de Pappus. Cependant, nous
ne traitons pas cette implication [Bak25] dans cette thèse. En effet, pour le moment la propriété
de Dandelin-Gallucci n’est pas intégrée dans notre prouveur.

c b a

a′

b′

c′

e

e′

ON M L

B′
C P

A Q C′

L′

R A′ B N′

Figure III.2.21 – Illustration de la preuve du théorème III.2.3.



158 III.2. Un catalogue d’exemples

c b a

a′

b′

c′

e

e′

ON M L

B′
C P

A Q C′

L′

R A′ B N′

M′

Figure III.2.22 – Illustration de la preuve du théorème III.2.3.

Lemma dg : forall A A’ B B’ C C’ R P Q N M L N’ M’ L’ O alpha beta gamma,
rk(B, C’, P, L) = 2 -> */ line a */
rk(B’, C, P, L’) = 2 -> */ line a’ */
rk(A’, Q, C, M) = 2 -> /* line b */
rk(A, Q, C’, M’) = 2 -> /* line b’ */
rk(R, A, B’, N) = 2 -> /* line c */
rk(R, A’, B, N’) = 2 -> /* line c’ */
rk(A’, B, C, C’, P, Q) = 4 -> /* a & b */
rk(A, B, B’, C’, P, R) = 4 -> /* a & c */
rk(A, A’, B’, C , Q, R) = 4 -> /* b & c */
rk(A, B’, C, C’, P, Q) = 4 -> /* a’ & b’ */
rk(A’, B, B’, C, P, R) = 4 -> /* a’ & c’ */
rk(A, A’, B, C’, Q, R) = 4 -> /* b’ & c’ */
rk(N, M, L, O) = 2 -> /* line e */
rk(N’, M’, L’, O) = 2 -> /* line e */
rk(A, C’, P, Q, B, M’) = 3 -> /* plane [a & b’] & M’ */
rk(B, C’, P, N’, M’, L’) = 4 -> /* a & e’ */
rk(A’, C, Q, N’, M’, L’) = 4 -> /* b & e’ */
rk(A, B’, R, N’, M’, L’) = 4 -> /* c & e’ */
rk(B’, C, P, N, M, L) = 4 -> /* a’ & e */
rk(A, C’, Q, N, M, L) = 4 -> /* b’ & e */
rk(A’, B, R, N, M, L) = 4 -> /* c’ & e */
rk(N, L’, alpha) = 2 -> rk(N’, L, alpha) = 2 -> /* premier point Pappus */
rk(M’, L, beta) = 2 -> rk(M, L’, beta) = 2 -> /* deuxième point Pappus */
rk(N, M’, gamma) = 2 -> rk(N’, M, gamma) = 2 -> /* troisième point Pappus */
rk(A, C’, Q, M’) = 2. /* M’ appartient à b’ */

Table III.2.20 – Énoncé mathématique associé au théorème III.2.3.



5. Propriété de Dandelin-Gallucci 159

5.2 Résultats

Cette preuve de théorème contenant 19 points pousse un peu plus loin les limites du prouveur.
Le temps d’exécution pour trouver une solution est de 37h sans l’heuristique de coloration et de
16h avec cette dernière. Nous obtenons des preuves non divisées de plusieurs dizaines de milliers
de lignes qui ne peuvent pas être validées sur notre machine de tests. Le nombre d’hypothèses
traitées et la taille du terme de preuve en mémoire sont trop conséquents et empêche la valida-
tion. Le système Coq atteint les 80% d’occupation mémoire au bout de 40 000 lignes avant un
débordement de la pile.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
dg (no color) (19 pts) 2238m <1% 10 78116 X ≥80%
dg (color) (19 pts) 943m <1% 10 105769 X ≥80%

Table III.2.21 – Test de performance pour la preuve du théorème de Dandelin-Gallucci.

L’introduction de la subdivision par couches va permettre de résoudre ce problème d’occu-
pation mémoire et d’obtenir ainsi une validation par l’assistant de preuve Coq. Nous définissons
ainsi grâce à la construction de l’énoncé géométrique trois couches géométriques. La première
encapsule les 9 points situés à l’intersection des a, b, c et a′, b′, c′. La couche suivante rajoute les
points d’intersections avec les droites transversales e et e′. La couche finale considère les trois
points qui permettront l’application du théorème de Pappus. L’illustration de ce découpage a
déjà servi d’exemple dans la Figure III.1.12 page 130.

Comme anticipé, le temps d’exécution de la recherche d’une solution est légèrement augmenté.
Le temps de saturation des deux premières couches reste cependant négligeable par rapport à
la dernière couche. Nous obtenons sans/avec heuristique de coloration une preuve découpée en
146/152 lemmes divisés sur 3 couches avec la répartition suivante : couche 1 (79/82 lemmes) -
couche 2 (66/69 lemmes) - couche 3 (1/1 lemme).

Le système met cette fois-ci 5 à 7 minutes pour valider une preuve de 50 000 à 70 000 lignes
en occupant pas plus de 7.5% de la mémoire.

T.E prouveur M. prouveur Nb. étapes Taille T.E Coq M. Coq
dg (no color) (19 pts) 2252m <1% 15 48741 5m12s 7.6%
dg (color) (19 pts) 918m <1% 10 71508 8m37s 7.4%

Table III.2.22 – Test de performance avec subdivision de la preuve du théorème de Dandelin-
Gallucci.

Ce dernier exemple suggère qu’il est possible de pousser l’automatisation sur des exemples
géométriques encore plus conséquents à condition d’améliorer principalement les performances
en temps de notre prouveur pour la recherche d’une solution. La subdivision des preuves est
généralisable au nombre de points de l’énoncé géométrique, ce qui permet de maîtriser la taille des
démonstrations assez simplement. Nous détaillons les résultats obtenus ainsi que nos perspectives
dans la conclusion de cette partie.





Conclusion : partie III

Bilan

Dans cette partie, nous avons construit un prouveur généralisé de théorèmes géométriques
d’incidence. Ce prouveur divisé en deux parties permet non seulement de rechercher une solution
mais aussi de pouvoir mémoriser et reconstruire la preuve associée sous la forme d’un certificat
qui sera ensuite validé par l’assistant de preuve Coq. Cet outil apporte un résultat pratique
robuste dans un cadre géométrique combinatoire s’appuyant sur la théorie des matroïdes. Il est
en effet possible de prouver des configurations géométriques complexes de dimension 2 ou 3
en utilisant uniquement les propriétés matroïdales. Pour cela, ces propriétés sont converties en
règles de réécritures avant d’être intégrées dans un algorithme de saturation. L’algorithme sature
l’énoncé géométrique jusqu’à l’obtention du résultat ou que les rangs minimum et maximum
de tous les ensembles de points aient convergé ou la détection d’une contradiction de l’énoncé.
L’export de l’historique qui a été suivi en appliquant les règles de réécritures permet d’apporter
une aide à la preuve dans ce contexte géométrique qui serait plus difficilement envisageable en
raisonnant uniquement avec une approche en géométrique synthétique.

Le développement de ce prouveur à partir de la formalisation matroïdale de la géométrie d’in-
cidence repose sur deux observations importantes déjà exprimées dans les chapitres précédents.

La première, introduite dès la Partie I, indique que l’unification de tous les concepts de
la géométrie d’incidence peu importe la dimension sous la même fonction de rang permet de
faciliter le développement des procédés d’automatisation en ne considérant qu’un type d’objet
et de simplifier l’automatisation des démonstrations dans sa globalité. En effet, le coeur de la
mécanisation de la démonstration en géométrie d’incidence projective se situe au niveau du
calcul de l’inclusion, de l’union et de l’intersection entre les différents objets représentés par
des points. Ces calculs ont l’avantage d’être naturellement inclus dans les propriétés matroïdales
contrairement à la géométrie synthétique où cette mécanisation n’est pas triviale. Il est nécessaire
d’énoncer chacune de ces opérations dans un lemme distinct complexifiant excessivement la
découverte automatique de nouvelles déductions.

La deuxième observation, liée à la première, est une conséquence de notre hypothèse forte de
non création d’objets et plus spécifiquement de nouveaux points. Cette contrainte nous empêche
de considérer tout axiome de la Partie I contenant un quantificateur existentiel pour effectuer des
déductions systématiques. Aucun axiome mis à part l’unicité ne remplit cette condition du point
de vue de la géométrie synthétique, nous devons construire une couche de lemmes intermédiaires
capturant ce qui est tout naturellement apporté par la théorie des matroïdes et ses propriétés
sur la fonction de rang définies sans quantificateur existentiel.

En incorporant des résultats déjà obtenus ou des théorèmes fondamentaux en plus des règles
réécritures, il est possible d’élargir les capacités de déductions de notre prouveur. Nous testons
cette option en incluant une des propriétés centrales de la géométrie d’incidence à savoir la pro-
priété de Pappus. Cette propriété va naturellement agrandir la classe des problèmes que l’on

161



162 Conclusion partie III

peut traiter et ainsi accroître l’intérêt pour de tels outils afin de faciliter le raisonnement sur des
parties simples de la théorie. Cependant l’ajout d’une nouvelle propriété doit être parfaitement
mesuré pour ne pas impacter les performances du prouveur. Pour éviter d’alourdir inutilement
la saturation, la recherche d’une configuration de Pappus, qui est une tâche coûteuse, doit être
effectuée uniquement lorsqu’aucune déduction avec les règles matroïdales n’est possible. Un nou-
veau résultat ne doit pas être ajouté à la boucle de saturation si ce dernier n’est utilisé que très
rarement. À noter que la règle de Pappus qui est incluse, vaut pour à la fois la version affine et
la version projective de cette propriété puisqu’il n’est pas nécessaire d’identifier si les droites se
coupent ou si celles-ci sont parallèles pour appliquer cette règle. Comme indiqué dans l’introduc-
tion de cette partie, cet outil permet de traiter à la fois des configurations affines et projectives
en incluant uniquement des axiomes d’incidences qui sont communs aux deux visions de la géo-
métrie. Le caractère projectif de la configuration géométrique est défini lors de la construction
de chacun des points de l’énoncé. Cette construction complète de la configuration géométrique
reste d’ailleurs la principale difficulté pour l’utilisateur puisqu’il va devoir donner l’intuition de
la preuve en créant tous les points de l’énoncé avant de lancer le prouveur.

Le premier prototype du prouveur généralisé s’appuyant sur la saturation du problème avec
les règles matroïdales permet de mécaniser sans aucune aide tout un ensemble de configura-
tions que nous présentons dans le début de notre catalogue d’exemples. Nous déterminons néan-
moins rapidement deux problèmes empêchant de considérer la résolution automatique de preuves
comportant plus d’une dizaine de points. L’étude des performances confirme ces deux goulots
d’étranglements dans le pipeline de notre prouveur. La première limite est le temps d’exécution
exponentiel pour la production du certificat. La saturation du problème à partir de l’ensemble des
parties est une technique coûteuse mais nécessaire lorsque le cheminement de la preuve n’est pas
prédictible. Pour mieux maîtriser l’explosion de ce temps, les quelques améliorations que nous
présentons dans cette thèse s’intéressent à l’optimisation de la boucle de saturation. La prin-
cipale optimisation que nous présentons dans cette thèse est une heuristique de coloration qui
permet de considérer uniquement les parties susceptibles d’aider à la saturation en commençant
par les hypothèses de l’énoncé. Le deuxième facteur contraignant est l’explosion de l’occupation
mémoire lors de la vérification de la trace. Si la preuve contenue dans cette trace n’est pas correc-
tement segmentée, l’assistant de preuve Coq peut être rapidement débordé. La limite identifiée
tourne autour d’une preuve d’une dizaine de milliers de lignes composée de quelques centaines
d’hypothèses. Pour pallier ce problème, nous ajoutons un mécanisme de scission automatique
de la preuve en un ensemble de lemmes intermédiaires. La scission s’appuie sur un découpage
de l’énoncé géométrique en plusieurs couches de points qui sont saturées successivement en ré-
injectant les déductions précédentes. Ce mécanisme de division de la preuve, généralisable à n
couches où n est le nombre de points, élimine définitivement la contrainte d’occupation mémoire
et permet d’envisager l’automatisation de démonstrations bien plus conséquentes. Les preuves
obtenues deviennent bien plus courtes, réduisant ainsi la taille du terme de preuve. L’analyse de
la configuration de Dandelin-Galluci contenant 19 points permet de constater que notre prouveur
arrive à produire et traiter automatiquement une démonstration avoisinant les 100 000 pas de
preuves. La validation d’une démonstration aussi conséquente et complexe nécessite inévitable-
ment l’aide de l’ordinateur pour être vérifiée.

Par ailleurs, l’analyse du comportement de notre prouveur révèle une grande proximité avec
l’étude des problèmes de contraintes géométriques [JTNM06,MFLS06]. En fonction de l’avancée
de la saturation, le système est en mesure de nous indiquer si l’énoncé n’est pas assez contraint,
bien-contraint ou sur-contraint. Dans le cas où la configuration est sous-contrainte, le système est
incapable d’obtenir le résultat recherché en incidence pure à partir des hypothèses. L’énoncé doit
être complété avec de nouvelles hypothèses, ou l’ajout d’un théorème de haut-niveau non inclus
dans la boucle de saturation. Pour le cas bien-contraint, le prouveur est en mesure de générer une



Conclusion partie III 163

démonstration validant le résultat recherché. La dernière option est plus difficilement détectable :
il faut lancer la résolution du problème en éliminant les hypothèses inutiles pour s’apercevoir que
le problème reste soluble. Le fonctionnement de notre algorithme de saturation se rapproche
aussi du domaine de la propagation des contraintes [VHDT92] où le but est de maintenir une
cohérence locale entre les différents arcs. Cette propagation des contraintes fait partie des pistes
possibles pour optimiser notre solveur.

Perspectives

Dans le but d’optimiser toujours plus le fonctionnement du prouveur, nous évoquons un
ensemble de pistes à explorer pour améliorer les performances de ce dernier. La première idée à
étudier est la fusion des points quand le système détecte que ces derniers sont égaux. De cette
manière, nous éliminons facilement un point à traiter de l’ensemble des parties pour simplifier
efficacement l’algorithme de saturation. Cette suppression nécessite des ajustements au niveau
du prouveur : décalage des parties après suppression du point, copie des résultats existants et
propagation de l’égalité entre les points. La principale difficulté apparaît lors de la vérification
du certificat puisque l’assistant de preuve considère toujours les deux points comme deux objets
distincts bien qu’ils soient égaux. Il est nécessaire de propager l’égalité dans chacun des lemmes
intermédiaires produits après la mise en évidence de l’égalité.

Ensuite, dans le prototype actuel, le découpage de la preuve en plusieurs couches est réa-
lisé manuellement en utilisant l’intuition géométrique. Pour automatiser ce découpage, il est par
exemple possible d’ajouter un indicateur pour chaque noeud précisant le nombre de déductions
qu’il est nécessaire de faire pour arriver jusqu’au résultat contenu dans ce noeud. Sachant qu’à
partir d’un nombre de déductions, il est possible de calculer le nombre de blocs et donc d’appro-
cher le nombre de lignes de preuves, il suffit de scinder en deux la couche courante lorsqu’un des
indicateurs excède une limite imposée tout en transférant les résultats déjà calculés.

Une perspective plus lointaine que nous souhaitons mettre en place est la programmation
en parallèle du mécanisme de saturation. En considérant une mémoire partagée entre tous les
processeurs, l’application des règles de saturation avec différentes heuristiques et plusieurs ordres
de parcours sur des processeurs en parallèle avec une gestion des désaccords permettrait d’ob-
tenir un gain de temps non négligeable lors de la production du certificat. Une division fine et
sans conflits des calculs est nécessaire afin d’éviter que la saturation ne devienne incomplète en
oubliant l’application de certaines règles. Une parallélisation plus évidente consiste à diviser l’ap-
plication des règles de réécritures sur plusieurs processeurs ou de scinder le problème géométrique
en cluster de points variables afin de limiter les conflits entre processeurs.

Du point de vue des mathématiques, nous établissons que les axiomes de la géométrie d’in-
cidence projective et la propriété de Pappus permettent de prouver la propriété de Dandelin-
Gallucci. L’étude de la réciproque est un résultat tout aussi intéressant à réaliser. Pour cela, nous
voulons étendre notre prouveur en rajoutant directement en tant que règle la configuration de
Dandelin-Galluci.

Dans tous nos travaux, nous supposons que la création de nouveaux points dans une configu-
ration géométrique est une tâche à la fois hors de propos mais aussi complexe à réaliser. L’idée
d’identifier des configurations géométriques à partir d’une base de donnée ou de laisser une in-
telligence artificielle et un réseau de neurones construire automatiquement des points pertinents
mais nécessaires à la démonstration est une piste à long terme.

Cette conclusion de Partie III clôture le coeur de notre manuscrit. Nous résumons le fil rouge
de cette thèse ainsi que l’ensemble de nos contributions dans la Conclusion globale qui suit.





Conclusion globale

Synthèse

Dans cette thèse, nous nous sommes focalisés sur l’aide à la preuve en contexte géométrique
au sein de l’assistant de preuve Coq. Nous avons non seulement proposé une méthodologie et
des procédures visant à automatiser des démonstrations dans l’environnement spécifique de la
géométrie d’incidence projective, mais nous avons aussi dégagé un ensemble de grands principes
pour une mécanisation systématique des morceaux de preuves les plus récurrents dans un cadre
plus général.

Nous avons formalisé dans ce but une librairie Coq sur la géométrie d’incidence projective
en manipulant deux approches axiomatiques distinctes mais complémentaires de la géométrie.
La première, communément appelée géométrie synthétique, est fondée sur un système d’axiomes
classique bien décrit dans la littérature. La seconde, plus originale s’appuie sur les aspects com-
binatoires de la notion de rang provenant de la structure matroïdale sous-jacente à la géométrie
d’incidence. Pour profiter des avantages de chaque approche et justifier une traduction bidirec-
tionnelle, nous avons prouvé l’équivalence entre les deux formalisations de cette géométrie à la
fois en 2D, ≥3D et 3D. L’analyse méthodologique de la mécanisation de cette preuve nous a
offert un bon aperçu des possibilités d’automatisation que nous allions considérer dans la suite
de nos travaux. Pour mieux définir ces dernières, nous avons identifié et avons dressé une ty-
pologie des éléments de preuves comme la clôture des hypothèses qui apparaissent de manière
récurrente dans les démonstrations géométriques. Cette classification nous a permis de mieux
cibler les étapes triviales, répétitives et fastidieuses que nous voulions mécaniser.

Nous avons ensuite évalué cette méthodologie de la preuve dans le contexte spécifique et
simplifié des géométries finies définies par extension. Cette expérimentation nous a conduit à
mettre en évidence un ensemble de critères d’aide à la preuve, généralisables, assurant un meilleur
contrôle sur l’explosion combinatoire du nombre de configurations à vérifier lors des preuves de
modèles et du théorème de Desargues.

Après avoir examiné attentivement les performances de l’assistant de preuve Coq pour for-
maliser des géométries finies complètement caractérisées, nous nous sommes intéressés à une
automatisation plus générale des démonstrations en géométrie d’incidence. En observant la mé-
canisation des travaux précédents, nous avons établi que les propriétés matroïdales occupaient
un rôle central dans l’automatisation des preuves utilisant cette approche combinatoire. Nous
avons exploité ceci pour construire un prouveur automatique de configurations géométriques
d’incidence s’appuyant sur une saturation des hypothèses. Ce prototype, basé sur un programme
externe en langage C, permet de produire automatiquement un certificat contenant la preuve du
théorème traité qui sera ensuite validé par l’assistant de preuve Coq. En optimisant les goulots
d’étranglements en temps et en espace de ce prouveur, nous avons réussi à démontrer plusieurs
théorèmes classiques et complexes, notamment le théorème de Desargues, la configuration du
conjugué harmonique et le théorème de Dandelin-Galucci.

165



166 Conclusion partie III

Ouvertures

Au final, cette thèse, résultat d’une combinaison de modélisation géométrique et de génie
logiciel apporte plusieurs perspectives attrayantes pour une automatisation plus aisée et plus
complète du raisonnement. Elle se situe dans le prolongement de l’axe de recherche initié par Do-
minique Michelucci et Pascal Schreck en établissant l’équivalence entre la géométrie synthétique
et l’approche matroïdale et en proposant une mécanisation systématique des démonstrations
dans ce contexte.

Cette thèse suggère que l’utilisation d’un assistant de preuve utilisant en parallèle des mé-
canismes d’automatisation externes est une solution pragmatique et efficace pour établir des
résultats théoriques difficiles ou impossibles à obtenir en utilisant uniquement des prouveurs
automatiques. Cette démarche semble être une tendance actuelle au regard des nombreuses pu-
blications sur le sujet.

Par ailleurs, toutes les formalisations de la géométrie se fondant sur la géométrie d’incidence,
pourraient à terme profiter de cette approche matroïdale afin de mécaniser les fragments du
raisonnement portant sur les problèmes d’incidence.

En plus des perspectives spécifiques à chaque contribution de notre thèse qui sont résumées
à la fin de chaque fin de partie, nous exposons deux idées majeures à poursuivre pour améliorer
et généraliser l’aide à la preuve que nous avons étudié.

D’une part, une intégration directe de notre prouveur externe dans l’assistant de preuve Coq,
éventuellement combinée avec des solveurs automatiques déjà incorporés, permettrait d’élimi-
ner de notre pipeline, la plupart des parties qui sont encore accomplies manuellement tout en
fournissant un outil directement utilisable par la communauté.

D’autre part, l’outil que nous avons développé n’est pas en capacité de créer de nouveau points
pour compléter une configuration initiale. Or dans bien des démonstrations il est indispensable
d’introduire de nouveaux points, ce qui nécessite une bonne intuition, tâche reléguée à l’utilisateur
humain à ce jour et qui pourrait être confiée à de l’intelligence artificielle dans des travaux futurs.







Quatrième partie

Annexes

169





Annexe A : systèmes d’axiomes en géométrie synthétique

1 Système d’axiomes 2D

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m : Line, l 6= m

Table IV.1 – Système d’axiomes standard pour la géométrie projective 2D.

A1P2 A2P2 A3P2

A Bl
A

l m A CB

A4P2 A5P2

i

j

i′

j′

A

B

m

l

i

j

i′

j′

A Bm

l
l m

Table IV.2 – Illustrations du système d’axiomes standard pour la géométrie projective 2D.

171



172 Annexe A

2 Système d’axiomes ≥ 3D et 3D

(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧
B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAD ∧ J ∈ lBC)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ P : Point, P /∈ l ∨ P /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point,
P1 ∈ l1 ∧ P1 ∈ l4 ∧
P2 ∈ l2 ∧ P2 ∈ l4 ∧
P3 ∈ l3 ∧ P3 ∈ l4

Table IV.3 – Système d’axiomes pour la géométrie projective 3D.

A2P3 A5P3 A6P3i

j

i′

j′

A

B C

DJ

I

l

m P

i

j

i′
j′

l1l2

p1 p2 p3

l3

Table IV.4 – Illustrations du système d’axiomes standard pour la géométrie projective 3D.



Annexe B : systèmes d’axiomes fondés sur la notion de rang

1 Système d’axiomes nD

(A1R2-R3) Rk-SubCardinal : ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|

(A2R2-R3) Rk-NonDecreasing : ∀ X ⊆ Y ⊆ E, rk(X) ≤ rk(Y )

(A3R2-R3) Rk-SubModular : ∀ X, Y ⊆ E, rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X) + rk(Y )

Table IV.5 – Système d’axiomes basé sur les rangs pour la géométrie projective nD.

2 Système d’axiomes 2D

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R2) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk{P , Q} ≥ 2

(A6R2) Rk-Inter : ∀ A B C D : Point, ∃ J : Point, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C : Point, rk{A, B, C} ≥ 3

Table IV.6 – Système d’axiomes basé sur les rangs pour la géométrie projective 2D.

173



174 Annexe B

3 Système d’axiomes ≥ 3D et 3D

(A4R3) Rk-Singleton : ∀ P : Point, rk{P} = 1

(A5R3) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk{P , Q} = 2

(A6R3) Rk-Pasch : ∀ A B C D : Point, rk{A, B, C, D} ≤ 3 ⇒ ∃ J : Point,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R3) Rk-Lower-Dim : ∃ A B C D : Point, rk{A, B, C, D} ≥ 4

Table IV.7 – Système d’axiomes basé sur les rangs pour la géométrie projective ≥3D.

(A9R3) Rk-Upper-Dim : ∀ A B C D E F , ∃ J1 J2 J3
rk{A, B} = 2 ∧ rk{C, D} = 2 ∧ rk{E, F} = 2 ∧
rk{A, B, C, D} ≥ 3 ∧
rk{A, B, E, F} ≥ 3 ∧
rk{C, D, E, F} ≥ 3 ⇒
rk{A, B, J1} = 2 ∧ rk{C, D, J2} = 2 ∧
rk{E, F , J3} = 2 ∧ rk{J1, J2, J3} ≤ 2

(A9R3’) Rk-Upper-Dim : ∀ A B C D E, rk{A, B, C, D, E} ≤ 4

Table IV.8 – Système d’axiomes basé sur les rangs pour la géométrie projective 3D.



Annexe C : propriété de Desargues et Pappus

1 Propriété de Desargues

Proprieté (Propriété de Desargues). Soit E un espace projectif ≥ 2 et P, Q, R, P’, Q’, R’ des
points de cet espace. Soient PQR et P’Q’R’ deux triangles non aplatis et non confondus. Si les
droites (PP’), (QQ’) et (RR’) sont concourantes en un point O alors α, β et γ sont alignés avec
α ∈ (PR) ∩ (P’R’), β ∈ (QR) ∩ (Q’R’) et γ ∈ (PQ) ∩ (P’Q’).

Description informelle. Si deux triangles sont en perspectives par rapport à un point, alors ils
sont en perspectives par rapport à une droite.

P

Q

R

O

P ′

R′

Q′

β γ
α

Figure IV.1 – Une configuration du théorème de Desargues dans l’espace projectif.

175



176 Annexe C

2 Propriété de Pappus

Proprieté (Propriété de Pappus). Soit E un espace projectif de dimension ≥ 2 et F un sous-
espace de E formant un plan. Dans ce plan F, soient P, Q, R trois points distincts alignés sur
une droite d, et soient P’ Q’ R’ trois autres points distincts alignés sur une droite d’, alors les
point α β γ sont alignés avec α = (RQ’) ∩ (QR’), β = (PR’) ∩ (RP’) et γ = (PQ’) ∩ (QP’).

Description informelle. La propriété de Pappus est une configuration à 9 points et 9 droites
où chaque droite passe par 3 points et chaque point est l’intersection de trois droites.

R

P

Q

P ′

R′
Q′

γ
β

α

Figure IV.2 – Une configuration du théorème de Pappus dans l’espace projectif.



Annexe D : implantation Coq des systèmes d’axiomes sur les
rangs

(* Types *)
Class MatroidRk ’(S : FSetSpecs Point) := {

Point : Set;
rk : set Point -> nat

}.

Table IV.9 – Classe de types pour la structure projective basé sur les rangs.

(* Structure matroïdale *)
Class Matroid ’(MR : MatroidRk) := {

(* A1R2-R3 Rk-SubCardinal *)
matroid1 : forall X, rk X >= 0 /\ rk X <= cardinal X;

(* A2R2-R3 Rk-NonDecreasing *)
matroid2 : forall X Y, Subset X Y -> rk X <= rk Y;

(* A3R2-R3 Rk-SubModular *)
matroid3 : forall X Y, rk(union X Y) + rk(inter X Y) <= rk X + rk Y

}.

Table IV.10 – Classe de types pour la structure matroïdale.

177



178 Annexe D

(* nD *)
Class RankProjective ‘(M : Matroid) := {

rk_singleton_ge : forall P, rk (singleton P) >= 1;

rk_couple_ge : forall P Q, ~ P [==] Q -> rk(couple P Q) >= 2;

rk_three_points : forall A B, exists C : Point,
rk(triple A B C) = 2 /\ rk(couple B C) = 2 /\ rk(couple A C) = 2

}.

Table IV.11 – Classe de types pour les axiomes indépendants de la dimension avec la notion de
rang.

(* 2D *)
Class RankProjectivePlane ‘(RP : RankProjective) := {

rk_inter : forall A B C D, exists J,
Point, rk (triple A B J) = 2 /\ rk (triple C D J) = 2;

rk_lower_dim : exists P0 P1 P2 : Point, rk (triple P0 P1 P2) >= 3

}.

Table IV.12 – Classe de types pour le plan projectif avec la notion de rang.

(* >=3D *)
Class RankProjectiveSpaceOrHigher ‘(RP : RankProjective) := {

rk_pasch : forall A B C D, rk (quadruple A B C D) <= 3 ->
exists J, rk (triple A B J) = 2 /\ rk (triple C D J) = 2;

rk_lower_dim : exists P0 P1 P2 P3, rk (quadruple P0 P1 P2 P3) >= 4

}.

Table IV.13 – Classe de types pour l’espace projectif au moins en dimension 3 avec la notion
de rang.



Annexe D 179

(* 3D *)
Class RankProjectiveSpaceOrHigher ‘(RP : RankProjective) := {

rk_upper_dim : forall A B C D E F,
rk (couple A B) = 2 /\ rk (couple C D) = 2 /\ rk (couple E F) = 2 /\
rk (quadruple A B C D) >= 3 /\
rk (quadruple A B E F) >= 3 /\
rk (quadruple C D E F) >= 3 ->
exists J1 : Point, exists J2 : Point, exists J3 : Point,
rk(triple A B J1) = 2 /\ rk(triple C D J2) = 2 /\
rk(triple E F J3) = 2 /\ rk(triple J1 J2 J3) <= 2

}.

Table IV.14 – Classe de types pour l’espace projectif exactement en dimension 3 avec la notion
de rang.



Annexe E : implantation Coq de plusieurs définitions récursives

Toutes ces fonctions récursives sont définies à partir d’une liste l, d’un point a et d’un type A.

1 Non égalité

Fixpoint contains_two_distinct_points l :=
match l with
| nil => false
| a :: nil => false
| a:: ((b::q) as reste) => if (eq_dec_u a b)

then (contains_two_distinct_points (reste)) else true
end.

Table IV.15 – Définition récursive du prédicat collinear.

2 Non colinéarité

Fixpoint contains_three_non_collinear_points l :=
match l with
| nil => false
| a::r => if collinear_with_all a (all_pairs r)

then contains_three_non_collinear_points r else true
end.

Table IV.16 – Définition récursive du prédicat contains_three_non_collinear_points.

Fixpoint collinear_with_all a l :=
match l with
| nil => true
| (b,c)::reste => if collinear a b c then collinear_with_all a reste else false
end.

Table IV.17 – Définition récursive du prédicat collinear_with_all.

180



3. Non coplanarité 181

Fixpoint all_pairs (l : list Point) : list (Point * Point) :=
match l with
| nil => nil
| a :: reste => (map_monotonic (fun x:Point => (a,x)) reste) ++ all_pairs reste
end.

Table IV.18 – Définition récursive du prédicat all_pairs.

3 Non coplanarité

Fixpoint contains_four_non_coplanar_points l := match l with
| nil => false
| a :: r => if coplanar_with_all a (all_triples r)

then contains_four_non_coplanar_points r else true
end.

Table IV.19 – Définition récursive du prédicat contains_four.

Fixpoint coplanar_with_all a l :=
match l with
| nil => true
| (b,c,d) :: r => if coplanar a b c d then coplanar_with_all a r else false
end.

Table IV.20 – Définition récursive du prédicat coplanar_with_all.

Fixpoint all_triples (l : list Point) : list (Point * Point * Point) :=
match l with
| nil => nil
| a :: reste => flatten _ (List.map (fun y:Point =>

(map_monotonic (fun x:Point => (a,x,y)) reste)) reste) ++ all_triples reste
end.

Table IV.21 – Définition récursive du prédicat all_triples.

Fixpoint flatten A (l : list (list A)) : list A :=
match l with
|nil => nil
|a :: r => app a (flatten A r)
end.

Table IV.22 – Définition récursive du prédicat flatten.



Annexe F : Définition Coq de la colinéarité et de la coplanarité

La fonction proj1_sig de la librairie standard permet de récupérer le témoin d’existence de
la droite entre les points a et b. La notation eq_dec_u désigne la décidabilité entre les points, la
notation eq_dec_l désigne la décidabilité entre les droites et enfin la notation eq_dec_p désigne
la décidabilité de l’intersection entre les deux droites passées en paramètre.

(* Definition collinear *)
Definition collinear (a b c : Point) : bool :=
if (eq_dec_u a b)

then true
else if incid_dec c (proj1_sig (a1_exist a b)) then true else false.

Table IV.23 – Définition du prédicat collinear.

(* Definition coplanar *)
Definition coplanar (a b c d : Point) : bool :=
if (eq_dec_u a b)

then true
else if (eq_dec_u c d)

then true
else let l1 := (proj1_sig (a1_exist a b)) in

let l2 := (proj1_sig (a1_exist c d)) in
if (eq_dec_l l1 l2) then true
else if (eq_dec_p l1 l2) then true
else false.

Table IV.24 – Définition du prédicat coplanar.

182



Annexe G : Architecture Coq de la bibliothèque
ProjectiveGeometry

Nous résumons l’architecture globale de notre bibliothèque ProjectiveGeometry rassemblant
la formalisation de la géométrie projective d’incidence, les géométries finies et les preuves auto-
matiques générées par notre prouveur de configurations géométriques d’incidence dans les figures
IV.4 et IV.3. Les blocs de couleur permettent de regrouper les parties du développement visant
le même objectif et peuvent être interprétés de la façon suivante :

• Bloc violet : Systèmes d’axiomes et tactiques en géométrie synthétique ;

• Bloc jaune : Systèmes d’axiomes et tactiques fondés sur la notion de rangs ;

• Bloc gris : Preuve de l’implication géométrie synthétique vers les rangs [BMS16,BMS19] ;

• Bloc rouge : Preuve de l’implication rangs vers la géométrie synthétique [BMS16,BMS19] ;

• Bloc vert : Preuve du théorème de Desargues en utilisant les rangs [MNS09,MNS12] ;

• Bloc bleu clair : Développement sur les décidabilités, les hexamys et différents modèles
dont Moulton [MNS11] ;

• Bloc orange : Développement des géométries finies en géométrie synthétique [BMS18] ;

• Bloc rose : Développement des géométries finies avec l’approche matroïdale et preuves
automatiques générées par le prouveur [BMS18] ;

• Bloc bleu foncé : Développement des espaces finies en géométrie synthétique en utilisant
l’extension Coq ssreflect [GM10,MT17].

183



184 Annexe G

Figure IV.3 – Architecture partie I de la bibliothèque ProjectiveGeometry.



Annexe G 185

Figure IV.4 – Architecture partie II de la bibliothèque ProjectiveGeometry.





Liste des tableaux

I.1.1 Description informelle de la géométrie d’incidence . . . . . . . . . . . . . . . . 15
I.1.2 Système d’axiomes standard pour la géométrie projective 2D . . . . . . . . . . 17
I.1.3 Illustrations du système d’axiomes standard pour la géométrie projective 2D . 18
I.1.4 Système d’axiomes alternatif pour la géométrie projective 2D . . . . . . . . . 19
I.1.5 Illustration de l’axiome alternatif (A4P2’) . . . . . . . . . . . . . . . . . . . . 19
I.1.6 Système d’axiomes pour la géométrie projective 3D . . . . . . . . . . . . . . . 20
I.1.7 Illustrations du système d’axiomes standard pour la géométrie projective 3D . 21
I.1.8 Classe de types pour la structure projective . . . . . . . . . . . . . . . . . . . 22
I.1.9 Classe de types pour l’égalité sur les points . . . . . . . . . . . . . . . . . . . . 23
I.1.10 Classe de types pour la structure projective indépendante de la dimension . . 23
I.1.11 Classe de types pour le plan projectif . . . . . . . . . . . . . . . . . . . . . . . 23
I.1.12 Classe de types pour l’espace projectif au moins en dimension 3 . . . . . . . . 24
I.1.13 Classe de types pour l’espace projectif exactement en dimension 3 . . . . . . . 24
I.1.14 Propriétés vérifiées par la relation d’incidence Eg d’arité 2 . . . . . . . . . . . 26
I.1.15 Propriétés vérifiées par la relation d’incidence Col d’arité 3 . . . . . . . . . . . 27
I.1.16 Propriétés vérifiées par la relation d’incidence Cop d’arité 4 . . . . . . . . . . 27
I.1.17 Propriétés vérifiées par la relation d’incidence Con d’arité n . . . . . . . . . . 27
I.1.18 Définition de la colinéarité à une droite . . . . . . . . . . . . . . . . . . . . . . 28
I.1.19 Illustration de la construction d’objets par niveau de profondeur sur un exemple

à trois points et deux droites. Noir configuration initiale, bleu : 1er niveau,
rouge : 2ème niveau, vert : 3ème niveau . . . . . . . . . . . . . . . . . . . . . . . 29

I.1.20 Énoncé Coq du théorème de Desargues exprimé uniquement en incidence . . . 36
I.1.21 Énoncé Coq du théorème de Desargues exprimé avec la colinéarité . . . . . . . 37
I.1.22 Énoncé Coq du théorème de Desargues exprimé avec le concept de rang . . . . 38

I.2.1 Axiomatisation des matroïdes avec les indépendants . . . . . . . . . . . . . . . 41
I.2.2 Axiomatisation des matroïdes avec les rangs . . . . . . . . . . . . . . . . . . . 42
I.2.3 Axiomatisation des matroïdes par la fermeture . . . . . . . . . . . . . . . . . . 42
I.2.4 Propriétés sur les plats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
I.2.5 Illustration de la notion de rang sur des ensembles de points . . . . . . . . . . 43
I.2.6 Système d’axiomes basé sur les rangs pour la géométrie projective nD . . . . . 43
I.2.7 Système d’axiomes basé sur les rangs pour la géométrie projective 2D . . . . . 44
I.2.8 Système d’axiomes basé sur les rangs pour la géométrie projective ≥3D . . . . 44
I.2.9 Système d’axiomes basé sur les rangs pour la géométrie projective 3D . . . . . 45
I.2.10 Classe de types pour la structure projective basé sur les rangs . . . . . . . . . 45
I.2.11 Classe de types pour la structure matroïdale . . . . . . . . . . . . . . . . . . . 46
I.2.12 Caractérisation de la géométrie synthétique à partir de la notion de rang . . . 47
I.2.13 Caractérisation de la fonction de rang à partir de la géométrie d’incidence

projective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
I.2.14 Définition récursive du prédicat contains_four . . . . . . . . . . . . . . . . . 51

187



188 LISTE DES TABLEAUX

I.2.15 Définition récursive du prédicat coplanar_with_all . . . . . . . . . . . . . . 51
I.2.16 Tactique de simplification du contexte Coq impliquant la fonction de rang . . 52
I.2.17 Tactique simple pour du calcul automatique d’inclusion . . . . . . . . . . . . . 54
I.2.18 Tactique optimisée pour du calcul automatique d’inclusion . . . . . . . . . . . 55
I.2.19 Preuve Coq de la propriété matroïdale de non-décroissance . . . . . . . . . . . 55
I.2.20 Lemmes intermédiaires sur les cas non triviaux de la sous-modularité . . . . . 56
I.2.21 Exemple de morphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I.2.22 Taille de la preuve de l’équivalence selon la direction et la dimension. L’abré-

viation G. S. dénote la « Géométrie Synthétique » . . . . . . . . . . . . . . . . 57
I.2.23 Table de correspondance pour la traduction bilatérale entre les deux théories . 58
I.2.24 Exemple de traduction en Coq de la géométrie synthétique vers les rangs . . . 59
I.2.25 Illustration du changement de contexte Coq suite à l’application de la tactique

de traduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

II.1.1 Nombre de plans projectifs connus d’ordre q . . . . . . . . . . . . . . . . . . . 74
II.1.2 Initialisation de la table de construction du plan fini . . . . . . . . . . . . . . 77
II.1.3 Premier décalage de la ligne 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
II.1.4 Premier décalage de la ligne 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
II.1.5 Deuxième décalage de la ligne 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 78
II.1.6 Troisième décalage de la ligne 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 78
II.1.7 Exemple de matrice d’incidence du plan projectif d’ordre 2 . . . . . . . . . . . 79
II.1.8 Application du patron au modèle fini pg(2, 3) en géométrie synthétique . . . . 80
II.1.9 Application du patron au modèle fini pg(2, 3) en utilisant les rangs . . . . . . 81
II.1.10 Rappel de la propriété d’unicité de la géométrie synthétique . . . . . . . . . . 83
II.1.11 Différence de formulation de la propriété d’existence d’une intersection entre

les deux approches de la géométrie d’incidence projective . . . . . . . . . . . . 83
II.1.12 Exemple d’élagage dans la preuve de la propriété d’unicité de la géométrie

synthétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
II.1.13 Exemple d’élagage amélioré dans la preuve de la propriété d’unicité de la géo-

métrie synthétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
II.1.14 Rappel de la propriété d’Upper-Dimension en géométrie synthétique . . . . . . 86
II.1.15 Fonction qui calcule une droite témoin pour la propriété d’Upper-Dimension

en géométrie synthétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
II.1.16 Rappel de la propriété de Pasch en géométrie synthétique . . . . . . . . . . . 87
II.1.17 Utilisation de la correspondance de Curry-Howard en géométrie synthétique . 88
II.1.18 Exemple de relation d’ordre dans la propriété de Pasch en géométrie synthétique 89
II.1.19 Exemple de retour du profiler Ltac en appliquant deux tactiques sur le même

contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
II.1.20 Tests de performance pour plusieurs preuves en géométrie finie réalisés sur une

machine standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
II.1.21 Résumé des décisions de l’ensemble des prouveurs SAT/SMT de la librairie

tptp pour deux conjectures géométriques. . . . . . . . . . . . . . . . . . . . . . 94
II.1.22 Tests de performance pour les solveurs SAT/SMT dont la décision est un succès

pour deux conjectures géométriques. . . . . . . . . . . . . . . . . . . . . . . . 95

III.1.1 Propriétés utilisées jusqu’à saturation . . . . . . . . . . . . . . . . . . . . . . . 108
III.1.2 Règles de réécriture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
III.1.3 Exemple d’énoncé géométrique à saturer . . . . . . . . . . . . . . . . . . . . . 114
III.1.4 Illustration d’un bloc correspondant à l’application d’une règle . . . . . . . . . 120
III.1.5 Taille de la preuve en nombre de lignes en fonction de l’ordre des règles . . . . 125



LISTE DES TABLEAUX 189

III.1.6 Comparaison du nombre de règles appliquées globalement entre les deux prin-
cipales propriétés matroïdales . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III.1.7 Temps d’exécution moyen en fonction de l’intégration de la règle de Pappus . 126
III.1.8 Temps d’exécution moyen en fonction de l’heuristique de parcours . . . . . . . 128

III.2.1 Énoncé mathématique associé au lemme III.2.1 . . . . . . . . . . . . . . . . . 135
III.2.2 Preuve Coq associée au lemme III.2.1 . . . . . . . . . . . . . . . . . . . . . . . 136
III.2.3 Énoncé mathématique associé au lemme III.2.2 . . . . . . . . . . . . . . . . . 137
III.2.4 Énoncé mathématique associé au lemme III.2.3 . . . . . . . . . . . . . . . . . 138
III.2.5 Énoncé mathématique associé au lemme III.2.4 . . . . . . . . . . . . . . . . . 139
III.2.6 Énoncé mathématique associé au lemme III.2.5 . . . . . . . . . . . . . . . . . 141
III.2.7 Énoncé mathématique associé au lemme III.2.6 . . . . . . . . . . . . . . . . . 142
III.2.8 Énoncé mathématique associé au lemme III.2.7 . . . . . . . . . . . . . . . . . 143
III.2.9 Énoncé mathématique associé au lemme III.2.7 . . . . . . . . . . . . . . . . . 146
III.2.10 Test de performance pour les lemmes intermédiaires de Desargues . . . . . . . 146
III.2.11 Énoncé mathématique associé au théorème III.2.1 . . . . . . . . . . . . . . . . 149
III.2.12 Énoncé mathématique associé au théorème III.2.1 avec extrusion de la figure 2D149
III.2.13 Test de performance pour la preuve de Desargues en 3D . . . . . . . . . . . . 150
III.2.14 Test de performance avec coloration de la preuve de Desargues en 3D . . . . . 150
III.2.15 Test de performance sans suppression d’hypothèses pour la preuve de Desargues

en 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
III.2.16 Énoncé mathématique associé au théorème III.2.2 . . . . . . . . . . . . . . . . 154
III.2.17 Test de performance pour la preuve du conjugué harmonique . . . . . . . . . . 154
III.2.18 Test de performance avec coloration pour la preuve du conjugué harmonique . 154
III.2.19 Test de performance avec subdivision pour la preuve du conjugué harmonique 154
III.2.20 Énoncé mathématique associé au théorème III.2.3 . . . . . . . . . . . . . . . . 158
III.2.21 Test de performance pour la preuve du théorème de Dandelin-Gallucci . . . . 159
III.2.22 Test de performance avec subdivision de la preuve du théorème de Dandelin-

Gallucci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
IV.1 Système d’axiomes standard pour la géométrie projective 2D . . . . . . . . . . 171
IV.2 Illustrations du système d’axiomes standard pour la géométrie projective 2D . 171
IV.3 Système d’axiomes pour la géométrie projective 3D . . . . . . . . . . . . . . . 172
IV.4 Illustrations du système d’axiomes standard pour la géométrie projective 3D . 172
IV.5 Système d’axiomes basé sur les rangs pour la géométrie projective nD . . . . . 173
IV.6 Système d’axiomes basé sur les rangs pour la géométrie projective 2D . . . . . 173
IV.7 Système d’axiomes basé sur les rangs pour la géométrie projective ≥3D . . . . 174
IV.8 Système d’axiomes basé sur les rangs pour la géométrie projective 3D . . . . . 174
IV.9 Classe de types pour la structure projective basé sur les rangs . . . . . . . . . 177
IV.10 Classe de types pour la structure matroïdale . . . . . . . . . . . . . . . . . . . 177
IV.11 Classe de types pour les axiomes indépendants de la dimension avec la notion

de rang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
IV.12 Classe de types pour le plan projectif avec la notion de rang . . . . . . . . . . 178
IV.13 Classe de types pour l’espace projectif au moins en dimension 3 avec la notion

de rang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
IV.14 Classe de types pour l’espace projectif exactement en dimension 3 avec la notion

de rang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
IV.15 Définition récursive du prédicat collinear . . . . . . . . . . . . . . . . . . . . 180
IV.16 Définition récursive du prédicat contains_three_non_collinear_points . . 180
IV.17 Définition récursive du prédicat collinear_with_all . . . . . . . . . . . . . . 180



IV.18 Définition récursive du prédicat all_pairs . . . . . . . . . . . . . . . . . . . . 181
IV.19 Définition récursive du prédicat contains_four . . . . . . . . . . . . . . . . . 181
IV.20 Définition récursive du prédicat coplanar_with_all . . . . . . . . . . . . . . 181
IV.21 Définition récursive du prédicat all_triples . . . . . . . . . . . . . . . . . . 181
IV.22 Définition récursive du prédicat flatten . . . . . . . . . . . . . . . . . . . . . 181
IV.23 Définition du prédicat collinear . . . . . . . . . . . . . . . . . . . . . . . . . 182
IV.24 Définition du prédicat coplanar . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Table des figures

I.1.1 Imbrication des tests de décidabilité . . . . . . . . . . . . . . . . . . . . . . . . 26
I.1.2 Clôture des hypothèses dans un exemple simple . . . . . . . . . . . . . . . . . 28
I.1.3 Une configuration du théorème de Desargues dans l’espace projectif . . . . . . 33
I.1.4 Plan projectif fini de Fano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
I.1.5 Configuration de Desargues dans le plan de Moulton . . . . . . . . . . . . . . 34
I.1.6 Une configuration du théorème de Pappus dans l’espace projectif . . . . . . . 35

II.1.1 Plan projectif fini pg(2, 2) ou de Fano : 7 points et 7 droites . . . . . . . . . . 74
II.1.2 Plan projectif fini pg(2, 3) : 13 points et 13 droites (AEFG, CELM , . . .) . . . 75
II.1.3 Plan projectif fini pg(3, 2) illustré par Frans Marcelis . . . . . . . . . . . . . . 75

III.1.1 Pipeline du prouveur par saturation . . . . . . . . . . . . . . . . . . . . . . . . 107
III.1.2 Représentation mémoire d’un ensemble de points avec ses rangs . . . . . . . . 111
III.1.3 Représentation d’une partie du GD avec l’application de la règle RS5 . . . . . 113
III.1.4 Illustration de la configuration géométrique de la Table III.1.3 . . . . . . . . . 114
III.1.5 GD initialisé associé à la configuration géométrique de la Table III.1.3 . . . . . 114
III.1.6 GD partiellement saturé associé à la configuration géométrique de la Table III.1.3115
III.1.7 GD complètement saturé associé à la configuration géométrique de la Table

III.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
III.1.8 Fenêtre des derniers noeuds calculés associée à la configuration géométrique de

la Table III.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
III.1.9 Cheminement pour accéder aux dernières informations de la partie ABCE . . 118
III.1.10 Cheminement de la Reconstruction de la preuve dans le GD associé à la confi-

guration géométrique de la Table III.1.3 . . . . . . . . . . . . . . . . . . . . . 119
III.1.11 Différentes configurations possibles pour l’heuristique de coloration . . . . . . 128
III.1.12 Stratification d’un énoncé géométrique contenant une application de Pappus . 130
III.1.13 Preuves par couche d’un énoncé géométrique à 3 strates . . . . . . . . . . . . 131

III.2.1 Illustration du lemme III.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
III.2.2 GD complètement saturé associé à la configuration géométrique du lemme III.2.1136
III.2.3 Illustration du lemme III.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
III.2.4 GD complètement saturé associé à la configuration géométrique du lemme III.2.2137
III.2.5 Illustration du lemme III.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
III.2.6 GD complètement saturé associé à la configuration géométrique du lemme III.2.3138
III.2.7 Illustration du lemme III.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

190



III.2.8 GD complètement saturé associé à la configuration géométrique du lemme III.2.4140
III.2.9 Illustration du lemme III.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
III.2.10 Illustration du lemme III.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
III.2.11 Illustration du lemme III.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
III.2.12 Illustration du lemme III.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
III.2.13 Illustration de la preuve du lemme III.2.8 . . . . . . . . . . . . . . . . . . . . . 145
III.2.14 Illustration de la preuve du lemme III.2.8 . . . . . . . . . . . . . . . . . . . . . 145
III.2.15 Illustration du théorème III.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 147
III.2.16 Illustration du théorème III.2.1 avec extrusion de la figure 2D . . . . . . . . . 147
III.2.17 Illustration du théorème III.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 151
III.2.18 Illustration de la preuve du théorème III.2.2 . . . . . . . . . . . . . . . . . . . 153
III.2.19 Illustration de la preuve du théorème III.2.2 . . . . . . . . . . . . . . . . . . . 153
III.2.20 Illustration de la propriété III.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 155
III.2.21 Illustration de la preuve du théorème III.2.3 . . . . . . . . . . . . . . . . . . . 157
III.2.22 Illustration de la preuve du théorème III.2.3 . . . . . . . . . . . . . . . . . . . 158
IV.1 Une configuration du théorème de Desargues dans l’espace projectif . . . . . . 175
IV.2 Une configuration du théorème de Pappus dans l’espace projectif . . . . . . . 176
IV.3 Architecture partie I de la bibliothèque ProjectiveGeometry . . . . . . . . . . 184
IV.4 Architecture partie II de la bibliothèque ProjectiveGeometry . . . . . . . . . . 185

Liste des Algorithmes

II.1.1 Recherche d’un plan fini d’ordre q . . . . . . . . . . . . . . . . . . . . . . . . . . 78

III.1.1 Algorithme de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
III.1.2 Étape d’initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
III.1.3 Étape de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
III.1.4 Étape de saturation et construction du GD . . . . . . . . . . . . . . . . . . . . 116
III.1.5 Étape de saturation, construction du GD et mise à jour de la fenêtre . . . . . . 118
III.1.6 Étape de reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
III.1.7 Parcours de l’ensemble des paires de l’ensemble des parties . . . . . . . . . . . . 124
III.1.8 Étape de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
III.1.9 Parcours de l’ensemble des paires de l’ensemble des parties avec coloration . . . 129

191





Bibliographie

[ADGR05] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified proof of the prime
number theorem. In arXiv preprint cs/0509025, 2005.

[AFG+11a] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benja-
min Werner. A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In
International Conference on Certified Programs and Proofs, pages 135–150. Springer, 2011.

[AFG+11b] Mickaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benjamin
Wener. Verifying SAT and SMT in Coq for a Fully Automated Decision Procedure. In International
Workshop on Proof-Search in Axiomatic Theories and Type Theories (PSATTT’11), 2011.

[AH89] Kenneth I. Appel and Wolfgang Haken. Every Planar Map is Four Colorable. volume 98. American
Mathematical Soc., 1989.

[Bak25] Henry Frederick Baker. Principles of Geometry. volume 1-6. Cambridge University Press, 1925.

[Bat97] Lynn Margaret Batten. Combinatorics of Finite Geometries. Cambridge University Press, 1997.

[BBN16] Gabriel Braun, Pierre Boutry, and Julien Narboux. From Hilbert to Tarski. In Eleventh International
Workshop on Automated Deduction in Geometry, page 19, 2016.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development, Coq’Art :
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Science,
2004.

[BDL16] Arthur Blot, Pierre-Évariste Dagand, and Julia Lawall. From Sets to Bits in Coq. In FLOPS 2016,
Kochi, Japan, 2016.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda–a Functional Language with
Dependent Types. In International Conference on Theorem Proving in Higher Order Logics, pages
73–78. Springer, 2009.

[BdODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT : an
open, trustable and efficient SMT-solver. In International Conference on Automated Deduction,
volume 5663 of Lecture Notes in Computer Science, pages 151–156. Springer, 2009.

[Bee13] Michael Beeson. Proof and Computation in Geometry. In Tetsuo Ida and Jacques Fleuriot, editors,
International Workshop on Automated Deduction in Geometry, volume 7993, pages 1–30, Berlin,
Heidelberg, 2013. Springer.

[Ben12] Christoforus Juan Benvenuto. Galois Field in Cryptography. In University of Washington, 2012.

[BM15] David Braun and Nicolas Magaud. Des preuves formelles en Coq du théorème de Thalès pour les
cercles. In Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Val d’Ajol,
France, 2015.

[BMS16] David Braun, Nicolas Magaud, and Pascal Schreck. An Equivalence Proof Between Rank Theory
and Incidence Projective Geometry. In Automated Deduction in Geometry 2016, Proceedings of
Automated Deduction in Geometry 2016, pages 62–77, 2016.

[BMS18] David Braun, Nicolas Magaud, and Pascal Schreck. Formalizing Some ”Small” Finite Models of
Projective Geometry in Coq. In Proceedings of the 13th International Conference on Artificial
Intelligence and Symbolic Computation (AISC’2018), pages 54–69, Suzhou, China, 2018.

[BMS19] David Braun, Nicolas Magaud, and Pascal Schreck. Two Cryptomorphic Formalizations of Projective
Incidence Geometry. In Annals of Mathematics and Artificial Intelligence, volume 85, pages 193–212.
Springer Verlag, 2019.

[BN12] Gabriel Braun and Julien Narboux. From Tarski to Hilbert. In International Workshop on Automated
Deduction in Geometry, pages 89–109. Springer, 2012.

193



194 BIBLIOGRAPHIE

[BNS15] Pierre Boutry, Julien Narboux, and Pascal Schreck. A Reflexive Tactic for Automated Generation
of Proofs of Incidence to an Affine Variety. 2015.

[BNSB14a] Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. A Short Note About Case
Distinctions in Tarski’s Geometry. In Francisco Botana and Pedro Quaresma, editors, Automated
Deduction in Geometry 2014, Proceedings of Automated Deduction in Geometry 2014, pages 1–15.
Springer, 2014.

[BNSB14b] Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. Using Small Scale Automation
to Improve both Accessibility and Readability of Formal Proofs in Geometry. In Francisco Botana
and Pedro Quaresma, editors, Automated Deduction in Geometry 2014, Proceedings of Automated
Deduction in Geometry 2014, pages 1–19. Springer, 2014.

[Bos38] Raj Chandra Bose. On the Application of the Properties of Galois Fields to the Problem of Construc-
tion of Hyper-Graeco-Latin Squares. In Sankhyā : The Indian Journal of Statistics, pages 323–338.
JSTOR, 1938.

[Bou97] Samuel Boutin. Using Reflection to Build Efficient and Certified Decision Procedures. In Interna-
tional Symposium on Theoretical Aspects of Computer Software, volume 1281 of Lecture Notes in
Computer Science, pages 515–529. Springer Berlin Heidelberg, 1997.

[BP11] Jasmin Christian Blanchette and Lawrence C. Paulson. Hammering away : A user’s guide to Sled-
gehammer for Isabelle/HOL. 2011.

[BP15] John Bamberg and Tim Penttila. Completing Segre’s Proof of Wedderburn’s Little Theorem. In
Bulletin of the London Mathematical Society, volume 47, pages 483–492. Oxford University Press,
2015.

[BR98] Albrecht Beutelspacher and Ute Rosenbaum. Projective Geometry : from Foundations to Applica-
tions. Cambridge University Press, 1998.

[Bru11] Richard H. Bruck. Construction Problems in Finite Projective Spaces. In Finite geometric structures
and their applications, pages 105–191. Springer, 2011.

[BTT15] Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous Processing of Coq Documents : from
the Kernel up to the User Interface. In International Conference on Interactive Theorem Proving,
pages 51–66, Nanjing, China, 2015. Springer.

[Bue95] Francis Buekenhout. Handbook of Incidence Geometry : Buildings and Foundations. Elsevier, 1995.

[BW98] Bruno Buchberger and Franz Winkler. Gröbner bases and applications. volume 17. Cambridge
University Press Cambridge, 1998.

[BW11] Simeon Ball and Zsuzsa Weiner. An Introduction to Finite Geometry. In Preprint, volume 162,
2011.

[Cal18] Guillermo Calderón. Formalizing Constructive Projective Geometry in Agda. In Electronic Notes
in Theoretical Computer Science, volume 338, pages 61–77. Elsevier, 2018.

[CGZ94] Shang-Ching Chou, Xiao-Shan Gao, and Jingzhong Zhang. Machine proofs in geometry : Automated
production of readable proofs for geometry theorems. volume 6. World Scientific, 1994.

[Chl13] Adam Chlipala. Certified Programming with Dependent Types : a Pragmatic Introduction to the
Coq Proof Assistant. MIT Press, 2013.

[CK18] Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq : Automation for Dependent Type Theory.
In Journal of automated reasoning, volume 61, pages 423–453. Springer, 2018.

[Coq02] Coq development team. The Coq Proof Assistant : Reference Manual : Version 7.2. Number RT-0255,
page 290. 2002.

[Cox03] Harold Scott Macdonald Coxeter. Projective Geometry. Springer Science & Business Media, 2003.

[CP88] Thierry Coquand and Christine Paulin. Inductively Defined Types. In International Conference on
Computer Logic, pages 50–66. Springer, 1988.

[Cré17] Pierre Crégut. Omega : a Solver of Quantifier-free Problems in Presburger Arithmetic. In The Coq
Proof Assistant Reference Manual, Version, volume 8, 2017.

[CS03] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style finite model finding.
In Proceedings of the CADE-19 Workshop : Model Computation-Principles, Algorithms, Applications,
pages 11–27. Citeseer, 2003.

[CS12] Pierre Castéran and Matthieu Sozeau. A Gentle Introduction to Type Classes and Relations in Coq.
In Technical Report hal-00702455, version 1. 2012.



BIBLIOGRAPHIE 195

[DDS00] Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck. Higher-Order Intuitionistic For-
malization and Proofs in Hilbert’s Elementary Geometry. In Revised Papers from the Third In-
ternational Workshop on Automated Deduction in Geometry, ADG 2000, pages 306–324. Springer,
2000.

[Del00] David Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic for Programming
and Automated Reasoning (LPAR), volume 1955 of Lecture Notes in Computer Science, pages 85–95.
Springer, 2000.

[Dem12] Peter Dembowski. Finite Geometries : Reprint of the 1968 Edition. Springer Science & Business
Media, 2012.

[DGG16] Catherine Dubois, Alain Giorgetti, and Richard Genestier. Tests and Proofs for Enumerative Combi-
natorics. In TAP 2016 : International Conference on Tests and Proofs, pages 57–75, Vienna, Austria,
2016. Springer.

[DM01] David Delahaye and Micaela Mayero. Field : une Procédure de Décision pour les Nombres Réels en
Coq. In JFLA : Journées Francophones des Langages Applicatifs, pages 1–16, Pontarlier, France,
2001.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3 : An Efficient SMT Solver. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer, 2008.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean Theorem Prover (System Description). In Proceedings of CADE 2015, volume 9195 of Lecture
Notes in Computer Science, pages 378–388. Springer, 2015.

[Dup08] Jean Duprat. Une Axiomatique de la Géométrie Plane en Coq. In Dix-neuvièmes Journées Franco-
phones des Langages Applicatifs (JFLA 2008), pages 123–136, Etretat, France, 2008.

[EDH02] Euclid, Dana Densmore, and Thomas Little Heath. Euclid’s elements : All thirteen books complete
in one volume. Green Lion Press, 2002.

[EMT+17] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark
Barrett. SMTCoq : A plug-in for Integrating SMT Solvers into Coq. In Computer Aided Verification
- 29th International Conference, Heidelberg, Germany, 2017.

[EP11] Christian Eder and John Edward Perry. Signature-based Algorithms to Compute Gröbner Bases.
In Proceedings of the 36th international symposium on Symbolic and algebraic computation, pages
99–106. ACM, 2011.

[FMM+06] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen Tiu. Expressi-
veness+ automation+ soundness : Towards combining SMT solvers and Interactive Proof Assistants.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 167–181. Springer, 2006.

[Fon18] Pascal Fontaine. Satisfiability Modulo Theories : State-of-the-art, Contributions, Project. PhD thesis,
Université de lorraine, 2018.

[FT10] Laurent Fuchs and Laurent Théry. A Formalization of Grassmann-Cayley Algebra in COQ and Its
Application to Theorem Proving in Projective Geometry. In Automated Deduction in Geometry,
ADG 2010, volume 6877 of Lecture Notes in Computer Science, pages 51–67, Munich, Germany,
2010.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A Machine-Checked Proof of the Odd
Order Theorem. In Sandrine Blazy and Christine Paulin and David Pichardie, editor, ITP 2013, 4th
Conference on Interactive Theorem Proving, volume 7998 of LNCS, pages 163–179, Rennes, France,
2013. Springer.

[Gal08] Évariste Galois. Manuscrits de Évariste Galois. Gauthier-Villars, 1908.

[GHL60] Herbert Gelernter, James R. Hansen, and Donald W. Loveland. Empirical Explorations of the
Geometry Theorem Machine. In Papers presented at the May 3-5, 1960, western joint IRE-AIEE-
ACM computer conference, pages 143–149. ACM, 1960.

[GL02] Benjamin Grégoire and Xavier Leroy. A Compiled Implementation of Strong Reduction. In ACM
SIGPLAN Notices, volume 37, pages 235–246. ACM, 2002.

[GM10] Georges Gonthier and Assia Mahboubi. An Introduction to Small Scale Reflection in Coq. In Journal
of formalized reasoning, volume 3, pages 95–152, 2010.



196 BIBLIOGRAPHIE

[GM12] Gary Gordon and Jennifer McNulty. Matroids : a Geometric Introduction. Cambridge University
Press, 2012.

[GNS11] Jean-David Génevaux, Julien Narboux, and Pascal Schreck. Formalization of Wu’s Simple Method
in Coq. In CPP 2011 First International Conference on Certified Programs and Proofs, volume 7086
of Lecture Notes in Computer Science, pages 71–86, Kenting, Taiwan, 2011. Springer.

[Gon05] Georges Gonthier. A Computer-checked Proof of the Four Colour Theorem. 2005.

[Gon07] Georges Gonthier. The Four Colour Theorem : Engineering of a Formal Proof. In Asian Symposium
on Computer Mathematics, pages 333–333. Springer, 2007.

[Gui04] Frédérique Guilhot. Formalisation en Coq et Visualisation d’un Cours de Géometrie pour le Lycée.
In Quinzièmes Journées Francophones des Langages Applicatifs (JFLA 2004), volume 7, page 15,
Sainte-Marie-de-Ré, France, 2004. Revue des Sciences et Technologies de l’Information, Technique
et Science Informatiques, Langages applicatifs.

[GZND11] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How to Make Ad Hoc Proof
Automation Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 163–175, New York, NY, USA, 2011. ACM.

[HAB+17] Thomas C. Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A Formal Proof of
the Kepler Conjecture. In Forum of Mathematics, Pi, volume 5. Cambridge University Press, 2017.

[Hal43] Marshall Hall. Projective planes. In Transactions of the American Mathematical Society, volume 54,
pages 229–277. JSTOR, 1943.

[Hal98] Thomas C. Hales. The Kepler Conjecture. In arXiv preprint math.MG/9811078. Springer, 1998.

[Hal07] Thomas C. Hales. The Jordan Curve Theorem, Formally and Informally. In The American Mathe-
matical Monthly, volume 114, pages 882–894. Taylor & Francis, 2007.

[Har96] John Harrison. HOL Light : a Tutorial Introduction. In International Conference on Formal Methods
in Computer-Aided Design, pages 265–269. Springer Berlin Heidelberg, 1996.

[Har09] John Harrison. Formalizing an Analytic Proof of the Prime Number Theorem. In Journal of
Automated Reasoning, volume 43, pages 243–261. Springer, 2009.

[Hil60] David Hilbert. Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle,
Illinois, 1960. Second English edition, translated from the tenth German edition by Leo Unger.
Original publication date, 1899.

[Hor17] Ákos G Horváth. Gallucci’s axiom revisited. In arXiv preprint arXiv :1712.04800, 2017.

[Jan11] Predrag Janicic. Automated Reasoning : some Successes and New Challenges. In Central European
Conference on Information and Intelligent Systems, page 13. Faculty of Organization and Informatics
Varazdin, 2011.

[JNQ12] Predrag Janičić, Julien Narboux, and Pedro Quaresma. The Area Method : a Recapitulation. In
Journal of Automated Reasoning, volume 48, pages 489–532. Springer, 2012.

[Jon03] Simon Peyton Jones. Haskell 98 Language and Libraries : the Revised Report. Cambridge University
Press, 2003.

[JTNM06] Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, and Pascal Mathis. Decomposition of
Geometric Constraint Systems : a Survey. In International Journal of Computanional Geometry &
Application, volume 16, pages 379–414. World Scientific, 2006.

[Kah95] Gilles Kahn. Constructive Geometry According to Jan von Plato. In Coq contribution. Coq, volume 5,
page 10. 1995.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4 : Formal Verification of
an OS Kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 207–220. ACM, 2009.

[Kod14] Dimitrios Kodokostas. Proving and Generalizing Desargues’ Two-Triangle Theorem in 3-Dimensional
Projective Space. In Geometry, volume 2014. Hindawi, 2014.

[KRB84] Brian W Kernighan, Dennis M Ritchie, and Thierry Buffenoir. Le Langage C. Masson, 1984.

[Kus90] Eugeniusz Kusak. Desargues Theorem in Projective 3-Space. In J. of Formalized Mathematics,
volume 2. Citeseer, 1990.

[KV13] Laura Kovács and Andrei Voronkov. First-order Theorem Proving and Vampire. In International
Conference on Computer Aided Verification, pages 1–35. Springer, 2013.



BIBLIOGRAPHIE 197

[Lam96] Clement W. H. Lam. The Search for a Finite Projective Plane of Order 10. In The Organic
Mathematics Project Proceedings, volume 20, 1996.

[Ler06] Xavier Leroy. Formal Certification of a Compiler Back-end or : Programming a Compiler with a
Proof Assistant. In ACM SIGPLAN Notices, volume 41, pages 42–54. ACM, 2006.

[Les11] Stéphane Lescuyer. First-Class Containers in Coq. In Stud. Inform. Univ., volume 9, pages 87–127,
2011.

[LKT91] Clement W. H. Lam, Galina Kolesova, and Larry Thiel. A Computer Search for Finite Projective
Planes of Order 9. In Discrete Mathematics, volume 92, pages 187–195. Elsevier, 1991.

[LTS89] Clement W. H. Lam, Larry Thiel, and Stanley Swiercz. The Non-Existence of Finite Projective
Planes of Order 10. In Canadian Journal of Mathematics, volume 41, pages 1117–1123. Cambridge
University Press, 1989.

[LW93] Xavier Leroy and Pierre Weis. Manuel de référence du langage Caml. InterEditions, 1993.

[LW03] Hongbo Li and Yihong Wu. Automated Short Proof Generation for Projective Geometric Theorems
with Cayley and Bracket Algebras : I. Incidence Geometry. In Journal of Symbolic Computation,
volume 36, pages 717–762. Elsevier, 2003.

[Mao11] Linfan Mao. Combinatorial Geometry with Applications to Field Theory, graduate textbook in
mathematics. Infinite Study, 2011.

[MBG06] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem provers : A case study
combining HOL-Light and CVC Lite. In Electronic Notes in Theoretical Computer Science, volume
144, pages 43–51. Elsevier, 2006.

[MF03] Laura Meikle and Jacques Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In Theorem
proving in higher logics, volume 2758, pages 319–334. Springer Berlin Heidelberg, 2003.

[MF06] Laura Meikle and Jacques Fleuriot. Mechanical Theorem Proving in Computational Geometry.
In Hoon Hong and Dongming Wang, editors, International Workshop on Automated Deduction in
Geometry, pages 1–18. Springer Berlin Heidelberg, 2006.

[MFLS06] Dominique Michelucci, Sebti Foufou, Loïc Lamarque, and Pascal Schreck. Geometric Constraints
Solving :some Tracks. In Proceedings of the 2006 ACM symposium on Solid and physical modeling,
pages 185–196, 2006.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff :
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation Confe-
rence, pages 530–535. ACM, 2001.

[MNKJ16] Vesna Marinkovic, Mladen Nikolic, Zoltán Kovács, and Predrag Janicic. Portfolio Methods in Theo-
rem Proving for Elementary Geometry. In Automated Deduction in Geometry 2016, Proceedings of
Automated Deduction in Geometry 2016, pages 152–161, 2016.

[MNS09] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing Desargues Theorem in Coq using
Ranks. In 24th Annual ACM Symposium on Applied Computing, Proceedings of SAC 2009, pages
1110–1115. ACM, 2009.

[MNS11] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing Projective Plane Geometry in
Coq. In Automated Deduction in Geometry, volume 6301 of Lecture Notes in Computer Science,
pages 141–162. Springer, 2011.

[MNS12] Nicolas Magaud, Julien Narboux, and Pascal Schreck. A Case Study in Formalizing Projective
Geometry in Coq : Desargues Theorem. In Computational Geometry : Theory and Applications,
volume 45 of Special Issue on geometric reasoning, pages 406–424. Elsevier, 2012.

[Mou02] Forest Ray Moulton. A Simple Non-Desarguesian Plane Geometry. In Transactions of the American
Mathematical Society, volume 3, pages 192–195. JSTOR, 1902.

[MS04] Dominique Michelucci and Pascal Schreck. Detecting Induced Incidences in the Projective Plane.
In isiCAD Workshop. Citeseer, 2004.

[MS06] Dominique Michelucci and Pascal Schreck. Incidence Constraints : a Combinatorial Approach. In
International J. of Computational Geometry & Application, volume 16, pages 443–460. World Scien-
tific, 2006.

[MT17] Assia Mahboubi and Enrico Tassi. Mathematical Components. 2017.

[MW05] J. H. Maclagan-Wedderburn. A theorem on finite algebras. In Transactions of the American Ma-
thematical Society, volume 6, pages 349–352. JSTOR, 1905.



198 BIBLIOGRAPHIE

[Nar04] Julien Narboux. A Decision Procedure for Geometry in Coq. In Theorem Proving in Higher Order
Logics 2004, volume 3223, pages 225–240. Springer, 2004.

[Nar06a] Julien Narboux. Formalisation et Automatisation du Raisonnement Géométrique en Coq. PhD
thesis, Université Paris Sud-Paris XI, 2006.

[Nar06b] Julien Narboux. Mechanical Theorem Proving in Tarski’s Geometry. In Automated Deduction in
Geometry, volume 4869, pages 139–156. Springer, 2006.

[NGdV94] Rob P. Nederpelt, Jan Herman Geuvers, and Roel C. de Vrijer. Selected Papers on Automath.
volume 133. Elsevier, 1994.

[NJF18] Julien Narboux, Predrag Janičić, and Jacques Fleuriot. Computer-assisted Theorem Proving in
Synthetic Geometry. In Meera Sitharam, Audrey St. John, and Jessica Sidman, editors, Handbook
of Geometric Constraint Systems Principles, Discrete Mathematics and Its Applications. Chapman
and Hall/CRC, 2018.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories :
from an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL (T). In Journal of the
ACM (JACM), volume 53, pages 937–977. ACM, 2006.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL : a Proof Assistant for
Higher-order Logic. volume 2283. Springer Science & Business Media, 2002.

[Oxl06] James G. Oxley. Matroid Theory. volume 3. Oxford University Press, USA, 2006.

[Pot08] Loïc Pottier. Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and
Arithmetics. In Sutcliffe, G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, and S., editors, Knowledge
Exchange : Automated Provers and Proof Assistants, CEUR Workshop Proceedings, page 418, Doha,
Qatar, 2008.

[Pri99] Alan R. Prince. Projective Planes of Order 12 and PG (3, 3). In Discrete mathematics, volume 208,
pages 477–483. Elsevier, 1999.

[PW98] Tim Penttila and B William. Regular packings of PG (3, q). In European Journal of Combinatorics,
volume 19, pages 713–720. Elsevier, 1998.

[RG95] Jürgen Richter-Gebert. Mechanical Theorem Proving in Projective Geometry. In Annals of Mathe-
matics and Artificial Intelligence, volume 13, pages 139–172. Springer, 1995.

[RK70] Thomas Gerald Room and P. B. Kirkpatrick. Mini Quaternion Geometry : an Introduction to the
Study of Projective Plans. Cambridge University Press, 1970.

[Ros17] Kenneth H. Rosen. Handbook of Discrete and Combinatorial Mathematics. Chapman and Hall/CRC,
2017.

[Sch19] Pascal Schreck. On the Mechanization of Straightedge and Compass Constructions. In Journal of
Systems Science and Complexity, volume 32, pages 124–149, 2019.

[Sco08] Phil Scott. Mechanising Hilbert’s Foundations of Geometry in Isabelle. InMaster’s thesis, University
of Edinburgh. Citeseer, 2008.

[SF12] Phil Scott and Jacques Fleuriot. A Combinator Language for Theorem Discovery. In Johan Jeuring,
JohnA. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker
Sorge, editors, International Conference on Intelligent Computer Mathematics, volume 7362 of Lec-
ture Notes in Computer Science, pages 371–385. Springer Berlin Heidelberg, 2012.

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes. In International Conference on Theorem
Proving in Higher Order Logics, volume 5170, pages 278–293. Springer, 2008.

[SST13] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische methoden in der
geometrie. Springer-Verlag, 2013.

[Sut10] Geoff Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning. In Proceedings of
the 16th International Conference on Logic for Programming Artificial Intelligence and Reasoning,
number 6355 in Lecture Notes in Artificial Intelligence, pages 1–12, Dakar, Senegal, 2010. Springer.

[Tar00] Gaston Tarry. Le Problème des 36 Officiers. Secrétariat de l’Association française pour l’avancement
des sciences, 1900.

[Tar59] Alfred Tarski. What is Elementary Geometry ? In Studies in Logic and the Foundations of Mathe-
matics, volume 27, pages 16–29. Elsevier, 1959.

[Tar98] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. In Quantifier Elimination
and Cylindrical Algebraic Decomposition, pages 24–84. Springer, 1998.



BIBLIOGRAPHIE 199

[TG15] Tobias Tebbi and Jason Gross. A Profiler for Ltac. In Coq PL Workshop 2015. 2015.

[VHDT92] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A Generic Arc-Consistency Algorithm
and its Specializations. In Artificial intelligence, volume 57, pages 291–321. Elsevier, 1992.

[Vor03] Andrei Voronkov. Automated Reasoning : Past Story and New Trends. In IJCAI, pages 1607–1612,
2003.

[VP95] Jan Von Plato. The Axioms of Constructive Geometry. In Annals of pure and Applied logic,
volume 76, pages 169–200. North-Holland, 1995.

[VY18] Oswald Veblen and John Wesley Young. Projective geometry. volume 2. Ginn, 1918.

[WCA+14] Dongming Wang, Xiaoyu Chen, Wenya An, Lei Jiang, and Dan Song. OpenGeo : an open geometric
knowledge base. In International Congress on Mathematical Software, pages 240–245. Springer, 2014.

[Wel10] Dominic J.A. Welsh. Matroid Theory. Courier Corporation, 2010.

[Wie06] Freek Wiedijk. The Seventeen Provers of the World : Foreword by Dana S. Scott. volume 3600 of
Lecture Notes in Computer Science. Springer, 2006.

[Wu78] Wen-tsün Wu. On the decision problem and the mechanization of theorem-proving in elementary
geometry. In Scientia Sinica, volume 21, pages 159–172. Science China Press, 1978.

[Wu86] Wen-tsün Wu. Basic Principles of Mechanical Theorem Proving in Elementary Geometries. In
Journal of automated Reasoning, volume 2, pages 221–252. Springer, 1986.

[Zil14] Ziliani, Beta and Sozeau, Matthieu. Towards a Better-behaved Unification Algorithm for Coq. In
UNIF 2014 Workshop, pages 74–87, Vienna, Austria, 2014.








	Introduction
	Partie I Deux approches cryptomorphiques pour la mécanisation des preuves en géométrie d'incidence projective
	Mécanisation de la démonstration en géométrie d'incidence projective
	Géométrie d'incidence
	Structure d'incidence
	Description informelle
	Variante projective

	Géométrie d'incidence projective
	Système d'axiomes pour la géométrie d'incidence projective 2D
	Système d'axiomes standard
	Système d'axiomes alternatif
	Aparté sur la dualité

	Système d'axiomes pour la géométrie d'incidence projective 3D et 3D
	Formalisation Coq

	Méthodologie et automatisation de la démonstration en géométrie d'incidence
	Tests de décidabilité
	Clôture des hypothèses
	Résolution ou contradiction
	Création d'objets
	Identification et application d'un motif
	Stratégie d'ordonnancement

	Expressivité de la théorie en géométrie synthétique
	Propriétés fondamentales de la géométrie d'incidence projective
	Propriété de Desargues
	Propriété de Pappus
	Théorème de Hessenberg

	Étude de l'expressivité avec l'approche en géométrie synthétique
	Exemple du théorème de Desargues en 3D
	Expressivité dans une théorie uniforme



	La théorie des matroïdes : une approche combinatoire cryptomorphique
	Approche combinatoire de la géométrie d'incidence projective
	Théorie des matroides
	Les matroïdes pour caractériser la notion d'indépendance
	Les matroïdes pour caractériser la notion de rang
	Les matroïdes pour caractériser la notion de fermeture et de plat

	Système d'axiomes fondé sur la notion de rang en 2D
	Système d'axiomes fondé sur la notion de rang en 3D et 3D
	Formalisation Coq

	Deux approches cryptomorphiques
	Des rangs vers la géométrie synthétique
	Préliminaires
	Sous-Modularité
	Preuve de la propriété Uniqueness
	Implantation Coq

	De la géométrie synthétique vers les rangs
	Préliminaires
	Techniques de preuve
	Preuve de la propriété matroïdale de non-décroissance
	Implantation Coq

	Statistiques
	Traduction bilatérale


	Conclusion partie I

	Partie II Étude de cas en géométrie finie
	Formalisation de « petits » modèles finis en géométrie projective
	Introduction aux modèles finis
	Groupe, corps, espace vectoriel, corps fini
	Groupe
	Corps
	Espace vectoriel sur un corps
	Corps fini

	Espace projectif fini

	Génération des modèles finis
	Recherche des modèles
	Construction des modèles finis
	Plan fini
	Espace fini

	Pré-validation des plans finis
	Export des modèles en langage Gallina
	Modèle en géométrie synthétique
	Modèle exprimé à l'aide des rangs


	Vérification formelle des modèles et preuve de la propriété de Desargues
	Gestion de la complexité
	Analyse de cas
	Formulation et choix de la théorie
	Élagage de l'arbre de preuve
	Hypothèses les plus restrictives
	Existence de témoin
	Preuves comme des programmes
	Pseudo-recherche en profondeur
	Relation d'ordre sur les objets
	Ingénierie de la preuve

	Automatisation de la preuve de Desargues
	Résultats
	Comparaison avec les prouveurs SMT


	Conclusion partie II

	Partie III Vers un prouveur généralisé de configuration géométrique d'incidence
	Pipeline du prouveur de configuration géométrique d'incidence
	Principe du prouveur par saturation
	Présentation
	Création de points
	Règles de réécriture
	Terminaison
	Correction et validation
	Extension des règles avec la propriété de Pappus

	Implantation du prouveur
	Initialisation de l'algorithme
	Boucle de saturation
	Mémorisation des déductions
	Fenêtre des derniers noeuds calculés
	Reconstruction de la preuve et procédé de marquage
	Validation par l'assistant de preuve Coq

	Mesure de performances
	Complexité en temps du prouveur
	Complexité en mémoire du prouveur
	Complexité en temps de la vérification du certificat
	Complexité en mémoire de la vérification du certificat
	Conclusion sur les complexités

	Optimisations
	Parcours linéaire
	Ordre des règles
	Règle de Pappus
	Heuristique de coloration
	Saturation par strate
	Notre solution


	Un catalogue d'exemples
	Lemmes triviaux
	Restriction à une droite
	Colinéarité
	Sur-contraint
	Égalité entre points
	Résultats

	Lemmes intermédiaires de Desargues
	Schéma L1
	Schéma rABOO'
	Schéma subl2rABMP
	Schéma rCC'O'PC''
	Résultats

	Théorème de Desargues
	Preuve du théorème de Desargues en 3D
	Résultats

	Conjugué harmonique
	Preuve du conjugué harmonique
	Résultats

	Propriété de Dandelin-Gallucci
	Preuve de la propriété de Dandelin-Gallucci
	Résultats


	Conclusion partie III
	Conclusion globale

	Partie IV Annexes
	Annexe A : systèmes d'axiomes en géométrie synthétique
	Système d'axiomes 2D
	Système d'axiomes  3D et 3D

	Annexe B : systèmes d'axiomes fondés sur la notion de rang
	Système d'axiomes nD
	Système d'axiomes 2D
	Système d'axiomes  3D et 3D

	Annexe C : propriété de Desargues et Pappus
	Propriété de Desargues
	Propriété de Pappus

	Annexe D : implantation Coq des systèmes d'axiomes sur les rangs
	Annexe E : implantation Coq de plusieurs définitions récursives
	Non égalité
	Non colinéarité
	Non coplanarité

	Annexe F : Définition Coq de la colinéarité et de la coplanarité
	Annexe G : Architecture Coq de la bibliothèque ProjectiveGeometry
	Liste des tableaux, figures et algorithmes
	Bibliographie


