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Thesis abstract 

In this work, we use of a high-complexity micromodel of fixed structure on which we perform a 

series of experiments with varying injection rates, foam qualities, inlet bubble size distributions 

and injection methods. We perform individual bubble tracking and associate flow properties with 

bubble size properties and structural characteristics of the medium. We propose new tools 

describing the local and global flow in different ways. We establish specific behaviors for different 

bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble 

sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. 

Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with 

pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the 

different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped 

foam fraction over bubble density within the microscopic explanation of apparent viscosity, 

although both contribute to some degree. We structurally characterize consistently trapped zones 

as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation 

or a combination thereof. High-flow zones however cannot be characterized in terms of local 

structural parameters and necessitate integration of complete path information from the entire 

model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model 

that makes use of a graph representation of the model, from an initial decomposition into pores 

and throats, that uses only local throat size and throat orientation relative to pressure gradient to 

characterize paths. 

 

 

  



Résumé de thèse 

Pour ce travail, nous utilisons un micromodèle à haute complexité et à structure fixe pour faire une 

série d’expériences en variant la vitesse d’injection, la qualité de la mousse, les distributions de 

taille de bulles d’injection, et la méthode d’injection. Nous mettons en œuvre un suivi individuel 

de bulles pour associer les propriétés d’écoulement aux propriétés de taille de bulles ainsi que les 

caractéristiques structurelles du milieu poreux. Nous proposons de nouveaux outils pour décrire 

l’écoulement d’un point de vue global et local de différentes manières. Nous établissons des 

comportements spécifiques à chaque taille de bulle, en montrant que les bulles des mousses piégées 

sont plus probables d’être de taille inférieure aux tailles de bulles moyennes, alors que les mousses 

en mouvement accèdent elles-mêmes à différents chemins d’écoulement selon les tailles de bulles. 

Les bulles plus volumineuses s’écoulent en majorité dans des chemins préférentiels à haute vitesse, 

généralement parallèles au gradient de pression, mais les petites bulles sont transportées en 

supplément à l’intérieur de chemins transversaux liant les chemins préférentiels. Ailleurs, pour nos 

données nous démontrons l’importance supérieure de la fraction de mousse piégée vis-à-vis de la 

densité de bulles quant à l’explication microscopique de la viscosité apparente, malgré une 

contribution des deux. Nous caractérisons structurellement les zones piégées à répétition, comme 

étant soit des zones à faible coordination de pore, de faible taille de seuil d’entrée, d’orientation 

de seuil désavantageuse, ou une combinaison de ceux-ci. Les zones à fort écoulement échappent à 

une caractérisation en termes de paramètres de structure locale et nécessitent une considération de 

l’information des différents chemins traversant la totalité du modèle. À ce but, afin de décrire les 

zones à fort écoulement, nous développons un modèle générant des chemins, utilisant une 

représentation en graphe du milieux poreux, basé sur une décomposition initiale en pores et seuils, 

qui intègre seulement les notions de taille de seuil et d’orientation de seuil relatif au gradient de 

pression pour caractériser les chemins. 
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Introduction 

Motivation 

With the global energy consumption growing every year, and despite a projected 85% increase in 

the energy supply from renewables projected for 2040, demand for oil is expected to increase 

before plateauing sometime in the mid-future, requiring significant levels of investment in new oil 

to meet oil demand (BP Energy Outlook 2019). With the dwindling of conventional oil reservoir 

resources and the fluctuation of oil prices, application of new technology to old reservoirs can 

return significant profits (Muggeridge et al. 2014). Enhanced Oil Recovery (EOR) is the use of 

various techniques destined to increase oil production with methods such as polymer and surfactant 

injections, contrasting with traditional primary and secondary recovery methods. Once an oil 

reservoir has reached peak oil production through established techniques, EOR can be used to 

prolong its lifetime and recover a supplementary 30 to 60% of oil in place (U.S. Department of 

Energy 2017). Surfactant-stabilized foams are used as tertiary injection fluids in oil reservoirs to 

increase sweep and stabilize injection fronts through mobility ratio reduction. In other field 

applications, foams can be used to plug areas of a reservoir, to block off exploited or uninteresting 

regions. We can cite the example of using foams in fractured reservoirs to increase oil recovery in 

the unfractured rock matrix (Conn et al. 2014; Fernø et al. 2016). In this context, foams should 

display maximal viscosity and stability. Foam reservoir simulators are used to optimize injections 

for the operation. Incorrect understanding of foam behavior leads to inaccurate predictions which 

can result in a financial loss. 

Elsewhere, foams can be used in the remediation of waste in contaminated soils. As the excavation 

or ex-situ treatment of polluted subsurface is often expensive and creates subsequent disposal 

problems, in-situ flushing of soils is preferred.  We give the examples of removal of polyaromatic 

hydrocarbons around disused gas plants (Kilbane et al. 1997), removal of the wood preservative 

pentachlorophenol in soil from wood plants (Mulligan and Eftekhari 2003) or the flushing of 

diesel-contaminated sandy soil (Couto et al. 2009). Foam applications in the environmental case 

present similar advantages to those motivating foam EOR, including increased subsurface sweep 

and efficient capture of extracted elements at a reduced cost.  
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We give a brief description of the multi-scale nature of foam and its different uses in subsurface 

injections. At the field-scale foam use has found trial stage success overcoming three types of gas 

segregation challenges in gas or water-alternating-gas injections and providing greater 

conformance control: 

 The viscosified gas phase can limit gravity segregation of the gas phase upwards.  

 The viscosity difference between the two phases is smaller for foamed gas, inhibiting 

viscous fingering.  

 The channeling of gas is mitigated as the viscosity of foams tends to be higher in more 

permeable channels, stabilizing injection fronts. 

Far from the field-scale, foam research in petroleum engineering is scaled down to the laboratory 

level using Darcy-scale experiments performed on either truncated cores of real media, synthetic 

sandpacks or beadpacks. For a given foaming solution, foam film density and the trapped gas 

fraction are understood to be crucial in describing the effect of foam flow, affecting foam phase 

viscosity and relative permeability respectively. Also, different flow regimes have been observed 

in terms of the injected gas to liquid ratio, showing distinct rheological profiles and provide 

insights into the conformance control mechanisms desired in field use. Foam generation studies 

also investigate the necessary injection conditions that allow foam to form inside the rock. 

At the pore-scale, foams are composed of metastable thin liquid films or “lamellae” and liquid 

carrying Plateau borders that divide up the discontinuous gas phase. Series of lamellae known as 

“bubble trains” advance through the medium and may be subject to a number of destruction, 

creation, trapping, or remobilization mechanisms. Fine understanding of either mechanism is 

useful for predicting the strength of a foam state deep in the reservoir. 

At the foam film scale surfactants made of hydrophobic and hydrophilic elements organize at the 

interface and stabilize the film at a fixed distance. It is required to overcome the combination of 

molecular, electrostatic and steric forces to collapse the lamella. Some of the difficulty in finding 

a simple foam description lies in the interplay of chemical and capillary forces. On one side the 

chemical forces assure the stability of a foam film and “strength” of foam when injected into rock. 

On the other side the porous microstructure destabilizes films due to the high capillary pressure 

environments.  
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Due to its multi-scale and multi-physics nature, the implementation of foam flow in reservoir 

simulators is no easy task, keeping in mind the limited computational time available. Many current 

foam modelling frameworks require a posteriori fitting of unintuitive numerical parameters to 

obtain a predictive model for use on a specific reservoir case. This time-consuming trial-and-error 

procedure for parameter fits could be greatly alleviated by understanding the influence of structure-

based parameters on foam flow, or through a reconsideration of the key phenomena involved in 

foam flow and their structural origins. 

Definition of the Problem 

Knowledge of the structure of porous media is essential in understanding how injected fluids will 

behave as they travel. The structure concerns the physical, geometrical position of the solid 

medium in relation to the porosity or void that it incorporates. Porous structure can be analyzed on 

multiple scales, and the extent of the different descriptors used in foam models reflects the 

complexity and case-dependency of foam flow behavior. This is exposed in the difficulty in 

achieving general predictive laws. In his general book on fluid transport and pore structure in 

porous media, Dullien (1992) differentiates between macroscopic and microscopic pore scale 

parameters, and field scale parameters. Macroscopic pore scale parameters include the parameters 

that can be averaged over a large sample and measured through macroscopic means, namely 

porosity, absolute permeability, specific surface area, or electrical resistivity. Macroscopic pore 

scale heterogeneity concerns for example permeability or porosity differences in subdivisions of 

the macroscopic measurement blocks. Dullien cites that for all practical purposes, blocks of more 

than 15x15x15 nodes (or pores) can represent the elementary macroscopic block, and below this 

limit measures will significantly fluctuate with the size of the sample. On the other hand, 

microscopic pore scale parameters are obtained by observation of small samples and require a 

different series of measurement tools. These parameters are explicitly tied to the pores or the 

characteristics of the pore network itself. We can give examples such as pore shape, network 

connectivity, distributions of throat and pore sizes and associated statistics such the spatial 

correlation of pore sizes and other neighborhood properties. Different methods exist to access these 

properties, either through direct observation and analysis of 2D thin sections of rock or via 

extraction of pore network characteristics through interpretation of 3D micro-computed 

tomography images (Youssef et al. 2007).  
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With application to foams, some attempts have been made to relate phenomena to structure-

related parameters in the aim of generalizing the laws to different rock types. Microscopically, 

most experimental results revolve around 2D micromodels. Huh et al. observed sweep efficiencies 

of CO2 foams in terms of the pore size distributions for micromodels of varying heterogeneity. A 

number of papers look into the role of “aspect ratio” and microscopic parameters involved in the 

foam generation process (Ransohoff and Radke 1988; Gauteplass et al. 2015). Rossen establishes 

theoretically a minimum pressure gradient necessary to maintain foam flow through a pore in terms 

of pore shape, pore asymmetry and the presence of surrounding trapped bubbles (Rossen 1990a, 

1990b, 1990d).  

Dependencies of phenomena on macroscopic pore scale parameters usually concern the 

variation with absolute permeability or porosity of the medium. Experimental studies include the 

work of Pang (2010), showing the dependence of the foam mobility reduction factor to the absolute 

permeability in sandpacks. The significant results of A. Gauglitz et al. (2002) include a link 

between the minimum pressure gradient for foam generation and absolute permeability. They find 

that the minimum pressure gradient scales differently if the medium considered is made of 

consolidated components (i.e. sandstone rocks) or unconsolidated components (i.e. sandpacks and 

beadpacks).  

While the relationships of macroscopic pore scale phenomena give important insights on 

generation and flow dynamics of foam in porous media, they sometimes lack generality and remain 

too case-specific to be useful in an EOR context. Ideally, a predictive model based on pore scale 

characteristics can be used to predict flow behavior from laboratory analysis of a limited rock 

sample, and subsequently used in reservoir engineering software to optimize the field-scale 

solution. This forms the motivation of the current study, in which we believe that a limited number 

of microscopic pore scale parameters can serve to describe key processes involved in foam flow. 

Identification of these key parameters then becomes the first step and uncovering them requires 

visualization, analysis and prospective modelling of flow properties at the pore-scale. 

Thesis structure  

We provide a summary of the thesis, divided into five chapters. Except from the state-of-the-art 

section, the thesis uses data exclusively gathered from a series of experiments using a high-
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complexity micromodel in which multiple experiments were performed. At the end of the last 

chapter however, a generalization is shown using data from the literature, characterizing 

preferential paths in a different model. 

In Chapter 1, we expose some of the well-established results across different scales in the study of 

both foams in bulk and in porous media. This chapter is designed to give the reader an overview 

of the multi-scale nature of foam flow in porous media and to provide context regarding the 

complexity and key aspects of foam flow dynamics and their relationship to porous structure.  

Some examples of foam models will also be given. 

In Chapter 2, we give a description of the data acquisition strategy, experimental setup, some data 

types used and provide initial results from a single experiment. From a methodological point of 

view, we give details regarding the image processing workflow, the bubble tracking procedure and 

the creation of quantitative flowmaps. This chapter shows some of the characteristics of foam flow 

that we observe in the model and makes a comparison of flow distribution and local flow 

specificity with a 2D simulation of Newtonian flow in a digitized flat version of the model, as well 

as a supplementary 3D simulation of Newtonian flow in which the model depth is accounted for. 

In addition, a small section is dedicated to attempting to identify local structural and flow 

relationships based on naïve approaches linking pore and throat sizes to flow intensity. 

In Chapter 3, we present a series of flow experiments and extract data types relating to the flow 

properties at different scales, bubble size distributions and injection parameters. We then find links 

between data types of different scales and uncover which injection variables are the most 

influential and how they affect the downstream flow properties. This chapter deals with observed 

flow and injection variables without reference to structural properties. We notably establish that 

the foam trapped fraction is the dominant contributor towards apparent viscosity variation, within 

the limits of our foam bubble density measurements. We propose a model of apparent viscosity 

derived from direct observation of flow parameters integrating both elements from the trapped 

foam fraction and the total sum of bubble interfaces in the medium, which bears resemblance to 

the bubble density. Furthermore, we demonstrate that trapped foam fractions can have separate 

sources: in the largest trapped fraction experiments they are closely linked to the injection bubble 

distributions and local injection foam quality, with drier injection areas creating trapped zones 

downstream. These zones fluctuate between experiments. The lower trapped fraction experiments 
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demonstrate however show consistent areas of specific trapped zones, which we hypothesize as 

having a structural origin. 

In a Chapter 4, the local structural links between flow of different intensity are explored. We fine-

tune machine learning algorithms to perform an in-depth search to identify (where possible) the 

key parameters capable of predicting both low- and high-flow zones. We achieve a relatively good 

predictive capacity for the low-flow zones, with models using uniquely the throat size properties 

and coordination properties. However, a good prediction of the high-flow zones seems to be 

unfeasible from a local point of view. Instead, they are a consequence of larger-scale network 

properties leading to the establishment of preferential paths. 

In a fifth and final chapter, we pursue to concept of preferential paths through the introduction of 

novel graph-based model to characterize and propose paths, based on throat properties derived 

from the in-depth local structural search of Chapter 4. We then perform a parameter optimization 

of the model, achieving two fitted models describing two experiments with varying injection 

properties. We conclude by switching scales again and using network-based characteristics in the 

local structural models, in a revised attempt to predict high-flow zones locally through the newly 

established path behavior. 
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 State of the Art 

In this section, we lay out the basics for understanding the multi-scale nature of foams, from foam 

film stability to the complex flow regimes that govern Darcy-scale foam operations, whilst 

describing the underlying pore-scale mechanisms. We present some key foam flow models and 

point out the relevance of either model to our research objectives. For the sake of clarity, we 

distinguish bulk foams, in which many bubbles and foam films exist without significant interaction 

with the containing medium, to foams in porous media, in which interactions with the constraining 

medium creates new phenomena. 

 Bulk foam generalities 

Liquid foams describe a complex state of matter defined as “gas bubbles which are closely packed 

within a liquid carrier matrix” (Drenckhan, Saint-Jalmes 2015). In this section we give an overview 

of bulk foam properties, which are also carried through to porous media.  

 Interfacial considerations 

As with all types of dispersed media, it is fundamental to understand the nature of the two-

phase interactions that exist at the boundary between the gas and liquid phases. 

 Interfacial tension 

Within a volume of liquid, attractive intramolecular forces ensure the cohesion of particles with 

each other. A single molecule is surrounded by an isotropic force of attraction created by its 

neighbors. In a volume of gas, the situation is analogous albeit for a less dense fluid and hence 

weaker force. At the interface between the two fluids, the bordering molecules on the liquid 

experience a higher energy state as on one it sides it no longer shares bonds with water molecules. 

Because of this state, the molecules will attempt to create the minimum energy surface for the 

given conditions. For a small volume of gas in a large volume of water, a spherical bubble is 

created. Each added molecule to the boundary will increase the total Gibbs free energy 𝐺 of the 

system by a specific amount at a given temperature 𝑇, pressure 𝑃 and density 𝑛. The interfacial 

tension 𝛾 is simply the measure of the added energy per unit area of boundary created. As such: 
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 𝛾 = ൬
𝜕𝐺

𝜕𝐴
൰

்,,
 (1) 

In other words, interfacial tension results from the cohesive energy of the molecules at the 

interface, who limit as much as energetically possible interface expansion (Schramm 2005).  

 Young-Laplace equation 

The curvature of the interface separating the two phases is closely linked to the pressure difference 

between them. For interfacial curves, including foam bubbles, the mean curvature is related to the 

pressure difference ∆𝑃  across interface by the interfacial tension γ  via the Young-Laplace 

equation. This relationship will hold locally for any smooth section of a bubble and give an 

expression in terms of principal radii of curvature 𝑅ଵ and 𝑅ଶ: 

 ∆𝑃 = 𝛾 ൬
1

𝑅ଵ
+

1

𝑅ଶ
൰ (2) 

This equation can be simplified for spherical bubbles of radius R in which 𝑅ଵ = 𝑅ଶ = 𝑅 as: 

 ∆𝑃 =
2𝛾

𝑅
 (3) 

 Bulk foam structure 

Foam structure depends on the proportion of water and gas that composes it. Liquid fraction 

is defined as the fraction of the total liquid volume 𝑉 over the total foam volume 𝑉௧ such as 𝜙 =

 
𝑉

𝑉௧
ൗ . 

For dry foams (𝜙 < 0.05) Plateau’s laws become relevant to study of foams, where the lack of 

aqueous solution forces the bubbles into close contact. Dense packing minimal surface problems 

arise from the interfacial cost. Plateau made a series of experimental observations for dry foams 

that dictate the behavior of foams at very low water content. He discovered that dry foam bubbles 

always meet in threes and that lamella junctions at Plateau borders between bubbles always form 

120° angles between each other.  Figure 1-1 shows the basic elements of foam structure. 
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Figure 1-1: Basic foam structure composed of a discontinuous gas phase separated by thin liquid films than intersect at 120° in 

Plateau borders. Taken from (Schramm and Wassmuth 1994). 

In turn, Plateau borders branch out in different directions and cross in fours at vertices at an angle 

of 109.49°, also known as the tetrahedral angle (Plateau 1873).  

For a monodisperse foam restricted to a two-dimensional plane, the lowest energy stable foam 

structure is the honeycomb pattern, which minimizes the total interface perimeter. The morphology 

of the discontinuous gas phase depends on the gas fraction in the two-phase state. For lower liquid 

saturations (high foam quality), the gas bubbles tend to create angular intersections that produce 

polyhedral volumes as opposed to the spherical “ball type” foam brought about by high liquid 

saturation (low foam quality). These two extreme cases serve as boundaries for the intermediate 

shapes situated between polyhedra and spheres, depending on increasing liquid saturation. Figure 

1-2 shows these two extreme foam types with an intermediate state. 
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Figure 1-2: Varying foam structure with decreasing water saturation: the monodisperse foam bubbles are almost spherical when 

a high quantity of interstitial liquid is present but progress towards shapes with sharp hexagonal faces at lower saturation, 

taken from (Höhler et al. 2008). 

 Foam Stability 

Bulk foam lamellae are thermodynamically metastable. The use of ionic surfactants modifies 

surface interaction forces. Film stability is ensured by the adsorption of surfactants on the gas-

liquid interface, creating a situation in which it is energetically favorable to maintain the given 

film thickness. Ionic surfactants reduce the surface tension between two phases because of their 

polar nature. They are most often molecules made up of two separate components, a hydrophilic 

head and a hydrophobic tail. In the context of foam applications, the lower surface tension can 

facilitate creation of foam bubbles (although a surface tension too low in fact inhibits foam 

formation) but they serve primarily the purpose of stabilizing foam lamella. The lifetime of a foam 

film may be influenced by a number of physical parameters, and multiple phenomena exist that 

account for the thinning or stabilizing of thin stabilized films in bulk foam. Sheng (2013) gives a 

list of these. 

 Stabilizing phenomenon 

In the Marangoni effect, a sudden decrease of surfactant concentration at an interface, due to 

interface expansion or due to other loss of surfactant effect, causes a net liquid flow towards this 

same area. A region with higher surface tension (lower surfactant) will “pull” more liquid towards 

it. This in turn re-equilibrates the surfactant concentration and stabilizes the film. This effect is 

illustrated in Figure 1-3b. 
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Figure 1-3: Dynamic lamella processes: a) destabilizing Laplace capillary suction: the liquid pressure in the Plateau borders (PB) 

is lower as curvature is higher for constant gas pressure PG; b) stabilizing Marangoni effect in which the lower surfactant 

concentration causes a migration of fluid that re-establishes thickness. Adapted from (Schramm 2005) 

 Destabilizing phenomena 

Leading to thin film coalescence: 

 Gravity drainage, in which the force of gravity pushes the liquid out of the thin 

films downwards. 

 Laplace capillary suction, in which the difference in curvature between the sharp 

Plateau borders and the flat thin films creates a difference in pressure, in accordance 

with the Young-Laplace equation. This pressure gradient phase redirects the fluid 

into the Plateau borders. This effect is illustrated in Figure 1-3a. 

Other foam destabilizing phenomena: 

 Coarsening, where a larger Laplace pressure will exist in smaller bubbles, causing 

gas to diffuse through the thin lamella into the more voluminous neighbors due to 

the concentration gradient. The pressure difference is additionally increased. This 

leads to a runaway effect that culminates in the disappearance of the smaller bubble.  

 Bulk foams – Rheology 

Foam macroscopically behaves both as a solid under low stress and as a liquid under high stress. 

It has a characteristic yield stress, when it transitions from one behavior to another (Dollet and 

Raufaste 2014). The elastic behavior of bulk foam is explained by the small increases in gas-liquid 
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interfacial area that arise from small stresses, which corresponds to a higher energetic state, causing 

the foam structure to relax back to its initial equilibrium state. We can therefore characterize a bulk 

modulus of the foam in this elastic state. When the applied stress becomes sufficiently high, the 

foam bubbles spontaneously rearrange to a new topological state (Höhler and Cohen-Addad 2005), 

which corresponds to a liquid behavior. The foam reorganization is process illustrated by the 

application of a constant stress on an ideal 2-dimensional dry foam represented Figure 1-4. 

 

Figure 1-4: Dry foam cell reorganization, a constant stress is applied that initially causes a bubble deformation, before jumping 

to a new topological state, similar to the initial configuration. Taken from (Höhler and Cohen-Addad 2005). 

The yield stress corresponding to cell reorganization is dependent on the foam quality, and it is 

highest for dry foams (Weaire and Hutzler 2001). Above the yield stress, foams can be considered 

as shear-thinning fluids and are usually well described by the phenomenological Herschel-Buckley 

law, seen in equation (4).  

 
�̇� = 0                for 𝜏 ≤ 𝜏௬ 

𝜏 = 𝜏௬ + 𝜉�̇�    for 𝜏 ≥ 𝜏௬ 
(4) 

This relationship shows that for shear stresses 𝜏 lower than the yield stress 𝜏௬, the shear rate �̇� is 

zero. Parameters 𝜉 and 𝑛 are the consistency and flow indexes. For foams, the flow index is found 

to be somewhere between 0.25 and 1 (Höhler and Cohen-Addad 2005). 

 Foams in porous media 

 Foams in porous media share many of the characteristics of bulk foams. They are also 

composed of thin films and Plateau borders, whose stability and structure can be partially 

understood in terms of the phenomena described above. However, they exhibit unique behavior in 

porous media over a series of scales. Foam lamella creation and destruction at the pore-scale is 

governed by several in situ processes that can affect gas phase viscosity as a function of the lamella 
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density. Macroscopic foam flow in porous media shows multiple regimes, in which measured 

pressure differences are strong functions of the fluid injection rates, structural properties of the 

media and surfactant properties.  

 Basic petrophysical concepts 

Here we present some concepts used in porous media studies that are essential to understanding 

foam dynamics. 

 Young’s equation and wetting angle 

For two static fluids in contact with a third solid material such a rock surface, the tangent of the 

two fluid’s interface at the intersection with the rock surface is described by a contact angle θ. The 

wettability, quantified by the contact angle, is a measure of balance of affinity of either fluid to the 

rock, owing to the energetic preference of interface creation of either fluid with the rock. In Figure 

1-5 we give a graphical representation of the contact angle. 

 

Figure 1-5: Contact angle θ at the intersection of two fluids (white and grey) in contact with a flat solid surface (black). 

Young’s equation is an application of the force balance created at the intersection of the three 

components for the specific case of a flat solid surface. For the example of a liquid drop on a flat 

surface, surrounded by gas, the interfacial tensions at the three interfaces projected onto the 

direction parallel to the surface, we obtain: 

 𝛾/ୋ cos 𝜃 = 𝛾ୗ/ୋ − 𝛾ୗ/  (5) 

In which 𝛾/ୋ is the surface tension between the liquid and gas phase, 𝛾ୗ/ୋ is the surface tension 

between the solid and gas phase and 𝛾ୗ/ is the interfacial tension between the solid and liquid 

phase. For an angle of 𝜃 = 0 the solid is completely wetted by the liquid, but for 𝜃 <  90° in 

practice is considered to represent wetting conditions. Inversely, 𝜃 >  90° represents non-wetting 

conditions (Schramm 2005). 
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 Darcy’s law 

Flow in porous media can be understood via Darcy’s law, a constitutive equation that enables us 

to explain the viscous flow of fluids through a permeable medium. If we exclude any external 

forces acting upon the fluid apart from a pressure difference, for single phase of viscosity  𝜇, 

transport in a medium with a given permeability 𝑘, Darcy velocity 𝑣, volumic flow rate 𝑞 and 

pressure difference ∆𝑃 over the horizontal transporting medium of length 𝐿 and sectional area 𝐴, 

then Darcy’s law relates these parameters as: 

 𝑣 = 𝑞/𝐴 =
𝑘 ∆𝑃 

 𝜇 𝐿
 (6) 

Darcy’s law is only applicable in laminar flow situations, and typical reservoir injections have a 

Reynold’s number small enough to allow its use. Despite being established in a simplified set of 

experimental conditions (incompressible flow, saturated flow, steady-state-flow, isotropic media, 

laminar flow), Darcy’s law can be applied to a variety of situations outside of its initial scope 

(Freeze and Cherry 1979). Certain simplifications are made to model foam using Darcy’s law. 

Usually, foams are represented as a high-viscosity gas phase and not considered as a third phase, 

distinct from foamer solution and gas. For multiphase flow, Darcy’s law expresses the flow rate 

𝑞, component for each phase 𝑖, 𝑗 individually: 

 𝑣, = 𝑞,/A =
𝑘𝑘,ೕ

∆𝑃, 

 𝜇, 𝐿
 (7) 

In which 𝑘,ೕ
, 𝜇, and 𝑣, represent the relative permeability, viscosity and Darcy velocity of each 

phase, while ∆𝑃, represents the pressure drop over each phase. 

 Capillary pressure 

In the context of a two-phase interface, the difference between wetting phase pressure 𝑝௪ and non-

wetting phase pressure 𝑝௪ such as aqueous solution and gas given by 𝑝 = 𝑝௪ − 𝑝௪ is called 

the capillary pressure or 𝑝 . Capillary pressure is established similarly as is ∆𝑝 in the Young-

Laplace equation, by balancing forces across the interface (equation (2)). In porous media, this 

pressure difference is defined by incorporating the wetting angle of the three phase interaction 𝜃 

as (Bear 1988): 
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  𝑝 =
2𝛾 cos 𝜃

𝑅
 (8) 

 Foam effect on flow 

Through this section we will look at the effect of injecting a foaming solution and gas or a 

preformed foam into a porous medium. We proceed initially from the Darcy-scale corefloods, to 

understanding in detail how the foam comes into existence and is transported in the porous network 

on a microscopic level. We will follow this decomposition to explain each phenomenon. 

 Gas mobility reduction  

Foam affects flow in porous media in multiple ways. To overcome the problems inherent to gas or 

water injections in oil reservoirs such as channeling and gravity segregation, foam is used to create 

a thicker fluid that will propagate in a more uniform manner through the rock. In this manner, 

foams can increase sweep efficiency. This enables a significant amount of fluid diversion into low 

permeability areas in heterogeneous or fractured media (Li et al. 2013). The effect of foam is 

usually quantified by a mobility reduction factor defined simply as (Schramm 1994): 

𝑀𝑅𝐹 =
∆𝑃

∆𝑃
 (9) 

Where ∆𝑃 is the measured steady state foam pressure drop and ∆𝑃 is the pressure drop 

for identical injection conditions without foaming agent. In Figure 1-6 we show some typical 

mobility reduction factors in terms of gas types at 50°C and 30 bars in Berea cores. 

 

Figure 1-6: Mobility reduction factors in terms of gas type at 50°C and 30 bars. Taken from Aarra et al. (2014). PV signifies the 

Pore Volume inside the core. 
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 Gas mobility reduction - Microscopic explanation 

For foam transport in water-wet media, the water and gas phases rearrange upon entering the 

medium. The wetting phase occupies predominantly the smaller pores and channels and can 

propagate through this network unaffected by the existence of a gas phase, which is situated in 

larger pores as isolated bubbles. Liquid can also circulate through the continuous network of 

Plateau Borders. Therefore if we describe the foam by its individual constituents, both the viscosity 

and relative permeability of the aqueous phase are unchanged by the existence of the foam 

(Bernard and Jacobs 1965). However it is established that the creation and propagation of a foam 

phase in porous media can affect the viscosity and permeability of the gas phase (Bernard and 

Holm 1964). The mobility reduction is therefore explained by two foam effects in parallel. We can 

see this by looking at the definition of the gas phase mobility: 

𝜆 =
𝑘𝑘

𝜇
 (10) 

We can make the distinction between continuous and discontinuous gas foams. Falls et al. (1988) 

summarize foam classification in porous media and provide explanatory diagrams. We display 

these diagrams in Figure 1-7. They describe two types of discontinuous-gas foams, where bubble 

trains transport gas across the medium, in opposition to continuous-gas foams, in which at least 

one percolating passage exists across the medium uninhibited by liquid lamellae. They note that 

in terms of mobility, the continuous gas foams only affect the relative permeability of the gas by 

blocking certain channels, and leave the bubbles trapped and immobile. On the contrary, 

discontinuous gas foams affect both relative permeability of the gas and viscosity of the gas, by 

forcing lamellae to propagate through the medium.  
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Figure 1-7: The distinction between continuous and discontinuous-gas foams. For the discontinuous-gas foams, the higher 

density of bubbles in the finely textured example shows a larger increase in viscosity over the coarsely textured foam. Taken 

from Falls et al. (1988). 

Although direct in situ observation of a higher lamellae density is difficult at foam generation in 

corefloods, it has been established that the viscosification of the gas phase is a function of “foam 

texture”, or foam bubble density.  

 Foam viscosity models  

For foam flows we define an apparent viscosity 𝜇, used in opposition to the constant viscosity 

of a Newtonian fluid.  

Hirasaki and Lawson (1985) measured viscosities in smooth glass capillaries of uniform diameter, 

and established a theoretical model describing foam viscosity with experimental fitting of 

parameters. They describe different types of foam transport of equivalent bubble size 𝑟 in smooth 

capillaries of radius 𝑅, and distinguish cases where 𝑟 ≫  𝑅 (individual lamella foam) and 𝑟 ≪

 𝑅 (interconnected lamellae or bulk foam).  

For individual lamellae foams, the apparent viscosity is derived by evaluating two individual 

contributions of a series of bubbles. These are given in the following relationship: 

  
𝜇

𝜇
= ቆ0.85

𝑛

𝑟

[𝑟
ଶ + 𝑅ଶ] + 𝑛Rඥ𝑁௦

(1 − 𝑒ିேಽ)

(1 + 𝑒ିேಽ)
ቇ ൬

3𝜇𝑈

𝜎
൰

ି
ଵ
ଷ
 (11) 

in which 𝜇 is the apparent foam viscosity, 𝜇 is the liquid viscosity, 𝑈 is the interstitial gas 

velocity, 𝑛 is the lamellae density per unit length, 𝑟 is the capillary radius of the bubble edge, 𝜎 

is surface tension between the foamer solution and the gas, and 𝑁 and 𝑁௦ are respectively the 

dimensionless length of the thin film portion of bubble and dimensionless surface tension gradient 
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effect. The first term on the right-hand side accounts for the viscous drag created by the liquid 

rearrangement from the gas displacement. The second term describes the drag from surface tension 

gradient created by the expansion and compression of the interface at the front and back of the 

bubbles. The authors find that the contribution of the first term dominates. As with Bretherton’s 

(1961) work, the foam viscosity is found to scale with 𝑈ିଵ/ଷ. The lamellae density per unit length 

also appears in each term. This equation is appropriate for “bubble train” lamellae displacement in 

series characteristic of porous media, and is simplified and used in a great deal of foam models 

(see section 1.3.1). 

 Gas relative permeability reduction via foam trapping 

A key phenomenon in understanding the foam dynamics in porous media is the existence of “foam 

trapping”. Once a foam is formed and as it progresses through a medium, high volumes can become 

stationary in moderate pore sizes, limiting the flow to the higher permeability zones. The pore 

space occupied by trapped foam is shown in Figure 1-8: 

 

Figure 1-8: The distribution of trapped and flowing foam in a porous medium. Grains are filled with diagonal lines. Flowing gas is 

white, whereas trapped gas is black, remaining interstitial space is occupied by the wetting phase. Larger flow channels are 

located sequentially towards the top of the picture. The larger pores allow foam to flow. The intermediate sized pores show 

trapped foam. The smaller pores only contain wetting phase. Taken from Radke and Gillis (1990). 

 Trapping has been observed qualitatively at the pore-level in micromodels (Mast 1972; Chambers 

and Radke 1990; Prieditis 1988) and beadpacks (Falls et al. 1989). Nguyen et al. (2002) use a 28.5 

Darcy micromodel to assess the significance of gas tracer diffusion in evaluating trapped gas 

fractions. They note that flow paths change intermittently, and a steady state of foam patterning 

was not found, with stable trapped and flowing fractions. To overcome this, pure gas is injected 

after a certain amount of time, and the trapped fraction is measured from the remaining foam 
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volume after its passage. The trapped fraction was measured consistently around 65% at different 

injection speeds. 

More recently, Jones et al. (2018b) study the fraction of trapped gas in a relatively complex 

micromodel of 849 pores. They observe a linear decrease in the trapped fraction with increasing 

injection rate and a linear relationship between observed “apparent viscosity”, including both gas 

relative permeability and viscosity effects.  

Nguyen et al. (2009) use in situ computed tomography images of Xenon tracers to provide an 

estimate of the trapped fraction and evaluate some of the assumptions used in previous publications 

for trapped fraction measurements. Injection rates were also changed, and they find that trapped 

fraction decreases with increasing gas-injection rate and may increase weakly with liquid injection 

rate. They also find no relationship between pressure gradient and trapped fraction. Some CT 

images of tracer concentration are visible in Figure 1-9. 

 

Figure 1-9: Axial CT scans of tracer displacement in steady state “Foam A” in terms of a dimensionless time t, taken from Nguyen 

et al. (2009). The P value represents the axial slice with respect to the central slice P=0. Warm colors mean high concentrations of 

tracer. The flowing fraction is visible at the top of the section, with a measurable tracer concentration at the end of the core 

already by t=0.54. A slower diffusion phenomenon progresses through the middle and lower sections of the core. The authors 

propose that the low flowing fraction in the central section is due to a higher water saturation in the central part of the entrance 

area, measured elsewhere (Nguyen et al. 2007) that inhibits foam flow.  

To attempt to understand and predict mobilization of trapped foams, Rossen and Wang (1996), 

describe for certain injection conditions, the pressure gradient over the medium plays a key role. 

In four substantial papers, Rossen (Rossen 1990a, 1990b, 1990c, 1990d) evaluates the minimum 
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pressure gradient necessary for maintaining flow of a “bubble train”, or a linear sequence of 

already formed stationary bubbles. Rossen derives expressions for the minimum pressure gradient 

in terms of pore body and constriction geometry (shape, asymmetry, aspect ratio), gas 

compressibility, contact angle hysteresis, and with the added possible presence of stationary 

lamellae in pores adjacent to the direction of flow, with successful comparisons to experimental 

data from Falls et al. (1989).  

 Foam generation 

Foam injections in experiments typically consist of injecting at a low flow rate and increasing the 

overall injection rate or injection pressure until a large sudden increase in pressure difference ∆𝑃 

is observed across the sample, signaling the creation of a high viscosity phase blocking the flow 

path, often called “foam generation”. 

Different experimental techniques can demonstrate the existence of the foam generation 

phenomenon. Often, a fixed liquid fractional flow is injected at increasing overall flow rate. A 

minimum injection velocity 𝑣 is therefore observed for foam generation. Ransohoff and Radke 

(1988) interpret this as the attainment of a critical modified dimensionless capillary number. They 

also find that the critical capillary number increases with increasing liquid fractional flow for their 

experiments in beadpacks. We show the curved of Ransohoff and Radke (1988) in Figure 1-10: 

 

Figure 1-10: The sudden increase in reduced pressure drop across the medium, at a significant capillary number after which 

foam has generated, for three different liquid fractional flows. Taken from Ransohoff and Radke (1988). 
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Another experimental procedure, consisting of controlling the pressure drop over core and 

allowing the injection rates to adapt, yields coherent, but supplementary results to the previous 

cited cases. Increasing the pressure gradient leads to the critical minimum pressure gradient 𝛻𝑃 

for foam generation and works analogously to the minimum velocity. A. Gauglitz et al. (2002) 

produce a large amount of data on foam generation through different experimental procedures. 

Specifically, through experiments at an imposed 𝛻𝑃 (type 1 and 3), an increase in pressure drop at 

𝛻𝑃 creates a decrease in injection rates, at which unstable « intermediate foams » are created. 

Within this intermediate state the mobility reduction (or resistance factor) is only moderate. The 

intermediate regime is considered unstable, as maintaining 𝛻𝑃 fixed is difficult as it is measured 

to be fluctuating. Further increase in pressure drop then leads to an increasing flow rate, as « strong 

foams » are retrieved such as in the fixed injection rate experiments.  

  Lamellae creation processes 

Traditionally, foam creation processes at the pore-level have been observed as three distinct 

phenomena, as described by Sheng (2013). Here we show, for simplicity, diagrams taken from 

Ransohoff and Radke (1988) in which the processes are observed for drainage only: 

 Snap-off: Occurs when gas penetrates through a liquid-filled constriction, and a sudden 

decrease in local capillary pressure in the constriction refills the constriction with liquid. A 

discontinuous gas bubble is formed, and a lamella is situated inside the constriction. Snap-

off creates a lamella perpendicular to the direction of flow. The exact decrease in capillary 

pressure necessary depends on the geometry of the constriction, but for straight cylindrical 

throats, the capillary pressure must fall approximately to half of the entrance capillary 

pressure. 

 

 Lamella division: Occurs when a pre-existing liquid lamella passes a bifurcation in the 

medium, and simultaneously invades both passages, dividing into two, and hence resulting 

in the creation of a net new lamella. 
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 Leave behind: Occurs when a gas phases invades two adjacent pore bodies leaving a liquid 

filled constriction intact and isolated as a new lamella. Leave-behind created lamellae are 

parallel to the direction of flow. 

 

Due to the difficulty of directly observing in-situ pore-scale mechanisms, simplified models are 

used to assess the relative importance and specific context regarding each of the three types. Two-

dimensional micromodels and glass beadpacks have been very often used with varying 

characteristics. 

More recently, observations in a simple one-constriction micromodel by Liontas et al. (2013) 

revealed the existence of other, neighbor-induced bubble creation mechanisms. They observed 

foams in which the “bubble train” lamella-by-lamella state was no longer valid and observed 

bubble-bubble interactions that lead to new bubble creation. As two or more bubbles approach a 

constriction, with enough velocity they could pinch-off one another and created new bubbles 

before they had time to reorganize into a bubble train. They found that the new mechanisms 

become accessible at a minimum capillary number and show dependence on the bubble size and 

topological organization of the bubbles as they approach the constriction. 

A significant debate regarding the predominant formation mechanism, at “foam generation”, and 

occurring within transport of pre-established foam, has been ongoing for multiple decades. 

Essentially, it is unclear as to whether the snap-off or lamellae division mechanism is the primary 

one involved in the sudden viscosification and creation of a strong foam in a 3D porous medium.  
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 Foam flow regimes 

Within highly viscous strong foams, flow behavior is shown to be dependent on the ratio of liquid 

to gas injection rates. Similarly to the liquid static fraction that determines foam structure in bulk 

foam, for dynamic flow in porous media the gas fraction determines the flow regime that is 

attained. If the fluid injection rate is given by 𝑄  and the gas injection rate by 𝑄  then the 

volumetric gas fraction is given by 𝑓 =
 ொ

 ொା ொ
 . 

In particular, the flowing foam can be categorized into either a high-quality (high gas 

fraction) or a low-quality (low gas fraction) regime. Khatib et al. (1988) explored a series of 

injection ratios through beadpacks and sandpacks while simultaneously directly measuring in situ 

capillary pressure and observing bubble size. He found that at a sufficiently high gas fraction and 

capillary pressure, a change in behavior occurs, after which the measured ∆𝑃 over the sandpack 

becomes proportional to the liquid flow rate 𝑢௪ and independent of the gas velocity 𝑢, this new 

regime is the high-quality, or coalescence regime. Inversely, in the low-quality regime the pressure 

drop only scales with the gas velocity 𝑢. We show the two regimes observed in Figure 1-11: 

 

 

Figure 1-11: Measured gas mobility for a series of gas fraction injections demonstrated by Khatib et al. (1988). A distinct foam 

transition is visible at approximately the same fraction for all gas injection rates. 

Osterloh and Jante (1992) studied foam flow for 49 combinations of 𝑢௪ and 𝑢 into a sandpack 

cell. They found that in the high-quality regime, the pressure drop increased with respect to 𝑢௪ to 
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the power of 0.31. In the low-quality regime, the pressure drop increased with respect to 𝑢௪ to the 

power 0.33. The transition quality 𝑓
∗ was found to be 0.94. Their data was presented in a useful 

manner demonstrating the two different regimes and dependencies on flow rates. However, in 

contrast with previous results, they found that the liquid saturation was approximately constant, at 

around 0.06 for either flow regimes.  

 

Figure 1-12: An example of the measured pressure differences over a series of injection rates for a two-inch sandpack. The high-

quality or coalescence regime is visible in the top left side whereas the low-quality regime is in the bottom right side. The 

transition occurs at a foam quality of 𝒇𝒈 = 0.94. 

 Foam flow regimes – Microscopic explanation 

Here we give an overview of the different models and observations that have led to an approximate 

understanding of the dynamics governing foam flow regimes, in which characteristic macroscopic 

observations can be attributed to pore-scale effects, notably a series of bubble-size regulation 

mechanisms that we will describe first. 

Bubble size regulation mechanisms 

To fully understand the specific regime behaviors, we first need to understand how lamellae can 

be broken, before seeing how these mechanisms come into play in relation to the two flow regimes. 

For foams in porous media, size regulation mechanisms are essentially the same as those found in 

the coarsening of bulk foams. Concepts such as the thin film stability, gas diffusion and capillary 
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suction coalescence are applicable. As such, not a great deal of detail is given in describing these. 

Some remarks on the differences with bulk foams will nonetheless be presented. Within a porous 

medium, two main coarsening phenomena are observed: capillary-suction coalescence and gas 

diffusion. The small characteristic lengths involved in porous media and the dynamic nature of 

foam flow ensure that gravity drainage is usually irrelevant. 

o Capillary suction coalescence 

Direct visual proof of the dynamic capillary suction coalescence phenomenon is given by Jiménez 

and Radke (1989) who observe coalescence repeatedly at certain sites of rapid increase in capillary 

thickness. We can observe their photographs in Figure 1-13. 

The limiting capillary pressure 𝑃
∗ before coalescence in porous media is the counterpart of the 

characteristic pressure gradient necessary to overcome the stabilizing thin film forces in bulk films. 

The isolated nature of single films in porous media indicates a higher resistance to capillary 

pressure than for bulk films. Khristov et al. (1979) measured both for the same solution of Sodium 

Dodecyl Sulfonate (SDS). Results are presented in Figure 1-14. 

 

Figure 1-13: Successive micrographs of the lamella evolution and eventual coalescence in the micromodel of Jiménez and Radke 

(1989). The black arrow indicated the position of the liquid lamella. Progression through the pore body is observed from 

snapshot (a) to (b) and eventual disappearance in snapshot (c). 
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Figure 1-14 : Differences in measured critical capillary pressures before coalescence for single and bulk foams for different salt 

concentrations and film types for a 0.001 molar solution of SDS. Figure taken from Khatib et al. (1988), data originally from 

Khristov et al. (1979). 

Khristov et al. (1979) interpret the higher capillary resistance of single films by two reasons : the 

radii of bulk films are larger, and the collective effect of the bulk film’s neighbors, in which 

disturbances propagate and the coalescence of one film can trigger coalescence of the others. 

o Diffusion 

Diffusion in porous media between adjacent gas bubbles leading to coalescence was observed in 

Chambers and Radke (1990). Just as in bulk foam diffusion, smaller bubbles transferred mass into 

their larger neighbors with lower capillary pressure. The smaller bubbles eventually disappeared, 

and their liquid component was reintegrated into the surrounding liquid network. However, in the 

visual examples provided, the smaller bubbles were surrounded by other bubbles in a pore body 

and didn’t meet the walls of the micromodel. Due to the long timescales involved in diffusion 

processes, diffusion-driven coalescence mainly occurs in stationary, trapped volumes of foam 

(Almajid and Kovscek 2015). 

Although not leading to coalescence, another manifestation of gas diffusion can be observed, in 

which interaction with the medium plays a larger role. As bubble size increases to radii the size of 

pore bodies, the lamellae separating the bubbles are attached on either size to a solid as Plateau 

borders. The lamellae must intersect the solid at an angle of 90°, as verified by Prieditis (1988) 

under various circumstances. At the exit of a constriction the solid medium presents diverging 

surfaces that impose a convex lamella shape, due to the 90° intersection with the pore wall. For 

this lamellae curvature, a pressure gradient must be felt across the lamella, driving mass exchange 

from the rearward bubble to the forward bubble. The convex lamella is then pushed back to a 

symmetric position inside the constriction. This mechanism is visualized in Figure 1-15.  
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Figure 1-15: Gas diffusion process leading to a one-per-pore size distribution inside the porous media. In diagram (a) mass 

transfer occurs from left to right at the lamella 1. The system is equilibrated in diagram (b). Taken from Chambers and Radke 

(1990) 

A more in-depth micromodel study has been carried out by Jones et al. (2018a) establishing 

coarsening dynamics within a model porous medium, they notably establish distinct coarsening 

regimes as a function of time (and as a consequence, average bubble size). The initial regime, i.e. 

the self-similar regime is similar to bulk coarsening in which bubble size increases linearly with 

time and no effect of the porous medium is noted. The second regime displays a deviation from 

the linear growth demonstrating that wall effects become significant. Finally coarsening is noted 

to stop as thin films rest in thermodynamically stable positions at pore throats. 

Now that we have established the microscopic mechanisms that regulate bubble size, we will see 

how they can be involved in the macroscopic flow regime differences. 

High-quality regime microscopic model 

Khatib et al. (1988) observed that the bubble size in the low-quality remained constant and 

monodispersed throughout, whereas in the high-quality regime the bubble size is a function of the 

gas fraction. In combination with the capillary pressure measurements, the authors established that 

bubbles can coalesce at a sufficiently high capillary pressure 𝑃
∗ to regulate their capillary pressure 

environment. As gas fraction is increased, a critical liquid saturation 𝑆௪
∗ , corresponding to a 

critical capillary pressure 𝑃
∗, is attained at which the bubbles are unable to maintain their smaller 

size. As gas fraction is increased further, the thin films coalesce, redistributing the liquid trapped 

in the Plateau borders into the surrounding liquid. The local liquid saturation is therefore increased 

and maintained at 𝑆௪
∗ and 𝑃

∗. Therefore, this regime is dominated by the effect of the limiting 
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capillary pressure, known as the limiting capillary regime or sometimes the coalescence regime. 

The bubble size adaption mechanism via coalescence can be observed in Figure 1-16. 

 

Figure 1-16 : The attainment of the critical capillary pressure 𝑷𝒄
∗ at the critical saturation 𝑺𝒘

∗ (left) and the coalescence 

mechanism maintaining the critical liquid saturation at increasing gas fraction (right). Adapted from Khatib et al. (1988). 

Low-quality regime microscopic model 

Rossen and Wang (1996) provide a model, and accompanying data, for understanding the low-

quality regime. They describe the low-quality regime as dominated by the flow of stable bubbles, 

where diffusion has ensured that bubble size is approximately the average size of a pore, and 

bubbles are then mobilized as the pressure gradient is increased. In this regime, lamellae creation 

is inhibited by the bubble size condition. The higher liquid saturation also creates a lower capillary 

pressure environment, and coalescence of lamellae does not take place. The foam in this regime 

behaves as a Bingham plastic: as pressure gradient is increased, previously trapped bubbles reach 

a fixed yield stress and initiate movement through the medium. Hence, increasing the pressure 

gradient enables a larger amount of gas to circulate through the pores, and we retrieve the strong 

dependence upon gas rate characteristic of the low-quality regime. The liquid injection rate, 

however, shows little effect on the measured pressure. Even if the liquid rate is increased, contrary 

to the high-quality regime, the bubbles remain in a stable capillary pressure environment. Liquid 

flow (restricted to the non-occupied smaller pores and Plateau Borders) is only increased, with no 

effect on the gas bubbles.  

Alvarez et al. (2001) provide a definitive overview of the supporting evidence for the two-regime 

behavior, and generalize these observations towards a unifying model describing behavior in a 

variety of media, surfactant and flow rate conditions. They notably test the following hypotheses:  
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 The limiting capillary pressure regime shows a strong dependence to the surfactant used 

(as 𝑃
∗ will increase for stronger lamellae). 

 The nature of the porous medium, (or rather the average pore size), plays a key role in the 

low-quality regime, as the bubble density will adapt to each medium and show a varying 

rheology. 

 That the transition quality 𝑓
∗ is a function of both the nature of the porous medium and 

the ability of the surfactant to stabilize the foam. 

Despite some minor issues, the hypotheses tested are generally found to be correct. Furthermore, 

they measure power-law exponents for the pressure gradient dependencies on flow rates for each 

regime. In their experiments, they find the high-quality regime consistently shear-thickening, and 

the low-quality regime as shear-thinning. The exponents on the liquid rate for the high-quality 

regime (when measurable) span 1.30-2.11 whereas the low-quality regime’s gas exponents (bar 

one value at 1.08) span 0.30-0.46. 

 Modelling foam in porous media 

Realistic modelling of foam in the reservoir engineering context is an essential step in any 

successful foam operation. Numerical experiments can be performed to optimize the process at a 

fraction of the cost of core-scale tests. However, the accuracy of a prediction is only as valid as is 

the initial foam model used. As described previously, the creation of a foam phase with 

discontinuous gas pockets in water-wet media is modelled simply as a reduction in mobility of the 

gas phase, with little effect on the flow of the liquid phase. Modelling techniques generally 

therefore modify the mobility of the gas phase, either empirically as a single entity, or by increasing 

the viscosity of the gas (as a function of the foam texture) and reducing the gas relative 

permeability (due to gas trapping) individually. Foam models can be classified by the method, 

assumptions made, level of detail or complexity. Ma et al. (2015) propose an exhaustive and clear 

classification system of foam models. The foam models shown here are all population balance 

models, due to the emphasis on pore-scale aspects of flow. The models describe foam flow 

exclusively without oil, which serve as an initial founding block upon which the further complexity 

of oil interactions can be added afterwards.  
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Within population balance models, viscosity is a function of the foam texture 𝑛. Solving a 

differential equation that sums all bubble creation, destruction and transport processes locally 

yields a value for 𝑛. For this reason, these models can describe transient phenomena in which 

foam texture is yet to reach the equilibrium value. For example, Chen et al. (2010) find that a 

dynamic-texture model is necessary to describe foam flow at the entry region of a sandstone core. 

In some population balance models, a supplementary local equilibrium condition is imposed, in 

which the bubble coalescence and generation rates are set equal. This results in solving a simpler 

algebraic equation to obtain 𝑛. Computation time is therefore decreased in comparison to the 

dynamic texture version (Chen et al. 2010).  

 Population balance models  

Within population balance models, foam texture is calculated in situ by solving for the foam 

texture variable in population balance differential equation comprised of the various creation, 

destruction, trapping and transport processes, as well as net source or sink terms for lamellae. We 

give here the general equation used in the population balance formulism for 1D: 

𝜕(𝜙(𝑛𝑆 + 𝑛௧𝑆௧))

𝜕𝑡
+

𝜕൫𝑛𝑢൯

𝜕𝑥
= 𝜙𝑆൫𝑟 − 𝑟൯ + 𝑄 (12) 

Where the subscripts 𝑓 and 𝑡 denote flowing or trapped foams, meaning that 𝑛௧  and 𝑛  are the 

foam textures of trapped and flowing foams. The total gas saturation 𝑆 therefore defined as 𝑆 =

1 − 𝑆௪ = 𝑆 + 𝑆௧ , meaning the gas phase is exclusively considered as foam, with a variable 

texture variable. The first term of the time derivative describes the change in texture of flowing 

foam per unit volume of porous media, whereas the second term is the rate at which lamellae trap. 

The second left hand term accounts for the convection of flowing foam. The first right hand side 

term sums the generation and destruction processes 𝑟  and 𝑟  to give a net rate of change in 

lamellae per unit volume due to internal processes. The final term on the right 𝑄 accounts for the 

injection of pre-generated foam into the system and serves as a boundary condition. The debate on 

the dominating mechanism for foam generation becomes relevant as the expression of the lamellae 

generation rate will depend on different parameters for each mechanism. Furthermore, model 

refinements for each mechanism lead to the many different generation rates available in the 

literature. The destruction rates, while mostly adhering to capillary suction as primary mechanism, 
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also show some diversity between authors. Population balance models differ in terms of generation 

and destruction rates, but also in the way the texture variable 𝑛 is integrated into the viscosity or 

permeability of the gas phase. Models can also approach the trapping of foam in different ways. 

We shall list some elements of the models in a manner that demonstrates the breadth of 

possibilities, while noting the assumptions made for each case. We give first some classical 

examples where local equilibrium conditions are not respected, before providing some examples 

of the local equilibrium variant. 

 Classical full population balance models 

Friedmann et al. (1991) give an interesting model, to predict transient foam flow behavior in Berea 

corefloods. The contribution of the trapped foam fraction 𝑥 is simply given by: 

𝑘


= 𝑥𝑘 (13) 

Also, the authors impose an equilibrium relationship between trapped and flowing foam textures, 

given by: 𝑛௧ = 𝐾𝐴𝑛/(1 + 𝐾𝑛) , where 𝐴  and 𝐾  are bubble trapping parameters. For 

flowing foams, the authors use the following relationship for viscosity, provided that the calculated 

foam viscosity is larger than the gas viscosity: 

 𝜇


= 𝜇𝐹𝑘ଷ ଶ⁄ 𝑛 ቆ
𝑣

𝑣
ቇ

ିଵ

 for 𝜇


> 𝜇 (14) 

Where 𝐹 is a geometric factor, 𝑘 is the medium permeability, 𝑣 is a reference velocity (taken 

by the author as 35 m/d) and 𝑛 is the power law index, that accounts for the shear-thinning of the 

foam, found by the authors to be equal to 0.71. The rate equations for lamellae generation and 

destruction are given as followed: 

 
𝑟 = 𝑘ଵ 

ଵ൫௩ ௩⁄ ିଵ൯

ଵାଵ൫௩ ௩⁄ ିଵ൯
൨ · 1 + ቀ




ቁ

ହ

൨
ିଵ

 

𝑟 = 𝑘ଶ𝑛𝐶௦
ିଵ.ସ 

(15) 

In which 𝑘ଵ and 𝑘ଶ are fitting constants, 𝑣 is the critical gas velocity necessary for snap-off (or 

lamella division) to occur, 𝑛 is the limiting bubble density (approximately one per pore). The first 

part of the generation rate expression rises smoothly from 0 to 1 as the gas rate passes the critical 

velocity, fitting with the conditions for generation by snap-off. The generation rate also shows 
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sensitivity to the limiting bubble density 𝑛, as lamellae formed at a density higher than one per 

pore are deemed unstable. The coalescence rate is proportional to the number of bubbles and 

inversely to surfactant concentration, to account for a higher probability of rupture for a larger 

lamellae density and for weaker foams. They use this model to fit transient and steady-state foam 

flow in both SAG and co-injection corefloods. 

Kovscek et al. (1995) use a simpler expression for the gas phase viscosity that is preserved in 

following models, using a power law dependence observed previously for long bubbles in circular 

tubes (Bretherton 1961; Hirasaki and Lawson 1985) and employ a Corey-type relative 

permeability model for the gas phase in presence of foam, in which the stationary fraction is 

included within the Corey exponent, as opposed to models described by Friedmann et al. (1991) 

or Falls et al. (1988) which include the fraction outside of the exponent. The authors also impose 

a local equilibrium condition between trapped and flowing foam texture by setting the two equal. 

Furthermore, the trapped foam volume fraction 𝑋௧, is related to the trapped foam texture by the 

expression 𝑋௧ =  𝑋௧,௫ ቀ
ఉ

ଵାఉ
ቁ, where 𝑋௧,௫ is the maximum fraction of trapped foam and 𝛽 is 

a trapping parameter. The relative permeability and viscosity expressions are given as: 

 

𝑘


= 𝑘
 ൬

𝑥𝑆

1 − 𝑆௪
൰



 

𝜇


= 𝜇 +
𝛼𝑛

𝑣
  

(16) 

In which 𝑔 is the Corey exponent determined experimentally for the power-law exponent 𝑐 is 

taken as close to 1/3, and the parameter 𝛼 is said to be dependent on the surfactant system. 

The authors also include the liquid interstitial velocity in the lamellae generation rate, and the first 

mention of an explicit dependence to capillary pressure with the limiting capillary pressure in the 

destruction rate: 

 

𝑟 = 𝑘ଵ𝑣௪𝑣
ଵ/ଷ 

𝑟 = 𝑘ିଵ ൬
𝑃

𝑃
∗ − 𝑃

൰
ଶ

𝑣𝑛 

(17) 
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Where 𝑘ଵ  and 𝑘ିଵ  are fitting constants. 𝑃
∗  is furthermore made dependent on the surfactant 

concentration, in accordance to the observations of Aronson et al. (1994), such as: 𝑃
∗ =

𝑃 ௫
∗ tanh ቀ

ೞ

ೞ
బቁ , in which 𝑃 ௫

∗  is a reference measure of 𝑃
∗ for strong foam at a reference 

molar surfactant concentration of 𝐶௦
 . The inclusion of both fluid velocity rates inside the 

generation rate is based on pore level calculations made by Kovscek to account for the different 

steps involved in the snap-off process in pore throats (Kovscek and Radke 1996). The coalescence 

rate includes the notion of lamellae flux by the term 𝑣𝑛, as opposed to simple lamellae density 

found in the model of Friedmann et al. (1991), which could cause coalescence for static foams. 

The addition of a dependence on capillary pressure is justified by the instability of lamellae as they 

pass into pore bodies, decreasing their thickness decreases. In a higher capillary pressure 

environment, the stability reduces significantly, due to the proximity to the limiting capillary 

pressure. Using this model, the authors fit pressure drops and liquid saturation data to transient and 

steady-state foam flow experiments in Boise sandstone cores. 

Despite their ability to describe diverse foam phenomena, this type of models’ practical use is 

sometimes difficult due to the number of numerical steps required to both solve the differential 

population balance equation and reuse the foam texture variable in the simulator. To lighten the 

process, some authors add a supplementary assumption, asserting that generation and destruction 

rates are equal. Consequently, the differential equation is bypassed, and foam texture is attained 

by simply rearranging the rate equality. Therefore, dynamic effects are eliminated and the foam 

texture for a given series of reservoir variables is instantly achieved. This process can be applied 

to obtain local textures in an injection (i.e. for differing injections in series) or steady state 

processes. 

 Local equilibrium variant 

The first use of a local equilibrium expression for foam texture is made by Hatziavramidis et al. 

(1995) where a simple expression is derived by equaling generation and creation rates described 

in greater detail by Ettinger and Radke (1992). The relationship for the foam viscosity is taken 

from the same paper: 
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𝑛 =
𝐾

𝐾ௗ
𝑢

  

𝜇


= 𝜇 + 𝐴𝑛𝐷
ଷ ቆ

𝜎

𝜇௪𝑢
ቇ

ഋ

 

(18) 

where 𝐾 and 𝐾ௗ are constants associated with generation and destruction processes, 𝑎 and 𝑎ఓ 

(fixed to -2/3 here) are the exponents associated with the foam texure and the foam viscosity power 

law, 𝐴 is a scaling constant, 𝐷 is the pore diameter and 𝜎 is the gas-water interfacial tension. The 

supplementary condition that the pressure gradient be superior to a critical gradient necessary for 

strong foam production, as described by Ransohoff and Radke (1988) is also imposed. The authors 

use a constant trapped foam fraction in their relative permeability expression as found in equations. 

The authors use this model to fit transient foam flow at the field scale, and to predict the future oil 

production of a South Belridge pilot from 1985 to 1988. 

Kam and Rossen (2003) propose a model with some degree of novelty. They use a generation 

function explicitly dependent on pressure gradient, as opposed to a gas velocity. The authors 

explain that the pressure gradient is the appropriate variable when considering that new lamella 

creation results from mobilisation and division of pre-existing lamellae. The destruction also 

integrates the limiting capillary pressure concept, but instead uses the equivalent limiting liquid 

saturation 𝑆௪
∗  defined as 𝑆௪(𝑃

∗). 

 

𝑟 = 𝐶(∇𝑃) 

𝑟 = 𝐶𝑛 ൬
1

𝑆௪ − 𝑆௪
∗

൰


 
(19) 

where 𝐶, 𝐶 𝑚 and 𝑛 are model parameters. The authors equalize these rates and solve for foam 

texture such as: 

 𝑛 =
𝐶

𝐶

(∇𝑃)(𝑆௪ − 𝑆௪
∗ ) (20) 

Hence the authors give an expression for the steady-state foam texture with only three independent 

variables: 



, 𝑚 and 𝑛. They use their foam texture in a viscosity identical to equation (16)Error! 

Reference source not found., but choose to not make the gas relative permeability perturbed by 
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the presence of foam, and assert 𝑘


= 𝑘 throughout. In this sense, the trapped foam fraction is 

not treated explicitly. By using this relatively simple model, with only four free model-related 

fitting parameters (three previously mentioned and 𝛼 from equation (16)), the authors fit data from 

A. Gauglitz et al. (2002), exhibiting many characteristic features of foam flow in porous media. 

They reproduce the foam generation at a fixed pressure gradient or gas velocity, show the existence 

of three multiple foam types upon foam generation: strong, weak and intermediate. They also 

reveal the experimental data hysteresis and recreate both low- and high-quality strong foams. 

A final example is given by the more recent model of Chen et al. (2010), who build on the model 

proposed by Kovscek et al. (1995), and refine equation (17) by adding the constraint of a maximum 

lamella density into the generation rate. This constraint has been used before by Friedmann in 

equation (15). Hence the constant 𝑘ଵ in the generation rate of equation made into a variable for the 

Chen model such as: 

 𝑘ଵ = 𝑘ଵ
 1 − ቀ

𝑛

𝑛∗
ቁ

ఠ

൨ (21) 

in which 𝑘ଵ
 and 𝜔 are fitting constants and 𝑛∗ represents the upper limit for bubble concentration 

or lamellae density, usually set a one-per-pore. This constraint accounts for the difficulty in 

obtaining bubble densities higher than the one-per-pore maximum, as lamella creation is inhibited 

when more and more bubble germination sites are occupied by preexisting bubbles. Using this 

definition for 𝑘ଵ in the previous Kovscek et al. (1995) model, the authors set 𝑟 = 𝑟 and rearrange 

for 𝑛 to give a polynomial function: 

 𝑛
ఠ +

𝑛∗ఠ𝑘ିଵ|𝑣|ଶ/ଷ

𝑘ଵ
|𝑣௪|

𝑛 − 𝑛∗ఠ = 0 (22) 

The authors then use 𝜔 = 3 and solve the cubic equation for foam texture 𝑛. Using this added 

constraint on the generation rate the authors fit transient and steady-state data, predicting in the 

process the characteristic high- and low-quality strong foam regimes. On top of this, the authors 

make a valuable comparison of results for the local equilibrium version and full population balance 

model (by solving the differential equation for 𝑛), while at the same time measuring in situ foam 

textures experimentally. They find that for their coreflood experiments on Berea sandstone, the 
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local equilibrium approximation is valid for most of the core, but in the 12 cm entrance region of 

the 60 cm cores, the intensive net foam generation brings the experiment out of local equilibrium. 

Hence, we can see that for population balance models, while displaying continuity through their 

fidelity to the initial framework, the specific implementation and choice of creation/destruction 

rates and viscosity/relative-permeability relationships demonstrates great variability. Each 

microscopic rate relationship is tied to assumptions about the specifics of pore-scale foam flow. 

Through these model examples, a few elements seem to reappear often: 

 The generation rate is tied to the specific pore level mechanism. 

 The coalescence rate can include the mention of a maximal lamella density, often set as 

the average density at one-per-pore.  

 Foamed gas viscosity can contain various structure related parameters, such as 

permeability, pore size, or geometric factors. 

 The exact effect of trapped fractions on the gas permeability is unclear, but increasing 

trapped fractions strongly reduce gas permeability. 

 Synthesis and proposed research themes 

We elaborate here several phenomena that we think may serve as a starting point for analysis of 

the dependence on microscale pore parameters. Our analysis can be broken down into the 

following points, which can share some degree of interconnectedness. We will look at foam 

trapping and foam flow heterogeneity; foam bubble size distributions and their effect on flow; and 

finally, the appropriate scale for describing foam phenomena. 

We will spend some time summarizing each theme and propose a few starting hypotheses. 

 Foam trapping and flow heterogeneity 

Field scale success of foam operations relies on accurate description of foam, including 

characterization of the stationary gas volume in the reservoir. The sheer breadth of measured 

trapped fractions, and different ways of including them in modified relative permeability models, 

provide a reason to investigate the mechanisms. Furthermore, direct observation of trapped foam 
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is difficult, and many estimates rely on either using indirect tracer experiments or extrapolating 

data within a specific model framework to provide an estimate.  

A link seems to exist between pore-scale structure and the degree of foam trapping through the 

local heterogeneities that exist in the pore structure. In their low-quality model, Rossen and Wang 

(1996) describe foam essentially as a series of bubbles fully contained in pores that behave as 

Bingham plastics with a yield stress related to the upstream throat size as ∝ 1/𝑟. In this model, 

when a sufficient pressure gradient allows the bubbles to overcome the throat yield stress, they can 

flow, otherwise they remained trapped. This suggests local throat size plays a large role in 

identifying trapped areas. Figure 1-17 shows the tube radius distribution displaying which fraction 

of foam is flowing or trapped. Hence, in an interconnected porous medium, whole sections could 

become trapped due to a few tight upstream constrictions, or similarly tight downstream throats 

could prevent bubble entrance and alternate routes would populate otherwise “closed off” regions, 

contributing to a trapped gas fraction. In this manner throat distributions and throat neighborhood 

properties become key in predicting trapped zones and fractions. As previously stated, Rossen 

(Rossen 1990a, 1990b, 1990c, 1990d) provides a series of theoretical papers detailing the effect of 

specific pore and throat shapes and relative sizes on the pressure gradient necessary for 

mobilization of a foam film.  

 

Figure 1-17: Tube radius and gas-liquid occupation in the Rossen and Wang (1996) model. The liquid-wet tubes carry most of the 

liquid phase in their smaller radii, the trapped gas occupies intermediate radii necessitating large pressure gradients to mobilize, 

and the flowing gas is found in the larger throats 
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We supplement this model with the recent observations of Géraud et al. (2016), in which foam is 

injected through a horizontal transparent Hele-Shaw cell with cylindrical obstacles. The authors 

observe a series of trapped areas in which grains are closely packed together, coherent with the 

model described by Rossen. The authors furthermore observe a correlation between bubble size 

and bubble velocity. While this model is of a larger scale, with characteristic throat radii of 1.75 

mm, detailed flow maps show interesting aspects prompting further enquiry. 

 

Figure 1-18: Correlation between bubble size (a) and bubble velocity (b) in a 2D model medium, with flow from left to right. 

Bright yellow passages in both maps show a large overlap of regions between the bubble velocity and bubble size. Taken from 

Géraud et al. (2016). 

Significant regions of the medium contain little flow and the flowing bubbles are seen to transport 

in a series of preferential paths that locally correlate with higher bubble sizes in the size distribution 

map. Figure 1-18 displays the velocity and bubble size distribution map. According to foam 

viscosity models presented previously, such large differences between bubble sizes for flowing 

and trapped foams would rule out some of the models in which foam textures are set equal for 

both. 

 Foam bubble size distributions and their effect on flow 

Recent foam models in their entirety adhere to the assumption that foam viscosity depends on an 

average measure of lamellae density. To support this assumption various experimental proofs are 

given with experiments on model media, such as Hirasaki and Lawson (1985) and Bretherton’s 

(1961) experiments on smooth capillary tubes, and developments by Falls et al. (1989) to include 

the effect of constrictions on beadpacks. Further proof is given by experiments on consolidated 

media, in conjunction with simulations, such as the work Ettinger and Radke (1992) who observed 
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effluent foam textures and matched pressure profiles using a model, and Chen et al. (2010) who 

proceeded similarly, but included local sampling of bubble densities. 

Moreover, the average bubble size is usually found to be close to average pore size and maintained 

at this size by: diffusion of gas between bubbles ensures the bubbles remain at a density of one-

per-pore; lamella creation mechanisms, such as division of larger bubbles into smaller ones at the 

passage of a bifurcation, and creation of a new lamella by snap-off, at the passage of an upstream 

lamella out of a constriction and into another pore body. 

However, we believe that a varying bubble size may appear in a significant amount of cases. For 

example, we may observe larger bubble size distributions in high-quality regimes where high 

capillary pressure environments force the films to coalesce and adapt to maintain a capillary 

pressure they can support. This effect is shown in Figure 1-19.  

 

 

Figure 1-19: Capillary pressure adaptation via bubble coalesce, creating heterogeneity of bubble distribution. Taken from 

Khatib et al. (1988). 

Media with large areas of varying pore size i.e. layered or fractured media, where bubble size will 

adapt by diffusion to each region, may also contain wide bubble size distributions. 

Finally, flow of foam with high injection rates, close to the well for example, may not display 

monodisperse bubble sizes at one-per-pore due to the larger timescales required for diffusion 

between bubbles to create such a distribution. 

The complex bubble distribution shapes, if studied are often omitted in analyses, as Patzek (1989) 

describes in his population balance model. The author declares higher moments of the bubble 

distributions are necessary to correctly model foam. The author explains:  
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“For example, to model bubble trapping and mobilization, we need some knowledge of the 

bubble size distribution (usually smaller bubbles get trapped because they offer higher resistance 

to flow). Diffusional mass transfer between bubbles can be modelled only if we account for bigger 

bubbles growing at the expense of smaller ones. In addition, any model that relates the flowing 

fraction of foam to flow conditions and foam texture will have to include bubble trapping and 

mobilization. In short, any realistic description of foam flow in porous media will make use of at 

least the second order moments of the population balances. The second order moments are related 

to variance of the bubble size distribution.” 

Through our work, we aim to further understand the role of bubble distributions by characterizing 

inlet bubble distributions and studying bubble size adaptation as well as observing flow properties. 

With respect to the previous point regarding flow heterogeneity, we can already observe a strong 

link between the high flow preferential paths and bubble sizes, showing the closeness of these two 

themes. 

 The appropriate scale for describing foam phenomena 

Classically, most foam studies in porous media focus on either core-scale flow behavior laws, with 

in some cases observations of fluid saturations and trapped fractions through tracer techniques and 

imagery, or direct observation of pore-scale mechanisms via direct observation in model media 

such as micromodels or beadpacks. Intermediate-scale investigation, in which both pore-scale 

events and larger scale flow properties are observed is burgeoning in the current literature. More 

intricate micromodel fabrication combined with better image acquisition and processing 

techniques have given the opportunity to observe more phenomena at different scales using 

networks of considerable complexity. Observations such as preferential path flow, foam trapping, 

foam diffusion, and flow in model fractures (Géraud et al. 2016; Géraud et al. 2017; Jones et al. 

2018a, 2018b; AlQuaimi and Rossen 2019) have been characterized microscopically. While 2D 

media have substantial intrinsic weaknesses, notably a lack of full wetting-phase connectedness, 

generally lower coordination and unrealistic pore-throat aspect ratios, a number of insights can be 

gained through their use and parallels can be made to 3D media to a certain extent. Following this 

trend, we believe the use and detailed characterization of a micromodel with simultaneously high-

complexity, varying pore and throat geometry and sizes, associated with an image workflow 

designed to capture both foam bubble sizes and flow properties will shed light into the interplay 
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of mechanisms of different scale, if and how they can be understood structurally, and their effect 

on macroscopic flow properties.  
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 Foam Flow in a Micromodel: Data 

Acquisition and Transformation 

Preamble 

This chapter will be dedicated to familiarizing the reader to some the different data types and tools 

used, from the experimental set up with the micromodel characterization, to details regarding the 

data transformation with created flow maps and bubble size histograms. A single foam experiment 

will be used for this initial exposé. However, we will use two distinct Newtonian flow simulations 

for comparison with the measured foam flow velocity map. We will look in detail and the 

interaction between the bubble size distributions and flow properties before finally looking at 

relationships between some local structural properties and flow properties. 

We will present our results as they appear in a published article, with some minor details added in 

the text and supplemented by further sections regarding the creation of flowmaps in a 

supplementary section of the appendix.  
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Article: New insights of foam flow dynamics in a high-complexity 2D 

micromodel 

Christopher Yeates, Souhail Youssef, Elise Lorenceau 

We show a slightly edited version of the article accepted on the 30th April 2019 for publication in 

Colloids and Surfaces A: Physicochemical and Engineering Aspects 

Volume 575, 20 August 2019, Pages 184-198 

 

Keywords: Foams; Micromodels; EOR; Pore-scale observation 

Abstract:  

In this work, we present direct observation of foam flow through a 2D porous microfluidic device. 

Through a specially designed image processing workflow, we perform individual bubble tracking 

and establish flow dynamics within the micromodel structure. In addition to our experimental data, 

we provide 2D and 3D numerical Newtonian flow simulations on equivalent digitized versions of 

the model, carried out using Lattice Boltzmann simulation codes for comparison. The results show 

that foam flow in our experimental conditions, low gas fraction and high injection velocity, 

demonstrate a high degree of similarity to the flow of a Newtonian fluid in both 2D and 3D 

simulations, in aspects of large-scale flow distribution homogeneity and specific flow passage 

activation. However, the foam data shows a larger spread of pore-scale flow velocities, spanning 

from blocked off areas of quasi-zero flow, to zones of high velocity, with velocities well above the 

Newtonian counterparts. For our model depth and characteristics, the 2D simulation demonstrates 

slightly more flow heterogeneity and is closer to the foam case. Detailed bubble tracking gives 

access to other characteristics of the foam flow inside the medium such as the dichotomy between 

the flow patterns of the smallest bubbles, typically dispersing and accessing most regions available, 

and the largest bubbles, which travel in long straight preferential paths exclusively. We show that 

intrinsically tied to these different flow patterns is the relationship between bubble velocity and 

bubble size, as we demonstrate distinct populations of trapped and flowing bubbles with distinct 

sizes. Finally, we explore the relationships between microstructural parameters and flow intensity 

and note a weak correlation to local structural parameters. Our study, which combines high spatial 

and time resolution, small network dimensions, high network complexity and efficient bubble 

tracking, therefore sheds new light on the study of foam flow in porous media. 
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 Introduction 

Surfactant-stabilized foams are used as injection fluids in porous rocks in Enhanced Oil Recovery 

(EOR) as a means of improving recovery and improving reservoir conformance of gas injection 

due to permeability contrast or gravity segregation (Li et al. 2013). In a confined geometry, where 

the bubble size is often observed to be of the same order as the pore size, foams exhibit a series of 

original phenomena unseen in either bulk foams such as distinct flow regimes (Alvarez et al. 2001), 

trapping (Jones et al. 2018b) or novel properties unknown in other flow situations such as selective 

mobility control in heterogeneous porous media (Kovscek and Bertin 2003; Tsau and Grigg 2013). 

Elsewhere in EOR applications, foams can be used to plug areas of a well, to block exploited or 

uninteresting regions. Lastly, we can mention the example of using foams in fractured reservoirs 

to increase oil recovery in the rock matrix (Conn et al. 2014; Fernø et al. 2016). 

To get a better understanding of foam flow in porous materials, laboratory experiments are often 

performed either at the core-scale, with observations including apparent viscosity and fluid 

saturations, or at the pore-scale, through qualitative observation of individual mechanisms or 

overall oil recovery factors usually using transparent 2D micromodels or transparent beadpacks 

(Fernø et al. 2016; Ransohoff and Radke 1988; Gauteplass et al. 2015). Although some examples 

of in-situ flow measurements in porous media are available, various shortcomings may diminish 

the applicability of these results, such as the unrealistic pore-scale dimensions or low model 

complexity (low pore-scale heterogeneity or constant coordination number). Despite the lack of 

direct observation of foam flow in higher complexity networks, many assumptions are made 

regarding the precise dynamics of flow based on hypothetical models. For example, Radke, Gillis 

(Radke and Gillis 1990) describe flowing gas occurring in larger pores whereas intermediate sized 

pores contain trapped immobile bubbles. Since then, advances in imaging, 2D micromodel 

fabrication and especially data processing provide new tools to address these complex problems 

statistically. In particular, how the widths of bubble size and pore distributions interplay with the 

heterogeneity of the flow field remains an open question. Recently, Géraud et al. (2016), provide 

interesting results by directly observing these correlations in a 2D medium. In polydisperse foams 

the authors establish a positive correlation between bubble size and bubble velocity, also observing 

preferential paths for larger bubbles as well as trapped zones. The authors furthermore observe a 

degree of similarity between the bubble flowmaps and the maps relating to pore sizes and affirms 
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that preferential paths occur where large pores are connected together. The authors also reference 

a structural origin for the existence of trapped zones, yet don’t systematically explore this 

relationship and it remains unclear which structural parameter could be the most relevant. Here we 

exhaust some of the most obvious candidates including the ones referenced by the authors. 

Despite this interesting framework, these open questions suggest that there is still some need of 

detailed quantitative data to obtain better flow descriptors for foam flow in porous geometry. In 

this work, through an accurate image processing and data analysis procedure that we describe in 

detail, we gain access to new data types for flow situations at this small scale, notably detailed 

velocity maps and local bubble size distributions, and combinations of both such as velocity maps 

for different bubble size categories. We use flow rates that are large but nonetheless realistic in 

proximity to the borewell. We present and evaluate the created flowmaps in conjunction with the 

bubble size distributions. We characterize flow with quantitative model-scale markers such as 

activated passage fractions and global flow distributions. We perform 3D and 2D Lattice 

Boltzmann simulations on digitized version of the model used. We then compare flow both model-

scale and on the pore-scale. Although such comparisons have previously been performed between 

foam and 3D simulations on models of simpler geometry (Dollet et al. 2014), comparisons between 

experimental foam flow and simulated Newtonian flow in both 2D and 3D cases, for a network of 

this complexity are novel. This provides two comparative Newtonian flow results, in order to asses 

tangibly the pore-scale specificities of foam flow versus a classical Newtonian fluid flow in both 

2D and 3D dimensions. We show that for our model depth, foam flow resembles more closely 2D 

than 3D simulated Newtonian flow.  

For the foam data specifically, we witness some significant recurring themes, each representing a 

key observation in the study of foams in porous media. The structure of our discussion section 

follows a sequence of increasing complexity and fundamental explanation. We start by showing 

the interactions between the bubble size distributions and velocity distributions. With only these 

two parameters, we show that trapped foams are observed at a constant rate throughout the model 

and show independence to the surrounding flowing bubble size distribution. Secondly, we focus 

on the flowing foam population, and we show that within the continuum of speeds that contribute 

to flow, behavior differences are observed between bubble sizes. Here we establish the preferential 

paths for larger bubbles and demonstrate that the majority of flow in the medium is contained 
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within these paths. Finally, we look in detail at the porous medium characteristics to attempt to 

explain some of the variance shown in the bubble flowmaps, in both the trapped zones and 

preferential path zones. We perform a scan of structural properties demonstrating that local porous 

structure properties only weakly correlate with the flow properties and higher-complexity network 

properties are needed.  

 Materials and Methods 

 Micromodel 

We use a glass micromodel of inner etched network dimensions of 10 mm wide by 17 mm long. 

The models are wet-etched with fabrication depth of 40 µm. Each outer longitudinal side of the 

inner sketching comprises a rectangular entrance zone followed by a flow diverting system of 

larger canals that serve the purpose of spreading the bubble flow across the model. The flow 

diverting channels are composed of 3 successive bifurcations of the initial entrance canal to 

produce 8 channels evenly distributed across the model entrance. Both sides of the model display 

the same flow spreading configuration inwards/outwards of the inner etching.  

The interior model network is based on an image of a 2D slice of Bentheimer rock, obtained from 

X-Ray tomography. It is modified to include a larger degree of porosity and therefore connectivity, 

enabling a sufficient 2D percolation to correctly mimic a complex interconnected flow situation. 

We show a binarized version of the inner model used in Figure 2-1. 

 

Figure 2-1: Binarized model showing the entrance and exit, as well as the zones used for the longitudinal box intensity analysis 
described in Appendix 2-C. Obstacles appear in white while porous flow channels are black. 



Foam Flow in a Micromodel: Data Acquisition and Transformation 

47 
 

The total amount of full-depth objects impeding flow (assimilated to grains) is 2602. The average 

porosity of the interior connected network is 69.7%. The permeability of the total model with the 

flow spreading system is 4.7 Darcy. As the model is made entirely from glass, it is water-wet. 

Using a modified version of the ImageJ watershed algorithm (Soille and Vincent 1990) on the 

binarized porous area of the model, local distance minima between obstacles are identified. The 

watersheds (or basin meeting segments) are created from flooding source points corresponding to 

the maxima of the distance map of the porous network. The watersheds found are naturally the 

local minima of the porous space. As the distance of the irregular porous space presents many local 

maxima to serve as basin sources, the possibility of over-decomposing the medium needs to be 

avoided. The modified watershed algorithm then only creates watersheds if the radius of the 

smaller largest inscribed circle of the pores neighboring the watershed is at least two pixels larger 

than the throat radius itself (or 3.9 µm on the upscaled model image used). A sample of the chosen 

decomposition and associated statistics is shown in Figure 2-2. 

 

Figure 2-2: Micromodel network characteristics, with mean values shown as dashed lines. A sample of the network 
decomposition is shown on the right. Throats are shown as light green objects (enlarged for visibility) separating black pores 

From the watershedded model, we use an ImageJ network analysis code to extract neighborhood 

characteristics of the porous area. We obtain, for each pore, sizes of neighboring pores or throat 

sizes that lead to them. 

 Fluids 

The gas used for the foam is purified N2. The liquid component is composed of purified water, 30 

g/L of NaCl, and an AOS 16-18 anionic surfactant at concentration of ten times the CMC, 

supplemented by a betaine-based foam booster known to improve the foamability, foam stability 
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and rheological properties of aqueous foams (Basheva et al. 2000). This solution has a surface 

tension in contact with air of 28.83 ± 0.01 mN/m at 24°C, measured with a Kruss K100 tensiometer 

using the Wilhelmy plate method. This foaming solution has been selected for its excellent stability 

and foamability, for the depth of literature available for AOS foams (Khatib et al. 1988; Chambers 

and Radke 1990; Ettinger and Radke 1992), and for the proximity of the salinity to that of seawater.  

  Microfluidic setup 

In this section we describe the microfluidic setup that we have developed and tested. This setup 

includes an injection and monitoring system, with a high-resolution camera for direct observation 

of foam flow in the micromodel. The camera make is JAI (SP-12000M-CXP4 model) that provides 

12-megapixel monochrome resolution (4096 x 3072 pixel) and full-field framerate of 189 frames 

per second that can be increased if FOV is reduced. The overall experimental setup diagram is 

shown in Figure 2-3. 

 

Figure 2-3: Experimental Setup 

We use Vinduum liquid pumps, delivering a continuous flow with a minimum volumetric delivery 

rate of 10-4 ml/min. For gas flow, we use a Bronkhorst mass flow controller bounded by a 

maximum volume flow rate of 0.65 ml/min and a minimal stable flow rate found to be of 10-2 

ml/min.  

The foaming device is a sandpack of SiC grains 80µm in diameter. The sandpack is a cylinder 4 

cm long and 1.5 cm in diameter, with a measured permeability of 930 mD. The motivation for 

using a sandpack is dual, firstly to provide a uniform foam quality before entering the micromodel, 
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as some supplementary segregation can occur in the tubing, and secondly to break down the gas-

liquid biphasic flow into bubbles. Indeed, without creating preliminary coarse foam through the 

foam generator, we don’t observe biphasic flow but rather a succession of distinct liquid and gas 

phases whose volume can reach a similar order of magnitude as the porous volume of the model. 

The foam injected into the model is thus both uniform and sufficiently coarse as to necessitate size 

re-adaptation through the passage in model. Fluids from the micromodel outlet then enter a liquid 

filled buffer-bottle from the top. The system is held at 3 bars by a backpressure regulator 

downstream of the buffer bottle. The choice of 3 bars provides a means of minimizing 

compressibility effects from the pressure gradient over the model. A flow meter measures the 

liquid output of the buffer bottle (corresponding to the total micromodel output at 3 bars) after the 

Backpressure regulator. From the total flow output and the liquid injection rate we calculate the 

gas fraction at the model outlet. The high-frequency, high-resolution camera has a CCD acquisition 

with integrated RAM for a large image collection capacity, enabling capture of the whole model 

with part of the outer flow spreading systems, at a frequency of 605 Hz and at a resolution of 2495 

by 1496 pixels. The model is secured and levelled horizontally on two flat metallic rods, open to 

illumination from beneath. The model is backlit with the use of a high-intensity red light. In this 

configuration, the bubble interfaces are observable with a pixel size of 7.8 µm. Multiple thousand 

images can also be acquired in succession, all stabilized through the use of an air-suspended 

breadboard on which the setup is fixed, eliminating any potential laboratory vibration. 

 Data acquisition and analysis tools 

 Experimental procedure 

The experimental procedure is designed to create a stable injection condition prior to acquiring 

steady-state images of flow, representative of a unique gas fraction and injection rate. First, models 

are saturated with distilled water and an image of the clear model devoid of foam is taken. A 

biphasic injection is initiated, and surfactant solution and gas proceed first through the foaming 

device before entering the model. As foam is created in the foaming apparatus, a significant 

pressure rise occurs at the entrance due to the viscosity of the created foam. In turn, foam 

propagation and further bubble size evolution across the micromodel creates a pressure drop 

increase until a plateau is reached. The pressure at the foaming device inlet usually rises for a 
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longer period of time than the model pressure drop and is also tracked until a plateau is reached. 

Only at this point is the system considered stable and images are acquired. For the experiment 

shown here, the injection gas fraction is set at 79%, calculated at the exit of the model from a 

measure of output liquid flow. At the time of acquisition, the steady pressure drop of 275±4 mBar, 

when compared to the backpressure of 3 Bars, ensures that the gas fraction is roughly the same 

throughout the model, varying from 77% at the entrance to 79% at the exit. The overall injection 

rate is 2.53 × 10-2 cm3/min, equivalent to a superficial velocity of 84.7 ft/day, as measured at the 

model output at 3 Bars. 

 Image acquisition strategy 

Two distinct image acquisition strategies are used. Each corresponds to a data type. In the case of 

the bubble size distributions, we average the individual distributions of images taken every 20 

seconds. This low frequency was chosen such that more than 17 pore volumes of fluid could cross 

the model each time, keeping in mind the need for statistical representativity.  

The images serving for dynamic bubble tracking and bubble creation observation were taken at 

higher frequency. Images sets are composed of 200 of these. Multiple image sets are captured, as 

one short burst of images may be insufficient to capture the sometimes-fluctuating flow patterns. 

The number 200 was chosen firstly as the tracking process becomes somewhat computationally 

demanding after a larger number of frames are used, and secondly as rather than a long single 

capture, many brief captures were preferred to account for the variability in flow patterns. Here 

we use 8 different sets acquired with a minute interval in between, corresponding to more than 53 

pore volumes. A frequency was fine-tuned through trial and error to ensure we can track suitably 

all the bubbles (no excessive displacement between frames), while at the same time capturing the 

maximal amount of flow within 200 frames. The frequency was chosen as 605 Hz 

 Image processing and exploitation 

 Image processing 

Our software analysis tools require binary images of filled bubbles. The grayscale images have to 

be preprocessed before binarization. Readers are encouraged to refer to appendix 2-A for details 

regarding the image cleaning and binarization process.  
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 Measured bubble velocity map 

From the high-frequency image series, the bubble tracking procedure was performed and a large 

data set of individual tracking velocity points was produced. The tracking plugin gives both a value 

of bubble displacement between two frames and a local bubble area value. From the combined 

series of tracked bubble values we create a 2D flowmap that gives a quantitative image of the flow 

over combined data series. The 2D flowmaps show time averages of all local bubble center of 

mass velocities in 2-by-2 pixel bins of the initial image. When a tracked object passes inside the 

box its velocity is added to the sum for that box. In this way, we observe a total velocity in a region 

in a given time, corresponding to a Eulerian description of flow. Each image is then smoothed 

using a Gaussian filter (implemented by a convolution of the produced 2D array with a Gaussian 

function with a standard deviation of 3) as the particle-like nature of the bubble tracks can often 

create small contrasting patches inside a pore.  

 Numerical flow comparison 

Throughout the study, a detailed flow comparison is consistently made with both a 2D and 3D 

simulated flow of a Newtonian fluid in a 2D mask and 3D equivalent volume of the network. It is 

known that 2D and averaged 3D Newtonian simulations of micromodel type geometries can offer 

greatly different results (Venturoli and Boek 2006). This study provides a comparison of behavior 

between monophasic Newtonian fluids simulated in 2D and 3D and foam, both on the pore scale 

and globally within in a complex network. The calculation was performed on the etched network 

only. The 2D numerical method was a Lattice Boltzmann D2Q9 routine (Talon et al. 2012), 

whereas the 2D simulation was performed with a D3Q15 scheme (Talon et al. 2012). The 2D 

model dimensions were 4408 by 2560 pixels. The 3D volume used for the calculated was 4408 by 

2560 pixels with a depth of 11 pixels. The calculations were performed until a steady velocity map 

was achieved and a quasi-constant pressure drop in between each timestep. The resulting velocity 

field output represents the Stokes flow of an incompressible Newtonian fluid. As the Stokes flow 

is purely viscous, the flow magnitude is isotropic. We give the velocity maps of both simulations 

in Figure 2-6.  
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 Flowmap quantitative analysis tools 

In our study of the velocity maps, we make use of some other model-scale quantitative tools that 

support more firmly observations we can make from inspecting the maps. We define transversal 

passage activation and longitudinal box flow in detail Appendix 2-B. 

 Results 

 Bubble creation/destruction mechanisms 

The injected foams adapt rapidly to the porous network. Bubble creation is observed via the 

breaking up of large bubbles at bifurcations of the porous network. The division mechanism is 

described as follows. At a junction between one upstream path and two downstream paths an 

upstream large bubble enters partially one of the downstream paths, but is it broken up by a 

following bubble that breaks off the trailing part into a different path. This is a special case of 

lamella division within porous space previously invaded with bubbles, with a very oblique 

approach of the bubble to the fragmenting obstacle. This mechanism has elsewhere been described 

as neighbor-wall pinch-off (Liontas et al. 2013). We observe that if the part of the larger bubble 

that is committed to the trailing path is not sufficiently large, it will not get broken off, leading to 

the bubble deforming around the bifurcation and keeping its integrity. An example of both a 

successful division event and a failed division event is observed in Figure 2-4. We understand that 

Roof snap-off is unlikely to be observed in a model of this given geometry, due to the required 

large aspect ratio in a 2-dimensional medium that we observe rarely in our network (Rossen 2008), 

and due to the smooth surfaces inherent to wet-etched micromodels. For this reason the bubble 

fragmentation dynamics have not been studied extensively, as is the case in other studies (Géraud 

et al. 2017). However, other forms of snap-off are theoretically possible in this geometry (Rossen 

2003). 
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Figure 2-4: Observation of a successful bubble division (green bubble, left pane to center pane), followed by an unsuccessful one 
(lower red bubble, center pane to right pane). The red bubbles are responsible for pushing the green bubble against a 

bifurcation. The time between each pane is 3.3 ms 

Bubble destruction or destabilization was not observed at these experimental conditions. This 

could reflect the important liquid fraction of the flow, constantly providing surfactant for film 

stabilization, or otherwise could be due to the low average aspect ratio of the model. Indeed, a film 

exiting a throat and expanding into a larger pore will only thin and destabilize if the downstream 

pore is large enough. 

 Bubble size distributions 

From the low-frequency image series, the images are cut in five sections transversally, from the 

entrance to the exit of the model corresponding to the first fifth of the model after the entrance, the 

second fifth etc. up to the final exit box. The goal is to probe the evolution of bubble size 

throughout the model. The binarized bubble areas are measured. Each area is then associated to an 

equivalent radius, through circular approximation. The measured bubble radii for 20 different 

images is then represented in a weighted histogram of 70 equally spaced bins from 0 to a value at 

which bubble detection becomes negligible. The value in each histogram bin is then multiplied by 

the center value of the bin, producing a weighted histogram that shows the area occupied by each 

bubble radius, rather than a simple number count. Through this approach, the histogram then can 

be associated with a probability density of finding a given bubble size when choosing a location 

at random in the porous space. We display the produced bubble size distributions in Figure 2-5. 
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Figure 2-5: Bubble size distributions for different transversal sections of the model. A small example of the processed bubble 
images is included for the sections closest to the entrance and exit. The maxima of the PDF distribution for 12 section of the 

model is shown in a nested plot. 

The weighted histograms for bubbles contained in each box are shown in a different color on 

Figure 2-5 ranging from blue (entrance of the model) to green (exit of the model). We display the 

average 2D throat radius (as shown in Figure 2-2) as well the average total throat radius of 

curvature, given by 2 ቀ
ଵ


+

ଵ


ቁ

ିଵ

, where 𝑟௧ is the throat radius and 𝑟ௗ is the radius associated to 

the model depth, or 20 µm. We observe an evolution in bubble size from large bubbles at the 

entrance to a smaller, spiked distribution at the end section. The evolution occurs mainly over the 

first two sections after which the distribution seems to evolve only marginally. Furthermore, the 

end distribution appears to be symmetrical, with no presence of a right-hand side tail that would 

account for larger bubbles. We nest a small plot inside Figure 2-5 showing the evolution of the 

PDF maxima for different transversal sections of the model (12 sections are used for this figure). 

The PDF maxima were fitted to an exponential decay function tending to a value of 41.7 µm, 

which is attained by the model distribution in the last third of the model. We therefore expect that 

a longer model would further increase the monodispersity of the bubbles, due to diffusion 

processes that occur on a slower timescale than bubble fragmentation observed here, but that the 

mean bubble size remain around 41.7 µm. Intuitively, the average throat size (as shown in Figure 

2-5), or the average total throat radius of curvature, could be seen as the limiting dimensions in the 

system, expecting the peak of the bubble distributions to be situated on either of them. However, 

the peak of the final bubble distribution is situated in between both averages. Due to the neighbor-
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induced nature of the bubble creation mechanism, the injection rate plays a part in the distance 

required to reach a stable bubble size distribution. A higher injection rate might leave less time for 

a trailing part of a bubble to deform around a bifurcation, before a downstream will break it up; 

therefore, failed divisions, such as observed in Figure 2-4, would become rarer. Elsewhere (Géraud 

et al. 2017), bubble fragmentation dynamics have been generalized elegantly showing that the for 

a given model, the normalized bubble size fragmentation dynamic is conserved for different flow 

rates, injected average bubble sizes and gas fractions. However, the generalized model was 

established from gathering fragmentation statistics at cylindrical grain sites of the same size and 

are perhaps not applicable here. 

 Comparison of velocity maps 

We show in Figure 2-6a the overall measured velocity map for the foam experiment, for all the 

bubble tracks over the 8 datasets of 200 images, as described in Appendix 2-B. While this flowmap 

may represent average flow in the model, significant flow intermittency and intensity fluctuations 

were observed but not studied here. The map shows both the velocity field, given in detail by the 

color-bar of Figure 2-8, and solid elements of the model in dark grey. Looking at the map globally, 

we note a large number of similarities with the Newtonian flow simulations displayed in Figure 

2-6d and Figure 2-6e. We also display the velocity map for the 20% smallest (Figure 2-6b) and 

20% largest (Figure 2-6c) bubbles, explored in greater detail in the discussion section. The 

presence of a velocity intensity gradient is due to the lower number of bubble counts at the entrance 

of the model, where foam bubbles are larger on average, leading to a lower number of contributions 

to the flowmap. While the colormap describes the velocity of pores, there is a significant gradient 

over the model due to the evolving number of bubble counts. Therefore, the signal shown can be 

thought of as relative velocity intensity. More on the velocity gradient and details on flowmap 

creation can be found in Appendix 2-E. This difficulty is inherent to flowmap creation from bubble 

(or any particle) tracks of evolving number density. One notable difference is the flow distribution 

of smaller bubbles close to the inlet in Figure 2-6b in which we note fewer paths used by the foam. 

We assimilate this to an area characterized by strong bubble size adaption, and less transport of a 

stable bubble size. For the overall velocity map (Figure 2-6a) we observe a large number of 

passages in use. On top of this, the flow seems to be well distributed throughout each section of 

the model, similarly to the Newtonian simulation. In Figure 2-7a and Figure 2-7b, we observe that 
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this is also quantitatively true through the use of characterization tools described in Appendix 2-

B. 

 

Figure 2-6: Different velocity maps using the same model. Injections are from left to right. a) Foam flow, all bubble sizes. b) Foam 

flow, smallest 20% of bubbles. c) Foam flow, largest 20% of bubbles. d) 2D Numerical Newtonian flow. e) 3D Numerical 

Newtonian flow. 



Foam Flow in a Micromodel: Data Acquisition and Transformation 

57 
 

This global similarity is confirmed by the breakdown of the flowmaps into the velocity 

components parallel and perpendicular to pressure gradient. We produce velocity maps for each 

component in each case (not shown here) and sum the absolute value of the image intensity of the 

entire image to compare values. The flow decomposition in X (parallel to pressure gradient) and 

Y (perpendicular to pressure gradient) directions are comparable in all cases, as shown in Figure 

2-7c. 

 

Figure 2-7: Quantitative comparison of numerical Newtonian flow and measured foam flow. 

At the pore-scale, further common characteristics are observed. Preferential paths - appearing in 

bright colors - emerge in both cases. These paths are aligned in the direction of the pressure 

gradient directed here from left to right. The Figure 2-8 illustrates the three flow situations on a 

local scale.  
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Figure 2-8: The top row shows local foam (a), 2D numerical (b) and 3D numerical (c) flow, denoted with a series of similarities 
and notable differences described in detail below. White markers show similarity between all images while colored markers 

denote differences between flow situations (bright green for foam vs. 2D Newtonian, bright blue for 2D vs. 3D Newtonian). The 
mean bubble speed is 1.26 mm/s. The bottom row shows relative differences between foam and 2D Newtonian flow (d) and 

between 2D and 3D Newtonian flow (e). Flow is from left to right. The color scale of top row images is normalized individually to 
cover the full range of values in each image. In the bottom row images, the color scale is set largest range of both images, i.e. 
image d), to show the smaller difference in flow between the two Newtonian cases (e). The lower row color scale is symmetric 

around the zero value (white). 

We first compare foam versus both 2D and 3D Newtonian flows taken as a whole. The presence 

of zones devoid or low in flow, visible by the absence of color (thinly dashed white oval), exist in 

both measured foam flow and both simulated Newtonian Stokes flow. In the foam experiments 

these zones are filled with trapped bubbles. We similarly observe in all cases path junctions 

comprising large amounts of flow (solid white oval). Also, longer paths with conserved flow are 

visible that span multiple network bifurcations (thickly dashed white oval).  

However, the microscopic differences in the comparison we give here are not negligible. Overall, 

a larger degree of flow heterogeneity appears in the experimental image versus the Newtonian 

cases, shown by the higher contrasting colors. While the flow is non-existent in the dead zones in 
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the foam experiment, the Newtonian flow cases do show a residual amount of flow in the central 

marked zone, more clearly visible in image Figure 2-8d. Some passages that turn away from the 

flow direction (full green ovals) are completely inactive in the foam experiment but show 

considerable flow in the Newtonian cases. Also, foam flow in larger pores is sometimes 

represented by more than one trail (dashed green ovals), as opposed to the diffused continuous 

flow in the Newtonian experiment. This is due to the fact that multiple bubbles flow simultaneously 

into the larger pores, originating from smaller upstream passages. 

Comparison between 2D and 3D Newtonian flow show that the 2D flow is more heterogeneous as 

flow in higher in certain larger paths shown in red in Figure 2-8e. The 3D flow accesses paths with 

small throats (bright blue ovals) more consistently. Finally, the distribution of flow within the cross 

section of a given path that is more evenly distributed in the 3D case (bright blue line), visible by 

the alternating blue-white-red-white-blue colors in the section seen in Figure 2-8e. The higher flow 

homogeneity in the 3D Newtonian case is a confirmation of the higher path activation and more 

balanced flow contribution of the 3D flow as seen in Figure 2-7a and Figure 2-7b. 

We explain the larger 3D Newtonian flow homogeneity as an effect of the added non-slip condition 

imposed on the top and bottom of the model that is non-existent in the 2D case. In the 2D case the 

Poiseuille flow is only divided at bifurcations relative to 2D throat size of each downstream path, 

whereas for the 3D simulation, the model depth also contributes the equivalent capillary radius 

and reduces the flow-impeding property of smaller throats.  

In regard to the foam flow, it is important to note that the non-overlapping bubbles travel with 

interfaces that have one component of radii of curvature fixed by the model depth, given that the 

vast majority of bubbles have an equivalent diameter larger than model depth. As foam transport 

through a given throat requires exceeding (for a liquid-filled throat) a pressure gradient of the order 

of the Laplace entry pressure associated with the throat (Rossen 1990a), it is reasonable to compare 

foam flow in the micromodel with a 2D Newtonian flow simulation, as shown by the greater 

similarity of flowmaps obtained in this study. 
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 Discussion 

  Bubble velocity and size relationship  

It has been previously established (Géraud et al. 2016) that a strong positive correlation exists 

between bubble size and bubble velocity for foam flow in a 2D analog porous network, specifically 

for high-gas fraction injections. Our data follows this trend. Figure 2-9 displays density plots of 

bubble speeds in terms of the bubble sizes, for the full model, entrance box and exit box, as 

described above. 

 

Figure 2-9: Density plots of bubble speeds and bubble radii in different sections of the model. We observe two distinct 
populations corresponding to trapped bubbles (lower population) and flowing bubbles (higher population). The density map on 
the left is created with 82623 individual points, each representing a bubble track (50 frames minimum), the central plot is made 
with 8664 and the plot to the right with 20406 points, demonstrating the unequal number of bubbles in each section. The speed 
is given by the Euclidean distance of the bubble from the final to initial frame, divided by the bubble track duration. The radius is 

the average radius over the bubble track. 

In the full model density plot (Figure 2-9, left), the main cluster of points shows a weakly positive 

relationship between bubble size and radius. However, a second, distinct cluster of small, low-

speed bubbles exists in the lower left corner of the plot. These points are trapped bubbles. When 

examining similar plots for each transversal section of the model we observe that the trapped 

fraction of bubbles are represented more clearly in the entrance of the model (Figure 2-9, right), 

whereas flowing bubbles appear more clearly at the end. To differentiate between both 

populations, we divide the plot using a visually chosen line showed in black. As the density plots 

display the relative distribution of points and not absolute numbers, to complement these 

observations, we display in Figure 2-10 the number of points contained in each side of the black 

line, for each transversal box of the model, following the progression of the flow. 
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Figure 2-10: Frequency of bubbles and average radius in each bubble population for each transversal box of the model. Note that 
here the average bubble size is calculated simply over all bubbles. The discrepancy between the peak of Figure 2-5 which 

displays a weighted histogram, rather than a number frequency histogram) and the average value show here is well understood.  

Figure 2-10 shows that while the number of flowing bubbles tends to increase as large bubbles 

divide up as they pass through the model (18000 at the end vs. 5000 at the beginning), the number 

of trapped bubbles remains relatively constant in each part of the model Also, we see that the 

average bubble size in the flowing foam evolves all the way through the model whereas the trapped 

foam size is relatively constant after the second section. The total trapped fraction (total area of 

trapped bubbles) is reduced towards the end of the model (not shown here). These opposing 

behaviors reaffirm the distinctiveness of the two populations. The implications of these 

observations are significant. The number of trapped bubbles is constant throughout the length of 

the model, despite the overall bubble fragmentation occurring in the direction of flow. While the 

observation of inference of a trapped foam is shown elsewhere (Jones et al. 2018b; Nguyen et al. 

2002; Nguyen et al. 2009), local evaluation of the trapped foam population and its independence 

to the surrounding flowing foam size distribution is yet to be observed. We believe the trapped 

foams seen here will not contribute greatly to the macroscopic steady-state flow properties (small 

contribution to the apparent viscosity) as they are situated in hard-to-access zones. However, as 

they can enclose oil in pseudo-emulsion films between the oil-gas interfaces (Bergeron et al. 1993), 

and deplete surfactant, the small trapped foams should be considered for simulation of foam flow.  

We further propose a causal link between the trapped bubble sizes and velocities. We observe 

multiple mechanisms that contribute to the population of trapped zones by small bubbles. First, we 

note that the smaller bubbles are more likely to move off the preferential tracks into low-flow 

areas. The image panels in Figure 2-11 demonstrate our argument, in which we show this 

mechanism repeating itself twice in the same location in a time frame of 330 ms, or a single dataset 

of 200 images. In these images, we overlay flow lines on images of bubbles (shown in color), 
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whilst the solid obstacles are shown in gray. Flow line thickness shows flow intensity. Flow lines 

were calculated using quantitative data from the combined datasets. We see that two smaller 

bubbles, shown in red, move into a low-flow zone at the bottom of the image, characterized by an 

absence of measured flow lines. We observe that larger bubbles, shown in green, feel contained 

by other bubbles dragging and pushing them to keep to the main flow paths. Indeed, as they cover 

a larger area, they are more likely to intersect a high flow path, despite part of their interface 

exploring a low-flow zone. Inversely, once smaller bubbles explore low-flow regions, they can be 

rapidly locked out. Combined with the fact that their displacement into low-flow zones requires 

less displacement of static fluids, their chances of successfully entering and staying in the low-

flow areas are increased. 

 

Figure 2-11: Small bubble trapping mechanism. Flow lines are calculated from the combined datasets. Smaller bubbles trapping 
is shown in red, whilst larger bubbles keeping to the main path are shown in green. Solid obstacles are shown in gray. The time 

between each panel is 66 ms. 

Secondly, we also observe a large amount of trapped bubbles in pore corners and dead-end pores. 

Examples of both are given in Figure 2-12, in which we show image averages for two locations 

for a dataset of 200 images. The black isolated bubbles show that they are not displaced during the 

entirety of the dataset, whilst gray values in the flowing areas show a succession of distinct 

bubbles. 
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Figure 2-12: Trapped bubbles in pore corners and dead-end pores. An image set of 200 images is averaged to show flowing areas 
in color, porous void in white and immobile bubble areas in black. The solid obstacles are shown in gray. 

Indeed, while low-flow zones, as described above, are structurally connected to the rest of the 

network in at least two ways: pore corners and dead-end pores have only one outside connection. 

As bubbles in these areas tend to trap and rarely displace, observation of their specific trapping 

mechanism is not evident as datasets are acquired in a steady state pressure gradient when flow 

distribution is well established. However, we argue that for the case of dead-end pores, the trapping 

mechanism is the creation mechanism described previously, where part of a larger bubble is ripped 

off in situ and occupies the dead end. Indeed, these bubbles fill the dead-end pores entirely and 

seem to have been tailored for the pores precisely. A few large, trapped bubbles have hence been 

observed in some larger dead-end pores. Oppositely, trapped corner pore bubbles tend to be a lot 

smaller and can be created elsewhere in the network that have found a stable position where they 

are unaffected by flow. In fact, the possibility of creating a pore corner bubble in situ seems 

unlikely as the network does not offer a sufficiently deep bifurcation for larger bubbles to invade 

and get broken apart by trailing bubbles. The number of smaller, corner pore bubbles greatly 

outweighs the larger dead-end pore bubbles.  

Obviously, it can be difficult to differentiate between qualifying some areas as a pore corner or a 

dead-end pore, but the distinction is worthy as we believe these areas become populated with 

trapped bubbles in different ways.  

  Preferential path flow for larger bubbles 

Here we take a closer look at Figure 2-6 in which are displayed velocity maps for different bubble 

size populations. The most striking observation is the differences in velocity intensity gradients 

appearing over the model in the flow direction. In reality, this simply translates the different 

amounts of measurement points contributing to the 2D histogram and is another manifestation of 

the bubble size adaptation. This explains the stronger strength of the intensity gradient for the 
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smallest 20% image (Figure 2-6b), as this bubble size is inexistent at the entrance of the model, 

but prevalent near the exit. Inversely, the larger bubbles are seen most at the entrance. The second 

observation is the difference in flow patterns between the largest (Figure 2-6c) and smallest (Figure 

2-6b), bubble sizes. Broadly speaking, the larger bubbles take paths more parallel to the pressure 

gradient and are present in less paths overall. Also, for larger bubbles, the notion of large-scale 

path seems to be more significant: in other words, flow intensity is conserved over a single path 

that can span many pores and throats, and not diffused out into every possible downstream avenue. 

The smaller bubble flow (Figure 2-6b) is also present in preferential paths as small bubbles are 

carried along with larger bubbles, but also is visible in many zones unused by the largest bubbles. 

These paths are often perpendicular to the pressure gradient and are accessed by smaller bubbles 

through the mechanism displayed in Figure 2-11. The contribution of each component 

(longitudinal, Vx and transversal, Vy) of the velocity maps for each bubble size category is shown 

in Figure 2-13. 

  

Figure 2-13: Contribution of longitudinal (Vx) and transversal (Vy) velocity components for each bubble size category for the 
experimental foam data. Note that the overall magnitude of the sum of each component has been normalized for clarity; overall 

comparison of magnitude of each component is shown in 2-7c. 

The flowmap intensities shown here are given by the sum of pixel values for each map, as 

individual maps were obtained as described for the comparison of Figure 2-7. The values are then 

normalized for each component. We remark that an increased amount of flow is carried by the 

larger bubbles (60-80% and 80-100%). 

Finally, we note that each velocity component makes a similar relative contribution for each bubble 

size. This is a surprising result. Indeed, from inspection of the velocity maps of different bubble 

sizes, the largest bubbles travel in straighter paths aligned with pressure gradient (Figure 2-6c), 
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while smallest bubbles travel in both preferential and transverse areas (Figure 2-6b). We would 

therefore expect to see the X-component of largest bubbles contribute more to the overall velocity 

than of the smallest 20%. This result demonstrates that large-scale preferential paths are not chosen 

on a basis of immediate local preference for pores in parallel to flow (which would imply a higher 

relative longitudinal velocity contribution) but instead a more global idea of path shortness or 

straightness in which flow is not restrained to the longitudinal component. Specifically, we predict 

that the preferential flow paths are created via a tradeoff of ease-of-flow (through large throats or 

pores) and shortness of the overall path length. We further explore the idea of global paths in the 

following section of our discussion. 

 Local structural relationships 

Finally, the relationship between measured velocity and basic structural parameters of the porous 

medium was explored. Géraud et al. (2016) find a positive correlation between the average velocity 

and the pore size in the medium. Regarding preferential paths, they suggest “that most preferential 

paths occur where a series of large pores are connected together”. Through this statement they 

include a notion of both network properties and local pore size. Subsequently, they offer a link 

between structural elements and trapped foam areas via “bubbles trapped in regions of low flow 

velocity in-between closely set grains”. However due to the cylindrical nature of their grains and 

the correlation between pore and throat size in their geometrical arrangement, it is unclear whether 

observed trapped zones are primarily related to a small pore size or small throat entrance.  

To investigate these relationships for our data we must first apply some additional steps to our 

experimental image, as it shows a significant intensity gradient due to bubble size evolution. We 

refer the reader to Appendix 2-C for further detail regarding overall intensity uniformization 

procedure. This procedure allows a comparison of structural elements from all transversal sections 

despite relative measured intensity evolution. 

For our structural decomposition in terms of pores and throats we use the same watershedded 

image as described in Figure 2-2. To achieve a comparable intensity value for each structural 

element of the medium (pore or throat), we calculate an average intensity value per element.  
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Figure 2-14: Normalized per pixel intensities for throats and pores in the numerical 2D Newtonian flow (orange) and the 

experimental foam flow (blue) shown as density contours. 

We show in Figure 2-14 contour maps comparing the observed average velocity intensities in each 

pore and throat for both flowmaps (2D Newtonian and experimental foam), along with the 

histograms on the opposing side of the plot of both the structural parameters and the average 

measured intensities. For clarity, we show the experimental and only 2D Newtonian case here. The 

3D Newtonian case was also explored but contour plots were found to be very similar to the 2D 

case, if perhaps slightly less dispersed. The pore and throat contour maps were created with around 

3500 and 6000 points respectively, as some outliers are excluded for plotting purposes. For each 

color, 7 distinct contour lines are plotted. In both throat and pore comparisons, we see similar 

behavior for both flow situations; there does not seem to be any clear correlation between average 

intensity values and the pore or throat size, showing a symmetrical distribution around the average 

pore and throat size. However, the foam contours span a larger range of measured intensities for 

both throats and pores. This indicates a more heterogeneous foam flow, confirming our previous 

observations; the lower contours of the foam experiment (reaching much smaller values of 

intensity) can be in part explained by the presence of dead zones in the foam flow (cf. Figure 2-8, 

areas that display little or no flow).  

Pore or throat size, does not, on average, correlate with flow properties. Although some weak 

trends may appear, the data dispersion is too high to show a solid relationship. Further investigation 

of more complex local structural parameters, including parameters derived from the previous 

suggestions (Géraud et al. 2016) regarding the preferential paths and trapped zones, can be found 

in Appendix 2-D. The conclusions are identical to those above, notably a lack of overarching 

correlation between local structural properties related to pore and throat sizes and flow properties. 
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Our explanation for the lack of correlation between local structural properties and foam flow 

intensity is the higher network complexity of our model, i.e. the larger number of components that 

make up its length. We show that in networks with a high number of structural elements and 

possible paths, local relationships are inadequate for foam flow prediction. While this has been 

shown for simpler geometries and at a larger scale (Géraud et al. 2016), we provide confirmation 

on a smaller complex model, in which firstly both a larger variety of (potentially discriminating) 

structural element values may exist, and secondly, in which the balance of forces on the reduced 

scale resembles more closely real porous media. Indeed, the possibility of flow in a given element 

is a function of the upstream and downstream elements that surround it. A large pore with a dead-

end path downstream will not contain any flow, just as no flow will access a hard to reach pore 

from upstream. The higher the network length, the higher the probability that flow may be impeded 

by a structural element some distance away. In this sense, only through a model with a length and 

complexity as the one shown here does this distinctive path-dependent behavior become evident. 

In this regard, we explore the dependence on the pore coordination number, which is given by the 

number of first neighbors each pore possesses. We display the results in the form of a boxplot in 

Figure 2-15.  

 

Figure 2-15: Measured per pixel intensity for pores with varying pore coordination numbers, for both numerical 2D Lattice 
Boltzmann (LB) and foam experiments. 

For each box of the plot, the median is shown as a black bar in the middle of the box, separating 

the data in half; the edges of the box represent the upper and lower quartiles of the data, and the 

end of the whiskers show the extent of the other data points, excluding the upper and lower outliers, 

or 5% of the data on each extreme. Again, the experimental data shows a larger distribution of 

intensity values for each pore coordination value. Both cases show zero flow for pores with a 

coordination value of 1, or dead-end pores. However, it’s worth noting that the median for the 
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foam experiment rises faster than the Newtonian counterpart, owing to a larger dependence on 

pore coordination in the case of foam. This implies that for a realistic microscopic prediction of 

foam flow in a complex porous medium, pore coordination must be considered to a larger degree 

than in a Newtonian flow situation, and significantly, flow prediction in a complex medium must 

necessarily integrate network elements such as coordination rather than focusing on local 

properties of size.  

 Conclusion and perspectives 

Through this study we assess high-velocity, high-liquid fraction foam flow behavior in relation to 

a Newtonian viscous flow comparison. We gain access and interpret high-resolution unseen data 

at this scale for foam studies. Overall, we find a large degree of similarities in our global and local 

comparison of data in both foam and Newtonian situations, including comparable overall passage 

activation, flow distribution and component-specific velocity distributions. Despite this similarity, 

the foam flow displays a more heterogeneous array of flow situations. Specifically, elements that 

were observed and analyzed only in the foam case include trapped foams and long-range 

preferential paths. While in our model, localized zones of high-intensity flow can be observed in 

the Newtonian case, the foam preferential paths remain at high intensity and travel in distinct 

channels for longer distances. An even stronger example is shown in (Géraud et al. 2016), in which 

the preferential paths sometimes span the entire length of the model and only intersect once or 

twice with other preferential paths. Notably, we deepen the link between trapped foams and bubble 

sizes, showing a distinct population of immobile small bubbles exists throughout the model, 

displaying independence to the surrounding bubble size distribution and to the location in the 

model. We also observe the existence of high velocity preferential paths, serving as the unique 

transporting zones for large bubbles, whereas smaller bubbles can either be transported in 

preferential paths along with the larger bubbles, or in either hard-to-access paths or paths 

perpendicular to the pressure gradient. Finally, we pursue a naïve attempt of flow prediction in 

terms of local parameters. From this analysis we conclude that local structure only weakly predicts 

flow properties and that to fully grasp the notion of preferential paths and trapped areas from a 

structural point of view, it is essential to integrate notions related to network properties into the 

prediction process.  



Foam Flow in a Micromodel: Data Acquisition and Transformation 

69 
 

However, the results shown here may be somewhat limited to 2D systems in which coordination 

is lower, leading to larger network-scale behaviors to be more prominent due to the limited 

diversity of possible flow paths. It is also unclear how these conclusions can be generalized to 

systems of lower permeability, or 3D networks in which other creation mechanisms can be 

observed. 

Foam transport in porous media has been observed to adopt contrasted situations ranging from 

trapped immobile bubbles to high-velocity preferential paths. As by definition it is impossible to 

locally determine the belonging of a pore to a long-range preferential path, we suggest that 

predicting flow in a given pore necessitates at least some upscaling to the network level to rank 

possible paths based on ease of flow, and then downscaling back to the pore level to estimate its 

prevalence within the best paths. Furthermore, we can imagine that a characterization of the 

preferential paths is a prerequisite for linking porous microstructure to macroscopic properties in 

foam flow such as apparent viscosity. 

Appendix 2-A: Image processing workflow 

The following processing procedure is designed to maximize the contrast between the gas bubbles 

and the liquid-gas interfaces that separates them before binarization. All scripts were written in 

ImageJ macro language. 

The first step is the subtraction of the image of the clear model from the foam image. Subtraction 

of the initial saturated model therefore creates more uniformity for the gas-liquid interfaces we are 

interested in. Removal of the solid-liquid interface also ensures that liquid-filled spaces bordering 

the grains are eliminated. The only remaining contrasting elements are the gas-liquid interfaces. 

Subtraction of the liquid filled model also serves to erase any illumination heterogeneity that may 

be created by the backlight system. This step is illustrated in Figure 2-16.  
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Figure 2-16: Background removal process. a) The initial brine-saturated model. b) The model with foam before the subtraction, 
grains marked with green dots. c) The result of the subtraction of a) from b), removing all solid interfaces and homogenizing 

gas-liquid interface gray value. 

We then locally increase contrast through the use of the built-in ImageJ function Enhance Local 

Contrast (CLAHE) (Zuiderveld 1994).After thresholding the contrasted image, the next step of the 

process is isolating bubbles from the grains. For the solid grain removal, we make use of the liquid-

filled image in A-1a on which we apply the default threshold. The resulting binary image of solid-

liquid interfaces is then filled. We use the “Ultimate Points” process to return an image with the 

location of the Ultimate eroded points, representing the centers of particles that would be separated 

by a local-minima based segmentation. We then filter out the unwanted objects using the 

Morpholibj plugin (Legland et al. 2016) that allows morphological reconstruction of a binary 

image from a series of “seeds”, given by the Ultimate points. The reconstructed grains and their 

contours are subsequently removed from the thresholded foam image to leave only the foam 

bubbles. Figure 2-17 shows this process in detail. 

 

Figure 2-17: Image processing steps showing the removal of unwanted grain objects from an initial binarized image. The initial 
image is shown left. Grain objects are identified using Ultimate points (shown as green points) from a binarized image of the 

model and are reconstructed in the original image using morphological reconstruction (center). The unwanted objects are 
subtracted from the initial image (right). 

For the dynamic tracking, we use a plugin originally designed for tracking binarized images of C. 

elegans nematodes (Nussbaum-Krammer et al. 2015) to track the bubbles through the successive 

frames, obtaining precise paths and velocities amongst other observations. The bubble tracking 
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method works in a simple manner, following each object frame-by-frame by evaluating the closest 

positioned and similarly sized bubble in a successive frame. When multiple candidate objects are 

equally viable in a successive frame, the algorithm puts a flag on the potential object and works 

on retrieving other surrounding bubbles first, in hopes of eliminating ambiguity when the flagged 

object is re-evaluated. Despite its simplicity, the algorithm works surprisingly well and is 

reasonably fast considering the large amount of densely packed objects in each frame (around 20 

minutes for more than 10 000 bubbles). The accuracy of the method owes to the high frequency 

acquisition. The small bubble displacement between each frame generates low ambiguity in bubble 

identification. However, the algorithm requires the input of a few parameters. These parameters 

serve as a means to narrow down potential candidates in the neighbor-evaluating process. The first 

parameter is the maximum tolerated bubble area change. This value was fixed at 50%, both to 

allow for bubble compression and bubble subdivision with flow. In the case of a bubble division, 

the smaller broken off bubble is considered as a new object with its own distinct track and the 

larger parent is retained in the original track. Multiple subdivisions of an initial bubble in the same 

dataset are rare. The second parameter is the minimum number of successive frames in which a 

bubble needs present. This parameter was fixed at 50 frames. The last tunable parameter in the 

tracking process is the maximal allowed displacement per bubble in between frames. This value 

was chosen from inspection of the frame-by-frame bubble displacement histogram created by 

initially letting this parameter take an unphysically large value. When doing this, the algorithm 

returns a negligible number of bubble displacement measurements all the way up until the 

unphysical limiting value. Upon examination, displacements at this speed are erroneous and 

correspond to jumps between bubbles. The choice of the final parameter value is then chosen in 

accordance with the displacement histogram as approximately the moment when the bubble 

velocity counts become negligible.  

Appendix 2-B: Quantitative flowmap analysis tools 

Passage activation is studied via analysis of the measured signal intensity along transversal “cuts” 

perpendicular to the flow direction. We define a series of equally spaced cuts and look at how the 

flow is distributed throughout the cuts. We give here the quantitative process of discrimination 

between active and inactive passages, illustrated with images and results from the Lattice 

Boltzmann simulation result. The different cuts can be seen in image Figure 2-18. A connected 1D 
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line intersecting the porous area of the network along this cut is considered as a “passage”. A 

passage can be considered active or inactive as detailed below.  

 

Figure 2-18: Transversal model cuts from the Lattice Boltzmann simulation and measured flow signal 

For each cut, the total image velocity profile is normalized to 1, as an intensity gradient occurs 

across the model. In each passage the velocity intensity can be summed across all the pixels in the 

passage. The total 1D passage lengths and summed velocities are tallied up for all the passages in 

all the cuts. A histogram is created giving the average signal for each passage length. The binning 

on the passage lengths is done by taking 20 points that are equidistant in logarithmic space from 

the largest to the smallest passage, giving 19 bins. The average velocity sum per length bin serves 

as reference value. We observe a unimodal intensity distribution with a displacement to the right 

as the bin size window gets larger. The unimodal distribution indicates that there is no obvious 

intensity threshold to define an active/inactive passage. The method we choose is to simply take 

the half of the average value per bin as the cutoff value. As such, if the evaluated passage has a 

measured summed velocity intensity larger than half of the reference value for its corresponding 

length bin, it is considered active. After each measured velocity value is compared with the average 

value for the bin size, we can establish a passage activity ratio by dividing the number of active 

passages in a cut by the total number of passages in the same cut. We show in Figure 2-18 a sample 

of the observed velocity signal bounded by the passages and colorize them according to their 

activity. Through this method we achieve a measurement of overall measurement of passage 

activation, i.e. how well is the flow distributed transversally. We can also observe the evolution of 

passage activation in different cuts along the model.  

A supplementary global indicator of flow is produced by summing measured image intensities for 

each longitudinal box of the model (cutting the length of the model into 4 parallel boxes). The 
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measured velocity signal is then summed over each box. This indicator shows longitudinal flow 

distribution and homogeneity. This process is shown in Figure 2-19. 

 

Figure 2-19: Box analysis principle, flow is integrated in each longitudinal box. 

Appendix 2-C: Signal intensity uniformization  
To overcome the gradient observed over the model due to bubble fragmentation and compare 

measured intensities of pores from different transversal sections we apply a multiplicative factor 

at each transversal column 𝑖 of the 𝑁  × 𝑁  image that renders the relative intensity uniform. We 

explain this process here. First, the image is projected longitudinally across all the rows as to obtain 

a single projected intensity value 𝑃  for each column (a 𝑁  × 1 sized vector). This vector is then 

smoothed to avoid overcorrecting for each local value rather than correcting for the global intensity 

trend. The factor 𝐹  is calculated at each column by 𝐹  = max(𝑃) /𝑃 . Then, each row of the 

column 𝑖 is multiplied by the same value 𝐹 such as, in terms of intensity per column: 𝐼  =

𝐹 × 𝐼௧ . In Figure 2-20 we show the value of 𝐹  per column. The high number of image 

columns is due to the use of an upscaled image. This curve shows the difference in measured image 

intensity from the zone of maximal intensity measurement (the end of the model). Effectively, it 

gives another visualization of the bubble size evolution through the model, showing that the bubble 

size is relatively constant in the last third of the model, where a uniform intensity is measured.  

 

Figure 2-20: Multiplicative factor for each image column in the experimental image to obtain a comparable velocity intensity per 

local structural element over all transversal sections. 
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Appendix 2-D: Extended local structural investigation 

We investigate parameters derived from the immediate neighborhood of the pores. The top row of 

Figure 2-21 shows contour plots of measured average intensities for each pore, against various 

properties of the given pore’s neighborhood, such as the average, minimum and maximum pore 

sizes of the neighbors. In the second row, average pore intensities are shown against mean, minimal 

and maximal surrounding throat sizes.  

 

Figure 2-21: Searching for relationships between local structural properties and flow intensity 

We explore some local and semi-local structural relationships previously suggested (Géraud et al. 

2016) describing preferential paths as zones with “a series of large pores connected together”. 

Using knowledge of the network neighborhood properties, for each pore, we create an algorithm 

to establish the largest possible average of connected pore sizes, with varying degree of neighbors 

n, centered on the pore we wish to evaluate. For example, if we take want to take one neighbor on 

each side of the pore, the algorithm will choose the two neighbors with the largest pore sizes, 

forming a chain of n = 3 pores. For two neighbors on each side of the pore, the algorithm returns 

the largest possible pore size mean of a chain of n = 5 connected pores (2 neighbors on each side 
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plus the central pore we evaluate). We show the results for n= 3,5,7 in Figure 2-22. We show that 

some although some positive correlation does exist, as demonstrated by the gradient of the linear 

fits shown as blue lines, no strong relationship was found to be evident.  

 

Figure 2-22: Flow intensity against local neighborhood average pore size for each largest chain of n pores centered in the 
evaluated pore. Despite the large data dispersion, we add a linear fit to the data to show a positive relationship. 

Submitted article ends here 

 

 

 

 

 

 

Appendix 2-E: Justification and details of flowmap creation 

In this section, we provide a more detailed description of the process leading to the flowmap, 

clarifying the observation of intensity gradients over the model and justifying the choices involved 

in the map creation. Two aspects we shall describe in more detail are the averaging of the bubble 

tracks and the smoothing of the created flowmap. 

From bubble tracks to local velocity maps 
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For each pixel represented in the flow map, we add up the velocities of the center of mass of all 

the bubbles passing the 2-by-2 bin represented in the original tracked data. Passage counts were 

measured to be from 0 up to 120. The overall measured velocity is then divided by the total time 

of acquisition. We assimilate this to a Eulerian description of flow. The velocity value of each bin 

is therefore sensitive to the number of counts as well as the velocity of each count. 

For a flow of purely monodisperse bubbles the map produced would be exactly the velocity map. 

In our case of heterogeneous bubble flow, the interpretation of the map produced is more 

complicated. Larger bubbles, making up most of the population close to the entrance, are not 

slower but less counts are measured as their centers of mass are further apart, making the overall 

sum on the entrance lower relative to the high frequency of passages in the end of the model. For 

this reason, a large velocity density gradient is observed over the model.  

One way to reduce the problem related to polydisperse bubble flow velocity measurement and the 

shown velocity gradient would be to divide the final velocity sum of each bin by the number of 

counts on the bin number. We would assimilate this to a Lagrangian description of flow.  

To clarify, in the Eulerian description of flow, each final 2-by-2 bin velocity value 𝑣, is a sum of 

the individual bubble passages 𝑣, for a total acquisition time ∆𝑇 is given by 𝑣 =
∑ ௩




∆்
. For the 

Lagrangian description of flow, for a total number of passages 𝑛 in the 2-by-2 bin, the bin velocity 

value is given as 𝑣 =
∑ ௩





 . We show in Figure 2-23 the velocity intensity gradients over the total 

flow map. 

 

Figure 2-23: Velocity variation over the model for each velocity measurement method 
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While the Lagrangian technique does allow us to reduce somewhat the visible velocity intensity 

gradient over the flowmap, the issues created by the Lagrangian technique, that we shall discuss 

below, seem too important to overcome. 

In the Lagrangian description, a single passage in a 2-by-2 bin of a given velocity is equivalent to 

several passages in a different 2-by-2 bin that have the same average. This obviously doesn’t 

describe the reality of the flow as one-off events are indistinguishable on the flowmap from 

repeatedly occurring events. Two examples are given. The first is the case of the unique passage 

of a bubble difficultly squeezed through an otherwise unvisited, small throat, giving a large 

velocity value for that throat. Secondly, we can consider a large bubble deforming around an 

obstacle, in which the center of mass displacement would register a measurement on an otherwise 

unvisited area (or even a non-porous area). In both these cases the 2-by-2 bins in question would 

show large, unphysical values on the Lagrangian flow map, in locations where no flow occurs, 

creating a degree of what can be described as noise. We give a comparison of a small region of 

produced maps in both our Eulerian version (pre-smoothing), and the alternative Lagrangian 

version of flowmaps. For clarity, in both examples we give two versions of the colormap 

calibration, in one case to show where the highest velocity pixels are located (colormap calibrated 

over the entire velocity histogram) and in the second case with the colormap calibrated over most 

of the values, excluding the outliers.  
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Figure 2-24: Eulerian vs Lagrangian flow map creation methods with different colormap calibrations. The colormap used is 
the same as the one shown throughout the article. We also show a passage density image which simply adds up the number 

of counts on each bin. 

Figure 2-24 shows the created flow maps for different techniques. The method used in our work, 

“Eulerian” shows better concentration of high intensity pixels in areas of repeated flow (showed 

by the count density image). The other technique, “Lagrangian”, shows high intensity pixels in 

areas where little flow occurs corresponding to one-off events that are over-represented in the final 

flow map.  

Figure 2-25 shows smoothed version of the flow maps, such as used in the qualitative and 

quantitative analysis. We can observe several unphysical aspects such as the presence of flow in 

the solid grains, discontinuous flow tracks and significant variations of flow intensity inside the 

same track or flow area without any obvious reason (unlike the joining or branching of channels 

in the Eulerian case). 
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Figure 2-25: Eulerian versus Lagrangian smoothed flow maps 

Therefore, we deem that our flow map creation process, while being imperfect due to the presence 

of a large intensity gradient originating in polydisperse bubble size distribution, translates the 

reality of flow in the best way. 

Ideally, while still tracking the center of mass movement of the bubble, the tracking process would 

be able to measure all the points on which the bubble was present in each frame and add the center 

of mass velocity measurement on all the points inside it simultaneously. However, this solution 

seems technically out of reach for the time being. 

Smoothing of flowmaps  

The second element addressed here is the smoothing of the produced flowmaps. We believe that 

the transformation is not only more visually appealing but allows a better visual comparison with 

the numerical case, whose velocity maps are similar in appearance. Indeed, as the center of mass 

bubble tracks tend to coincide in the center of the path, a large area of the zone swept by the bubble 

is not shown as visited, making it hard to qualitatively compare highly localized bubble flow and 

the diffused Newtonian flow. Furthermore, the smoothing does in fact provide a flow map that 

better describes the reality by widening the path lines to fill the same area that the bubble sweeps. 

One situation in which the smoothed image shows itself useful is that it makes no distinction 

between cases where all bubble paths within a same canal are overlapping (on a high intensity 

central track) and when multiple bubble paths are juxtaposed (in neighboring tracks in the same 

canal). The true velocity profile in the canal should be equivalent in both situations but without 

smoothing, these cases are different (examples of these cases are shown in a transversal intensity 

profile comparison below). When comparing a transversal profile of the two flow images, the 

results will differ. We display this in Figure 2-26. 
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Figure 2-26: Transversal intensity profile section for a non-smoothed and smoothed version of the flow map 

Peaks will be wider, and the top of peaks will even be ranked differently. This is to be expected 

and in fact is desired. Consider the ranking of peaks seen here to be different: two smaller peaks 

can combine when smoothed to create a larger that better represents overall flow. Oppositely, a 

large isolated peak, which may correspond to a path line bottle neck that is only present for a 

couple of pixels is not representative of the flow rate in that region. 

As a gaussian filter conserves overall mean, we perform two checks to show that the distribution 

of flow in each pore and pore flow ranking remain the same in both cases. These are shown in 

Figure 2-27. We demonstrate that the Gaussian filter has a small enough standard deviation to not 

effect in any significant way the relative flow distribution. We plot the sum of pixel values for 

each pore (normalizing them to have a maximum of 1). The pore flow distribution is maintained 

in almost every case, except for 3 or 4 pores in which they are quite different. This represents 0.1% 

of the number of pores. We also show that the rank of the total of pixel values for each pore (i.e. 

the total flow in each pore) is maintained in both flowmaps, with very little dispersion. 

 

Figure 2-27: Comparison of pore pixel totals and corresponding ranks in smoothed versus unsmoothed images of the flow 
map. The units of the plot on the left are normalized to 1 for clarity, but by a same factor in both cases (conserved total 

intensity of Gaussian filter). 
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 Micromodel Experiments: Parameter 

Exploration 

Preamble 

Throughout this chapter we present a compilation of micromodel experiments performed on the 

previously described model. We take care to characterize the experiments in a detailed way, by 

making use of all the data available to us. We separate injection parameters from induced 

observables. We describe the experiments with a series of either macroscopic data types directly 

measured (i.e. pressure gradient, injection rate, or gas fraction), microscopic data types made 

available through an image processing and data analysis workflow, accessing either bubble-scale 

parameters that are in some way transformed to characterize the experiment (i.e. bubble deviation 

angle, trapped fraction, bubble size distribution statistics), parameters at an intermediate scale 

derived from flow maps (i.e. passage activation or longitudinal section flow distribution), and 

finally unquantifiable parameters such as the specific micromodel injection method and 

micromodel orientation. We explore the relationships first between injection parameters with 

themselves, identifying associations often overlooked in foam experiments, before similarly 

uncovering correlations between observables, and finally investigating the injection parameter 

relationships with observables in a systematic manner. The search for correlation in each case will 

be done neutrally using correlation tables. When appropriate, flow images themselves will be given 

for illustration or explanation of the stronger data links. 

 Injection parameters 

In this section we show a series of micromodel experiments whose injection parameters are varied 

in accordance with previous foam studies in porous media: foam quality 𝑓, injection rate, foam 

injection method. As we can observe the bubble distributions in the inlet pool, we can differentiate 

experiments furthermore by a series of parameters related to the bubble distributions at the inlet of 

the micromodel. These parameters are mean bubble size, bubble size standard deviation, bubble 

size coefficient of variation (or normalized polydispersity). The experimental parameters that were 
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considered fixed during the experiments were: the backpressure at 3 bars, the temperature that 

varied from 18°-22° Celsius, the foamer liquid and gas composition. 

We summarize the different experiments in Table 3-1:  

 

Table 3-1: Experiment parameters explored. Explanation of Injection methods is given in detail below. 

We also provide a graphical representation of the spread of the injection rates and gas fractions, as 

well as the model orientation and injection methods in Figure 3-1: 

 

Figure 3-1: Spread of velocities and gas fractions in the experimental study 
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We provide next descriptions of each varied injection parameter and the measurement method. 

 Injection rate 

We vary the total fluid (gas+liquid) injection rate from a minimum of 5.4 ∙ 10-3 cm3/min to a 

maximum of 2.54 ∙ 10-2 cm3/min. A liquid pump was used in combination with a gas flow controller 

to provide the total injection rate.  

The injection rates were set using two different modes depending on the experiment. Note that 

these modes are not the “Injection method” referred to in the Table 3-1 (the “Injection method” 

will be described later). In the first mode, two pumps were used in conjunction, the liquid pump 

delivering surfactant solution, and a gas flow controller delivering a constant gas flow. The 

biphasic mixture was then pushed through a biphasic reservoir and into the foam generator (see 

Chapter 2). In the second method, in order to achieve lower injection rates, we make use of the 

biphasic reservoir, and push the biphasic mixture out of the reservoir only with the liquid pump. 

Experiments with both pumps used in conjunction are named with odd numbers and will be 

referred to simply as “odd experiments”, whereas experiments in which only the liquid pump was 

used to push the biphasic mixture are named with even numbers and will be referred to as “even 

experiments”. 

While in some experiments, notably the “A” experiments and all the odd experiments, the volume 

of dead gas in between the gas controller and inlet to the micromodel was large (multiple times 

the micromodel volume), the pressure drop was finely monitored to ensure a measurement was 

only performed at steady state pressure drop, ensuring a stable flow rate despite the compressibility 

of gas at the inlet. 

The Vinduum liquid pump was set for constant rate delivery. The gas injection was performed 

with a Bronkhorst gas mass flow controller. The two injection pipes joined at a T-junction before 

the foaming device. While the liquid pump was able to deliver low injection rates consistently, the 

flow controller, which was functioning in the limits of its operating range, often settled on rates 

that showed significant divergences from the chosen gas rate values. A simple initial grid of 3 

injection rates was chosen to provide comparative values between the experiments. However, 

when the output flow was measured, large deviations from the target flow rates were observed. 

The solution to this was to calculate the injected rate from the measured output flow rates at steady 
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state. The output flow rate was measured at a position after the buffer bottle and backpressure 

regulator, and hence at atmospheric pressure, rather than at the 3 bars minimum of the micromodel. 

However, as the liquid-filled buffer bottle ensured that liquid only exited to the backpressure 

regulator, the liquid was deemed incompressible and the flow rate measured was representative of 

the flow rate exiting the micromodel.  

The output flow rate was measured for all experiments, even the odd ones in which only the liquid 

pump was used. Despite the low uncertainty on the liquid pump rate delivery, decompression of 

the gas fraction downstream of the foaming device made it necessary to measure flow rates at the 

outlet of the micromodel. 

A calibration of the output flow meter was also done, providing a slight correction to the data 

provided. The calibration was performed with a reference injection pump used for calibration 

purposes with low uncertainty. The result of the calibration was to apply a linear function to the 

data provided by the flow meter to better match the real flow rate as given by the reference flow 

meter. The linear function applied to the flow meter data is given in the following equation (in 

cm3/min): 

𝑞 = 1.0184 ∙ 𝑞௧ + 4.016 ∙ 10ିସ (23) 

Although the uncertainty on this correction was very large for the lowest injection rates, we still 

used this correction on all injection rates for lack of a better solution. The final injection rate is the 

mean of the corrected injection rate, taken over a window of points at system steady state. Errors 

on the injection rate are shown graphically on Figure 3-1. The error of the injection rate was 

calculated by taking the standard error on the mean for the points over which the mean flow rate 

was calculated. The standard error on the mean (SEM) is simply given by: 

SEM =  
𝜎

√𝑛
 (24) 

Where 𝜎 is the standard deviation of the rate over the sample of 𝑛 points. The experiments A1, 

A2, A3, A4 show larger error bars on the injection rate due to the smaller number of points over 

which the mean was calculated.  
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 Gas fraction 

The gas fraction was varied from a minimum of 0.66 to a maximum of 0.87. The gas fraction – 

often named “foam quality” in the literature concerning foam in porous media - was calculated 

using the equation: 

𝑓 =
𝑞௦

𝑞௦ + 𝑞௨ௗ
 (25) 

Again, we observe a large spread of gas fraction values (see Figure 3-1), owing to the uncertainty 

on the gas flow rates from the gas flow controller. Due to the uncertainty on the gas injection rate 

from the flow controller and the reliance on the flow rate measurement from the output flow meter, 

the gas injection rate calculation is not trivial. Two different approaches were used for the gas 

fraction calculation, depending on the injection mode, as described above.  

For the odd experiments, gas flow rate is taken as the total measured injection rate (see above) 

minus the injected liquid rate. Due to the incompressibility of the liquid phase and the low 

uncertainty on the liquid pumps, the liquid rate was taken as the target rate chosen on the liquid 

pumps. 

For the even experiments, the biphasic mixture inherited from the preceding odd experiment was 

pushed by the liquid pump. As the pressure at the micromodel outlet is held at 3 bar in all 

experiments, and gas fraction is calculated from the micromodel outlet flow rates, the gas fraction 

in the even experiments was simply inherited from the odd experiment that preceded it, along with 

the gas fraction uncertainty.  

 Reversed 

The reversed column refers to the fact that for some experiments, the flow was oriented in the 

other direction, simply by switching the input and output flow tubing, to check for the dependence 

of the flow distribution on the injection direction. As a large section of the thesis is concerned with 

the microscopic distribution of flow and preferential paths, an easy way to check for the anisotropy 

(or lack thereof) in the preferential paths was to flip the model and inject into what was previously 

the model exit at a similar range of injection rates and gas fractions. 
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 Injection method 

Different injection methods were tested to evaluate the effect of the specific injection method on 

the flow. The injection methods are described here in detail. As previously mentioned, the injection 

into the micromodel can be done in different ways, as three holes are available on each side of the 

model, as shown in the micromodel mask in Figure 3-2. The injection can either be done into the 

two lateral injection canals, with pressure taken in the central inlet hole, which represents injection 

method I1. The two lateral canals can be closed, and injection done via the central inlet hole only. 

This setup is shared in injection methods I2 and I3. In this situation, the pressure is taken at a T-

junction in the tubing, upstream of the model, before the injection into the micromodel. The 

downstream pressure tubing placement always mirrors the upstream one, i.e. at the central model 

outlet hole or at a piece of tubing away from the model, depending on the specific injection method. 

We show the different injection methods in Figure 3-2: 

 

Figure 3-2: Micromodel injection tube and pressure placement for different injection methods. 

Injection methods I2 and I3 are distinguished by another aspect of the injection: the distance 

between the foaming device outlet and the injection inlet. This aspect has a large effect on the inlet 

bubble size distributions. We note that a significant amount of bubble coalescence and coarsening 

can occur during the foam transport from the foaming device to the model. This is observed 

especially for higher gas fraction injections, which present thinner liquid films that are more 

susceptible to either coalescence or diffuse quicker, both phenomena resulting in an increased 

mean bubble size. Injection methods are summarized in Table 3-2: 
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Table 3-2: Injection method characteristics 

 Inlet foam distributions 

It is relevant to show foam inlet bubble size distributions as a supplementary injection parameter 

due to its effect on flow properties. Photos of pre-network bubble distributions are acquired with 

the low frequency images, in a small injection pool at the entrance of the micromodel. The images 

are binarized and 2D bubble surface areas are added up over at least 20 distinct images. The 

equivalent circle radius for each bubble area is then used as characteristic bubble radius which is 

referred to as bubble size interchangeably in this chapter. We give examples of inlet bubble images 

with different distributions in Figure 3-3: 

 

Figure 3-3: Bubble populations accessed from the inlet zone for two experiments with different characteristics. Each half of the 

image represents a different experiment, and the raw images are stitched together to create an image showing the whole model 

transversal distance. We show the final binarized versions of the images for two small rectangles shown in red. For calculation of 

the bubble distribution characteristics, the whole inlet zone was considered. We note that for the distributions with larger 

bubbles, as in Exp. A3 (right), a considerable number of bubbles are cut from either side of the image, which leads to decreased 

measured bubble size means and increased size standard deviations. 

Inlet bubble size distributions are finally transformed into weighted histograms, as in Chapter 2, 

with each frequency histogram peak weighted by the mean bubble size of the histogram bin. The 
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weighted histograms produced are assimilated to a probability of observing a bubble of a given 

size when choosing a point at random in the entrance zone, i.e. spatial bubble size probability. The 

inlet spatial probability distributions resemble normal distributions. To characterize them we 

therefore make use of a Python curve fitting function curve_fit from the Python library SciPy 

(Jones et al. 2001‐) based on Levenberg-Marquardt damped least squares method (Moré et al. 

1980). The function to fit is normal distribution, defined as: 

𝑃(𝑥) = 𝑎𝑒
ି 

(௫ି௫బ)మ

ଶఙమ  (26) 

𝑃(𝑥) is the probability of observing a bubble of radius 𝑥, the equivalent circle radius of the 2D 

bubble. The parameters that were fitted for each distribution were 𝑎 the scale, 𝑥 the mean of the 

distribution, and σ, the standard deviation. 

The parameters of interested here are the mean bubble radius and the standard deviation. We show 

in Figure 3-4 an example of the normal fits of the four inlet bubble radius distributions for the first 

four experiments: A1, A2, A3 and A4. The distributions here are normalized to show an equal area 

under the curve, i.e. a comparable probability. 

 

Figure 3-4: Fit of weighted inlet bubble histogram values to a normal function given in equation (26) for the four first 

experiments. 

The final injection variable associated with the bubble size distribution is the coefficient of 

variation. The coefficient of variation essentially normalizes the standard deviation with respect to 

the mean bubble size, such as CV =  
ఙ

௫బ
, and provides a normalized measure of bubble size 

polydispersity, similarly to other foam studies (Géraud et al. 2016; Quennouz et al. 2014). 
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 Correlation of injection parameters 

In this section we evaluate the relationships between the different injection parameters. We will 

approach this task by simply searching for relationships between various parameters pairs. As we 

have many parameters to explore, many parameter pairs can be investigated. A simple way of 

scanning through the possible pairs is through correlation coefficients of the data points. 

Correlation coefficients are simple ways to identify pairs that evolve in a dependent way, 

expressing some underlying relationship. Values close to 1 show a strong positive relationship 

between the variables, while values close to -1 show a strong negative relationship between the 

variables. Values close to 0 demonstrate no relationship. We chose to evaluate parameter pairs by 

using the Spearman coefficient. The Spearman coefficient (Spearman Rank Correlation 

Coefficient 2008) simply describes the degree to which the relationship between two variables can 

take the shape of a monotonic function, and hence makes no assumption on the function shape that 

relates the variables. A large value (either positive or negative) provides indication that further 

exploration is necessary. This approach will be used later to compare observables, and then finally 

to find relationships between parameters and observables. As the correlation matrices are 

symmetrical, we only show the correlation coefficient half matrix for the injection parameters in 

Figure 3-5: 

 

Figure 3-5: Spearman correlation coefficients matrix of injection parameters. Absolute values above 0.5 are emphasized. 



Micromodel Experiments: Parameter Exploration 

90 
 

 Foam distribution correlations 

The strongest positive non-trivial coefficient in the coefficient matrix is the relationship between 

mean bubble size 𝑥, and the standard deviation of the bubble size distribution 𝜎. We show the 

corresponding data in Figure 3-6: 

 

Figure 3-6: Linear relationship between mean bubble size and bubble size distribution standard deviation at the micromodel 

inlet for each experiment 

We observe from the data points that mean bubble size and bubble standard deviation are 

proportional with a coefficient of 
ఙ

௫బ
≈ 0,37. This effect, that linearly links mean and standard 

deviation in different distributions, is a well-known phenomenon known as the “proportional 

effect”. It is often seen in distributions of geostatistical measurements (Manchuk et al. 2009). It is 

unclear why this effect is so strongly visible in our case, for the entire range of injection methods, 

injection rates and foam qualities.  

Such a linear relationship between these two variables of the bubble distributions makes an 

analysis based on both variables in combination somewhat redundant. This therefore motivates the 

use of the coefficient of variation CV =
ఙ

௫బ
, as a descriptor showing the deviation from this linear 

relationship. CV values close to 0,37 will correspond to bubble distributions whose parameters fit 

within the linear relationship whilst different values show some specificity. 

 Foam distributions – macroscopic injection parameter correlations 

Strong connections between the macroscopic injection parameters (gas fraction and injection rate) 

and inlet foam distribution parameters can also be observed. Bubble size mean, standard deviation 
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and coefficient of variation all correlate negatively with injection rate, whereas they show strong 

positive correlations with gas fraction. We show mean inlet bubble sizes and their relationship 

with the injection rate and foam quality in Figure 3-7. 

 

Figure 3-7: Mean inlet bubble sizes in term of injection rates, methods, and foam qualities. Marker size is indicative of the 

injection rate, as in Figure 3-6. 

From this plot we can make a few different observations. First, a negative trend between injection 

rates (shown by marker size) and mean bubble size is visible. For injections types A, C and D, the 

lower injection rate (A2, A4, C2, D2) size means are all significantly higher than for their higher 

rate counterparts (A1, A3, C1, D1). This can simply be explained by the larger time passed in the 

tube leading from the foaming device to the micromodel inlet, during which time smaller bubbles 

spend longer diffusing into larger ones before disappearing, increasing the overall bubble size. A 

second observation is the general positive trend between mean bubble sizes and gas fractions. One 

possible explanation for this effect is the thinner liquid films separating the bubbles in high gas 

fraction foams. Thinner films will enable faster gas diffusion from small to large bubbles and are 

also more susceptible to coalesce during transport in the tube, which has the effect of increasing 

mean bubble sizes.  

While these two observations can be understood in terms of physical processes occurring in the 

transport to the micromodel inlet, it is also very possible that the bubble distributions directly at 

the foaming device outlet already carried some of these characteristics. Indeed, it has already been 

observed that for the same generator, high gas fractions can lead to larger mean bubble size 

distributions (Gido et al. 1989; Osei-Bonsu et al. 2016) while high injection rates can reduce mean 
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bubble sizes (Jones et al. 2018b). As the bubble distributions situated directly at the foaming device 

outlet were not measured, the effect of the foaming device output on the micromodel inlet 

distributions cannot be excluded. 

Fortunately, the I2 method injections help us see more clearly. Injections using this method are 

characterized by a much shorter tube joining the foaming device to the micromodel. I2 injections 

(at least B1, B2, B3, B4) produce significantly smaller inlet bubble size distributions than any 

other type of injection. This high dependence to the tube length demonstrates the strong effect of 

the foam transport from the foaming device to the micromodel inlet. For similar injection rate and 

gas fraction combinations (B1 and C1, or B5 and C2) the I2 injections repeatedly average on lower 

bubble sizes. 

Another element to take out of Figure 3-7 is the very small bubble size of the B1, B2, B3, and B4 

experiments. These experiments all show entrance mean bubble sizes smaller than the mean throat 

size of the model. For this reason, we can expect the foam flow in these experiments to be purely 

transportive, without any significant bubble size adaption through the model. 

 Observables 

In this section we shall explore the different observables that will serve to characterize the flow 

experiments. This section either describes observables that are macroscopic in nature (i.e. pressure 

gradient), observables relating to dynamic aspects of the flow, measured locally but averaged over 

the entirety of the model (i.e. passage activation, trapped foam fraction, bubble flow deviation 

from pressure gradient), or finally parameters related to the bubble size distributions or shapes at 

the outlet. 

 Pressure drop 

The pressure drop was tracked throughout the entirety of each experiment. The pressure drop was 

measured with an ABB 265 DS differential pressure transmitter with a maximal differential of 

2500 mBar. The pressure drop shown here is a mean value taken over the same window of points 

as the injection rate mean (described above). Two different pressure point measurement locations 

are used in the series of experiments, as described by Table 3-1.  
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We discuss here some of the difficulties we met when measuring pressure drops over the 

micromodel. In the initial setup, with I1 injection method, we observed some rare but significant 

irregularities (sudden decreases of pressure drop without any corresponding flow change) in the 

pressure differential signal. The observation of these irregularities led us to stop taking pressure 

measurements on the micromodel in the first place. Indeed, we discovered that pressure lines that 

were attached to the micromodel rapidly became populated with gas or bubbles. As the pressure 

lines are filled with static water and are attached perpendicularly to the flat micromodel, the static 

water rapidly gets displaced by lower density bubbles (i.e. gas) in movement around the 

micromodel inlet. The inlet pressure line is particularly affected by this static liquid displacement 

phenomenon. In turn, this influences the measured pressure drop. Firstly, it is not clear how easily 

pressure will communicate through a series of bubbles, where the yield stress-plastic foam may 

even act as a blocking fluid, and the measured pressure will not be representative of the pressure 

in the measurement point. Secondly, assuming the pressure can communicate through a series of 

bubbles, the timescale for this process may be much longer than for an incompressible fluid, 

leading to a lag in the measured pressure signal. We illustrate this issue in Figure 3-8: 

 

Figure 3-8. Time evolution of pressure drops for experiment A3, which uses the I1 injection method, (i.e. pressure measurement 

point on the micromodel central hole). The pressure drop value taken was calculated from the points taken after the 

discontinuity. The discontinuity was attributed to gas or bubbles in the outlet pressure line.  

In this figure we see the differential pressure signal in blue, named ΔP_diff, suddenly decreases at 

around 30 000 seconds. We also measure a pressure difference from two points in the system, 

further out from the micromodel on each side. This verification pressure signal, named ΔP_check, 

reveals a pressure difference signal without discontinuity. As ΔP_check measures the pressure 

drop not only over the micromodel, but also over a certain distance of tubing containing foam, we 

can expect the pressure difference of ΔP_check to be higher. This leads us to believe that the true 

pressure difference over the micromodel is the second plateau of the ΔP_diff, in which the pressure 
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drop averages around 400 mBar. Indeed, we attribute this discontinuity to the sudden unblocking 

of the outlet pressure line. 

Also, we note that the ΔP_check contains a periodic oscillation after 15 000 seconds. This is due 

to the proximity of the downstream pressure measurement point to the back-pressure regulator, 

which opens and closes periodically to maintain a constant backpressure of 3 bars. 

In the I2 and I3 injections, the pressure measurement point was taken on a T-junction on the tube 

close to the micromodel. This notably allowed us to orient the pressure lines fully downwards all 

the way to the pressure transducer, and to limit the entrance of gas or bubbles into the liquid 

pressure lines. The measured pressure signals are notably different in this case. We show an 

example in Figure 3-9: 

 

Figure 3-9: Pressure differential signal for experiment D1 (see Figure 3-1), an experiment using the I2 pressure measurement 

method, with a better placement of pressure points in the system.  

We observe that the pressure drop signal is more stable in the long-term when the measurement 

point is away from the model. In addition, we observe a larger amount of short-term oscillation 

around a mean value in these measured signals. This is again due to the proximity of the 

downstream pressure measurement point to the back-pressure regulator.  

We understand that any added length of tubing between upstream and downstream measurement 

points (with the I2 and I3 injections) will necessarily add millibars to the pressure differential 

signal and reduce the representativity of the measurement to the flow in micromodel. However, 

this solution was found to minimize the issue of bubbles populating the static pressure lines and 

represents a tolerable trade-off. 
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Finally, we note that the pressure gradient shown in this example, calculated to be over 23 bar/m, 

is considerably larger than the pressure gradient required to mobilize dispersed bubbles inside 

pores and can be found only in close proximity to the well in an oil recovery context. 

 Viscosity 

A measurement of apparent viscosity was derived from knowledge of pressure drop and injection 

rate. Apparent viscosity 𝜇 was obtained by applying the single-phase Darcy law, such as: 

𝜇 =
𝐾∆𝑃𝐴ϕ

𝐿𝑄
 (27) 

 

In which 𝐾 is the model permeability ∆𝑃 is the measured pressure drop, 𝐴 is the model injection 

face size, ϕ is the model porosity, 𝐿 is the model length, and 𝑄 is the total injection rate. 

Apparent viscosities in our experiments were found to fluctuate between 5-25 centipoise. 

 Longitudinal section flow distribution 

For each experiment’s overall averaged flowmap, we performed the box flow analysis described 

in Chapter 2, Appendix 2-B, in which we simply summed measured intensities for each of 4 

equally sized longitudinal sections covering the full model length, to show the flow distribution in 

the transversal axis only. From the 4 values obtained, we then calculated a mean and a standard 

deviation. The 4 values are then normalized by dividing by the mean, allowing comparison 

between experiments. If flow is perfectly well distributed in each section, each section carries a 

fraction of 0.25 of the total flow, and the standard deviation is 0. We give an example for two 

different experiments A1 and A2 in Figure 3-10. The higher standard deviation value of 

experiment A2 translates the higher flow heterogeneity along the transversal axis. 
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Figure 3-10: Longitudinal flow distribution and associated standard deviation for experiments A1 and A2. 

 Dataset flow intermittency 

One global observable unmentioned previously is the global flow intermittency in between dataset. 

For each experiment, a series of 8 or more sets of 200 images are averaged to create a flow map. 

We can also create individual flowmaps for each dataset. The dataset flow intermittency 

calculation applies a similar principle to the longitudinal section analysis shown above but 

compares total intensities of flowmaps for individual datasets. Summing the values for all the 

pixels in the created flowmap then provides a global measure of flow strength in the dataset. A 

standard deviation of flow strength can then be calculated from the flow strength values of all the 

datasets. The standard deviation was calculated on normalized intensities of the flowmaps. This 

was done by dividing each dataset intensity by the mean of all dataset intensities for that 

experiment. We show an example of the normalized flow strength per dataset for two experiments 

in Figure 3-11.  
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Figure 3-11: Relative flow strength of successive datasets for two different experiments. The A4 experiment notably shows a 

higher standard deviation than the B2 experiment. 

 Passage activation 

For each experiment, flow heterogeneity also was measured through the previously defined (see 

Chapter 2, Appendix 2-B) passage activation. In each case, the mean passage activation was 

calculated, averaged over all 29 equidistant transversal cuts in each overall flow map to give a 

single value.  

 Trapped fraction 

As bubble tracks are available individually, it was possible to measure the displacement of a single 

bubble over the entire track taken the Euclidian distance from the start to end point ∆𝑇𝑜𝑡. The 

bubble displacements for each experiment can then be divided into flowing and trapped foams by 

segmenting a bimodal distribution in the displacement log-space, as shown in Figure 3-12 for two 

different experiments. Note that the threshold value changes between experiments. The areas of 

the bubbles in the trapped section are then added together and compared to the sum of areas of all 

the bubbles, providing an estimation of the trapped area fraction inside the model. We note that 

the trapped foams can have in fact non-zero total displacements. The non-zero displacements are 

either negligible (inferior to 1 µm in 200 frames), or can be due to small bubble rearrangement 

inside pores without transport out of pores, for cases of pores containing multiple bubbles. 
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Figure 3-12: Total bubble displacement distribution for the experiments D1 and D2. Each distribution displays a bimodal 

distribution whose minimum is used for segmenting flowing and trapped bubble populations. Trapped fractions in experiment 

D1 and D2 are 19% and 46%, respectively.  

 Bubble flow deviation from pressure gradient 

It was also possible to measure the displacement perpendicular to flow, ∆𝑌 and compare it to the 

total displacement of the bubble ∆𝑇𝑜𝑡. For this measurement we only use the tracks belonging to 

the flowing part of the total bubble displacement distribution showed above (right hand side of the 

distribution). The ratio of these two distances 
∆ 

∆்௧
 gives the sine of the angle that describes the 

deviation from pressure gradient direction, while the inverse sine of this ratio gives the angle. We 

show a typical distribution of angles in Figure 3-13 and the associated distribution of deviation 

angles. 

 

Figure 3-13: Full-track bubble displacement ratio distribution and associated angle of deflection from pressure gradient. The 

bubble deviation is calculated using the flowing bubble tracks only, as shown in Figure 3-12. 

To extract a single numerical value from the angle distribution we take standard deviation. In the 

cases shown here, the mean standard deviation value for the D1 experiment was 0.57 radians (32 

degrees) and the for the D2 experiment it was of 0.70 radians (40 degrees). Higher values indicate 

distributions less spiked in the center (around 0), i.e. experiments with higher deflection.  
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 Outlet foam distributions 

In a similar manner to the inlet bubble distribution, the bubble distributions in the model outlet 

pool were analyzed. Mirroring the inlet distribution properties, we can associate bubble size 

means, standard deviations and coefficients of variation to the outlet bubble size distributions. 

 Inlet/Outlet evolution ratios 

A measure of the transformation of bubble size distributions is included in the observables. We 

simply define ratios of mean bubble size such as: 𝑅௫బ
=

௫బ 

௫బ ೠ
. 

Similarly, we provide ratios for bubble size standard deviations and coefficients of variation. 

 Total bubble perimeter 

From the binarized images of bubbles in the low-frequency image sets, we measure the sum of all 

bubble perimeters inside the model and take a mean value per image for each experiment. This 

provides a complementary information to the mean bubble sizes at the inlet or outlet, and instead 

serves as a global measurement of the total length of gas-liquid interfaces inside the model. 

Classically, foam lamella density is understood as being proportional to measured foam viscosity 

(see equation (11)). The total bubble perimeter correlates positively with lamella density and offers 

a degree of refinement. For monodisperse foam injections (i.e. constant perimeter) these two 

values correlate perfectly. However, the notion of total perimeter is specifically useful in our case 

as the micromodel bubble size distributions are polydisperse and undergo size evolution in the 

model.  

  Bubble specific surface area (SSA) 

Recently (Ouali 2019), a strong relationship has been observed between the in situ specific surface 

area of a foam in a 3D medium, retrieved using small-angle neutron scattering, and the measured 

pressure gradient over the medium with the specific surface area. A bubble specific surface area 

was estimated in our case by multiplying the bubble perimeter by the model height and adding 

twice the bubble 2D area to form a closed bubble in 3D. We used the same images and averaging 

method for this parameter as for the bubble perimeter.  
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 Correlation of observables 

In this section, the observables described previously are first rapidly scanned for relationships with 

each other. In this manner, we hope to understand if some flow observations can be understood in 

terms of other parameters at a different scale. We proceed to use the same method of initially 

checking for Spearman correlation between parameters before investigating the strongest 

relationships and looking deeper to explain them. We first present a global Spearman correlation 

matrix in Figure 3-14. For clarity, we only show one half of the symmetric matrix. We split the 

parameters into three categories: macroscopic; local dynamic; and observables related to the 

bubble size distributions or shapes, i.e. outlet distribution parameters or ratios of parameters 

between inlet and outlet. 

Despite the large number of parameters and correlation values, we have bolded some strong 

relationships (Spearman correlation above 0.5) that we will comment in some detail below. 

This section will not try systematically to establish causal links between observables but rather 

show that some observable parameters can be understood in terms of observations from a different 

scale. 
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Figure 3-14: Spearman correlation coefficients matrix between observables 

 Correlation of trapped foam variables 

We observe a strong positive relationship between the apparent viscosity and the trapped fraction. 

It is well established trapped foams can contribute to an overall increase in apparent viscosity by 

reducing the available sweep inside the medium (Tang and Kovscek 2006; Kovscek and Bertin 

2003; Jones et al. 2018b). The measured pressure gradient shows the opposite correlation with the 

trapped fraction. Stated reciprocally, a low-pressure gradient cannot sufficiently mobilize foams 

that remain trapped inside certain zones and create large measured trapped gas fractions.  

Mean passage activation correlates positively with the measured pressure gradient. This can be 

understood as demonstrating classical foam mobilization at high pressure gradients (Rossen 

1990a), in which a minimal pressure gradient must be achieved to mobilize a trapped foam 
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lamellae and a higher number of active paths are observed. Therefore, the trapped fraction in turn 

correlates negatively with the passage activation mean. Also, the trapped fraction correlates 

positively with the standard deviation of longitudinal flow distribution. Indeed, experiments with 

high longitudinal flow distribution standard deviation are synonymous with presence of low flow 

areas containing a high proportion of trapped bubbles in a section of the model. This is often the 

case for the high gas fraction and low injection rate experiments in which large sections of dry 

foam are unable to be mobilized. This causal link will be explored in the next section in more 

detail. 

The activation mean is a flow homogeneity marker that is more resolved than the longitudinal 

section flow distribution standard deviation as it takes all the porous sections over the transversal 

cuts. It could be possible to have a completely uncorrelated activation and longitudinal standard 

deviation if say, for example, that one out of every two paths were active in a transversal cut, as 

opposed to all the paths. The activation mean between the two cases would be halved but the 

longitudinal standard deviation would remain the same. However, in many cases they seem to 

describe similar (absence or presence of large trapped zones) and for this reason they are so 

strongly correlated. 

To synthesize, the passage activation, trapped foam fraction, and longitudinal section flow 

distribution standard deviation form a “triad” of somewhat redundant information describing 

trapped foam. But they nonetheless have different measurement origins. To illustrate their 

relationship, we display the three datatypes simultaneously in Figure 3-15.  

 

Figure 3-15: The "triad" of information relating to trapped foams. 
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 Pressure gradient and bubble size distribution parameters 

We note that the pressure gradient correlates positively with the total perimeter, and negatively 

with the outlet mean bubble size and bubble size evolution ratio. These connections all loosely 

correspond to saying a higher bubble density will induce a larger pressure gradient due to the 

increased number of travelling interfaces contributing to the foam viscosity, or reciprocally that a 

large pressure gradient will be capable of breaking bubbles to a larger degree and creating larger 

total perimeters. However, as the pressure gradient shows a significantly stronger correlation to 

the bubble size distribution parameters than the viscosity, we further conjecture that the causal link 

between the two observable types is oriented from the pressure gradient to the bubble size and not 

vice-versa. Indeed, the lower correlation of the total perimeter and the outlet bubble size indicate 

that while these parameters may contribute to a certain extent to the viscosity, they are not the 

principal contributors. Instead, the trapped fraction seems to correlate much more strongly with 

the foam viscosity. Therefore, while a larger pressure gradient seems to create smaller average 

bubble sizes and larger total perimeters, we cannot say this transformation has a major effect on 

the foam viscosity. We illustrate this point by showing the measured pressure gradient plotted 

against the total measured perimeter in Figure 3-16. The marker size indicates the apparent 

viscosity. 

 

Figure 3-16: Relationship between measured pressure gradient, total bubble perimeter and apparent viscosity 

While a positive relationship exists between the pressure gradient and total perimeter, this does 

not correspond to larger viscosities for larger total perimeters. 
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 Viscosity and bubble deviation angle 

One less obvious relationship is the positive correlation between the apparent viscosity and the 

deviation angle to the pressure gradient. Intuitively, we could expect the effect of trapped foams 

to be hiding behind this correlation, as a high trapped fraction will force flowing foams into 

tortuous flow paths to avoid trapped zones, while at the same time contributing to increase the 

apparent viscosity by decreasing sweep. However, the correlation between the deviation angle and 

trapped fraction is, while positive, much less strong. This relationship could then be understood 

not necessarily in terms of a reduced sweep, but in and of itself, as a higher angle that represents a 

larger amount of movement of interfaces that don’t contribute to flow towards the model exit, and 

requires a larger amount of useful work to transport these bubbles out of the model. 

Finally, we look at some of the stronger correlations that we won’t explore in detail and provide 

justifications for not doing so. Strong relationships do exist within the set of bubble distribution 

parameters themselves, shown in the right section of the table. For example, the mean outlet bubble 

size 𝑥 ௫௧ and outlet bubble size standard deviation 𝜎௫௧ correlate positively, although to a lesser 

degree than for the inlet distributions. We believe this correlation is in fact inherited from the 

strong proportional effect observed for the inlet injections and demonstrates that while evolution 

of bubble size is observed, the size distribution shape in the model outlet hasn’t fully achieved 

steady state, in which the final distributions are unrelated to the injection distributions.  

Another series of strong correlations are observed between some of the evolution ratios and their 

components (i.e. the bubble size ratio 𝑅௫బ
 and the outlet mean bubble size 𝑥 ௫௧). However, these 

demonstrate the sensitivity of the created evolution ratio to the change in the parameters 

composing it, rather than any meaningful relationship. These kinds of relationships will therefore 

not be explored in detail.  

Lastly, some pairs of bubble distribution observables translate similar information, such as the 

total perimeter and the exit mean bubble size. Indeed, a very small outlet bubble size will create a 

higher number of parameters contributing to the total parameter variable. Similarly, the specific 

surface area uses the total perimeter in its definition, and therefore shows a strong positive 

correlation to the total perimeter. 
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 Injection - Observable relationships 

In a similar fashion, we combine injection and observable pairs to establish a primary indication 

of the most relevant parameters in the foam flow experiments. We will scrutinize some of the 

strongest relationships while, where applicable, giving examples of the mechanisms at play, 

proposing causal links by using flow examples. 

We display in Figure 3-17 the correlation matrix for observables and injection parameters for all 

the experiments, with observables on the y-axis and injection parameters on the x-axis. 

 

Figure 3-17: Correlation maps of different injection parameter-observable pairs. 

Evidently, some observables are highly correlated to input parameters. Some are to be expected, 

such as the negative correlation between viscosity and injection rate, i.e. the shear-thinning effect. 

In the next section we explore some high correlation relationships noted from this correlation map. 



Micromodel Experiments: Parameter Exploration 

106 
 

 Viscosity relationships 

The relationship between measured apparent viscosity was studied in some detail due to the 

importance of viscosity in reservoir simulation software. 

 Shear-thinning effect 

A shear-thinning effect was observed in the micromodel experiments. Apparent viscosity was 

found to decrease for higher injection rates. We show the observed apparent viscosities in terms 

of injection rates in Figure 3-18. We also display the same data in a log-log basis on the right of 

Figure 3-18. We include a best fit trendline in the log-log plot. The trendline was found using the 

SciPy curve_fit function. A series of weights was also used in the curve fitting process. The weight 

of each point in the process is equal to the inverse of the standard error of the mean of the injection 

rate value, displayed by black error bars in the plot on the right of Figure 3-18. Despite the large 

spread of points around the trendline, the line’s slope indicates that a power law links the foam 

apparent viscosity to the injection rate through the equation  𝜇 ∝ 𝑄ି.ହ଼ . Inclusion of one 

standard deviation on the slope fit gives 𝑦 =  −0.58 ± 0.2. 

 

Figure 3-18: Viscosity measurements for all experiments in terms of injection rate. In this plot the marker sizes are all the same. 

Various exponents have been found in the literature linking injection rates to apparent viscosities. 

Our exponent here is different to the value of -1/3 classically given in Bretherton’s law (Bretherton 

1961). However, Bretherton’s law deals with simple geometries of lamellae displacement in tubes, 

notably without the notion of foam trapping observed here. Observations of an exponent closer to 

-2/3 have been made in other studies however (Falls et al. 1989; Pedroni 2017).  
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 Modelling viscosity through microscopic observables 

As described in Chapter 1, foam mobility is a function of both foam viscosity and foam relative 

permeability. Foam viscosity is generally considered to be dependent of the foam lamellae density 

while foam relative permeability is affected by foam trapping and reduction of sweep. In our case, 

both are integrated into the measured “apparent viscosity” that we display here. Due to the strong 

relationship between the trapped fraction and the injection rate, we believe that the primary factor 

contributing to the apparent viscosity is the trapped fraction, showing a stronger negative 

correlation with the injection rate to viscosity than with any of the bubble size distribution 

variables. The relationship between the trapped fraction and the viscosity explains the high 

correlation to other parameters of the “trapped foam triad” section. We show a graph of the trapped 

fraction as a function of the injection rate in Figure 3-19.  

 

Figure 3-19: Foam trapped fraction as a function of injection rate. A log-log linear fit is provided on the right. 

We observe a decaying function spanning high trapped fraction (> 0.8) at low gas rates to low 

trapped fractions (<0.2) as higher rates are used. We can fit the relationship with a power law 

shown on the right of Figure 3-19. The relationship in fact shows less dispersion that the viscosity 

relationship to injection rate. 

We believe this general shape, i.e. a power law reduction of trapped fraction with increasing 

injection rate could be responsible for the shear-thinning effect of the foam. We provide a model 

for describing foam viscosity in terms of both the trapped fraction and including a notion of bubble 

sizes into the viscosity. Indeed, it may be that a dependence exists between viscosity and bubble 

size distributions, but only has been rendered negligible in front of the trapped fraction 

dependence. 
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In the previous section we showed that despite being linked to pressure gradient, the bubble density 

didn’t have a major effect on the foam viscosity. However, it’s possible that it has a minor 

contribution that is not obvious to observe in front of the considerable dependence of viscosity on 

the trapped fraction. We show the sum of bubble perimeters, which is closely linked to the bubble 

density as a function of injection rate in Figure 3-20: 

 

Figure 3-20: Total bubble perimeters in the model for each experiment in terms of injection rate. 

We see that three clusters of points appear: the first one is shown by the lowest bubble sizes at all 

rates (highest sum of perimeters), i.e. the I2 injections. The other group clusters the I1 and I3 

injections according to the injection rates, or odd and even experiments, with the lower injection 

rate group displaying lower observed total perimeters. 

Interestingly, we observe that this data is complementary to the trapped fraction when comparing 

to the apparent viscosity measurements. For example, experiment A4 shows a high gas fraction 

but only a moderate apparent viscosity. The total bubble perimeter for this experiment is the 

smallest, however, implying a smaller bubble density and viscosity. Oppositely, the “B” 

experiments show a moderate trapped fraction, but high viscosities, with the experiment B2 

showing the highest viscosity. The experiment B2 however has the largest total perimeter, 

explaining the higher measured viscosity. 

Therefore, we propose to model the viscosity by sharing the rate dependence with the trapped 

fraction, i.e. using the same exponent as the trapped fraction fit to injection rate: -0.75. The 

viscosity will then be refined to integrate a fitted dependence to the total bubble perimeter for each 

experiment. 
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To integrate this information into the model we first take the exponent obtained from fitting the 

trapped fraction dependence to injection rate, that is -0.75, and fit the viscosity with this exponent. 

The residuals, i.e. the difference between the model fit and the data points, will then be fitted to a 

separate model that accounts for the total perimeter. The residuals from the fit also showed the 

strongest Spearman correlation (0.69) with the total perimeter, of all the observables and injection 

parameters described above. We show on the left of Figure 3-21 the model fit using the exponent 

gathered from the trapped fraction dependence, with the residuals shown on the right themselves 

fitted to an affine function of the total perimeter. 

 

Figure 3-21: Left: Viscosity fit using the exponent from the trapped fraction dependence to injection rate. Right: Fit of residuals to 

the total perimeter using an affine function. 

The fit from the residuals to the total perimeter then provides us with a second physical variable 

in the model. Finally, both fits shown in Figure 3-21 are added together to provide an estimate of 

viscosity in terms of both the trapped fraction dependence to injection rate and the total bubble 

perimeter for each experiment. We display the result in Figure 3-22, left, in which we show the 

measured data viscosity data points, the fit with the trapped fraction exponent only, and the data 

points fitted to the 2-variable model, detailing the final model in orange on the graph. On the right, 

we display a comparison of model prediction to measured values only. 
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Figure 3-22: Final viscosity model using two parameters: the injection rate, with an exponent derived from fitting the trapped 

fraction, and the total perimeter, with parameters fitted from the residuals of the trapped fraction model. 

The final fitted model points are shown in orange. As the model includes two parameters, we 

cannot show the model prediction as a continuous line such as for the trapped fraction model, but 

instead as isolated points just as the experimental data points. We observe that the final model 

points seem to achieve a closer prediction to the measured points that the simple trapped fraction 

fit. While the fitted and measured points are far from overlapping, they almost all move “in the 

right direction” when compared to the trapped fraction model. For clarity, only the labels of the 

measured data points are shown. The labels of the model points can be deduced easily as these 

points are on the same position on the x-axis as the experimental points. The 2-variable model also 

achieves a higher R² score than the simple fraction fit model at 0.83 versus 0.65 for the trapped 

fraction only model. The R² score is an established statistical measure of model goodness of fit. It 

is given by the amount of explained variance captured by the model divided by the total variance 

shown in the data. It is situation between 0 and 1, and for perfect models is equal to 1.  

This model shows that trapped foams play a large role in determining the effective viscosity of a 

foam during an injection into a porous medium. The role of bubble density, approached here 

through the total bubble parameter in the model, also plays minor role in the model and serves to 

refine measured viscosities on top of the trapped fraction contribution. 

 Trapped fraction sources 

As observed in the correlation table between injection parameters and observables, a non-

negligible relationship exists between the trapped fraction and the inlet bubble distributions, with 
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the strongest being the relationship to the inlet bubble size standard deviation. We show this 

relationship in detail in Figure 3-23:  

 

Figure 3-23: Trapped fraction dependence to inlet bubble size standard deviation. Two different groups are shown in colored 

circles. 

We observe two groups of points within this plot. The first group, highlighted by a yellow oval in 

Figure 3-23, displays a positive relationship between the trapped fraction and the bubble size 

standard deviation. They also show a larger trapped fraction than all the other experiments. This 

group also includes the experiments with the largest degree of longitudinal flow distribution 

standard deviation, expressed by the marker size. The second group, highlighted by a bright green 

oval, displays low trapped fractions with a lower (and even seemingly inverse) relationship to the 

inlet bubble size standard deviation. Combined with the knowledge of mean bubble sizes (Figure 

3-6), we note that the B1, B2 and B3 experiments furthermore have bubble sizes lower than the 

mean throat size. This gives some reason to believe that the trapped fractions observed in both 

experiments have different origins. While the trapped fraction for experiments shown in the yellow 

oval show a strong dependence to the inlet bubble size standard deviation, the trapped fraction for 

the second group must have a local origin, perhaps of a structural origin, rather than being a direct 

consequence of inlet flow distribution parameters. To explore this hypothesis, we look at some 

flowmaps for each experiment.  

When observing the flow maps for experiments in the yellow group, we observe that foam is only 

flowing in certain zones of the model with other entire sections devoid or containing less flow. 

Figure 3-24 shows four examples of flowmaps for experiments in the yellow group. 
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Figure 3-24: Overall flowmaps for four experiments belonging to the high trapped fraction group shown in yellow in Figure 3-23. 

The images have had their intensity equalized over the longitudinal direction according to process described in Chapter 2, 

Appendix 2-C. The black arrows indicate the flow direction. 

We first note that in all these experiments a significant longitudinal portion of the flowmap 

contains less flow. From the extreme case of the A4 experiment in which only a few flow lines in 

fact visible, to the more moderate case of the B5 experiment in which the lower half contains less 

flow, while still showing some flow at both extremities. This fits well with the theory that the 

trapped fraction corresponds to a global trapped area of the model, representing a large portion of 

the model, rather than small isolated pockets. As we observe that the areas containing flow can 

change between the different experiments, (i.e. upper half for A2, A4, lower half for C2, B5), this 

indicates that inlet bubble properties determine to a great degree the downstream flow distribution 

in the model and the trapped foam fraction visible here.  

Looking at images of the inlet distributions themselves, we see that locally drier foams at either 

side of the inlet tend to inhibit flow in the corresponding section of the model. We illustrate this 

by showing in Figure 3-25 an inlet distribution of experiment A4, where a visible foam dryness 

gradient is observed over the model inlet. The drier foams on the right-hand side of the image are 



Micromodel Experiments: Parameter Exploration 

113 
 

noticeable by the thinner lamellae that appear less dark, and the angular junction points between 

the lamellae and the solid medium. 

 

Figure 3-25: Foam dryness gradient over the model inlet for experiment A4, and the effects on the flow distribution that this 

causes. 

The drier foam inlet areas create a lower flow in the same downstream sections of the model. The 

existence of foam dryness gradients is a consequence of the lower injection rates and the larger 

time of travel in the tubing leading to the model from the foaming device for injection types I1 and 

I3. Slower injection rates do not necessarily lead to foam dryness gradients, as observed by the I2 

type experiments (in which case the tubing is much shorter). In the case of the I1 and I3 

experiments, the larger time spent travelling as bulk foam in the tubing leading up to the model 

allows diffusion and coalescence processes to coarsen the foam and create variations in dryness 

and bubble size at the same time. Therefore, a strong correlation is observed between the trapped 

fraction and the bubble size distribution standard deviation. Hiding behind this correlation is in 

fact the local foam dryness variance that is responsible for blocking off certain zones of the model. 

While the large dryness variance is a product of the lower injection rates and large travel time in 

the tubing, its effect is compounded by the fact that lower injection rate experiments will show 

higher sensitivity to local variations in foam dryness, as the pressure gradient becomes insufficient 

to displace certain areas of the inlet foam. 

In comparison to these examples, we show in Figure 3-26 the flowmaps for experiments situated 

in the lower group, i.e. the group circled in green showing lower trapped fractions and lower 

longitudinal flow standard deviation. 
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Figure 3-26 Overall flowmaps for four experiments belonging to the low trapped fraction group shown in green in Figure 3-23. 

The images have had their intensity equalized over the longitudinal direction according to the process described in Chapter 2. 

The black arrows indicate the flow direction. 

These images have the common characteristic of displaying well distributed flow in all sections. 

The trapped fractions in these experiments are dark patches in the model, rather than entire 

sections, that correspond to areas that are locally disadvantageous to flow. Also, we can note that 

the darker areas are consistent in all experiments, even in the C3 injection which was performed 

in the opposite way. Some dark areas that are common in every flow map have been highlighted 

in light blue. This is a strong indication that the trapped foam fractions in these experiments are of 

a structural nature and are common to all the experiments with high injection rates and low inlet 

size distribution.  

Therefore, we can identify two separate sources for the trapped foams. First, for some low flowrate 

experiments that travel a large distance from the foaming device, the variance of foam dryness as 

well as bubble sizes in the injected foam can account for a large degree of the trapped fractions 

observed in the model. Furthermore, we observe that the sections of the model that are trapped can 

change between experiments. For these reasons, we believe this phenomenon naturally doesn’t 
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have a structural origin. The second type of trapped foams can be observed in certain isolated areas 

of the model, and are much smaller in size, spanning perhaps a few pores and throats. These areas 

seem to be consistent throughout all the experiments, displaying almost no flow in every case. We 

suspect these zones can be characterized structurally. 

 Conclusion 

Throughout this chapter we show a series of experiments on a single micromodel. We spend time 

to characterize the injections and observed flow in an extensive way. For the injection 

characterization, we identify parameters relating to the bubble size distributions as well as the 

injection rates and foam qualities. The specific injection method was also noted. Flow observables 

can be divided into different categories. They can be either macroscopic, such as pressure gradient 

and flow variance between datasets; microscopic, but taken over the complete model, such as the 

trapped fraction and the passage activation mean, or finally relating to the bubble size distributions 

in the model or at the outlet, such as the mean bubble size ratio or the total measured perimeter. 

We observe that several injection parameters evolve together in the experiments (such as injection 

rate and the mean bubble size) creating difficulty establishing causal links between the different 

correlations found with the observables. For the model observables themselves, we note that many 

describe similar information in different ways and show significant correlation, such as the trapped 

fraction, the longitudinal section flow distribution and the activation mean.  

We observe that the trapped fraction is a key observation in linking macroscopic to microscopic 

parameters as it correlates strongly with pressure gradient and viscosity. We then propose to fit the 

viscosity evolution with injection rate using the same exponent as the evolution of trapped fraction 

(-0.75), and further refine the model with the addition of a dependence to the total sum of bubble 

perimeters in the model. 

Finally, we show that in fact the trapped fraction can have different origins. For low flow rates, a 

high trapped fraction can be a consequence of inlet bubble properties, creating blocked off areas 

downstream. Separately, some smaller, specific trapped zones are repeatedly observed in every 

experiment leading to the assumption that they have a structural origin and necessitate a deeper 

structural investigation. 



Predicting Local Flow from Structural Parameters: A Machine Learning Approach 

116 
 

 Predicting Local Flow from Structural 

Parameters: A Machine Learning Approach 

Preamble 

Within Chapter 3, an initial parameter search was performed to attempt to link local flow properties 

with local structural properties of steady state foam flow in a 2D micromodel based on the 

measured intensity in the averaged flow map for the experiment A1. We attempted to link local 

pore area and throat radius to local flow intensity, and with reference to recently published work, 

attempted a semi-local approach, in which chains of large connected pores and throats of varying 

length, as well as large connected pores and throats aligned with pressure gradient were checked 

for positive relationships with flow. No overarching relationship was observed indicating that 

either a more complex approach is needed, i.e. a large-scale modelling effort, or that the structural 

parameters used were not the most relevant parameters to describe flow. 

In this section we perform a more in-depth local structural approach, both in terms of the diversity 

of structural parameters used, and in terms of the methods employed to integrate these parameters 

into a complex prediction framework of local flow. 

For this section we shall employ some terminology specific to data science, in which a model will 

use a series of features (in our case structural local parameters) to predict a target (data pertaining 

to flow intensity). 

 Modelling framework and goals 

In this chapter, we will make comparisons between various modelling approaches. We will use 

algorithms available in the scikit-learn machine learning (Pedregosa et al 2011) Python package 

to generate different local models to predict flow properties. The algorithms train classifiers that 

will attempt to discriminate between elements labelled either active or inactive, that are labelled 

using different average velocity intensity thresholds as previously described. Thus, our 

classification attempts will always only use two distinct classes – active or inactive - in each case, 

otherwise known as binary classification. We strictly use supervised learning algorithms, which 
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will divide the available (already classified) data into two sets, by randomly selecting a fraction of 

data samples and setting it aside as a test set. The machine learning algorithms will then be trained 

on the remaining training set, i.e. the algorithm will attempt to establish why each sample was 

attributed to either class, to produce a trained model. The model will then be used on the test data 

that has been kept aside and not seen by the model, to check for model generality, using a given 

evaluation metric.  

Comparing the different model results represents a small challenge. Indeed, some classes are 

unbalanced (i.e. only a few pores exceed the highest intensity thresholds) and determining the 

accuracy of predictions in this case requires more complex evaluation metrics than simply the 

percentage of correct predictions. We shall give more information on the metrics used as we 

progress through the analysis. 

Initially we label the samples as we have a continuum of average velocity values. In other words, 

we establish which are to be considered active or inactive before any models are used. The same 

labelling procedure is used for both throats and pores, although performed separately. The 

elements (3698 pores or 6284 throats) are split up into 19 distinct size categories (according the 

pore area or throat radius) with the same number of samples in each (see later in Structural 

parameter space). In Chapter 2, we classified active and inactive pores by setting a threshold 

average intensity value within each size category. The threshold chosen was half of the average 

pore intensity for each size category, with samples in the size category above this value were 

considered active. Supplementary classifications will be done by setting thresholds that are equal 

to the mean intensity value itself and one and a half times the mean intensity value. In this way, 

modelling a series of different classification thresholds will make it possible to understand what 

characterizes the elements with the least flow as well as those with the most flow separately. 

The choice of successive binary labelling with different thresholds was done for clarity and 

interpretability. Indeed, as we use four labels in total (inactive in all classifications, active, highly 

active, very highly active), separated by three thresholds, the problem could be assimilated to a 

multi-class problem in which the algorithm’s role was to attribute each element to one of the four 

classes. However, we believe this style of classification would lead to less interpretable results. 

For example, while it can be possible to extract the general importance of each feature in multi-

class classifiers, it is more difficult to extract the specific features responsible for classifying one 
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class versus another, whereas in a series of binary classifiers the feature importances are rendered 

explicit in each case. This is also the reasoning for not performing a regression-type analysis in 

which predicted values are not discrete class labels but continuous numerical values, which could 

have typically been average element intensity here. A regression framework was avoided to 

account for the potentially different structural sources between low flow zones or very high flow 

zones. Creating one large function to predict, let’s say, the whole spectrum of pore intensities 

seems inapplicable when the flow state of each pore can have distinct structural origins. Certain 

mechanisms are responsible for creating trapped foams while on the other end of the spectrum, the 

high flow pores could be explained structurally by other parameters than those involved in 

trapping. Such global models would then either lack predictive power or would be hard to interpret 

and convey less information on the specificities of belonging to each intensity category. 

We will perform our analysis on a series of flow maps from different experiments and different 

bubble size categories to check for differences in key local structural elements for each case. An 

analysis will also be done comparatively to the numerical experiments. 

 Classification types 

In this section, we shall give some examples as of how the measured velocity intensity data for 

pores and throats can be labelled based on their relative intensity.  

We use the data from experiment A1 and show three types of classification. In each case a different 

threshold is used for diving up the elements of a size category.  

As described in Chapter 2, we demonstrate that categorizing each element based on size, and then 

performing a classification relative to the mean values within that size category removes any 

assumptions relating to the way velocity intensity is spread out over the different pore sizes. We 

perform this classification individually in every size category despite the evident lack of 

correlation between average intensities and sizes, as evidenced in Chapter 2 during the initial 

structural search. While no global effects can be seen, some larger pores or throats may be 

prejudiced as they only contain one or two flow tracks within their whole area. We show examples 

of splits for data of pores on the total flowmap of Experiment A1, in Figure 4-1. 
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Figure 4-1: Different binary classification splits used for model classifiers. The leftmost plot splits pores based on a threshold of 

half the average measured velocity intensity for their size category. The central plot simply takes the mean as threshold for each 

size category. The plot on the right takes 3/2 the mean as a threshold value for each size category. 

In any case, the classifications of the data show that the different types of classification in fact 

show little sensitivity to pore area, splitting active and inactive elements mainly based on average 

pore velocity intensity. For some types of flow maps, the average pore intensities are much closer 

together than shown here, typically the numerical experiments which show higher flow 

homogeneity.  

 Machine learning algorithms  

Here we shall describe in limited detail the different model types used and the motivation for them. 

The aim of a binary classifier is to establish a border to separate the feature (parameter) space into 

two different zones based on a classification rule. This border is called the decision boundary. In 

our case the feature space is the available structural parameters and the zones represent active or 

inactive elements. Obviously, only the structural parameters are used by the models to predict 

activity and the element velocity intensity is not accessible by any of the algorithms. 

The decision boundary between the two classes can take many forms, just as the models that lead 

to its definition. For a simple, 2-dimensional space, a decision boundary is the curve that splits the 

two classes in the best way (according to the evaluation metric chosen). For higher dimensional 

problems of n dimensions, the decision boundary is therefore a hypersurface of dimension n-1. 

The border can be either expressed analytically or defined by a limited number of in-model 

parameters which limit the model degree of freedom. This is what is known as a parametric model. 

On the other hand, non-parametric algorithms create decision boundaries that become increasingly 

complex when adding training data. For example, adding a series of “if” statements regarding 
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feature values such as for a decision tree, or averages of feature values themselves creating “nearest 

neighbor zones” which can be used to decide to which class a new data point should belong. 

We give some examples here to show that different algorithms were tested, before focusing on the 

classifiers that worked best on our data, and finally documenting the features used to construct the 

decision boundary and how they affect its definition. 

While we don’t provide mathematical details of model functioning or justification here, we shall 

still briefly summarize the classification algorithms used. All the following classifiers have in 

common that they require some tuning of “hyper-parameters”, or algorithm parameters, that 

necessitate user intervention, in order to creating models that are neither too general (under-fitting) 

nor too specific (over-fitting) to the data provided in the training data set.  

The different algorithms we will describe here are K-nearest neighbors, Logistic Regression, 

Decision Tree and Random Forest. To grasp some of the behavior of the algorithms, we initially 

show fitted models that attempt to classify three types of input data sets, each represented by a 

different row in Figure 4-2. The classes both have a same number of samples in each case. The 

locations of the data points were generated showing a small amount of random noise but according 

to some rules that create data either clustered in a linearly separable way (top row), clustered 

according to interleaving moon-like shapes (central row) and not clustered at all (bottom row). The 

training set points are shown as semi-transparent color whilst the test sets are shown in full color. 

The vertical and horizontal axes represent two arbitrary dimensions and have no physical meaning. 

The model accuracy (fraction of correct test data predictions) is shown as a white number in the 

bottom right hand corner. 
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Figure 4-2: Different input datasets and models with shown accuracy on a 60/40 train/test data split. 

In these plots, the initial data is given on the left column, and the successive model attempts at 

classifying the data is shown in the following columns. A contour plot showing the model 

prediction and decision boundary is shown as a contour plot in the background. Python code for 

creating visualizations of this type is available online1. 

The top row is well classified by all the models, all achieving an accuracy score of 1. The middle 

row boundaries are required to be of a more complex shape to correctly predict the data, and the 

linear logistic regression model achieves a lower score. The bottom row shows data that 

demonstrates too much mixing to be separable in a meaningful way, and we see the models 

struggle to classify a situation in which no generalizable classification can be done. 

We see some of the main features that distinguish these models from the figure instantly. 

We observe that the decision boundaries for the K-nearest neighbors, Decision tree and Random 

Forest are clearly non-parametric, while it is linear for the Logistic Regression. We shall give some 

                                                 
 

1 https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html 
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more detail regarding these models in the next section. Note that parametric models are not 

necessarily linear and such decision boundaries can take polynomial or other shapes.  

 K-nearest neighbors 

When considering a new data point, this model straightforwardly takes the majority class of the 

K-nearest already classified neighbors and attributes it to the point under evaluation (Altman 

1992). The distance used to establish the first K neighbors is usually the Euclidian distance from 

the point. Each point of the feature space can be attributed to a class this way and a decision 

boundary is formed. The number of neighbors represents a hyperparameter chosen by the user. In 

the case above it is chosen as 3. A higher number of neighbors tends to smooth the decision 

boundary and generalize the model. Consequently, this model is highly sensitive to the different 

scaling of features. This means that features that vary between large numbers (for example pore 

area which can be arbitrarily large) will contribute to the Euclidean distance in the feature space 

to a much larger degree than features with smaller ranges (such as cosines that vary between 0 and 

1). In this form, K-nearest neighbors only defines neighbors based on the most highly varying 

features. One simple solution is to scale them all to a common range (say 0-1), but even when 

scaled, features of different importance (i.e. different usefulness is achieving correct predictions) 

are given equal value in deciding the closest neighbor. This simple version of the K-nearest 

neighbors algorithm is not robust to irrelevant features and perhaps isn’t the best choice for our 

task which requires filtering out the less relevant features. 

 Logistic regression 

Logistic regression is a historical algorithm (Walker and Duncan 1967) still finding a lot of use 

today. Despite its name, logistic regression can be used for classification problems. In linear 

regression, the input variables 𝑋ଵ, 𝑋ଶ, ..., 𝑋  are combined in a linear equation, each with an 

associated weight 𝛽ଵ, 𝛽ଶ, …, 𝛽 such as 𝑦 = 𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽𝑋 

The sigmoid 𝑝 = 1 (1 + 𝑒ି௬⁄ ) is then applied to the linear function, which is constrained between 

0 and 1. Choosing a cutoff value between 0 and 1 then serves to determine the data points as either 

class. The logistic regression algorithm then finds the correct set of features and model weights 

that best classify the training set on either side of the cutoff value. 
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 Decision tree 

This algorithm learns a series of rules that best split the data according to the classes. Decision 

trees have been historically present in many contexts but are studied in detail by Breiman et al. 

(1984). Successive rules can be applied on each side of an initial decision, creating the “branching 

out” of a tree. The created models are both simple to visualize and interpret. One large benefit of 

this algorithm is that it combines different types of data (in our case, continuous data such as angles 

or sizes, with integer values such as coordination), and is non-sensitive to the scaling of features. 

We can see the shape of the boundary created by a decision tree model, i.e. a series of cuts in the 

feature space. We believe this type of model may be well fitted to our problem. Indeed, certain 

flow situations may have multiple, non-interacting origins. For example, a low flow zone may 

either be impossible to access due to a very small entrance throat, but not only. Some low flow 

zones are simply in poorly connected areas, turn away from flow direction, or are next to flow 

zones that are highly advantageous and contain all the flow. As these multiple conditions are not 

necessarily linked and integrate different data types, they cannot be easily modelled by a 

continuous function, and require a series of conditional statements to be best expressed. 

 Random Forest 

Random forests (Breiman 2001) are combination of decision trees that are all trained 

independently on different subsets of the available training data, which are then averaged to 

provide a more general prediction. Random forests are what is known as an ensemble machine 

learning method, combining multiple weaker predictors that by themselves do not achieve 

significantly greater predictions than random. When combined, using either a majority vote system 

or a more complex rule, these weaker predictors can achieve much higher accuracy. 

 Structural feature space 

Here we list the features used in the prediction process. All the features used here are local or are 

related to local features in the close neighborhood of either the pore or throat.  

 Throat structural features: 

We measure some geometrical features associated with each throat. However due to the simplified 

geometrical properties of the throats extracted from the images (i.e. 1D lines), strictly geometrical 
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features related to the throats are only radius and the orientation angle ν, describing the angle of 

the normal of the throat in relation to the positive pressure gradient direction.  

We define some other features related to the positioning and orientation of the throat in relation to 

the two pores that are connected by the throat. Specifically, we give the angle μ, defined by the 

alignment of the centers of mass of the pores in relation to the pressure gradient, and distances 

between the centers of mass of the pores ΔPP, as well as the total distance between both pores 

passing through the throat center ΔPtP. We also define distance between pore centers in the Y-

direction ΔyPP. A visual description of these features is given in Figure 4-3: 

 

Figure 4-3: Visual description of some throat features. Pores are shown in black separated by throats in bright green. Pore 

centers of mass are shown as red circles. The throat orientation angle ν is given by the angle between the normal to the throat 

(shown in orange) and the positive pressure gradient, in this case ν is equal to 0. The orientation the neighboring pores centers 

of mass in relation to pressure gradient is given by the angle μ. The distance from neighboring pores centers of mass is given by 

ΔPP (shown in thickly dashed white). The total distance between the centers of mass passing by the throat center is given by 

ΔPtP (shown in thinly dashed white). 

One final feature that necessitates some description is the equivalent hydraulic length of the throat. 

We can extract a characteristic hydraulic length from each throat with the knowledge of the 

surrounding pore shapes that it separates. 

In classical Pore Network Modelling, throats are defined by constant length. However, in real 

media, such as the network shown here, the throat opens progressively to the pore and as such, a 

simple distance measure such as the ΔPtP to associated pores may be a poor descriptor of the 

length associated with each throat. We therefore propose to integrate the hydraulic length 𝑙 for 

2D media. The hydraulic length is described in more detail in Youssef et al. (2007). While this 

derivation may apply specifically to circular canal cross-sections, we still include it in our 
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analysis due to the added information it provides, and due to the relatively smooth flow corners 

we can expect from the acid etched glass micromodel.  

It is defined by analogy to the equivalent conductance 𝑔, as the sum of n elements (pixels) in 

series, each of length 𝑙, radius 𝑟 and conductance 𝑔 . The fluid conductance of a fluid of viscosity 

µ in an elementary cylinder i is defined by 𝑔 =
గ 

ర

଼ µ :
. The conductance 𝑔  of the equivalent 

cylindrical tube of radius 𝑟 is defined by: 
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The equivalent hydraulic length is then given by: 

𝑙 =  𝑙
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The process for accessing the hydraulic length is described visually in Figure 4-4: 

 

Figure 4-4: Process for access the hydraulic length leq. The diagram on the right was taken from Youssef et al. (2007). 

Using a distance map of the porous medium, we can gain access to the distance of each pixel from 

the nearest grain. When skeletonizing the porous area, and selecting this area on the distance map, 

we can access the distance from the solid grains at every point along the skeleton of the porous 

medium. This is shown in the left image of Figure 4-4 as a colored vein superimposed on two 

black pores with a central throat in bright green. Warmer colors represent higher distances from 

solid grains. The skeleton is enlarged here for clarity. We use the central branch of the skeletonized 

distance map only, intersecting the throat of interest. It is accessed with the Strahler Analysis 

ImageJ plugin (Tiago Ferreira 2016), and shown in the central image. As the image is pixelated, 

in our analogy 𝑙 is constant throughout. The hydraulic length is then accessed by summing the 
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ratios ቀ



ቁ

ଷ

 along the central branch, as shown in the image on the right. We now list the features 

available to the machine learning algorithms for the throats. 

 Geometrical features used: 

The following two features are purely geometrical properties of the throat 

- Radius (𝒓): As some throats are not straight lines, in fact we take the Minimal Feret 

diameter for each throat as a measurement of throat radius for extra precision. 

- Throat angle (𝐜𝐨𝐬 𝛎): We take the cosine of the angle of the throat orientation in 

relation to pressure gradient as described above 

 Neighborhood features used: 

The following features consider properties and positioning of the throat relative to the 2 pores 

associated with the throat. 

- Pore-to-pore angle (𝐜𝐨𝐬 µ): We take the cosine of the angle of the pores in relation to 

the pressure gradient as described above 

- Pore-to-pore center distance (𝜟𝑷𝑷): Distance between neighboring pore centers  

- Pore-to-pore center Y distance (𝜟𝒀𝑷𝑷): Y distance between neighboring pore centers 

- Pore-to-throat-to-pore center distance (𝜟𝑷𝒕𝑷): Distance between pore centers passing 

through the throat center. 

- Hydraulic length ൫𝒍𝒆𝒒൯: Equivalent hydraulic radius as described above. 

- Areas average: Average areas of the two surrounding pores 

- Areas max.: Maximal area of the two surrounding pores 

- Areas min.: Minimal area of the two surrounding pores 

- Coord average: Average coordination of the two surrounding pores 

- Coord max.: Maximal coordination of the two surrounding pores. 

- Coord min.: Minimal coordination of the two surrounding pores. 

 PCA analysis 

Finally, as we have many highly correlated features representing sometimes small refinements or 

combinations of other features, we perform a simple PCA (Principal Component Analysis) to 

visualize some of the features that evolve together. Principal component analysis is orthogonal 
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transformation that creates a series of linearly uncorrelated components from an initial input of 

possibly corelated variables. It is an example of dimensionality reduction creating a new 

coordinate system that best explains the variance of the data. In our case we shall use the first 5 

principal components, given in order of decreasing encapsulation of data variance. In Figure 4-5 

we show both the magnitude of the contribution to each principal component and the direction of 

the contribution, i.e. whether the initial variable correlate positively or negatively to the created 

component. The relative contribution of each component to explaining the total data variance is 

also given. 

 

Figure 4-5: Principal component analysis of throat structural features. The amount of data variance explained by each 

component is shown at the top. The bottom plot shows the specific composition of each component. The colorbar indicates the 

degree of either negative or positive correlation of the input variable to the created component, and color is unrelated to 

principal component explained variance magnitude. 

We note that the first component captures most of the total data variance, likely due to the large 

number of features that correlate in the same way. PC1 relates mainly to the surrounding pore 

properties. The second component describes the alignment of the throat with respect to pressure 

gradient, as described by both angles (also correlating negatively with the Y-displacement between 

the neighboring pores). A third component mostly describes the variance due to the hydraulic 

length of the throat and coordination, while in the fourth describes uniquely the variance of throat 
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radius. The purity of the PC4 component shows the throat radius values are independent of other 

features shown here. 

 Pore structural features 

A larger number of features are available for the pores than for the throats. Indeed, the pores are 

represented by 2D areas and can have more geometrical properties than the 1D lines representing 

the throats. The purely geometrical features were obtained from applying the ImageJ plugin Shape 

Filter on the pores (Wagner, T and Lipinski, H 2013). Several features were also extracted from 

the immediate neighborhood properties of each element. For example, for each pore, the average 

area of the surrounding pores, or the average radius of the throats leading to the neighboring pores 

was calculated. We will now list the features we included for pore prediction process. 

 Geometrical features 

The following geometrical feature descriptions were taken from the Shape Filter Plugin description 

website2: 

- Area (𝑨): measured as the entirety of the area making up the pore as given by the 
watershedding process 

- Area of convex hull (𝑪): can be visualized as the area a rubber band would take if 
surrounding the pore 

- Max. inscribed circle diameter: the diameter of the maximal circle that can be inscribed 
inside the pore 

- Perimeter (𝑷): The perimeter of the pore 
- Perimeter of convex hull (𝑯): The perimeter of the previously described convex hull 
- Feret diameter: The largest possible distance between two parallel tangents to the pore 

outline not intersecting the pore 
- Min. Feret diameter: The smallest possible distance between two parallel tangents to 

the pore outline not intersecting the pore 
- Long side Minimum Bounding Rectangle (𝑳): The larger side of the minimum 

bounding rectangle 
- Short side Minimum Bounding Rectangle (𝑺): The smaller side of the minimum 

bounding rectangle 

- Aspect ratio: Defined as 


ௌ
 

                                                 
 

2  https://imagej.net/Shape_Filter 
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- Area/Perimeter: 



 

- Convexity: Defined by 
ு


 

- Solidity: Defined as 



 

- Orientation: The angle of the major axis of the pore from the direction of pressure 
gradient. 

 Neighborhood geometrical properties 

The following features were taken from the knowledge of the network properties: 

In the following, many of the features have the same definition but are applied to the 1st neighbors, 

2nd neighbors etc... We will denote the dependence to the neighbors by using the general notation 

𝑛 as referring to the nth neighbor only. 

- 𝒏 - Coordination: The number of 𝑛th neighbor pores 
- 𝒏 - Areas Average: The average areas of the 𝑛th neighbors 
- 𝒏 - Areas Max.: The maximal area of the 𝑛th neighbors 
- 𝒏 - Areas Min.: The minimal area of the 𝑛th neighbors 
- Up to 𝒏 - Areas Average: The average areas of all the pores up to the 𝑛th neighbors 
- Up to 𝒏 - Areas Max.: The maximal area of all the pores up to the 𝑛th neighbors 
- Up to 𝒏 - Areas Min.: The minimal area of all the pores up to the 𝑛th neighbors 
- 𝒏 - Throats Size Average: The average size of throats leading to the 𝑛th neighbors 

specifically 
- 𝒏 - Throats Size Max.: The max. radius of throats leading to the 𝑛th neighbors 

specifically 
- 𝒏 - Throats Size Min: The min. radius of throats leading to the 𝑛th neighbors specifically 
- Up to 𝒏 - Throats Size Average: The average radii of all the throats leading up to the 𝑛th 

neighbors 
- Up to 𝒏 - Throats Size Max.: The max. radius of all the throats leading up to the 𝑛th 

neighbors 
- Up to 𝒏 - Throats Size Min.: The min. radius of all the throats leading up to the 𝑛th 

neighbors 
- 𝒏 - Throats (𝐜𝐨𝐬 𝛎) Average: The average cosine of the angle between the normal 

vector to the throat and the pressure gradient direction, of the throats leading to the 𝑛th 
neighbors 

- 𝒏 - Throats (𝐜𝐨𝐬 𝛎) Max.: The max throat angle cosine leading to the 𝑛th neighbors 
- 𝒏 - Throats (𝐜𝐨𝐬 𝛎) Min.: The min. throat angle cosine leading to the 𝑛th neighbors 
- 𝒏 – Throats Hydraulic Length Average: The average hydraulic length as defined above 
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The number of neighbors 𝑛 can be chosen as desired. We shall use a value of 𝑛 = 3 when using 

these features in the machine learning algorithms. 

 PCA analysis 

As done for the throat features, we shall perform a PCA analysis on the pore structural features. 

For clarity, here we only show the PCA analysis of the components up to the 2nd neighbors (i.e. 

𝑛 = 2). As PCA is sensitive to the scaling of features, prior to this analysis a standard feature 

scaling is applied to each feature individually. The standard scaling removes the mean of the 

feature from each instance and scales to a unit variance. It is a standardization method that 

essentially sets all features on an equal footing for scale-dependent methods. We show the top 5 

PCA components in Figure 4-6. 

 

Figure 4-6: Principal component analysis: First 5 principal components of the pore structural features.  

We note that the first 5 principal components only represent 67% of explained data variance, 

shown by the cumulative sum. In the bottom plot, the successive components have been organized 

into classes according to their origin and ordered showing the most important features in each 

component clearly.  
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We observe that variance follows coherent structural patterns. The most variance is explained by 

a component that follows the evolution of the pore areas and correlated features (i.e. perimeter and 

other size statistics). Secondly, surrounding throat properties relating to throat size (i.e. throat 

length) showing their own distinct variance are found to correlate together within PC2. A third 

component (PC3) is created from the correlated variance of the pore size neighborhood properties 

and to a certain degree hydraulic length. The fourth component captures in great part the correlated 

variance of the hydraulic length properties, but also non-negligible variances of other features. The 

final component uses the common variance of the throat angle properties but also shows significant 

common variance with other features. The grouping of the features according to these structural 

groups is done statistically by the principal component analysis and is in no part due to user 

intervention. It is also to be noted that this analysis does not show which features are the most 

useful for predicting flow, as they could be irrelevant. Instead this shows the relationships between 

input data and the distribution of variance to which machine learning algorithms can be highly 

sensitive, depending on the exact algorithm used. 

 Algorithm selection 

In this section we shall make a preliminary comparison of the different algorithms to then focus 

on the ones that predict best the different velocity intensity classes. 

 Metric used 

To compare different models, we use the scoring metric of balanced accuracy, given the 

sometimes-unbalanced numbers of each class we have. When quantifying the result of a binary 

classification prediction, we create what is known as a confusion matrix.  

The model will predict that some samples are in the first, or positive class, while others are 

predicted as being in the second, or negative class. If the positive class is predicted correctly, it is 

a True Positive (TP), if it is predicted positive but is in fact negative, it is a False Positive (FP). 

Oppositely a correctly predicted negative class is a True Negative (TN), while a positive class 

falsely predicted as a positive is a False Negative (FN). We display the confusion matrix in Figure 

4-7: 
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Figure 4-7: General binary confusion matrix 

Usually, for datasets with balanced classes, the metric of choice is simply the accuracy, the most 

intuitive way of accessing the correctness of the prediction. It is given by equation (30): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (30) 

The metric we use to evaluate the model predictions in each case is the ‘balanced accuracy’ 

(Brodersen et al. 2010), which is defined in equation (31): 

Balanced Accuracy =
ቀ

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
ቁ

2
 (31) 

Both balanced accuracy and accuracy vary from 0, the worst-case prediction with no true positive 

or negatives, to 1, for all the predictions true cases. This metric will provide a notion of how 

accurate the class-specific predictions are for unbalanced class sets. For example, if 99% of the 

samples are positive, and a model predicts all samples are positive, it’s accuracy will be of 0.99, 

despite missing out on the negative samples. For the balanced accuracy, this model will only score 

0.50, getting only half of the classes correctly predicted.  

 Preliminary algorithm comparison 

We must precede any evaluation of algorithms by tuning of hyper-parameters, to make a fair 

comparison between optimized models. We randomly choose and set aside 30% of the samples as 

a test set, with the rest of the data samples serving as training data. The intention of tuning hyper-

parameters is to find the correct balance between model refinement with the trained set data, that 

integrates the most detailed trends in the data, without overfitting to the training data (i.e. adapting 

to each data point individually), which would create a loss of generality in the predictions, i.e. a 
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low test set balanced accuracy score. For the hyper-parameter tuning we only use the classification 

of experiment A1 into active and inactive pores (i.e. lowest threshold value). 

The training set accuracy should naturally evolve monotonically in the direction of an increasing 

hyper-parameter as it moves towards overfitting or underfitting to the training set, depending on 

the specific hyper-parameter used. The test set accuracy however should reach a peak at the 

optimal value of the hyper-parameter, which represents the sweet spot between overfitting and 

underfitting. The hyper-parameters are then chosen at values in which the test set accuracy is 

highest. In our hyper-parameter optimization, we will show training and test set accuracy values 

for comprehension. 

As an example of the importance of hyper-parameter tuning and its relation to under- and 

overfitting, we show a small case of randomly generated data that is grouped around the shape of 

two interleaving moons. The data has been classified using a K-nearest neighbors’ classifier with 

the number of neighbors hyper-parameter, n_neighbors, set to 1, 10 and 20. Training set accuracy 

is shown in black in the bottom left corner, while test set accuracy is shown in white in the bottom 

right corner for each result. We observe that the highest test set accuracy is achieved for an 

intermediate value of the n_neighbors parameter of 10. Taking 20 neighbors creates a boundary 

that is too smooth and doesn’t capture data trends, while taking 1 neighbor creates a model that is 

too specific to the training data (hence a training data accuracy maximum of 1.00) and creates a 

noisy boundary that is not sufficiently general. 

 

Figure 4-8: The importance of hyper-parameter tuning to avoid over- and under-fitting.  

 Hyper-parameter tuning 

We show the hyper-parameter tuning process for each algorithm before applying the tuned models 

to all the different data sets. Note that a standard scaling is applied to the input features to achieve 

a slightly better prediction for the K-nearest neighbors’ models, as they show a strong sensitivity 
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to feature scaling. Also, for the logistic regression algorithm we use the first 5 components of the 

PCA analysis performed on scaled data. This was not repeated for other algorithms as they show 

less dependence on feature scaling or dimensionality reduction. For the hyper-parameter tuning 

we use 40% of the available samples as the test set. 

K-nearest neighbors 

For application of the K-nearest neighbors algorithm to our data, the only hyper-parameter we tune 

is the number of nearest neighbors, with all others set as default out of the box from the sci-kit 

learn library, version 0.20. We show the achieved balanced accuracy “B-Acc” on the training and 

test sets while varying the number of neighbors in Figure 4-9. 

 

Figure 4-9: Tuning of the optimal number of neighbors in the K-nearest neighbors. The trained balanced accuracy score 

decreases with larger numbers of neighbors as we lose closeness of fit to the training data and attempt to create a more general 

model. The chosen value is 6, corresponding to the maximal test set balanced accuracy. 

The training set balanced accuracy decreases from 1 in which only the closest neighbor is chosen. 

When applying this trained model to the test data, where the decision boundary is fixed from the 

training data, the data points on which the model was trained are no longer necessarily in proximity 

of the test points, which explains the lower test accuracy at low values of n_neighbors. The small 

increase of the test accuracy with increasing n_neighbors shows that a more general is created with 

increasing n_neighbors, peaking at value of 6 neighbors. As the number of neighbors increases 

further, we don’t capture any data specificity and the model represents an averaging too large, 

decreasing the test accuracy. 
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Logistic regression 

For the logistic regression algorithm, we don’t tune any hyper-parameters and use out-of-the-box 

algorithm values, as they mostly relate to solver specificities. We won’t go into such details here, 

as opposed to the easily interpretable hyper-parameters of the other models shown here. We only 

set the class_weights parameter to ‘balanced’ to account for class imbalance in datasets.  

Decision Tree 

For the decision tree, we tune successively: the maximal depth of the tree, i.e. the number of splits 

in the tree; the minimal number of samples in either branch per split. As they are tuned in series, 

when tuning the maximal depth, the minimal number of samples is set the scikit-learn default of 

2. 

We show the maximal tree depth tuning followed by the minimal number of samples per split 

tuning in Figure 4-10: 

 

Figure 4-10: Max depth and Min samples per split tuning for the decision tree. The chosen values are 4 for the maximal depth and 

75 for the min samples per split. 

The best accuracy on the test data set is found for a maximal depth of 4. We then set the maximal 

depth to 4 and train the number of samples per split. For this parameter we can’t see a clear optimal, 

we therefore choose a value of 75 for the rest of the analysis. 

Random Forest 

The hyper-parameters for this algorithm are mostly the same as the decision tree, as it represents 

and averaging of decisions trees. In addition, we tune the number of estimators, i.e. the number of 

decision trees contributing the final averaged model. We show the successive steps of the hyper-

parameter tuning in the Figure 4-11. 
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Figure 4-11: Tuning of hyper-parameters for the Random Forest algorithm. The chosen values are 50 for the number of 

estimators, 6 for the max depth, and 150 for the min samples per split. 

As we don’t observe a specific optimal number of estimators (left), we take a nonetheless large 

number of 50 estimators for the rest of the analysis. We show the maximal tree depth per decision 

tree of the random forest tuning (center), with the number of estimators fixed at 50. We set the 

maximal depth value as 6. The minimal number of samples per split is shown on the right. This 

value is set at 150 for the rest of the analysis. 

 Algorithm comparison 

We start by making a very general comparison of different algorithms trying to predict 2 different 

intensity classes: we attempt to predict active pores (half average intensity threshold) and highly 

active pores (more than average intensity threshold). This is repeated on flowmaps created from: 

the foam experiment flow map with all bubble sizes; the largest 20%, i.e. 80-100% of bubble sizes; 

the 2D LB Stokes simulation; the 3D LB Stokes flow simulation. Note that for the foam flowmaps, 

before classifying the pores, an additional step of longitudinal intensity equalization was applied 

(described in Chapter 2, Appendix 2-C) to account for the measurement gradient seen in the created 

flow maps due to bubble size evolution. 

We perform what is known as 3-fold validation, which makes three different splits within all the 

samples, such as that all the samples are included in a test set once. The test set size is therefore 

33% of all the available samples each time. Therefore, we perform 3 iterations of the model 

training and testing on different combinations of samples, obtaining 3 different values of balanced 

accuracy for each classification task. The three values are shown in the Figure 4-12 as the whisker 

extremities and the central green bar. 
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Figure 4-12: Comparison of tuned algorithms on 8 different classification tasks. 

The worst performing classifier is the K-Nearest Neighbors, which achieves a barely better 

prediction than a classifier that chooses the same class every time (i.e. a dummy classifier which 

would obtain a balanced accuracy score of 0.5). The best classifier is the Random Forest Classifier, 

achieving consistently higher values than other classifiers for each classification task. Luckily, this 

classifier is highly interpretable, as it is possible to extract the most important features that do the 

classification and rank them in terms of importance. This algorithm will be used to classify both 

the pores and the throats with the same hyper-parameters. 

 Random Forest feature importance 

Now that the algorithm is chosen, we focus on classifying the different activity classes for both 

pores and throats with the Random Forest algorithm. The feature importances are readily available 

as an attribute of the scikit-learn trained Random Forest model. The feature importance calculation 

implemented in this library is based on the method described in Breiman et al. (1984). To increase 

model interpretability, for some cases we shall give more specific detail regarding the way each 

feature impacts the model prediction using the open-source SHAP (SHapley Additive 
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exPlanations) library. SHAP is a new approach to explain the output of any machine learning 

model. SHAP connects game theory with local explanations, uniting several previous methods 

(Ribeiro et al. 2016; Lundberg and Lee 2017) to describe how each feature affects the model 

output, and for our case towards which class every local feature tends to push the algorithm. 

We shall examine one by one the features that are most important in the classification process and 

attempt to interpret these results physically with help of the summary plots gathered from SHAP 

with source code available on Github3. 

 Pore activity classification 

We first look at the classification made from the A1 experiment, for the three types of classification 

displayed at the top, dividing the pores into different flow intensity categories. In Figure 4-13, left, 

we show the balanced prediction accuracy for the best models in each case. We only show the first 

7 features for comparison. 

 

Figure 4-13: Feature importance for the classification of pore activities for all bubble sizes for experiment A1. 

We can instantly note that almost all the most important features are related to the surrounding 

throats or to the coordination of the pores. We observe that not only the throat sizes leading to the 

neighboring pores are important but also the throat orientation relative to flow. The importance of 

throat orientation also increases with respect to higher activity classifications. This expresses the 

                                                 
 

3 https://github.com/slundberg/shap 
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fact that the highest flow channels are in the straighter preferential paths also used by the largest 

bubbles.  

Coordination is also less important for higher activity classes but ranks highly for the low activity 

class. This shows that low coordination pores (i.e. dead-end pores) will not even access the first 

activity category and contain no flow. However, when distinguishing the high flow pores from the 

very high flow pores, coordination is of much less importance, and path straightness expressed by 

surrounding throat orientation becomes more consequential. 

We note in the leftmost plot that all the predictions are relatively weak, with perhaps the pore 

activity showing more accurate predictions at a balanced accuracy of above 0.7. This signifies that 

only the lowest flowing pores can be distinguished reasonably well from the rest of the pores. 

When looking at higher pore intensity classifications, we observe that the accuracy decreases.  

To confirm these structural dependencies, we look deeper using the SHAP model explanations. 

We display the explanations for the models fitted to the Active and High Active (center left and 

center right of Figure 4-13) models. SHAP values interpret the impact of having a certain value 

for a given input feature in comparison to the prediction we would make if that feature took a 

reference value. A SHAP value is calculated for each point feature of each sample of the test data 

set. The Figure 4-14 shows the distribution of SHAP values explaining the trained model making 

the classification for the lowest pore activity threshold. A negative SHAP value pushes the model 

towards the 0 class, where the pore activity threshold is not passed, while a positive SHAP value 

pushes the model towards the 1 class, i.e. the pore activity threshold is passed. We show the SHAP 

value distribution as a dot plot, in which values with the same x-axis value are stacked vertically. 

We first show the SHAP dot plot for the lower pore activity classification model. 
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Figure 4-14: SHAP values obtained for each feature and sample in the test set. The relative feature values are shown by the color 

(higher numerical values are closer to red while lower values are closer to blue). The magnitude of the SHAP value gives an 

indication of the importance of the associated feature for the given sample, while its sign shows towards which class the model 

is being pushed. Summing the SHAP magnitudes for all SHAP values for a feature can also give an estimate of overall feature 

importance, and we see that the rank of feature importances shown here by the vertical position of the feature is coherent with 

the feature importance calculation performed by the scikit-learn library shown in Figure 4-13. 

We observe that the features behave in the way we expected, i.e. low throat size and low 

coordination push the model to predict the sample as inactive. However, the positive SHAP values 

show a mix of high and low feature values. Furthermore, the values are not distributed 

symmetrically, with a large amount of the positive values clustering close to the 0 SHAP value 

(i.e. low impact) whereas the negative SHAP values reach much lower extremes. This means that 

whereas it may be possible to easily predict the classes that are certainly not active (i.e. trapped 

foam areas) if they display very small coordination or throat size average, it is harder to say when 

a class is without doubt going to be positive or contain flow. 

To investigate this last point further, we can look at some threshold values on the average pore 

intensity histogram (i.e. abandoning the size category reference for now). We take two threshold 

values in the average pore intensity histogram at notable points. We show these as vertical lines 

along the intensity histogram in Figure 4-15. 



Predicting Local Flow from Structural Parameters: A Machine Learning Approach 

141 
 

 

Figure 4-15: Left: Pore average intensity histogram showing two more pore classifications. The local minimum on the intensity 

histogram shows the first threshold (full red line) and the change of gradient in curve drawn by the histogram peaks gives a 

second threshold (dotted red line). Samples below the ‘Hist – low’ threshold are numbered at 721 while samples above the ‘Hist- 

high’ threshold are numbered at 135. Right: Prediction accuracy for trained random forest models. 

The much lower prediction accuracy for the high intensity pores (around 0.5, the value of a random 

classifier) shows that it is not feasible to locally predict the high intensity areas, on the contrary of 

the low histogram classification which still maintains a relatively high value of 0.7. In this sense, 

flow prediction can only be partially modelled locally. While it is possible to predict (at least some) 

of the lowest flowing pores based on local structural model, the highest flowing pores cannot be 

accessed locally. This could indicate a different type of model is required. We can refer to colored 

images of each type of pore in Figure 4-16:  
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Figure 4-16: Red pores have average intensities lower than the solid line on the intensity histogram of Figure 4-15. The green 

pores have average intensities higher than the dotted line in the intensity histogram of Figure 4-12. The red pores are observed 

to be in areas that can be described by a series of local conditions: pores situated in paths transversal to the pressure gradient; 

pores with small entry or exit throats; dead end pores with low coordination. The green pores however correspond to bottleneck 

situations where high flow paths join. As the presence of preferential paths and where they join up is non-local, the machine 

learning algorithms were not able to predict such zones on a local basis. Flow is from left to right. 

While this demonstration is shown for flow maps created using all bubble sizes, we could imagine 

that a different behavior could be seen for other bubble size partitions, which will be studied next.  

We now look at the successive classifications for the flow of largest bubbles. We apply the analysis 

to the flowmap created using bubbles whose average bubble size is in the top 20% of the bubble 

size frequency histogram. The top 20% of bubbles logically correspond to a larger fraction of the 

total porous space than 20%. In Figure 4-17, we show the spatial bubble size probability 

distribution (i.e. frequency histogram weighted by average bubble size) of bubbles in experiment 

A1, showing the largest 20% of bubbles counts used for this classification. 



Predicting Local Flow from Structural Parameters: A Machine Learning Approach 

143 
 

 

Figure 4-17: Spatial probability of bubble size in Experiment A1. The bubbles used for the largest bubbles flowmap are shown in 

red. 

For this classification, the pores were divided up in the same way as previously described, by 

showing a measured intensity greater than half of the size category mean (active), greater than the 

mean (highly active), or greater than 3/2 of the mean (very highly active). For comparison, we 

show the difference between pore activity (low threshold only) for all the bubbles and for the top 

20% largest bubbles in Figure 4-18: 

 

Figure 4-18: Comparison of local pore activity (lower threshold) for different bubble sizes. The flowmap for the largest bubbles is 

shown in grayscale. The color code is the following: Green indicates the pore activity threshold is passed in both the total 

histogram flowmap and the flowmap from the top 20%. Red indicates the pore activity threshold is passed only in the top 20%, 

whereas yellow indicates the pore activity threshold is passed only for flowmap with all bubble sizes. Pores in white are not 

active in any classification. 



Predicting Local Flow from Structural Parameters: A Machine Learning Approach 

144 
 

The colored maps show that the lower activity threshold is passed in more cases for the total 

histogram flowmap (more yellow than red pores), which translates the larger homogeneity of flow 

for the total flowmap. The yellow areas often seem to be in transversal areas in between 

preferential paths, sometimes oriented away from flow direction but not necessarily. This is 

coherent with observation of Chapter 2 in which we observed qualitatively a larger number of 

transversal paths used by smaller bubbles. We also note that the pores in white overlap the pores 

in red in Figure 4-16, which contain the lowest amount of flow based on the mean pore intensity 

histogram only (Figure 4-15). 

The Random Forest algorithm then creates models to classify different activity thresholds for the 

largest 20% of bubble flowmap. We show these results in Figure 4-19. 

 

Figure 4-19: Achieved balanced accuracy and feature importance of pore activities for the top 20% bubble size flowmap of 

experiment A1. 

Similar conclusions can be applied here than to the initial series of classifications. The throat 

features are dominant in every classification scenario, however with a reinforced presence of throat 

orientation angle 𝛎, even for the lowest activity classification. The SHAP analysis, not shown here, 

also reveals the same direction of the dependences for the larger bubbles, i.e. pores with low 

coordination and with smaller, less straight neighboring throats contain less flow  

This confirms the previous comments on straighter paths being more desirable to flow, and pores 

that turn away from flow, with throat orientations away from pressure gradient, less likely to be 

active. For comparison, we perform the same analysis for the 2D and 3D simulations. These results 

are shown in Figure 4-20. We observe in both cases a much weaker importance of throat sizes in 
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the LB simulations relative to the foam cases, notably for the lowest threshold classification, with 

the most important features being coordination and features relating to the neighboring throat 

orientation in all cases. This demonstrates the absence of capillary entrance effects in Newtonian 

fluids against the foam case. While inactive foam pores can be determined by low entrance or exit 

throat size, the Newtonian fluid does not need to overcome a Laplace entry pressure and can access 

all flow regions. 

 

Figure 4-20: Achieved balanced accuracy and feature importance for the pore classification predictions of the two numerical 

flow maps. Top row: 2D numerical flow map results. Bottom: 3D numerical flow map results. 

Intended as a final validation step, we can run the Random Forest algorithm using only the top 

features, consistently ranked at high importance. Since many highly correlated features are used 

(especially relating to pore area), it could be argued that their individual relative importance is 

mitigated in the final models, as they can be used interchangeably because they describe the same 

variance. To verify that the feature importances shown are in fact indicative of the most influent 

features we simply select the 4 features that appear the most. These features are: 1-Throat size 
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average; 1-Throat cos(ν) average; Coordination; 2-Coordination. We then perform the same 

classification tasks as shown in Figure 4-12. The results for this limited number of features are 

shown in Figure 4-21. We observe that the prediction accuracies are equivalent to the ones shown 

in Figure 4-12, demonstrating that these features are positively the most influent. However, this 

does not mean other features could not somewhat replace the ones shown here due to high 

correlation, but still indicates that most of the relevant information of the system variance is 

contained within these 4 features.  

 

Figure 4-21: Balanced accuracies for classification of the same tasks as shown in Figure 4-12. The classification here is 

performed using only the best 4 features given above. 

 Throat activity classification 

In the pore activity classification, it has become clear throat properties that surround the pores are 

the most important features predicting local pore activity. We shall now focus on the activity of 

the throats themselves in the same style of classification based on taking multiples of the mean 

intensity for each throat size category (again, taken as 19 successive size categories with same 

number of elements in each). 

The results for the throat analysis are less successful in general than for the pores. We display the 

results for the foam flow map for the A1 experiment for all bubble sizes in Figure 4-22.  
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Figure 4-22: Achieved balanced accuracy and feature importance for the throat classification predictions for foam flow map with 

all bubble sizes. 

We interpret the generally lower accuracy score by noting the fewer number of structural features 

available to the classifying algorithms. Indeed, for the throats, having only two immediate pore 

neighbors, more complex structural properties become less obvious to list. As the accuracy of the 

created models is somewhat lower than for the pores, we shall not comment in detail as to the most 

important features. Nevertheless, we note that throat radius and some notion of orientation (either 

in the throat itself, or through the alignment of neighboring pores, two features which are in fact 

strongly correlated) seem to be the most important features. Again, neighboring pore area is not a 

relevant feature in the flow prediction. We show the SHAP dot plot for the lower threshold 

classification (left bar plot of Figure 4-22), showing more explicitly the relationship between the 

features and model prediction. 
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Figure 4-23 : SHAP values obtained for each feature and sample in the test set for the lower activity throat classification. We note 

that the most important features shown here exhibit small differences with the features shown on the left bar plot of Figure 4-22, 

owing to the differences in total feature importance calculation. 

We observe the strongest relationships of the model describe smaller, less straight throats as less 

probable to carry flow. Again, the SHAP value distribution for the throat radius is not symmetric, 

with a much larger tail towards the negative SHAP values, showing that smaller throats are by 

themselves stronger predictors of absence of flow than large throats are for the presence of flow. 

We note that the SHAP value and feature value dependence for the 𝛥𝑃𝑃 feature is reversed, i.e. 

throats that have adjoining pores closer in the Y-direction are more likely to contain flow. 

For completeness, we show the feature importances for the throat classification tasks of the largest 

bubbles flowmap in 4-24, and for the 2D and 3D Newtonian Stokes flow in Figure 4-25. These 

classifiers generally show similar features as most important: throat radius, throat orientation 

(cos(ν)) and alignment of neighboring pores to pressure gradient (cos(µ)).  
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4-24: Achieved balanced accuracy and feature importance for the throat classification predictions for the foam flow map for the 

20% largest bubbles 

 

 

Figure 4-25: Achieved balanced accuracy and feature importance for the throat classification predictions of the two numerical 

flow maps. Top row: 2D numerical flow map results. Bottom: 3D numerical flow map results. 
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 Generalization 

In order to generalize these results to other experiments, we choose an experiment that shows 

largely different injection parameters. We choose experiment B3, which has a lower gas fraction, 

injection rate, and lower mean bubble size and bubble size standard deviation. The same 

classification was performed using the same algorithms and chosen hyper-parameters as described 

previously. 

We show in Figure 4-26 the results for the balanced accuracy of the trained models and the feature 

importance, showing the same type of key features for the experiment B3. 

 

 

Figure 4-26: Achieved balanced accuracy and feature importance for the throat classification predictions for the flow created 

from all bubble sizes of experiment B3. 

Our observation from the A1 experiment are maintained in this experiment despite the changes in 

all the injection parameters. 

 Conclusion 

From this chapter we can gather a series of observations. First, we note a low prediction accuracy 

for a local structural prediction of flow. Such accuracy rates could mean one of many things. They 

could indicate a failure in choosing the right algorithm with the best features, despite our efforts 

to optimize accuracy. Otherwise, it could indicate that insufficient features are given despite our 

large number of distinct features provided. Lastly, it could express the strong lack of adequacy in 

describing flow in terms of local structural parameters, and the necessity to implement a larger-

scale modelling solution.  
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We observe furthermore that a description of low flow zones is more adequate through a local 

parameter description than the high flow zones (lower accuracy of high intensity classifications). 

While the low flow areas can be locally understood (pores situated in paths transversal to the 

pressure gradient; pores with small entry or exit throats; dead end pores with low coordination), 

the high-flow zones seem to represent bottleneck situations and correspond to the overlapping of 

already used paths. This theme reinforces the notion that a larger-scale type of model is required 

to characterize high flow areas by integrating network-level descriptions. The inclusion of 

coordination, i.e. an initial step into network properties, in some of the most important features for 

many classifications displays this. This type of model will be described in the following section, 

in which the notion of model-spanning path will be established, and various paths evaluated. 

Also, one of main points to take away from this analysis, despite the overall low prediction 

accuracy, is the dependence of flow properties on local throat characteristics and network 

properties exclusively. Most flow predictions were based on a combination of throat radius 

statistics, throat orientation statistics (or neighboring pore alignment with pressure gradient 

statistics) and pore coordination. 
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 Describing High-Velocity Flow Areas 

Using a Network-Spanning Graph Model 

Preamble 

Within this chapter, we shall give results achieved using a new model that was motivated by the 

necessity to describe high-flow zones in a complex medium from a structural point of view. Within 

Chapter 4, we establish that while it may be possible to describe low-flow or trapped areas based 

on combinations of local parameters, high-flow areas require a different type of model altogether 

as they arise from network-level behaviors such as the overlapping of flow paths in bottleneck type 

situations, that cannot be accessed locally. Such behavior requires therefore a network-level model. 

While network level flow simulations such as the lattice Boltzmann simulations show where high-

flow zones are located in the foam flow through similarities to Newtonian flow, these are 

computationally demanding, and furthermore may not be fully applicable to all foam experiments, 

in which only a restricted number of flowing paths may appear. To simplify the modelling task, 

the porous medium is reduced to a graph, in which pores represent the network nodes and throats 

are embodied by the graph edges, or links between nodes. The use of a graph network analog 

facilitates the characterization of the large-scale connectivity of the network. Motivated by the 

observation of a limited number of preferential paths, overlapping only for a small portion of the 

model, we develop a graph model that makes use of a simplified version of the model structure 

and outputs a series of paths that share the same characteristics as the observed foam flow 

preferential paths. In this chapter we first describe the model and fit the model to 2 micromodel 

experiments, giving 2 distinct model fits, before applying the model to flow data obtained an 

experiment in which the injection direction is reversed. A generalization is shown to an example 

of foam flow in a 2D network from the literature (Géraud et al. 2016) to test for validity within a 

distinct, albeit simpler 2D porous medium. 

As the following work was written as a standalone article, the experiments 1 and 2 described within 

it are in fact experiments A1 and A2 as described elsewhere in the manuscript. Experiment A1 is 

also the experiment studied in Chapter 2.  
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Abstract:  

This study uses experimental data of pore-scale foam flow inside a high-complexity network to fit 

a graph-based model describing preferential flow paths based on characteristics of the porous 

medium. Two experiments, with equal gas fractions but varying injection rates, are modelled in 

parallel. Proposed paths are solution paths to the k-Shortest Paths with Limited Overlap (k-

SPwLO) problem, applied to a graph representation of the porous medium with edge weights 

representing throat properties. A 1-parameter model, based on throat radius only is tested before 

integrating a second parameter, describing the alignment of the pores surrounding the throat with 

respect to injection pressure gradient. The preferential paths in both experiments vary in quantity 

and in the specific zones described. As such, fitted models characterizing preferential paths for 

either experiment show separate dependencies to structural parameters. Overall, the graph-based 

framework was able to capture many high-flow zones in various model parameter combinations, 

perhaps as consequence of the relatively spiked throat size distribution of the model. The optimized 

model for the high injection rate experiment markedly shows a non-zero dependence to the pore 

alignment to pressure gradient as well as throat size, whereas the lower injection rate experiment 

was best fitted to a model that made sole use of the throat radius. 

 Introduction 

Foams constitute an attractive method to enhance oil recovery due to their high viscosity, high 

potential for conformance control, low cost and low environmental impact. 

To implement a large-scale foam operation, prior validation and injection optimization must be 

performed using a reservoir modelling software. While some attempts have been made to integrate 

microstructural parameters such as average pore size into upscaled foam models (Ettinger and 

Radke 1992; Gassara et al. 2017) a great deal of foam behavior laws are derived from Darcy-scale 
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laboratory experiments, and require significant a posteriori parameter fitting to match 

observations. The numerical load would be greatly alleviated by the use, or at least constraint of, 

fitting parameters with a value obtained through a purely structural characterization of the porous 

medium.  

Recent works on 2D micromodels (Géraud et al. 2016; Yeates et al. 2019) have shown that a range 

of foam behaviors exist that are highly likely to contribute to Darcy-scale flow properties. Indeed, 

trapped foams and high-velocity preferential paths have been repeatedly observed, displaying 

ranges of velocity much lower and higher, respectively, than those seen in Newtonian flow 

Furthermore, it has been shown that high-velocity zones are accessed primarily by larger bubbles 

in a heterogeneous bubble distribution flow, containing the majority of flow in the model. The 

interest of characterizing the specific paths that these bubbles will take, as well as the number and 

rank of equivalent or alternative paths, becomes obvious.  

A purely local description of flow has shown to be insufficient to difficultly access larger scale 

phenomena such as preferential paths and trapped zones For this reason, here we attempt a novel 

characterization approach, by integrating the notion of overall path (spanning inlet to outlet of the 

model) and ranking paths according to a numerical value derived from the components that make 

up it.  

Modelling porous media with graph models has been recently given new life. Graph-based models 

have been used to find least resistance paths and predict breakthrough points successfully in 

heterogeneous porous media (Rizzo and Barros 2017). Graph models have also found use in 

discrete fracture modelling to rapidly characterize, query, and interrogate fracture network 

connectivity (Viswanathan et al. 2018) 

The path-proposing is done via an algorithm that makes use of a graph representation of the porous 

network. Nodes of the graph represent the pores, while the graph edge weights represent throats. 

This gives a labelled graph of connected objects, with edge weights given by a throat property of 

our choosing. The sum of edge weights of a given path between the source node and the target 

node  𝑝(𝑠 → 𝑡) , otherwise known as the path length, is then given by ∑ 𝑤(𝑖, 𝑗),∈(௦→௧) . The 

shortest path is then path that minimizes this sum. Many algorithmic solutions exist for this 

problem including Dijkstra’s shortest path algorithm (Dijkstra 1959) An extension of this problem 

is interested with the first K paths, ranked by increasing value of path length (K-shortest paths), 
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and can be solved with Yen’s algorithm for example (Yen 1970).When applied to our porous 

network graph, solutions to the K-shortest paths problem often are small variants of the best path, 

with one or two elements of the paths changed, even for large values of K (>5000). When 

combined with our observations of preferential path flow in the micromodels, in which a multitude 

of somewhat distinct paths serve as preferential paths at the same time, we are motivated to 

assimilate our problem to an extension of the K-shortest paths problem, finding the K-Shortest 

Paths with Limited Overlap (k-SPwLO). The path solutions to this problem are the K-shortest 

paths respecting a condition of maximal path overlap between one another. We make use of the 

recently published OnePass algorithm, a solution algorithm that efficiently proposes candidate 

paths with user-chosen maximal path overlap (Chondrogiannis et al. 2017). Experimentally 

observed flow maps serve as the basis for comparison of proposed paths. Experimental images 

showing long preferential paths of flow in a fully characterized micromodel are analyzed according 

to a well-defined statistical workflow to quantify active and dead zones in the network. Paths are 

then proposed using a graph representation of the porous model. The path fit to experimental data 

is evaluated by counting the proportion of elements in the proposed paths that are active in 

experimental flow map, corresponding to a match value. 

 Materials and methods 

 Foam data acquisition procedure and injection conditions 

Our experimental data acquisition setup and procedure is described in detail in Yeates et al. (2019). 

We create velocity heatmaps by averaging local tracked bubble velocities over multiple sets of 200 

high-frequency images. Fixed injection rates and gas fraction are injected into a foaming device 

upstream of the micromodel, then connected in series to the model. Pressure gradient is measured, 

and images are acquired at steady state (constant pressure gradient over the model). The image 

processing procedure leading to bubble segmentation as well as the tracking procedure is also 

described in Yeates et al. (2019). 

Injections were done with purified N2 gas. The surfactant solution was composed of purified water 

with 30 g/l of salt and an AOS surfactant at 10 times the CMC, supplemented with betaine-based 

foam booster.  
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Two experiments are described in this study. We compare injections of same gas fraction but 

different injection rates. The two injections were performed in succession. Experiment 1 was at a 

gas fraction of 79% at an injection rate of 2.53 × 10-2 cm3/min. For Experiment 2, as lower injection 

rates were not obtainable with the gas flow controller, a biphasic reservoir, essentially a long coiled 

up tube, was used to enclose the gas and surfactant solution at the chosen gas fraction. The mixture 

was then pushed using the liquid pump, reaching much lower injection rates, into the foaming 

device. The injection rate for Experiment 2 was 8.9 × 10-3 cm3/min. Despite a reduction in injection 

rate of 65%, the measured pressure drop over the model decreased from 275 ± 4 mBar for the high 

rate experiment to 189 ± 2 mBar for the low rate experiment, corresponding to a 32% decrease in 

pressure gradient, showing a highly shear-thinning apparent viscosity profile coherent with other 

foam studies (Alvarez et al. 2001).  

As previously shown (Géraud et al. 2016; Yeates et al. 2019), the majority of flow in a polydisperse 

foam injection into a heterogeneous medium is carried by the largest bubbles, in a series of 

preferential paths. Furthermore these paths show higher relative flow intensity than for Newtonian 

fluids (Yeates et al. 2019). Correct characterization and modelling of the flow within these 

preferential paths will constitute a significant part of macroscopic foam flow modelling due to the 

large contribution of flow solely in these paths. For the experimental comparison, we therefore 

only use the flow maps of only the right-hand side of the bubble size distributions. 

We show in Figure 5-1 the bubble size spatial probability distributions for each experiment, and 

highlight the bubbles used contributing to the flow maps used in this study. The spatial probabaility 

distributions are weighted histograms of bubble frequency histograms, with each histogram 

frequency peak weighted by the average bin bubble size (taken as bin center value). Such 

distributions give a more accurate depiction of the bubble size distribution inside the medium. The 

bubble size distributions are established by counting bubbles measured in the entire model. The 

bubble sizes contributing to the flow maps in this study are highlighted in red.  
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Figure 5-1: Bubble frequency histograms and bubble sizes contributing to flowmaps in each case highlighted in red. We observe 

that the lower minimum of bubble sizes is approximately equivalent in each experiment, but the experiment 2 distribution shows 

a larger right-hand tail. It is to be noted that although the higher bound shown here was cut for visibility, larger bubbles were 

observed (especially in experiment 2) and took up non-negligible areas of the porous volume. 

 Micromodel structure and decomposition 

The 2D micromodel used has previously been studied elsewhere (Yeates et al. 2019). It is a 69.7% 

porosity glass micromodel with a wet-etched depth of 40 µm. The permeability of the total model 

with the flow spreading system before and after the model is 4.7 Darcy. A binarized version of the 

model was decomposed into pores and throats using an adjustable watershed algorithm (Soille and 

Vincent 1990) with the tunable sensitivity parameter set to 2. The model decomposition gives a 

total of 3700 pores and 6284 throats. The throat radii show a unimodal distribution with sharp peak 

at 51 µm. A network extraction algorithm was developed and applied to the 2D decomposed 

porous medium to find neighborhood properties of each pore and a graph was created. We show 

the different steps of the graph extraction process in Figure 5-2: 
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Figure 5-2: Image and network analysis process. Porous area is shown in black. Throats are shown in light green. Extracted 

graph nodes are shown as red circles with edges represented as grey rectangles joining them. The displayed graph is 

superimposed on the initial network for clarity. 

Note here that this graph simply displays graph topology by positioning nodes on the centers of 

mass of the pores and edge lengths or widths are not representative of edge weights. 

Due to the quantized pixel nature of the model image, and the design of the watershed algorithm, 

some of the throats were found to not be perfectly straight and resemble S-shapes. As we make 

substantial use of the throat size in our study, use of the throat length as given by the watershed 

was inadequate. Instead, we use the maximal Feret diameter of the watersheds, as measured with 

ImageJ analyze particles tool, to access the exact size of the throats. Half of the measured Feret 

diameter was then approximated to represent the throat radius, referred to in the rest of the article 

simply as throat size. We show the model and associated graph in their entirety in Appendix 5-A, 

with the added artificial inlet and outlet pores (described below) visible at each extremity. 

 Path-proposing algorithm 

We make us of the recently published One-Pass graph algorithm (Chondrogiannis et al. 2017), 

solution to the K-shortest paths with limited overlap problem (K-sPwLO), to provide a series of 

paths that resemble the preferential paths visible in our experiments.  

In our context, to capture the specificity of the flow in the porous network, edge weights are 

represented by a function of the throat properties, initially the throat radii, located at the distance 
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map minima, that will contribute the most to variations in hydraulic conductivity. In this sense, we 

try to minimize overall sum of contributions of throat radii, rather than distance. Note, that this 

problem is distinct from the shortest bottleneck, or widest path problem, which yields the shortest 

source-to-target path with the largest minimum throat size possible. 

Naturally, as we desire to find a path that spans the entirety of the model, we construct an artificial 

source node and target node representing the model inlet and outlet, sharing connections with all 

the nodes at each extremity of the model, as to not restrict the path-proposing procedure to a 

specific point in either side of the model.  

As we want the largest throats to contribute the less to the overall sum, and hence be chosen in the 

paths, we use functions of the inverse of the throat size for edge weights. However, it is unclear 

which (positive) exponent α should be used to integrate this throat size as an edge weight. The 

shortest path will then minimize the function ∑ ቀ
ଵ

(,)
ቁ

ఈ

,∈(௦→௧)  in which 𝑟(𝑖, 𝑗) is the radius of 

the throat connecting pores 𝑖 to 𝑗, and 𝑠 and 𝑡 represent the source or target nodes, or vice-versa, 

as the graph is undirected. 

While individual throats radii will preserve their rank if they are raised to a power α = 1 or α = 2, 

the rank of a sum of throat radii forming a path will not be conserved for each exponent. The larger 

the value of α, the more a small, difficult to pass throat will contribute towards the sum. The 

proposed paths will then avoid smaller throats, at the price of increasing the overall path length 

and tortuosity. Inversely, a lower value of α will render the algorithm less sensitive to the actual 

value of throat size, as the virtual length of the path (or number of throats that compose it) becomes 

more significant. At the extreme of α = 0 , all weights are the same and we retrieve the shortest 

path based on number of elements alone. We give an example of different proposed paths for 

different values of α in Figure 5-3. We see that different throat radii exponents produce different 

shortest paths when integrated as edge weights.  
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Figure 5-3: Motivational example. Optimal paths for different values of 𝛼 in a schematic example. Porous space is shown in white 

between gray solid obstacles. Throats are shown in blue. Multiple paths link the sources and destination pores, shown in red. 

Throat size values are given in white, next to the relevant throats. For 𝛼 = 0 the path shown by full black line is optimal, for 𝛼 =

1 the path shown by the thinly dashed path is optimal, for 𝛼 = 2 the path shown by thickly dashed line is optimal. 

The shortest paths connecting the two nodes marked by red dots are shown for values of α = 0,1,2. 

For α = 0, all the weights are equal to 1 and the optimal path is simply the one with the less throats, 

shown as a full black line passing a throat of size 2. For α = 1 the thinly dashed path is chosen 

with two throats of size value 5. Indeed, the sum edge of weights given by ∑ ቀ
ଵ

(,)
ቁ,∈(௦→௧)  is the 

smallest for the thinly dashed path, such as 
ଵ

ହ
+

ଵ

ହ
<  

ଵ


+  

ଵ


+  

ଵ


<

ଵ

ଶ
 or 0.2 < 0.428 < 0.5. For α =

2, the thickly dashed path is chosen, composed of three throats of size 7. Indeed, the sum edge of 

weights given by ∑ ቀ
ଵ

(,)
ቁ

ଶ

,∈(௦→௧)  is smallest for the thickly dashed path, such as 
ଷ

మ
<

ଶ

ହమ
<

ଵ

ଶమ
 

or 0.061 < 0.08 < 0.25, despite being the path with the most throats. 

 Experimental path match 

To evaluate a candidate path, we make use of a system of classification of active/inactive pores of 

the experimental data, as previously described in Yeates et al. (2019), Appendix B. Average pore 

velocity intensity values are compared to values for pores of similar sizes (split between 20 

equidistant intervals of area). If a threshold is passed, then the pore is considered active. The 

threshold values are chosen as fractions of the average pore intensities for each of the pore sizes 

categories. In this way we extract ourselves from making any hypotheses on the way velocity 

intensity is spread out over the different pore sizes and simply recalculate a threshold value for 

each size category. We chose 19 size categories. We define two classification thresholds: half of 

average (low threshold) and the average intensity (high threshold). The pores contained the 

proposed paths can then be tallied up and the proportion of active pores within the proposed path 
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(situated between 0-1, i.e. the fraction of active pores within the candidate path) assesses 

quantitatively the match of the candidate path to the preferential path in the experimental image. 

This binary classification (i.e. active or inactive) method is preferred over a more direct method of 

taking average pixel intensity values of the whole path for two reasons. Firstly, a direct comparison 

of average intensity values for pores of different sizes seems prejudicial to larger pores, in which 

flow is more spread out, creating lower average intensity values. Secondly, due to the high spread 

of average pore intensities, taking the average pixel value over the path may create the illusion of 

a satisfactory fit when only a restricted number of high-intensity pores are contributing, and the 

rest of the candidate path is incorrect. 

In Figure 5-4 we show the active/inactive pores for two different threshold values overlaid on the 

velocity map for both experiments studied. The active pores are shown in green and the inactive 

pores in red. We notice the path-like nature of the active pores and the low-flow inactive pores, in 

red, situated in between these paths. In these experimental conditions, we observe an important 

number of active paths and flow distributed equally throughout all sections of the model.  
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Figure 5-4: Velocity maps with overlaid active/inactive pore classification. Measured velocity in the pores is shown as dark shade 

in the model. Each pore is colored and overlaid according to its activity. Active pores are shown in green while inactive pores are 

red. White areas of the image correspond to solid grains. Flow is from left to right. 

In Figure 5-1 we display the proportion of active pores for each experiment and threshold value, 

that serve as baseline values for assessment of the match of proposed paths to the experimental 

data. We note that the ratio of low to high threshold pores is equal for both experiments, 

demonstrating the equivalence between the two thresholds for both experiments. 

Table 5-1: Proportion of active pores for each experiment and threshold value 

 

 Results 

In the results section we proceed by first describing the model used and give associated statistics 

of the proposed paths in terms of geometrical and network properties only. Secondly, we show the 
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match with experimental data of the proposed paths. This sequence is repeated twice: for the 1-

parameter model, and for the 2-parameter model. 

 1-parameter model – description and path properties 

To propose a series of realistic paths, the parameters we can input into the proposing algorithm 

are: the graph, that includes a function of throat sizes as edge weights; the number of desired paths, 

K; and finally the maximal allowed overlap value θ, given between 0, for no overlap, and 1, if one 

path is fully contained in the other. We share here some statistics for different functions of throat 

sizes, with varying maximal path overlap value. The number of output paths, K, is maintained at 

a fixed value of 7. The throat size exponent spans 31 values, varying from 0 to a large value of 6, 

even if physically unrealistic, for the sake of assessing limiting behavior. The maximal overlap is 

restricted to 3 values for comparison: 0, 0.1, 0.5. The θ = 0 case describes a situation in which no 

pore can be shared between any of the proposed paths, effectively slicing the model in two separate 

parts for each new path found. The θ = 0.1 case allows limited overlap, in which some short 

passages that could be structurally attractive for flow, can be proposed in all the paths output by 

the algorithm. The θ = 0.5 case represents a higher boundary, in which the number of shared pores 

between proposed paths can be up to half of the pores in either of the paths. See Chondrogiannis 

et al. (2017) for a detailed description of θ calculation. 

It is to be noted that for some cases, when calculation time was too long for 7 paths, the algorithm 

was restarted, aiming for 6 paths, and so on, until it reached a solution in a practical amount of 

time (here 2 000 seconds). Figure 5-5 shows some characteristics of the proposed paths for each 

overlap value and throat size exponent. Statistics for each point are calculated over the average for 

all the 7 paths output by the algorithm for each throat size exponent α and overlap value θ.  
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Figure 5-5: Characteristics of proposed paths for different throat size exponent values. 

We observe that as the throat size exponent increases, the output path lengths increase, as described 

previously. We observe that for α = 0, the average throat size for the paths is close to the average 

model, throat size, providing confirmation that these paths are independent of throat size. 

However, the average throat size seems to reach a plateau around a value of approximately α =

2.5. This is understood as follows: for higher exponent values, the algorithm outputs paths that 

will avoid smaller and smaller throats at the expense of creating longer paths. However there exists 

a point in which the smaller, avoided throat contributes a negligible amount to the average, as the 

number of throats contributing to the average is ever increasing.  

Another observation is the difference between the characteristics of the θ = 0 paths on one side, 

and the θ = 0.1 and θ = 0.5 paths on the other side. The number of throats for the θ = 0 paths at 

the lowest throat size exponent value is smaller and the value of the plateau of the throat size 

average is smaller. This translates the fact that each proposed path for the θ = 0 output effectively 

separates the model into two parts and makes it harder to find short paths with small throat sizes 

in the created sections of the model. 

 Experimental match: 1-parameter model 

We now perform a scan over the proposed paths for each setting and attempt to retrieve the highest 

fit to the experimental data. We display in Figure 5-6 the active pore match values for both 

threshold values, for different values of θ and the 31 throat size exponents for both experiments. 
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Each exponent and θ pair form an algorithm input setting, from which all the pores in all the 

proposed paths are noted and compared against a dictionary of active pores for both thresholds and 

both experiments. One input setting is then evaluated in four different ways, as shown by the four 

distinct plots in Figure 5-6. The match value is the ratio of active pores to all pores in the proposed 

paths for the given threshold value and is referred to interchangeably as a match percentage. 

 

Figure 5-6: Path matches for high and low threshold values of both experiments for different overlap and throat size exponent 

settings 

The observed match is globally very high. For Exp. 1, most input settings propose paths in which 

90% of pores are active as defined by the low threshold and 65% as defined by the high threshold. 

In either threshold such ratios are more than 25% above the model average (see Table 1). For Exp. 

2, in most input settings 80% of the proposed pores are active as defined by the low threshold and 

60% as defined by the high threshold. The best fits occur for throat size exponents between 1-3 for 

the low threshold pores and 1-2 for the high threshold pores. This still gives a large degree of 

uncertainty as to how to best describe foam preferential paths in a characterized porous medium. 

The match values for θ = 0.1, 0.5 are not significantly larger than the values obtained for θ = 0. 

The match values for the high threshold for θ = 0.5 however are significantly lower than the other 

values. For this reason, and for the reasons we previously mentioned issues occurring with the θ =

0 value, we shall use the value of θ = 0.1 for the rest of the analysis. 

We first give some examples of relatively satisfying results. In Figure 5-7 we give three images of 

an overlay of the proposed paths calculated using α = 2, θ = 0.1 and displayed on the flow data 
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of Experiment 2. The active pores represented are from the high threshold activity classification. 

This is the image with the lowest number of active pores, so statistically hardest to match.  

 

Figure 5-7: Examples of successful matches between model and experiment, flow is from left to right. Experimental velocity 

fields are shown in greyscale inside the pores (darker is higher velocity). The grains are in solid gray. The color code is the 

following: green pores are active in both experimental and proposed cases, red pores are proposed active but experimentally 

are inactive, purple pores are not proposed active but are experimentally active 

We observe long sections high intensity flow are identified by the proposed paths (green overlay). 

The top image of Figure 5-7 shows a chain of 30 pores in which 28 are correctly identified by a 

proposed path. The bottom right image of Figure 5-7 shows a chain of pores in which 20 out of 21 

are colored in green.  

While these results are encouraging, we still note some parts of the proposed paths that don’t 

adhere well to the flow reality. One telling example is shown in the bottom right image of Figure 

5-7 in which the proposed path takes makes a sharp curve around an obstacle while the flow takes 

a straighter alternative path. Here we can start to see the limitations of using a simplified model of 

the network that only takes the throat size into account and disregards any notion of path distance 

or tortuosity. In Figure 5-8 we give three more examples of proposed path failures occurring for 

the paths calculated using a throat size exponent of 2, θ = 0.1 and displayed on the flow data of 

Experiment 1. The active pores represented are from the low threshold activity classification. This 

is the image showing the largest number of active pores, in which a failed path match should 

statistically happen the less often.  
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Figure 5-8: Examples of path match failure. Flow is from left to right. See Figure 5-7 for color code 

It’s worth noting that although many purple pores are visible, these do not describe a model failure 

as only a limited number of paths were calculated, and it is possible that a larger number of output 

paths could have included these. In the three cases shown here we identify a common error: 

proposed paths go off the experimental track by moving into pores that are perpendicular to the 

flow direction and aren’t visited by the foam, despite not showing significantly small throat 

entrances.  

 2-parameter model - description and path properties 

We make an addition to the 1-parameter model to offset the proposed path failures occurring for 

pores branching outwards to the flow direction. We introduce a second local parameter in the 

description of the flow, the angle of the pore centers neighboring a throat in relation to the flow 

direction: noted µ. The angle is formed by the vector the connecting the two pores (oriented in the 

flow direction) and direction of pressure gradient. An example of the angle definition is shown in 

Figure 5-9. We refer the reader to the Appendix 5-B for some statistics relating to this parameter 

and the independence of the 2 parameters. 
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Figure 5-9: Simple example of µ. Two pores in black are connected by their centers (red dots) and projected onto the axis of flow, 

here shown as left to right. 

The value of µ has therefore a maximal value of 90° when two neighboring pores are perpendicular 

with respect to flow direction, and a minimal value of 0° for pores aligned in parallel to flow. 

Inclusion of the µ parameter in the edge weight of the throat connecting pores i to j in the graph, 

as noted by w(i, j), is done by taking a function the cosine of µ and multiplying it by the throat 

size term. A similar function to the throat size term is used, with a simple exponent β that is left 

free to vary. We then write the edge weight function, with both throat size and µ angle terms as: 

w(i, j) = ൬
1

r(i, j)
൰



ቆ
1

cos൫µ(i, j)൯
ቇ

ஒ

 

For simplicity, the allowed values of the β parameter vary in the same way as the α parameter, in 

31 equally spaced values from 0 to 6. We show statistics associated to the proposed paths in the 

2D parameter space in Figure 5-10. 

 

Figure 5-10: Statistics of paths proposed in a 2D parameter space  

Interesting 2-dimensional patterns appear. We note that the path lengths (Figure 5-10, left) are of 

the same order as for the 1-parameter model. While the path lengths heatmap seems to have a 
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global minimum in the bottom left corner for (α, β) = (0,0) it has two local maxima in the bottom 

right and top right corners for values of (α, β) = (6,0)  and (α, β) = (6,6)  respectively. In 

accordance with the explanation of the 1-parameter model results, path length increases as the 

algorithm is fed more and more widely spread edge weight values in the graph (i.e. some throat 

weights become so large that it chooses to take a series of smaller values with a lesser contribution 

to the overall path sum). The (α, β) = (6,0) path length maximum is then understood as occurring 

because of a widely spread throat size term only, with no contribution from the angle term, 

explaining the average throat size rise in this zone. The (α, β) = (0,6) path length maximum is 

then understood as the equivalent phenomenon, in which a longer path is chosen purely on the 

basis on avoiding unfavorable pore-to-pore angles. The average throat sizes in (α, β) = (0,6) 

(Figure 5-10, center) and angle cosine in (α, β) = (6,0)  (Figure 5-10, right) confirm this 

observation. For these parameter values, they respectively take the model average throat size and 

the model average cosine value (for the full model: r̅ = 51 µm; cos(µ)തതതതതതതതത = 0.63). What is not easily 

understood is the decrease in path length across the α = 6 parameter series, before the rise to the 

(α, β) = (6,6) maximum. Increasing β with a fixed α should create a larger weight spread and 

lead to longer paths. We refer the reader to Appendix 5-C for this analysis. 

 Experimental match: 2-parameter model 

We show in Figure 5-11 colormaps of experiment match values for each edge weight parameter 

combination for both experiments and both thresholds. 
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Figure 5-11: Path matches for 2-parameter model combinations for both experiments and thresholds. 

We observe that many parameter combinations match well the experimental paths. Low values of 

β give the best matches. In fact, for experiment 2, the best matches are observed for β = 0, i.e. the 

one-parameter model. For experiment 1, while a large zone of good experimental matches is 

observed for the low intensity threshold for values of α < 3 and values of β < 1.6, the best values 

for the high intensity threshold are observed for (α, β) = (1.8 − 2.4 , 0.3 − 0.9), i.e. for a non-

zero β, with the angle parameter adding capacity to match the data more closely. The best fit for 

experiment 1, high threshold (Figure 5-11, bottom left) using a 1-parameter model is obtained at 

(α, β) = (1 , 0) obtaining a match score of 0.749, while the best fit using a 2-parameter model: 

(α, β) = (2.2 , 0.6), achieves 0.7573, a small but non-negligible 1.1% increase. 

To interpret this result, we consider the varying flow rates in both experiments. The lower flow 

rate of experiment 1 could shows no angle dependence. Indeed, at lower flow rates, we observe 

that preferential paths are less chosen on the basis of immediate path straightness or pore-to-pore 

alignment with flow, as described by the angle parameter, and instead are mainly chosen as 
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tradeoffs between path shortness and throat size, as described by the one-parameter model. With 

faster flow rates, while the paths seen in the lower velocity experiment are also accessed, we 

observe more paths are accessed, which in turn creates a more parallel flow. In this way we observe 

less paths don’t branch off perpendicularly to the flow direction. 

The colored imaged showing the results from the combination displaying the experiment 1, high 

threshold best fit, (α, β) = (2.2 , 0.6), shown by a small marker in Figure 5-11, is shown in its 

entirety in Appendix 5-D. We observe large sections of the flow-carrying paths are correctly 

matched by the algorithm. While many incorrectly proposed pores, colored in red, do appear, upon 

inspection they seem to still carry flow and aren’t entirely incorrect such as in the examples given 

in Figure 5-8. Furthermore, as active/inactive pores are determined on a local basis and not 

included in a path, it is not even guaranteed that a model-spanning path of active pores will truly 

exist. Rather, the path should be evaluated in its capacity to capture the largest number of active 

pores in the model.  

 Discussion 

 Path-based flow characterization viability 

Here we stress the effectiveness of the path-based formalism by showing the results for the best 

model fit for experiment 1, (α, β) = (2.2 , 0.6). In Figure 5-12 we display how different models 

successfully capture high-flow pores, even with the simplest model explored (α, β) = (0 , 0), in 

which no structural parameters are included into the edge weights, and the paths are simply the 

shortest (in graph representation). However, the (α, β) = (0 , 0) model does implicitly take the 

porous structure into account as the decomposition into pores and throats itself was performed 

using a distance-map based watershed. A comparison is also made to a model proposing paths that 

minimize physical path distance. The paths minimizing the physical distance were obtained by 

taking throat weight the sum of the distance between the pore center and throat center for both 

pores associated with the throat, ∆𝑃𝑡𝑃. The sum of the weights for all throats in the path then was 

used as physical path distance. In Figure 5-12, left we show for varying values of N, the percentage 

of N-highest average velocity pores in the entire model that are captured in the paths. For emphasis, 

the model-proposed paths are also compared to a random choice of pores (right). The success 
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probability for the random choice of pores was simply the number of chosen pores (same number 

as in the proposed paths) over the total number of pores.  

 

Figure 5-12: Comparison of path prediction performance for experiment 1 for the best fit model, the shortest number of pores 

model, and the shortest distance model. 

We observe that the path-based models perform better than a random choice of pores (Figure 5-12, 

right). Even the simplest model, based purely on minimizing the number of pores, successfully 

predicts a large degree of high flow pores, achieving similar results to the physically shortest paths. 

The similarity between the results of the shortest distance model and the smallest number of pores 

model seems to indicate that both descriptions are similar and could originate from a spiked 

distribution of distances between first neighbors. However, upon inspection of the proposed paths, 

this appears to be untrue and the proposed paths are quite distinct. The paths are shown in the 

Appendix 5-E. Finally, the best model fully predicts the 3 highest flow-carrying pores and almost 

50% of the top 20. This demonstrates the viability of a path-based graph model for characterizing 

high flow zones for foam injections in a heterogeneous porous medium.  

 Difference between experiments 

We note that the best models for each experiment take different parameter values. The active pores 

in Experiment 1, the high rate experiment, are best predicted by the 2-parameter model with 

(α, β) = (2.2 , 0.6). However, Experiment 2, the low rate experiment, is best predicted by the 1-

parameter model with (α, β) = (1.2, 0). The problem this study attempts to solve, i.e. predicting 

preferential paths of a polydisperse foam in a heterogeneous porous medium, is akin to finding the 

paths of least resistance for foam, evaluated for combinations of local structural parameters taken 

as hydraulic resistance. The path of least resistance then minimizes the sum of resistances between 

both ends of the model. For a rectangular channel, of width W and of height H, length L and of 
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fluid viscosity μ, the hydraulic resistance R୦ for a monophasic fluid can be approximated by 

equation (32) as (Tanyeri et al. 2011), for H W⁄ < 1: 

R୦ =
12μL

WHଷ(1 − 0.63 H W⁄ )
 (32) 

The path of least resistance then minimizes the sum R୲୭୲ = ∑ R୦ for all the channels in the model. 

The validity of this equation depends on the exact ratio H W⁄ . For values of H/W close to 0.5, the 

error is approximately 0.15% and for H/W = 0.1 the error drops to 0.003%. For values of H/W > 

We show a histogram of H/W values in Figure 5-13 showing that most of the throats in our model 

respect this condition. We note that some smaller throats (as shown by the non-zero number of 

H/W > 1) are clearly out of the domain of applicability of the above equation and the hydraulic 

resistance diverges for such widths. For H W⁄ >1 the calculation should invert H and W in the 

equation, retrieving a dependence on the width of W-3. However, we note these smaller throats are 

very limited in number and therefore shouldn’t be considered for the analysis as they have little 

chance of being used by the foam flow both statistically, and due to high pressure required for 

capillary entry. 

 

Figure 5-13: Aspect ratio H/W distribution (left) and distribution of hydraulic resistance (right).  

The calculated hydraulic resistance from the equation above is also shown in a Log-Log plot 

making the throat width dependencies apparent (right). For simplicity, the throat length is taken a 

constant value here, given by half the mean ∆𝑃𝑡𝑃 value for all first neighbors, and water viscosity 

is used. The R୦ values are shown as red dots. To guide the reader, we give two lines displaying on 
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one side the asymptotic dependency of R୦ as W-1 at large throat widths and provide a W-2 line 

tangent to R୦  values at lower widths. We supplement the plot with a histogram showing the 

distribution of widths in logarithmic space on top of the Figure 5-13. This plot shows that most 

throats are situated in an intermediate zone of mixed dependence between W-1 and W-2, 

demonstrating that a series of models with values of α between 1 and 2 may in fact be physically 

appropriate. For this reason, and with the understanding that the average throat size in both models 

does not change significantly, (see Figure 5-10, center), we will not justify the higher α exponent 

in the best fit for experiment 1 as its physical justification is not obvious. 

The best model fit for Experiment 1 however, includes a non-zero contribution from the angle 

parameter, with (α, β) = (2.2 , 0.6). This is a demonstration of difference in behavior for higher 

velocity foams, in which, while showing a strong dependence to throat size, preferential paths are 

also chosen based on pore-to-pore alignment with pressure gradient, despite their capillary ease of 

entry.  

In supplement, Figure 5-14 displays the average velocity in the pores, rather than the number of 

active pores, to reinforce the validity of the model as best fit in both experimental matching 

frameworks. We observe a maximum located in the same parameter pair as found using the 

active/inactive pore classification. 

 

Figure 5-14: Average velocity intensity for all paths in each setting. The best model is the same as shown in the active/inactive 

high threshold pore framework. 

The presence of a non-zero β parameter in the best fit is conformed microscopically by looking at 

the bubble displacement distributions. Access to individual bubble tracks can provide a 
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displacement term in the Y-direction (perpendicular to pressure gradient) compared to total 

displacement in all directions. Y-displacement and total displacement were taken simply as 

Euclidean distances between start and end point of the bubble tracks. Taking the inverse sine of 

the ratio of Y to total displacement yields the angle of deviation of the bubble from the pressure 

gradient direction, named 𝜙. We take care here to distinguish the displacement of flowing bubbles 

from the quasi-zero displacement of static bubbles, which adds noise to the final probability 

distribution by filling it with the displacement ratios of static bubbles. We show in Figure 5-15 the 

different bubble displacement distributions that are bimodal in log-space, allowing us to segment 

the flowing bubbles with ease as the right side of the bimodal local minimum for each distribution. 

 

Figure 5-15: Bubble displacement distribution (top) and bubble track deviation angle from pressure gradient (bottom) for both 

experiments. 

The deviation angle distribution confirms microscopically the different model fits for each 

experiment. While both angle probability distributions are symmetric and centered on zero, the 

faster flowing foam (Experiment 2) is more spiked in zero, showing a larger tendency for the 

bubbles to remain in parallel tracks to flow. 

We offer the explanation that the higher flow rate and pressure gradient enable a larger number of 

paths to be accessed by the foam and remain aligned with pressure gradient to minimize the number 

of flow path intersections in which a large amount of energy is dissipated through viscous shearing. 

Inactive paths are observed more frequently in the lower velocity case. They can originate from 

either capillary difficulty of entry or insufficient pressure gradient required to dislodge trapped 

foams. The larger pressure gradient of Experiment 2 facilitates foam mobilization creating a larger 

number of active paths. In turn, a flow path to crossing the medium in the Y-direction would imply 

numerous intersections with other active flow paths in which crossroads situations arise. Flow 

paths then can’t freely traverse the medium in the Y-direction due to pre-existing flow paths, 
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staying aligned with pressure gradient. In this sense, the initial motivation of overlapping 

preferential flow paths requires some refining. While we observe that some flow paths join and 

create higher velocity sections for a given distance, or otherwise split into two branching 

downstream paths, we rarely observe point-like intersections between two continuously flowing 

paths from different directions. More precisely, these kinds of intersections create either flow paths 

that deflect off each other, if the geometry permits, or otherwise creates intermittent traffic-like 

flow. We give two examples of flow paths that show large vertical displacement in lower velocity 

experiment, while being contained by surrounding active paths in the high-velocity experiment.  

 

Figure 5-16: Comparison of flow maps for two areas of interest for each experiment. We observe flow path deviation 

perpendicular to pressure gradient in experiment 2, while access to these zones is denied by the presence of other flow paths in 

Experiment 1. We circle in green the exact access links that are crucial in keeping the flow in the straighter paths for the high-

velocity experiment. Flow is from left to right in both examples. Note: colormap contrast has been forced in each example for 

clarity. 

In Figure 5-16 we can observe two distinct cases in which pre-existing flow paths in the higher 

velocity experiment inhibits the foam access to these zones. Following the flow from left to right, 

we see high intensity paths describing significant movement in in the Y-direction only in 

experiment 2 in two key areas circled in green. 

As well as the different injection rates, the experiments also show variable bubble size distributions 

within the model. Larger bubbles contribute to the flow map in Experiment 2 as shown in Figure 

5-1. This could also be a source of dissimilarity in the fitted models. Indeed, while the lower bound 

of bubble sizes is roughly equivalent, larger bubbles could in fact guide the flow within the 

Experiment 2. For a lower injection rate and lower induced pressure gradient, the necessary 

Laplace pressure gradient needed to enter certain smaller throats may not be achieved, and large 
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bubbles will in fact test multiple downstream throats before entering the widest. The smaller 

bubbles shown in Experiment 1 will mostly be of the order of the throat size, therefore not probing 

multiple throats for the widest possible entrance. Instead, in this situation, straighter paths therefore 

used. 

The presence of the higher throat size exponent α = 2.2 in the Experiment 1 best fit is more 

intriguing. This exponent could either reflect a physical phenomenon for faster flowing foams or 

could be a consequence of the intermediate dependence (between α = 1 and α =2) of the hydraulic 

resistance for our model throats, as shown in Figure 5-13, right. Finally, this effect could be a 

product of the interaction between the two parameters within the model. Indeed, we can remark 

that the good model fit zone, shown in bright colors in Figure 5-11, has a shape that evolves 

diagonally in the positive direction of both α  and β . This behavior could show that the two 

components of the graph weight function interact non-trivially, and is confirmed by the lower skew 

in edge weight distribution in this area, as shown in Appendix 5-C. In this sense, the higher 

exponent of the best fit for Exp. 1 could simply be a consequence of the best model necessitating 

a non-zero value of β. 

 Conclusion 

In this study we show how a simple graph-based model can successfully capture zones of high-

flow in experimental foam data in a porous medium. Structural understanding of high-flow areas 

or paths could help in predicting larger scale flow properties such as apparent viscosity of foam in 

the medium. Furthermore, the highest flow zones could be also be indicative of the highest shear 

stress locations in the medium and pinpoint the exact areas where foam film coalescence and foam 

destabilization may occur. From experimentally established flow maps for different experiments, 

we attempt to characterize the paths chosen by the largest bubbles, that have previously been 

shown to contain a significant portion of the flow in a series of distinct paths. The two experiments 

investigated here are performed with varying injection rates and display slightly different bubble 

size distributions. A graph representation of the porous network is used in which edge weights are 

chosen as functions of two separate throat properties. A model parameter optimization is done to 

establish the best model fits for each experiment individually. We show how a simple 1-parameter 

model based on throat size retrieves a large amount of the high flow areas in a complex medium. 
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Furthermore, we include a 2nd local structural parameter that describes the alignment of pores with 

respect to pressure gradient. We observe that a larger sensitivity to the pore alignment parameter 

exists for the experiment with a higher injection rate, with smaller sized bubble sizes, whereas the 

1-parameter model best describes slower injections with the presence of large bubbles. While this 

path-based approach shows promise by identifying high-flow zones in a complex medium using a 

simple model, further investigation into the effect of varying model structure and injection 

conditions in necessary to generalize the behavior seen here.  
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Appendix 5-A: Porous network and extracted graph 

 

Figure 5-17: Top: Micromodel structure with porous area seen in black and obstacles in white. Fluid injection can be performed 
on the full width of the model. Bottom: Extracted complete graph with added inlet and outlet node that share edges with all the 

adjacent nodes to the inlet or outlet of the model. 

Regarding the structural parameters used for the weights of the edges connecting the inlet/outlet 

nodes to the rest of the network the throat size for each edge was trivially the throat that connected 

the network to the inlet/outlet zone. However, the angle µ that shows the pore-to-pore alignment 

with pressure gradient was set equal to 0 (perfect alignment with gradient) for all nodes connected 

to either to inlet or outlet nodes. Indeed, as the center of mass of the inlet and outlet nodes are 

positioned in the central axis, taking the alignment angle with this position would create erroneous 

bias against pores outwards from the central axis. 
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Appendix 5-B: cos(µ) properties and parameter independence 

As the parameters are more and more spread out with the increasing exponents α or β, the path 

lengths along the α = 6 parameter series should therefore monotonically rise to the (α, β) = (6,6) 

maximum. This discrepancy reveals either a hidden relationship between the two supposed 

independent parameters r and cos(µ), or otherwise an oversight on the authors behalf in the way 

the weight spread is interpreted to contribute to path length.  

We first explore the parameter independence. We display in Figure 5-18 a histogram showing the 

distribution of values of cos(µ), and a boxplot displaying the spread of values of size for each 

cosine category, dividing the values into 10 quantiles with an equal number of points from 0 to 1. 

 

Figure 5-18: Histogram of 𝑐𝑜𝑠(µ) and boxplot of parameter independence in the 2-parameter model 

The histogram shows one-sided distribution for the cos(µ) values. This is a natural consequence 

of the cosine function, and a similar distribution occurs when plotting the cosine of a random 

sequence of angles from 0-90°. However, a noticeable unexpected spike occurs around the 0.7 

value. The boxplot shows a median throat value that raises slightly in the central quartile and shows 

a smaller data spread towards the central values of cos(µ). We believe this behavior, as well the 

spike occurring around 0.7 for the cosine histogram are consequences of the way in which the 

watershed algorithm establishes throats and pores from the binarized model but does not represent 

a significant dependence between the two structural parameters used.  
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Appendix 5-C: Edge weight characterization with respect to parameter combinations in the 2-

parameter model 

Different combinations of parameters produce different edge weight distributions for the graph 

input to the path-proposing algorithm. Properties of this distribution are believed to be linked to 

the path length, we explore here the edge weight distributions and how they affect the proposed 

paths. Values of the throat size term, 𝑟, take values all above 1, displaying a roughly gaussian 

distribution (Yeates 2019). The values of ቀ
ଵ

୰
ቁ



, therefore lie between 0-1. Similarly, values of the 

throat size term, cos(µ), are between 0-1, while ቀ
ଵ

ୡ୭ୱ(µ)
ቁ

ஒ

 is bounded as [1-∞[. We show in Figure 

5-19 different edge weight histograms for different parameter combinations. 

 

Figure 5-19: Edge weight distributions in terms of different parameter combinations. 

We observe in Figure 5-19a that increasing the β parameter spreads the distribution in the positive 

direction, while maintaining many values at w = 1. Raising the α parameter as shown in Figure 

5-19b spreads the distribution in both direction and shifts it towards smaller values of w. As the 

parameters are independent, increasing both in combination therefore combines both effects 

without any further interaction; it spreads the distribution both ways and shifts it to the left, but 

creates a more significant spread on the right-hand tail due to the raised β parameter. As we can 

see, both the variance σ² and mean μ of edge weight distributions change with each parameter 

combination. We show the parameter distribution skew in Figure 5-20. We suspect that the non-

monotony of the path lengths function visible on the α = 6 parameter series is related to the 

skewness of the distribution. Indeed, a decrease in the calculated skew of the edge weight 

distribution occurs where the path lengths dips along the α = 6 series. This indicates an interaction 
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between the parameters in the model that explains why the proposed paths match experimental 

data relatively well in a large zone diagonally situated in the positive α and β directions. The edge 

weight distribution is significantly less skewed in this region, which leads the path proposing 

algorithm to output shorter paths that closer matches to the preferential paths observed in the foam 

experiments.  

 

Figure 5-20: Edge weight distribution skew for all model weights.  
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Appendix 5-D: Full model experimental match for the best model for Experiment 1: (𝛂, 𝛃) =

(𝟐. 𝟐, 𝟎. 𝟔) with a high intensity threshold on the pore activity classification. Flow intensity is 

shown in greyscale within the porous network. The color code is given in Figure 5-7. Flow is from 

top to bottom. 
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Appendix 5-E: Full model experimental match for the best model for Experiment 2: (𝛂, 𝛃) =

(𝟏. 𝟐, 𝟎) with a high intensity threshold on the pore activity classification. The color code is 

given in Figure 5-7. Flow is from top to bottom. 
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Appendix 5-F: First 5 proposed paths for comparison models used in Figure 5-12. 

 

The paths in light green are proposed by the model minimizing physical distance, whereas the 

paths in light blue are proposed by the model minimizing the number of pores. The areas in dark 
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blue are common to both sets of paths. The velocity intensity of Exp. 1 with flow from top to 

bottom is shown in grayscale within the porous area for comparison. We note that for the shortest 

distance paths (green), the mean path distance is 19826 µm, composed of a mean 91.8 pores per 

path. The paths minimizing the number of pores have a path distance of 21582 µm and are 

composed of 79.2 pores per path. 

Submitted article ends here 

 

 Model Generalization 

In the previous section we showed how a simple graph-based model could characterize to some 

degree high-flow preferential paths of largest bubbles in a complex micromodel. We showed that 

the paths proposed by integrating throat properties into a representative graph of the model sufficed 

to determine at least some of the high-flow paths and zones inside the model for 2 different 

experiments. In this section we apply the previously described path-proposing framework and 

model optimization to a series of different cases in order to generalize both the validity and explore 

the potential variation in optimal model parameter we can observe. 

 Application to a reversed orientation experiment 

The 1-dimensional graph model is fully isotropic, in the sense that proposed paths linking top to 

bottom of the model will resemble paths linking left to the right, as they are purely based on 

minimal combinations of throat size. The 2-dimensional model integrates the notion of alignment 

to pressure gradient, therefore models with non-zero β parameters are only isotropic with respect 

to the direction of pressure gradient. Furthermore, the graph model is undirected, in the sense that 

source and target nodes can be substituted, and the proposed paths will be the same. The foam 

flow inside the medium however, is obviously directed from one end of the model to another, with 

implications that the high intensity areas may be dependent on the injection direction, due to local 

shear-thinning of foam occurring when setting up preferential paths. The results of the undirected 

model should therefore be tested on an experiment in the opposite direction.  

With reference to the experiments visible in Figure 3-1, we shall make a comparison between two 

experiments of relatively similar injection conditions. We choose here to use flow data from the 
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experiment C1, situated close to the experiment A1 (known as experiment 1 in the article above). 

In supplement, the injection bubble size distribution parameters are quite similar in between the 

A1 and C1 experiments Table 3-1. Indeed, they both show intermediate to large average bubble 

sizes and standard size deviations. We can expect a significant degree of bubble size adaptation in 

both. 

We show the model parameter optimization as well as the best proposed paths overlaid on velocity 

maps of the experiment. The bubble sizes used for the construction of the preferential path 

flowmap corresponded to the top 20% of bubbles in terms of frequency, which are shown in Figure 

5-21 within the weighted histogram expressing spatial probability. 

 

Figure 5-21: Spatial probability of bubbles from experiment C1 with the bubble sizes used for the creation of the preferential 

paths flowmap highlighted in red. 

The bubble size cut off value was similar to the ones used in the previous two examples. We show 

the parameter optimization, using the same paths as output by the model in the previous section, 

only applied to a new flowmap. 

 

Figure 5-22: Model parameter optimization for the reversed flow experiment C1. 
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We observe that the best models are situated in a zone with 1.8 < α <3.2 and 0.2 < β <0.8. This 

region bears a strong resemblance to the region of best fit for experiment A1. The model showing 

the highest number of highly active pores (Figure 5-22, center) is the same as for experiment A1, 

i.e. (α, β) = (2.2,0.6). This indicates that the high flow zones can be characterized in the same 

way with respect to model orientation, which renders our use of an undirected graph model wholly 

appropriate. We display the best model paths and high active pore matches in Figure 5-23. 



Describing High-Velocity Flow Areas Using a Network-Spanning Graph Model 

189 
 

 

 

Figure 5-23: Full model experimental match for the largest bubble flowmap, experiment C1: (𝛼, 𝛽) = (2.2, 0.6), high intensity 

threshold on the pore activity classification. The color code is given in Figure 5-7. In this case flow is from bottom to top. 
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 Generalization to a different 2D porous medium 

Within this subsection we shall apply the path-proposing framework to another example of pore-

scale foam flow from the literature. We shall use flowmaps shown in Géraud et al. (2016), from 

which data has been extracted simply using the color intensity from the digital version of the 

publications. The data shown in this subsection differs in two notable ways to the data presented 

above. First, the experiments were performed on a larger scale. The authors use a porous medium 

composed of cylindrical obstacles inside a 17.8 cm long and 9.6 cm wide Hele Shaw cell. The cell 

depth was of 2mm, and the average throat radius of 1.75 mm. Secondly, the networks used were 

of lower complexity, displaying a lower number of obstacles (approximately 200 versus 2600) and 

showing a constant obstacle geometry. The authors give two examples of flowmaps, which are 

achieved similarly as here: via image binarization and using an unspecified individual bubble 

tracking algorithm. The steps leading from the bubble tracking data to the flowmap were also 

unspecified, and it is not clear if any smoothing or longitudinal image intensity uniformization 

were performed, to account for bubble size evolution and consequential tracking density evolution. 

While the general setup was the same between the two experiments from Géraud et al. (2016) 

explored, the exact position of the obstacles in the medium was changed between experiments, 

providing two distinct networks to analyze. The specific experiments shown in both flowmaps 

(coherent with the original publication numbering) are Experiment 7 and Experiment 43. The 

experiments are performed under different injection conditions. Compared to Experiment 43, 

Experiment 7 shows a lower gas fraction (0.72 versus 0.99), a smaller injected bubble radius with 

little size evolution through the model (0.65 times the average injection bubble size of Experiment 

43), a lower total flow rate (less than half of Experiment 43) and a different surfactant formulation. 

However, we show here the applicability of the graph-based algorithm in both cases. 

While the authors do provide an example (Exp. 7 only) of decomposition of the porous space into 

throats pores using an elegant method described in their Appendix, based on filtering the segments 

obtained from Delaunay triangulation of pore centers, we shall make use of the adjustable 

watershed algorithm described in the previous section to obtain a decomposition we deem 

appropriate. 

We now display each experiment’s data and porous network before showing a brief series of results 

including a small model optimization section in both cases. 
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 Experiment 7, Géraud et al. (2016) 

In Figure 5-24 we display the image extracted from the publication of the flowmap for Experiment 

7 and show in greyscale the extracted velocity intensity we used for the analysis. 

 

Figure 5-24: Image processing steps to extract the flow map from the publication and network characteristics. A decomposition 

of the porous space was also performed shown in the bottom right corner, in which the throats are shown in light green 

decomposing the black porous space 

The image was obtained from a screenshot the publication at maximal resolution and saved as an 

RGB image. The porous network was first extracted from the captured image by splitting the image 

into different RGB (Red – Green – Blue) and HSB (Hue – Saturation – Brightness) stacks and 

performing intensity thresholds on the greyscale value in the grains for different images, multiple 

thresholds on different images were necessary as the grayscale value of the color flow color 

scheme sometimes intersected the grayscale of the grains in different stack decompositions. The 

network mask was then subtracted out of the flow map and the flow intensity was obtained by 

summing the slices of the RGB stack created from the image. For visibility, the flow map is shown 

with high values in black (i.e. inverted intensity scale) in Figure 5-24. 
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From the extracted network image, we use the adjustable watershed algorithm (with a tunable 

parameter set to 3) to decompose the network into throats and pores. A source node and target 

node were created, by removing throats adjacent to either left- or right-hand side of the network. 

The network created has 167 pores and 283 throats. A graph was then extracted using a 2D network 

extraction code in ImageJ. For simplicity, paths were only evaluated on the basis on the average 

path pixel intensity, i.e. the average grayscale flowmap value in all the pores contained in the path. 

Due to the lower number of available paths, and the high degree of overlapping paths visible in 

Figure 5-24, top left, we only choose the first 5 paths and allow an overlap of 30% between the 

paths. 

A brief parameter optimization is performed, with the same exponent α and β with values and 

definition as described in the previous section. The average path intensity is then shown in Figure 

5-25. 

 

Figure 5-25: Average predicted path intensity for paths proposed for Experiment 7 of Géraud et al. (2016). 

We note here that a zone of good fit is situated in the low left corner for low values of α and β. 

The best value of the grid is obtained for values of (α, β) = (0.6, 0.4) at an average path grayscale 

intensity of 69.51 but (α, β) = (0.6, 0) is ranked second with 69.46. In fact, the entire light patch 

in Figure 5-25 has similarly valued average path image intensities. Due to the shortness of the 

model most of these series of paths only vary by one or two pores, therefore displaying most of 

these model’s output paths would be largely equivalent. We show the paths of the simplest model 

(α, β) = (0.6, 0) in Figure 5-26. 
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Figure 5-26: Top 5 paths described the model (α,β)=(0.6,0). Note: highlighting in green is simply to highlight the paths and not 

describe active pores as previously used. 

The paths proposed by the algorithm agree very well the high velocity areas inside the model. Most 

of the high velocity areas are in fact captured by the paths. However, the central dark streaks seen 

in the model flowmap are not accessed by the top 5 paths. Interestingly, these paths correspond to 

areas described by the authors in which a large degree of intermittency, i.e. stopping and starting 

of flow, is observed. We offer an explanation here. In fact, this central path is of inferior rank as it 

doesn’t appear in the top 5 paths proposed by the model. We investigate further paths of this setting 

to find the first appearance of the central paths. The first time they are observed are in paths 8 and 

9 shown in Figure 5-27; with the intermittent zones shown in blue circles. 
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Figure 5-27: First appearance of the intermittent paths as described in Géraud et al. (2016), as output by the path proposing 

model. The intermittent paths appeared at a lower rank of 8 and 9, compared to the paths showing consistent flow shown in 

Figure 5-26. 

Therefore, as well as capturing high flow zones, description of flow areas according to their path 

rank leads to building a hierarchy in flow activity: the best paths contain flow consistently whereas 

lower ranking paths may contain flow only intermittently if the local fluctuations in pressure or 

local differences in foam density permit. 

 Experiment 43, Géraud et al. (2016) 

Once again, we extract the relevant flow map and network structure from the Figure 12 of Géraud 

et al. (2016) and present the decomposed network in which the throats are shown at the bottom left 

of Figure 5-28. The network analysis algorithm was then applied to the decomposed network to 

extract the neighborhood graph. 
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Figure 5-28: Image processing steps to extract the flow map for Experiment 43 of Géraud et al (2016). A decomposition of the 

porous space was also performed shown in the bottom right corner, in which the throats are shown in light green amidst the 

black porous space. 

From these images, throat properties and neighborhood graph, we can perform a similar parameter 

optimization for this new flow map. We show the results for this experiment in Figure 5-29. As 

above, 5 paths were output using a 30% overlap tolerance value. However, for faster calculation 

we only take values of α and β up to 4 in a grid of 21 values. 

 

Figure 5-29: Average predicted path pixel intensity for paths proposed for Experiment 43 of Géraud et al. (2016). 

We observe that the location of the best models is not as well localized as for Experiment 7. The 

best 2 ranked models are found in (α, β) = (0.8, 0.4) and in (α, β) = (0.8, 0.6). We observe a 
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good fit area along a zone diagonal of both increasing α and β. We show the 5 paths of the best 

model fit at (α, β) = (0.8, 0.4) superimposed on the flow map in Figure 5-30: 

 

Figure 5-30: First 5 paths for the best model fit of (𝛼, 𝛽) = (0.8, 0.4) for Experiment 43 of Géraud et al (2016). Note: the 

highlighting in green is simply to highlight the paths and not describe active pores as previously used. 

We see that the model best fit captures most of the high flowing paths shown in the flowmap. The 

network used was decomposed into a smaller number of pores and throats than for Experiment 7, 

as many grains are touching and less throats were created. This network has 134 pores for 217 

throats. In fact, the model output paths were very similar in most parameter combinations for this 

network. The path-proposing optimization process seems to reach a lower applicability limit in 

this case, in which most model settings seem to output equivalent paths which all contain flow and 

it becomes hard to distinguish which setting is the best. 

This is to be contrasted with the results from the micromodel used in this study. Within our 

previously shown results, we used a network of 3968 pores and 6284 throats. While we were able 

to find a fitted weight function that resulted in paths that captured many of the high-flow areas in 
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the model, in some cases the paths made jumps in and out of high-flow paths, and only predicted 

correctly large sections of high intensity flow rather than full, model-spanning paths. It may well 

be worth considering that in our micromodel, the network complexity is superior to the modeling 

framework upper limit, within which a full, model-spanning path, while insightful, is maybe not 

fully appropriate. One possibility to consider may be to establish intermediate-sized portions 

(rather than full paths) than are consistently proposed when allowing a large degree of overlap in 

the output paths.  

 Discussion on optimal exponents 

Using data from Géraud et al (2016), we obtain lower dependences on throat size coefficients that 

for the best fits for our micromodel. The best fits show α values inferior or equal to 0.8. When 

looking more closely at the aspect ratio H/W of these experiments, we observe that the throats are 

always larger than the model depth. We display the aspect ratio counts in Figure 5-31, left. The 

hydraulic resistance dependence on throat width should therefore be lower than for our data. This 

is demonstrated in Figure 5-31, right, in which the log values of R୦, calculated using equation (32), 

clearly scatter along a W-1 dependence.  

 

 

Figure 5-31: Aspect ratio and calculated hydraulic resistance for the network shown in Géraud et al (2016). 

While the observed best fit exponents are coherent with the lower hydraulic resistances observed 

in the networks used by Géraud et al (2016), they are still consistently lower than the predicted 

resistance for a monophasic fluid in a rectangular channel. This lower dependence on throat width 
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is not fully understood and requires more investigation. One aspect that may explain the lower 

than expected throat size exponent may be a system demonstration of system hysteresis. Indeed, 

during a foam injection, the first paths to break through the porous medium and set up connected 

flow paths between both ends will see an increase in velocity at the moment of breakthrough as 

the pressure buildup over the model is released. Path resistance within that path will then decrease 

due to local shear-thinning of the foam and such a path will maintain a high level of flow. The first 

paths to breakthrough, however, will in fact be the shortest, and not those with the largest throats, 

assuming constant bubble flow rate. This could explain some of the lower dependence to throat 

size observed for the experiments here. 

 Returning to local structural features from graph-based 

characteristics 

We have shown that it is possible to capture high-flow zones from a structural origin. These zones 

are not predicted locally but rather as components of preferential paths within the medium. 

Through our model framework we choose a limited number of paths, characterized by a given 

value of overlap within one another. Such choice is motivated partly by the observation that foam 

preferential paths seem to overlap only for a certain distance, but also due to the realization that 

the K-shortest paths for a complex network are essentially small variants of the same path. The K-

shortest paths are the first K paths when ranked from decreasing path edge weight sum. While they 

are all distinct, some have equal path edge weight sum (in the case of equal edge weights, multiple 

shortest paths may share the same number of nodes).  

The high degree of overlap of these K-shortest paths is true even for large values of K. The K-

shortest paths have no condition of maximal overlap. They must simply be different from each 

other by at least one element. As an example, we show the first 1000 paths the K-shortest path 

algorithm between the inlet and outlet node, Figure 5-32, setting all edge weights equal (i.e. the 

simplest model). We add 1 to each count measurement to use a logarithmic color scale consistently. 
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Figure 5-32: 1000 shortest paths using with no overlap constraint, using constant weights, from inlet to outlet node. The paths 

must be distinct in at least one element. 

Visibly, all the paths are focusing around a single path but vary to a small degree in each new 

instance. This is not very useful for predicting high-flow zones in the entire network. Instead of 

choosing a fixed source and target nodes as the inlet and outlet nodes, we can choose instead two 

random nodes within the graph and construct the optimal path between them. If we repeat this 

process a series of times, we can get an estimate of the nodes that are important in connecting the 

various point of the graph. For comparison, in Figure 5-33 we show the first 1000 paths having 

random source and target nodes. Inlet and outlet nodes are excluded from this analysis, as their 

increased connectivity would create unphysical paths passing through the inlet or outlet node to 

reach target nodes more efficiently. 
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Figure 5-33: 1000 optimal paths using random source and origin nodes, using constant weights. 

We can already see that certain central nodes and path segments are favored in the network. We 

can further build on this method by using the weights derived from the best model: (α, β) =

(2.2, 0.6), taking 1000 random source and target nodes, therefore calculating the optimal paths 

based on the weights integrating both the notion of throat size and throat orientation. We show 

these paths in Figure 5-34. A, example of a foam flowmap is given for comparison. We show the 

data from experiment A1, all bubble sizes in the bottom image of Figure 5-34. We can see some 

of the distinctive trapped zones observed in the foam map appear darker in this map, dashed by 

light green ovals. Similarly, some of the high flow zones are captured in the brighter path segments 

and nodes, shown by full light green ovals in both images. 
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Figure 5-34: 1000 shortest paths using random source and origin nodes, using weights corresponding to best fit model described 

above (𝛼, 𝛽) = (2.2, 0.6). The bottom flow map corresponds to the total flow map of experiment A1, all bubble sizes. 

In fact, a well-known local property of graphs generalizes this type of procedure. Graph 

betweenness centrality is essentially the number of times each node is traversed by all the shortest 

paths between all other nodes in the graph, rather than a limited number of random sources and 

targets. Graph betweenness centrality was first introduced by Bavelas (1948) but was first formally 

defined by Freeman (1977). Here we give a general definition for the betweenness centrality BC 

of a node 𝑣. The number of shortest paths between all source and targets nodes traversing 𝑣 is 

𝑁(௦→௩→௧) are then divided by the number of shortest paths 𝑁(௦→௧) between 𝑠 and 𝑡 (i.e. number 
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of paths with the smallest edge weight sum). Indeed, for some graphs multiple paths can have 

equal edge weight sum values despite being distinct.  

𝐵𝐶(𝑣) = 
𝑁(௦→௩→௧) 

𝑁(௦→௧) 
௦,௧ఢ

 (33) 

where 𝑉  is the set of nodes of the graph. If 𝑠 = 𝑡, 𝑁(௦→௧) = 1, and if 𝑣 𝜖  {𝑠, 𝑡}, 𝑁(௦→௧) = 0 

(Brandes and Pich 2007).  

Such a value can be calculated for various choices of weights. Visualizations of the graph centrality 

are in fact almost indistinguishable from the figures shown above. Graph centrality can rapidly be 

calculated using the Python library NetworkX (Varoquaux et al. 2008) from an input graph. 

While high betweenness centrality does seem to locally describe to some degree areas susceptible 

to contain higher flow, and in some cases low centrality can correlate with low flow, one drawback 

is the concentration of high values in the center of the graph, with measured centrality values 

decreasing radially outwards from the center of the model. Indeed, as most diagonal paths will 

cross the center of the network, centrality value will naturally increase. However other centrality 

measurements exist that may better capture local contrasts in centrality (Piraveenan et al. 2013; 

Gregory 2003) and call for further investigation. 

Nonetheless, we integrate the local betweenness centrality values for different weight functions as 

new pore structural features into the machine learning framework. Starting from the previously 

established 4 top features for predicting pore flow intensity in Chapter 4, we can test the usefulness 

of each betweenness centrality calculation by training and testing the models with each added 

individually. We then only use 5 features for each model: 1-Throat size average, 1-Throat cos(ν) 

average, Coordination, 2-Coordination, and finally the specific betweenness centrality used. We 

therefore test for no use of betweenness centrality for comparison, betweenness centrality with 

equal weights, i.e. (α, β) = (0, 0), betweenness centrality with a 1-parameter model, i.e. (α, β) =

(1, 0), betweenness Figure 5-35 centrality with the best fitted 2-parameter model, i.e. (α, β) =

(2.2, 0.6). 

We display the model accuracies predicting flow intensity in all the flowmaps and classifications 

explored in Chapter 4, comparing the supplementary effect of adding different calculations of 

betweenness centrality. 
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Figure 5-35: Comparison of betweenness centrality feature usefulness. 

Evidently, the inclusion betweenness centrality with weights given by the best model fits (α, β) =

(2.2, 0.6) and (α, β) = (1, 0) providing useful information, with the Random Forest algorithm 

achieving higher accuracy scores for most flow maps with its inclusion. The inclusion of the 

betweenness centrality using edge weights (α, β) = (2.2, 0.6)  increases the accuracy in some 

cases of more than 5% versus using only the original four top features established in Chapter 4. 

As we hypothesized, including local characteristics derived from network-level considerations is 

more effective for the higher activity classifications, which see the larger increases in accuracy. 

The lower activity classifications see little added benefit from the betweenness centrality. 

 Conclusion 

Through this chapter we presented a graph-based framework that proposes preferential paths in 

the aim of capturing pores containing high velocity in various foam flow situations. We first 

optimized a 1-parameter (throat size only) and 2-parameter model (throat size and neighboring 

pore alignment to pressure gradient) on two different experiments at varying injection rates.  

While achieving good results in a large series of parameter combinations, the best models were 

slightly different for each experiment, with the lower velocity model not integrating the neighbor 
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alignment parameter in the best fit. The best fit dependence to the throat size was coherent with a 

known expression of hydraulic resistance for rectangular channels. 

The framework was then generalized as it was applied first to an experiment in which the injection 

direction was reversed, showing the same best fit as for the original experiment. 

Generalization to a porous medium of a different scale and structure was then performed. Another 

two flow maps obtained from a larger, simpler network obtained from the literature were analyzed 

and a best fit model was found for them both. The best fit models showed notably lower 

dependence to the throat size than expected from knowledge of the throat sizes and aspect ratios. 

Finally, we tested the integration of betweenness centrality in the machine learning framework of 

Chapter 3, as a local pore parameter that is derived from network-level calculations of best paths 

for all the nodes in the network. This led to an increase in predictive power to the algorithms used 

of more than 5% in some cases, with the largest increases being seen predicting the highest velocity 

pores.  
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General Conclusion 

This thesis presents several experiments performed on a micromodel with a fixed structure. The 

aim of the thesis is to gain insights into foam flow behavior through a combination of data types 

and a complex model with, when applicable, systematic reference to an origin in terms of the 

porous medium structure. We have approached this task using multiple scales and modeling 

frameworks.  

Initially, through only observations on one experiment, we established the existence of a large 

degree of local flow heterogeneity in our model with flow behaviors varying from trapped zones 

to high velocity preferential paths, showing global similarities to Newtonian flow, but in many 

cases accentuating the contrasts of flow distributions found in the Newtonian simulations. 

Furthermore, we observe differences in flow paths used by different bubble sizes, with larger 

bubbles using exclusively the straighter preferential paths, travelling at higher velocity, whereas 

smaller bubbles were also present in transversal paths perpendicular to the pressure gradient 

direction at generally lower flow intensity. 

Next, we sought to understand the dependence of these behaviors on injection parameters 

by varying injection rates, foam qualities and inlet bubble size distributions. With regards to the 

link between local and macroscopic flow parameters, we observe that the main contributor to foam 

apparent viscosity variation within our experiments is the trapped foam fraction, which we found 

to vary greatly with respect to flow rates and inlet bubble properties. To a smaller degree, we 

refined our viscosity model to include the total perimeter of bubbles within the model, a more 

specific version of bubble density, applicable to heterogeneous bubble flow. This result may be 

specific to our porous medium and experimental conditions, as our foam bubble density is roughly 

on the same order of magnitude throughout. Nonetheless, it became evident that characterization 

of the trapped areas was paramount in describing flow on a macroscopic level. With regards to the 

structural parameter dependence, we can cite certain observations that don’t show a structural 

origin and therefore escape any detailed characterization in terms of pore scale or model scale 

structural parameters. Indeed, the large-scale flow distribution of foam inside the model, showing 

sometimes a preference to flow on one side or the other, was sensitive to the inlet local foam 

quality and size distributions. Large fluctuations in flow intensity and distribution can be inherited 
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from the irregularities in inlet foam injections. While this is not necessarily a weakness of the 

experimental set up, and could be a characteristic of foam transport in real 3D media, it shows that 

to a certain degree, particularly in low injection rate and high foam quality injections, local 

structural descriptions of both high-flow areas or trapped zones are in fact irrelevant due to the 

overwhelming influence of upstream flow and bubble size characteristics. However, in other cases, 

a repeated observation of certain local trapped and high-velocity zones throughout experiments 

that were not dominated by inlet irregularities indicated that a structural origin does in fact exist.  

Subsequently, through an extensive local structural parameter search using a Random 

Forest algorithm we uncovered that the most influential parameters in predicting trapped zones 

were the neighboring throat sizes and orientation, along with the pore coordination. While the 

trapped zones were relatively well characterized and predicted using only these parameters, high-

flow zones were unable to be correctly predicted within this local framework and required a 

different type of model. 

 Therefore, we introduced a network-spanning model that built on the observation of 

preferential paths to characterize high flow zones of the model. The models make use of a recently 

published algorithm that proposes full-model length paths respecting a maximal value of overlap, 

a shared characteristic with the observed preferential foam paths. Through the previously 

understood importance of throat size and throat orientation, we proposed models that integrate 

successively only the throat size, and then throat size with the neighboring pore alignment of the 

throats. We successfully fit models that capture many of the high-velocity local elements, with 

exponent dependencies that are coherent with well-established expressions of hydraulic resistance 

of the throats. The models are additionally generalized to experiments with opposite injection 

direction and then to data obtained in the literature of other porous 2D models. In a final section, 

we make use of betweenness centrality, a well-known graph property, in conjunction with the fitted 

preferential path model parameters to return to predict more successfully local pore velocity, 

showing definitively the multi-scale nature of foam flow characteristics. 
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