Thèse soutenue

Méthodes efficaces pour la diffraction acoustique en 2 et 3 dimensions : préconditionnement sur des domaines singuliers et convolution rapide.

FR  |  
EN
Auteur / Autrice : Martin Averseng
Direction : François Alouges
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 14/10/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques appliquées de l'Ecole polytechnique (Palaiseau ; 1974-....)
Jury : Président / Présidente : Sonia Fliss
Examinateurs / Examinatrices : François Alouges, Sonia Fliss, Ralf Hiptmair, Xavier Antoine, Snorre H. Christiansen, Toufic Abboud
Rapporteurs / Rapporteuses : Ralf Hiptmair, Xavier Antoine

Résumé

FR  |  
EN

Cette thèse porte sur le problème de la diffration acoustique par un obstacle et sa résolution numérique par la méthode des éléments finis de frontière. Dans les trois premiers chapitres, on s'intéresse au cas où l'obstacle possède des singularités géométriques. Nous traitons le cas particulier des singularités de bord, courbes ouvertes en dimension 2, et surfaces ouvertes en dimension 3. Nous introduisons un formalisme qui permet de retrouver les bonnes propriétés de la méthode pour des objets réguliers. Une fonction de poids est définie sur les objets diffractant, et les opérateurs intégraux usuels (simple-couche et hypersingulier) sont renormalisés de manière adéquate par ce poids. Des préconditioneurs sont proposés sous la forme de racines carrées d'opérateurs locaux. En dimension 2, nous proposons une analyse théorique et numérique complète du problème. Nous montrons en particulier que les opérateurs intégraux renormalisés font partie d'une classe d'opérateurs pseudo-différentiels sur des courbes ouvertes, que nous introduisons et étudions ici. Le calcul pseudo-différentiel ainsi développé nous permet de calculer des paramétrices des les opérateurs intégraux qui correspondent aux versions continues de nos préconditionneurs. En dimension 3, nous montrons comment ces idées se généralisent théoriquement et numériquement dans le cas pour des surfaces ouvertes. Dans le dernier chapitre, nous introduisons une nouvelle méthode de calcul rapide des convolutions par des fonctions radiales en dimension 2, l'une des tâches les plus coûteuses en temps dans la méthode des éléments finis de frontière. Notre algorithme repose sur l'algorithme de transformée de Fourier rapide non uniforme, et est la généralisation un algorithme analogue disponible en dimension 3, la décomposition creuse en sinus cardinal.