Développement d'une méthodologie de Quantification d'Incertitudes pour une analyse Mutli-Physique Best Estimate et application sur un Accident d’Éjection de Grappe dans un Réacteur à Eau Pressurisée

par Gregory Delipei

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Josselin Garnier.


  • Résumé

    Durant les dernières décennies, l’évolution de la puissance de calcul a conduit au développement de codes de simulation en physique des réacteurs de plus en plus prédictifs pour la modélisation du comportement d’un réacteur nucléaire en situation de fonctionnement normal et accidentel. Un cadre d’analyse d’incertitudes cohérent avec l’utilisation de modélisations Best Estimate (BE) a été développé. On parle d’approche Best Estimate Plus Uncertain-ties (BEPU) et cette approche donne lieu `a de nombreux travaux de R&D à l’international en simulation numérique. Dans cette thèse, on étudie la quantification d’incertitudes multi-physiques dans le cas d’un transitoire d’ éjection de Grappe de contrôle (REA- Rod Ejection Accident) dans un Réacteur à Eau Pressurisée (REP). La modélisation BE actuellement disponible au CEA est réalisée en couplant les codes APOLLO3 R (netronique) et FLICA4 (thermohydraulique-thermique du combustible) dans l’environnement SALOME/CORPUS. Dans la première partie de la thèse, on examine différents outils statistiques disponibles dans la littérature scientifique dont la réduction de dimension, l’analyse de sensibilité globale, des modèles de substitution et la construction de plans d’expérience. On utilise ces outils pour développer une méthodologie de quantification d’incertitudes. Dans la deuxième partie de la thèse, on améliore la modélisation du comportement du combustible. Un couplage Best Effort pour la simulation d’un transitoire REA est disponible au CEA. Il comprend le code ALCYONE V1.4 qui permet une modélisation fine du comportement thermomécanique du combustible. Cependant, l’utilisation d’une telle modélisation conduit à une augmentation significative du temps de calcul ce qui rend actuellement difficile la réalisation d’une analyse d’incertitudes. Pour cela, une méthodologie de calibrage d’un modèle analytique simplifié pour le transfert de chaleur pastille-gaine basé sur des calculs ALCYONE V1.4 découplés a été développée. Le modèle calibré est finalement intégré dans la modélisation BE pour améliorer sa prédictivité. Ces deux méthodologies sont maquettées initialement sur un cœur de petite échelle représentatif d’un REP puis appliquées sur un cœur REP à l’échelle 1 dans le cadre d’une analyse multi-physique d’un transitoire REA.

  • Titre traduit

    Development of an Uncertainty Quantification methodology for Multi-Physics Best Estimate analysis and application to the Rod Ejection Accident in a Pressurized Water Reactor


  • Résumé

    The computational advancements of the last decades lead to the development of numerical codes for simulating the reactor physics with increa-sing predictivity allowing the modeling of the beha-vior of a nuclear reactor under both normal and acci-dental conditions. An uncertainty analysis framework consistent with Best Estimate (BE) codes was develo-ped in order to take into account the different sources of uncertainties. This framework is called Best Esti-mate Plus Uncertainties (BEPU) and is currently a field of increasing research internationally. In this the-sis we study the multi-physics uncertainty quantifi-cation for Rod Ejection Accident (REA) in Pressuri-zed Water Reactors (PWR). The BE modeling avai-lable in CEA is used with a coupling of APOLLO3 (neutronics) and FLICA4 (thermal-hydraulics and fuel-thermal) in the framework of SALOME/CORPUS tool. In the first part of the thesis, we explore different statistical tools available in the scientific literature including: dimension reduction, global sensitivity analy-sis, surrogate modeling and design of experiments. We then use them in order to develop an uncer-tainty quantification methodology. In the second part of the thesis, we improve the BE modeling in terms of its uncertainty representation. A Best Effort coupling scheme for REA analysis is available at CEA. This in-cludes ALCYONE V1.4 code for a detailed modeling of fuel-thermomechanics behavior. However, the use of such modeling increases significantly the compu-tational cost for a REA transient rendering the uncer-tainty analysis prohibited. To this purpose, we deve-lop a methodology for calibrating a simplified analytic gap heat transfer model using decoupled ALCYONE V1.4 REA calculations. The calibrated model is finally used to improve the previous BE modeling. Both de-veloped methodologies are tested initially on a small scale core representative of a PWR and then applied on a large scale PWR core.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.