De la notion de courbure géodésique en géométrie sous-Riemannienne

par Mathieu Kohli

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Ugo Boscain et de Davide Barilari.

Soutenue le 30-09-2019

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) , en partenariat avec École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Centre de mathématiques appliquées-CMAP [Palaiseau, Essonne] (laboratoire) .

Le président du jury était Frédéric Jean.

Le jury était composé de Ugo Boscain, Davide Barilari, Frédéric Jean, Irina Markina, Constantin Vernicos, Jean-Paul André Gauthier.

Les rapporteurs étaient Irina Markina, Constantin Vernicos.


  • Résumé

    Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales dans une variété sous-Riemannienne de contact, qui indique dans quelle mesure une courbe est différente d'une géodésique. Cette courbure géodésique se présente sous la forme de deux fonctions qui sont toutes deux identiquement nulles le long d'une courbe lisse horizontale si et seulement si cette dernière courbe est une géodésique. Le résultat principal de cette thèse réside dans l'interprétation métrique que l'on donne de ces fonctions de courbure. Cette interprétation consiste à extraire la courbure géodésique des premiers termes de correction dans le développement limité de la distance sous-Riemannienne entre deux points proches le long de la courbe.

  • Titre traduit

    On the notion of geodesic curvature in sub-Riemannian geometry


  • Résumé

    We present a notion of geodesic curvature for smooth horizontal curves in a contact sub-Riemannian manifold, measuring how far a horizontal curve is from being a geodesic. This geodesic curvature consists in two functions that both vanish along a smooth horizontal curve if and only if this curve is a geodesic. The main result of this thesis is the metric interpretation of these geodesic curvature functions. This interpretation consists in seeing the geodesic curvature functions as the first corrective coefficients in the Taylor expansion of the sub-Riemannian distance between two close points on the curve.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.