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Abstract

Sampling methods are central to many algorithmic methods in structural RNA
bioinformatics, where they are routinely used to identify important structural
models, provide summarized pictures of the folding landscapes, or approximate
quantities of interest at the thermodynamic equilibrium. In all of these examples,
redundancy within sampled sets is uninformative and computationally wasteful,
limiting the scope of application of existing methods. In this thesis, we introduce
the concept of non-redundant sampling, and explore its applications and conse-
quences in RNA bioinformatics.

We begin by formally introducing the concept of non-redundant sampling and
demonstrate that any algorithm sampling in Boltzmann distribution can be mod-
ified into non-redundant variant. Its implementation relies on a specific data
structure and a modification of the stochastic backtrack to return the set of unique
structures, with the same complexity.

We then show a practical example by implementing the non-redundant principle
into a combinatorial algorithm that samples locally optimal structures. We use
this tool to study the RNA kinetics by modeling the folding landscapes gener-
ated from sets of locally optimal structures. These structures act as kinetic traps,
influencing the outcome of the RNA kinetics, thus making their presence crucial.
Empirical results show that the landscapes generated from the non-redundant
samples are closer to the reality than those obtained by classic approaches.

We follow by addressing the problem of the efficient computation of the statistical
estimates from non-redundant sampling sets. The absence of redundancy means
that the naive estimator, obtained by averaging quantities observed in a sample,
is erroneous. However we establish a non-trivial unbiased estimator specific to a
set of unique Boltzmann distributed secondary structures. We show that the non-
redundant sampling estimator performs better than the naive counterpart in most
cases, specifically where most of the search space is covered by the sampling.

Finally, we introduce a sampling algorithm, along with its non-redundant coun-
terpart, for secondary structures featuring simple-type pseudoknots. Pseudo-
knots are typically omitted due to complexity reasons, yet many of them have
biological relevance. We begin by proposing a dynamic programming scheme
that allows to enumerate all recursive pseudoknots consisting of two crossing
helices, possibly containing unpaired bases. This scheme generalizes the one pro-
posed by Reeders and Giegerich, chosen for its low time and space complexities.
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We then explain how to adapt this decomposition into a statistical sampling algo-
rithm for simple pseudoknots. We then present preliminary results, and discuss
about extensions of the non-redundant principle in this context.

The work presented in this thesis not only opens the door towards kinetics analy-
sis for longer RNA sequences, but also more detailed structural analysis of RNAs
in general. Non-redundant sampling can be applied to analyze search spaces for
combinatorial problems amenable to statistical sampling, including virtually any
problem solved by dynamic programming. Non-redundant sampling principles
are robust and typically easy to implement, as demonstrated by the inclusion of
non-redundant sampling in recent versions of the popular Vienna package.
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Résumé Substantiel

Des Acides RiboNucléiques, ou des ARNs, sont des biopolymères composés des
nucléotides A, C, G et U. Ces séquences ont la propriété intéressante de se replier
sur eux-mêmes, leur donnant la possibilité de former des structures différentes
qui peuvent exercer des différentes fonctions. Les méthodes empiriques de leur
déterminaison étant trop chères, lentes ou limitées, ces structures sont la cible
d’étude du domaine de la bioinformatique structurale d’ARN.

Grâce au nombre des structures qu’une séquence moyenne d’ARN peut former,
l’échantillonnage statistique est devenue une partie instrumentale à de nombreuses
méthodes algorithmiques pour la bioinformatique structurale d’ARN, servant
à identifier des structures secondaires importantes, des éléments clés d’espace
de repliement suivant l’évolution de ces structures et estimation statistique des
quantités d’intérêt de ces structures à l’équilibre thermodynamique. Des méth-
odes qui sont disponibles aujourd’hui souffrent d’effet de la redondance qui est
en général non-informative et limite l’efficacité générale de ces algorithmes. Pour
cette raison, dans cette thèse nous introduisons le principe de la génération non-
redondante, permettant à éviter cet effet de manière optimale, et nous analysons
ses applications dans le domaine de la bioinformatique structurale d’ARN.

Après avoir introduit le concept général de l’échantillonnage non-redondant, nous
montrons que, à l’aide d’un formalisme que nous avons introduit, tout algorithme
échantillonnant dans la distribution de Boltzmann peut être transformé en une
version non-redondante. Ensuite nous expliquons le besoin de mémoriser des
structures secondaires échantillonnées ainsi que le processus de leur sélection.
Pour le faire, nous avons recherché une structure de données qui constitue une
couche autonome à implémenter à l’algorithme qui est modifié en version non-
redondante et que cette version est de même complexité que l’échantillonnage
classique.

Pour une démonstration pratique, nous avons implémenté ce principe dans un
algorithme de l’échantillonnage des structures secondaires localement optimales.
Ces structures agissent comme des pièges cinétiques et impactent le résultat final
du repliement, elles sont donc instrumentales lors de l’étude cinétique d’ARN.
Nous alors utilisons cet outil pour étudier la cinétique d’ARN en modélisant
l’espace de repliement des structures secondaires - espace représentant l’ensemble
des structures secondaires et des trajectoires de repliement entre eux - et puis réal-
isant une intégration numérique sur ce modèle. Par la suite, des expériences mon-
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trent que des modèles obtenus à partir des échantillons non-redondants présen-
tent une cinétique plus rapide, et sont donc plus proches à la réalité, que ceux à
partir des échantillons classiques.

Nous suivons par l’inclusion de l’échantillonnage non-redondant dans la ver-
sion récente de la bibliothèque Vienna package populaire. Cette implémentation
montre la facilité et la robustesse de l’implémentation du principe non-redondant
dans des algorithmes existants dans le domaine de la bioinformatique structurale
d’ARN. Ensuite nous montrons par des expériences que l’échantillonnage non-
redondant de même algorithme est plus efficace que sa version de base et nous
discutons sur l’importance d’optimisation de la structure de données sur la per-
formance finale d’échantillonnage non-redondant.

Nous résoudrons par la suite le problème d’estimation statistique efficace à partir
des échantillons non-redondants. L’estimation naïve, obtenu en moyennant des
valeurs observées pour tous les échantillons, n’est pas possible dans ce cas car en
absence de la fréquence, le résultat est biaisé. Par contre, nous sommes arrivés à
établir un estimateur non-trivial et non-biaisé qui est spécifique aux échantillons
non-redondants qui suivent la distribution de Boltzmann. Nous montrons sur
des expériences concrètes sur des cas modèles que l’estimateur proposé par nous
est plus efficace que l’estimateur naïf, et ceci notamment dans le cas ou la majorité
d’espace de recherche a été échantillonné.

Finalement, nous introduisons un nouvel algorithme d’échantillonnage des struc-
tures secondaires contenant des pseudonoeuds du type H, le type le plus simple
consistant de deux hélices s’entrecroisant. Ces éléments, même les plus sim-
ples sont typiquement omis pour des raisons d’efficacité, bien que beaucoup
d’entre eux possèdent une grande importance biologique. Nous commençons
par proposer un schéma de programmation dynamique qui permet à générer
n’importe quel pseudonoeud composé de deux hélices comportant des bases non-
appariées. Cet algorithme est une extension d’un algorithme existant de Reed-
ers et Giegerich, choisi pour son efficacité temporelle est spatiale ainsi que la
facilité relative d’implementation. Par la suite, nous expliquons comment con-
struire le schèma de la programmation dynamique adaptable à un algorithme
d’échantillonnage des structures secondaires avec des pseudonoeuds de type H.
Après l’introduction des résultats préliminaires, nous expliquons comment il est
possible à modifier cet algorithme pour inclure le principe de la génération non-
redondante, et on discute sur des améliorations possibles de cet algorithme.

Des travaux présentés dans cette thèse ouvrent la porte vers l’analyse des séquences
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d’ARN plus longues et les études plus détaillées d’ARN en général. L’échantillonnage
non-redondant peut être appliqué pour étudier l’espace de recherche de tous les
problèmes combinatoires susceptibles à l’échantillonnage statistique, montrant sa
grande versatilité, et il trouve des applications aussi aux des problèmes en dehors
du domaine de la bioinformatique structurale d’ARN.
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Chapter 1

Introduction

1.1 Preamble

Nucleic Acids are one of the most crucial macromolecule types for every living
being. This class encompasses both Deoxyribonucleic Acids (DNA) and Ribonu-
cleic Acids (RNA). The chemical composition of both acid types is quite similar;
the main building brick in both cases is nucleotide composed from a phosphate
group, a pentose sugar (2-Deoxyribose in DNA, Ribose in RNA) and a nitroge-
nous base [5]. In the case of DNA, these bases are Adenine, Guanine, Cytosine
and Thymine, famously abbreviated as A, G, C and T. While the first three can be
found only in DNA, Thymine is exclusive to it and in RNA its role is substituted
by Uracil (U) instead.

Unlike the chemical composition, the spatial structure structure of DNA and RNA
is quite different. DNA is usually found in a double-stranded form arranged in
a double helix, where the two strands are ’zipped’ together via hydrogen bonds
between the nitrogenous bases in an antiparallel manner (Figure 1.1). The orien-
tation of each strand is determined by the sugars it presents - the 5’ end of the
strand directly branches from 5-th atom of 2-Deoxyribose. Since a given nitroge-
nous base has only limited number of pairing partners with which it can create
sufficiently strong hydrogen bonds, the DNA adheres to base-pairing rules. RNA,
on the other hand, is much shorter and can be found mostly in single stranded
form, which is similarly oriented by Ribose (Figure 1.2). The base-pairing also
applies to the RNA, though the pairs can be created within the same molecule
or with other independent RNA, DNA or proteins [69]. In the case of RNAs, the
so-called non-canonical base pairs, not respecting the usual base pairing rules,
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can also occur [26]. Consequently, the combination of intramolecular interactions
offers a variety of structures an RNA molecule can adopt.
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Figure 1.1: A planar representation of chemical structure of double-stranded DNA.
Each strand is a chain of nucleotides, connected by phosophodiester bond and com-
posed of Phosphate (purple), 2-Deoxyribose (black) and a nitrogenous base. The base
has four main variants - Adenine (A, green), Guanine (G, Yellow), Cytosine (C, Blue) and
Thymine (T, brown). The two strands are held together by hydrogen bonds between ni-
trogenous bases following the base-pairing rules. The 5’ end and 3’ end are determined
by the orientation of the 2-Deoxyribose.

The structure of DNA and RNA also projects into the functions they can per-
form. The stability of the double helix of DNA [95] allows it to serve as a cellular
memory - it stores the genetic information within the cellular nucleus and that
information is replicated and propagated on the successor during cell division.
In the case of RNA, people often think that its main function is the transfer of the
information contained within the DNA to the molecular machinery that assem-
bles the proteins - ribosomes [19]. However, besides these RNAs, also known as
messenger RNAs (mRNA) there is a wide variety of its other types with equally
wide array of functions other than information transfer; since these RNAs do
not encode proteins, they are called non-coding RNAs (ncRNA). Their function
can vary from structural, including but not limited to ribosomal RNA (rRNA)
and transfer RNA (tRNA), to catalytic and regulatory functions such as the ncR-
NAs involved in CRISPR-Cas9 system [80]; RFAM database currently stores an
information about 2687 functional RNA families [52]. The function of an RNA
depends mainly on its structure, which is determined by the sequence and base-
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pairing rules, and consequently the structure of such sequence is often strongly
conserved [107]. This, along with the functional versatility, motivates the studies
aiming at modeling the structure of RNA.
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Figure 1.2: A planar representation of chemical structure of single-stranded RNA.
In this case, the sugar (black) is ribose and Uracil (U, orange) substitutes Thymine (T,
brown).

The first methods of studying the secondary structures were empirical, which be-
came standard over the years of their application. Such methods include nuclear
magnetic resonance (NMR) [89], X-ray crystallography [106] and cryo-electron
microscopy [36]. Since such methods of finding an RNA structure are rather
costly, complex and/or slow, with the advent of computational technologies it
became tempting to exploit them to predict these structures. However, the task
is not as simple as it may seem. First, when computing the structures the one
with the lowest energy is considered the functional one. The reason for such as-
sumption is that such structure is, under the conditions of thermodynamic equi-
librium, where the system does not evolve anymore, considered the most stable,
as it presents the global optimum. In reality however, this is not always the case.
Instead, it might be a locally optimal structure where the RNA remained ’stuck’
during the process of the creation of the structure, also known as RNA folding.
These structures act as kinetics traps due to them being stabilized by sufficiently
high energy barriers meaning high energy is needed to escape them [28]. Another
possibility is that the half-life of some RNAs is too short [91] and the molecule
decays before it had enough time to reach the most stable structure. Second,
some RNAs present more than one active structure, such as riboswitches, where
the second structure is formed only in presence of certain ligand or during co-
transcriptional folding when some of bases are not accessible [40]. This implies
that merely studying the globally optimal RNA structure may not be sufficient
to understand its relation with function. Rather, it is necessary to study also the
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so-called suboptimal structures - those with close but higher energy than the pos-
sible minimum, and also structural dynamics - simply stated the kinetics of RNA
structures. Due to a number of structures that increases exponentially with the
length of the RNA sequence [111], exhaustive analysis in unrealistic, and it is nec-
essary to select few representative structures that have high probability of being
an active structure. This is the main motivation for the development of methods
relying on statistical sampling.

While the decomposition algorithm that would become the basis and standard
for the statistical sampling of secondary structures was discovered back in 1984,
it took almost twenty years to establish the first stochastic sampling method. That
was done by Y Ding and Charles E. Lawrence in 2003 [27]. These methods sample
the structures by computing their probability according to the given distribution
by decomposing these structures and sampling their local elements [57]. Such
sampling can be also done for a specific class of secondary structures, such as
locally optimal ones.

Today, many sampling methods are available and can be used to retrieve the most
interesting secondary structures according to given criteria. Unfortunately, most
of them do not distinguish whether the structure they sample was generated
before - they return it whether it was never sampled before, or it was already
observed ten times. These repetitions are generally uninformative as shown by
methods that partially remove them [53], and the time used to sample repeated
structures might be used instead to sample the previously unseen examples that
provide new information. The method sampling unique secondary structures
would allow to cover the space of secondary structures much quicker. This can
be used for faster and easier access to structures that have usually low probability
of being sampled in the given distribution but might have biological significance,
such as in the case of transitive structures [21], but also for the generation of a
richer space of secondary structures to, for example, propose more accurate mod-
els of the RNA energy landscapes. For this reason, we asked whether there was
a way to prevent such repeats, a method that is mainly, but not necessarily only,
applicable in the domain of the structural RNA bioinformatics.

The main question is whether such approach can be performed in an efficient
manner. Since the non-redundant sampling principle necessitates to perform sup-
plementary computations and necessitates more information than the usual, re-
dundant sampling approach [60], it will obligatorily consume more time. There-
fore, such method must be as optimal as possible so the gain from the non-
redundancy outweighs the added cost, which must be reduced to minimum. It
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must be also easy to implement to all existing secondary structure sampling al-
gorithms, meaning it should constitute a separate layer that is added to the algo-
rithm to which the non redundant principle is implemented.

The work presented within this PhD answers all of the above questions and
demonstrates the utility of such approach. Namely, we show how the non-redundant
sampling can be used to access more precise prediction of the RNA energy land-
scapes, and to estimate more precisely the statistics related to their population.

1.2 The Plan of This Work

In this Section, we briefly remind the history of nucleic acids before introducing
the basic concepts such as the levels of the structure. This is quickly followed
by the Section 2, which elaborates on state-of-the art methods. After introducing
notions and concepts necessary to understand this document as well as the no-
tion of dynamic programming, we detail the algorithms employed in structural
RNA bioinformatics that were crucial for our work. In this section, we also intro-
duce a formalization of dynamic programming schemes. Such formalism helps
us to generally demonstrate the properties of all algorithms that can be formal-
ized and show the general compatibility with non-redundant sampling principle
presented in the next chapter. Finally, we describe the state-of-the-art in RNA
kinetics as well as the description of the modeling processes we employed.

We start Section 3 by describing the combinatorial algorithm that served as our
starting point, called Algorithm of Saffarian [85], as well as justifying this choice.
We explain its modification to compute the energies of structures it returns. We
then pass on the principle of non-redundant sampling and how it can be imple-
mented into the algorithm. The next part of the chapter describes the experi-
ment of modeling the RNA kinetic landscape from the generated samples by this
and competitor algorithms. We close this chapter by describing how the non-
redundant sampling principle can be implemented into other existing algorithms
while demonstrating it on the implementation into VIENNARNA library [58], fol-
lowed by the comparison of its performance with the basic version.

The Section 4 concentrates of statistical analysis of non-redundant sampling algo-
rithm. The loss of the frequency due to non-redundancy means that the compu-
tation of an average of given property cannot be achieved naively by computing
the weighted average. This problem was solved in collaboration with Christelle
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Rovetta by establishing a non-trivial, unbiased estimator. The details of it, as well
as the experiment where we compare it with the naive variant, are described here.

In Chapter 5, we introduce the sampling algorithm for the secondary structures
including H-type pseudoknots. This chapter explains the algorithm used in soft-
ware pknotsRG [81], also extended and employed in pKiss [50], to which our
algorithm is an extension,as well as the reasons why we decided to extend this
algorithm. We then present the preliminary results obtained as well as the future
extensions, including using the non-redundant sampling principle.

In the Section 6, we summarize the contributions of non-redundant sampling
principle and we discuss of their importance within and outside the field of struc-
tural RNA bioinformatics. This Section also serves as the conclusion, and includes
a discussion of the future steps to advance the research presented here.

1.3 Nucleic Acids: A Look to the Past

1.3.1 The Discovery of Nucleic Acids

The discovery of nucleic acids, or more precisely of the DNA, dates back to 1869,
when Friedrich Miescher discovered inside human leucocytes a substance that
differed from proteins by its properties - he called it ’nuclein’ [110, 22]. The name
was later changed by Richard Altmann to nucleic acid due to acidic properties
the substance exhibited [23]. Between 1885 and 1901, Albrecht Kossel and his
students then identified five organic compounds present in nucleic acids; these
later turned up to be nitrogenous bases. He also inferred that nucleic acids are
most likely implicated in the synthesis of new tissues.

The differences between RNA and DNA were not apparent at the time of their
discovery and at first they were called by their source of origin - DNA was known
as the thymus nucleic acid [56] and RNA as the yeast nucleic acid [55], and if it
was thought they were exclusive to animals and plants respectively. The key
discovery was made in 1933 by Jean Brachet who has shown that the DNA was
localized in chromosomes of every cell [11]. Likewise, he has shown that the RNA
could be found in cytoplasm of every cell independently of its source.

Around the same time, Phoebus Levene studied the chemical composition of nu-
cleic acids. His analysis revealed the chemical structure of each nucleotide, the na-
ture of sugars as pentoses, the presence of phosphates and the fact that thymine
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and uracil are exclusive to DNA and RNA respectively [43]. He also supposed
that the DNA is composed from repeated tetranucleotide units interconnected by
phosphate ester-sugar bonds. In 1944 Oswald Avery, Colin MacLeod and Maclyn
McCarty performed a modified version of Griffith’s experiment [42, 4]. In this
version the mice were injected by rough (non-virulent) strain of Pneumococcus
bacteria and the material of heat killed smooth (virulent) strain that was previ-
ously purified and that contained DNA. The results have shown that the DNA
was the most likely responsible for bacterial transformation, and therefore it was
involved in heredity. Consequently, it also disproved the tetranucleotide theory
since it was unlikely that a mere chain of tetranucleotide repeats could contain all
needed information.

The following important discovery would be made by Erwin Chargaff near the
middle of 20th century. He discovered two tendencies within the DNA that are
today known as Chargaff’s rules [30, 17]. The first discovery was that the content
of Thymine and Adenine were equal, as well as that of Guanine and Cytosine. In
other words %A = %T and %C = %G. This also definitely invalidated the tetranu-
cleotide theory of Levene since not all nucleotides were found in equal propor-
tions. The second was that these percentages were specific to species. From here,
it was only one step towards the famous discovery made in 1953 by James Watson
and Francis Crick, who using the X-ray crystallography images of DNA obtained
by Rosalind Franklin and Maurice Wilkins created the two-strand double-helix
DNA model [12, 103]. This, along with first Chargaff’s rule, has also shown that A
pairs with T and C with G; consequently these pairs were called Watson-Crick’s.
The boom around the DNA this discovery has caused then resulted into quick
discovery of the genetic code in 1960s [71, 35, 99] and the sequencing methods
about dozen years later [86].

1.3.2 mRNA and ncRNA, and the discovery of the secondary structure

The discovery of DNA structure has shown that it is very unlikely that DNA itself
would be directly transcribed to proteins. The experiments of Jean Brachet in
forties of 20th century suggested that the RNA is related to protein synthesis [11].
This led to Crick to postulate, in 1957, his Central Dogma of Molecular Biology [19]
that suggested that RNA is the intermediate for passing the information from the
DNA in nucleus to the center of protein synthesis in cytoplasm. This was later
confirmed by the discovery of lac operon of E. Coli and experiments performed on
them by Jacques Monod and Francois Jacob [70]. The unstable RNA they found
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has become known as messenger RNA (mRNA) since then. This finding however
opened a can of new questions like what the intermediate molecule that associates
the genetic code to the correct amino acids is and of course the protein synthesis
machinery itself. This led to the discovery of the first classes of the non-coding
RNAs (ncRNA).

The ribosomes, the center of protein synthesis, are themselves constituted from
a special subclass of ncRNAs - ribosomal RNA (rRNA). It was first observed in
1938 by Albert Claude [75] as a cytoplasmic masses he called microsomes, even-
tually identified as ribosomes by George Palade [74]. The transfer RNA (tRNA)
- the link ensuring the correspondance between the genetic code and the amino-
acids - was theoretically assumed by Crick. It was confirmed by Robert Hol-
ley et al when he reported a 77 nucleotides long sequence of yeast alanine tRNA
along with suggestions of secondary structure for it in 1964 [47]. The last point is,
within the context of this thesis, particularly important because it demonstrates
how ncRNAs, to which tRNA and rRNA belong, need specific structure to per-
form their function. It was then no surprise that a number of methods to identify
these structures, first empirical like X-ray Crystallography and Nuclear Magnetic
Resonance (NMR), later computational predictions, emerged. This thesis concen-
trates mainly on efficient computational prediction of RNA secondary structures
and their kinetics.

1.4 A Structural Intermezzo - Levels of RNA structures

Before moving on towards the state-of-the-art in RNA energy computation and
secondary structures prediction, it is necessary to precise what an RNA secondary
structure is. That is the main objective of this subsection.

As already mentioned, RNAs consist of nucleotides (or ribonucleotides) A, G, C
and U, which substitutes T from DNA. Each nucleotide consists of a nitrogenous
base (from which the nucleotide gets its letter), Ribose and phosphate group. Ni-
trogenous bases can be also divided into Purines, denoted R, that have two hete-
rocycles (Adenine and Guanine, see Figure 1.3), and Pyrimidines, with symbol Y,
that have only one (others). A group of only nitrogenous base and Ribose is called
ribonucleoside. Nucleotides are connected by phosphodiester bond between 3rd

and 5th atom of Ribose 5-phosphate, from which the 5’ end and 3’ end orientation
comes. Unlike DNA, RNA is mostly found in single-stranded form.
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Figure 1.3: The five nucleotides occuring within nucleic acids. Thymine does not occur
within RNA while Uracil is specific to it.

Depending on the types of non-covalent interactions that are taken into an ac-
count, we distinguish four levels of structures of RNA. The first three are also
exemplified on Figure 1.4

• RNA Primary Structure: No non-covalent bonds are considered. In other
words, this is the sequence of nucleotides. An example of a primary struc-
ture is given on Figure 1.4A. This structural level is the most important for
the mRNAs since they contain the information translated into proteins, but
the higher-grade structures depend on it as well.

• RNA Secondary Structure: Only hydrogen bonds between nucleotides are
taken into an account. Basically, the secondary structure is the set of base
pairs that is present for given conformation of specific RNA. An example of
such structure is given on Figure 1.4B. This level of structure is the main
point of interest of this thesis.

The RNA secondary structure depends on a specific set of base pairs that
is considered for given sequence. The principle of base pairs is hydrogen
bond type of interaction between the nucleotides. Not every base pair can
create these bonds. The usually considered base-pairs are those discovered
by Watson and Crick in DNA - the pairs between A and U and C and G [103].
The G - C pair is stronger [92] due to, if we simplify enough, three hydro-
gen bonds instead of two that are formed between A and U (see Figure 2.1).
Hence the stability of the RNA secondary structure is also considered by
the number of G - C pairs, though by all means that is far from the only
criterium. There are also other types of base pairs that are called ’wobble’.
These pairs were predicted by F. Crick [20] due to the fact that while there
are 64 codons, the number of corresponding tRNAs is lower [16], and con-
sequently some of anticodon sites on some tRNA molecules have to pair
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with more than one nucleotide. Most of wobble base pairs include a spe-
cial nitrogenous base, hypoxanthine, that is created by post-transcriptional
modification of adenine in tRNA [96]. Since that base is omitted within the
work, we will consider, in addition to Watson-Crick base pairs, the only
wobble base pair not including hypoxanthine, a base pair G - U (Figure 2.1,
right).

In the RNA structures, there are also non-canonical base pairs that do not
adhere to base pairing rules [26]. We will not consider them here.

For the rest of this work, when talking about the secondary structures, we
refer to the RNA secondary structures, unless noted otherwise.

• RNA Tertiary Structure: All intramolecular bonds are considered. That
includes, besides hydrogen bonds between nucleotides, also hydrophobic
effects and disulfide bonds. These forces give an RNA molecule a specific
tridimensional structure. To have an idea of difference between secondary
and tertiary structure, in the case of DNA, the latter is the typical double-
helix form, while its secondary structure would be merely a ’ladder’. An
example of a tertiary structure is given on Figure 1.4C.

Like in the case of the secondary structures, there is an ongoing work on
computational prediction and modeling of tridimensional RNA structures.
Some are based on fundamental laws of physics, such as Molecular Dynam-
ics, which describes the forces between different particles of RNA molecule
by a set of parameters called the force fields [64]. Such methods are accurate
but slow. Simplifications to such models can be made using experimental
data, but these experimental data can be hard and expensive to obtain.

The RNA secondary structure is easier to predict than the tertiary structure
due to the fact that the number of interactions to predict is lower. Neverthe-
less, it already provides a good basis for functional hypotheses, as exempli-
fied by the regulation of tryptophan production on trp operon in E. Coli [29].
For this reason we decided to concentrate on the kinetics and prediction of
RNA secondary structures. The higher level structures will not be devel-
oped further here and are only mentioned for the sake of completeness.

• RNA Quarternary Structure: In addition to the above, the intermolecu-
lar bonds are considered. This level of structure also requires the study of
RNA-RNA, RNA-DNA and RNA-protein interaction.
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Figure 1.4: The three levels of RNA structure. The primary structure (A) is essentially
a chain of nucleotides. The secondary structure (B) also includes the hydrogen bonds
between the nucleotides according to valid base pairing rules. The tertiary structure (C)
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The secondary structure taken from RNA STRAND [2] and visualized by VARNA [25].
The tertiary structure created by PYMOL [87].
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Chapter 2

RNA secondary structure
prediction - What has been done

2.1 Notions related to the RNA secondary structures

Before we start dwelling deeper into the realm of RNA sequences and secondary
structures, we must establish the basic notions that will be used in this work.

Definition 2.1.1 (Sequence): An RNA sequencewww is a chain of nucleotides
of length n over the alphabetΩ = {A,C,G,U}.

We do not consider any other symbols outside the grammarΩ.

Definition 2.1.2 (Substring): A substring ofwww from position i to position j
(j ≤ i ≤ j ≤ n) is denoted as w[i, j]. A nucleotide at position i, i ∈ [1, n] is
marked as w[i], w[i] ∈ Ω.

RNAs treated here are strictly linear, with 5’ end being on its left side. The nu-
cleotides can form a different base pairs within the sequence.

Definition 2.1.3 (Base pair): A base pair is a pair of nucleotides at position
i and j, i < j. It is denoted by (i, j).

For given sequence, many different base pairs can be formed.
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Definition 2.1.4 (Base pair set): The set φpair(w)φpair(w)φpair(w) is the set containing all
possible base pairs (i, j) for a sequence w. Each base pair (i, j) must satisfy
the following conditions:

• Each (i, j) must be Watson-Crick or wobble base pair, ie.

(i, j) ∈ {{A,U}, {C,G}, {G,U}}.

• w[i] and w[j] must be separated by at least θ base pairs:

j− i− 1 ≥ θ.

The minimum base pair length comes from the steric strain that forbids the base
pairing of nucleotides way too close one to another.

Each sequence w can form a certain subset of all possible base pairs φpair(w) at
any given moment. This applies to its substrings w[i, j] as well.

Definition 2.1.5 (Secondary structure): An RNA secondary structure, or
simply secondary structure S(i, j) is a set of base pairs (a, b)(a, b)(a, b) within a sub-
string w[i, j] (∀a, b, i ≤ a < b ≤ j). We have, ∀i, j, S(i, j) ⊆ φpair(w). The
secondary structure of entire sequencewww is denoted by S(1, n) = S.

From this point on, we refer an to RNA secondary structure as a secondary struc-
ture or just structure unless noted otherwise.

Throughout this work, we may refer to the secondary structures smaller than n
and with undefined limits.

Definition 2.1.6 (Secondary structure with unspecified length): A sec-
ondary structure s is a structure with unspecified, resp. implicitly specified
w[i], w[j] and n.

Within the same S(i, j), each base pair has to follow, in addition to the require-
ments from the Definition 2.1, the following conditions:

• One nucleotide can participate at most in one base pair at the same time.
This means that if (i, j) ∈ S, ∀k 6= j, (i, k) /∈ S, (j, k) /∈ S.
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• At first, we consider for any base pairs (i, j) ∈ S, (k, l) ∈ S with i < k that
either i < k < l < j or i < j < k < l, ie. one base pair cannot cross another.
At later point, in Section 5, we will also investigate some structures that
include crossing base pairs.

If S = ∅ (ie. all of bases within the sequence are unpaired), the RNA sequence is
called unfolded.

Definition 2.1.7 (Space of secondary structures):
Given an RNA sequence w, we define by S, the space of secondary struc-
tures, a set of all possible secondary structures of any length. The space
Sn is a space of n-sized secondary structures observed for www. Each is
composed of base pairs from φpair(w). Similarly, S(i, j) the space of all
secondary structures S(i, j) for w[i, j].

2.2 Representation of RNA secondary structures

A secondary structure can be shown in various ways. Each of them has its advan-
tages and weak points. The representations used throughout this work are listed
here along with an example on Figure 2.2.

• Radial representation (2.2A): The paired segments are represented by a
rectangular ladder-like structure while the unpaired segments are organized
in circles from which the paired regions branch. In the case of a linear RNA,
its unpaired base can be represented linearly or in a circle. This visualiza-
tion clearly depicts different local substructures (see Section 2.4.2), facilitat-
ing to understand its function. On the other hand, it badly handles the cases
where base pairs cross. It is good to be used when one needs to explain the
function of a secondary structure.

• Circular representation (2.2B): The (linear) RNA is represented in a circular
pattern, base pair being represented by a line or an arc. It has no problem
to depict crossing base pairs but it is much harder to interpret. This type of
secondary structure will not be employed in this work.

• Linear representation (2.2C): The RNA is shown as a line, and base pairs
are depicted by arcs connecting the concerned nucleotides. This representa-
tion can be used to compare two different structures each drawn from other
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side of line. It is also an easy way to depict and explain the recursions of
secondary structure prediction algorithms, which is main use of this visu-
alization here. However, it might be a bit harder to interpret, especially for
long-range interactions.

• Dot-bracket notation (2.2D): This is the textual representation of secondary
structure with specific symbols. A dot ’.’ indicates an unpaired base, and
a base pair is represented by brackets ’(’ and ’)’. The correspondence of
opening and closing brackets works in the same manner as in math; six
opened brackets must be closed by six closing brackets and the last bracket
opened it the first one that is closed. In the case of crossing base pairs,
one of the crossing base pairs can be denoted by square bracket possibly
followed by a letter, ie. ’[’- ’]’ or ’[A’-’]A’. This format is hard to interpret
by human, though there is a visualization software that can depict the re-
lated secondary structure, such as VARNA [25]. Its main purpose is to be
machine-readable, which is why it became a standard input and output for-
mat for RNA secondary structure prediction software.
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Figure 2.1: The main base pairs occuring within the RNA. These base pairs consist of
hydrogen bonds (red dashed lines) between the atoms of nucleotides. The Adenosine -
Uridine (left) and Guanosine - Cytidine(center) base pairs are also called Watson-Crick.
The Guanosine-Uridine (right) base pair is also called wobble and is less frequent due to
slightly lower energy.

2.3 Combinatorics of RNA secondary structures

First methods used to find the RNA secondary structure and structures in general
were empiric. Even the discovery of double helix of DNA resulted from an X-ray
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Figure 2.2: An example of RNA secondary structure and its different elements shown
using different representations: radial (A), circular (B), linear (C) and dot-bracket (D).
The different elements are an external loop (cyan), hairpin (red), stem/helix (blue), an
internal loop (grey), a bulge (white) and a multibranched loop (yellow). Representations
A-C were created using VaRNA [25].

crystallography picture [12]. However the crystallography is impossible if the an-
alyzed substance does not crystallize. The NMR does not have similar problems,
and unlike for proteins, the length of the molecule is not a limit either due to the
RNA being shorter molecules. However, NMR and other experimental methods
to determine the structure of RNA such as the X-ray crystallography and cryo-
genic electron microscopy have complicated protocols that require some time to
prepare and they are expensive even today [10]. Therefore with the advent of
computational technology the attention turned to the computational prediction
of the molecular structure, where the possibilities to make it cheap and more effi-
cient are much larger.
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2.3.1 The number of secondary structures

To predict a secondary structure, it is necessary to have a mathematical or combi-
natorial description of properties that such a structure has. This property has to
be possible to be evaluated by a score, computed by appropriate scoring function
S.

Definition 2.3.1 (Scoring function): We call a scoring function a function
that to each S ∈ S, associates a certain score:

S : S → R

In the case of RNA, S usually computes a free energy. The lower energy of the
structure means the better stability of the final secondary structure and hypothet-
ically this one is the most likely structure to be the functional one.

The first approaches of energy computation were simply based on a number of
base pairs within the considered secondary structures, without any distinction
between stronger G-C, weaker A-U and wobble G-U pairs. The decomposition
method - necessary to establish an evaluation function - was introduced by Tem-
ple F. Smith and Michael S. Waterman [102, 101] to compute the number of pos-
sible secondary structures. In principle, each base is, under the restriction de-
fined in Section 2.4.2, either unpaired, or paired to some other base. With this
in mind, if we suppose a substring w[i, j], then j is either unpaired, or paired to
some k, i ≤ k < j − θ, θ implying the minimum base pair length. In the first
case, the number of the secondary structures is equal to those of the substring
w[i, j−1]. In the second case the pair (k, j) generates two new intervalsw[i, k−1]
andw[k+1, j−1] (see Figure 2.3). The same principle is then reapplied recursively
to each new interval until j− i− 1 ≤ θ.

Let NdS(i,j) be the number of secondary structures of w[i, j] having exactly d pairs.
The recursive relation given by Smith and Waterman algorithm is:

Nd+1
S(i,j) = N

d+1
S(i,j−1) +

j−θ−1∑
k=i

d∑
u=0

NuS(i,k−1) ×Nd−uS(k+1,j−1) (2.1)

Here the first component of the right-hand side part of this equality is the case
where i is unpaired, and the second component, with the double sum, is the case
where j is paired with some k. Note that for w[i, j] | j − i − 1 ≤ θ no base pair is
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possible and every nucleotide must stay unpaired. Therefore,

∀{i, j | j− i− 1 ≤ θ}, N0S(i,j) = 1

and
∀{i, j, d, j− i− 1 ≤ θ, d > 0}, NdS(i,j) = 0.

Let NS(i,j) = card(Sn(i, j)) be the number of secondary structures of w[i, j], or
in other words, NS(i,j) =

∑n
d=0N

d
S(i,j), n being an upper limit of d. In a similar

manner, by generalizing the decomposition from Figure 2.3, we get:

NS(i,j) = NS(i,j−1) +
j−θ−1∑
k=i

NS(i,k−1) ×NS(k+1,j−1) (2.2)

Here
∀{i, j | j− i− 1 ≤ θ}, NS(i,j) = 1.

The computation of the number of the secondary structures is then simple. First
we pre-compute all values of NS(i,j)1 ≤ i < j ≤ n in a manner the the shorter
sequences are precomputed first and store them in a two-dimensional matrix.
The final value is stored within NS(1,n). The time complexity of the algorithm is
O(n3) since n2 entries must be treated and for each n options exist at most. The
space complexity is O(n2) due to storing n2 entries.

i j i j-1 j i k-1 k k+1 j-1 j

Figure 2.3: The decomposition of secondary structures used in Smith and Waterman
algorithm. The base j can be either unpaired or paired to some k fromw[i, j−θ−1]. Both
cases produce shorter substrings on which this process can be recursively applied.

2.3.2 About Dynamic Programming

Enumerating all possible secondary structures by simple recursive function is not
the most efficient way to handle this problem. Using the algorithm of Smith and
Waterman, Michael Zuker and David Sankoff shown that for the sequence with
uniformly distributed nucleotides the asymptotic limit for the number of sec-
ondary structures of RNA of length n is around 1.867n [111] - it raises exponen-
tially. Therefore, trying all possible combinations would result in an exponential
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complexity. This is why the approaches using Dynamic Programming (DP) are
extremely useful. DP scheme decomposes a central problem, here the secondary
structure of w, into smaller problems, here the structures of w[i, j], computing
those and using the results to solve the main problem. Each calculation is done
only once and the result stored in DP matrices whose size depends on the number
of states that have to be saved, like done by counting function from Equation 2.1.
This makes the computation much faster than a brute-force enumeration of all
possible solutions, by avoiding the repeated computation of solution to a given
problem.

The DP algorithms have to respect one main principle, called Bellman’s Principle
of Optimality [7]. To quote Bellman:

"An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision."

Translated, every intermediate solution, that leads to the main optimal solution,
must be also optimal. These are optimal solutions to given subproblems. Note
that the DP schemes might be also applied in cases where the algorithm would
give an optimal solution from non-optimal ones for given subproblems or in-
versely, where optimal solution to subproblem does not lead to an optimal global
solution, but that reduces them to a mere heuristic method.

All of the approaches used for structure prediction and mentioned here respect
Bellman’s Principle of Optimality unless noted otherwise. The core of most of
them is to decompose w into w[i, j] | 1 ≤ i < j ≤ n and solve the subproblems
for sequences of increasing length l = j − i + 1. The result for each subproblem
is computed and memorized. Consequently, the results for substrings of length
1, 2...l−1 are used to compute that for sequences of length l. The main problem is
then solved for the sequence w. The same principle can be employed to compute
suboptimal structures.

Definition 2.3.2 (Suboptimal structure): Suppose each secondary struc-
ture has a certain score S(S) and the objective is to minimize S. We call a
suboptimal structure every ST that

S(S) > min
ST∈Sn

(S(S))
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The equivalent definition can be established when maximizing S.

2.3.3 Nussinov Algorithm

The first algorithm to make use of the decomposition of Smith and Waterman, as
well as the DP, to predict a secondary structure was proposed by Ruth Nussinov
et al [72]. The function S is in this case the number of the base pairs.

The first version of the algorithm was not unambiguous, meaning that a single
structure could be decomposed in multiple ways. Here we focus on an unam-
biguous version which was also the base for the secondary structure counting
function of Waterman [102, 101].

Here each base pair has the same weight; G - C, A - U and G - U score as 1. The
final score N(1, n) gives the maximum number of the base pairs possible for w.
Let Ni,j be this number for any w[i, j]|1 ≤ i < j ≤ n, then we can formulate the
algorithm as:

Ni,j = max


Ni,j−1 if j is not paired

max
i≤k≤j−θ−1

(i,j)∈φpair(w)

(Ni,k−1 +Nk+1,j−1 + 1) if j is paired to k (2.3)

The score raises by 1 whenever k and j are paired, otherwise the score remains
unchanged. It can be generalized by replacing the bonus 1 in the case of (k, j) ∈
S(i, j) by a bonus Bk,j that varies depending on a base pair type:

Ni,j = max


Ni,j−1 if j is not paired

max
i≤k≤j−θ−1

(i,j)∈φpair(w)

(Ni,k−1 +Nk+1,j−1 +Bk,j) if j is paired to k (2.4)

Ni,j = 0 if j ≤ i + θ since the substring w[i, j] is too short for any base pair to be
created there, providing an initialization condition. From there, we can compute
Ni,j for progressively longer substrings. The values are stored in a matrix N and
reused as needed. The final result is stored in N1,n.

To obtain the structure with the maximum base pairs, we can either directly store
the base pairs as the maximum values are selected for different points, or perform
a stochastic backtrack after computing N1,n. The backtracking is done by starting
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at N1,n, finding the combination that gives us the stored value - in this case it is
either N1,n−1 or sum of N1,k−1 and Nk,n for 1 ≤ k ≤ n − θ − 1. If (k, j) is present,
it is added to the structure, and the whole process is repeated until the initial
conditions are reached. The secondary structure generated this way is the one
with maximum base pairs.

The complexity of this algorithm is O(n3) in time and O(n2) in space [72]. The
explanation is equivalent to the secondary structure counting function of Water-
man.

Further extensions added no-lone-base-pair as a constraint - no base pair can ap-
pear alone. This is because the stacks of a base pair have stronger stabilizing
effects on the structure than a single base pair due to the stacking effect of the
cycles of nitrogenous bases [76]. Despite this, the prediction results of this model
were still imprecise, and more complex approaches were necessary.

2.4 Enter the Thermodynamics

The approaches in question targeted to compute the exact free energy of the entire
secondary structure. The free energy can be described, in the context of secondary
structures, as the amount of the energy you would get/supply to the unfolded
RNA sequence for it to reach the given secondary structure. Its unit is kcal.mol-1,
the reference being an unfolded state. The most interesting structure S for given
w is the one with the lowest possible energy, called Minimum Free Energy struc-
ture (MFE).

To compute MFE, Smust be decomposed into a set of elements for which the free
energy can be computed without too much problems. Their free energy contri-
bution is then summed up, netting the final result. This also implies that the ele-
ments must be independent one from another, or depend on a context which can
be concisely described. The decomposition and the resulting elements depend on
the energy model which will be applied to compute the energies.

2.4.1 About energy models

The energy model is a model that computes the free energy of a set of specific
elements. These may vary from simple values such as the energy of G - C bond
to much more complex relations that apply only for very specific cases, such as
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loops that have exactly four unpaired nucleotides, dangling ends - interactions
between the base pair and its unpaired neighbors - and so on. Throughout this
work, we will mainly talk about and employ the Turner Energy Model [97, 98].
This energy model allows to compute the energy of the elements resulting from
the decomposition of a secondary structure into loops, as detailed in Section 2.4.2.

The Turner Energy Model consists of values that are tabulated and were directly
deduced from experimental results for smaller elements, such as the stabilities
of terminal wobble G - U pairs in consecutive base pairs [18]. The mathematical
relations for bigger substructures with more nucleotides were extrapolated from
the empiric results such as melting experiments of the RNA [88]. The energy of
each of substructure, when calculated by this model, depends on and only on
the properties of the substructure itself and of those of the adjacent substructures
such as neighboring base pairs. For this reason, this model is also called Nearest
Neighbor Turner Energy Model. This is an important property because it suggests
the independence between the distant elements resulting from the decomposition
and therefore the energy contribution of each of them can be simply summed up.
This is crucial for the design of a dynamic programming algorithm.

All successive versions of this model, including its latest installment contributed
in 2014, were implemented into VIENNARNA [58], which is the library we use
for the application of this energy model.

2.4.2 A decomposition of RNA secondary structure

There are multiple ways to decompose a secondary structure. The most simple
way was presented by Nussinov algorithm, where the only criterium is whether
the base is paired or not. For the Turner Energy Model to apply, the structures
are decomposed into an elements called loops. These can be sorted into groups
depending on their properties, and for which the energy is computed in the same
manner. This way the DP schemes can be broken down into a number of cases
depending on the element that is treated, similarly to distinguishing paired and
unpaired nucleotides in the scheme used in Nussinov Algorithm. Due to the
independence condition, the free energy E of a secondary structure S is given by:

E =
∑
l∈S
El (2.5)

where l stands for loop and El is computed by Turner energy model for l that
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depends on it and potentially on neighboring substructures.
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Figure 2.4: A loop decomposition of an RNA secondary structure. The different loops
are an external loop (cyan), hairpin (red), stem/helix (blue), an internal loop (grey), a
bulge (white) and a multibranched loop (yellow). The secondary structure was created
using VaRNA [25].

With exceptions, all loops are delimited by two types of base pairs. A single loop
can contain different branchings. The base pair of a branching that leads to the
5’ end and 3’ end of the sequence is called a closing base pair, here denoted by
(i, j), since it encloses the said loop. The pairs enclosed by loop themselves are
called opening base pairs due to them opening other loops. These are not limited
to one and they open the following substructures. Here, they are denoted (kx, lx).
The opening base pair for a given loop is also a closing base pair for the following
one. The decomposition is illustrated on Figure 2.4 and shows an example of each
using different colors.

Here we list all possible loops that can appear in secondary structure S. Each loop
has its specific energy to be computed by the Turner Energy Model (See Section
2.1 for definitions).

• An external loop. It defines the branches and unpaired nucleotides that are
not enclosed by any base pair. Consequently, there is no closing base pair
in an external loop - they are delimited by w[1] and w[n]. There is only one
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external loop per sequence. On radial representation, it is the linear base
(cyan on Figure 2.4). It also contains one or more opening base pairs (kx, lx)
for following substructures unless w is unfolded.

• A hairpin. A stretch of unpaired nucleotides delimited by a single closing
base pair (i, j). It does not branch any further and consequently it repre-
sents a terminal point for given branching (red on Figure 2.4). Its energy is
denoted by EH(i, j).

• A stem. A set of consecutive base pairs (i, j) and (i + 1, j − 1) = (k, l) - a
closing base pair is immediately followed by opening base pair. A multiple
consecutive stems form a helix (blue on Figure 2.4).

Definition 2.4.1 (Helix): We call byH(i, j, lh)H(i, j, lh)H(i, j, lh) a helix consisting of the
base pairs (i, j), (i+ 1, j− 1) . . . (i+ lh− 1, j− lh+ 1) where lh is the
length of H(i, j, lh) and i + 2lh − 2 + θ < j. There cannot be any
unpaired base within w[i, i+ lh− 1] and w[j− lh+ 1, j].

Stems have stabilizing effect on the secondary structure, therefore a single
base pair is a rather rare occurrence. Its energy is denoted by ESt(i, j).

• An internal loop. A set of two strands of an unpaired nucleotides (i, j) and
(k, l). The two unpaired strands must have the same length, or j− l = k− i
(grey on Figure 2.4).

• A bulge. Similar to the internal loop, except the unpaired stretches are not
of the same length α and β (white color on Figure 2.4). The energy by the
Turner Energy Model is computed in the same manner for both internal
loop and bulge, so for both cases we note EIL(i, j, k, l). In some cases a stem
is also considered as a specific case of an internal loop with α = β = 0. In
that case we note EILG(i, j, k, l) such that

EILG(i, j, k, l) =

ESt(i, j) if k = i+ 1 and l = j− 1

EIL(i, j, k, l) otherwise

• A multibranch loop. Multiple stretches of unpaired nucleotides delim-
ited by single closing base pair (i, j) and at least two opening base pairs
(kx, lx), x = 1..a, a ≥ 2 (yellow on Figure 2.4).

The energy computation of multibranch loops of the secondary structure
is the most delicate part that would result into an exponential complex-
ity of the associated DP scheme. An energy of a multibranch loop, here
denoted EM(i, j), depends on many factors such as the types of opening
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and closing base pairs and the number of branchings along with other de-
pendencies. However, it can be reasonably approximated by a simplified
Jacobson-Stockmayer expression [48, 51]:

EM(i, j) = a+ bNbranch + cNunp (2.6)

where a is the penalty for the creation of the multibranch loop, b for each
unpaired base it contains, c the penalty for each branch within it, and Nunp
and Nbranch the number of unpaired bases and branches within the multi-
branch loop respectively. The values of a, b, c are supposed to be constant.
This way it is possible to decompose a multibranch loop into separate he-
lices and compute EM(i, j) by summing up all contributions/penalties. For
this reason most of MFE prediction algorithms employing Turner Energy
Model use such linear approximation.

We also mention the type of an element that is not treated here due to the restric-
tions on structures but is addressed later in this work - a pseudoknot.

Definition 2.4.2 (Pseudoknot): A pseudoknot is a structure that contains
at least two pairs (i, j) and (k, l) such that

i < k < j < l.

In other words a pseudoknot consists of crossing base pairs. There are different
types of pseudoknots of increasing complexity [82]. Due to the fact the intro-
duction of pseudoknots into a secondary structures vastly increases their number
and searching for the pseudoknots with the vastest definition is proved to be an
NP-complete problem [1, 61], they are omitted in the first part of this thesis. Later,
we focus on an algorithm that treats an H-type class of pseudoknots, a problem
that can be reduced to a polynomial complexity.

2.4.3 Zuker Algorithm

The first algorithm that made the use of this decomposition alongside the Turner
Energy Model was introduced by Michael Zuker et al [112, 111, 62]. Unlike Nussi-
nov algorithm, it looks for minimum free energy secondary structure. The de-
composition of a secondary structure S in loops necessitates the scoring function
S being decomposed in three values for every w[i, j]:
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• Wi,j - the minimum possible energy for S(i, j)

• Vi,j - the minimum possible energy for S(i, j) | (i, j) ∈ S(i, j)
• WMi,j - w[i, j] is contained within a multibranch loop and contains at least

one helix

The algorithm itself is given by:

Wi,j = min

 Wi,j−1

min
i≤k≤j−θ−1

(Wi,k−1 + Vk,j)

Vi,j = min



EH(i, j)

ES(i, j) + Vi+1,j−1

min
i<k<l<j
k≤l−θ−1

(EIL(i, k, l, j) + Vk,l)

min
i<k<j

(WMi,k−1 +WMk,j + a)

WMi,j = min



WMi,j−1 + c

WMi+1,j + c

Vi,j + b

min
i<k<j

(WMi,k +WMk+1,j) .

(2.7)

where a, b, c are constants and EH, ES, EIL are loop energies as defined in Section
2.4.2. ForWi,j,w[j] is either unpaired or paired to somew[k] | i ≤ k ≤ j−θ−1. For
Vi,j, either everyw[k] | i < k < j is unpaired and (i, j) forms hairpin, (i+1, j−1) ∈
S(i, j) forms a stack, (k, l) ∈ S(i, j) with i < j < k < l creates a bulge or internal
loop orw[i, k−1] andw[k, j] contain each at least one base pair and therefore form
a multibranch loop. VMi,j might have either w[i] or w[j] unpaired (i, j) ∈ S(i, j)
or it can be split into two another helices. For VMi,j, we add the penalty c for
each unpaired base found, and b every new base pair. The entire decomposition
is illustrated on Figure 2.5.

The initialization condition is is ∀{i, j | j ≤ i + θ},Wi,j = Vi,j = WMi,j = 0 due
to w[i, j] being too short. Each step solves and stores the results of Wi,j, Vi,j and
VMi,j in three separate DP matrices by increasing length. At the end, the MFE is
given by W1,n, the precise secondary structure being obtainable either by memo-
rizing the pairs that contributed to the MFE or by traceback fromW1,n.
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Wi ,j
i j i j-1 j i k-1 k j

Vi ,j
i j i j i i+1 j-1 j i k l j i i+1 k k+1 j-1 j

WMi ,j
i j i j-1 j i i+1 j i j i k k+1 j

Figure 2.5: The principle of Zuker Algorithm. Wi,j, Vi,j and WMi,j represent the min-
imum energy of a structure S a substring w[i, j] can form, the minimum energy of S(i, j)
can form if (i, j) ∈ S(i, j), and a minimum energy section of a multibranch loop with at
least one helix respectively. Wi,j: for a given substring w[i, j], j can be either unpaired
or paired to some k such that i ≤ k ≤ j − θ − 1. Vi,j: if (i, j) exists, it can enclose only
unpaired bases, a pair (i + 1, j − 1), a single or multiple base pairs. VMi,j: The first of
last base can be unpaired, (i, j) ∈ S(i, j) or it can contain more helices, in which case the
substring is split in two by k.

One of major tools used for secondary structure prediction and structural anal-
ysis, VIENNARNA library [58], uses a variant of Zuker algorithm. The modifi-
cation touches notably multibranch loops, where a new scoring function M1

i,j is
introduced and WMi,j is replaced by Mi,j. While the first M1

i,j contains exactly
one helix of multibranch loop withinw[i, j],Mi,j can contain more of them (but at
least one). The algorithm itself, also depicted on Figure 2.6 is follows below.

Fi,j = min

 Fi,j−1

min
i≤k≤j−θ−1

(Fi,k−1 + Ck,j)

Ci,j = min



EH(i, j)

min
i<k<l<j
k≤l−θ−1

(EILG(i, j, k, l) + Ck,l)

min
i<k<j

(
Mi+1,k−1 +M

1
k,j−1

)
+ a+ b

Mi,j = min


min
i<k<j

(
c× (k− i) +M1

k,j

)

min
i<k<j

(
Mi,k−1 +M

1
k,j

)

M1
i,j = min

{
M1
i,j−1 + c

Ci,j + b
(2.8)

Here the multibranch loop get split into the last helix M1
k,j and the rest Mi,k−1.
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Mi,k−1 can contain either multiple helices or one helix preceded by a stretch of
unpaired nucleotides. M1

k,j might contain unpaired bases at its w[j] end. Fi,j and
Ci,j are equivalent to Wi,j, respectively Vi,j from the base version. The initializa-
tion remains unchanged, ie. ∀i, j, j ≤ i+ θ, Fi,j = Ci,j =Mi,j =M

1
i,j = 0. F1,n gives

the free energy of the MFE for w.

The complexity of both algorithms is O(n4) in time and O(n2) in space. The
limiting step is the evaluation done for the internal loops/bulges, which has four
different parameters i, j, k, l, hence the O(n4) complexity. This complexity can
be reduced to O(n3) if the maximum length of its unpaired stretches α and β
is limited [66], though some modifications succeeded to reduce it without said
restriction using some further assumptions on the energy model within internal
loops [63].

In the rest of this work, we will reference this version of the algorithm as VZu
(VIENNARNA-Zuker) algorithm.

Fi ,j
i j i j-1 j i k-1 k j

Ci ,j
i j i j i k l j i i+1 k-1 k j-1 j

Mi ,j
i j i k-1 k j i k-1 k j

M1
i ,j

i j i j-1 j i j

Figure 2.6: A variant of Zuker (VZu) algorithm used in VIENNARNA library. Fi,j

and Ci,j are functionally identical to Wi,j, respectively Vi,j from the original version of
Turner’s Algorithm. Mi,j andM1

i,j score the section of a multibranched loop withinw[i, j]
containing at least one helix and exactly one helix respectively. Mi,j is split to a section
that contains exactly one helix possibly preceeded by unpaired bases and another that is
either completely unpaired or contains at least one another helix. M1

i,j contains one helix
potentially followed by unpaired bases.
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2.5 From RNA thermodynamics to kinetics

MFE computations allow us to assess which structure is the most stable. How-
ever, it may not necessarily correspond to the empirically observed functional
structure. This may result from the approximations made in Turner Energy Model
to simplify the computation, such as approximating the free energy of multi-
branch loops in Equation 2.6. This may cause the MFE to be a different structure
in reality, though usually with the similar energy.

Another possibility is that before MFE can form, the RNA sequence stays trapped
in secondary structure that has lower energy that the neighboring structures.

Definition 2.5.1 (Neighboring structure): We call a neighboring sec-
ondary structure of S a structure that differs from S by one base pair, in-
cluding base pair shifts or for breaking and recreating a base pair with at
least one common nucleotide. The space of neighbors of S is denoted as VS.

The definition of locally optimal structure follows.

Definition 2.5.2 (Locally optimal structure): We call a locally optimal
structure a structure S for which

S(S) < min
Sx∈VS

(S(Sx)).

These structures can act as potential kinetic traps, with significant impact on the
process of the formation of secondary structure.

Finally, one sequence can have more functional structures, as in the example of
riboswitches [77], so finding a single MFE will not find the so-called metastable
structure. Sometimes the metastable structure results from co-transcriptional fold-
ing, ie. the structure starts to fold before the transcription process is completed,
meaning some bases are not accessible at the beginning of the folding [40].

For these reasons the scientific community became interested in suboptimal sec-
ondary structures. The main interest of this work is to propose a method that
allows us to retrieve the suboptimal structures in an efficient manner. The util-
ity of suboptimal structures is they can be used to create a representation that is
very useful for the study of the kinetics of secondary structures, an RNA folding
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landscape.

2.5.1 RNA folding landscape

Definition 2.5.3 (RNA Folding landscape): An RNA folding landscape is
the model of the space Sn of secondary structures Sn for given sequencew,
visualizing their energies and eventually the transitions between them.

It can be seen as a visualization of the system constituted of sequences w folded
in every secondary structure S ∈ Sn. Some of these structures can change one
to another, which is represented by a transition within the folding landscape.
It can also model only a subset Sssub ⊂ Sn. Due to the complexity and multi-
dimensionality of RNA folding landscape, it is difficult to depict the entirety of
the landscape at once for longer sequences.

For this reason, most representations therefore depict only some section of the
folding landscape depending on the used reference. For example the Figure 2.7
shows an example of two energy landscapes for Yeast Phenylalanine tRNA (Fig-
ure 2.7 left) [105] and Class II Amynoacyl tRNA synthetase (Figure 2.7 right) [84].
The sequences were taken from PDB database [104, 8]. Here, the section of the
landscape is defined by two referent structures, which in this case is MFE and
some high-energy structure that is distant from the MFE. The energy of secondary
structures is indicated either by a color code, such as in the provided example, or
by z coordinate in case of tri-dimensional visualization. The tri-dimensional vari-
ant then depicts all structures with higher energy than neighboring states as a
peak, while locally optimal structures would be represented by a hole. The low-
est point of the entire landscape would be MFE. Alternatively, the RNA folding
landscape can be represented as a graph, with nodes being the structures and the
edges representing the transitions. By definition, each transition is reversible.

The implication of the RNA folding landscapes in the RNA kinetics stems from
the fact that besides the secondary structures themselves, it also represents their
evolution, resp. folding pathways. A folding is a process by which a secondary
structure forms or changes from one to another. Here, we see the folding as a
hierarchical process where an RNA sequence changes its structure to one of the
neighboring states. The folding pathway is then a path in RNA folding landscape
consisting of secondary structures which RNA adopts when folding from one
secondary structure to another. The objective of RNA kinetics is to study these
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Figure 2.7: The examples of a folding landscapes. The folding landscape for Yeast
Phenylalanine tRNA (PDB ID 1TRA, left) [105] and Class II Amynoacyl tRNA synthetase
(1ASY, right) [84]. The first and second reference are respectively MFE structure and a
random high-energy structure distant from MFE structure. The picture was generated
by an Rscript script that will be possibly available with the future releases of VIEN-
NARNA library [58].

folding pathways and the evolution of RNA structure, something for what the
folding landscape is a great tool.

The methods to generate and study the RNA folding landscape can be divided
into two categories:

• Step-by-step methods: The folding process is modeled as a Markov chain
and simulated at a certain resolution, usually on base-pair [31] or helix [24]
level. However, since the number of the secondary structures raises expo-
nentially with the length of sequence [111] and the number of folding path-
ways also increases exponentially with it [32], this type of analysis becomes
quickly infeasible.

• Coarse-grained methods: The main idea is to simplify the folding land-
scape first. This necessitates to identify the key elements - key landmarks
- of the folding landscape, the most important secondary structures. These
are connected together in a manner to accurately represent the kinetics of
a given RNA sequence. Such representation is then used to perform an
analysis of RNA kinetics. Due to reduced number of structures and folding
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pathways, this strategy is applicable even to longer RNA sequences. How-
ever, its quality greatly depends on that of the first step, since the omission
of certain key structures might have considerable impact on the analysis of
kinetics and probably result in biased observations.

There is a number of currently existing approaches that generate these key land-
marks [109, 57, 53, 59] and assemble them into a folding landscape [33, 53]. Our
work mainly concentrates on establishing a method capable of selecting the key
landmarks of RNA folding landscapes in a more efficient manner than currently
existing methods.

2.5.2 Selecting suboptimal secondary structures

For kinetic analysis to be possible for long RNAs, the folding landscape must be
reduced to key suboptimal structures. The question is how to define and select
them. This step is instrumental due to having the instrumental impact on the
quality of the resulting landscape and adjacent analysis.

There are multiple strategies that we can chose from. The first one is to select
only structures within a certain energy range from the MFE. Due to imprecisions
of computations by Turner Energy Model, the computed MFE might not be MFE
in reality, but it will not be too much far off. Second reason, the energy struc-
tures close to MFE are more stable and consequently a better candidates for a
functional structure. However, there have been an exceptions to this, such as an
artificially designed riboswitch where the energy difference between MFE and its
metastable, functionally important, structure is almost 30 kcal.mol-1 [45]. Another
thing to consider is that the number of structures selected this way still increases
exponentially with n.

Another strategy is to only consider suboptimal RNA secondary structures S that
are locally stable. The locally stable structures are considered more likely to be a
candidates for an important functional structure due to the energy barriers that
need to be surpassed for S to be changed, granting it a certain stability and allow-
ing to sequence to exert its function. On the other hand even if the locally optimal
secondary structure is not functionally important, it still can be crucial transitive
state with the impact on the folding path and by extension on the result. For this
reason, in the first part of this thesis we will work with locally optimal structures.

Unfortunately, like for the selection by energy band, the number of locally opti-
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mal structures also increases exponentially withn and since the folding landscape
presents a high number of them, it can be problematic. Therefore, it is necessary
to be able to select the best candidates among them. To achieve this, we resort to
the sampling, which has for objective to select the most suitable locally optimal
secondary structures according to a given criterium.

2.5.3 Boltzmann Distribution

The selection happens at two levels. The first is the selection of a subspace of Sn
(all secondary structures, only locally optimal ones etc.), while the second is to
choose its best candidates. The second selection can be done either in determin-
istic or stochastic, random manner. Here we will concentrate on the stochastic
sampling methods.

To perform a stochastic sampling, it is necessary to define a distribution over the
entire space of secondary structures. The distribution is computed according to
the value of S(S) by which we want the results to be filtered, such as the lowest
free energy or biggest number of base pairs.

The distribution of secondary structures that is frequently used in sampling of
RNA secondary structures is the Boltzmann distribution, sometimes also called
Gibbs distribution. This distribution was formulated by Ludwig Boltzmann [90]
and later studied by Josias W. Gibbs [37]. The Boltzmann distribution is used
mainly in thermodynamics and is a probability distribution of various systems
over different possible states. Since we consider states each aggregating of mi-
croscopic conformations of the molecules with the same secondary structure, and
not separate conformations themselves, the Boltzmann distribution is indeed ap-
plicable on free energies.

Definition 2.5.4 (Boltzmann factor): et the system be the sequences w and
the states the secondary structures S ∈ Sn, each with free energy ES. The
Boltzmann factorZSZSZS of S is

ZS = e
−ES
kBT (2.9)

where T is an absolute temperature and kB is Boltzmann constant or perfect
gas constant.

In our work, we consider kB ≈ 1.987× 10−3 kcal.mol-1.K-1.
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Definition 2.5.5 (Partition function): partition function ZZZ is a description
of the statistical properties of the system, here RNA in ensemble of states
from Sn, in a thermodynamic equilibrium. It is computed as

Z =
∑
S∈Sn

e
−ES
kBT . (2.10)

From this expression and the equation 2.9, we can obtain the probability of ob-
serving S.

Definition 2.5.6 (Boltzmann probability): The probability p(S)p(S)p(S) of observ-
ing w folded in S ∈ Sn under the assumption of Boltzmann distribution
is:

p(S) =
ZS
Z =

e
−ES
kBT∑

X∈Sn
e

−EX
kBT

(2.11)

These probabilities can be used to sample S in a random manner. Since Swith low
energy have higher ZS, they are more likely to be chosen, while the high energy
structures still have non-zero probability to be selected since ∀S,ZS > 0. While
priority is given to low-energy candidates, structures having higher free energy
are still theoretically taken into consideration, and can be relatively favored by
higher temperatures.

The first algorithm that computed the partition function for ensemble of sec-
ondary structures was John S. McCaskill [66]. He used the VZu algorithm (a
non-ambiguous variant of Zuker algorithm, Equation 2.8) with transforming en-
ergy terms to partition function.

2.5.4 Completeness, Unambiguity and Acyclicity

Here we briefly mention three necessary properties of DP schemes that are used
in algorithms computing the partition function [78]. Both will be more detailed
later. These three conditions are:

• Completeness: The space Sn or its defined subsection is completely covered
by the DP scheme, ie. there is not structure S that cannot be decomposed by
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said DP scheme while S ∈ Sn.

• Unambiguity: Each secondary structure can be decomposed by the decom-
position scheme in a single manner.

• Acyclicity: A DP scheme cannot present a decomposition where the ele-
ment would be decomposed to itself and some other elements.

The DP scheme of Zuker and VZu algorithm presented here (Equation 2.8 and
2.7) completely covers Sn - each nucleotide can be paired or not (as long as θ is
respected), each loop can contain zero, one or more helices and each multibranch
loop has to contain at least two helices possibly preceded and followed by un-
paired bases. Note that the completeness depends on the definition of Sn - the
Zuker and VZu algorithms are complete when Sn is defined as in Section 2.1, but
not if pseudoknots are allowed.

In regards to unambiguity, the DP scheme of Zuker algorithm does not fulfill it,
and is main reason why the second version was established. Suppose we have a
segmentWMi, j containing two helices Vi, k− 1 and Vk+ 1, j separated by a sin-
gle unpaired nucleotide k. There are two ways how this local secondary structure
can be decomposed:

WMi,j →WMi,k + Vk+1,j → Vi,k−1 + Vk+1,j

WMi,j → Vi,k−1 +WMk,j → Vi,k−1 + Vk+1,j

This is not problematic when searching for MFE, since the minimum structure
will be returned anyway, but when computing Partition function its Boltzmann
factor will appear twice, introducing bias. For the VZu algorithm we have:

WMi,j =Mi,k +M
1
k+1,j →M1

i,k + Ck+1,j →M1
i,k−1 + CK+1,j → Ci,k−1 + Ck+1,j

Note that WMi,j is not present in VZu algorithm, it is just to point out the equiv-
alence between the two versions. The second version respects unambiguity and
can be used to compute the partition function, which is the base of McCaskill
algorithm.

As for acyclicity, the presence of a cycle in DP scheme implies an infinite num-
ber of the possible decompositions. This makes their adaptation to scoring algo-
rithms impossible. One possibility of verifying an acyclicity is therefore to see
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whether each decomposition can be done in finite number of steps. All of scoring
algorithms presented in this work are acyclic.

2.5.5 McCaskill Algorithm

The partition function shows an interesting property with the respect to the de-
composition of loop and the energies deduced from the Equation 2.5. Since ES is
the sum of the energies of each of its loops El, for Boltzmann factor we have:

ZS = e
(∑
L∈S −El
kBT

)
=
∏
l∈S
e

−El
kBT =

∏
l∈S
Zl (2.12)

Consequently, the Boltzmann factor of a single structure can be decomposed into
the product of contributions of each of the loops l. This can be used to transform
the VZu algorithm into McCaskill algorithm. However, since in this case we want
to compute the Partition function, we also need to sum the contribution of all
secondary structures. We define:

• ZFi,j: Partition function over all S(i, j) ∈ S(i, j)
• ZCi,j: Partition function over {S(i, j)|S(i, j) ∈ S(i, j), (i, j) ∈ S(i, j)})
• ZMi,j : Partition function over all S(i, j) ∈ S(i, j) where S(i, j) is a part of multi-

branch loop containing at least one helix

• ZM1i,j : Partition function over all S(i, j) ∈ S(i, j) where S(i, j) is a part of
multibranch loop containing exactly one helix

These states are deduced from Fi,j, respectively Ci,j, Mi,j, and M1
i,j of VZu algo-

rithm. The algorithm of McCaskill is then:

ZFi,j = ZFi,j−1 +
∑

i≤k≤j−θ−1
ZFi,k−1 ×ZCk,j

ZCi,j = e
−EH(i,j)

kBT +
∑

i<k<l<j
k≤l−θ−1

e
−EILG(i,j,k,l)

kBT ×ZCk,l +
∑
i<k<j

e
−a−b
kBT ZMi+1,k−1 ×ZM1k,j−1

ZMi,j =
∑
i<k<j

e
−c×(k−1)
kBT ZM1k,j +

∑
i<k<j

ZMi,k−1 ×ZM1k,j

ZM1i,j = e
−c
kBT ×ZM1i,j−1 + e

−b
kBT ×ZCi,j

(2.13)
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with EH(i, j), EILG, a, b, c having the unchanged significance. The sums are ex-
plained by the need of summing up all contributions of each S. Since ∀w[i, j] | j ≤
i+ θ the initial conditions are E(i, j) = 0, we have

∀{i, j | j ≤ i+ θ},Zi,j = ZBi,j = ZMi,j = ZM1i,j = 1.

The value Z1,n equals to Z . In the original paper [66], a partition function Z is in-
stead denoted as Q, which has the same significance. The complexity is the same
as for the VZu Algorithm - O(n4) in time, which becomes O(n3) if the maximum
size of the internal loop becomes limited, and O(n2) in space.

The algorithms computing Z of Sn or its part like that of McCaskill are the first
step towards the sampling of secondary structures.

2.5.6 Sampling and Stochastic backtrack

The sampling consists of the random selection of the secondary structures S from
the space Sn according to the probability distribution, in our case the Boltzmann
distribution. The sampling algorithm employing McCaskill algorithm was first
introduced by the works of Y. Ding and C.E. Lawrence [27]. It consists of two
steps:

• Pre-computation: The computation of Z . More importantly, the matrices
ZF,ZC,ZM andZM1 are filled during this step, therefore ∀i, j, 1 ≤ i < j ≤ n,
the values ZF,ZC,ZM and ZM1 are calculated.

• Stochastic backtrack: Performed once to generate a single S. The principle
is similar to the backtrack as presented in Section 2.3.3, however instead of
searching for a combination of a loop that gives a value given a matrix, we
have a possibility to choose a certain loop l. Suppose we have w[i, j] and a
possibility to choose a base pair, an unpaired base, a splitting point or a loop
q1 with a probability pair p(q1) that occupies some bases and leaves sub-
strings w[i1, j1], w[i2, j2] · · ·w[ix, jx] untouched. The value of p(q1) is com-
puted from DP matrices. If q1 is chosen, then we can choose q2 in the same
manner for w[i1, j1] with the probability p(q2) and so on. The process is
repeated until the substrings too short to contain a base pair. When no sub-
string is left, the secondary structure is complete. The recursive application
of these steps leads to a generation of S, from the search space Sn, with
Boltzmann probability.
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The algorithm must give a way to access the probability values and these have to
be stored in DP matrices. In the case of McCaskill algorithm, they can be obtained
from Equation 2.13 where left-hand term represents the weight of all options for
w[i, j] and the right-hand terms a list of choices available to be taken, giving access
to p(q).

Since the introduction of sampling by Ding and Lawrence, other approaches have
appeared, usually employing Turner Energy Model. These include a decomposi-
tion of a structure in stacks [57] or by varying a temperature during sampling [53].

2.6 Formalization of Dynamic Programming Schemes

Since we just presented the state-of-the-art DP schemes employed for secondary
structure prediction, it is a good moment to propose the formalism that would
help us to generalize and unify them.

2.6.1 Definitions

Objective 2.6.1. Introduce a formalism that allows to describe DP schemes in an uni-
fied manner and allowing to explicitly manipulate the different computation steps. This
formalism

• takes a DP scheme with all possible states and an entry state qroot as an entry

• returns, for each state the associated accessible search space and scoring function
expressed in an unified language that can be commonly used for DP schemes eval-
uation RNA secondary structures.

To do this, it is first necessary to identify the unitary actions of such DP scheme
and define them in a broadest way possible. To avoid a confusion, we will,
throughout this section, demonstrate how to apply it to formalize the Nussinov
algorithm. The formalism presented here is inspired by and extends that intro-
duced by Yann Ponty and Cédric Saule in relation to the representation of sec-
ondary structures as hypergraphs and pseudoknot analysis [78].

A DP scheme relates the (optimal) score for a given subproblem, on the left-hand
side of the equation, to the combination of scores achieved over the selected sub-
set of subproblems on its right-hand side.
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Definition 2.6.1 (DP scheme): A DP scheme is a tuple (Q, qroot, ρ) such
that:

• Q is the set of states q, eg. the couple of base pairs (i, j) associated
with the right-hand-side terms of the scheme;

• qroot ∈ Q is the initial state of the scheme, such as (1, n);

• ρ : Q → (Q∗ × D × R)∗ is a function associating to each state q a set
of derivations relating q to other states, with each derivation having
attributed a constructor denoted λ, eg. an unpaired base, and a score
to it.

Therefore a DP scheme relates the different states by a set of derivations. The no-
tion of the derivation is also connected to that of constructors. We consecutively
introduce all of these terms.

Definition 2.6.2 (State): A given subproblem is, in proposed formalism,
characterized by a state qqq ∈ Q, where Q denotes the set of all states with
associated subproblems.

Therefore a given problem is modeled by a state q and its solution is indicated
by a score over this state. The computation of a DP scheme total score requires a
memorization of |Q| scores, pointing to an overall memory complexity of O(|Q|).

Example 2.6.1. For Nussinov algorithm, the states are any (i, j) such that 1 ≤ i <
j ≤ n, where (i, j) is the couple of, not necessarily paired, nucleotides and we
have

Q = {(i, j) | 1 ≤ i < j ≤ n}.

Each subproblem is completely defined by the nucleotide couple (i, j), therefore
this definition of Nussinov states is sufficient.

Besides the score, each state q has a set of secondary structures s, that are accessi-
ble from this state, associated to it.

Definition 2.6.3 (Search space): A search space is set of secondary struc-
tures s that are associated to a state q ∈ Q and can be accessed by the DP
scheme from the sets of q ′1, . . . , q

′
u ∈ Q. We denote it by L(q).

Note that L(q) does not contain only the structures that are merely visited, but all
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those that can be accessed from q. Also these structures do not have to have the
length of n. For this reason we denote s ∈ L(q) a secondary structure belonging
to a search space of q.

Example 2.6.2. A search space for Nussinov algorithm and sequence w, L(q)
where q = (1, 5) contains all secondary structures that can be generated onw[1, 5].

A structure S ∈ L(q) can be generated from some structures

(s ′1, . . . , s
′
u) ∈ (L(q ′1), . . . ,L(q ′u))

if q and q ′1, . . . , q
′
u are related by the derivation.

Definition 2.6.4 (Constructor): A constructor λ is a function λ : Skn →
Sn, k ∈ N, that generates a structure sss from a vector of k (sub)structures
s ′1, . . . , s

′
ks ′1, . . . , s
′
ks ′1, . . . , s
′
k.

By abuse of notation, we might note by λ(X ,Y) the construction λ(X, Y), with X ∈
X , Y ∈ Y . A constructor space is denoted D, the notation used in Definition 2.6.1.

Example 2.6.3. The Nussinov algorithm employs two different constructors: The
constructor λunpi,j where the secondary structure s is such thatw[j] is unpaired and
is applied to s ′ ∈ L((i, j−1)), and the constructor λpairi,j,k , where s is generated from
substructures for states (i, k − 1) and (k + 1, j − 1) and (k, j) ∈ φpair(w). In both
cases i, j indicate the interval for which the constructor is employed, while in the
second case k denotes the pairing partner to w[j]. The operator space is

DNus = {λ
unp
i,j , λ

pair
i,j,k | 1 ≤ i ≤ k < j ≤ n}

The constructor is attributed to a specific derivation.

Definition 2.6.5 (Derivation): A derivation q λ
−→
cλ

q ′1, . . . , q
′
u is a function

that associates a tuple ({q1, . . . , qu}, λ, c) to a state q, representing a deriva-
tion from q to q ′1 · · ·q ′u by λ and having cost cλ.

Therefore there are three layers to each derivation q λ
−→
cλ

{q ′1, . . . , q
′
u}:

• Derivation q λ
−→
cλ

{q ′1, . . . , q
′
u} itself, relating the state q to q ′1, . . . , q

′
u;
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• Construction of accessible search spaces, done by λ on {L(q ′1), . . . ,L(q ′u)};
• Computing the score of q, from scores of q ′1, . . . , q

′
u and using the function

employing cλ.

Note that some derivations might relate q to ∅, in which case we call them termi-
nal derivations.

Each derivation q λ
−→
cλ

{q ′1, . . . , q
′
u} corresponds to a specific case. In fact, there are

two layers that can be distinguished for a given DP scheme:

• Cases: One DP scheme can include multiple cases on its right-hand side.
These cases correspond to the derivations. In the case of Nussinov algo-
rithm, there is one case for w[j] being unpaired and a case for each pair
(k, j) that can exist.

• Subproblems: Single derivation relates a single state q on the left-hand
side to states q ′1, . . . , q

′
u or subproblems. For λunpi,j in the case of Nussinov

algorithm, it connects one state on the left-hand side to one state on the
right-hand side of the DP equation. In the case of λpairi,j,k , it is one and two
states respectively.

Therefore, ρ(q)ρ(q)ρ(q) from the Defintion 2.6.1 is the set of derivations of form

q
λ
−→
cλ

{q ′1, . . . , q
′
u}

that relate q to q1, . . . , qu and generate s ∈ L(q) by constructor λ. The score of
q is computed from the scores of q1, . . . , qu using value cλ. Alternatively we can
also denote that

({q ′1, . . . , q
′
u}, λ, cλ) ∈ ρ(q).

Example 2.6.4. We demonstrate that the DP scheme can be completely captured
by the proposed formalism (Q, qroot, ρ). Assume that Q, resp. D contain all q,
resp. λ that appear in given DP scheme. Each DP equation relates a single state
q ∈ Q on left-hand side and a number of different cases each relating a number
of states q ′1, . . . , q

′
u ∈ Qu on the right-hand side. Such case is completely defined

by the derivation:

q
λ
−→
cλ

{q ′1, . . . , q
′
u}
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where cλ is the energy bonus/penalty for using the constructor λ. The DP scheme
is expressed by a union of all cases:

ρ(q) =
⋃

q
λ
−→
cλ

{q ′1,...,q
′
u}

({q ′1, . . . , q
′
u}, λ, cλ)

Therefore as long as necessary λ and q are available, it is possible to define any
derivation q λ

−→
cλ

{q1, . . . , qu} and all of its cases by ρ(q).

Example 2.6.5. In the case of the Nussinov algorithm, ρ(q) two following deriva-
tions are possible:

• (i, j)
λ
unp
i,j

−−−→
0

(i, j− 1) - w[j] is unpaired;

• q
λ
pair
i,j,k

−−−→
1

{(i, k− 1), (k+ 1, j− 1)} where i ≤ k < j - w[j] is paired to w[k]

Consequently, the ρNus is:

ρNus((i, j)) =
⋃



({(i, j− 1)}, λunpi,j , 0)

if w[j] is unpaired

⋃
i≤k<j

(k,j)∈φpair(w)

{({(i, k− 1), (k+ 1, j− 1)}, λpairi,j,k , 1)}

Note that ρ(q) only contains the associations that are possible;

q
λ
pair
i,j,k

−−−−→
c
λ
pair
i,j,k

{(i, k− 1), (k+ 1, j− 1)}

does not exist if w[k] and w[j] cannot be paired.

All possible structures s ∈ L(q) are generated by applying the constructor λ from
derivation q λ

−→
cλ

{q ′1, . . . , q
′
u} on (s ′1, . . . , s

′
u) ∈ (L(q ′1), . . . ,L(q ′u)).
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Definition 2.6.6 (Generation of search space): The search space L(q) can
be generated by performing every possible derivation q λ

−→
cλ

{q ′1, . . . , q
′
u}:

L(q) =
⋃

q
λ
−→
cλ

{q ′1,...,q
′
u}

λ(L(q ′1), . . . ,L(q ′u))

At any moment ∀q,L(q) ⊆ S.

With the search space L(q) and its construction defined, we have all elements to
formalize the notion of completeness and unambiguity.

Definition 2.6.7 (Completeness): Let qroot be an initial state and Sn the
space of all secondary structures of size n. The completeness implies:

L(qroot) = Sn (2.14)

The completeness implies that every S ∈ Sn is generated at one point or an-
other. The space Sn also might be restricted by specific conditions. In that case
the completeness implies that the entirety of the restricted space is generated by
DP scheme.

The unambiguity implies that every secondary structure is decomposed in an
unique manner.

Definition 2.6.8 (Unambiguity): Let x = q
λ
−→
cλ

{q ′1, . . . , q
′
u} and the L(x) =

λ(L(q ′1), . . . ,L(q ′u)). A DP scheme is unambiguous that if x = q
λ
−→
cλ

{q ′1, . . . , q
′
u} and y = q

λ ′
−−→
cλ ′

{q ′′1 , . . . , q
′′
v } are two derivations of the state

q such that x 6= y then L(x) ∩ L(y) = ∅.

In other words, said structure cannot be decomposed in multiple different ways,
or the same s cannot be generated by two different λ1 and λ2.

There is also an important condition of acyclicity of DP scheme. If DP scheme
presents a cycle, it cannot be adapted for a scoring algorithm since it presents an
infinite number of decompositions.

44



Definition 2.6.9 (Acyclicity): The DP scheme is acyclic if for any given se-
quence of derivations λ(L(q ′1), . . . ,L(q ′u)), each q is derived at most once.

In other words, no state can appear twice for the same decomposition.

2.6.2 Applications

Assume c(s) is the score of s. From ρ(q), we can define the function that computes
the final score for every state q ∈ Q. As previously seen, there are two scoring
strategies that are applied to DP schemes.

Problem 2.6.1:

• Input: DP scheme (Q, qroot, ρ);
• Output: MinScore(q) such that:

MinScore(q) = min
s∈L(q)

(c(s)) .

The problem for maximization scoring is similar:

MaxScore(q) = max
s∈L(q)

(c(s)) .

Such scoring strategy is applied by Nussinov (maximization) [72] or Zuker (min-
imization) [112] algorithms. Here we present its global formalization.

With the scoring established, we can proceed to its formulate its computation
using DP schemes.
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Theorem 2.6.1 (Minimization/maximization scoring):
Let (Q, qroot, ρ) be a complete and unambiguous DP scheme. MinScore(q) can
be computed inO(|Q|+ |D|) time andO(|Q|) memory by the following recurrence:

MinS(q) = min
q
λ
−→
cλ

{q ′1,...,q
′
u}

(
cλ +

u∑
i=1

MinS(q ′i)

)
(2.15)

The maximum scoreMaxS(q) is computed inO(|Q|+ |D|) time andO(|Q|) mem-
ory by the following recurrence:

MaxS(q) = max
q
λ
−→
cλ

{q ′1,...,q
′
u}

(
cλ +

u∑
i=1

MaxS(q ′i)

)
(2.16)

Proof 2.6.1. We demonstrate this expression by induction on the maximum num-
ber of derivationsM that can be done on q.

Base case (M = 1): Consider a state qwhere all derivations take the form

q
λterm−−−−→
cλterm

∅.

L(q) contains a set of structures s where each of them is generated uniquely by
λterm on q. Consequently, the score c(s) is

c(s) = cλterm .

We assume completeness, L(q) is completely generated by λterm from all associ-
ated derivations described above. Therefore, the minimum for q is given by

MinS(q) = min
q
λterm−−−−→
cλterm

∅

c(s) = min
s∈L(q)

c(s).

It follows that MinS(q) = MinScore(q).

Induction (M = m): Assume that ∀i ∈ Z+, the state q ′i , can be derived at most
m− 1 times and that we have

MinS(q ′i) = MinScore(q ′i).
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Consider q and the derivation q λ
−→
cλ

{q ′1, . . . , q
′
u}. Consequently, q can be derived

at mostm times. We have:

MinS(q) = min
q
λ
−→
cλ

{q ′1,...,q
′
u}

(
cλ +

u∑
i=1

min
s ′∈L(q ′i)

(
c(s ′)

)
)
.

The term
∑u
i=1 mins ′∈L(q ′i)(c(s

′)) can be also interpreted as a lowest sum of free
energies of the combination (s ′1, . . . , s

′
u) ∈ (L(q ′u), . . . ,L(q ′u)), which leads us to

u∑
i=1

min
s ′∈L(q ′i)

(
c(s ′)

)
= min

(s ′1,...,s
′
u)∈

(L(q ′u),...,L(q ′u))

(
u∑
i=1

c(s ′i)

)
.

Assume now we derive q by some derivation q λ ′
−−→
cλ ′

{q ′1, . . . , q
′
u ′}. We get

cλ +

u ′∑
i=1

min
s ′∈L(q ′i)

(
c(s ′)

)
= cλ ′ + min

(s ′1,...,s
′
u ′ )∈

(L(q ′
u ′ ),...,L(q

′
u ′ ))

(
u ′∑
i=1

c(s ′i)

)
.

This term returns the minimal value corresponding to some combination of (s ′1, . . . , s
′
u ′) ∈

(L(q ′u ′), . . . ,L(q ′u ′)) and the contribution of cλ ′ of derivation q λ ′
−−→
cλ ′

{q ′1, . . . , q
′
u ′}.

Therefore

cλ ′ + min
(s ′1,...,s

′
u ′ )∈

(L(q ′
u ′ ),...,L(q

′
u ′ ))

(
u ′∑
i=1

c(s ′i)

)
= c(sλ ′)

where c(sλ ′) = λ ′(s ′1, . . . , s
′
u ′) ∈ λ ′(L(q ′u ′), . . . ,L(q ′u ′)) that has minimum score

along all secondary structures generated by λ ′, and sλ ′ ∈ L(q). This applies to

every q λ
−→
cλ

{q ′1, . . . , q
′
u ′}. Since c(sλ ′) is minimal for q λ ′

−−→
cλ ′

{q ′1, . . . , q
′
u}, we can

follow by

MinS(q) = min
q
λ
−→
cλ

{q ′1,...,q
′
u}

(c(sλ))

There is another condition in DP scheme (Q, qroot, ρ) being complete. In that case
the application of every constructor λ generatesL(q). Consequently, we can write
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MinS(q) = min
L(q)

(c(s)) .

If follows that MinS(q) = MinScore(q). The demonstration for MinS(q) is done
in the same way.

Example 2.6.6. Nussinov algorithm is the base pair maximization DP scheme.
The maximizing function can be split in cases depending whether w[j] is paired.
The maximum number of base pairs for S(i, j) ∈ L((i, j)) can be computed as

MaxS((i, j)) =max( max

q
λ
pair
i,k,j

−−−→
1

{(i,k−1),(k+1,j−1)}

(MaxS((i, k− 1))+

+ MaxS((k+ 1, j− 1) + 1),MaxS ((i, j− 1)))

(2.17)

We can define the similar problem for the computation of the partition function.

Problem 2.6.2:

• Input: DP scheme (Q, qroot, ρ);
• Output: PfScore(q) such that:

PfScore(q) =
∑
s∈L(q)

(
e

−c(s)
kBT

)
.

As an example, the partition function is computed by McCaskill algorithm [66].
The formalization of partition function scoring of DP scheme (Q, qroot, ρ) is simi-
lar as in the case of the score minimization/maximization.

Theorem 2.6.2 (Partition function scoring): Let (Q, qroot, ρ) be a complete
and unambiguous DP scheme. PfScore(q) is computed in O(|Q| + |D|) time and
O(|Q|) memory by the following recurrence:

PfS(q) =
∑

q
λ
−→
cλ

{q ′1,...,q
′
u}

e
−cλ
kBT ×

(
u∏
i=1

PfS(q ′i)

)
(2.18)

Proof 2.6.2. The demonstration can be made by induction on the maximum num-
berM of successive derivations that can be performed on q.
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Base case (M = 1): Consider any state q that can be derived maximum once.
Therefore every derivation takes a form

q
λterm−−−−→
cλterm

∅.

L(q) contains structures composed of an element generated by λterm. The Boltz-
mann factor of a single s is then:

Zs = e
−cλterm
kBT = e

s
kBT .

If we assume completeness, the set of s generated by all λterm gives L(q). There-
fore

PfS(q) =
∑

q
λterm−−−−→
cλterm

∅

e
−cλterm
kBT =

∑
s∈L(q)

e
−c(s)
kBT .

since we assume unambiguity, meaning is no more derivation per the same struc-
ture than one. It follows that PfS(q) = PfScore(q).

Induction (M = m): Consider, ∀i ∈ Z+, the states q ′ that can be derived max-
imum m − 1 times and that they satisfy PfS(q ′) = PfScore(q ′). Assume now a
state q derivation q λ

−→
cλ

{q ′1, . . . , q
′
u}. This implies that q can be derived at mostm

times. We have

PfS(q) =
∑

q
λ
−→
cλ

{q ′1,...,q
′
u}


e

−cλ
kBT ×

u∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT




 .

The term
u∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT




is also the cartesian product. This product contains the sum of all possible com-
binations of (s ′1, . . . , s

′
u) ∈ (L(q ′u), . . . ,L(q ′u)). Consequently

u∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT


 =

∑
(s ′1,...,s

′
u)∈

(L(q ′1),...,L(q ′u))

(
u∏
i=1

e
−c(s ′i)
kBT

)
.

Therefore, for a specific λ ′ such that q λ ′
−−→
cλ ′

{q ′1, . . . , q
′
u ′}, we get:
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e
−c ′λ
kBT ×

u ′∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT


 = e

−c ′λ
kBT ×

∑
(s ′1,...,s

′
u ′ )∈

(L(q ′1),...,L(q ′u ′ ))

(
u ′∏
i=1

e
−c(s ′i)
kBT

)

e
−c ′λ
kBT ×

u ′∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT


 =

∑
(s ′1,...,s

′
u ′ )∈

(L(q ′1),...,L(q ′u ′ ))

e

−c
λ ′−

u ′∑
i=0

c(s ′i)

kBT

The energy of sλ ′ , sλ ′ ∈ L(q) that was constructed by λ ′ is equal to the free energy

of each of its elements, here
u ′∑
i=0

c(s ′i) and of the new element constructed by λ ′,

cλ ′ . Therefore

−cλ ′ −

u ′∑
i=0

c(s ′i) = c(sλ ′).

Consequently, we can write, for λ ′:

e
−c ′λ
kBT ×

u ′∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT


 =

∑
sλ ′=λ

′(s ′1,...,s
′
u ′ )∈

λ ′(L(q ′1),...,L(q ′u ′ ))

e
−c(s

λ ′ )
kBT

This property holds true independently of q λ ′
−−→
cλ ′

{q ′1, . . . , q
′
u ′}. It remains to sum

up the contribution for every q λ
−→
cλ

{q ′1, . . . , q
′
u}:

PfS(q) =
∑

q
λ
−→
cλ

{q ′1,...,q
′
u}




∑
sλ=λ(s

′
1,...,s

′
u)∈

λ(L(q ′1),...,L(q ′u))

(
e

−c(sλ)

kBT

)

 .

If we assume the DP scheme (Q, qroot, ρ) is complete and unambiguous, we can
say that:

• ∀s ∈ L(q), the structure must be generated at least by one λ (completeness)

• ∀s ∈ L(q), the structure cannot be generated by more than one λ (unambi-
guity)

This implies that the set off all elements sλ ∈ λ(L(q ′1), . . . ,L(q ′u)) derived all pos-
sible derivations q λ

−→
cλ

{q ′1, . . . , q
′
u} is equal to L(q), since each term of s appears
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exactly once in the given sum. It follows

PfS(q) =
∑
s∈L(q)

(
e

−c(s)
kBT

)
. (2.19)

If follows that PfS(q) = PfScore(q).

2.6.3 Formalizing VZu Algorithm

Here we work with the unambiguous version of the algorithm employed in the
VIENNARNA package. In this case, defining the states solely by the couple (i, j)

is insufficient, since the state also depends on whether (i, j) ∈ S(i, j) we are con-
structing or whether we are currently processing a multibranch loop branches.
For each (i, j), four different states qi,j indexed by the Equations 2.8 must be de-
fined:

qFi,j = {(i, j)}

qCi,j = {(i, j) | (i, j) ∈ φpair(w)}
qMi,j = {(i, j) | w[i, j] is in multibranch loop containing at least one helix}

qM1i,j = {(i, j) | w[i, j] is in multibranch loop containing exactly one helix}

The set of all states in VZu Algorithm is then given as

QZuk = {qFi,j, q
C
i,j, q

M
i,j , q

M1
i,j | 1 ≤ i < j ≤ n}.

To define DZuk we need to create a specific derivation for each relation and case
from the Equation 2.8. We employ both λunpi,j and λpairi,j,k . We need also to introduce
a constructor for each of specific loops. Here we list all types of constructors for
DVZu, considering S(i, j) ∈ S(i, j) is generated by it:

• λunpi,j : w[j] is unpaired;

• λpairi,j,k : (k, j) ∈ S(i, j);
• λHi,j: w[k] is unpaired ∀i < k < j, S(i, j) = {(i, j)};

• λILGi,j,k,l: , {(i, j), (k, l)} ⊆ S(i, j)) with i < k < l < j;

• λMLi,j,k: (i, j) ∈ S(i, j), at least one helix on w[i + 1, k − 1], exactly one helix on
w[k, j− 1].
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• λML2heli,j,k : w[i, j] in multibranch loop, at least one helix on w[i, k − 1], exactly
one helix on w[k, j].

• λML1heli,j,k : w[i, j] in multibranch loop, {(i ′, j ′)} ⊆ S(i, j) with i ≤< k ≤ i ′ <

j ′ ≤ j, {w[l]i ≤ l ≤ k} is unpaired;

• λpi,j: w[i, j] in multibranch loop (i, j)S(i, j)

The DVZu is then defined as an union of these constructors for all possible combi-
nations of corresponding parameters.

Only some of the constructors can be used to generate L(q). The relations are
defined by DP scheme used in VZu algorithm. From it we can define ρ:

ρVZu(q
F
i,j) =

⋃


{
(qFi,j−1, λ

unp
i,j , 0)

}
⋃

i≤k<j
(k,j)∈S(i,j)

{
({qFi,k−1, q

C
k+1,j−1}, λ

pair
i,j,k , 0)

}

ρVZu(q
C
i,j) =

⋃



{
(∅, λHi,j, EH(i, j))

}
⋃

i<k<l<j
(k,l)∈S(i,j)

{
(qCk,l, λ

ILG
i,j,k,l, EILG(i, j, k, l))

}
⋃

i<k<j

{
({qMi+1,k−1, q

M1
k,j−1}, λ

ML
i,k,j, a+ b)

}

ρVZu(q
M
i,j) =

⋃


⋃

i<k<j

{
({qM1k,j }, λ

ML1hel
i,j,k , c× (k− i))

}
⋃

i<k<j

{
({qMi,k−1, q

M1
k,j }, λ

ML2hel
i,j,k , 0)

}

ρVZu(q
M1
i,j ) =

⋃

{
({qM1i,j−1}, λ

unp
i,j , c)

}
{
({qCi,j}, λ

p
i,j, b)

} (2.20)

With ρVZu defined, we complete the formalization of DP scheme used in VZu
algorithm by the triplet (QZuk, qFi,j, ρZuk). Here, qroot = qF1,n, and if completeness
is validated, it stores the free energy of MFE structure. The recursion function to
compute MFE can be obtained from this scheme by applying the Theorem 2.6.1
to it.

Such a formalization can be used to establish the overall complexity of the algo-
rithm. The complexity of an energy minimization algorithm is O(|Q| + |D|) in
time and O(|Q|) in space (see Theorem 2.6.2). In the case of time complexity, the
determining factor is the number of constructors for an internal loop, due to con-
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taining four parameters with each taking approximately n values, the most of all
constructors, and more than |Q|, which is O(n2). Therefore O(|QVZu|+ |DVZu|) =
O(n4). This can be reduced toO(n3) if the maximum number of unpaired bases in
an internal loop/bulge is limited, because in that case one of the parameters can
be expressed in function of the limit and the other three parameters, and for other
constructors their number is majored by n3. The memory complexity is O(n2),
since all states can be stored in a limited number of two-dimensional matrices,
therefore O(n2).

2.6.4 Formalizing McCaskill Algorithm

The McCaskill Algorithm is similar to the VZu algorithm, the main difference
is that the minimizing function MinS is replaced by the function computing the
partition function PfS. Besides that, QMC = QVZu and DMC = DVZu and ρMC =

DVZu, therefore VZu and McCaskill algorithm are formalized in the exactly same
way. These formalizations can be easily employed to prove the unambiguity of
both algorithms, though it is required only in the latter case.

Example 2.6.7. We will demonstrate the unambiguity on VZu algorithm. The un-
ambiguity implies a single s ∈ S is not generated by a two different constructors.
This must be proven separately for each state q. We simply look what constraints
different λ impose on implicated nucleotides.

In the case of L(qFi,j), the proof is straightforward since λunpi,j (L(qFi,j−1)) implies
that w[j] is unpaired while λpairi,j,k (L(qFi,k−1),L(qFk+1,j−1)) necessitates the presence
of pair (k, j), and since base triplet is forbidden by definition, we have, for any
i, j, k1, k2 such that 1 < i ≤ k1 < k2 < j ≤ n:

λ
unp
i,j (L(qFi,j−1)) ∪ λpairi,j,k1

(L(qFi,k1−1),L(q
F
k1+1,j−1

) = ∅

λ
pair
i,j,k1

(L(qFi,k1−1),L(q
F
k1+1,j−1

) ∪ λpairi,j,k2
(L(qFi,k2−1),L(q

F
k2+1,j−1

) = ∅

In a similar manner, each of the cases computing L(qCi,j) is mutually exclusive;
λHPi,j , λ

ILG
i,j,k,l, λ

ML
i,j,k imply respectively zero, one or multiple base helices for w[i +

1, j − 1] and each time the values of eventual coefficients k and l are different.
Note that in the last case the construction of qM1i,j implies that the last helix in
given multibranch loop begins at w[k], implying the mutual exclusivity between
different structures generated by λMLi,j,k for different values of k.
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In the case of generating L(qMi,j) the segment w[i, k − 1] is either completely un-
paired, or hosts another base pair. Like in previous case w[k] indicates the be-
ginning of last helix in multibranch loop, therefore the cases cannot generate the
same structure for different k, and λML1heli,j,k and λML2heli,j,k cannot result in same S(i, j)
either due to difference in w[i, k− 1].

The explanation for L(qM1i,j ) is similar to the one written for L(qFi,j), the difference
being only base pair (i, j) being considered. This implies that for no state q two
different constructors λ can generate the same S, therefore VZu algorithm is un-
ambiguous. The same applies to McCaskill algorithm due to it using the same
decomposition.

2.6.5 Stochastic backtrack

The general idea behind the stochastic backtrack was explained in Section 2.5.6.
With the introduced formalism the central principle can be explained in a much
more simplified and compact manner. The stochastic backtrack can be only per-
formed by a DP scheme (Q, qroot, ρ) used to compute the partition function, ie.
employs the scoring function PfS. For each state q, we choose what derivation
will take place.

Theorem 2.6.3 (Backtrack probability): By using the probability p(λ | q) of
performing a derivation q λ

−→
cλ

{q ′1, . . . , q
′
u} when currently being in state q and

whose value is

p(λ | q) =

e
−cλ
kBT ×

(
u∏
i=1

PfS(q ′i)
)

PfS(q)
(2.21)

the stochastic proces ulitmately terminates and returns an object s =

λ(Lq ′1, . . . ,Lq ′u) with boltzman probability within L(q).

Proof 2.6.3. From Proof 2.6.2 we know that contribution of a single derivation
q

λ
−→
cλ

{q ′1, . . . , q
′
u} towards PfS(q) is

e
−cλ
kBT ×

u∏
i=1


 ∑
s ′∈L(q ′i)

e
−c(s ′)
kBT


 .

It follows directly from Theorem 2.6.5 that PfS(q) gives the sum of contributions
of all λ and that the probability p(λ | q) is computed as shown in Equation 2.21.
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The stochastic backtrack of an entire structure is then performed by starting at
qroot and repeating the process for every state q ′1, q

′
2, . . . , q

′
u that gets selected.

Note that the order of treatment of states does not matter as long as it is deter-
ministic, but they must be all treated.

2.7 The relation between RNA thermodynamics and RNA
kinetics

We mentioned that due to the structural diversity of most larger RNA sequences,
the RNA folding landscape is obtained by sampling from a representative set of
structures S ∈ Sn or some specific subspace as locally optimal structures, free
energies computed using Turner Energy Model. This is followed by the study of
folding pathways and finally by the analysis of the evolution of the entire system.
Therefore, we use a thermodynamic approach to study and simulate the kinetics.

It is worth mentioning the relation between thermodynamics and kinetics. The
folding of an RNA can be seen as a type of chemical reaction with the secondary
structures instead of compounds. Here we will consider a following transfor-
mation of secondary structure SA of an RNA sequence into the state SB, and we
assume its kinetics follows the same stochastic model as a kinetics of chemical
reactions [31]:

SA → SB

While thermodynamics, here represented by the parameters of Turner Energy
Model, will allow us to know about the stability of the different secondary struc-
tures and consequently whether the reaction should be possible but nothing about
its speed, the kinetics indicates how fast the transformation would happen, but
says nothing about the equilibrium state. The thermodynamics therefore helps us
to choose the possible transformations, which we can then investigate from the
perspective of the kinetics.

However, since we compute the free energy using thermodynamic energy model,
the obtained energies, and notably associated Boltzmann distribution are correct
while in the state of thermodynamic equilibrium, but not outside of it. If the
system still evolves, then the thermodynamic energy model does not apply.

Example 2.7.1. Suppose a system where all RNA molecules are unfolded at some
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starting time tstart. According to Boltzmann distribution their proportion should
be with few exception very small or zero. However, since we are obviously not in
equilibrium, their proportion is 1.

On the other hand, the Boltzmann distribution can still provide a good approxi-
mation on the kinetics because it indicates towards what state the system evolves.

The main problem with the use of thermodynamic model for the study of kinetics
is the lack of so-called activation energies Ea. It can be, however, computed from
the energies of the structures participating in transformation. Its values do not
depend only on the energy of those structures between which the transformation
occurs, but also whether they are neighbors or not. Consider the reaction between
two neighboring structures

SA → SB,

The activation energy of neighboring structures the Ea is the energy that is neces-
sary to supply in order to transform SA to SB and its value is:

Ea = ESB − ESA (2.22)

Activation energy is sometimes also denoted as an energy barrier. The case of
neighboring structures is simple to compute, because there is no intermediate
step. If the activation energy is negative, then the transformation is spontaneous
- happens on its own - and the energy is instead freed.

In the case where SA and SB are not neighbors, it depends whether the high-
est free energy of intermediate product Speak from transformation of SA to SB is
higher than that of SB or not.

Definition 2.7.1 (Activation energy): Suppose a transformation between
states

SA → Speak → SB

where Speak is the intermediate structure with the highest free energy and
Speak > max(SA, SB). The activation energy necessary for this transforma-
tion to overcome the energy gradient is

Ea = ESpeak − ESBA . (2.23)

If there are multiple folding pathways between distant SA and SB, the one con-
sidered is that with the lowest ESpeak , since it is the most optimal. This way we
compute an approximation of the Ea.
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Such approach has an advantage of being easily computable. The Turner Energy
Model is quite complete and contains extensive tabulated values as well as re-
lations to compute the free energy of different substructures. The free energy is
relatively easy and fast to compute, an important factor when determining the en-
ergies of longer sequences. While the computation of the activation energy for the
most optimal folding pathway between SA and SB is an NP-hard problem [65], it
belongs to PTAS class (polynomial-time approximation schemes exist for it) [79]
and a heuristic methods allowing to compute their approximate values exist, such
as findpath from VIENNARNA or RNATABUPATH [28]. The partition function
and associated probabilities can be also computed in a polynomial time using DP-
based programming. There are more precise methods such as molecular dynamic
simulations [6], but they are difficult to implement and notably very demanding
in terms of time computation, consequently being unusable for the analysis of
longer RNA sequences. Also, even the approximate analysis using thermody-
namic model can give us deeper insight on the RNA kinetics.

The thermodynamic model also describes the ideal state of the system, therefore
the state towards which it constantly evolves and which it would achieve if given
enough time. This alone can give us indication which folding pathways could be
crucial, and complemented by the computation of approximate activating ener-
gies we can obtain sufficient estimation of the kinetics of the system. This, along
with the relative simpleness of the computations, is the reason why we will use
thermodynamic Turner Energy Model to study the kinetics of RNA folding.

2.8 Kinetics of RNA folding landscape

The RNA landscape provides a great tool to study RNA kinetics. Since the size
of Sn makes building and analyzing the RNA folding landscape impossible to
perform in reasonable time, the first objective when studying an RNA folding
landscape is to simplify it to only the key elements. This applies to the folding
pathways as well. Here we explain the general approach to reduce RNA folding
landscape which will be followed through this work.

2.8.1 Simplification of a landscape

One way to simplify the folding landscape is to represent only its locally optimal
structures Therefore, here we consider the space of only locally optimal secondary

57



structures. Let SnL ∈ Sn be the space of all locally optimal secondary structures
SL of length n. Each SL is connected to a number of secondary structures with
higher free energies such that the free energy from said structure to SL is strictly
descending along the path.

Definition 2.8.1 (Basin): The basinBSLBSLBSL of locally optimal structure SL is the
section of RNA folding landscape containing all structures SbasinSL such
that there exists a path

SbasinSL → S1 → . . .→ Su → S

where the energies follow

ESbasinSL
≥ ES1 ≥ . . . ≥ ESu ≥ ESL

In other words, it is every point that is, on folding landscape, in the direction
of the gradient towards SL. Consequently, any secondary structure within BSL
should spontaneously transform into SL. Therefore we might consider an ap-
proximation of RNA landscape by considering only SL. The basins are connected
by the secondary structures represented by saddle points.

Definition 2.8.2 (Saddle point): A saddle point SpeakSpeakSpeak between two neigh-
boring basins BSLA and BSLB is a structure Speak such that Speak ∈ BSLA ∩
BSLB and

ESpeak = min
S∈BSLA∩BSLB

(ES).

Such saddle point is also called direct saddle point. An indirect saddle point is
a saddle point that can be obtained for two basins by passing through another
basins. Note that the energy of indirect saddle of two basins may be lower that
that of the direct saddle. This greatly impacts what path will be taken when
transformation SnLA → SnLB takes place.

The activation energy associated to transformation SnLA → SnLB is

Ea = ESpeak − ESnLA .

The energy of indirect saddle is obtained by taking the highest energy of Speak
that is met along the path from basin to basin.
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Since the saddles are not locally optimal structures, they are not included in SnL ,
yet they are crucial to the estimation of the kinetics. However, many methods
determine the saddle structures in order to estimate Ea. An example of such
software is findpath from VIENNARNA or RNAtabupath [28].

Since the folding landscape has a ragged nature, it presents many of small holes
and therefore many of SL. This number would still be prohibitively large for
the analysis. This is why the sampling methods are employed, with Boltzmann
sampling studied in this work prioritizing lower free energy structures that are
potentially more interesting.

Alternatively, it is possible to investigate the raggedness of the landscape before-
hand by dedicated methods and use it to local minima selection. One possible
approach is to compute persistence of each local minimum - the lowest activation
energy that allows to access the minimum with even lower energy [15, 14]. Such
values can be then used to select the local minima with high persistence to obtain
their representative set. This method is mentioned for the sake of completeness
and it is not further developed here.

The reduction of the number of structures used to model a folding landscape also
diminishes the number of the folding pathways. Plus, since we consider only one
the most optimal path between SLA and SLB where BSLA and BSLB are neighbors,
the number of folding pathways is reduced even further.

However, it is not always known what basins are neighboring. For most of the ex-
isting software, this is not too much of problem since they compute the activation
energy between two states without having to know that, but computing energy
barrier is computationally rather demanding, therefore we cannot compute the
energy barriers between every two existing states. However, the basins BSLA and
BSLB are more likely to be neighboring the more SLA and SLB are similar. The best
course of action is to suppose that the BSLA and BSLB are neighboring if they are
similar enough.
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Definition 2.8.3 (Connected locally optimal structures): The locally opti-
mal structures BSLA and BSLB are said to be connected if

d(SLA, SLB) < cd

where d is the distance function evaluating the similarity of SLA and SLB
and cd is the user defined threshold.
The space of all SLn with BSL connected to BSLA is denoted

C(SLA) = {SL ∈ SnL | d(SLA, SLB) < cd, SL 6= SLA}

The Ea are then computed for each C(SL).

The cd as well as d function must be defined in a manner that the resulting land-
scape is connected, otherwise it will be impossible to perform a simulation due to
the impossibility to access a part of the landscape from a specific structure.

The final result is the model of the RNA folding landscape reduced to locally op-
tima structures and a key transitive structures with a corresponding set of folding
pathways. While this model might be overly simplified, it allows already to study
the effect of locally optimal structures on the kinetics of a given RNA sequence,
something we are primarily interested in this work. The advantage is that the
analysis of such landscape is faster than more complex models. For this reason
this was the method we employed during the course of our study.

2.8.2 RNA Kinetics Study

Here we consider S ∈ SnL . The study may be performed on structures from Sn
in general, however in our context considering only SnL is sufficient. For each SL,
we define P(SL, t), the proportion of RNA molecules of the system folded in S at
the time t. We have ∀t, ∑

SX∈SnL

P(SX, t) = 1.

The folding pathways between the different SL can be seen as an iterative trans-
formation implicating a certain number of intermediate structures [31]. In the
absence of inertia, the entire process can be seen as memoryless, since the choice
of the next structure does not depend on the previous choices. Therefore, the
changes of the proportions within the system can be modeled by a continuous
time discrete state Markov Chain process. If we suppose the transitions between
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SLA and C(SLA) and all transitions are reversible, then each P(SLA, t) depends on
all influxes from C(SLA) and all outfluxes towards this space. The evolution of
P(SLA, t) can be captured by a chemical master equation (CME) [54].

dP(SLA, t)

dt
=

∑
SLn∈C(SLA)

P(SLn, t)× kSLn→SLA − P(SLA, t)× kSLA→SLn . (2.24)

The values kSLn→SLA are called transition rates. These describe the speed at
which one structure is transformed to another. For the self-transition rate of SLA
(rate for the SLA not being changed), we have [94]:

kSLA→SLA = −
∑

SLn∈C(SLA)
kSLn→SLA (2.25)

If the system is in equilibrium at t→ +∞, then

dP(SLA, t) = 0

since system does not evolve, and also P(SL, t) = p(S), therefore P(SL, t) can be
computed using Equation 2.11. Assuming equilibrium, we can utilize CME to
compute the ratio of the transition rates for the same transformation in opposite
directions:

e

−ESLn
kBT × kSLn→SLA

Z =
e

−ESLA
kBT × kSLA→Sn

Z
kSLA→SLn
kSLn→SLA =

e
−ESn
kBT

e

−ESLA
kBT

kSLA→SLn
kSLn→SLA = e

−∆ESLn−SLA
kBT

with ESLn , ESLA the energies of SLn and SLA respectively and ∆ESn−SA is their
difference. Consequently, the ratio of the transition rates is the Boltzmann factor
of their energy difference.

The computation of the transition rates is the necessary step before performing
a simulation of a kinetics of specific RNA. The entire folding process is modeled
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by Markov Chains and the transition rates are used to establish a transition rate
matrix that is necessary to perform a numerical integration of the Markov chains.

The simplest way to approximate their values is to use the Metropolis rule. In
general, this rule assumes that that the transformation is guaranteed if the energy
of the final state is lower than the energy of starting state:

kSx→Sy =

τ× e
−Eax→y
kBT if Eax→y > 0

τ otherwise
(2.26)

where Eax→y is the activation energy of transformation Sx → Sy and kSx→Sy the
associated transition rate.

If SLx, SLy ∈ S2nL , the Eax→y ≥ 0, otherwise one of SL is not locally optimal.
Consequently, for the transformation SLx → SLy of locally optimal structures the
Metropolis rule can be reduced

kSLx→SLy = τ× e
−Eax→y
kBT

In the case of locally optimal structures, this expression is in fact similar to Arrhe-
nius law [3], another law that can be used to compute the transition rates:

kSLx→SLy = A× e
−Eax→y
kBT (2.27)

The last rule that can be and frequently is used to compute the transition rate is
Kawasaki rule:

kSLx→SLy = τ× e
−Eax→y
2 boltzT (2.28)

During this work, the energy barriers were computed using findpath for the
pairs of locally optimal secondary structures. The details are specified in Sec-
tion 3.3.4.
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2.9 Coarse-grained model of a folding landscape

The different approach to simplify an RNA folding landscape and compute the
transition rates is to introduce the macrostates. These macrostates represent mul-
tiple structures instead of the single one [108].

We might consider each basin of attraction as a singular macrostate, reducing the
number of states as well as that of folding pathways. In that case the macrostate
associated to the basin BSL represents S ∈ BSL . The partition function of such
macrostate is

ZBSL =
∑
S∈BSL

ZS.

It follows the computing the free energy of the ensemble EBSL of the basin by:

EBSL = kBT ln(ZBSL ).

The transition rate between two macrostates kBSLA → kBSLB computes a bit dif-
ferently than between two structures [108]. If we know the transition rates kSx→Sy
such that Sx ∈ BSLA and Sy ∈ BSLB then

kBSLA → kBSLB =
∑

Sx∈BSLA

∑
Sy∈BSLB

kSx→Sy ZSxZBSLA

There is a number of different software that is capable of generating a model of
an RNA landscape from the set of secondary structures along with the computa-
tion of the transition rate matrix using here described approach. They naturally
implement a heuristic method to estimate the activation energies.

The most notable is barriers [33], that creates a barrier tree. This tree is con-
structed from locally optimal structures by flooding algorithm - the locally opti-
mal structures are the leaves of the barrier tree. Whenever two basins associated
to the locally optimal structures merge a saddle point is found and a node con-
necting those two branches is placed. This is repeated until the root of the tree is
found. The barrier tree graphs then represents the activation energies or energy
barriers between two structures by the vertical length of the edges, and the free
energy of locally optimal structures and saddles is determined by their vertical
position.

Another approach to obtain a model of energy landscape is to compute the per-
sistence diagram [15, 14]. This type of diagram depicts each local minimum and
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its connection to the local minimum with lower energy and minimum activation
energy - the activation energy that effectively determines the persistence. Such
visualization is quite compact and allows for fast identification of the most per-
sistent local minima.

An analysis, more precise than that by barriers software, is performed by
Basin Hopping Graph (BHG) [53]. This graph connects all neighboring basins
B, represented by nodes and the edges represent the transitions along with the
corresponding value of the activation energy Ea. Unlike the barrier tree, which
shows only the saddle points between two closest basins on their fusion, the BHG
shows all transition paths and therefore does not succumb to a loss of an informa-
tion. On the other hand its disadvantage is that it may return multiple additional
transitive structures generated by heuristics detecting the saddle points, which
will make kinetic simulation last longer.

This approach is more precise than just using locally optimal structures but is
also much more demanding due to potentially introducing the number of new
supplementary structures, which makes the analysis of multiple landscapes or
landscapes of longer sequences time consuming.

2.9.1 Kinetic Simulation

The kinetic simulation can be performed once the transition rate matrix was es-
tablished. This matrix has rows and columns represented by a certain secondary
structure that is present within the landscape. The transition rates between the
secondary structures that are not directly connected are supposed to be zero. The
numerical integration is usually done by using the software dedicated for this
purpose. During this work, we used treekin [108].

The method employed in treekin is specifically the Metropolis-Hastings (MH)
algorithm [67, 44], one of Markov Chain Monte Carlo methods. The stochastic al-
gorithm mostly employed to determine a non-standard distribution, it can be also
used, due to its iterative principle, to follow an evolution of the system towards
its equilibrium as well. However, to employ the MH algorithm, the transition
rates must fulfill the condition of detailed balance. Applying the usual, rejection-
based MH algorithm does not always fulfill this condition [32]. However, the
algorithm can modified into a rejection-less variant that is similar to Gillespie al-
gorithm employed in chemistry [39].
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Assume there is a sequence w which can fold into a certain number of SL ∈ SnL .
The simplified general principle is as follows

• Initialization: For t0, have w folded in structure SLA.

• Iteration: Perform the following:

– Find all structures SLn ∈ C(SLA). Compute

kT =
∑

SLn∈C(SLA)
kSLA→SLn .

– Select one from them, SLB, with the probability

p(SLB) =
kSLA→SLn

kT

– Make SLB the new structure of w.

– Move to a new time t1 = t0 + ∆t such that ∆t is randomly generated
from an exponential distribution with the rate parameter kT .

– Repeat iteration steps until some specified tfinal is reached.

This is then generalized on all secondary structures in the system in specific initial
distribution. The simulation is then performed on the entire system.

The choice of the initial distribution of structures depends on the objective of the
kinetic study. We may just want to study the general evolution of the system. For
riboswitches, we may want to observe how the concentrations of the MFE and
the metastable state. The initial distribution must be adjusted for these specific
objectives.

2.10 Sampling Caveats

While the field of RNA kinetics studies rapidly advanced in few last years, there is
still much to be done. Kinetic analysis of especially long sequences still represents
a problem that is mainly related to the richness of the space of the secondary
structures.

The Boltzmann sampling prioritizes the secondary structures with lower free en-
ergy. This probability decreases exponentially as the energy increases. Let −∆G
be a free energy difference between S2 and S1. We call by a frequency ratio
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η(S1, S2) a ratio of probabilities p(S1) and p(S2) of observing secondary structures
S1 and S2 respectively

η(S1, S2) =
e

−ES1
kBT

e
−ES2
kBT

= e
ES2

−ES1
kBT = e

−∆G
kBT . (2.29)

While it is desired to sample low energy structures in priority, it may become
problematic to generate a higher free energy structures if we want to do so. For
∆G = 1, η(S1, S2) = 5.067, meaning per each 5 sampled S1, we observe one
molecule in S2. For ∆ = 10 this value increases to 11147271. It quickly becomes
impossible to access high energy structures without extensive sampling and even
then it depends on the random number generator whether such structure will be
selected.

A number of sampling strategies that tried to address this problem. As already
stated, one method is to ample only locally optimal secondary structures SnL .
This can be checked regularly at each step of decomposition. For example, the
software RNAlocopt [58] verifies whether the addition of a base pair will not
result in the structure not being locally optimal anymore. RNASLOpt [57] on the
other hand assumes the stability is due to helical regions, which the authors call a
stack, and searches for the stacks of certain length. For obtained SL, their values of
Ea are checked against a user-defined threshold whether they are stable enough.
However, while SnL is substantially smaller than Sn, it still raises exponentially
with n [59], therefore restricting Sn to SnL will not completely solve the problem.

Another way to tackle this problem is to reduce the redundancy between of the
sampled structures - sample the same structure repeatedly. One such approach is
employed in software RNAlocmin [53], which uses the ξ-scheduling. The core
of this approach is to sample multiple times on different temperatures, computed
by ξ-scheduling, without scaling the Turner Energy Model-related factors - only
the temperature T of Boltzmann factor is scaled. This results in smaller differ-
ences between the probabilities of different S and for temperatures sufficiently
high temperature the Boltzmann distribution becomes uniform since the expo-
nential factor asymptotically reaches 0. RNAlocmin exploits this to sample S
at gradually higher temperatures, since smaller differences between probabilities
mean higher probability to sample not-yet seen secondary structure. On the other
hand the structures estimated at higher temperature are likely to have their en-
ergy overestimated and the redundancy is still present to some degree.

The way to prevent the repeats of samples altogether is to introduce the concept
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of non-redundant sampling. One of main objectives of this work is to research a
sampling method that allows to generate each sample at most once without intro-
ducing bias in the distribution of not yet sampled structures. In next chapter, we
will present the details on the concept of the method itself as well as how to inte-
grate it in most efficient and easiest way in multiple algorithms. The efficient im-
plementation is particularly important in regards to reduce the time consumed by
sampling. We will mainly describe its implementation to Saffarian algorithm [85],
a state-of-the-art algorithm that will be detailed in next chapter as well.
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Chapter 3

RNANR: An Algorithm for
Non-Redundant Sampling of
RNA Secondary Structures

The main objective of this work is to establish an efficient method to study the
kinetics of RNA sequences. We decided to achieve this by researching a non-
redundant sampling method for the purpose of RNA secondary structure predic-
tion. Since the quality of samples greatly impacts the quality of the RNA folding
landscape, the main tool used to study RNA kinetics, it is reasonable to concen-
trate on amelioration of this important step. In plus, the non-redundant sampling
method should be as optimal as possible, easy to implement, therefore easily sep-
arable form DP scheme it is adjacent to, and compatible with most DP schemes
that compute partition function.

The algorithm that was used to research the non-redundant sampling is the al-
gorithm based on combinatorics developed by Azadeh Saffarian, Hélène Touzet
et al [85]. We will reference this algorithm as Saffarian algorithm. However, the
algorithm itself does not compute the partition function nor includes the Turner
Energy Model terms. After thoroughly introducing the mentioned algorithm and
its formalization using the notions from Section 2.6, we will explain and validate
its necessary modifications to compute these values and most importantly the
probabilities p(S). We will then follow with explaining of the concept of non-
redundant sampling.

The non-redundant sampling necessitates two things to function correctly. First,
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the distribution of not-yet sampled S after forbidding a sampled one must stay
unbiased. This means the frequency ratio η(S1, S2) of any not already sampled
S1 and S2 must stay same for each sampling iteration. Second, it must track all
samples that were already generated. This also includes the chain of decision,
or constructors λ, that were used to generate said structure. For this purpose,
a specific data-structure that must be developed and implemented into the DP
scheme to enable the non-redundant sampling. We will develop on both points
in detail.

We mentioned that this approach should be compatible with most algorithms
computing partition function and used for RNA structure prediction. We will
support this point by demonstrating how one can implement the non-redundant
sampling into RNAsubopt from VIENNARNA based on McCaskill algorithm.

3.1 Saffarian Algorithm

The Saffarian Algorithm, developed by Azadeh Saffarian, Hélène Touzet et al [85],
is a combinatorial algorithm that returns only the locally optimal secondary struc-
tures. This algorithm does not compute the energy of any locally optimal sec-
ondary structure, instead it makes an assumption on local optimality based on
combinatorial principle and then returns all the structures that satisfy that spe-
cific condition. The base version of the algorithm performs an exhaustive enu-
meration of all possible locally optimal secondary structures.

3.1.1 State of the Art and the general principle

The central hypothesis upon which the Saffarian algorithm is based is following:
the structure is locally optimal only if it is saturated.

Definition 3.1.1 (Saturated structure): The secondary structure is satu-
rated only if ∀w[i] with 1 ≤ i ≤ n that are unpaired, there is no a base
pair that can be created without violating the conditions specified in Defi-
nitions 2.1.4 and 2.1.5. Such structure is denoted by SSATSSATSSAT .

In other words, there is no possible way to add a new base pair to the saturated
structure SSAT . This however does not mean that SSAT contains the maximum
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base pairs as defined by Nussinov Algorithm, just that there is no base pair that
can be added to the base pair configuration of SSAT .

The structures SnSAT delimit their own space.

Definition 3.1.2 (Saturated structure space): The saturated structure space
is denoted by SnSAT ⊆ Sn. The space of the saturated secondary structures
SSAT (i, j) coveringw[i, j] is denoted by SSAT (i, j). The space of all saturated
secondary structures is denoted by SSAT with

SSAT =
⋃

1≤i<j≤n
SSAT (i, j).

The reason that the saturated structures can be considered as locally optimal is
that the base pairs have stabilizing effect on the structure. However, this is not al-
ways true, especially for the lonely base pairs - the base pairs that are not stacked
with another base pairs. In fact, most of the stability of the structure comes from
the helices, or stacked bas pairs [45]. To take this factor into the account, the Saf-
farian algorithm allows only for helicesH(i, j, lh) with a certain minimum length
a. In the rest of this chapter, we suppose a = 3.

If the minimum helix length is imposed, the definition of the saturated structure
is slightly redefined:

Definition 3.1.3 (Parametrized saturated structure): If all S can contain
only helices H(i, j, lh), 1 ≤ i < j ≤ n where lh ≥ tr, with tr an arbi-
trary threshold, the structure S is saturated only if no helix H(i, j, lh) with
lh ≥ tr can be added to it.

The structure is parametrized because there is a special parameter a that imposes
certain restriction on this structure. The space of all saturated secondary struc-
tures also gets redefined accordingly. Specifically, from this point on SSAT , resp.
SnSAT contain only saturated structures, resp. saturated structures of size n, that
respect the defined parameters. A number of other parameters will be introduced
later.

Suppose two helices a ≥ lh and a ≥ lh ′. Between the helices H(i, j, lh) and
H(i ′, j ′, lh ′), the algorithm assumes two possible relations. First, the helix can be
nested in another.
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Definition 3.1.4 (Nested helices): The helix H(i, j, lh) is nested in
H(i ′, j ′, lh ′) if i < i ′ < j ′ < j and there is at least one base w[k] for
w[k] ∈ w[i + a, i − 1] ∪ w[i + a, i − 1] is unpaired meaning H(i, j, lh) and
H(i ′, j ′, lh ′) are not the one continuous helix.

Second, the helix can be juxtaposed to another while all of them are nested in the
exactly same set of helices.

Definition 3.1.5 (Parallel helices): The helices H(i, j, lh) and H(i, j, lh) are
parallel one to another if either i < j < i ′ < j ′ or i ′ < j ′ < i ′ < j ′ and both
helices are, at the same time, either nested in the same helix H(i ′′, j ′′, lh ′′)
or not nested in another helix at all.

The principle of the Saffarian algorithm is, first, to enumerate all possible base
pairs. These are then used to construct helices H(i, j, a) that each has the exactly
the length of a, the minimum possible helix length. These helices are then assem-
bled to maximum parallel sets.

Definition 3.1.6 (Flat structure): The flat structure p is the maximum set
of parallel helices. Specifically, p(i, j) denotes a maximum set of parallel
helicesH(i1, j1, a), . . . ,H(iu, ju, a) for a sequence w[i, j], i < i1 < j1 < . . . <
iu < ju < j. No another un-nested helixH(i ′, j ′, a) can be added to it.

Note that by definition, p[i, j] cannot contain any nested elements. For eachw[i, j]
a certain number of flat structures can be proposed.

Definition 3.1.7 (Flat structures set): A flat structure set P(i, j) is a set of all
possible flat structures p(i, j).

Using the dynamic programming, the flat structures are constructed as follows.
We borrow the expression from the related paper [85] and update it including the
modifications later made by Hélène Touzet [68].

• If for i < k ≤ j there is not any helixH(i, k, a), then P(i, j) = P(i+ 1, j).
• If such helices exist, then:
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P(i, j) =
⋃

⋃

i<k≤j
{H(i, k, a)}⊕ P(k+ 1, j)

⋂
i<k≤j

Sat(H(i, k, a),P(i+ 1, j))
(3.1)

The⊕ operator denotes the concatenation of a base pair to every element of given
set, here of the helix H(i, k, a) to every flat structure p of the set P(k + 1, j). The
function Sat(H(i, k, a),P(i + 1, j)) checks whether the structure consisting of a
concatenation of the helixH(i, k, a) and some p ∈ P(i+ 1, j) is saturated. In other
words, Sat((i, k),P(i+ 1, j)) returns the concatenation ofH(i, k, a) and some p ∈
P(i+ 1, j) only if there is not another helix that can be added to it.

The next step is to assemble these flat structures p into the saturated secondary
structures SSAT . This creates the nested relations between the helices. The assem-
bling step would be done by searching p(1, n) for substring w[1, n] = w, then
proceeding with the substrings opened by p(1, n) until such substrings would
become too small to host a helix. However, the algorithm proposed as it is is
insufficient, since all helices would have length of a or multiples.

To address this issue, if we checkw[i, j] that is nested within aH(i−a+ 1, j+a−
1, a) from some flat structure, we need to suppose the case where an extension
of such helix is possible. In that case we suppose an extension by the pair (i, j),
elongating H(i − a + 1, j + a − 1, a) by one base pair. This makes possible create
any helices with lh ≥ a.

It is important to notice that if set P(i, j) of p is nested within the helix H(i − a +

1, j+ a− 1, a) we have to exclude the helixH(i, j, a) from it. In the opposite case
the helices of length of multiples of a could be decomposed in more ways than
one, violating the condition of unambiguity.

The algorithm is summed up on Figure 3.1, the substring w[i, j] is specifically
treated whether the w[i− 1] and w[j+ 1] are paired or not.

The problem with this algorithm is its time complexity. While its memory com-
plexity is limited to O(n2), since we need only two-dimensional matrices to store
the results, the time complexity depends on the number of flat structures that may
be exponential due to the the upper limit for helices being n/2. However, if the
number of possible helices for given interval is limited, the complexity becomes
polynomial. Therefore, supplementary parametrization can help us to reduce the
overall complexity of the Saffarian algorithm.
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Figure 3.1: The decomposition employed by Saffarian algorithm. The substring w[i, j]
is treated depending on whether (i − 1, j + 1) is present or not. If it is absent, all flat
structures p(i, j) existing for w[i, j] are considered. If it exists, all p(i, j) except H(i, j, a)
are considered along with the possibility of extending the helix H(i − a + 1, j + a − 1, a)

by a single base pair (i, j). The helices are marked by blue.

The Saffarian algorithm is available as the software RNANR under open-source
public license. The software is coded in C and includes the original exhaustive
enumeration algorithm created by Azadeh Saffarian et al with the update made by
Hélène Touzet as well as the results of the research presented within this chapter.
It is freely accessible on the site: https://project.inria.fr/rnalands/
rnanr.

3.1.2 Parametrization of the Saffarian Algorithm

We mentioned the possibility to parametrize the Saffarian algorithm to search
only for saturated secondary structures that satisfy the given conditions and its
possible impact on the overall complexity of the algorithm. Two of them, θ and
a, were already mentioned. The parametrization of Saffarian algorithm were in-
troduced by Hélène Touzet in a previous modification of the original version of
the algorithm.

The list of all parameters is as follows:

• θθθ - minimum length of a base pair. This is due to steric strain and angular
tension between the bonds which does not allow for a close nucleotides to
be paired.

• aaa - minimum length of a helix. The base pair stacks contribute to the stabil-
ity of the secondary structures, therefore lone base pairs are uncommon [46].

• πππ - maximum number of unpaired bases in a hairpin. The longer unpaired
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stretches are less probable due to the condition of saturation.

• mmm is the maximum cumulated size of the unpaired stretches within an in-
ternal loop or a bulge. This is the maximum limit of the sum of the lengths
α and β of both unpaired stretches. The large bulges/internal loops are
considered to be energetically unfavorable [66].

• ννν - maximum length of a base pair. Specifying this value of this parameter
restricts the long-range base pair interactions.

• γγγ - maximum number of the branches within the multibranch loop. The
fixed number of the maximum number of the branches decreases the com-
plexity of the Saffarian algorithm from exponential to polynomial.

All parameters are illustrated on Figure 3.2.

aaaννν

mmm
+++

θθθ (min)
πππ (max)

γγγ
(max count)

Figure 3.2: The parameters defined within the Algorithm of Saffarian. ν denotes the
maximum base pair span, which allows to define whether we allow the long-rande inter-
actions or not. θ represents the minimum length of a base pair, while π is the maximum
length of a hairpin. γ denotes the maximum number of the branches within the multi-
branch loop.

The advantage of the parametrization of Saffarian algorithm is it does not induce
any supplementary complexity cost. As seen on the example of helix length a
and minimum base pair length θ, the parameters are directly implemented into
the algorithm with and used with the overall complexity O(1). Therefore the
space SnSAT can be reduced using the parametrization to restrict the secondary
structures without inducing any supplementary complexity cost.

We also redefine SnSAT , resp SSAT as the set of all saturated secondary structures,
resp. those with the length n, that fulfill the conditions imposed by parameters
a, π,m, ν and γ.
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We specifically discuss the minimum helix length a and the maximum number
of the branch of the multibranch loop γ. Limiting both of he values can greatly
speed up the algorithm of Saffarian at the cost of a loss of the potentially impor-
tant part of SnSAT . In the case of the minimum helix length a, the default value
is 3. While it has been shown that lone base pairs are a rare occurrence [45], ex-
cluding the helices of the length of 2 may have bigger impact. For this reason, we
analyze the data of experimentally determined secondary structures and study
the helices found within them. The similar analysis will be made to the number
of the branches within the multibranch loop.

For this purpose, we used the RNA STRAND database [2] - a database of known ex-
perimentally determined secondary structures. We performed its statistical anal-
ysis in a following manner:

• Create 5 groups of sequences from RNA STRAND for which the secondary
structures, respectively containing all sequences shorter than 140, 300, 400
and 500 nt, the last group containing all sequences.

• For each group, determine a number of helices having at least a certain
length.

• For each group, compute the proportion off all helices having least certain
length.

The similar analysis is made for the multibranch loop, except we computed the
proportion of all secondary structures which multibranch loop with most branches
has their given number. The results of both analyses is shown on Figure 3.3A and
B respectively.

For the number of the branches within the multibranch loop, we can observe
that the structures having having multibranch loops with more than 6 branches
are rare. Note that for RNA STRAND, the number of branches counts in also the
pair that closes the multibranch loop, while the parameter of Saffarian algorithm
does not, so the number of branches in Figure 3.3A corresponds to γ + 1. It is
safe to parametrize the Saffarian algorithm with γ = 5, as it leads to a loss of
only a negligible proportion of the secondary structures. That would reduce its
overall complexity to polynomial, since the maximum number for |p| would be
dependent on this parameter instead of the length of the sequence. Such approach
seems reasonable considering the number of lost secondary structures is minimal.

The second analysis shows that the helices H(i, j, lh) with the length lh = 1, or
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Figure 3.3: The statistics on the secondary structures from the database RNA STRAND.
The statistics are calculated for the classes of sequences separated by their maximum
length. (A) The percentage of the structures from RNA STRAND having at maximum the
indicated number of branches within each of their multibranch loop. Here this number
also include a closing base pair. (B) The proportion of helices that have at least the indi-
cated length. The statistics show that both multibranch loops with more than 6 branches
and the lone base pairs are uncommon.

lone base pairs (LP), are also rarely observed even among the shorter sequences.
In fact, shorter sequences have lower proportions of LP simply because longer
sequences have more base pairs, and therefore also LP. However, around 90% of
all helices have at least two or more base pairs. On the other hand, only 75%
has H(i, j, lh) with lh ≥ 3, meaning that setting a will lead to a loss of 1/4 of all
helices. However, assuming that the functional structures will not be affected too
profoundly by exclusion or eventual elongation of these helices, we can allow to
set a = 3.

Note that the structures considered here are not all locally optimal or saturated,
therefore the statistics for SnL , resp. SnSAT might differ a bit.

From this point on, we suppose that a = 3. The values of γ are unlimited unless
noted otherwise.

3.1.3 Computing the Partition Function

The problem of sampling locally optimal secondary structures was already re-
solved by A. Lorenz and P. Clote [59] in polynomial time. While the Saffarian al-
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gorithm samples in exponential time without any parametrization, this exponen-
tial parameter is small and therefore the exponential increase is not as remarkable.
Plus, because of the parametrization without complexity overhead, the Saffarian
algorithm is a valuable tool for searching the locally optimal structures within the
defined parametrized space. Since such conditions can be specified, it is easier to
look for the structures whose specifics are known. For this reason we decided to
work with this algorithm.

Unfortunately, the algorithm of Saffarian does not compute the energies of the
secondary structures, instead it enumerates them exhaustively. Therefore, it is
impossible to sample the structures since the partition function cannot be com-
puted without energies. Our task is to analyze how to compute the energies of
the flat structures so we can compute the partition function using the dynamic
programming.

The decomposition of the secondary structures in flat structures allows is to im-
plement the Turner Energy Model by associating the specific flat structures to
specific loops. First, consider all possible cases without an extension of an ex-
isting helix of some flat structure. We know each such flat structure p contains
u helices H(ix, jx, a) such that 1 ≤ x ≤ u. Consequently, their energy can be
computed by

EH(i,j,lh) =

a−1∑
y=0

ESt(i+ y, j− y).

Definition 3.1.8 (Flat structure energy): he energy of the flat structure Ep
can be computed as

Ep = Cp +

u∑
x=1

lh−1∑
y=0

ESt(ix + y, jx − y) (3.2)

where Cp is an energy term that depends on the properties of p.

The properties determining Cp are: - number u of helices H(ix, jx, a) such that
1 ≤ x ≤ u, lhx > a; - whether it is nested in another flat structure.

Depending on these properties, we can identify the type of loop that p represents
and associate a corresponding value to Cp

• If u ∈ N and p is not in another helix, it is an external loop - Cf = 1.

• If u = 0 and p is in another helix, p is an hairpin - Cp = EH(i, j).
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• If u = 1 and p is nested in another helix, p constitutes an internal loop or a
bulge depending on i, i1, j1, j, therefore Cp = EILG(i, i1, j, j1).

• If u = 2 and p is nested in another helix, p constitutes a multibranch loop
and Cp = a+ b× u+ c×Nunp, according to the Equation 2.6.

The extension is a specific case that is equivalent to an elongation of an existing
helix, adding an energy term to it.

Definition 3.1.9 (Extension energy): he energy of an extension pE of helix
H(i, j, lh) such thatH(i, j, a) ∈ p, lh ≥ a is

EpE = ESt(i+ lh− 1, j− lh+ 1).

Once each p has been associated to the specific loop case, we can compute the
energy of entire secondary structure:

ES =
∑
p∈S

Ep +
∑
EpE∈S

EpE .

With the energies of p, resp. pE being acquired, we can proceed to computation of
the Boltzmann distribution. Such a distribution prioritizes the low-energy struc-
tures but does not completely ignore high-level energies.

The partition function is computed by employing a DP scheme that recursively
includes one flat structure in another and extends their helices. Due to the pres-
ence of an extension, we need to distinguish two cases:

• the interval w[i, j] is not included in some helix H(i − lh, j + lh, lh) with
lh > a; the partition function is denoted by ZUi,j;
• the interval w[i, j] is included in a helix H(i − lh, j + lh, lh); the partition

function is denoted by ZNi,j.

The values of these two partition functions can be computed as:
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ZUi,j =
∑

p(i,j)∈P(i,j)
e

−Ep(i,j)

kBT ×
x∏
c=1

ZHic+a,jc−a

ZHi,j =
∑

p(i,j)∈P(i,j)/H(i,j,a)

e
−Ep(i,j)

kBT ×
x∏
c=1

ZHic+a,jc−a + e
−EpE (i,j)
kBT ×ZHi+1,j−1

(3.3)

In the case of ZBi,j, we need to exclude H(i, j, a) since it would extend the helix
H(i − a, j − a, a) of the parent flat structure p ′ and would create ambiguous sit-
uation since such decomposition is handled by the extensions. The extension is
then included in ZHi,j since we know that it is included in some H(i − a, j − a, a).
The partition function Z is given by ZH1,n.

The computation of the energies of the loops in RNANR employing Saffarian al-
gorithm uses the functions from VIENNARNA which also includes all necessary
energy parameters. These functions as well as DP scheme from Equation 3.3 are
implemented into the RNANR in C language. The stochastic backtrack constituting
the base of the sampling in the way similar to Section 2.5.6.

The similar approach was used independently in works of Jérôme Waldispühl
and Peter Clote [100].

3.1.4 Formalization

Here we express the DP scheme employed in Saffarian algorithm using the for-
malism we established in Section 2.6. Its formalization is quite simple. First, we
need to define states Q. As with Zuker and McCaskill algorithm, w[i, j] alone
is not sufficient to define a state, but we need to know whether (i − 1, j + 1) ∈
SSAT (i, j), with SSAT (i, j). a saturated structure constructed by DP scheme. We
therefore define two types of states:

• qUi,j = w[i, j]|(i, j) /∈ SSAT (i, j)
• qHi,j = w[i, j]|(i, j) ∈ SSAT (i, j)

The set of all states is then defined by

QSaf = {qUi,j, q
H
i,j | 1 ≤ i < j ≤ n}.

There are two types of derivation and associated constructors:
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• λflati,j,p(i,j) - associates a flat structure p(i, j) ∈ P(i, j) to w[i, j]

• λexti,j - an extension of a helixH(i− lh, j+ lh, lh), lh > a

We can consequently define ρSaf:

ρSaf(q
U
i,j) =

⋃
p(i,j)∈P(i,j)

{
({qHi1+a,i1−a, . . . , q

H
iu+a,iu−a}, λ

flat
i,j,p(i,j), Ep(i, j))

}

ρSaf(q
H
i,j) =

⋃



⋃

p(i,j)∈P(i,j)/
/H(i,j,a)

{
({qHi1+a,i1−a, .., q

H
iu+a,iu−a}, λ

flat
i,j,p(i,j), Ep(i, j))

}

{
({qHi,j}, λ

ext
i,j ,−EpE (i, j))

}
(3.4)

Here qroot = qU1,n. We have thusly completely defined the DP Scheme used in
Saffarian algorithm as (QSaf, qU1,n, ρSaf).

To compute the partition function, we proceed by application of the Equation 2.6.2.
This gives us:

PfSSaf(qUi,j) =
∑

qUi,j

λflat
i,j,p(i,j)

−−−−−→
Ep(i,j)

{q ′Hi1,j1
,...,q ′Hiu,ju }

e
Ep(i,j)

kBT ×
(

u∏
i=1

PfSSaf(q ′Hix,jx)

)

PfSSaf(qHi,j) =
∑

qHi,j

λflat
i,j,p(i,j)

−−−−−→
Ep(i,j)

{q ′Hi1,j1
,...,q ′Hiu,ju }

e
−Ep(i,j)

kBT ×
(

u∏
i=1

PfSSaf(q ′Hix,jx)

)
+

+ e
Ep(i,j)

kBT × PfSSaf(q ′Hi+1,j+1)

Finally, the search space for each state q can be defined as:
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LSaf(qUi,j) =
⋃

qUi,j

λflat
i,j,p(i,j)

−−−−−→
Ep(i,j)

{q ′Hi1,j1
,...,q ′Hiu,ju }

λp(L(q ′Hi1+a,i1−a), . . . ,L(q
′H
iu+a,iu−a))

LSaf(qHi,j) =
⋃



⋃

qUi,j

λflat
i,j,p(i,j)

−−−−−→
Ep(i,j)

{q ′Hi1,j1
,...,q ′Hiu,ju }

λp(L(qHi1+a,i1−a), . . . ,L(q
H
iu+a,iu−a))

λext(LSaf(qHi+1,j−1))

(3.5)

The stochastic backtrack is then formalized by using the Equation 2.18, where
fλ is either the function computing the partition function for applying p or an
extension of one of helices of p ′.

3.1.5 Comparison of Saffarian and Turner Local Minima

Saffarian algorithm assumes SSAT is locally optimal if it is saturated. However,
nothing so far confirms such assumption, specifically with regards to Turner En-
ergy Model. Since we use this energy energy model to compute the energies of
all flat structures and secondary structures determined by the Saffarian algorithm,
we would like to study whether the saturated secondary structures are effectively
the local minima according to it.

The local optimality implies that all neighbors Sneigh ∈ VSSAT to SL satisfy:

ESSAT < min
Sx∈VSSAT

ESx .

To validate this condition we apply the method of gradient walk. This method
searches for all possible neighbors of a saturated secondary structure SSAT and
calculates their free energy. Should one of neighbors have lower energy than
SSAT , then the neighbor becomes then new minimum and the entire process is
repeated until we reach the true local minimum. If SSAT is local minimum then
no descent will be possible.

For this purpose, we employ the gradient walk function implemented in VIEN-
NARNA.

It must be pointed out that the space of secondary structures accessible by the
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gradient walk is not the same as the one accessible by the Saffarian algorithm.
While the gradient walk can access the entirety of Sn, the Saffarian algorithm can
access only the parametrized space SnSAT ⊂ Sn. This means that after performing
the gradient walk on SSAT we might find ourselves with S /∈ SnSAT . It is impor-
tant to know whether the structure is not locally optimal because SnSAT does not
include such structure or it is caused by the conception of the algorithm. For this
reason here we will separate the results obtained for the gradient walk to those
that are within search space, or where the final S is in parametrized SnSAT , and
those that are not not, or are outside search space.

To compute these values, we used 154 sequences from RNA STRAND, or all se-
quences from the database version from 04/11/2011 having between and includ-
ing 120 and 170 nt. This ensures the sufficient variability for the secondary struc-
tures and avoiding the situations where saturated secondary structures would be
also locally optimal by random chance.

The proposed pipeline of validation of saturated structures as locally optimal is:

1. Using the Saffarian algorithm, sample 1000 unique saturated secondary
structures SSAT . This can be either done by sampling SSAT and removing
duplicates until we have 1000 uniques, or more easily performing the non-
redundant sampling that will be detailed in the next section.

2. For each SSAT , perform a gradient walk using a dedicated VIENNARNA
function.

3. Compare the gradient walk result Sgrad with corresponding SSAT .

4. For the Sgrad that are different, check out whether they satisfy the parametriza-
tion of Saffarian Algorithm, ie. they validate the parameters θ, a, π,m, ν and γ.

The results are listed in Table 3.1. The Sgrad that are identical to starting SSAT
are counted in the category Within search space. We found that of 59.57% of
Sgrad within search space, of which about 90% are locally optimal according to
the Turner Energy Model. For the Sgrad ∈ SSAT that differ from SSAT , the true
local minimum is within two base pairs most of the time (average at 1.550), and
within the 2 kcal.mol-1of free energy (average at ∆∆1.258). The saturated sec-
ondary structures SSAT are therefore identical to Sgrad in 52%, and in most of
others Sgrad is quite close. However, in the majority of cases where Sgrad and
SSAT differ we have Sgrad /∈ SSAT . This suggests that the local optimum cannot be
reached because it is outside SSAT . On the other hand, there are some case where
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the saturated structure is not locally optimal. However, since such results are few
and far apart, we can indeed assume that SSAT ∈ SL and therefore that Saffarian
algorithm returns locally optimal structures.

Samples% ∆∆G Base pair dist.
avg (std.dev) avg (std.dev) avg (std.dev)

Within search space 59.57% (21.00) 0.071 (0.309) 0.129 (0.289)
Outside search space 40.42% (21.00) 1.248 (0.925) 1.550 (0.619)

Global average 100.00% (–) 0.547 (0.817) 0.703 (0.757)

Table 3.1: The comparison whether the saturated secondary structures are locally opti-
mal. The category denoted ’Within search space’ marks the cases where Sgrad ∈ SSAT .
These structures are identical to SSAT in about 50% of cases. The category denoted ’Out-
side search space’ specifies locally optimal structures obtained the same way and not
fulfilling the parametrization of the Saffarian algorithm. ∆∆G specifies the average differ-
ence of energy between the two structures, while the average base pair distance accounts
to the average number of different base pairs between them.

Note that this experiment verifies that SSAT are locally optimal with respect to
the Turner Energy Model, but it does not confirm whether the space of saturated
secondary structures completely covers the space of locally optimal structures
that respect the given parameters. This is not problematic though, since in this
case we are interested only in saturated secondary structures.

3.2 The Non-redundant Sampling

Problem 3.2.1:

• Input: DP scheme that can be formalized as (Q, qroot, ρ);
• Output: set of length N of unique secondary structure samples in normal-

ized Boltzmann distribution.

The advised non-redundant sampling strategy has to fulfill two conditions:

• The method must be applicable to any DP scheme computing the partition
function for the purpose of predicting suboptimal secondary structures of
RNA.
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• The method should be easy to implement, therefore constituting an inter-
face to the adjacent DP scheme with the lowest number of interactions pos-
sible.

The general concept of non-redundant sampling was introduced and discussed
for weighted generation from context-free grammars by William Lorenz and Yann
Ponty [60]. We push said method further, adapt the result for the purpose of RNA
secondary structure prediction and put it into practice.

Here, we will, after introducing the necessary notions and explaining the general
principle of non-redundant sampling, research the method that fulfills aforemen-
tioned criteria. We will discuss on the points that must be addressed to create
such method. The two main interdependent issues is the memorization process
of the sampled secondary structures and their decomposition and how to ensure
that the distribution of non-sampled structures stays unbiased. While the first
experiments will be made on the RNANR, we will try to generalize the principle as
much as possible using the formalism we introduced except for specific examples.

We will follow by the experiments demonstrating the efficiency of this approach
when compared to RNA usual sampling methods. We will then describe the im-
plementation of researched non-redundant sampling method in the most optimal
way and backing the general applicability of it to the current DP schemes used
for sampling of secondary structures from Boltzmann distribution.

3.2.1 Parse tree and Incomplete structures

Before explaining the non-redundant sampling, we must introduce the notion of
parse tree and incomplete structures in the context of secondary structure sam-
pling. Most DP schemes only consider what happens for the given q at the
given point, but not the events taking place outside of it. The principle of non-
redundant sampling necessitates to know this information, and to express it from
that generated by DP scheme. The specified concepts are introduced for this rea-
son.

Each DP scheme (Q, qroot, ρ) can be captured as a context-free grammar [60],
where

• The alphabet is the set D of constructors λ;

• The non terminal symbols are the states q ∈ Q;
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• The production rules are derivations q λ
−→
cλ

{q ′1, . . . , q
′
u}, taking q and return-

ing λ and q ′1, . . . , q
′
u - for now we ignore the score contribution cλ;

• The axiom is qroot.

Therefore each secondary structure can be represented as a parse tree.

Definition 3.2.1 (Parse tree): A secondary structure parse tree is a tree
T(w,Q, qroot, ρ) for which we have:

• Internal nodes λ ∈ D - each parent of uuu subtrees T1, . . . ,Tu with
derivation q λ

−→
cλ

{q ′1, . . . , q
′
u};

• Leaves λterm ∈ D such that q λterm−−−−→
cλterm

∅.

Such a tree represents a structure where an application of constructor leads to
application of λ1a and λ1b etc., each building a specific element.

Now suppose the structure is not completely derived yet on states q. In that case
some of the leaves will not be represented by a constructor λ, but instead by some
state qwhich can be derived by a number of derivations q λ

−→
cλ

{q ′1, . . . , q
′
u}.

Definition 3.2.2 (Immature parse tree): Let QN be the list of under-
ived states. An immature secondary structure parse tree is a tree
TI(w,Q,QN, qroot, ρ) for which we have:

• Internal nodes λ ∈ D - each parent of uuu subtrees T1, . . . ,Tu with
derivation q λ

−→
cλ

{q ′1, . . . , q
′
u};

• Leaves λterm ∈ D such that q λterm−−−−→
cλterm

∅ or q ∈ QN.

The immature parse tree evolves as the states q get derived as λterm ∈ D such that
q

λterm−−−−→
cλterm

∅. We can represent this evolution by a decomposition tree.
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Definition 3.2.3 (Decomposition tree): A decomposition tree is a tree

T (w,Q, qroot, ρ)

for which:

• Each internal node V is a immature secondary structure parse tree
TI(w,Q,QN, qroot, ρ) .

• Each leaf Vterm is mature secondary structure parse tree
T(w,Q, qroot, ρ).
• Each edge V1 → V2 represents a derivation λterm ∈ D such that
q

λterm−−−−→
cλterm

∅, where q is a leaf of a parse tree in some node V .

Example 3.2.1. Suppose a sequence w and a DP scheme (QEx, qroot, ρEx) where

Qex = {qroot, q1A1, q1B1, q1B1, q1B2}

and the ρEx is given by

ρex(qroot) = {({q1A1, q1A2}, λ1A, c1A), ({q1B1, q1B2}, λ1B, c1B)}

ρex(q1A1) = {(∅, λ2A, c2A)}

ρex(q1A2) = {(∅, λ2B, c2B)}

ρex(q1B1) = {(∅, λ2C, c2C)}

ρex(q1B2) = {(∅, λ2D, c2D)}

The decomposition tree is given by Figure 3.4. Each internal node is represented
by an immature parse tree, and each leaf is a mature parse tree. At the beginning
there is only the initial state dproot. This state gets derived by one of two avail-

able derivations, qroot
λ1A−−−→
cλ1A

{q1A1, q1A2} and qroot
λ1B−−−→
cλ1B

{q1B1, q1B2}, giving two

new different states for each case. We derive the states q1A1 and q1A2 that follow
qroot

λ1A−−−→
cλ1A

{q1A1, q1A2}, resp. q1B1 and q1B2 that follow qroot
λ1B−−−→
cλ1B

{q1B1, q1B2}

consecutively, leading to the mature parse trees at the end of each branch.

The important point is the order in which the states q of an incomplete structure
are derived. This order must be deterministic, otherwise multiple decomposition
trees may be created for the same DP scheme and sequence. In our case we as-
sume the state q to be derived is the rightmost one, and that all trees for the same
DP scheme (Q, qroot, ρ) and sequence w have always the same layout.
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qroot

λ1A

q1A1 q1A2

λ1A

λ2A q1A2

λ1A

λ2A λ2B

λ1B

q1B1 q1B2

λ1B

λ2C q1B2

λ1A

λ2C λ2D

Figure 3.4: Decomposition tree T (w,Qex, qroot, ρex). Each internal node is constituted
from an immature parse tree TI(w,Qex,QN, qroot, ρex), while the leaves represent a
mature parse trees TI(w,Qex, qroot, ρex) and T(w,Qex, qroot, ρex). The nodes are con-
nected by the derivations q λ

−−→
cλ

q ′
1, . . . , q

′
u on the nodes q of immature trees.

We compute the search spaceL(T) associated to a tree T(w,Q, qroot, ρ) or TI(w,Q, qroot, ρ)
in a recursive manner:

L(T) =

λ(L(T1), · · · ,L(Tu))) if λ an internal node or mature leaf

λ(L(q)) if q an immature leaf
(3.6)

Theorem 3.2.1 (Search space inclusion): Suppose a decomposition tree T
where V contains two parse trees TI and T ′I connected by an edge representing
a derivation q λ

−→
cλ
q ′1, . . . , q

′
u from TI to T ′I, q ∈ TI. In that case

L(T ′I) ⊆ L(TI).

Proof 3.2.1. The derivation q λ
−→
cλ

{q ′1, . . . , q
′
u} implies a tree TI contain a state q

that can be derived. Since Definition 2.6.1 defines constructor λ as a function with
properties of cartesian product and the TI, resp. T ′I can be defined recursively by
the properties of subtrees T1, · · · ,Tu, we can separate L(q) from other terms in
L(TI). The derivation q λ

−→
cλ

{q ′1, . . . , q
′
u} introduces λ and the space of structures

λ(L(q ′1, . . . , q ′u)). Equation 2.6.1 implies that

λ(L(q ′1, . . . , q ′u)) ⊆ L(q).
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Due to the properties of λ as cartesian product, it follows

L(T ′I) ⊆ L(TI).

We define an incomplete secondary structure, whose notion is directly related to
that of an immature secondary structure parse tree.

Definition 3.2.4 (Incomplete structure): We call an incomplete structure
SI a secondary structure that contains at least one state q that was not yet
derived. For a sequence w, an incomplete structure is always of size n.

Example 3.2.2. The illustrated example for DP scheme

(QZuk, qF1,12, ρZuk)

employed in Zuker algorithm is available on Figure 3.5. The sequence

w = ACCCAAAGGAGA

contains an incomplete structure constituted of base pairs (2, 11) and (3, 9) and
an underived state qC4,8. We may choose among two possible derivations:

• qC4,8
λILG3,9,4,8−−−−−→
c
λILG
3,9,4,8

{qC5,7} creating a stack of base pairs (3, 9) and (4, 8).

• qC4,8
λH4,8−−−→
c
λH
4,8

∅ that creates a hairpin.

An incomplete structure delimits a certain subspace of Sn.

Definition 3.2.5 (Incomplete structure space): The incomplete structure
space SI of SI is a space of secondary structures that can be obtained by
deriving on underived state q by q λ

−→
cλ

{q ′1, . . . , q
′
u}.

Example 3.2.3. Assume that the state qC4,8 is the only underived state of of an

incomplete structure SIa from Figure 3.5. This state can be derived by qC4,8
λILG3,9,4,8−−−−−→
c
λILG
3,9,4,8

{qC5,7} and qC4,8
λH4,8−−−→
c
λH
4,8

∅. The former will lead to an incomplete structure SI1 =

{(2, 11), (3, 9), (4, 8)} and a state qC5,7 on which only the derivation by qC5,7
λH5,7−−−→
c
λH
5,7

∅
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is possible, giving S1 = {(2, 11), (3, 9), (4, 8)}. λH4,8 leads to a complete structure
and S2 = {(2, 11), (3, 9)}. Therefore

SIa = {S1, S2}.

A C C C A A A G G A G A

C A A A G

C A A A G

111 121212

444 888

444 888

Figure 3.5: Illustration of the incomplete structure. Under DP scheme
{QZuk, qF1,12, ρZuk} used in Zuker algorithm, the example of a incomplete structure SI
for the sequence w=ACCCAAAGGAGA contains two base pairs (2, 11) and (3, 9), and a
state qC4,8 with no λ. Two constructors, λILG2,9,4,8 and λH3,9,4,8, can be attributed to this state
to generate two complete secondary structures. SI is constituted from two complete
structures: one where 4th and 8th nucleotide is paired and one where not.

The partition function of an incomplete structure SI is

ZSI =
∑
S∈SI

ZS.

In the decomposition tree T , each node in V can be seen as an incomplete sec-
ondary structure SI where leaves q are underived states in secstrinc. Each node
is an immature parse tree TI with known set of underived states q and a chain of
performed derivations, as well as a subset of structures L(TI). Therefore TI rep-
resents a secondary structure SI and L(TI) = SI . This also implies that for two
incomplete structures SIa and SIb connected by an edge in T , where SIb was
obtained by deriving q of SIa, we have

SIb ⊆ SIa.

A mature tree T(w,Q, qroot, ρ) represents a completed structure, since it does not
have any leaf q. Said structure is constructed by following a path in T from root
to specified leaf.

90



General Principle of Non-redundant sampling

Suppose two incomplete structures SIa, represented by an immature parse tree
TIa with a leaf q the next state to be derived, and SIb, represented by TIb such that
SIb is obtained by derivation q λ

−→
cλ

{q ′1, . . . , q
′
u} of q in SIa and is consequently

connected by an edge in an associated decomposition tree T (w,q, qroot, ρ). In
addition to the Equation 2.21, the probability p(λ | q) can be expressed as

p(λ | q) =
ZSIb
ZSIa

(3.7)

If we want to perform a non-redundant sampling, we need to make sure that at
every moment we choose a derivation, the newly generated incomplete structure
SIb will not lead to SI composed only from the structures that were already sam-
pled. This must be verified every time a new λ is selected. This is simple if one
knows what structures SF were already sampled and which SF ∈ SI , with SF the
corresponding forbidden structure. We denote the space of forbidden structures,
structures than must not be generated, by F .

In the context of non-redundant sampling, F contains all already sampled sam-
pled structures. The set of forbidden structures FSI that can be generated by
completing SI is

FSI = F ∩ SI .

Its partition function ZFSI is

ZFSI =
∑
S∈FSI

ZS.

Definition 3.2.6 (Non-redundant emission probability): Let FSIa and
FSIb be the forbidden structures that can be generated by completing SIa,
resp. SIb. The probability p(λ | q,FSIa ,FSIb) of choosing a derivation

q
λ
−→
cλ

{q ′1, . . . , q
′
u} is

p(λ | q,FSIa ,FSIb) =
ZSIb − ZFSIb
ZSIa − ZFSIa

. (3.8)
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Theorem 3.2.2 (Non-redundant generation probability): Using the non-
redundant emission probability for each derivation, we generate a structure S ∈
L(qroot) − F with global probability

p(S | F) = ZS − 1S∈F ×ZS
Z − ZF

. (3.9)

where 1S∈F is an indicator function that takes value 1 if S ∈ F and 0 otherwise.
This is effectively the expression of a probability to sample S; if S ∈ F we have
p(S | F) = 0, otherwise it scales accordingly by the Boltzmann factors of the
structures not in F .

Proof 3.2.2. From the decomposition tree T (w,q, qroot, ρ), the generation of a
structure S can be represented by a path of T where leaf TIv represents S:

TI0 → TI1 → · · ·→ TIv = T.

Each TIv represents an incomplete secondary structure, therefore

SI0 → SI1 → · · ·→ SIv = S.

Assume that FSIx is the set of forbidden structures which can be generated from
SIx where 1 < x < v. The probability p(S | F) of choosing S is given by the
probability of selecting each λ for which q λ

−→
cλ

{q ′1, . . . , q
′
u} leads to it:

p(S | F) = p(λ1 | SI0,FSI0 ,FSI1)× p(λ2 | SI1,FSI1 ,FSI2)× · · ·
· · · × p(λv | SIv−1,FSIv−1 ,FSIv)

From there, we get

p(S | F) =
ZSI1 − ZFSI1
ZSI0 − ZFSI0

×
ZSI2 − ZFSI2
ZSI1 − ZFSI1

× · · · ×
ZSIv − ZFSIv
ZSIv−1 − ZFSIv−1

p(S | F) =
ZSIv − ZFSIv
Z − ZF

p(S | F) = ZS − 1S∈F ×ZS
Z − ZF

. (3.10)
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Since this is exactly the expression from Equation 3.9, we validate the Theo-
rem 3.2.1.

The expression is in principle similar to the one employed in Algorithm 1 from
the paper presented by Lorenz et al [60]. Notice that if SIb = FSIb , then correctly
p(λ | q,FSIa ,FSIb) = 0.

Unfortunately, this expression cannot be applied directly. As already pointed
out, the DP schemes employed for the RNA secondary structure prediction do
not consider what is happening outside their specific state. Thus, they do not
compute ZSI but only PfS(q) associated to a certain state q. Therefore we need
to research a way how to use the values of PfS(q) to access ZSI to perform a
non-redundant sampling. The second problem is that all these values as well as
those ofFSI need to be stored after the computation and must be easily accessible
at given moment. Here we separately address both problems and discuss the
solutions.

3.2.2 Computing the probability with forbidden structures

This part discusses how to rely the values from the Equation 3.8 and PfS(q) that is
computed using the DP scheme (Q, qroot, ρ). We assume tree the decomposition
tree T (w,Q, qroot, ρ) and an incomplete structure SI, represented by an immature
parsing tree TI(w,Q,QN, qroot, ρ) with the following properties:

• Derivations qλ1 , . . . , qλu , attributing free energies cλ1 , . . . , cλu , were applied
beforehand to their respective states.

• q is a leaf of TI for which we have a set of derivations

q
λ
−→
cλ

{q ′1, . . . , q
′
z}

and according to T (w,Q, qroot, ρ) and this state is derived next.

• TI may or may not have other leaves qy, 1 ≤ y ≤ v for which we have

derivations q
λy

−−−→
−cλy

{q ′1y , . . . , q
′
vy} and their derivations follow after that of

q .

The partition function of SI can be separated to the contributions cλ of different λ
and the contributions PfS(q) of all states to which no λ is attributed.
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Theorem 3.2.3 (Incomplete structure partition function): The partition
function ZSI of an incomplete secondary structure SI defined above can be com-
puted by

ZSI =
u∏
x=1

e
−cλx
kBT × PfS(q)×

v∏
y=1

PfS(qy). (3.11)

Proof 3.2.3. We prove the above by induction on the number of the derivations
M necessary to obtain ZSI with underived states q.

Base case (M = 0): If no derivation was performed then the only underived state
present is the starting state qroot. Therefore:

ZSI0 = PfS(qroot)

In this case ZSI0 = Z , since qroot is the starting state. We have already shown in
Proof 2.6.2 that under the conditions of completeness and unambiguity we have

PfS(q) =
∑
s∈L(q)

(
e

−c(s)
kBT

)

and since completeness implies L(qroot) = Sn, ZSI0 = ZSn = PfS(qroot).

Induction (M = m): Suppose SI was obtained after m − 1 derivations q λx−→
λx

{q ′1x , . . . , q
′
ux} with 1 ≤ x ≤ m − 1. We suppose by induction that the expression

is valid for every SI on whichm− 1was performed and that the next incomplete
structure SInext, represented by an immature parse tree TI(w,Q,QN ′, qroot, ρ), is
generated by deriving SI with q λ

−→
cλ

{q ′1, . . . , q
′
z}. This implies SInext is accessed

afterm derivations. From Equation 3.11, we have

ZSInext = e
−cλ
kBT ×

u∏
x=1

e
−cλx
kBT ×

z∏
a=1

PfS(q ′a)×
v∏
y=1

PfS(qy). (3.12)

From the Equation 2.21, we can express

e
−cλ
kBT ×

(
z∏
a=1

PfS(q ′a)

)
= p(λ | q)× PfS(q).
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Therefore the Equation 3.12 gives:

ZSInext = p(λ | q)× PfS(q)×
u∏
x=1

e
−cλx
kBT ×

v∏
y=1

PfS(qy)

ZSInext = p(λ | q)×ZSI

which is exactly the same expression given by Equation 3.7, validating the induc-
tion step.

Consequently, we can express the Equation 3.8 as

p(λ | q,FSI ,FSInext) =

e
−cλ
kBT ×

u∏
x=1

e
−cλx
kBT ×

z∏
a=1

PfS(q ′a)×
v∏
y=1

PfS(qy) − ZFSInext
u∏
x=1

e
−cλx
kBT × PfS(q)×

v∏
y=1

PfS(qy) − ZFSI
.

This expression cannot be easily simplified. However, we can reduce it byZSI/PfS(q):

p(λ | q,FSI ,FSInext) =
PfS(q)
PfS(q) × e

−cλ
kBT ×

u∏
x=1

e
−cλx
kBT ×

z∏
a=1

PfS(q ′a)×
v∏
y=1

PfS(qy) − ZFSInext
u∏
x=1

e
−cλx
kBT × PfS(q)×

v∏
y=1

PfS(qy) − ZFSI

p(λ | q,FSI ,FSInext) =

ZSI
PfS(q) × e

−cλ
kBT ×

z∏
a=1

PfS(q ′a) − ZFSInext
ZSI − ZFSI

p(λ | q,FSI ,FSInext) =
e

−cλ
kBT ×

z∏
a=1

PfS(q ′a) −
PfS(q)
ZSI

×ZFSInext
ZSI − PfS(q)

ZSI
×ZFSI

(3.13)

The final equation gives us the value that is similar to the general stochastic ex-
pression from Equation 2.21. Since the proportions between the structures out-
side F are conserved, the probability p(λ | q,FSI ,FSInext) is unbiased. This is
the expression that allows by which we compute the probability of choosing λ in
a non-redundant manner.
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The values of ZFSI can be accessed from a specific data structure that stores them
due to the necessity to know which subset of F can be generated at given mo-
ment. This structure will be detailed later. We still need to compute ZSI as well.
This can be done recursively, as we know that

ZSI0 = Z and ZSInext = ZSI × p(λ|q)

and p(λ|q) without forbidden terms can be computed from Equation 2.21. The
exact principle can be,when using the decomposition tree T (w,Q, qroot, ρ) with
sequence w and the DP scheme (Q, qroot, ρ), summed up in points as follows:

1. Initialize ZSI → Z and q→ qroot.

2. Compute p(λ | qroot,FSI ,FSInext) for every λ such that qroot
λ
−→
cλ

{q1, . . . , qu}

3. Randomly choose qroot
λ
−→
cλ

{q1, . . . , qu} depending on the probabilities.

4. Compute p(λ|SI), then compute ZSInext .
5. Set the value of ZSI to ZSInext .
6. Set qroot = q1 and store other states in T (w,Q, qroot, ρ). Repeat steps 2 - 5

until SI = {S}.

Once S is completed, it is added to F . Such approach demands the minimum
changes to the original DP scheme, since only updating Zsecstrinc and subtracting
the values of FSI is necessary. Both require a specific data-structure which is
discussed next.

3.2.3 Adjacent data-structure for non-redundant sampling

Problem 3.2.2:

• Input: Decomposition tree T (w,Q, qroot, ρ).
• Output: a data-structure d that:

– Adds nodes that stores for each TI(w,Q,QN, qroot, ρ) representing SI
a value ZforbSI if the node does not exist and SI was generated.

– Accesses ZforbSI if a new structure S ∈ SI is generated and updates
ZforbSI at the end of given generation cycle by adding ZS to it.
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The problem implies the adjacent data structure d must be based on T . Storing the
T (w,Q, qroot, ρ) with all nodes would be a memory consuming task. However,
each node TI of T (w,Q, qroot, ρ) can be reduced only to the derivation that was
performed last at the given point (Figure 3.6) or an axiom, dproot. We therefore
need to store, along with ZforbSI , only λ.

Definition 3.2.7 (Decomposition tree reduction): Let T be the space of all
trees TI(w,Q,QN, qroot, ρ). The decomposition tree reduction is a function

R : T→ D
that associates to each node TI of T a λ such that q λ

−→
cλ

{q ′1, . . . , q
′
u} was the

last derivation performed in TI.

qroot

λ1A

q1A1 q1A2

λ1A

λ2A q1A2

λ1A

λ2A λ2B

λ1B

q1B1 q1B2

λ1B

λ2C q1B2

λ1A

λ2C λ2D

qroot

λ1B

λ2C

λ2D

λ1A

λ2A

λ2B

Figure 3.6: Simplification of a decomposition tree T (w,Q, qroot, ρ) into a datastructure
d(w,Q, qroot, ρ). Each node is reduced to the derivation that was performed last.
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Definition 3.2.8 (Non-redundant sampling data structure): The data-
structure for non redundant sampling is a tree d(w,Q, qroot, ρ), based on
a decomposition tree

T (w,Q, qroot, ρ) = G(V, E)

where

• E is the set of edges from T ;

• V is a set of nodes R(TI) with TI ∈ T .

Constructing the entirety of d is memory-consuming even with the application of
R. However, d can be constructed in parallel with the non-redundant sampling
- if a node λ = R(TI) that would represent T, resp. SI is absent, it means no
structure S ∈ SI was sampled yet, thereforeZFSI = 0. If the node λ does exist, the
valueZFSI it stores is used to compute p(λ | q,FSI ,FSInext) via the Equation 3.13.
The probabilities are then used to sample which λ will be attributed to q, and if
the node does not exist yet it is created with

∑
y∈FSI

Zy = 0.

Note that the reduction R is accompanied by the loss of the information on the
layout of T and specifically the order of derivation of states q since there may
more of them at once. However, the application of recursive function handles
this problem as well as using a stack W storing the nodes that must be treated
and popping them one at a time.

Once we complete a structure and generate S, equivalent to obtaining a mature
parse tree T, we traceback the path from leaf to root while adding ZS to the value
ZFSI of each node λ = R(TI). We have shown that in T every structure of chil-
dren node T ′I is represented by its parent T ′I, therefore S is contained by all nodes
from its respective mature parse tree T to root.

A special mention goes to the linking of the children and parent node. This is
important and has the impact on the efficiency of the non-redundant sampling
implementation. The obvious method would be to create a hash table where the
values of λ identifying each node serve to compute the hashing function. How-
ever, the simple linked list seems to be more efficient and is simpler to implement.
In that case the nodes are liked in the same order as they are treated in DP scheme
(Q, qroot, ρ). In that case we move to the next node of linked list it corresponds
to the case in DP scheme, and if it does not, it means that no structure from SI
represented by the node labeled λwas treated beforehand, implying ZFSI = 0. If
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such a structure is sampled, the node is inserted in linked list at the corresponding
position, preserving the order.

Example 3.2.4. The concrete example is given at Figure 3.7 for DP scheme

(QZuk, qF1,9, ρZuk)

and sequence w. Here no structure containing a pair (2, 8) was sampled before-
hand, meaning node λpair1,8,2 was not created before. If such structure is to be sam-
pled, respectively λpair1,8,2 is selected with p(λpair1,8,2 | q

F
1,8,FSI1 ,∅) with SI1 being the

incomplete structures represented by node λpair1,9 , the node is inserted at the posi-
tion copying the order in DP scheme.

λunp
1,9

ZFSI1

qF1,8qF1,8qF1,8

({qF1,7},λunp
1,8 , 1)

qF1,7qF1,7qF1,7 qC4,7qC4,7qC4,7

({qF
1,2, q

C
4,7},λpair

1,8,3, EBP3,8
)

λunp
1,8

ZFSI21

λpair
1,8,3

ZFSI23

qF1,8qF1,8qF1,8
λunp
1,9

ZFSI1

({qF1,7},λunp
1,8 , 1) ({qF1,1, qC3,7},λ

pair
1,8,2,EBP2,8

) ({qF1,2, qC4,7},λ
pair
1,8,3,EBP3,8

)

λunp
1,8

ZFSI21

λpair
1,8,2

ZFSI22
= 0

λpair
1,8,3

ZFSI23

qF1,7qF1,7qF1,7 qC3,7qC3,7qC3,7 qC4,7qC4,7qC4,7

A C C A A A G G A

A C C A A A G G A A C C A A A G G A A C C A A A G G A

qF1,8qF1,8qF1,8

qF1,7qF1,7qF1,7 qC3,7qC3,7qC3,7 qC4,7qC4,7qC4,7

({qF1,7},λunp
1,8 , 1) ({qF1,1, qC3,7},λpair

1,8,2,EBP2,8) ({qF1,2, qC4,7},λpair
1,8,3,EBP3,8)

Figure 3.7: Linking the parent and children nodes in the data-structure for non-
redundant sampling in tree d(w,QZuk, qF1,9, ρZuk). Here no secondary structure with
pair (2, 8) was created beforehand, therefore node λpair1,8,2 is not yet created. If such struc-
ture is sampled the not gets inserted to its respective position, copying the order within
DP scheme (QZuk, qF1,9, ρZuk).

3.2.4 Non-redundant sampling algorithm

The algorithm of non-redundant sampling algorithm for DP scheme (Q, qroot, ρ)
consists of the data structure d(w,Q, qroot, ρ) storing the informations to com-
pute the probabilities of choosing non-redundantly a certain case for the state q
according to the relations introduced in Section 3.2.2. Here we resume the en-
tire algorithm. These probabilities evolve with each sampling iteration implying
the necessity of update of informations. The d itself is constructed as different
derivations are performed. Its pseudocode can be consulted on Algorithm 31.

99



Assume the number of the unique samples we want to generate isN. The princi-
ple of the non-redundant sampling can be resumed as follows:

1. Pre-compute all DP matrices of DP scheme (Q, qroot, ρ).
2. Initialize the adjacent structure for non-redundant sampling

d(w,Q, qroot, ρ)

by placing qroot at its root.

3. Set Node = qroot, ZSI = Z and prepare a empty stack W.

4. For each sample:

(a) Get the value of ZFSIq stored in the Node.

(b) List all derivations qn
λ ′
−−→
cλ ′

{q ′′1 , . . . , q
′′
w} where qn is:

• qroot if Node = qroot;

• first node from stack W if w = 0;

• q ′1, given by q λ
−→
cλ

{q ′1, . . . , q
′
u} otherwise.

(c) Initialize a sum Ztemp = 0.
(d) Check if node λ ′ is present. ExtractZFSI ′ from it if is, otherwiseZFSI ′ =

0. Compute p(λa | qn,FSI ,FSI ′) (Equation 3.13).

(e) Update Ztemp = Ztemp + p(λ | q,FSIq ,FSI ′). If Ztemp > r, choose

derivation q λ ′
−−→
cλ ′

{q ′′1 , . . . , q
′′
w} and updateZSI = ZSI×p(λ | q,FSI ,FSI ′).

(f) If for q λ ′
−−→
cλ ′

{q ′′1 , . . . , q
′′
w} we have w > 1, put all states other than q ′′1 in

W.

(g) Create node λ ′ linked to Node with ZFSIq ′
1

= 0 if it does not exist. Set

Node = λ ′.

(h) Repeat steps (a) - (g) until no derivation is possible.

(i) Backtrack from q to qroot while updating FSIq for all nodes λ on path.
Repeat substeps of step 4 for each sample.

The time complexity of this algorithm is that of the adjacent DP scheme (Q, qroot, ρ),
since for each decision in DP scheme it performs a limited number of steps. Its
memory complexity is O(|Q| + |D|) due to necessity to remember each choice of
derivation that was performed.

100



Notice that the main interaction between the DP scheme (Q, qroot, ρ) and the layer
assuring the non-redundancy modeled by d(w,Q, qroot, ρ) is only when extract-
ing FSI , creating new node λ if absent and backtracking once the complete struc-
ture is generated. This makes it very easy to implement it into DP scheme data-
structure. However, the non-redundant layer must be adapted for the DP scheme
in question.

1 Function Main():
2 Data: A DP scheme (Q, qroot, ρ), number of structures N
3 Result: Sset a set of unique secondary structures
4 MDP ← Precompute_DP() # Pre-computes and fills all DP-matrices
5 Sset←∅

6 W← ∅
7 d← N(q, 0,∅) # constructs node N(id, 0,Nparent) in T(Q, qroot, ρ)
8 ptr← qroot

9 ZSI ← Z
10 while len(Sset) < N do
11 S← unfolded
12 while q do
13 λlist ← list_deriv(ptr)

14 Ztemp = 0

15 r← random(0,1) # random float between 0 and 1
16 Nodenext ←null # stores the child of ptr
17 while λ in λlist and Ztemp < r do
18 Nodenext = get_child(λ, ptr,W) # gets child for case λ of ptr, returns null if

node does not exist
19 Ztemp = Ztemp+get_probability(MDP, ptr, λ,Nodenext)

20 ZSI ← ZSI×get_probability(MDP, ptr, λ,FSIq , Nodenext)
21 S←add_object(λ)# adds element associated to λ
22 Listderiv ← get_all_states(ptr, λ) # lists q ′1, · · · , q ′u for

q
λ ′

−−−−−−−−→
e
−c
λ ′/kBT

{q ′1, . . . , q
′
u}

23 if len(Listderiv) > 1 then
24 Push Listderiv[2 :] to W

25 if not Nodenext and Listderiv 6= ∅ then
26 Nodenext ←N(λ, 0, ptr)
27 ptr = Nodenext

28 Push S to Sset
29 count = count + 1

30 ptr← traceback(ptr)# traceback to root, update nodes

31
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3.3 RNANR: Implementation and results

The non-redundant sampling was implemented into the the program using the
Saffarian algorithm and sampling the locally optimal secondary structures - RNANR,
standing for "RNA non-redundantly". The general principle stays the same, the
only specificity is the flat structures p. Besides the non-redundant sampling and
the computation of probabilities using Turner Energy Model researched and im-
plemented by us, it also includes the exhaustive enumeration and parametriza-
tion developped by A. Saffarian et al [85] and later modified by H. Touzet [68].
The extension by non-redundant sampling was coded like the original program
in C. The most energy-computing functions related to the Turner Energy Model
are computed by using VIENNARNA library.

The RNANR software is available at the site: https://project.inria.fr/

rnalands/software/rnanr/.

This section discusses the various aspects of the software, the problems that were
encountered, and the results of the different tests that were realized.

3.3.1 Numerical instability issues

The problem related specifically to the non-redundant sampling is the numerical
instability. This is not the problem for the regular sampling since the contribution
of the sampled structures are not cumulated, but in the case of the non-redundant
sampling, these values are summed up and if the sampling performed is of the
sufficient size, the Boltzmann factors ZS of the secondary structures S become
eventually too small for the small precision deviations to become an issue. This
leads to selecting wrong or malformed secondary structures once ZS reaches val-
ues that are numerically indistinguishable from zero. This is more probable to
happen for bigger number of unique samples, and is especially noticeable for the
sequences having secondary structures important free energy differences - specif-
ically for the the artificially designed riboswitch SV11 generated by Qβ repli-
case [9] the numerical instability appears as soon as after 5000 samples.

To counter the described problem, we employ the GNU MPFR library [34], a
multiple-precision floating-point computation library based on GMP [41] that al-
lows to store floating point values with arbitrary precision. This includes the
values ZS that are too small when compared to Z , for which higher precision
is used. In the case of RNANR, the values of partition functions and Boltzmann
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factors are stored this way. Since using arbitrary precision arithmetics slows the
software down, the version using standard double-precision floating-point for-
mat it is also available.

3.3.2 Sorting flat structures

The Saffarian algorithm is specific by the fact that the size of P(i, j) for a state
qUi,j or qPi,j is usually higher than for other DP schemes (Q, qroot, ρ). The execu-
tion time of non-redundant sampling using Saffarian algorithm therefore greatly
depends on the ordering of the flat structures within the list. Since a given p

is chosen, for qUi,j or qPi,j from P(i, j) by generating the random number r and
then summing up the probabilities p(λ | q,FSI ,FSInext) until the sum surpasses
r the program will execute faster with lower number of structures. This can be

achieved by ordering P(i, j), ∀, 1 ≤ i < j ≤ n by e
−cp
kBT by descending order. The

effect of this sorting is shown on Figure 3.7; while in unsorted case we have to
traverse seven different p, in second case, where they are sorted, it is only two.
This becomes less effective for later stages of sampling since the low energy struc-
tures are picked first, however it considerably speeds up the initial stage of the
algorithm.

rrr rrr

ZχZχZχ Zχ′Zχ′Zχ′

Figure 3.8: The effect of the sorting of list of available flat structures. During the ran-
dom selection of the flat structure p from their set P(i, j), their sorting allows their faster
selection. For the unsorted example (left), we need to traverse seven p before performing
the selection, while we need to check only two in the case of sorted list (right).

The sorting of lists P(i, j), ∀, 1 ≤ i < j ≤ n was implemented into RNANR along-
side the the non-redundant sampling algorithms.
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3.3.3 Non-redundant sampling and the speed gain

The main motivation behind researching the non-redundant sampling is the faster
generation of unique samples than for usual sampling approaches. We denote by
U a set where any element appears at most once. A set of samples generated by
non-redundant sampling has usually bigger coverage than the set of the same
size with obtained using classic sampling.

Definition 3.3.1 (Coverage): The coverageCov(U)Cov(U)Cov(U) is is given by:

Cov(U) =

∑
S∈U
ZS

Z (3.14)

The coverage is therefore a proportion of partition function Z that is covered by
the Boltzmann factors of U .

The bigger coverage implies the bigger probability that the next sample will be
already in U unless sampled non-redundantly. In the case of non-redundant sam-
pling, this is not a problem, since each sample is guaranteed to be unique. Con-
sequently, non-redundant sampling saves time that would be otherwise spent by
generation of duplicate secondary structures.

Definition 3.3.2 (Theoretical speed-up): We call a theoretical speed-up a
value E(|U |) gained for a sampling of a set of unique structures of size |U |
by a non-redundant sampling:

E(|U |) = 1+

|U |∑
i=0


1−

∑
S∈U

e
−ES
kBT

Z




−1

|U | (3.15)

The theoretical speed-up is therefore an average number of times a single struc-
ture is redundantly sampled.

We computed theoretical speed-up on two sequences:

• 5S ribosomal RNA of Thermoplasma acidophilum (123 nt);

• Telomerase of RNA of Tetrahymena silvana (154 nt).

Results 3.3.1. The speed-up was computed using the Equation 3.15, with the se-
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quences being sampled and the necessary values being determined from these
samples. The results indicate the exponential increase of the speedup as |U | in-
creases (Figure 3.9). The length of the sequence has impact on the speed of in-
crease and asymptotic limit - it is slower for longer sequences.

The important point of this example is that redundancy is an important factor
when sampling the secondary structures and might noticeably slow down the
sampling algorithms, justifying the research of non-redundant sampling meth-
ods.
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Figure 3.9: The theoretical speed-up for the sampling of two sequences. The theoret-
ical speed-up computed for the sequence of 5S ribosomal RNA of Thermoplasma aci-
dophilum 123 nt long (A) and for Telomerase of RNA of Tetrahymena silvana (154 nt, B).
Both sequences were taken from RNA STRAND database. Note the exponential increase
with the size of U

To compare the practical speed-up or gain of time, we reproduced the experi-
ment from the paper introducing the locally optimal secondary structures sam-
pling algorithm RNAlocmin based on scaling the sampling temperature [53] and
using RNAsubopt from VIENNARNA as its basis. This experience compares
RNAlocmin to another locally optimal secondary structure sampling algorithm
- RNAlocopt [59]. All of the above programs use McCaskill algorithm with the
DP scheme (LMC, qF1,n, ρMC). The experiment consisted of tracing the number
of unique secondary structures for certain time intervals. The sequence used
is SV11, an artificially designed riboswitch generated by Qβ replicase [9]. We
also compared the newer version of RNAlocmin. The results are shown on Fig-
ure 3.10.
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For the classical sampling algorithms - both versions RNAlocmin and RNAlocopt,
we notice the exponential slow-down. This is related to the notion of theoretical
speed-up - as the number of unique structures |U | increases, so does the proba-
bility of sampling an already existing secondary structure from U . The effect is
specifically noticeable forRNAlocopt which does not handle the redundancy in
any way, meaning for SV11 after certain time the new structures are basically not
sampled. While RNAlocmin attenuates the effect of the redundancy to a certain
degree by switching the sampling temperature, generating the new distribution
of secondary structures where U has smaller proportion, the redundancy is still
present.

On the other hand, RNANR does not sample the same structure twice and therefore
the effect of the redundancy is not present, therefore the graph is linear and the
sampling process by RNANR is, after short period of pre-computation notably of
flat structures, much faster than by software employing classical approaches. Due
to the sorting of flat structures it is expected that there should be slow attenuation
of the speed once the considerable amount of secondary structures is sampled,
however this does not pose a problem for usual sizes |U |.
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Figure 3.10: The comparison of the speed gain of RNANR with classical sampling ap-
proaches.

The practical result underline those obtained by analysis of theoretical speed-up
- the redundancy is an important slow-down factor and its removal might speed
up the sampling process considerably.
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3.3.4 Landscape quality

While the previous analyses have shown that the non-redundant sampling is an
important optimization factor for sampling DP based algorithms, it says nothing
about the quality of the RNA landscapes that can be modeled from U . However,
due to considerable lack of kinetic data regarding secondary structures of RNAs
it is impossible to find a gold standard to which we could compare our results.

The second option is to pose a hypothesis on the properties of correct model of
RNA folding landscape and perform the comparison between different software
using a score based on these properties.

The good representation of a landscape should feature the most important key
landmarks. This means not only potentially functional structures, but also the
transitive states that represent the fastest folding pathways between said states.
This implies that the best folding landscape should present the fastest folding
kinetics, since slower kinetics implies missing some important transitive states.
From this we can establish a measure of a quality of a folding landscape.

Definition 3.3.3 (Switching time): Let P(S1, t) , resp. P(S2, t) be the pro-
portions of sequences w formed a structure S1, resp. S2, and P(S1, 0) <
P(S2, 0). The switching time tSWtSWtSW is the lowest time such that P(S1, tSW) ≥
P(S2, tSW).

Lower tSW implies faster kinetics and based on what precedes also the better
landscape. Note that however if ZS1 < ZS2 , then it is possible that tSW → +∞
since the equilibrium implies higher ZS1 . It is therefore important to choose cor-
rect states that will have their proportions studied.

The ideal candidates for the study would be riboswitches. Here the the first struc-
ture S1 would be MFE (usually first functional structure) while the second would
be the metastable structure - the second active state. This ensures tSW of finite
time. The problem is the number of sequences of known riboswitches is limited.

For this reason, we created a set of 250 bistable sequences in a following manner:

• Create a sequence of length 100 nt with uniform distribution of nucleotides.

• Using RNANR, sample 1000 unique locally optimal secondary structures,
taking parametrization into an account.
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• Keep sequences where at least one secondary structure differing at least by
20 base pairs from MFE with them having less that 5kcal.mol-1free energy
difference. These structures are saved as well.

From these structures we generate a landscape using the different sampling soft-
ware and the kinetic analysis described below using different software, which are
then compared by their switching times tSW . Besides RNANR, RNAlocopt and
RNAlocmin, we also compare RNASLOpt that detects stable locally optimal sec-
ondary structures [57]. We also compare RNAsubopt from VIENNARNA library
as a reference.

The pipeline for building an RNA landscape model from the set is based on the
state-of-the art approaches detailed in Section 2.8. Since using barriers or BHG
introduces too many transitive states and masks the results of the sampling by
ameliorating them, we instead compute the activation energies and associated
transition rates by using findpath and Metropolis rule respectively. In this case
the landscapes are not represented by macrostates (see Section 2.9), but a network
of locally optimal structures. The entire process of modeling an RNA folding
landscape is as follows:

• By each software, sample a set of secondary structures Uset of size 50, 75
and 100 samples.

• For each set remove duplicates and perform a gradient descent for each
sample, generating U .

• From each U , create a graph G(V, E) where:

– V = U ;

– E connects two structures S1 and S2 from U such that the number of
different base pairs between them is less than K, where K is the low-
est number for which G(V, E) is connected. The value of K is shared
between all U made from Uset.

• For each edge of G, compute the energy barrier using findpath, then as-
sociated transition rate by Metropolis rule (Section 2.8.2).

• Identify the two initial structures. Set the proportion of metastable state
P(Smeta, 0) = 1 and perform a kinetic simulation via numerical integration
using treekin [108]. Determine tSW .
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Since the results are biased in the favor of RNANR that was used to establish the
initial bistable sequences, we compensate this by giving a tolerance of difference
of 10 base pairs for identifying the two initial states by the other software. The
lowest tSW implies the best kinetics.

Results 3.3.2. The results are shown on Figure 3.11. As expected, RNANR most
frequently identifies both structures due to being used in their generation (Fig-
ure 3.11A). The cases where not even RNANR retrieves both states implies that the
state was not in first 50, 75 or 100 samples. However, the low retrieval percent-
age for other software also results from the redundancy, since after the removal
of duplicates the number of samples in U was usually lower for them than for
RNANR.

On the other hand, the switching time values tSW are consistently lowest for
RNANR and with better proportion than successful identification of both metastable
structures (Figure 3.11B). This implies that statistically RNANR returns better model
of the RNA folding landscape under assumption that the faster kinetics implies
better model. In the case that none of the software was successful at retrieval of
both metastable structures, the sequence was marked as ’None’, which is possi-
ble even for RNANR due to the sampling set used for bistable sequence generation
having size of 1000. Any software failing to retrieve both structures was also
disqualified.
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Figure 3.11: The results of the quality analysis by the different software. The success-
ful identification shows RNANR was the most successful with retrieval of two metastable
structures (A). This is expected due to RNANR being used to create the bistable sequences.
However the lowest switching time is returned with better proportion than the retrieval
of the structures (B). This hints at statistically better performance of RNANRwhen it comes
to the analysis of RNA landscape. For (B), the ’None’ category indicates the case where
no software was able to retrieve both structures.

The concrete example of RNA folding landscape comparison is featured on Fig-
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ure 3.12 for he software RNANR and RNASLOpt, which returned the second best
results after our software. For the given sequencew (Figure 3.12A) the bistable se-
quence presents an MFE structure (Figure 3.12D) and a metastable structure (Fig-
ure 3.12B). These structures are indicated on the landscapes generated from both
software (Figure 3.12C). While in the case of RNANR the two structures are con-
nected to two different halves of the landscape that are clearly weakly connected,
in the case of the RNA landscape presented by RNASLOpt they are connected to
the same half. This creates an auxiliary half in which w might get stuck due to
limited transitions, making difficult to escape to state outside this part and slow-
ing down the entire kinetics, which might be a reason the switching time between
MFE and metastable structure is lower for RNANR. However, another reason for
faster kinetics might be the higher connectivity of the folding landscape obtained
from the samples generated by RNANR. Indeed, the higher connectivity makes the
transition between the states easier, which may speed up the kinetics. In general,
we noticed that the landscape models generated from the samples of RNANR ex-
hibit higher edge to vertex ratio. To exclude the connectivity as a cause of faster
kinetics, it would be good, in the future, to make analysis for the landscapes with
the similar connectivity.
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Figure 3.12: An example of folding landscapes between RNANR and RNASLOpt. For
the RNA sequence (A) the metastable (B) and MFE (D) locally optimal secondary struc-
tures are generated, with helix in red being presend only for SRNANR. The landscapes
generated by RNANR and RNASLOpt (C) are similar and consist of two parts, but for
RNANR both structures are connected to different parts while the landscape generated by
RNASLOpt presents an auxiliary part. Likely for this reason the switching time is slightly
lower for the landscape created by RNANR (E). However, the higher connectivity of the
folding landscape generated for RNANR might also contribute to lower switching time.
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The presented results suggest that RNANR and specifically non-redundant princi-
ple allow for better modeling of RNA folding landscapes, very probably due to
an absence of redundancy and therefore presenting higher number of potentially
interesting structures when constituting the landscape. For the future analyses, it
may be interesting to study the landscapes with the similar connectivity for each
software.

3.4 Non-redundancy for other DP schemes

While the first example employed Saffarian algorithm, using the introduced for-
malism we have shown that the non-redundant principle can be employed in-
deed for any DP scheme (Q, qroot, ρ) as long as that scheme computes PfS. In the-
ory it is enough to create an interface building a data structure d(w,Q, qroot, ρ)
for specific w that is adapted to said DP scheme and then connect the layer to
the data structure of the DP scheme, an easy task due to number of interventions
necessary for the DP scheme being rather limited.

To prove this point, we implemented the non-redundant sampling principle into
RNAsubopt from VIENNARNA library.

3.4.1 RNAsubopt

The RNAsubopt employs the DP scheme used in McCaskill algorithm

(QMC, qF1,n, ρMC).

The interface data-structure d(w,Q, qroot, ρ) is built in a similar way than for the
Saffarian algorithm, however the options for a given state q are not sorted like
the flat structures and in plus the implementation also includes some options:

• Linking parent and children nodes:

– Hash table: the has function uses the values from q
λ ′
−−→
cλ ′

{q ′1, . . . , q
′
u};

– Linked list: the same implementation as in RNANR (see Section 3.2.3);

• Numerical precision - this is the same as for RNANR:

– Double floating-point;
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– Arbitrary precision arithmetics: stores the partition functions of for-
bidden incomplete structuresZFSI in an arbitrary precision arithmetic
format using MPFR; much slower but numerically stable when sam-
pling a lot of structures or sequences with structures with important
differences of free energy between them;

In this case the arbitrary precision-arithmetics was only included in the layer en-
suring the non-redundant sampling, which was shown to be sufficient. That is
convenient since it allows to limit the modifications of the DP scheme even more.

The performance profiling revealed that the memory allocation constitutes the
major bottleneck of the non-redundant sampling program. For this reason the
nodes of d(w,Q, qroot, ρ) are not allocated alone, but in blocks that are preallo-
cated, since this allows us to reduce the overhead associated to the single alloca-
tion. The size of the blocks is chosen sufficiently large to not allocate new blocks
too frequently, but also sufficiently small to be easy to fit to available memory.

To establish a performance of the given implementation options, we extracted 365
sequences from the database RFAM [52], specifically from the families RF00001,
RF00005, RF00061, RF00174 RF01071 and RF01731 such that the %GC con-
tent of extracted sequences should be the most representative. For each sequence,
we sampled 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 35000 and 50000 sam-
ples by both the classical sampling and non-redundant sampling employing hash,
linked lists and MPFR. We then analyzed the performance of the usual, redun-
dant, and non-redundant versions of the sampling, both done by RNAsubopt

from VIENNARNA.

The performance tests were executed on a laptop equipped with a CPU Intel R©

CoreTM i7-5600U CPU with 2.60GHz × 4 on Linux Ubuntu 16.04 LTS and with 16
GB RAM.

Results 3.4.1. Here we compare the obtained results for four representative se-
lected sequences w of diverse lengths n:

• AE013598.1/1368227-1368452, from RF00174, length 226 nt;

• M84754.1/1-364, from RF00061, length 364 nt;

• Z50061.1/3-119 from RF00001, length 117 nt;

• AE015927.1/1705719-1705109 from RF01071, length 611 nt;

To shorten the notation, each wwill be referred by the name of their family.
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Figure 3.13: The performance of the non-redundant sampling implementing the hash
table organization of the non-redundant layer compared to the usual sampling ap-
proach by RNAsubopt. The total number of the samples is considered. The four se-
quences from respective families RF00174 (A), RF00061 (B), RF00001 (C) and RF01071
(D) were sampled for secondary structures by a redundant (blue) and non-redundant
(light purple) method. The lines represent the linear approximation of the graphs. The
dark purple number indicates the speed ratio between redundant and non-redundant
sampling, here indicating the overhead of 50%.

At the first time, we consider the total number of unique structures sampled.
We started by comparing of the version of the non-redundant sampling, imple-
mented using hash table organization of the non-redundant layer constituted
from the data-structure d, to the redundant sampling method. The results are
shown on Figure 3.13. In general we notice the overhead of 50% independently
of the length of the sequence, which is not satisfying. As stated, this is mostly due
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Figure 3.14: The performance of the non-redundant sampling implementing the linked
list organization of the non-redundant layer compared to the usual sampling approach
by RNAsubopt. The total number of the samples is considered. The four sequences
from respective families RF00174 (A), RF00061 (B), RF00001 (C) and RF01071 (D)
were sampled for secondary structures by a redundant (blue) and non-redundant (light
purple) method. The lines represent the linear approximation of the graphs. The time
complexity overhead is in this case reduced to 10%-20%.

to the memory allocation, since nodes of the hash table are allocated separately.
For this reason we developed a second approach that implements the linked lists.

The results for the equivalent analysis, but the non-redundant sampling being
implemented by using the linked lists instead, is depicted on Figure 3.14. In this
case, the time complexity overhead is reduced to much more manageable 10%-
20%. This is caused by two factors. First, the linked list necessitates to allocate
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less objects than the hash table, reducing the overhead on object allocations. Sec-
ond, the allocation was optimized by allocating a memory blocks instead of single
objects. As a positive side-effect, the non-redundant sampling algorithm imple-
menting the linked lists consumes less memory, allowing sample even longer se-
quences.
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Figure 3.15: The performance of the non-redundant sampling implementing the linked
list organization of the non-redundant layer and storing the values using MPFR com-
pared to the usual sampling approach by RNAsubopt. The total number of the samples
is considered. The two sequences from respective families RF00174 (left) and RF00061

(right) were sampled for secondary structures by a redundant (blue) and non-redundant
(light purple) method. Using the arbitrary precision arithmetic considerably raises the
time complexity overhead more than doubling the total time complexity.

As a side note, we also provide a reduced example comparing the efficiency of the
non-redundant sampling implemented via linked lists where the non-redundant
sampling layer stores the values using the MPFR library. The results for the two
sequences from the families RF00174 and RF00061 can be consulted on Fig-
ure 3.15. Using the arbitrary precision arithmetic is accompanied by the con-
siderable augmentation of the time complexity, in the case of the sequence from
the family RF00174 by rising from 10% to 190%. Therefore, while MPFR may be
necessary to use when sampling a more delicate sequences, such as the artificially
designed riboswitch SV11 generated byQβ replicase [9] which present consider-
able free energy differences between the secondary structures of interest, it is best
to avoid it.

We now concentrate on the performance of both sampling methods in regards to
the number of unique secondary structures sampled. For the classical, redundant

115



●●●●●
●

●

●

●

●

●●●●
●

●

●

●

●

●

0

10000

20000

30000

40000

50000

0.0 0.5 1.0 1.5 2.0

Execution time (s)

N
um

be
r 

of
 s

am
pl

es

Sampling Types

●●
●●

R sampling

NR sampling

Sampling speed of sequence
  RF00174_0052 ( 226 nt )

●●●●●● ●
●

●
●

●●●●
●

●

●

●

●

●

0

10000

20000

30000

40000

50000

0.0 0.5 1.0

Execution time (s)

N
um

be
r 

of
 s

am
pl

es

Sampling Types

●●
●●

R sampling

NR sampling

Sampling speed of sequence
  RF00001_0012 ( 117 nt )

●●●●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●

0

10000

20000

30000

40000

50000

0 1 2 3

Execution time (s)

N
um

be
r 

of
 s

am
pl

es

Sampling Types

●●
●●

R sampling

NR sampling

Sampling speed of sequence
  RF00061_0002 ( 364 nt )

●●●●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●

0

10000

20000

30000

40000

50000

1 2 3 4 5

Execution time (s)

N
um

be
r 

of
 s

am
pl

es

Sampling Types

●●
●●

R sampling

NR sampling

Sampling speed of sequence
  RF01071_0014 ( 611 nt )

A B

C D

Figure 3.16: The performance of the non-redundant sampling implementing the linked
list organization compared to the usual sampling approach by RNAsubopt, counted
for the number of unique structures. Only the unique samples are considered. The
four sequences from respective families RF00174 (A), RF00061 (B), RF00001 (C) and
RF01071 (D) were sampled for secondary structures by a redundant (yellow) and non-
redundant (green) method. The lines represent the linear approximation of the graphs.
For the shorter sequences A and C, the non-redundant sampling performs better due to
high number of the duplicates generated by the usual sampling approach. For the se-
quences B and D, it performs worse due to the complexity overhead and little probability
to generate duplicates for such long sequences at the beginning.

sampling, we remove the duplicates, and then we compare the number of the sec-
ondary structures sampled at the same time. The results are show on Figure 3.16.

For the shorter sequences from families RF00174 and RF00001 the non-redundant
sampling gives higher number of unique structures for the same execution time
than the usual sampling approach. This is because for the shorter sequences it
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is probable to generate a duplicate quite early on, therefore the usual sampling
methods tend to generate lot of them. On the other hand, this is unlikely to hap-
pen for long sequences early on during the sampling, since there is much more
options to generate a secondary structure, and consequently the probability of
generating an already sampled structure is low. In this case, it is the complexity
overhead that slows the non-redundant sampling estimator when compared to
its classic counterpart, consequently performing worse.

We have demonstrated in Section 3.3.3 that the speed gain becomes more impor-
tant the more structures we sample. For the longer sequences the slow down
from the redundancy eventually causes the performance of the usual sampling
method to fall enough so that of the non-redundant sampling overcomes it, but
it may take a considerable number of secondary structures to sample. The exten-
sive, long performance test with high number of samples is one of the analyses
that may be interesting to perform in the future.

3.5 Conclusion - Non-redundant sampling

In this section, we presented the concept of non-redundant sampling. The for-
malism that we introduced in the previous chapter allowed us to demonstrate
how its principle can be implemented into all DP schemes that compute the par-
tition function. The non-redundant sampling necessitates a creation of a layer
with specific data-structure to function, notably it presents a way to store the
values associated to the sets of structures that still can be generated. However,
we have demonstrated that the layer has limited number of interactions with the
DP scheme itself, making it easy to implement. Moreover, the numerical insta-
bility issues can be solved by implementing the arbitrary precision arithmetics
uniquely to the data-structure related to the non-redundant sampling, limiting
the modification of the DP scheme layer even more.

The non-redundant sampling was tested for the Saffarian algorithm [85], im-
plemented in RNANR jointly with H. Touzet and the McCaskill algorithm used
by RNAsubopt from VIENNARNA library [58]. Both software show the some
advantages over the competing software. Notably, RNANR samples unique sec-
ondary structures more efficiently than its competitors and it seems to return bet-
ter predictions of RNA folding landscapes. However, it may be interesting, in the
future, to study and compare the folding landscapes with similar connectivity.
The non-redundant sampling implemented in RNAsubopt shows a better perfor-
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mance regarding sampling unique secondary structures for shorter sequences.

The optimized implementation is an important part of the efficiency of the non-
redundant sampling. While the conception of the non-redundant sampling layer
itself is easy enough, to function efficiently it must be as optimized as possible.
This section has shown the impact of the correct implementation of the layer,
where the replacement of the hash tables by linked lists reduced the complexity
overhead by 30%. It is also important to note that using the arbitrary precision
arithmetics considerably slows the algorithm down, so it is best to use it only
when really needed.

One caveat is that for sampling a limited set of secondary structures for long se-
quences by non-redundant sampling is inefficient. This is mainly due to complex-
ity overhead, which may be limited but not completely removed. However, this
effect is expected to disappear once a sampling set of sufficient size was sampled,
since the effect of the redundancy amplifies with it.
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Chapter 4

Estimating from non-redundant
sampling sets

The non-redundant sampling samples the unique secondary structures. While
this means faster coverage of the associated folding landscape, it is also accompa-
nied by the introduction of a dependency between the samples as well as lacking
the information about their frequency. This proves problematic when one wants
to estimate a certain quantity of such a sample.

The absence of the frequency means that the usual estimator cannot be employed.
However, we have researched, the estimator specific to non-redundant samples.
This estimator proves better convergence than the usual approach employed for
classic sampling sets, and exhibits smaller variance in most cases.

In this section, after introducing the necessary notions and the classic way of es-
timating a certain quantity for redundant sampling sets, we explain how to ob-
tain the equivalent for the non-redundant sampling sets. This will be followed
by experiments using the implementation of non-redundant sampling for VIEN-
NARNA library on the sequences from the RFAM database [52] cases to estimate
a number of representative quantities and the the analysis of the influence of dif-
ferent properties of investigates sequences on the quality of the estimation.

The work described in this whole section was done in collaboration with Chris-
telle Rovetta, post-doctoral fellow within the AMIBio team.
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4.1 The non-redundant estimator

The estimators in general have for objective to give an estimation of a certain
quantity, represented by a specific function.

Definition 4.1.1 (Feature function): A feature function F : Sn → R that
associates to each secondary structure S a certain numerical value.

Example 4.1.1. F returning whether a base pair (i, j) is present in the secondary
structure S:

F(S) =

1 if (i, j) ∈ S
0 otherwise

(4.1)

We can therefore specify the central problematics of this section.

Problem 4.1.1:

• Input: A sample set U drawn from non-redundant distributions with prob-
ability of S ∈ U :

p(S | F) = ZS − 1S∈F ×ZS
Z − ZF

. (4.2)

• Output: An unbiased estimation F̂(U) of F for U equal to the expectation
E(F(U)).

There are many usual approaches to estimate the probability of the classic, re-
dundant samples, however, for the non-redundant generation the situation is a
bit more complicated.

4.1.1 Empirical mean

Let X be the classical, redundant sampling set of ordered samples S1, . . . , S|X | and
Xi = (S1, . . . , Si) for 1 ≤ i ≤ |X |. The empirical mean is given by

F̂(X ) = 1

|X |
∑
S∈X

F(S).

120



This estimator uses the frequency of the samples as a way to approximate its
probability. This means that the estimator is unbiased, because

E (F(X )) = 1

|X |
∑
S∈X

E (F(S)) = E (F(Sn)) .

As a reminder, Sn is the set of all secondary structures for w of length n, consti-
tuting a variable with |Sn| states.

In the case of non-redundant sampling set U the above no longer applies, as the
absence of frequencies means the probability cannot be expressed by it. We need
a way to express the probability for U before the non-redundant sampling set
specific estimator can be established.

Example 4.1.2. Consider 100 identical RNA secondary structures with a single
base pair and 50 identical molecules with two base pairs. The average number
NBP of the base pairs in such set is:

E(NBP) =
1

150

100∑
i=1

2+

50∑
i=1

1 =
4

3
(4.3)

But if we try to use such approach on exhaustive non-redundant sampling set, of
size 2, we get:

NBP =
1

2
× (1+ 2) =

3

2
(4.4)

which is not equal to the expected value E(NBP) = 4
3 .

4.1.2 Removing the dependency from the estimator

We remind that the probability p(S | U) of non-redundantly choosing a sample S
as:

p(S | U) = ZS − 1S∈U ×ZS
Z − ZU

. (4.5)

In this section, we suppose U ⊆ Sn is ordered, S̃1, · · · , S̃|U | ∈ U being generated in
this order. We can define Ui = (S̃1, · · · , S̃i) with 1 ≤ i ≤ |U | as a subset of U .
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First we establish a kth moment of U .

Definition 4.1.2 (kth moment of set): he kth moment of a set U is the value:

µ
(k)
U (F) =

∑
S̃∈U

p(S̃ | U)× F(S̃)k

With this, we can define the non-redundant estimator.

Definition 4.1.3 (Non-redundant estimator): We define by non-redundant
sampling set estimator F̂(U) the estimator

F̃(U) = 1

|U |




|U |∑
i=0

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F)


 .

Example 4.1.3. We return to the example of 100 identical RNA secondary struc-
tures with a single base pair and 50 identical molecules with two base pairs,
where |U | = 2. The Equation 4.1.2 becomes

ÑBP(U) =
1

2
(NBP(S̃1) +NBP(S̃2) −NBP(S̃1)× p(S̃1 | U)) + p(S̃1 | U)×NBP(S̃2)).

Since E
(
ÑBP(S̃1)

)
= E

(
ÑBP(S̃2)

)
= E(NBP) = 4

3 , this becomes

E
(
ÑBP(U)

)
=
1

2

(
4

3
+
4

3
−
4

3
× p(S̃1 | U)) + p(S̃1 | U)×

4

3

)

E
(
ÑBP(U)

)
=
1

2

(
8

3

)

E
(
ÑBP(U)

)
=
4

3
= E(NBP)

Theorem 4.1.1 (Unbiasedness): The non-redundant estimator is unbiased.

Proof 4.1.1. Consider the conditional expectation EU (F(S̃)) that

EU (F̂(S̃)) =
∑
S̃∈Sn

p(S̃ | U)× F(S̃).
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Replacing the probability by its expression from Equation 4.5 gives:

EU (F(S̃)) =
∑
S̃∈Sn

Z
S̃
− 1

S̃∈U ×ZS̃
Z − ZU

× F(S̃)

EU (F(S̃)) =
∑

S̃∈Sn/U

Z
S̃

Z − ZU
× F(S̃)

since if S̃ ∈ U then p(S̃ | U) = 0. It follows

EU (F(S̃)) =
∑

S̃∈Sn/U

p(S)

1− µ
(0)
U (F)

× F(S̃)

EU (F(S̃)) =
1

1− µ
(0)
U (F)


 ∑
S̃∈Sn/U

p(S)× F(S̃)




EU (F(S̃)) =
1

1− µ
(0)
U (F)


∑
S̃∈Sn

p(S̃)× F(S̃) −
∑
S̃∈U

p(S̃)× F(S̃)


 .

since U ∈ Sn. The term
∑
S̃∈Sn p(S̃)× F(S̃) = E(F(Sn)) since it is estimated on Sn.

This gives us

EU (F(S̃)) =
1

1− µ
(0)
U (F)

(
E(F(S̃)) − µ(1)U (F)

)

E(F(S̃)) = EU (F(S̃))× (1− µ
(0)
U (F)) + µ

(1)
U (F).

The right-hand side of the expression can be used to establish an estimator F̃(U)

F̃(U) = 1

|U |




|U |∑
i=0

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F)


 . (4.6)

It remains to prove that the estimator F̃(U) is unbiased, meaning we have to show
that

E
(
F̃(U)

)
= E (F(Sn)) .
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This can be done by induction on the size of U . Base case (|U | = 1): In this case
U0 = ∅ and µ(0)U0 = µ

(1)
U0 = 0. From that we have:

E
(
F̃(U)

)
= E

(
F(S̃1)

)
= E (F(Sn))

Induction (|U | = m + 1): Suppose that the property is valid for |U | = m and we
have to verify it for |U | = m+ 1. We have

E
(
F̃(U)

)
= E (F(Sn))

E
(
F̃(U)

)
= E

(
1

m+ 1

(
m+1∑
i=0

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F)

))

E
(
F̃(U)

)
= E

(
m

m+ 1
F̃(Um)

)
+

1

m+ 1
E
(
F(S̃m+1)

(
1− µ

(0)
Um(F)

)
+ µ

(1)
Um(F)

)

E
(
F̃(U)

)
=

m

m+ 1
E (F(Sn)) +

1

m+ 1
E
(
F(S̃m+1)

(
1− µ

(0)
Um(F)

)
+ µ

(1)
Um(F)

)
.

The only thing left is to prove that E
(
F(S̃m+1)

(
1− µ

(0)
Um(F)

)
+ µ

(1)
Um(F)

)
= E (F(Sn)).

We pose
Bm+1 = F(S̃m+1)

(
1− µ

(0)
Um(F)

)
+ µ

(1)
Um(F).

We define p(Um) as a probability of having a set of unique structures Um. We then
develop E(Bm):

E(Bm) =
∑

Um||Um|=m

p(Um)EUm
(
F(S̃m+1)(1− µ

(0)
Um(F)) + µ

(1)
Um(F)

)

E(Bm) =
∑

Um||Um|=m

p(Um)EUm


µ(1)Um(F) +

∑
S̃∈Sn/Um

p(S̃ | Um)F(S̃)(1− µ(0)Um(F))




E(Bm) =
∑

Um||Um|=m

p(Um)


µ(1)Um(F) +

∑
S̃∈Sn/Um

p(S̃)

1− µ
(0)
Um(F)

F(S̃)(1− µ
(0)
Um(F))




E(Bm) =
∑

Um||Um|=m

p(Um)


µ(1)Um(F) +

∑
S̃∈Sn/Um

p(S̃)F(S̃)


 .
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Since Um ∈ Sn, we can write

E(Bm) =
∑

Um||Um|=m

p(Um)


µ(1)Um(F) +

∑
S̃∈Sn

p(S̃)F(S̃) −
∑
S̃∈Um

p(S̃)F(S̃)




E(Bm) =
∑

Um||Um|=m

p(Um)
(
µ
(1)
Um(F) + E(F(Sn)) − µ(1)Um(F)

)

E(Bm) =
∑

Um||Um|=m

p(Um)E(F(Sn))

E(Bm) = E(F(Sn))

from which it follows directly that

E
(
F̃(U)

)
= E(F(Sn)).

The proposed estimator however also presents one important disadvantage of it
being inconsistent. When the number of the employed sampling set raises in-
definitely, it does not converge towards the true value. While the estimator is
unbiased, meaning its expected value F(U) gives the true value of F(Sn), it does
not converge towards it for the entire sampling run. This stems from the fact that
the number of non-redundant samples that can be generated is limited. This issue
is addressed at the end of this Section.

When it comes to variance, the numerical analysis does not allow us to conclude
decisively on its value when comparing F̃(U) and F̂(X ). In practice it also de-
pends on the complexity overhead of the implementation, as the same-size non-
redundant set U cannot be produced in the same time as the classic set X due
to the additional modifications to be made by the non-redundant sampling layer.
The experiments presented in the next section compare the performance of both
estimators.

4.2 Applications of non-redundant estimator

Here we present a number of applications of non-redundant estimator to specific
cases and the comparison of the performance of the classic estimator F̂(X ) ap-
plied on sampling set X and that of the classic, redundant estimator F̃(U). For
every experiment, unless noted otherwise, we used the dataset extracted from
RFAM database [52], specifically 365 sequences of RFAM families RF 00001, RF
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00005, RF 00061, RF 00174, RF 01071 and RF 01731. The sequences were
chosen in a manner so that their GC content is as homogeneous as possible. Both
the redundant, from this point on referred as classical, and non-redundant sam-
pling is performed by RNAsubopt of VIENNARNA library, the latter of which
was implemented by us as discussed in Section 3.4.1.

4.2.1 Estimating base pair probabilities

Definition 4.2.1 (Dotplot matrix): A dotplot matrix is a matrix D associ-
ated to a sequence w storing the values:

Di,j =
∑
S∈Sn

p(S) if (i, j) ∈ S
0 otherwise

In other words, Di,j is the average probability of the given structure having a
base pair (i, j). This matrix can be computed in an exact manner by RNAfold

from VIENNARNA library. Therefore, we compute the reference value D using
RNAfold and the estimations by using the classic mean average estimator D̂(X )
and the non-redundant sampling specific estimator Ũ introduced by us. For both
U and X , we sampled 103 structures. We then computed their respective errors:

eR =
||D− D̂(X )||
n(n− 1)

and eNR =
||D− D̃(U)||
n(n− 1)

where eR and eNR are respectively the redundant and non-redundant error and
||a|| =

√
a2. The results were classed according to coverage (reminder: Cov(U) =∑

S∈U ZS
Z ; for X the unique set was generated from them), length n of w and the

GC-content.

Results 4.2.1. The results are depicted on Figure 4.1. For all Figures, the line
marks the difference between eR and eNR, and the color the estimator that per-
forms better (blue if eR > eNR, orange otherwise). There does not seem to be
an influence of the GC-content, though D̃(U) seems to perform better for the se-
quences where GC-content is biased (Figure 4.1A). This is a little surprising, con-
sidering that higher GC-content would imply stronger structures due to higher
number of G-C bonds, bigger free energy differences and consequently more re-
dundancy.

On the other hand, there is an influence of the n as well as Cov (Figure 4.1B and C
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resp.). The estimator D̃(U) performs better than D̂(X ) for shorter sequences and
higher Cov. This is logical since the complexity overhead is not as noticeable for
shorter sequences. Similarly, the effect is more remarkable the bigger percentage
of the search space is covered.

We also include the Figure 4.2 that indicates the total number of cases where Ũ
performs better. While the difference between the errors is in all cases close to
0, the non-redundant estimator D̃(U) performs better in around 300 cases out of
365. Coherently the majority of cases where D̃(U) performs better is those with
high coverage Cov, the intervals of which are marked by the color code. Due to
inconsistency, the number of sampled structures must stay relatively small.

The example of dotplot matrixD indicate that in the majority of the cases the esti-
mator specific to non-redundant samples performs better. On the other hand, the
difference of performances is smaller for longer sequences, which, despite bing
expected and coherent with the observations from Section 3.4.1 where the perfor-
mance of the non-redundant sampling was worse for long sequences and small
|U |, is still a little disappointing since the main reason behind the establishment
of the non-redundant sampling is the analysis of the longer sequences.

For two specific sequences w, M30199.1/68 - 167 from the family RF00001

and CP000679.1/1996671 - 1997302 from RF01071, which will be referred
by their specific families, we also compared the overall performance of both es-
timators D̂(X ) and D̃(U). with the respect to the number of performed samples
and the execution time. The maximum number of sampled structures for both w
and sampling sets U and X was 104. For the time performance, we sampled the
sampling sets U and X for the approximately same execution time. The sampling
was executed on a laptop equipped with a CPU Intel R© CoreTM i7-5600U CPU with
2.60GHz× 4 on Linux Ubuntu 16.04 LTS and with 16 GB RAM. We then analyzed
the evolution of eR and eNR in function of the number of samples and execution
time.

Results 4.2.2. The results for both results are shown on Figure 4.3. For both se-
quences w we notice the better overall performance of D̃(U) than that of D̂(X )
for comparable number of samples and execution time, since D̃(U) show lower
error for the same execution time/number of samples. The results for the number
of samples is expected, since the non-redundant sample U holds more informa-
tion and the associated estimator D̃(U) shows smaller variance. The better per-
formance of D̃(U) demonstrates that the non-redundant sampling can be imple-
mented efficiently into the associated DP schemes with low complexity overhead.
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Figure 4.1: The comparison of efficiency eR and eNR for the estimation of a dotplot
matrix D for 103 samples. The lines represent the difference between eR and eNR - blue
marks eR ≤ eNR, while orange the opposite. The results are sorted by GC-content (A),
size n of the sequencew (B) and the coverage (C). Our estimator performs better notably
for shorter sequences and higher coverage.

Keep in mind however that the above examples are not generalizable and as Fig-
ure 4.1 shows, the estimator D̃(U) can perform worse than its classical counterpart
in some cases.
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Figure 4.2: The histogram of eR − eNR for the estimations of a dotplot matrix D. The
red dotted line denotes eR − eNR = 0. The positive values indicate the cases for which
D̃(U) performs better than D̂(X ). The coloring indicates the coverage intervals Cov of
the sampling set of w for which the estimators were calculated.

Also, notice that in the case of the sequence from the family RF01071, the error
starts to raise after some time, resp. number of samples (Figure 4.3 left bottom).
This might point to an inconsistency of our estimator. While our estimator is
unbiased, meaning its estimated value is equal to the expected value of given
feature function, here D, it does not converge towards the predicted value for an
infinitely large sample. This problem is addressed later.

4.2.2 Graph distance distribution

Here we suppose the RNA secondary structure S as a graph GS = (V, E) where:

• V are nucleotides of the sequence;

• E connect two nucleotides connected by the backbone or a base pair.

129



Figure 4.3: The performance of the estimators D̂(X ) and D̃(U) for the two sequences
w from the family RF00001 (left) and RF01071 (right). The graphs show the evolution
the errors eR (blue) and eNR (orange) in function of the number of samples (top) and
execution time (bottom).

Definition 4.2.2 (Graph distance): A minimum graph distance di,j(S) is
the minimal distances between two nucleotides w[i] and w[j] observed for
some S ∈ Sn, with S represented by GS(V, E).

Example 4.2.1. For a secondary structure S = {(1, 10)} of a sequencewwith length
n = 10, the minimum graph distance is d(2, 9)(S) = 3, following the path (2)-(1)-
(11)-(9).

By definition, all nucleotides w[i], w[j] neighboring in backbone or in a base pair
have a di,j(S).

Here we first test a distribution of di,j(S) ∀S ∈ Sn, denoted Di,j(S) generated
by the sampling methods themselves. Unlike for the dotplot matrix application,
there is not an implemented and efficient way to compute the minimum graph
distance distribution for secondary structures in an exact manner. However, we
may exploit the consequences of the Chebyshev’s inequality.

Theorem 4.2.1 (Chebyshev’s inequality): The Chebyshev’s inequality is, for
a random variable X with finite expected value µ and a finite non-zero standard
deviation σ and a real positive number k, given by:

p((X− µ) ≥ kσ) ≤ 1

k2

In the other words, only a part of the values X will be more than a certain dis-
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tance of the mean µ. The consequence of this inequality is the fact that for suffi-
cient number of the samples a significant proportion of them will be distributed
around the value µ. We can therefore generate the reference structure by sam-
pling redundantly sufficiently extensive number of the secondary structures and
computing Di,j(X ).

In our case the population is all secondary structures S ∈ Sn. By exploiting the
Chebyshev’s inequality we compute the reference distribution Di,j(Sn), then com-
pare it to the results of both classical sampling di,j(X ) and the non-redundant one
Di,j(U). Due to the extensive computations necessary to generate a reference, this
experiment is performed only for the 100 nt long sequence M30199.1/68-167
from the RF00001 family. The reference is obtained by sampling |Xref| = 106

structures. For testing the non-redundant and classical sampling, we generate
|X | = |U | = 103 samples. We look specifically for the distribution of D16,82 of
nucleotides w[16] and w[82].

Results 4.2.3. We plot the histograms of Sn, X and U in function of distance
classes, one class constituting a specific distance returned for given sampling set.
These plots are shown on Figure 4.4. The plot shows the superposition of the dis-
tribution of the distance classes for X and Sn or reference (Figure 4.4 left) and U
and Sn (Figure 4.4 right). Both distributions are very close to the reference.

The precise results are shown in Table 4.1. The errors (3rd column) were computed
by:

eR = ||D16,82(Sn) − D16,82(X )|| and eNR = ||D16,82(Sn) − D16,82(U)||.

The non-redundant sampling distribution D16,82(U) is closer to the reference, prov-
ing the non-redundant sampling to be more efficient in this case. Also note that
U shows more distance classes that X and is closer to the expected value - this
is not surprising since non-redundant sampling finds more unique structure and
consequently has better chance to find more of them.

To test the estimators of the both sampling approaches, we use a feature function
of the weighted graph distance of all possible couples of nucleotides.

Definition 4.2.3 (Weighted graph distance matrix): A weighted graph dis-
tance matrix M for a sequence w of length n is a matrix n × n containing
the values:

Mi,j =
∑
S∈Sn

di,j(S)×
ZS
Z .
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Figure 4.4: The comparison of distributions of distances Di,j for sampling sets X and
U generated by classical and non-redundant sampling respectively. The expected dis-
tribution is superposed to that for sampling sets X (left) and U (right). Both distributions
are close to the expected one.

Upon estimating M̂(X ) and M̃(U), we get their respective errors as

eR = ||M− M̂(X )|| and eNR = ||M− M̃(U)||.

Again, M is computed from 106 samples produced by classical sampling by ex-
ploiting the consequences of Chebyshev’s inequality and is taken as a reference.
Both eRandeNR were computed for up to 104 samples.

For the previous experiment, we also determined two values B1 and B2:

• B1 is the number of samples necessary to have eR > eNR for the first time;

• B2 is the number of samples necessary to always have eR > eNR for any
subsequent samples.

The above experiment was repeated 50 times, each producing 104 samples. For

132



Experiment type Distance classes Distance from D16,82(Sn)

D16,82(Sn) 36 0
D16,82(X ) 18 0.01813
D16,82(U) 22 0.01496

Table 4.1: The comparison of distributions of minimum graph distance d16,82 for 103

samples. Value classes denote the number of different distances returned for given set of
samples.

each iteration that gave us specific X and U , the values B1 and B2 were calculated.
We then plotted their distribution.

Results 4.2.4. The results for eR and eNR, respectively B1 and B2, are shown on
Figures 4.5, resp. Figure 4.6. The comparison of errors eR and eNR indicates that
M̃(U) approaches the reference, M, more quickly than M̂(U). More importantly,
the variation of M̃(U) is smaller than for M̂(U).

Figure 4.5: The evolution of eR and eNR for the number of the samples of X and U of
sequence M30199.1/68-167. The non-redundant estimator F̃(U), marked in orange,
shows smaller variations than its classic variant F̂(X ), blue, and in general seems to show
being close to the true value.

For the analysis of the values of B1 and alwaysbest, we notice that the non-
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redundant estimator shows, for the sequence M30199.1/68-167, the better value
for the first time after sampling about 2500 samples at average. The value be-
comes consistently better after sampling close to 3200 structures. Interestingly,
the non-redundant estimator shows at average better values that the classical es-
timator despite being inconsistent, though this can be explained by not sampling
sufficiently big number of the secondary structures.

Figure 4.6: The distribution of the values B1 and B2 obtained for the sequence
M30199.1/68-167. Blue histogram shows the distribution of number of samples for
B1 (eNR < eR for the first time for given samples X and U), the green B2 (eNR < eR from
this point on). The blue and green dashed lines how both the respective average for B1
and B2.

The experiments on minimum graph distance and graph distance matrices no-
tably confirm that the estimator F̃ for non-redundant sampling sets U has smaller
variance that F̂ for X , as well as giving the estimation that for the reasonable
number of secondary structures are closer to the true value.
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4.2.3 Shape probabilities

In this experiment, by RNA shape we denote a simplification of dot-bracket for-
mat for RNA secondary structures [38]. There are many ways how one can sim-
plify a secondary structure, so in our case we will define it in a following way.

Definition 4.2.4 (Shape): The shape abstraction mapping π [38] is a trans-
formation fSHA(S) of a dot-bracket format of a secondary structure Swhere:

• Dot ’.’ is removed.

• Helix is replaced by a single pair of square brackets;

Example 4.2.2. The structure ’((...(...)))’ becomes ’[[]]’.

The SHAPE is the last example on which the estimators were tested. We define a
feature function FSHA such that

FSHA(Sn) =
∑
S∈Sn

1 if fSHA(S) = fSHA(SMFE)

0 otherwise

where SMFE is the MFE structure. In other words, FSHA(Sn) is the probability that
the shape of S ∈ Sn is identical to MFE.

The value of FSHA(Sn) is estimated by the non-redundant estimator F̃(U) for a set
of unique samples U and by its classical equivalent F̂(X ) for redundant sampling
set X . This value was evaluated for the sequences w and respective families:

• M30199.1/68 - 167 from RF00001;

• AY344021.1/1 - 348 from RF00061;

• CP000283.1/2593935 - 2594143 from RF00174;

• CP000679.1/1996671 - 1997302 from RF01071.

To simplify the notation, we will refer to these sequences by the name of their
respective families.

Like for the previous application, the computation of the exact value of FSHA(Sn)
is difficult, therefore we resort to estimating the value from sufficiently large sam-
pling set of 106. For each w, we sampled |X | = |U | = 104 secondary structures.
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We then followed the evolution of the values of both estimator with regards to
the expected value FSHA(Sn).

Results 4.2.5. The results of this analysis are depicted on Figure 4.7. For all four
sequences, the both estimators approach the expected value after 104 samples. It
is interesting to observe however that in case of the sequence from RF00001 (Fig-
ure 4.7A), F̂(X ) approaches the value quicker than the non-redundant estimator
F̃(U). In all other cases our estimator approaches to the expected value FSHA(Sn)
quicker than F̂(X ).

Another interesting case is the sequence from the family RF00061 (Figure 4.7C).
In this case the value F̃(U) starts to diverge from the expected value. This can be
explained either by the rounding errors, or by the inconsistency of the proposed
non-redundant estimator. Since F̃(U) is not consistent it may diverge once U starts
to get too large.

A B

C D

Figure 4.7: The evolution of the estimators F̂(X ) and F̃(U) for the number of the sam-
ples. For four different sequences of families RF00001(A), RF00174(B), RF00061(C)
and RF01071(D), the graphs show the evolution of F̂(sampled) (blue) and F̃(U) (orange)
and their comparison to the expected value (red).
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4.3 Resolving the convergence problems

The inconsistency related to the non-redundant sampling estimator F̃(U) pertains
to the fact that non-redundant sampling has limited number of samples that can
be produced. We do not dispose with the existing values of F(S̃j) for any j > l

where l is the maximum number of the unique structures, resulting in the incon-
sistency. This short section presents a way to make the theoretical value of the
estimator converge in such cases.

Let us define ∀j > l, F(S̃j) = 0, and m > l. In that case, the non-redundant
estimator

F̃(U) = 1

m

(
m∑
i=0

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F)

)

can be divided in two separate terms

F̃(Ũ) = 1

m

(
l∑
i=0

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F) +

m∑
i=l+1

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F)

)
.

For the second term, we have

m∑
i=l+1

F(S̃i)
(
1− µ

(0)
Ui−1(F)

)
+ µ

(1)
Ui−1(F) = (m− l)× E(F(Sn))

since the first term is nullified by F(S̃i) = 0 and for the second we have

µ
(1)
U (F) =

∑
S̃∈U

p(S̃ | U)× F(S̃)

which in this case completely covers the space, and therefore is equal to E(F(Sn)).
Consequently, we have

F̃(U) = 1

m

(
F̃(Ul) + (m− l)× E(F(Sn))

)

F̃(U) = 1

m
× F̃(Ul) +

m− l

m
× E(F(Sn)). (4.7)
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When we test the solution for the convergence whenm→ +∞, we find

lim
m→+∞ F̃(U) = E(F(Sn)) (4.8)

since the first term of Equation 4.7 becomes negligible and the second becomes
close to 1 for values of m sufficiently large. Therefore, substituting F(S̃j) by 0 for
j > l makes the non-redundant sampling estimator indeed converge towards the
expected value and therefore the estimator becomes consistent.

4.4 Conclusion - Non-redundant estimator

In this section we discussed the problem of the estimating a specific quantities or
properties, represented by a quantifiable feature function, of non-redundant sam-
pling set. The lack of the frequencies forbids us from simply using the weighted
average as non-redundant estimator. On the other hand, using the conditional
probability leads us to an unbiased estimator that allows us to estimate these
quantities from non-redundant sampling.

The advantage of this estimator seems to be its smaller variance, as shown by
the practical applications on different quantities such as base pair probability or
minimum graph distance. In the former case, our estimator performed worse in
about 65 cases, having an important edge over the classical sampling approach
and the quantity estimated by the weighted average. The better performance
was noted specifically for shorter sequences and bigger coverage, however the
non-redundant estimator still seems to perform better for long sequences than
the classic counterpart, even if with a smaller difference. It is also important to
notice that our estimator can perform worse in some specific cases, such as small
sampling sets for long sequences where the redundancy does not really matter.

The fact that the non-redundant estimator performs better than the classical ver-
sion not only with the respect to the number of samples, but also the execution
time demonstrates that the non-redundant sampling can be implemented effi-
ciently into DP sampling schemes, with little complexity overhead. However, it
may need some considerable optimization, like was the use of the linked lists for
the implementation used in RNAsubopt in VIENNARNA.

The one problem related to the non-redundant sampling set estimator is the fact
that the estimator is inconsistent, or it does not converge towards its expected
value even when it is unbiased once the number of samples becomes sufficiently
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big. This is because the non-redundant sampling set is of limited size. For theo-
retical computations, we solved this problem by substituting the value of feature
function of all theoretical samples exceeding the number of possible unique struc-
tures by 0, which makes the estimator convergent.
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Chapter 5

Extending towards pseudoknots

Until now, we assumed, as stated in Section 2.1, that the secondary structures con-
tain only the base pairs that cannot cross each another. This condition is necessary
to make the decomposition into loops, the basis of all the DP schemes detailed in
this work possible since we can assume the independence between what hap-
pens inside a given base pair and what happens outside of it. This hypothesis
also allows the computation of the free energies of the secondary structures by
the Turner Energy Model.

However, such simplification removes an entire class of substructures from the
equation - the pseudoknots. We already stated in Definition 2.4.2 that the pseu-
doknot consists of crossing base pairs. There are many different types of pseudo-
knots from a simple crossing of two helices to complicated structures [82]. While
complex pseudoknots are unlikely to appear in biologically important structures,
many simpler pseudoknots have important role in biology [93, 49].

The reason for such restriction is simple - reduce the time complexity. It was
demonstrated that accounting for a pseudoknot in its most general definition is
an NP-complete problem [1, 61]. Even the most efficient algorithms for the sim-
plest classes of pseudoknots have O(n4) time complexity compared to O(n3) of
the usual DP schemes. However, due to their biological significance, it may be
interesting to analyze the simpler pseudoknots and to propose an efficient sam-
pling method on which a non-redundant sampling principle can be eventually
extended.

The work in this section is preliminary and still in progress. For this reason, this
section is more the presentation of the concept and the main ideas than the re-
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sults and the completed software. We begin by the introduction of the algorithm
behind the software pknotsRG [81] that was also included in pKiss [50]. Both
software predict the structures with the most optimal pseudoknots for a given
interval. The one returns pseudoknots consisting of two perfect helices crossing,
while the second returns also kissing hairpins, where one helix crosses once with
two others. We will then discuss how to generalize this algorithm while keep-
ing the complexity reasonable, and how to extend it on suboptimal structures.
Finally, we will discuss how to extend the non-redundant sampling principle on
proposed algorithm and on the future work that needs to be done in this direc-
tion.

5.1 State of the Art - pknotsRG algorithm

Here we explain the algorithm used in pknotsRG [81]. This program predicts the
so-called canonical simple recursive pseudoknots.

Definition 5.1.1 (Canonical simple recursive pseudoknot): A canonical
simple recursive pseudoknot consists of exactly two helices H1(i, j, lh)
and H2(i ′, j ′, lh ′) with i < i ′, of maximum possible length lh and lh ′ and
such that

i+ lh < i ′ < i ′ + lh < j− lh < j < j ′ − lh.

The helices, as defined in Definition 2.4.2, must not contain an unpaired base pair.
Such helices are also called perfect helices. The simple recursive pseudoknot is
then a crossing of two such helices. The maximality of lh, lh ′ implies that the
helix is extended until it is not possible to create a base pair anymore. If the helices
would overlap, H1(i, j, lh) with lower i takes the priority and is extended to its
maximum and H2(i ′, j ′, lh) takes the remaining base pairs. This also completely
defines the internal pseudoknot segments w[i + lh, i ′ − 1], w[i ′ + lh, j − lh] and
w[j + 1, j ′ − lh] which we respectively denote I1, I2 and I3. The example of a
canonical simple recursive pseudoknot is given on Figure 5.1.

The algorithm to search for said pseudoknots is designed in a following manner:

• For each substring w[i, j] with i < j, pre-compute and store the maximum
length a of a perfect helixH(i, j, a) in a look-up table.
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Figure 5.1: An example of a canonical simple recursive pseudoknots represented ra-
dially (a) and linearly (b). Two perfect helices H1(i, j, lh) and H2(i ′, j ′, lh ′) cross each
other, creating three internal segments I1, I2, I3.

• For each quadruplet (i, j, i ′, j ′), ifH1(i, j, a) andH2(i ′, j ′, a ′) do not overlap,
meaning i ′ + a ′ − 1 < j − a + 1, create the pseudoknot directly. If they do,
set a ′ = j − i ′ − a + 1 and create the pseudoknot. Compute its energy and
for each w[i, j], keep only the pseudoknot with the lowest one.

The complexity of this algorithm is O(n4) in time and O(n2) in space. The limit-
ing factor is to analyze all quadruplets (i, j, i ′, j ′), giving the complexity of O(n4)
since once all indexes are known the the pseudoknot is assembled from the val-
ues in the look-up table which are computed in O(n2) complexity. In the base
version, only the most optimal pseudoknot is stored for given substring w[i, j],
and the pre-computation step stores the maximum length of helix starting with
(i, j), giving the memory complexity of O(n2).

The free energy of a pseudoknot is computed as the sum of the energies ofH1(i, j, a)
andH2(i ′, j ′, a ′) and adding a penalty for creating a pseudoknot. The pseudoknot
penalty was not determined empirically and therefore may be inaccurate.

This algorithm is employed by both pknotsRG and pKiss. Additionally, pKiss
allows to search for canonical simple recursive kissing hairpins by four different
methods, which are not discussed here. The webservice pKiss can be consulted
at https://bibiserv2.cebitec.uni-bielefeld.de/pkiss.

There are many other algorithms that compute the pseudoknots of varying com-
plexity and specificity. However, many of them are too stringent or too general
for our application, while the algorithm discussed here has low complexity and
needs only to be generalized to encompass a wider class of pseudoknotted struc-
tures.
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5.2 Generalizing the pknotsRG algorithm

The algorithm employed in pknotsRG as well as pKiss is useful for discover-
ing the simplest of pseudoknots in an efficient manner. However the number
of returned pseudoknots is restricted and due to choosing only the best pseudo-
knot for given w[i, j], it does not propose suboptimal solutions for said structure.
Therefore, we want to propose an extension of the previous algorithm.

Problem 5.2.1:

• Input: A sequence w;

• Output: Set of secondary structures S that contain pseudoknots produced by
a combing two, not necessarily perfect, helices in a Boltzmann distribution.

As said, there are many existing algorithms that can generate pseudoknotted
structures; the algorithm of pknotsRG is only one example that was chosen as a
starting point due to its complexity and implementation advantages. Other exam-
ples would be Akutsu algorithm [1], which likewise treats only pseudoknots con-
sisting from two helices, or that established by Elena Rivas and Sean R. Eddy [83],
capable to predict even more complicated pseudoknots but at higher time and
memory costs. Our algorithm, while not as fast as that used in pknotsRG, is
able to predict multiple pseudknotted secondary structures, including those with
suboptimal pseudoknots, that pknotsRG is unable to find, justifying its research.

We first introduce the concept of imperfect helices. We then continue how to build
a list of helices, which the may be used to assemble the pseudoknots.

5.2.1 Imperfect helices

Our first objective is to establish a table of all helices that can be used to specifi-
cally build the pseudoknots we are interested in. In our case these helices may be
imperfect.

Definition 5.2.1 (Imperfect helix): An imperfect helix h(i, j, k, l) is a set of
base pairs constituting the helix and being delimited by (i, j) and (k, l).
w[i, k] and w[l, j] may contain unpaired bases.
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Note that in this case j − l = k − i is not necessarily true. The imperfect helices
h(i, j, k, l) having identical (i, j) and (k, l) may be brought together in common
sets.

Definition 5.2.2 (Imperfect branch): An imperfect branch Ĥ(i, j, k, l) with
i < k < l < j is a set of all helices h(i, j, k, l).

The partition function of Ĥ(i, j, k, l) is the sum of Boltzmann factors of h(i, j, k, l):

ZĤ(i,j,k,l)
=

∑
h(i,j,k,l)∈Ĥ(i,j,k,l)

h(i, j, k, l)

From Ĥ(i, j, k, l) we can establish the definition of H-type pseudoknots.

Definition 5.2.3 (H-type pseudoknot): A H-type pseudoknot KH(h1, h2)

is a union of two imperfect helices h1(i, j, k, l) ∈ Ĥ1(i, j, k, l) and
h2(i

′, j ′, k ′, l ′) ∈ Ĥ2(i ′, j ′, k ′, l ′) that cross each other.

By abuse of notation we can write

KH(h1, h2), ∀h1 ∈ Ĥ1, h2 ∈ Ĥ2

as KH(Ĥ1, Ĥ2).

This definition is very general and encompasses all possible H-type pseudoknots.
The canonical simple recursive pseudoknots are their specific subcategory. How-
ever, only searching all imperfect helices h(i, j, k, l) would induce at least O(n4)
memory complexity to store them all.

To restrict the number of h, we introduce the parameter ∆ that implies:

• |j− l− (k− i)| ≤ ∆;

• For any two consecutive base pairs (i1, j1) and (i2, j2) such that

{(i1, j1), (i2, j2)} ∈ h(i, j, k, l) and i1 < i2,

we have |j1 − j2 − (i2 − i1)| ≤ ∆;
• w[iu, ju] a substring of w[i, k] or w[l, j] that is completely unpaired may be

at most of length ∆.
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Only the helices that fulfill the above criteria are considered for pseudoknots
KH(Ĥ1, Ĥ2).

Example 5.2.1. Here we suppose an imperfect helix h(i, j, k, l) ∈ Ĥ(i, j, k, l) with
k = i+8 and l = j−8, shown on Figure 5.2. This helix is a subset of six base pairs

h(i, j, k, l) = {(i, j, (i+ 1, j− 1), (i+ 3, j− 5), (i+ 4, j− 6), (i+ 7, j− 7), (k, l)}.

If we consider ∆ = 3, then helix in h(i, j, k, l) is considered since there at most 3
consecutive unpaired nucleotides and the maximum skew is between pairs (i +

1, j− 1) and (i+ 3, j− 5), where

j− 1− (j− 5) − (i+ 3− (i+ 1)) = 4− 2 = 2.

On the other hand, if ∆ = 2 then helix in h(i, j, k, l) will be excluded due to an
unpaired stretch of length 3 it contains, and h(i, j, k, l) will not be in Ĥ(i, j, k, l).

2 3 1 4

k − i+ 1 = 9 j − l + 1 = 9

i i+1 i+3 i+4 i+7 k=i+8 l=j-8 j-7 j-6 j-5 j-1 j

Ĥ(i, j, k, l)

Figure 5.2: An example of imperfect helix contained by h(i, j, i+ 8, j− 8). We can verify
that this helix fulfills ∆ = 2, and therefore in that case is considered as an element of
KH(Ĥ1, Ĥ2).

Such a restriction is justified since it means that one base pair of h(i, j, k, l) cannot
be too distant from the others and prevents its general asymmetry as well. This is
important since we are not looking what happens for the unpaired bases between
base pairs, meaning too much unpaired base pairs in h(i, j, k, l) would leave too
many of them in the final structure.

In the terms of complexity, such a restriction means that instead of having at max-
imum n2 possible imperfect helices for each couple (i, j), we have at maximum
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n∆ of them due to the position of l being determined by ∆ and that of k. This
effectively reduces the time complexity of searching for helices to O(n3∆). The
memory complexity is likewise reduced.

The introduction of the H-type pseudoknots KH(Ĥ1, Ĥ2) forces us to redefine the
space of all secondary structures Sn, since the condition of no-crossing base pairs
is no longer valid. From this point on, we suppose Sn contains all secondary
structures S ∈ Sn that may contain elements KH(Ĥ1, Ĥ2) with ∆ in effect. All
other non-conflicting restrictions still apply as defined in Section 2.1.

We are now interested to enumerate all imperfect helices starting with a base pair
(i, j). For this reason, we introduces a notation of a set of imperfect branches
H ∆
i,jH ∆
i,jH ∆
i,j a set of all imperfect branches Ĥ(i, j, k, l) with i ≤ k < l ≤ j containing only

helices h(i, j, k, l) that validate ∆.

To keep the complexity of the algorithm building the helices reasonable, we pro-
pose the following dynamic programming scheme. Each base pair (i, j) can be
either itself alone a helix Ĥ(i, j, i, j) or it may extend some Ĥ(i ′, j ′, k, l) such that
i < i ′ < j ′ < i ′. We also need to know the partition function ZĤ of each helix. To
simplify a notations, let ZĤ ′ = ZĤ(i ′,j ′,k,l). Therefore:

H ∆
i,j =

⋃


(i, j, 1)

⋃
|j−j ′−(i ′−i)|<∆
|j−l−(k−i)|<∆

j−j ′<∆
i ′−i<∆

{(k, l,ZĤ ′ × e
EILG(i,j,i ′j ′)

kBT ) | (k, l,ZĤ ′) ∈H ∆
i ′,j ′} . (5.1)

We can then enumerate all possible helices in a recursive manner.

The conditions j− j ′ < ∆ and i ′ − i < ∆ come from the restriction of the length of
unpaired nucleotides in h(i, j, k, l) ∈ Ĥ(i, j, k, l). This way we can enumerate all
possible imperfect helices starting with (i, j), including suboptimal helices.

Originally, H ∆
i,j was intended to be stored in form of posets, see Section 5.2.3.

Since the performance of such a solution was worse than expected, we use a
simple table of n × (∆ + 1) dimensions that stores the sum of ZĤ of all helices
Ĥ(i, j, k, j + i − k − δ), where δ = j − l − (k − i) and therefore |δ| < ∆. This way
we can look directly whether any imperfect helix h(i, j, k, l) exists or not. The im-
perfect exact helix can be obtained by performing the stochastic backtrack on the
value Z from the position (i, j, k, j+ i− k− δ) in O(n× ∆) time if i, j are known.
While this makes the values of H ∆

i,j not necessary, the relation stays very useful
when pre-computing all helices for w[i, j].
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5.2.2 Assembling the pseudoknots

The generation of all possible pseudoknots KH(Ĥ1, Ĥ2) for a given substringw[i, j]
is rather simple once we pre-compute the table of imperfect helices. We need to
simply adapt the previous DP scheme.

Definition 5.2.4 (Pseudoknot space): We call a pseudoknot space K (i, j),
or an H-type pseudoknot space, a space of all pseudoknots spanning over
substring w[i, j] defined as

K (i, j) =
⋃

k<i ′<k ′<l
j ′<l ′

{Ĥ1(i, j ′, k, l) ∪ Ĥ2(i ′, j, k ′, l ′)}.

The internal segments I1, I2 and I3 are not considered.

The space K (i, j) can be generated as follows:

• Choose all possible j ′ ∈ [i, j].

• For each j ′, choose all possible helices Ĥ1(i, j ′, k, l).
• For each Ĥ1(i, j ′, k, l), choose all possible Ĥ2(i ′, j, k ′, l ′) such that k < i ′ <
k ′ < l and l ′ > j ′.

The compatibility of Ĥ1(i, j ′, k, l) and Ĥ2(i ′, j, k ′, l ′), ie. whether k < i ′ < k ′ < l
and l ′ > j ′, can be checked directly in the table n×(2∆+1). The partition function
ZK of a single KH(Ĥ1, Ĥ2) is

ZK = e
−EKH
kBT ×ZĤ1 ×ZĤ2

where EK is the energy penalty for constructing a pseudoknot KH. Notice that this
equation does not count in the contributions inside the pseudoknot. The partition
function ZK of K (i, j) is then

ZK (i, j) =
∑

K(Ĥ1,Ĥ2)∈K (i,j)

ZK.

Again, this partition function counts the pseudoknots and pseudoknots only.

The time complexity of this algorithm isO(n6×∆2), given by the selection of two
helices. The memory complexity isO(n3×∆) since for each K (i, j) we need only
to remember its partition function which is then traced back.
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5.2.3 Pseudoknots and partially ordered sets

Here we shortly discuss the usability of the partially ordered sets, shortly posets,
with respect to the pseudoknots. The idea is to organize the imperfect branches
from H ∆

i,j in posets.

Definition 5.2.5 (Poset of helices): The poset of helices is a graph G(V, E)
where:

• V are the imperfect branches Ĥ(i, j, k, l);
• E are directed edges from ĤP(i, j, k, l) to ĤC(i, j, k ′, l ′) where

k ≤ k ′ < l ′ ≤ l

and the k ′, resp. l ′ is minimal, resp. maximal.

The minimality, resp. maximality of k ′, resp l ′ implies that ĤC(i, j, k ′, l ′) should
be as similar to ĤP(i, j, k, l) as possible. Other helices that include ĤP(i, j, k, l) can
be accessed by transitivity.

Example 5.2.2. The example is provided on Figure 5.3. As shown, it does not
have to be a tree, as a single child branch ĤC(i, j, k ′, l ′) may have multiple parents
ĤP(i, j, k, l).

i j i i + 1 j − 1 j

i i + 2 j − 1 j

i i + 1 j − 2 j

Ĥa(i, j, i, j) Ĥb(i, j, i + 1, j − 1)

Ĥc(i, j, i + 1, j − 1)

Ĥd(i, j, i + 1, j − 2)

Ĥe(i, j, i + 2, j − 2)

i i + 2 j − 2 j

Figure 5.3: The organization of helices in poset. The imperfect branches where the
helices it contains can be encompassed in another are connected by an edge.

The reasoning behind organizing imperfect helices into posets is the automatic in-
compatibility of ĤC(i, j, k ′, l ′) with some Ĥ1(i1, j1, k1, l1) if its parent ĤP(i, j, k, l)
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is incompatible when constructing a pseudoknot. In other words, any of chil-
dren of ĤP(i, j, k, l) are not compatible with Ĥ1(i1, j1, k1, l1) if ĤP(i, j, k, l) itself
is incompatible with it. Since ĤC(i, j, k ′, l ′) consumes more nucleotides than
ĤP(i, j, k, l), it means that it would produce bigger overlap with Ĥ1(i1, j1, k1, l1)
when constructing a pseudoknot. The opposite is not true, it is still necessary to
check the specific branch ĤC(i, j, k ′, l ′) even if all its parents are compatible with
Ĥ1(i1, j1, k1, l1). However, an incompatible parent ĤP(i, j, k, l) allows to auto-
matically exclude all ĤC(i, j, k ′, l ′) from constructing a pseudoknot KH(Ĥ1, ĤC),
potentially reducing a time complexity.

Unfortunately, in practice it is simpler to just allocate a n × (∆ + 1) matrix, since
this allows us to directly search only for compatible helices once Ĥ1(i1, j1, k1, l1)
is chosen. The preliminary performed on short sequences (order of 30 nt) with
∆ = 4 have shown three times longer execution times for poset implementation
than for the simple matrix. This is mainly due to memory allocation overhead
related to the posets aggravated by the fact that a separate poset is needed for
each (i, j). Therefore, we decided to use the simple table implementation, which
is also discussed in the rest of this Section.

5.2.4 DP scheme for secondary structures with pseudoknots

Once we designed and algorithm to enumerate all pseudoknots KH(Ĥ1, Ĥ2) with
restriction ∆ and to compute the associated partition function, we must establish
a DP scheme that allows for sampling of all secondary structures having such
pseudoknots. The easiest way to do this is to extend some existing DP scheme
(Q, qroot, ρ) so it includes the specified pseudoknots. This can be achieved by
adding a dedicated table that stores the partition function, and whose values are
precomputed by the algorithm that enumerates all pseudoknots.

Since we need to sample the secondary structures in a Boltzmann distribution, we
choose the DP scheme employed in McCaskill algorithm as our starting point. We
consider a new matrix K, that stores the partition functions ZKi,j of the all pseudo-
knots spanning over w[i, j] and includes the internal sequences it delimits. That
means that for KH(Ĥ1, Ĥ2), with Ĥ1(i, j ′, k, l) and Ĥ1(i ′, j, k ′, l ′), we we need to
take into an account what happens for the substringsw[k, i ′],w[k ′, l] andw[j ′, l ′].
The values of these sequences internal to pseudoknot depend on how we want
the pseudoknot to be scored.

Since each pseudoknot KH(h1, h2) can be seen as a special case of a multibranch
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loop, we might want to evaluate the internal segments as a special case of an
internal loop, evaluating for example the structures of a segment w[k, i ′] by ZMk,i ′ .
However, in pseudoknot the entire w[k, i ′] can be unpaired, while ZMk,i ′ does not
account for such a case.

To solve this problem, we introduce the new matrix I such that

ZIi,j = ZMi,j + c× (j− i+ 1)

where c× (j− i+1) is the penalty for leavingw[i, j] unpaired in multibranch loop
and ZMi,j accounts for all other possibilities. The pknotsRG and pKiss use the
default value of 9kcal.mol-1as a penalty for creating a H-type pseudoknots; we
used the same value.

Since KH(h1, h2) is composed from h1(i, j
′, k, l) and h1(i ′, j, k ′, l ′), we also need to

include the matrix that allows us to determine this helices from Ĥ1(i, j ′, k, l) and
Ĥ1(i ′, j, k ′, l ′) respectively. Since from Ki,j we know we target Ĥ(i, j, k, l) we have
ZHi,j,k,l such that

(k, l,ZHi,j,k,l) ∈H δ
i,j

and the recursive formula to construct all helices Ĥ(i, j, k, l) from Ĥ(i ′, j ′, k, l) is
directly given by Equation 5.1:

ZHi,j,k,l =
∑

(k,l,ZH
i ′,j ′,k,l)∈H δ

i ′,j ′

e
EILG(i,j,i ′,j ′)

kBT ×ZHi ′,j ′,k,l.

We can now defineZKi,j. Since KH(Ĥ1, Ĥ2), with Ĥ1(i, j ′, k, l) = Ĥ1 and Ĥ2(i, j ′, k, l) =
Ĥ2, must belong to K (i, j), using Definition 5.2.2 we may specify ZKi,j as:

ZKi,j =
∑

k<i ′<k ′<l<j ′<l ′

i<k
l ′<j

e
−EK
kBT ×ZHi ′,j,k ′,l ′ ×ZHi ′,j,k ′,l ′ ×ZIk,i ′ ×ZIk ′,l ×ZIj ′,l ′

where EK is the energy penalty for creating KH(Ĥ1, Ĥ2) and ZĤ is the partition
function of Ĥ(i, j, k, l).

The last step is to establish a cases where a pseudoknot may appear. In the case
of McCaskill algorithm this is rather simple, as we consider that pseudoknot ap-
pears in all cases where a regular base pair does. This means that we can simply
duplicate all the rules where ZCi,j appears, then replace it with ZKi,j.

151



However, it is necessary to proceed with caution in the case of the pseudoknot ap-
pearing inside a base pair alone. Since we decided to count its energy as for multi-
branch loop, we must have to count in the contributions for unpaired stretches
w[i+ 1, k− 1] and w[l+ 1, j− 1] as in the case of multibranch loop, as well as the
penalties a and 2b for opening the multibranch loop itself and for creating two
branches within it respectively. If the pseudoknot appears in a multibranch loop
with other loops, only the contribution 2b for creating two branches is added.

The complete DP scheme, the modified McCaskill algorithm that includes the
pseudoknots, is given below:

ZFi,j = ZFi,j−1 +
∑

i≤k≤j−θ−1
ZFi,k−1 ×ZCk,j +

∑
i≤k≤j−θ−1

ZFi,k−1 ×ZKk,j

ZCi,j = e
−EH(i,j)

kBT +
∑

i<k<l<j
k≤l−θ−1

e
−EILG(i,j,k,l)

kBT ×ZCk,l+

+
∑
i<k<j

e
−a−b
kBT ZMi+1,k−1 ×ZM1k,j−1 +

∑
i<k<l<j
k≤l−θ−1

e
−a−2b−c×(j−l+k−i−2)

kBT ZKk,l

ZMi,j =
∑
i<k<j

e
−c×(k−1)
kBT ZM1k,j +

∑
i<k<j

ZMi,k−1 ×ZM1k,j

ZM1i,j = e
−c
kBT ×ZM1i,j−1 + e

−b
kBT ×ZCi,j + e

−2b
kBT ×ZKi,j

ZKi,j =
∑

k<i ′<k ′<l<j ′<l ′

i<k
l ′<j

e
−EK
kBT ×ZHi ′,j,k ′,l ′ ×ZHi ′,j,k ′,l ′ ×ZIk,i ′ ×ZIk ′,l ×ZIj ′,l ′

ZIi,j = c× (j− i+ 1) + ZMi,j
ZHi,j,k,l =

∑
(k,l,ZH

i ′,j ′,k,l)∈H δ
i ′,j ′

e
EILG(i,j,i ′,j ′)

kBT ×ZHi ′,j ′,k,l

(5.2)

This DP scheme is depicted on Figure 5.4. As seen, the appearance of the pseudo-
knot Ki,j copies that of a base pair Ci,j. To treat pseudoknots in an unambiguous
manner we need three supplementary matrices, bringing their total number to 7.

The complexity of this algorithm is largely determined by the complexity of of
pseudoknot search, since its complexity is O(n6 × ∆2), when compared to the
complexity O(n3) of the rest of the algorithm if the length of internal loop un-
paired stretches is limited. Likewise, the memory complexity isO(n3×∆) due to
storage of partition functions for helices.
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Fi ,j
i j i j-1 j i k-1 k j i k-1 k j

Ci ,j
i j i j i k l j

i i+1 k-1k j-1 j i k l j

Mi ,j
i j i k-1 k j i k-1 k j

M1
i ,j

i j i j-1 j i j i j

Ki ,j
i j i k i’ k’ l j’ l’ j

Ii ,j
i j i j i j

Hi ,j ,k ,l
i k l j i i’ k l j’ j

Figure 5.4: The DP scheme for the sampling of the secondary structures including
pseudoknots. Ki,j and Ii,j indicate a substring w[i, j] holding a pseudoknot and a sub-
string internal to a pseudoknot respectively. Hi,j,k,l stores imperfect helices h(i, j, k, l).
See Section 5.2.4 for further details.

5.2.5 Formalizing the extension

We can now formalize the DP scheme for pseudoknotted structures described
in this Section. We denote it by (QMCv, qC1,n, ρMCv), with MCv standing for Mc-
Caskill Variant. The parting point for establishing ρMCv is ρMCv is described by
Equation 2.20 describing VZualgorithm, which has the same formalization as Mc-
Caskill algorithm.
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Taking into account how the energy of the proposed pseudoknots is computed,
the DP scheme (QMCb, qC1,n, ρMCv) introduces six new elements:

• A type-H pseudoknot appearing at the level of external loop;

• A type-H pseudoknot appearing inside base pair alone;

• A type-H pseudoknot appearing within a multibranch loop;

• A decomposition of a pseudoknot into its elements, namely imperfect branches
Ĥ1 and Ĥ2 and the intermediate segments w[k, i ′], w[k ′, l] and w[j ′, l ′].

• An unpaired segment appearing inside a pseudoknot, not counting imper-
fect helices;

• A loops appearing inside a pseudoknot, not counting imperfect helices;

This translates into establishing a new constructors for each element:

• λpkFi,j,k a pseudoknot in an external loop;

• λpkCi,j,k,l a pseudoknot in a base pair;

• λpkMi,j a pseudoknot as a branch in multibranch loop;

• λpkHi,j,k,l,i ′,j ′,k ′,l ′ a decomposition of a pseudoknot to imperfect helices

h1(i, j
′, k, l) ∈ h1(i, j ′, k, l), h2(i ′, j, k ′, l ′) ∈ h2(i ′, j, k ′, l ′).

and internal segments w[k, i ′], w[k ′, l] and w[j ′, l ′].

• λIpki,j an unpaired segment in pseudoknot;

• λMpki,j a loop in pseudoknot.

Creating a helix is equivalent to creating a stack/bulge/internal loop - in that case
we can reuse the constructor λILGi,j,k,l.
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Therefore, ρMCv may be given as

ρMCv(q
F
i,j) =

⋃



{
({qFi,j−1}, λ

unp
i,j , 1)

}
⋃

i≤k<j
(k,j)∈S(i,j)

{
({qFi,k−1, q

C
k+1,j−1}, λ

pair
i,j,k , 1)

}
⋃

i≤k<j
(k,j)∈S(i,j)

{
({qFi,k−1, q

K
k+1,j−1}, λ

pkF
i,j,k, 1)

}

ρMCv(q
C
i,j) =

⋃



{
(∅, λHi,j, EH(i, j))

}
⋃

i<k<l<j
(k,l)∈S(i,j)

{
({qCk,l}, λ

ILG
i,j,k,l, EILG(i, j, k, l))

}
⋃

i<k<l<j
(k,l)∈S(i,j)

{
({qKk,l, λ

pkC
i,j,k,l}, a+ 2b+ c× (j− l+ k− i− 2))

}
⋃

i<k<j

{
({qMi+1,k−1, q

M1
k,j−1}, λ

ML
i,k,j, a+ b)

}

ρMCv(q
M
i,j) =

⋃


⋃

i<k<j

{
({qM1k,j }, λ

ML1hel
i,j,k , c× (k− i))

}
⋃

i<k<j

{
({qMi,k−1, q

M1
k,j }, λ

ML2hel
i,j,k , 1)

}

ρMCv(q
M1
i,j ) =

⋃



{
({qM1i,j−1}, λ

unp
i,j , c)

}
{
({qCi,j}, λ

p
i,j, b)

}
{
({qKi,j}, λ

pkM
i,j ,−2b)

}
ρMCv(q

K
i,j) =

⋃

i<k
l ′<j

k<i ′<k ′<l<j ′<l ′

{
({qHi,j ′,k,l, q

H
i ′,j,k ′,l ′ , q

I
k,i ′ , q

I
k ′,l, q

I
j ′,l ′}, λ

pkH
i,j,k,l,i ′,j ′,k ′,l ′ , EK)

}

ρMCv(q
I
i,j) =

⋃

{
(∅, λIpki,j , c× (j− i+ 1))

}
{
({qMi,j }, λ

Mpk
i,j , 1)

}
ρMCv(q

H
i,j,k,l) =

⋃

i<i ′<k
l<j ′<j

{
({qHi ′,j ′,k,l}, EILG(i, j, i

′, j ′))
}

The search space and the partition function can be formalized for each state q by
exploiting the Definition 2.6.1 and Theorem 2.6.2 respectively. The formalism also
validates the Equation 5.2 since these relations stem from the Equation 3.11 that
was already proven.

The example of formalizing a DP scheme (QMCv, qC1,n, ρMCv) shows a real strength
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of the introduced formalism, since it allows to formalize even a states represented
by a disconnected substrings, such as represented by the state qHi,j,k,l. This is pos-
sible mainly due to the general definitions of q ∈ Q and λ ∈ D that allows them
to take as many parameters as necessary, meaning that it is possible to define
internal limits of a helix. Consequently, the introduced formalism can be used
to express the DP schemes used in algorithms that sample pseudoknotted struc-
tures.

5.2.6 Implementation

The above DP scheme was adapted to an algorithm for searching a suboptimal
pseudoknots in a program PKnotFind. The program was written in C. For the
base of the McCaskill algorithm, we used the implementation employed in VIEN-
NARNA library [58]. The newest iteration of this library allows for a very handy
inclusion of an auxiliary grammar, which is the function we used to implement
the rules handling the H-type pseudoknots.

While the current iteration of the library allows to add only one additional rule,
this is not a problem as both computation of values Ii,j and Hi,j can be done be-
fore computing Ki,j. Likewise for traceback of the sampled solution, these values
are accessed only from pseudoknots, meaning their values need to be accessed
only its traceback. However, since the auxiliary grammar was not included for
the stochastic backtrack at the time, we had to adapt its code for the purpose of
pseudoknot sampling.

The preliminary version of the program PKnotFind is available at:
https://github.com/JurMich/PknotFind

5.3 Results

This section provide a few preliminary results testing notably validating the con-
cept of the algorithm. Unfortunately, due to a lack of time we were not able to
provide more substantial results such as benchmarks, which is the task that is left
for the future.
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5.3.1 Toy Examples

The first test that we performed were destined to verify whether the algorithm
covers the H-type pseudoknots K(Ĥ1, Ĥ2) we are interested in. Since the entirety
of sequencesw of the search space is hard to enumerate for longw, we performed
these tests on artificial sequences designed specifically for them. For this reason
we assume ∆ = 2 as well.

The easy way to test the completeness of the DP scheme (QMCb, qC1,n, ρMCv) is to
assume a temperature T → +∞ without it affecting the energy values, in which
case we have, ∀S:

Z+∞
S = e

−ES
kBT

T→+∞ = 1

which implies uniform distribution and Z+∞ = |Sn|. For simpler sequences, it
is simple to count manually the number of possible secondary structures, includ-
ing those with K(Ĥ1, Ĥ2), then validate the results by computing the partition
function when T → +∞.

The first sequence for which the test was performed is w = CACAAGAG. The
reason we provide the results for this short sequence is it is explicit to enumerate
all possible secondary structures that satisfy the given conditions, notably the
minimum distance between base pairing nucleotides θ = 3 and ∆ = 2:

........

(......)

(....)..

..(....)

[.{..].}

Here, ’{}’ and ’[]’ represent the base pairs of the pseudoknots. In this case Z+∞ =

|Sn| = 5.

Results 5.3.1. With PKnotFind, all five solutions are found, including the pseu-
doknotted structures. More importantly when generating N = 105 samples with
the occurrence of each structure being counted, we found the following numbers:

20109 ........

19953 ..(....)

20025 (......)

19920 (....)..

19993 [.{..].}
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These counts point to an uniform distribution of Z+∞
S as stated. Therefore for the

simplest examples, the PKnotFind returns expected solutions.

The second interesting sequence we tested is

w = CACACAAGAGCAAGAG.

While the enumeration of search space structures is not as explicit as in previous
example, it is still easy to enumerate all secondary structures satisfying the given
conditions. In this case |Sn| = 33. In this case we sampled N = 106 samples.

Results 5.3.2. We found all 33 structures with PKnotFind including the pseudo-
knotted structures. Notably, we also found the secondary structure

[.{..{....]..}},

which would not be found if the we searched only for the perfect helices. This
structure also satisfies ∆, with the maximum number of an unpaired bases in
helix being 2 as well as the difference between the length of both sides of helices
|(j− l) − (k− i)| = |15− 12− 6− 3| = |− 2| ≤ ∆.

The results also show that the number of secondary structures raises very quickly
if even the simplest pseudoknots are considered and ∆ is small. For example for
the random sequence

w = GCUACGGUCAUCAUCGUAUAGC

we obtain Z+∞ = |Sn| = 233032 structures. This makes validation for longer
sequences and especially the cases where pseudoknots are combined with multi-
branch loops difficult, notably to check for uniform distribution since it takes too
many samples to have enough samples for each structure to verify. However, we
managed to find a few sequences w with |Sn| < 2.5 × 104 and for N = 107 to
verify the uniformity of generated distribution as well as that the number of the
structures equals to Z+∞ = |Sn|, which supports the validity of PKnotFind.

We also benchmarked the preliminary version of PKnotFind used for tests with
one based on posets (see Section 5.2.3). The test for sequences of around 30 nt and
∆ = δ have shown thrice as high execution time for the latter version. For this
reason we abandoned the development of the version of PKnotFind with posets
and stayed with the current one.
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5.3.2 Comparison with pKiss

We performed the comparison of the test on random sequence

w = GCUACGGUCAUCAUCGUAUAGC

of 22 nt with pKiss. For pKiss we used the suboptimal mode with energy band
(marked as an absolute deviation) of 140kcal.mol-1. The strategy employed was
the strategy P, not returning kissing hairpins. The minimum hairpin length was
set to θ = 3 and we also allowed lone base pairs.

For PKnotFind, we defined θ = 3 and ∆ = 2. We used uniform energy model,
since our main objective is to compare the search space of both software. We then
generated 107 samples.

Results 5.3.3. The pKiss has returned 11415 structures, 39 of which present H-
type pseudoknots with perfect helices. Even with lone base pairs allowed the
minimum length of all helices in returned pseudoknots was 2. The pseudoknot-
ted structure having the lowest energy was [[.{{{]]......}}}....., with
-1.5kcal.mol-1.

The PKnotFind predicts 233032 structures. More importantly, we found all 39
pseudoknotted structures that were predicted by pKiss. This points to a com-
plete coverage of the algorithm and DP scheme it is based on, as we do not omit
any important pseudoknotted structures. It also predicts a considerable number
of pseudoknotted structures, including those with helix length of 1. It also found
the structures that pKiss was not able to find due to being restricted only to
perfect helices, such as [{{{{{{{]...}}}}}}..}. .

We notice that the number of secondary structures, notably of those with pseudo-
knots, raises exponentially if i) the lone base pairs are allowed and ii) if conditions
on helices are relaxed. This is the case even for low ∆. While PKnotFind is able
to cover bigger number of secondary structures than pKiss when it comes to
the H-type pseudoknots, this does not always have a positive impact. Notably,
the lone base pairs have no stabilizing effect on the secondary structure and the
construction of the pseudoknot is accompanied by a heavy free energy penalty,
meaning that the construction of the pseudoknot of the helices consisting of lone
base pairs is inefficient. For this reason, it would be a good idea to always con-
sider the imperfect helices consisting of stacks of length at least 2 base pairs in the
case of PKnotFind.
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However, the main advantage of our algorithm is the sampling mode, which al-
lows to sample secondary structures with H-type pseudoknots, since the partition
function is computed for all possible pseudoknots spanning over w[i, j]. The en-
ergy model of the pseudoknot is based on multibranch loop, but the penalty for
creating it still remains to be determined.

5.4 Complexity Reduction of the PKnotFind algorithm

The algorithm of the PKnotFind is of complexity O(n6 × ∆2), which is too high
for longer sequences to be analyzed. For example the sequence AY302558.1

/7298-7418 from RFAM family RF00041, a sequence merely 221 nt long, took
10 min to analyze even with the low value of ∆ = 2. The problem partially re-
sults from the presence of the pseudoknots with the lone base pairs, which have
low overall contribution to the final partition function but due to their important
numbers they significantly contribute to the elevation of the total complexity. This
can be however extended to the all pseudoknots with high energy in general. The
majority of such pseudoknots is composed of helices that present high energies.
Consequently, the solution is to exclude such helices before proceeding to the step
of building pseudoknots from them is the most straightforward solution.

To filter the helices, we introduce a parameter we call goodness.

Definition 5.4.1 (Goodness): Consider an imperfect helix h(i, j, k, l). The
goodness ggg of h(i, j, k, l) is the value:

g =
log(Zh)

(j− l+ k− i+ 2)

where Zh is the Boltzmann factor of h(i, j, k, l).

The goodness essentially evaluates the ratio of value brought by h(i, j, k, l) in the
form of log(Zh) when compared to its cost or number of nucleotides it occupies.

Instead of using a table system described in Section 5.2.1, the helices in H ∆
i,j are

stored as lists that are ordered according to their goodness, from highest to low-
est. For each set H ∆

i,j , we then keep only B helices with best g. Since the value
of log(Zh) is the highest for the perfect helices, the space of the pseudoknots re-
turned by pKiss is included in that of structures returned by PKnotFind as long
as B ≥ 1.
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The complexity of an algorithm modified in such way is O(n4B2). The search for
helices keeps its complexity ofO(n3∆2), but since each H ∆

i,j is now restricted to at
most B helices, for each combination of i, j, i ′, j ′ there is possible to have at most
B2 combinations of helices to create the pseudoknots. Consequently, the memory
complexity is also reduced to O(n2B) due to need to remember only B helices for
each couple (i, j) at most.

This modification also removes the problem with the lone base pairs, discussed
above, because helices with small Boltzmann factors are less likely to be selected
during the filtering process. Indeed when we retest the sequence

w = GCUACGGUCAUCAUCGUAUAGC

we find only |Sn| = 132793 structures for the values of ∆ = 2 and B = 11, demon-
strating that even for relatively short sequences, there are many helices that are
generated even for small values of ∆ and therefore their filtering can greatly im-
prove the speed of the algorithm especially when applied to longer sequences.

The question this solution introduces is how to specify value of B. This question
is even more problematic since the number of helices is higher for longer inter-
vals. The low values of B might reduce the search space too drastically (though
the most optimal helices are still kept), while large ones will not improve the
execution speed too much and will not prevent the generation of less stable pseu-
doknots. The ideal solution would be an adaptive parameter that would take the
length of the interval into an account. However, further analysis must be per-
formed in order to identify the best method.

5.5 Pseudoknots and non-redundant sampling

The implementation of non-redundant sampling principle could not be done due
to time constraints. In this section we will briefly discuss on how to implement it
into the algorithm using the DP scheme (QMCv, qC1,n, ρMCv).

The implementation can be done in an equivalen way to the one described in
Sections 3.3 and 3.4.1. In fact, the latter describes the implementation in the al-
gorithm used by VIENNARNA library, the same algorithm that was used as a
starting point for the algorithm described in this Section. The only difference is
the complexity of the implementation, since we need to ensure for pseudoknots
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that they are unique as well.

To ensure this, we proceed in the same manner as for other cases. The nodes of the
data-structure d(w,QMCv, qC1,n, ρMCv) store the partition function of all structures
accessible from incomplete structure ZFSI represented by a parse tree

TI(w,QMCv,QNMCv, qC1,n, ρMCv).

The main difference is the list of new constructors λ that was added along with
the associated derivations, which means the extra cases to be handled and conse-
quently increased complexity.

The formalism is useful here since it shows us exactly what new cases were added
and must be treated. Likewise any scheme that can be formalized that way is
also susceptible to non-redundant sampling, which was globally proven in Sec-
tion 3.2.1. Therefore the implementation of non-redundant sampling to an algo-
rithm based on DP scheme (QMCb, qC1,n, ρMCv) is definitely possible and the only
constraint is to handle all necessary derivations, which are more numerous due
to a presence of extra elements.

5.6 Conclusion - Extension on Pseudoknots

In this section we presented the algorithm of the PKnotFind, an extension of
an algorithm used in pknotsRG, resp. pKiss. This algorithm enumerates all
imperfect helices that do not present longer unpaired stretches and bigger differ-
ences between the length of both sides of a helix than ∆ and no bigger deviation
between consecutive base pairs is present. These helices are then combined into
H-type pseudoknots if they do not overlap.

The complete algorithm to sample stochastically the pseudoknotted structures is
generated by incorporating the said algorithm into McCaskill algorithm based
on DP scheme (QMC, qC1,n, ρMC). This is done by enumerating all cases where a
pseudoknot can appear, which are identical to the cases of appearance of a base
pair. However, the energy constants are different, since in this algorithm, we treat
a pseudoknot as a multibranch loop. We therefore needed to duplicate the rules
for base pair construction while adjusting the mentioned values.

The practical tests are only preliminary, but they confirmed the expected behavior
of the algorithm for T → +∞ with free energy values unaffected, namely the
fact Z+∞ = |Sn| and the samples being uniformly distributed. The former could
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be verified for few sequences specifically designed for this purpose, while the
latter was also tested for sequences with |Sn| < 2.5 × 104 by extensive sampling.
We also confirm that PKnotFind is able to find the pseudoknotted secondary
structures predicted by pKiss, pointing to the correct conceptual scheme behind
the software. In addition it is able more pseudoknots than PKnotFind due to
the relaxed conditions on the helix. However, not all of these structures seem
to be useful, particularly the imperfect helices should contain only the stacks at
least 2 base pairs long. This is addressed by a filtering method that removes the
helices with higher energies before the step of assembling the pseudoknots. This
modification improves time and space complexity of the algorithm and removes
less interesting pseudoknots from the search space. However, further analysis
on the filtering parameter must be performed, and more tests are necessary to
completely validate the PKnotFind software along with the eventual benchmark
tests.

The following task that must be completed is the implementation of non-redundant
principle into PKnotFind. This is simplified by the formalization of DP-scheme
(QMCv, qC1,n, ρMCv), since it clearly shows newly added derivations and corre-
sponding constructors. This allows to adapt simply the non-redundant version of
McCaskill algorithm in VIENNARNA to pseudoknots and of course to adapt the
pseudoknot constructing algorithm itself by expanding the non-redundant layer
to data-structure d(w,QMCv, qC1,n, ρMCv). This can be done, seeing that the given
DP scheme can be formalized, and therefore it constitutes a perspective into the
future.
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Chapter 6

Conclusion and Perspectives

Our main objective concentrated on the analysis and application of the non-redundant
sampling in the domain of the structural RNA bioinformatics. Since in the most
of the cases, the redundancy is non-informative, it only hinders the sampling
process by slowing it down. We studied the methods of the removal of such re-
dundancy without introducing bias and its application in the domain of structural
bioinformatics. We notably studied the efficiency of such approach on the folding
landscape modeling and by the comparison with other, classic methods. We also
studied the estimation of statistical properties from non-redundant sampling sets
and the possible extension of non-redundant sampling on pseudoknotted struc-
tures. This study opens the door towards wider application of the non-redundant
sampling principle on DP-based problems, both within and outside the field of
RNA structural bioinformatics.

We began by establishing the concept of non-redundant sampling and the ele-
ments that are related to it. It was demonstrated that for the non-redundant
sampling without bias to be possible, it is necessary to remember not only the
secondary structures that were sampled, but also the process of their generation.
For this reason, we proposed a specific data-structure that stores and handles
these informations. This data-structure must be as efficient as possible, since its
efficiency greatly determines the overall performance of the non-redundant sam-
pling. We also designed this structure in a manner that it constitutes a separate
layer with a limited number of interactions with the algorithm that is extended by
a non-redundant sampling. This allows an easy implementation of the principle
to any existing algorithms, and when necessary its variables can be adapted for
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arbitrary precision arithmetics via MPFR library [34].

As the first test, we implemented the non-redundant principle in the algorithm
of Saffarian [85], a combinatorial algorithm that samples saturated secondary
structures that are assumed to be locally optimal. Since such structures have a
considerable impact on the RNA kinetics due to acting as the kinetic traps, such
algorithm is a prime candidate for RNA folding landscape analysis. The gener-
ated results demonstrate that the Saffarian algorithm extended by non-redundant
sampling samples unique secondary structure more efficiently than the competi-
tors. In addition, the returned models of RNA landscapes were, according to our
criteria, closer to the reality than the results obtained by classic sampling meth-
ods.

To give users an easy access to the non-redundant sampling principle, we im-
plemented it into the popular ViennaRNA library [58]. This library employs the
DP scheme of McCaskill algorithm. We compared the efficiency of both non-
redundant and classical versions of the sampling implemented in the library.
With the efficient implementation the non-redundant sampling takes only 10-20%
more time than the classic version to generate the same amount of samples. When
it comes to unique samples, our algorithm clearly performs better for shorter se-
quences. For longer sequences, it performs worse at first due to small probability
of generating a duplicates and the proportional overhead. However, since the re-
dundant and non-redundant samplings are of the same complexity, it is expected
to become more efficient after a sufficient number of the samples is generated.

One may ask whether the redundancy is really devoid of any information, and
may point to the problem of the estimation of specific quantities of secondary
structures. It is impossible to apply the naive estimator - computing wighted av-
erage of all samples - on non-redundant sampling sets. However, we researched
an unbiased non-trivial estimator that allows perform such task. We tested the
performance of such estimator on some model cases, with demonstrating that our
estimator performs better on average that the simple case. However, the problem
is the non-trivial estimator does not converge for the entire sampling run. This
results from the limited number of unique samples and can be remedied by sup-
posing that the values of estimated statistical quantities of samples whose order
exceeds the maximum number of unique structures is zero, making the estimator
convergent.

Finally, we tackled the problem of the sampling of pseudoknotted secondary
structures. The pseudoknots are usually omitted despite their biological rele-
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vance due to the impact on the complexity if one searches for pseudoknots [1].
The algorithm used in pknotsRG [81] and pKiss [50] is an efficient algorithm
that allows to find the secondary structures with H-type pseudoknots composed
of perfect helices. We extended this principle on imperfect helices presenting
unpaired bases. The McCaskill algorithm serves as the starting point for our ap-
proach to sample secondary structures presenting such pseudoknots. While the
algorithm shows it can sample the same pseudoknotted structures as pknotsRG
and many more possessing imperfect helices, their number is too high and some
of them may be uninformative. This is the specifically the case of the pseudoknots
composed from single base pair helices. For this reason we included the filtering
of the helices based on the number of nucleotides they occupy and their energy.
Such filtering improves space and time complexity of the algorithm and removes
pseudoknots containing higher-energy helices from the search space. However,
the filtering parameters require further study to most efficiently filter said pseu-
doknots. Another step that remains to be done is the implementation of the non-
redundant sampling principle to the algorithm described above.

To demonstrate the different properties, we also introduced the general language
to formalize the DP schemes employed algorithms used in structural RNA bioin-
formatics. This language is powerful due to its relative simplicity and flexibility
that allows to formalize numerous DP schemes with it and prove their proper-
ties all at once. As shown, it can be used even to express even the DP schemes
employed in algorithms for sampling pseudoknotted structures. It can also effi-
ciently describe the most frequently employed scoring strategies, such as mini-
mization of the energy and partition function limitation.

The final implementations include the software RNANR, written in C with total
of 4000 lines, done in collaboration with H. Touzet, that includes non-redundant
sampling as well as exhaustive enumeration of the saturated secondary struc-
tures, and the choice between double and arbitrary numerical precision arith-
metic. The implementation of the non-redundant sampling principle in VIEN-
NARNA package was written in C in 1700 lines along with the version including
arbitrary precision arithmetics using MPFR library [34]. The relatively low num-
ber of lines of code demonstrates the easiness of its implementation particularly
well.

The final program, PKnotFind, that is used for sampling of the secondary struc-
tures with H-type pseudoknots, was also written in C, uses the algorithm and
part of code of VIENNARNA as its base, and has 2000 lines of codes (more for
the version containing posets that was ultimately abandoned). Besides these soft-
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ware, the scripts of total length around 22000 lines of code were created, mostly
in Python an R to perform the tests and visualize the results.

Perspective-wise, the non-redundant sampling and the benefits it brings have
many possibilities of application in the field of structural RNA bioinformatics.
In general, there are many problems where it is necessary to predict a sequence,
structure or a composition. Such prediction problems frequently require an access
to the suboptimal structures. As long as such problem can be solved using dy-
namic programming,these problems might be subjected to the the non-redundant
sampling principle. It is also useful in the cases where it is necessary to establish
a model of the search space, such as we demonstrated in the case of the folding
landscapes. This is not restricted to the domain of the secondary structures; for
example, the non-redundant sampling might be useful to sample the space of
sequences for the purpose of RNA design.

To study the search spaces and similar problems, another class of approaches
called parametric inference models [73] exists. It represents each biological prob-
lem as a graphical model defined by a certain number of parameters. These
graphical models are then solved to access the value of these parameters or corre-
sponding space delimited by the range of their values. At first look it may seem
that such methods are in competition with non-redundant sampling by basically
specifying it by a set of parameters. However, even parametric inference models
can benefit from non-redundant sampling. More often than not the parameters
feature a certain degree of liberty. Sometimes the number of free parameters can
be high, equating to important size of combinations. In this case the sampling
can used to extract interesting combinations of parameters, and non-redundant
sampling would allow access faster to higher number of them.

But the principle applied for the non-redundant sampling has much richer ap-
plication than the non-redundant sampling itself. Since the non-redundant sam-
pling principle simply sees the sampled structures as a forbidden structures, it
can be easily adapted to not sample certain structures from the beginning, all
without introducing the bias between all other structures. This means we can
easily sample only certain secondary structures that do not present a certain local
substructure, such as specific forbidden loop, or just a specific structure that was
blacklisted beforehand, making it potentially a very powerful tool.

The non-redundant sampling has also the potential application outside the field
of RNA bioinformatics due to its general concept [60]. One possible application
would concern the simulations of the networks where each branch has maximum
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capacity. The non redundant sampling would restrict the number of times that
a specific path can be taken depending on these capacities, and would perform
the simulation of the behavior of such network. This might potentially have a
significant use in the domain of the medicine, where different circulatory systems
could be simulated this way. This could be helpful to study the circulatory sys-
tem diseases via the simulations, reducing or removing the necessity of study in
humans. It could potentially have the application in other domains as well, such
as the urban engineering and traffic networks.

All in all, the non redundant sampling provides a method for optimization of
algorithm performance, within the domain of structural RNA bioinformatics or
outside of it, and might be the step towards the analysis of the longer RNA se-
quences.
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Titre : Echantillonage sans remise en Bioinformatique des Acides RiboNucléiques

Mots clés : ARN, programmation dynamique, échantillonage non-redonddante, algorithme combinatoire,
modèle thermodynamique, cinétique

Résumé : Un échantillonnage statistique est central à de nombreuses
méthodes algorithmiques pour la bioinformatique structurale des ARNs, où ils
sont couramment utilisés pour identifier des modèles structuraux importants,
fournir des résumés des espaces de repliement ou approcher des quantités
d’intérêt dans l’équilibre thermodynamique. Dans tous ces exemples, la re-
dondance dans l’ensemble échantillonné est non-informative et inefficace, li-
mitant la portée des applications des méthodes existantes. Dans cette thèse,
nous introduisons le concept de l’échantillonnage non-redondante et nous
explorons ses applications et conséquences en bioinformatique des ARN.
Nous commençons par introduire formellement le concept d’échantillonnage
non-redondante et nous démontrons que tout algorithme échantillonnant
dans la distribution de Boltzmann peut être modifié en une version non-
redondante. Son implémentation repose sur une structure de données
spécifique et la modification d’une remontée stochastique pour fournir l’en-
semble des structures uniques, avec la même complexité.
Nous montrons alors une exemple pratique en implémentant le principe
d’échan- tillonnage non-redondant au sein d’un algorithme combinatoire qui
échantillonne des structures localement optimales. Nous exploitons cet ou-
til pour étudier la cinétique des ARN, modélisant des espaces de replie-
ment générés à partir des structures localement optimales. Ces structures
agissent comme des pièges cinétiques, rendant leur prise en compte es-
sentielle pour analyser la dynamique des ARN. Des résultats empirique
montrent que des espaces de repliement générés à partir des échantillons
non-redondants sont plus proches de la réalité que ceux obtenus par un
échantillonnage classique.
Nous considérons ensuite le problème du calcul efficace d’estimateurs sta-
tistiques à partir d’échantillons non redondants. L’absence de la redondance
signifie que l’estimateur naı̈f, obtenu en moyennant des quantités observés

dans l’échantillon, est eronné. Par contre, nous établissons un estimateur
non-trivial non-biaisé spécifique aux échantillons non-redondants suivant la
distribution de Boltzmann. Nous montrons que l’estimateur des échantillons
non-redondants est plus efficace que l’estimateur naı̈f, notamment dans les
cas où la majorité des l’espace de recherche est échantillonné.
Finalement, nous introduisons l’algorithme d’échantillonnage, avec sa
contre-partie non-redondante, pour des structures secondaires présentant
des pseudonoeuds de type simple. Des pseudonoeuds sont typiquement
omis pour des raisons d’efficacité, bien que beaucoup d’entre eux possèdent
une grande importance biologique. Nos commençons par proposer une
schèma de programmation dynamique qui permet d’énumérer tous les pseu-
donoeuds composés de deux hélices pouvant contenir des bases non-
appariés qui s’entrecroisent. Ce schèma généralise la proposition de Ree-
ders et Giegerich, choisi pour sa base complexité temporelle et spatiale. Par
la suite, nous expliquons comment adapter cette décomposition à un algo-
rithme d’échantillonnage statistique pour des pseudonoeuds simples. Fina-
lement, nous présentons des résultats préliminaires et nous discutons sur
l’extension de principe non-redondant dnas ce contexte.
Le travail présenté dans cette thèse ouvre non seulement la porte à l’analyse
cinétique des séquences d’ARN plus longues, mais aussi l’analyse struc-
turale plus détaillée des séquences d’ARN en général. L’échantillonnage
non-redondant peut être employé pour analyser des espaces de recherche
pour des problèmes combinatoires susceptibles à l’échantillonnage statis-
tique, y inclus virtuellement tous problèmes solvables par la programma-
tion dynamique. Les principes d’échantillonnage non-redondant sont ro-
bustes et typiquement faciles à implémenter, comme démontré par l’inclu-
sion d’échantillonnage non-redondant dans les versions récentes de Vienna
package populaire.

Title : Non-redundant sampling in RNA bioiformatics

Keywords : RNA, dynamic programming, non-redundant sampling, combinatorial algorithms,thermodynamic
model, kinetics

Abstract : Sampling methods are central to many algorithmic methods
in structural RNA bioinformatics, where they are routinely used to identify
important structural models, provide summarized pictures of the folding land-
scapes, or approximate quantities of interest at the thermodynamic equili-
brium. In all of these examples, redundancy within sampled sets is unin-
formative and computationally wasteful, limiting the scope of application of
existing methods. In this thesis, we introduce the concept of non-redundant
sampling, and explore its applications and consequences in RNA bioinforma-
tics.
We begin by formally introducing the concept of non-redundant sampling and
demonstrate that any algorithm sampling in Boltzmann distribution can be
modified into non-redundant variant. Its implementation relies on a specific
data structure and a modification of the stochastic backtrack to return the set
of unique structures, with the same complexity.
We then show a practical example by implementing the non-redundant prin-
ciple into a combinatorial algorithm that samples locally optimal structures.
We use this tool to study the RNA kinetics by modeling the folding landscapes
generated from sets of locally optimal structures. These structures act as ki-
netic traps, influencing the outcome of the RNA kinetics, thus making their
presence crucial. Empirical results show that the landscapes generated from
the non-redundant samples are closer to the reality than those obtained by
classic approaches.
We follow by addressing the problem of the efficient computation of the sta-
tistical estimates from non-redundant sampling sets. The absence of redun-
dancy means that the naive estimator, obtained by averaging quantities ob-

served in a sample, is erroneous. However we establish a non-trivial unbia-
sed estimator specific to a set of unique Boltzmann distributed secondary
structures. We show that the non-redundant sampling estimator performs
better than the naive counterpart in most cases, specifically where most of
the search space is covered by the sampling.
Finally, we introduce a sampling algorithm, along with its non-redundant
counterpart, for secondary structures featuring simple-type pseudoknots.
Pseudoknots are typically omitted due to complexity reasons, yet many of
them have biological relevance. We begin by proposing a dynamic program-
ming scheme that allows to enumerate all recursive pseudoknots consisting
of two crossing helices, possibly containing unpaired bases. This scheme ge-
neralizes the one proposed by Reeders and Giegerich, chosen for its low time
and space complexities. We then explain how to adapt this decomposition
into a statistical sampling algorithm for simple pseudoknots. We then present
preliminary results, and discuss about extensions of the non-redundant prin-
ciple in this context.
The work presented in this thesis not only opens the door towards kinetics
analysis for longer RNA sequences, but also more detailed structural ana-
lysis of RNAs in general. Non-redundant sampling can be applied to ana-
lyze search spaces for combinatorial problems amenable to statistical sam-
pling, including virtually any problem solved by dynamic programming. Non-
redundant sampling principles are robust and typically easy to implement, as
demonstrated by the inclusion of non-redundant sampling in recent versions
of the popular Vienna package.
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