Photon-pair generation in hollow-core photonic-crystal fiber

par Martin Cordier

Thèse de doctorat en Physique quantique

Sous la direction de Isabelle Zaquine et de Philippe Delaye.

Soutenue le 17-05-2019

à l'Université Paris-Saclay (ComUE) , dans le cadre de École doctorale Ondes et Matière (Orsay, Essonne ; 2015-....) , en partenariat avec Télécom Paris (Palaiseau) (établissement opérateur d'inscription) et de Laboratoire Traitement et communication de l'information (Paris ; 2003-....) (laboratoire) .

Le président du jury était Catherine Lepers.

Le jury était composé de Eleni Diamanti, Michael G. Raymer.

Les rapporteurs étaient Nicolas Treps, Virginia D'Auria.

  • Titre traduit

    Génération de paires de photons dans les fibres à cristaux photoniques à coeur creux


  • Résumé

    Les sources de paires de photons sont un composant essentiel des technologies émergentes en information quantique. De nombreux travaux ont permis des avancées importantes utilisant des processus non linéaires d'ordre 2 dans les cristaux et les guides d'ondes, et d'ordre 3 dans les fibres. Les limitations viennent dans le premier cas, des pertes et en particulier des pertes de couplage avec les fibres optiques et dans le second cas, du bruit dû à l'effet Raman dont le spectre est très large dans les fibres de silice. Ce projet propose une nouvelle architecture basée sur des fibres à cristal photonique à coeur creux (FCPCC) que l'on peut remplir de liquide ou de gaz non linéaire. Cette configuration permet la génération paramétrique de paires de photons corrélés par mélange à quatre ondes sans l'inconvénient de la diffusion Raman. Cette technologie offre une large gamme de paramètres à explorer en s'appuyant sur les propriétés physiques et linéaires contrôlables des FCPCC et la possibilité de remplissage de ces fibres avec des fluides aux propriétés non-linéaires variées. En effet, par une conception judicieuse de la FCPCC et un choix approprié du liquide ou du gaz, il est possible de (i) contrôler la dispersion et la transmission pour générer des photons corrélés sur une large gamme spectrale avec la condition d'accord de phase la plus favorable, (ii) d'ajuster la taille de coeur de la fibre et/ou sa forme pour augmenter sa non-linéarité ou son efficacité de couplage avec d'autres fibres et (iii) de s'affranchir totalement de l'effet Raman si on utilise par exemple un gaz monoatomique, ou d'obtenir des raies Raman fines, aisément discriminables des raies paramétriques dans le cas d'un liquide.


  • Résumé

    Photon pair sources are an essential component of the emerging quantum information technology. Despite ingenious proposals being explored in the recent years based on either second order nonlinear processes in crystals and waveguides or on third order processes in fibers, limitations remain, due to losses and specifically coupling losses in the former case and due to Raman generation in silica, giving rise to a broad spectrum noise in the latter. These limitations have been challenging to lift because of the limited alternative nonlinear materials that fulfil the conditions for the generation of bright and high fidelity photon pairs in integrable photonic structures. In the present project, we develop a new and versatile type of photonic architecture for quantum information applications that offers access to a variety of nonlinear optical materials that are micro-structured in optical fiber forms to generate photon pairs, without the drawback of Raman scattering and with a large design parameter-space. Indeed, with a careful design of the HCPCF along with the appropriate choice of fluid, one can (i) control the dispersion and the transmission to generate photons with the most favourable phase-matching condition over a large spectral range, (ii) adjust the fibre core size and/or shape to enhance nonlinearity or the coupling efficiency with other fibres, (iii) totally suppress the Raman effect in monoatomic gases for instance or have only narrow and separated Raman lines that can thus be easily separated from the useful parametric lines in liquids.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Télécom Paris. Centre de ressources documentaires numériques (CRDN).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.