Carotenoid translocation and protein evolution in cyanobacterial photoprotection

par Fernando Muzzopappa

Thèse de doctorat en Biologie

Sous la direction de Diana Kirilovsky.

Le président du jury était Philippe Minard.

Le jury était composé de Diana Kirilovsky, Philippe Minard, Xenie Johnson, Eric Maréchal, Francesca Zito, Jacques-Philippe Colletier.

Les rapporteurs étaient Xenie Johnson, Eric Maréchal.

  • Titre traduit

    Translocation des caroténoïdes et évolution des protéines dans la photoprotection des cyanobactéries


  • Résumé

    Les cyanobactéries sont des organismes photosynthétiques capables de convertir le CO₂ en composés organiques et de produire de l’oxygène en utilisant l’énergie lumineuse. Néanmoins, de fortes intensités lumineuses saturent l'appareil photosynthétique, ce qui conduit à la production d'espèces réactives de l'oxygène, dangereuses pour la cellule. Pour y faire face, la photoactive orange carotenoid protein (OCP) induit une dissipation thermique de l’énergie excédentaire récoltée par le complexe d’antennes, le phycobilisome (PBS), afin de diminuer l’énergie arrivant aux centres photochimiques. L'OCP est composé de deux domaines), le domaine C-terminal (CTD) et le domaine N-terminal (NTD), reliés par un domaine de liason flexible (linker). Pendant la photoactivation, le caroténoïde est transféré vers le NTD, les domaines se séparent et le NTD peut interagir avec le PBS. Trois familles d'OCP coexistent (OCPX, OCP1 et OCP2) dans les cyanobactéries modernes. Outre l'OCP, de nombreuses cyanobactéries contiennent également des homologues des domaines OCP, le CTDH et HCP. Les HCP sont une famille de protéines caroténoïdes présentant différents traits photoprotecteurs. La plupart d'entre eux sont de très bons quenchers d'oxygène singulet, et un subclade est capable d'interagir avec le PBS et d'induire une dissipation de l'énergie thermique comme l'OCP. Le rôle de CTDH était inconnu. La présence de ces homologues parallèlement à l'OCP a conforté l'idée générale que l'OCP a une origine évolutive modulaire et que la CTDH et HCP pourraient interagir pour former un complexe OCP-like ayant des caractéristiques et une fonction similaires à celles de l'OCP. Dans cette thèse, je présente la première caractérisation des protéines CTDH. Les CTDH sont des dimères se liant à une molécule de caroténoïde. Le rôle principal de la CTDH est de transférer son caroténoïde au HCP. De plus, les CTDH sont capables de récupérer les caroténoïdes des membranes contrairement aux HCP. Ces résultats suggèrent fortement que les CTDH sont des transporteurs de caroténoïde qui assurent le chargement en caroténoïde sur les HCP. Ce nouveau mécanisme de translocation des caroténoïdes pourrait être multidirectionnel. La résolution de deux structures tridimensionnelles de l'ApoCTDH d'Anabaena a montré que la queue C-terminale du CTDH (CTT) peut adopter différentes conformations. De plus, l'analyse de mutation a démontré que le CTT joue un rôle essentiel dans la translocation des caroténoïdes. Enfin, je rapporte une caractérisation moléculaire du linker reliant les domaines de différents OCP modernes et son rôle au cours de l'évolution de l'OCP. Tout d’abord, j’ai caractérisé les OCP des trois subclades, y compris l’OCPX non caractérisé. OCPX et OCP2 présentent une désactivation rapide par rapport à OCP1. Alors que OCP1 et OCPX peuvent dimériser, OCP2 est stable en tant que monomère. Enfin, j'ai constaté que le linker est essentiel pour la désactivation de l'OCP et qu'il régule la photoactivation. Dans OCP1 et OCPX, le linker ralentit la photoactivation, tandis que dans OCP2, il augmente le taux de photoactivation. L'analyse bioinformatique complète cette caractérisation et fournit une image claire de l'évolution de l'OCP pour répondre efficacement aux conditions de stress.


  • Résumé

    Cyanobacteria are photosynthetic organisms capable of CO₂ conversion into organic compounds and production of O2 by using light energy. Nevertheless, high light intensities saturate the photosynthetic apparatus leading to production of reactive oxygen species, which are dangerous for the cell. To cope with this, the photoactive Orange Carotenoid Protein (OCP) induces thermal dissipation of the excess energy harvested by the antenna complex, the phycobilisome (PBS) to decrease the energy arriving at the photochemical centers. The OCP is composed of two domains connected by a flexible linker, the C-terminal domain (CTD) and the N-terminal domain (NTD). During photoactivation, the carotenoid is translocated to the NTD, the domains separate and the NTD is able to interact with the PBS. Three OCP families co-exist (OCPX, OCP1 and OCP2) in modern cyanobacteria. In addition to the OCP, many cyanobacteria also contain homologs of OCP domains, the CTDH and HCP. The HCPs are a family of carotenoid proteins with different photoprotective traits. Most of them are very good singlet oxygen quenchers, and one sub-clade is able to interact with the PBS and to induce thermal energy dissipation like OCP. The role of CTDH was unknown. The presence of these homologs in parallel to the OCP supported the general idea that the OCP has a modular evolutionary origin and that the CTDH and HCP can interact forming an OCP-like complex with similar characteristics and function than the OCP.In this thesis, I present the first characterization of the CTDH proteins. CTDHs are dimers binding a carotenoid molecule. The main role of the CTDH is to transfer its carotenoid to the HCP. In addition, CTDHs are able to uptake carotenoids from membranes but not HCPs. These results strongly suggested that the CTDHs are carotenoid carriers that ensure the proper carotenoid loading into HCPs. This novel carotenoid translocation mechanism could be multidirectional. The resolution of two tridimensional structures of the ApoCTDH from Anabaena showed that the C-terminal tail of the CTDH (CTT) can populate different conformations. Moreover, mutational analysis demonstrated that the CTT has an essential role in carotenoid translocation. Finally, I report a molecular characterization of the flexible linker connecting the domains of different modern OCPs and its role during the evolution of the OCP. First, I characterized OCPs from the three subclades, including the uncharacterized OCPX. OCPX and OCP2 present a fast deactivation compared with OCP1. While OCP1 and OCPX can dimerize, OCP2 is stable as monomer. Finally, I found that the linker is essential for the OCP deactivation and it regulates the photoactivation. In OCP1 and OCPX the linker slows down the photoactivation, while in OCP2 it increases the photoactivation rate. Bioinformatic analysis complements this characterization and provides a clear picture of the evolution of the OCP to respond efficiently to stress conditions.



Le texte intégral de cette thèse sera accessible librement à partir du 31-05-2020


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.