Shape evolution in neutron-rich Zr, Mo and Ru isotopes around mass A=100

par Saba Ansari

Thèse de doctorat en Structure et réactions nucléaires

Sous la direction de Wolfram Korten.

Le président du jury était David Verney.

Le jury était composé de Wolfram Korten, David Verney, Silvia Lenzi, Andreas Görgen, Jürgen Gerl.

Les rapporteurs étaient Silvia Lenzi, Andreas Görgen.

  • Titre traduit

    Changement de forme de noyaux riches en neutrons dans les chaînes isotopiques du Zr, du Mo et du Ru dans la région de masse A=100


  • Résumé

    La forme d’un noyau, ou la déviation de la distribution en masse par rapport à une forme sphérique, est une des propriétés fondamentales du noyau. Elle est gouvernée à la fois par des effets macroscopiques et microscopiques, tels que l'énergie de liaison donnée par le modèle de la goutte liquide ou la structure en couche du noyau, respectivement. L’étude de la forme des noyaux exotiques par spectrométrie gamma permet de tester finement différents modèles théoriques initialement développés pour les noyaux stables. L’objectif de cette thèse est l’étude de l’évolution de la forme des noyaux exotiques riches en neutrons dans les chaînes isotopiques allant du Zr (Z=40) au Pd (Z=46). Le plus souvent, la forme des noyaux évolue lentement de la forme sphérique, près des fermetures de couche ou des noyaux magiques (ou doublement magiques), à des formes allongées (prolate), pour des noyaux avec de nombreux nucléons de valence. Cependant, Les noyaux auxquels nous nous intéressons ont tendance à avoir des états excités qui évoluent rapidement en fonction du nombre de neutrons, ce qui peut être interprété comme des variations rapides de la forme du noyau. Ceci inclue dans de rares cas l'observation d'états de forme aplatie (oblate) et triaxiale. Jusqu'à présent, les propriétés connues de ces noyaux se limitent (principalement) aux énergies d'excitation. Les informations sur le degré de collectivité nucléaire (que l'on peut déduire de la durée de vie des états excités) sont rares, tandis que les informations directes de forme sont pratiquement inexistantes. L'estimation la plus simple de la déformation nucléaire dans les noyaux pairs peut être obtenue à partir de l'énergie du premier état 2⁺. Pour les isotopes du Sr (Z = 38) et du Zr (Z = 40), il a été observé que cette énergie diminue considérablement à N = 60, alors que son évolution est beaucoup plus progressive pour les isotopes du Mo (Z = 42). Des mesures précises de durée de vie constituent un élément clé de l'étude systématique de l'évolution de la déformation nucléaire et du degré de collectivité dans cette région. Des noyaux riches en neutrons dans la région de masse A = 100-120 ont été peuplés par la réaction de fusion-fission d'un faisceau de ²³⁸U à 6,2 MeV/u sur une cible ⁹Be. Le noyau composé ²⁴⁷Cm était produit à une énergie d'excitation de ∼45 MeV avant de fissionner. Le dispositif expérimental utilisé pour cette étude comprenait le spectromètre de masse de haute résolution VAMOS pour l'identification les noyaux en Z et A, le réseau de 35 détecteurs au germanium AGATA (Advanced γ-ray Tracking Array) AGATA, pour la spectroscopie de rayons γ, ainsi qu'un mécanisme de "plunger" pour mesurer la durée de vie jusqu'à quelques ps par la méthode RDDS (Recoil Distance Doppler Shift). De plus, la cible était entourée de 24 détecteurs LaBr₃ (Bromure de lanthane) pour mesurer des durées de vie plus de 100 ps avec la méthode du "fast-timing". La combinaison de spectromètres sophistiqués utilisée dans cette expérience a permis de mesurer des durées de vie d'états nucléaires allant de 100 picosecondes à quelques picosecondes. Dans cette thèse, nous exposerons de nouveaux résultats pour les états à courte durée de vie dans les noyaux riches en neutrons A∼100, en mettant l'accent sur les chaînes des Zr, Mo et Ru. Nous discuterons des techniques expérimentales utilisées pour évaluer les durées de vie ainsi que l'interprétation de celles-ci à l'aide de modèles de structures nucléaires récents.


  • Résumé

    The shape of an atomic nucleus, ie. the deviation of its mass distribution from sphericity, is a fundamental property and governed by a delicate interplay of macroscopic and microscopic effects, such as the liquid-drop like binding energy and the nuclear shell structure, respectively. Studying nuclear shape properties using gamma ray spectroscopic methods allows detailed tests of different nuclear models, which were originally developed for stable nuclei. We proposed a project to study the evolution of nuclear shapes in exotic nuclei, far from the valley of stability, specifically in neutron-rich nuclei in the isotopic chains from Zr (Z=40) to Pd (Z=46). Usually, nuclear shapes are slowly evolving from spherical shapes around closed-shell or (doubly-) magic nuclei to elongated (prolate) shapes in nuclei with many valence nucleons. The nuclei of interest, however, show rapidly evolving patterns of excited states, which can be interpreted as rapid variations of the nuclear shape, including the rare observation of oblate (disk-like) and triaxial shapes. So far the known properties for these nuclei are (mainly) limited to excitation energies. Information on the nuclear collectivity, which can be deduced from the lifetime of the excited states, are sparse, while direct information of the shape is practically non existing. The simplest estimate of nuclear deformation in even-even nuclei can be obtained from the energy of the first 2⁺ state. For Sr (Z = 38) and Zr (Z = 40) isotopes this energy is observed to decrease dramatically at N = 60, while its evolution is much more gradual in Mo nuclei (Z = 42). Precise lifetime measurements provide a key ingredient in the systematic study of the evolution of nuclear deformation and the degree of collectivity in this region. Neutron-rich nuclei in the mass region of A = 100-120 were populated through the fusion-fission reaction of a ²³⁸U beam at 6.2 MeV/u on a ⁹Be target. The compound nucleus ²⁴⁷Cm was produced at an excitation energy of around 45 MeV before undergoing fission. The setup used for this study comprised the high-resolution mass spectrometer VAMOS in order to identify the nuclei in Z and A, the Advanced gamma ray Tracking Array AGATA of 35 germanium detectors to perform gamma ray spectroscopy, as well as a plunger mechanism to measure lifetimes down to a few ps using the Recoil Distance Doppler Shift method (RDDS). In addition, the target was surrounded by 24 Lanthanum Bromide (LaBr₃) detectors for a fast-timing measurement of lifetimes longer than 100 ps. The sophisticated set of spectrometers used in this experiment allowed measurement of nuclear lifetimes in a range from 100’s of picoseconds down to a few picoseconds. In this thesis, we will report on new lifetime results for short-lived states in neutron-rich (A ~ 100) nuclei, with an emphasis on the Zr, Mo and Ru chains. We will discuss the experimental techniques used to evaluate the lifetimes as well as their interpretation in terms of state-of-the-art nuclear structure models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.