Probing the proton structure through deep virtual Compton scattering at COMPASS, CERN

par Antoine Vidon

Thèse de doctorat en Physique hadronique

Sous la direction de Nicole D'Hose et de Andrea Ferrero.

Le président du jury était Michel Guidal.

Le jury était composé de Nicole D'Hose, Andrea Ferrero, Michel Guidal, Eva-Maria Kabuss, Elke-Caroline Aschenauer, Cédric Lorcé.

Les rapporteurs étaient Eva-Maria Kabuss, Elke-Caroline Aschenauer.

  • Titre traduit

    Etude de la structure interne du proton par diffusion Compton virtuelle à COMPASS, CERN


  • Résumé

    La diffusion Compton virtuelle (DVCS) est un processus idéal pour étudier la structure interne du proton. Cette réaction exclusive permet d’accéder aux distributions de partons généralisées (GPDs) qui encodent les corrélations entre impulsion longitudinale et position transverse des partons à l’intérieur du proton. Le DVCS consiste à sonder le proton au moyen d’un photon virtuel de grande virtualité pour produire dans l’état final un unique photon réel de grande énergie tout en laissant le proton intact.A COMPASS au CERN, où deux années de données ont été collectées en 2016 et 2017 afin de mesurer la section efficace du processus DVCS, le photon virtuel est issu de la diffusion d’un faisceau de μ⁺ ou de μ⁻ polarisé de 160 GeV sur une cible d’hydrogène liquide. Toutes les particules de la réaction sont détectées dans l’expérience : le muon incident est détecté dans le télescope du faisceau, le muon diffracté et le photon réel sont détectés à l’avant dans le spectromètre et les trois calorimètres tandis que le proton de recul est détecté dans un détecteur de temps de vol placé autour de la cible.Je présente dans cette thèse l’état de l’analyse du processus DVCS sur les données collectées à COMPASS en 2016. Après un rappel du contexte théorique et expérimental, je décris l’expérience COMPASS. Je détaille ensuite mon travail de calibration du détecteur de proton de recul et de détermination de la position exacte de la cible de 2 cm de diamètre et 2.5 m de longueur. J’étudie dans la partie suivante la sélection de différents canaux de physique permettant de contrôler de manière systématique la qualité des détecteurs : la diffusion profondément inélastique (DIS) qui implique le télescope du faisceau et le spectromètre, la production exclusive de ρ⁰ qui inclut aussi le détecteur de temps de vol ; puis je présente la première analyse de la production exclusive de photons uniques qui implique en plus les trois calorimètres. Dans une dernière partie j’évoque les étapes nécessaires à la détermination de la section efficace du DVCS à partir de cette sélection, et je présente les premiers résultats issus de la simulation associée.


  • Résumé

    Virtual Compton Scattering (DVCS) is an ideal process to study the internal structure of proton. This exclusive reaction provides access to generalised parton distributions (GPDs), which encode the correlations between longitudinal momentum and transverse position of partons inside the proton. DVCS consists in probing a proton with a virtual photon of high virtuality, in order to produce a single high energy real photon while leaving the proton intact in the final state.At COMPASS at CERN, where two years of data were collected in 2016 and 2017 to measure the DVCS cross section, the virtual photon is produced by scattering of a 160 GeV polarised μ⁺ or μ⁻ beam on a liquid hydrogen target. All particles are detected in the experiment: the incident muon is detected in the beam telescope, the diffracted muon and the real photon are detected in the forward spectrometer and the three calorimeters, while the recoil proton is detected in a time-of-flight detector positioned around the target.In this thesis I present the state of the analysis of the DVCS process on the data collected at COMPASS in 2016. After a reminder of the theoretical and experimental context, I describe the COMPASS experiment. I then detail my work on calibrating the recoil proton detector and determining the the exact position of the 2 cm diameter and 2.5 m long target. In the next section, I study the selection of different physics channels used to systematically control detector quality: Deep Inelastic Scattering (DIS) which involves the beam-telescope and spectrometer, exclusive ρ⁰ production which requires the addition of the time-of-flight detector and I follow with the first analysis of the exclusive single photon production which depends as well on the calorimetres quality. In a last part, I discuss the necessary steps needed to extract the DVCS cross-section out of this event selection, and present the first results associated to the Monte-Carlo simulation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.