Unsupervised word discovery for computational language documentation

par Pierre Godard

Thèse de doctorat en Informatique

Sous la direction de François Yvon.

Le président du jury était Pierre Zweigenbaum.

Le jury était composé de François Yvon, Pierre Zweigenbaum, Christophe Cerisara, Adam Lopez, Laurent Besacier.

Les rapporteurs étaient Christophe Cerisara, Adam Lopez.

  • Titre traduit

    Découverte non-supervisée de mots pour outiller la linguistique de terrain


  • Résumé

    La diversité linguistique est actuellement menacée : la moitié des langues connues dans le monde pourraient disparaître d'ici la fin du siècle. Cette prise de conscience a inspiré de nombreuses initiatives dans le domaine de la linguistique documentaire au cours des deux dernières décennies, et 2019 a été proclamée Année internationale des langues autochtones par les Nations Unies, pour sensibiliser le public à cette question et encourager les initiatives de documentation et de préservation. Néanmoins, ce travail est coûteux en temps, et le nombre de linguistes de terrain, limité. Par conséquent, le domaine émergent de la documentation linguistique computationnelle (CLD) vise à favoriser le travail des linguistes à l'aide d'outils de traitement automatique. Le projet Breaking the Unwritten Language Barrier (BULB), par exemple, constitue l'un des efforts qui définissent ce nouveau domaine, et réunit des linguistes et des informaticiens. Cette thèse examine le problème particulier de la découverte de mots dans un flot non segmenté de caractères, ou de phonèmes, transcrits à partir du signal de parole dans un contexte de langues très peu dotées. Il s'agit principalement d'une procédure de segmentation, qui peut également être couplée à une procédure d'alignement lorsqu'une traduction est disponible. En utilisant deux corpus en langues bantoues correspondant à un scénario réaliste pour la linguistique documentaire, l'un en Mboshi (République du Congo) et l'autre en Myene (Gabon), nous comparons diverses méthodes monolingues et bilingues de découverte de mots sans supervision. Nous montrons ensuite que l'utilisation de connaissances linguistiques expertes au sein du formalisme des Adaptor Grammars peut grandement améliorer les résultats de la segmentation, et nous indiquons également des façons d'utiliser ce formalisme comme outil de décision pour le linguiste. Nous proposons aussi une variante tonale pour un algorithme de segmentation bayésien non-paramétrique, qui utilise un schéma de repli modifié pour capturer la structure tonale. Pour tirer parti de la supervision faible d'une traduction, nous proposons et étendons, enfin, une méthode de segmentation neuronale basée sur l'attention, et améliorons significativement la performance d'une méthode bilingue existante.


  • Résumé

    Language diversity is under considerable pressure: half of the world’s languages could disappear by the end of this century. This realization has sparked many initiatives in documentary linguistics in the past two decades, and 2019 has been proclaimed the International Year of Indigenous Languages by the United Nations, to raise public awareness of the issue and foster initiatives for language documentation and preservation. Yet documentation and preservation are time-consuming processes, and the supply of field linguists is limited. Consequently, the emerging field of computational language documentation (CLD) seeks to assist linguists in providing them with automatic processing tools. The Breaking the Unwritten Language Barrier (BULB) project, for instance, constitutes one of the efforts defining this new field, bringing together linguists and computer scientists. This thesis examines the particular problem of discovering words in an unsegmented stream of characters, or phonemes, transcribed from speech in a very-low-resource setting. This primarily involves a segmentation procedure, which can also be paired with an alignment procedure when a translation is available. Using two realistic Bantu corpora for language documentation, one in Mboshi (Republic of the Congo) and the other in Myene (Gabon), we benchmark various monolingual and bilingual unsupervised word discovery methods. We then show that using expert knowledge in the Adaptor Grammar framework can vastly improve segmentation results, and we indicate ways to use this framework as a decision tool for the linguist. We also propose a tonal variant for a strong nonparametric Bayesian segmentation algorithm, making use of a modified backoff scheme designed to capture tonal structure. To leverage the weak supervision given by a translation, we finally propose and extend an attention-based neural segmentation method, improving significantly the segmentation performance of an existing bilingual method.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.