Development of physics-based reduced-order models for reacting flow applications

par Gianmarco Aversano

Thèse de doctorat en Combustion

Sous la direction de Olivier Gicquel et de Alessandro Parente.

Le président du jury était Francesco Contino.

Le jury était composé de Olivier Gicquel, Alessandro Parente, Francesco Contino, Sean Thomas Smith, Ronan Vicquelin.

Les rapporteurs étaient Francesco Contino, Sean Thomas Smith.

  • Titre traduit

    Développement de modèles d’ordre réduit basés sur la physique pour les applications d’écoulement réactif


  • Résumé

    L’objectif final étant de développer des modèles d’ordre réduit pour les applications de combustion, des techniques d’apprentissage automatique non supervisées et supervisées ont été testées et combinées dans les travaux de la présente thèse pour l’extraction de caractéristiques et la construction de modèles d’ordre réduit. Ainsi, l’application de techniques pilotées par les données pour la détection des caractéristiques d’ensembles de données de combustion turbulente (simulation numérique directe) a été étudiée sur deux flammes H2 / CO: une évolution spatiale (DNS1) et une jet à évolution temporelle (DNS2). Des méthodes telles que l’analyse en composantes principales (ACP), l’analyse en composantes principales locales (LPCA), la factorisation matricielle non négative (NMF) et les autoencodeurs ont été explorées à cette fin. Il a été démontré que divers facteurs pouvaient affecter les performances de ces méthodes, tels que les critères utilisés pour le centrage et la mise à l’échelle des données d’origine ou le choix du nombre de dimensions dans les approximations de rang inférieur. Un ensemble de lignes directrices a été présenté qui peut aider le processus d’identification de caractéristiques physiques significatives à partir de données de flux réactifs turbulents. Des méthodes de compression de données telles que l’analyse en composantes principales (ACP) et les variations ont été combinées à des méthodes d’interpolation telles que le krigeage, pour la construction de modèles ordonnées à prix réduits et calculables pour la prédiction de l’état d’un système de combustion dans des conditions de fonctionnement inconnues ou des combinaisons de modèles valeurs de paramètre d’entrée. La méthodologie a d’abord été testée pour la prévision des flammes 1D avec un nombre croissant de paramètres d’entrée (rapport d’équivalence, composition du carburant et température d’entrée), avec des variantes de l’approche PCA classique, à savoir PCA contrainte et PCA locale, appliquée aux cas de combustion la première fois en combinaison avec une technique d’interpolation. Les résultats positifs de l’étude ont conduit à l’application de la méthodologie proposée aux flammes 2D avec deux paramètres d’entrée, à savoir la composition du combustible et la vitesse d’entrée, qui ont donné des résultats satisfaisants. Des alternatives aux méthodes non supervisées et supervisées choisies ont également été testées sur les mêmes données 2D. L’utilisation de la factorisation matricielle non négative (FNM) pour l’approximation de bas rang a été étudiée en raison de la capacité de la méthode à représenter des données à valeur positive, ce qui permet de ne pas enfreindre des lois physiques importantes telles que la positivité des fractions de masse d’espèces chimiques et comparée à la PCA. Comme méthodes supervisées alternatives, la combinaison de l’expansion du chaos polynomial (PCE) et du Kriging et l’utilisation de réseaux de neurones artificiels (RNA) ont été testées. Les résultats des travaux susmentionnés ont ouvert la voie au développement d’un jumeau numérique d’un four à combustion à partir d’un ensemble de simulations 3D. La combinaison de PCA et de Kriging a également été utilisée dans le contexte de la quantification de l’incertitude (UQ), en particulier dans le cadre de collaboration de données lié (B2B-DC), qui a conduit à l’introduction de la procédure B2B-DC à commande réduite. Comme pour la première fois, le centre de distribution B2B a été développé en termes de variables latentes et non en termes de variables physiques originales.


  • Résumé

    With the final objective being to developreduced-order models for combustion applications,unsupervised and supervised machine learningtechniques were tested and combined in the workof the present Thesis for feature extraction and theconstruction of reduced-order models. Thus, the applicationof data-driven techniques for the detection offeatures from turbulent combustion data sets (directnumerical simulation) was investigated on two H2/COflames: a spatially-evolving (DNS1) and a temporallyevolvingjet (DNS2). Methods such as Principal ComponentAnalysis (PCA), Local Principal ComponentAnalysis (LPCA), Non-negative Matrix Factorization(NMF) and Autoencoders were explored for this purpose.It was shown that various factors could affectthe performance of these methods, such as the criteriaemployed for the centering and the scaling of theoriginal data or the choice of the number of dimensionsin the low-rank approximations. A set of guidelineswas presented that can aid the process ofidentifying meaningful physical features from turbulentreactive flows data. Data compression methods suchas Principal Component Analysis (PCA) and variationswere combined with interpolation methods suchas Kriging, for the construction of computationally affordablereduced-order models for the prediction ofthe state of a combustion system for unseen operatingconditions or combinations of model input parametervalues. The methodology was first tested forthe prediction of 1D flames with an increasing numberof input parameters (equivalence ratio, fuel compositionand inlet temperature), with variations of the classicPCA approach, namely constrained PCA and localPCA, being applied to combustion cases for the firsttime in combination with an interpolation technique.The positive outcome of the study led to the applicationof the proposed methodology to 2D flames withtwo input parameters, namely fuel composition andinlet velocity, which produced satisfactory results. Alternativesto the chosen unsupervised and supervisedmethods were also tested on the same 2D data.The use of non-negative matrix factorization (NMF) forlow-rank approximation was investigated because ofthe ability of the method to represent positive-valueddata, which helps the non-violation of important physicallaws such as positivity of chemical species massfractions, and compared to PCA. As alternative supervisedmethods, the combination of polynomial chaosexpansion (PCE) and Kriging and the use of artificialneural networks (ANNs) were tested. Results from thementioned work paved the way for the developmentof a digital twin of a combustion furnace from a setof 3D simulations. The combination of PCA and Krigingwas also employed in the context of uncertaintyquantification (UQ), specifically in the bound-to-bounddata collaboration framework (B2B-DC), which led tothe introduction of the reduced-order B2B-DC procedureas for the first time the B2B-DC was developedin terms of latent variables and not in terms of originalphysical variables.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.