Statistiques des estimateurs robustes pour le traitement du signal et des images

par Gordana Draskovic

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Frédéric Pascal et de Florence Tupin.

Le président du jury était Patrick Flandrin.

Le jury était composé de Frédéric Pascal, Florence Tupin, Patrick Flandrin, Cédric Richard, Olivier Michel, Jean-Yves Tourneret.

Les rapporteurs étaient Cédric Richard, Olivier Michel.


  • Résumé

    Un des défis majeurs en traitement radar consiste à identifier une cible cachée dans un environnement bruité. Pour ce faire, il est nécessaire de caractériser finement les propriétés statistiques du bruit, en particulier sa matrice de covariance. Sous l'hypothèse gaussienne, cette dernière est estimée par la matrice de covariance empirique (SCM) dont le comportement est parfaitement connu. Cependant, dans de nombreuses applications actuelles, tels les systèmes radar modernes à haute résolution par exemple, les données collectées sont de nature hétérogène, et ne peuvent être proprement décrites par un processus gaussien. Pour pallier ce problème, les distributions symétriques elliptiques complexes, caractérisant mieux ces phénomènes physiques complexes, ont été proposées. Dans ce cas, les performances de la SCM sont très médiocres et les M-estimateurs apparaissent comme une bonne alternative, principalement en raison de leur flexibilité par rapport au modèle statistique et de leur robustesse aux données aberrantes et/ou aux données manquantes. Cependant, le comportement de tels estimateurs reste encore mal compris. Dans ce contexte, les contributions de cette thèse sont multiples.D'abord, une approche originale pour analyser les propriétés statistiques des M-estimateurs est proposée, révélant que les propriétés statistiques des M-estimateurs peuvent être bien approximées par une distribution de Wishart. Grâce à ces résultats, nous analysons la décomposition de la matrice de covariance en éléments propres. Selon l'application, la matrice de covariance peut posséder une structure particulière impliquant valeurs propres multiples contenant les informations d'intérêt. Nous abordons ainsi divers scénarios rencontrés dans la pratique et proposons des procédures robustes basées sur des M-estimateurs. De plus, nous étudions le problème de la détection robuste du signal. Les propriétés statistiques de diverses statistiques de détection adaptative construites avec des M-estimateurs sont analysées. Enfin, la dernière partie de ces travaux est consacrée au traitement des images radar à synthèse d'ouverture polarimétriques (PolSAR). En imagerie PolSAR, un effet particulier appelé speckle dégrade considérablement la qualité de l'image. Dans cette thèse, nous montrons comment les nouvelles propriétés statistiques des M-estimateurs peuvent être exploitées afin de construire de nouvelles techniques pour la réduction du speckle.

  • Titre traduit

    Robust estimation analysis for signal and image processing


  • Résumé

    One of the main challenges in radar processing is to identify a target hidden in a disturbance environment. To this end, the noise statistical properties, especially the ones of the disturbance covariance matrix, need to be determined. Under the Gaussian assumption, the latter is estimated by the sample covariance matrix (SCM) whose behavior is perfectly known. However, in many applications, such as, for instance, the modern high resolution radar systems, collected data exhibit a heterogeneous nature that cannot be adequately described by a Gaussian process. To overcome this problem, Complex Elliptically Symmetric distributions have been proposed since they can correctly model these data behavior. In this case, the SCM performs very poorly and M-estimators appear as a good alternative, mainly due to their flexibility to the statistical model and their robustness to outliers and/or missing data. However, the behavior of such estimators still remains unclear and not well understood. In this context, the contributions of this thesis are multiple.First, an original approach to analyze the statistical properties of M-estimators is proposed, revealing that the statistical properties of M-estimators can be approximately well-described by a Wishart distribution. Thanks to these results, we go further and analyze the eigendecomposition of the covariance matrix. Depending on the application, the covariance matrix can exhibit a particular structure involving multiple eigenvalues containing the information of interest. We thus address various scenarios met in practice and propose robust procedures based on M-estimators. Furthermore, we study the robust signal detection problem. The statistical properties of various adaptive detection statistics built with M-estimators are analyzed. Finally, the last part deals with polarimetric synthetic aperture radar (PolSAR) image processing. In PolSAR imaging, a particular effect called speckle significantly degrades the image quality. In this thesis, we demonstrate how the new statistical properties of M-estimators can be exploited in order to build new despeckling techniques.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.