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General introduction
Motivations and problem statements

Thanks to the development of technological and computational sciences, both quantity and

quality of data have been increasing in the last decades. This thesis was motivated by applications

of data analysis in environment, climatology and oceanography. In these fields, the exponential

growth in remote-sensing, in-situ or model-run data availability expected to continue in the

future creates many new opportunities, needs and challenges. In particular, the environmental

data are typically available with a complex spatio-temporal sampling, on irregular grids, and

subject to observational errors due to the complexity of collecting data, modeling imperfection,

etc.

State-space models (SSMs) [37, 51, 76, 114] is one popular approach for analyzing data

with observational errors. In particular, they are at the heart of sequential data assimilation

techniques in oceanography and meteorology. A general SSM consists of a dynamical model,

which describes the physical evolution of the phenomenon of interest, and an observation model

which models the relation between the (noisy) observations and the (true) state. Many difficulties

arise when working with SSMs and in this thesis we focus on the following challenges (see Figure 1

for an illustration of these challenges).

i. State reconstruction when the dynamical model is known and the parameters

are known

Filtering and smoothing (so-called sequential data assimilation in geosciences) are standard

approaches to recursively compute probability distributions of the state conditional on a

sequence of observations. Within these assimilation frameworks, the dynamical model is

used to propagate state estimates from a past time to latter times. The forecasts are then

corrected by taking into account the available observations.
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known (Q,R)

unknown m
unknown (Q,R)

Figure 1 – Illustration of statistical inference problems in SSMs addressed in the thesis. Xnb

denotes a set of neighbors of x which are used to estimate m(x) by local linear regression (LLR)
method.

For linear Gaussian models, the Kalman recursions [51, 74, 85, 129, 134] can be used to

correctly analyse the filtering and smoothing distributions. When state-space models are

nonlinear, as it is the typical case for real applications, these distributions do not admit

any closed form. Simulation-based methods are instead implemented. Ensemble Kalman-

based approaches (see e.g. in [15, 56, 58]) are the most used assimilation approaches in

practice due to their efficiency in approximating the filtering and smoothing distributions

of high dimensional problems (only few simulations (members) of the dynamical model

are run). Notwithstanding, the approximations do not converge to the true conditional

distributions for (highly) nonlinear situations [93]. In statistical and signal processing

communities, particle filters and smoothers are used as flexible and powerful tools to

reconstruct the state in nonlinear and/or non-Gaussian models. Many algorithms have

been proposed in the literature [23,46,49,69].
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ii. Parameter estimation when the dynamical model is specified with unknown

parameters

The accuracy of the results obtained when reconstructing the physical variables from the

observed data using SSMs does not only depend on the assimilation methods but is also

related to the static parameters involved in the modeling of the physical processes and

error noises. In practice, it is often difficult to specify reasonable values for these unknown

parameters. This is due to the diversity of observation sources, the effect of physical terms

and model complexity, or numerical failures [50,182]. Therefore parameter estimation (or

system identification) is one important preliminary task before running data assimilation

algorithms.

Usual statistical approaches for parameter estimation consist of Bayesian and maximum

likelihood estimation. The Bayesian approaches [4,86,102,147,148,165] aim at simulating

the joint distribution of the state and the parameter but that may be impractical for

problems in high dimensional SSMs (e.g. error covariance inference). An alternative

is to implement the maximum likelihood estimation approaches including Expectation-

Maximization (EM) algorithm [42] and its variants [28,41,44,110].

iii. State reconstruction and parameter estimation when the dynamical model is,

practically, unspecified as a parametric model

In geosciences applications, the dynamical model is generally specified using differential

equations derived from the physics and solved using numerical schemes. The numerical

forecast model has to be run for each time step of the assimilation process. That usually

leads to high computational cost in practice, for instance when the time increment between

two successive state variables in the evolution model is large or only several components

of the system are of the interest but the whole model must be run. Moreover, chaotic

behaviours and model complexity can be reasons for inaccurate numerical approximations.

Besides, various sources of uncertainties (unknown physical parameters, state noise covariances,

forcing terms) may cause large bias between forecasts and observations. In such situations,

the assimilation process may be inconsistent.

Nowadays, a huge amount of datasets recorded from satellite, situ or numerical simulations

is available. The existence of such data promotes the development of data-driven models

which are able to well describe the dynamics of the state. The combinations of the non-
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parametric models and standard filtering and smoothing algorithms were first proposed

in [95,155].

Three main contributions of this thesis to these three challenges are listed below.

Main contributions

i. State reconstruction when the dynamical model is known and the parameters

are known

Recently, [4, 99, 102, 171] have developed conditional particle smoothers which allow to

efficiently approximate the smoothing distribution with only few particles. In the thesis we

investigate Conditional Particle Filter-Backward Simulation (CPF-BS) smoother presented

in [101, 102, 171] and further discussed in [30]. We will show on several toy models that,

at the same computational cost, the CPF-BS algorithm gives better results than standard

particle-based smoothing algorithms.

ii. Parameter estimation when the dynamical model is specified with unknown

parameters

When using the EM algorithms, the parameters are updated iteratively by maximizing

a likelihood function defined consisting of smoothing distributions. Nevertheless, the

smoothing distributions are intractable in nonlinear SSMs. In the works of [5, 86, 98,

116, 141, 149], it was proposed to combine the standard particle samplers, which permit

to approximate the smoothing distributions, with the EM machinery. But this usually

leads to a huge computational cost. In the thesis, we explore the combination of the CPF-

BS sampler and EM algorithms, and show that this approach better performs than the

combination of the stochastic EnKS and EM algorithm which is commonly used in real

applications (see [30]).

iii. State reconstruction and parameter estimation when the dynamical model is,

practically, unspecified as a parametric model

Inspired by the works of [95, 155], this thesis targets on investigating non-parametric

methods for reconstruction of the state and the dynamical model using only observed

data, in circumstances where the dynamical model is not specified. Two situations are

considered. In the first situation, a learning dataset simulated from the state process with

4
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no observation error is assumed to be available (as in [95, 155]). Based on these data, the

dynamical model can be estimated by a non-parametric method (such as local regression

[35,38,60], see Figure 1 for an illustration). In practice, such "perfect" observations of the

state, with no observational error, are typically not available. In the second situation, only

a sequence of the process with observational errors is available. This increases estimation

errors if a non-parametric estimate is learned directly on this noisy data. To handle this

problem, the thesis introduces a novel non-parametric algorithm which combines a non-

parametric estimate of the dynamical model, a low-cost CPF-BS smoother and an EM-like

algorithm. The performances of the proposed approach in terms of noise error reduction,

missing-data imputation, parameter estimation and model comparison are illustrated on

toy examples and wind data produced by Météo France.

Plan of the thesis

Chapter 1 introduces fundamental materials and illustrates the issues tackled in the thesis.

The concepts of SSMs and toy examples are first presented. Given a set of observations and

a model with known parameters, filtering and smoothing methods used to compute the hidden

state are reminded. We synthesize and analyze the advantages and drawbacks of different

methods including Kalman recursions, some of their extensions and particle-based recursions.

In the sequel, we summarize existing EM algorithms used to handle inference problems of

SSMs with unknown parameters. The efficiency of parameter estimation of the EM algorithms

combined with the particle-based filters and smoothers in nonlinear models is emphasized. In

order to develop non-parametric algorithms, we review popular local regression methods used to

construct non-parametric estimates of the dynamical model. Finally, we present the key ideas

of implementation of these non-parametric emulators in the proposed algorithms.

In Chapter 2, we present non-parametric filtering algorithms for estimating the filtering

distributions in nonlinear SSM models. Here local linear regression (LLR) is used to provide

non-parametric estimates of the dynamical model. They are then combined with different filters

including extended Kalman filter (EKF), ensemble Kalman filter (EnKF), bootstrap and optimal

particle filters (PF). The main contribution of this chapter is the section of numerical results.

Lots of experiments are run to compare the proposed approaches with the classical approaches,

the proposed approaches with the non-parametric approaches using LCR estimates, and the

proposed approaches within different filtering schemes. In summary, this chapter extends the
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previous works [95,154,155] in: (1) pointing out that LLR gives better numerical forecast than

LCR in filtering , (2) providing new combinations of LLR forecast emulator with EKF and

optimal PF algorithms, (3) comparing all the mentioned approaches in different scenarios.

In DA applications of geosciences, the most favorite tools used to infer the state of the system

from the observations are EnKF, EnKS and their extensions. Chapter 3 presents an alternative

approach, CPF-BS smoother. This smoother allows to explore efficiently the latent space and

simulate quickly relevant trajectories of the state conditionally on the observations. Numerical

illustrations of the CPF-BS algorithms to simulate the state of toy models are provided that

would help the readers to understand its smoothing process easily. Moreover, we propose to

combine the CPF-BS smoother with an original stochastic EM (SEM) algorithm in order to

estimate the unknown parameters and the hidden state. We show that this algorithm provides,

with reasonable computational cost, accurate estimations of the static parameters and the state

in highly nonlinear SSMs, where the application of an EM algorithm in conjunction with EnKS

is limited.

The main contribution of this thesis is presented in Chapter 4. Novel non-parametric

algorithms are invented to address two problems. Firstly, we aim at estimating the unknown

parameters and inferring the hidden state given a sequence of observations and a "perfect"

learning dataset (a simulated sequence of the state process without taking into account observational

errors). Given the learning data, LLR is used to construct an estimate of the dynamical model.

Based on Chapter 3, we propose to combine the statistical emulator with the low-cost CPF-BS

smoother. This non-parametric smoother is then used to generate realizations of the state in an

SEM algorithm. Nevertheless, such "perfect" data do rarely exist in reality but noisy data which

are derived from the observation process. Consequently, estimating the dynamical model on

the noisy data easily leads to increase bias and variance and may give bad effects on inference

results. To deal with this issue, we now develop an SEM-like algorithm for estimating the

dynamics and indentifying unknown parameters. Finally, different abilities of the novel method

such as noise error reduction, missing-data imputation and parameter estimation are illustrated

on toy models.

Chapter 5 presents two potential applications of the proposed non-parametric algorithms.

Firstly, a non-parametric filtering algorithm is applied for model selection and model comparison

given a set of observations and existing model runs. The performance of the proposed approach is

compared to the one of the classical approach on toy models with different forcing parameterizations.
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This work belongs partly to ECOS-SUD project in collaboration between France and Argentina

(2018 − 2020). Then, we introduce an application of the npSEM algorithm for imputing noisy

missing data. Wind data produced by Météo France is considered. Imputation results of the

non-parametric SEM algorithm on the data are compared to the ones of regular regression

methods.

At last, Chapter 6 recapitulates contributions of the thesis and introduces several topics for

further research.

Publications

This thesis is mostly contributed to the following submitted and preprint papers.

1. T.T.T. Chau, P. Ailliot, V. Monbet, P. Tandeo. Simulation-based methods for uncertainty

estimation in nonlinear state-space models, submitted.

2. T.T.T. Chau, P. Ailliot, V. Monbet. A novel non-parametric algorithm for reconstruction

and estimation in nonlinear time series with observational error, in revision.

3. T.T.T. Chau, P. Ailliot, V. Monbet, P. Tandeo. Non-parametric filtering algorithms,

preprint.

4. T.T.T. Chau, J. Ruiz, P. Ailliot, P. Tandeo, V. Monbet. An application of analog data

assimilation methods in model comparison and model selection without specifying an explicit

physical system, preprint.

In addition, Python libraries for numerical experiments in the thesis are also developed.

1. npSEM, https://github.com/tchau218/npSEM.

2. parEM, https://github.com/tchau218/parEM.
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Statistical inference in state-space

models
State-space models (SSMs) [37,51] belong to an important class of time series models. Generally,

an SSM consists of a dynamical model representing the evolution of the hidden state and an

observation model describing the relation between the state and the measurements. Thanks to

the diversity and simplicity in use, their frameworks have been applied in various areas such as

statistics, economics and environmental sciences [5,24,59,118,160]. Numerous practical problems

include estimating the latent state and relevant parameters given a sequence of observations and

a parametric SSM. In the scope of this chapter, we first aim at providing definitions and several

examples of the SSMs and reviewing classical methods used to tackle these usual inference

problems. All is presented in Section 1.1. Then Section 1.2 generally introduces non-parametric

SSMs, their main issues addressed in the thesis and materials used in the novel methodologies

proposed in the next chapters.

1.1 Inference in parametric state-space models

1.1.1 State-space models

1.1.1.1 Definitions

Let (Xt)t=0:T and (Yt)t=1:T denote the hidden state and observation processes on a coupled space

(X ,Y). For each time step t = 1 : T , a general state-space model (SSM) is defined by

9



Chapter 1. Statistical inference in state-space models

 Xt =Mθ (Xt−1, ηt) , [hidden] (1.1a)

Yt = Hθ (Xt, εt) , [observed] (1.1b)

where (ηt, εt) represent stochastic noise processes and θ ∈ Θ is a vector of static parameters

involved in the model.

In Eq. (1.1), the dynamical model (1.1a) characterizes the evolution of the state. Mθ is a

function mapping the state from time (t − 1) to (t). The model error noises (ηt)t=1:T include

errors derived from modeling or parametrization imperfection, forcing terms, etc. They are

assumed to have identical independent distributions with zeros means and (Qt)t=1:T covariance

matrices. Here Qt stands for model covariance which may vary in time or depend on the

state value. The observation model (1.1b) formulates the relation between the state and the

observation processes. The function Hθ describes how well the observations capture the true

state. For instance, in case of missing data, the transformation function is the mapping of the full

state to a smaller space containing only its observed components. (εt)t=1:T model for errors in

data recording procedure, devices or observation formulation. These observational error noises

are assumed to be independently distributed with zeros means and (Rt)t=1:T covariances and

independent from the state. The size of observational covariances depends on the dimension of

the observation at each particular time step. Note that the notation of error covariances (Qt, Rt)

hereafter is substituted to (Q,R) for the sake of presentation simplification if their values are

time-constant.

Given an initial state distribution pθ(x0), a probabilistic description of the SSM (1.1) can be

defined by

• pθ(xt|xt−1): Markov kernel (transition distribution of the hidden state process (Xt)t) which

depends on both the dynamical modelMθ and the distribution of the model error ηt,

• pθ(yt|xt): likelihood (observation distribution of the process (Yt)t conditional on the state

Xt = xt) which is a function of the observation model Hθ and the distribution of the

observational error εt.

10



1.1. Inference in parametric state-space models

The conditional dependence among the state variables and between the state and the observations

is also illustrated by the following Directed Acyclic Graph (DAG).

· · · → Xt−1 → Xt → Xt+1 → · · ·

↓ ↓ ↓

· · · Yt−1 Yt Yt+1 · · ·

1.1.1.2 Examples

In this section, several examples of the SSM (1.1) are given. The dynamical and observational

functions can be linear or nonlinear. To facilitate the presentation, model errors (ηt)t and

observational errors (εt)t are assumed to have additive Gaussian distributions which are the

most usual cases considered in numerous applications.

a. Linear state-space models

Linear SSMs provide interesting properties for analyzing lots of problems in statistics,

finance, signal processing, meteorology, etc [16, 19, 85, 86, 98, 116]. For instance, joint

distributions and optimization problems relevant to the state and parameters in the models

usually admit explicit expressions and/or analytic solutions. In the literature, a simple

form of a linear model is presented as follows


Xt = MtXt−1 + ηt,

Yt = HtXt + εt,

(1.2)

where (Xt, Yt) ∈ RdXt × RdYt , Mt and Ht are matrices in RdXt × RdXt and RdYt × RdXt ,

ηt ∼ N (0, Qt) and εt ∼ N (0, Rt). An illustration of this model is on Figure 1.1. In the

thesis, we also use this type of model for verifying and comparing the results of several

algorithms.

b. Nonlinear state-space models

Nonlinear SSMs have been considered in various applications. They are typically formulated

by 
Xt = m (Xt−1) + ηt,

Yt = h (Xt) + εt,

(1.3)

11
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Figure 1.1 – Scatter plot (left panel) of the dynamical model with respect to the state, and
time series plot (right panel) of the state and observations simulated from a univariate linear
SSM (1.2) where model coefficients Mt = 0.9, Ht = 1 and error variances Q = R = 1.

where (Xt, Yt) ∈ RdXt × RdYt , m and/or h is a nonlinear function, ηt ∼ N (0, Qt) and

εt ∼ N (0, Rt). Some examples of nonlinear models are presented below.

The first nonlinear model introduced is the sinus model (1.4) ( [117], see Figure 1.2 for

illustrations of the model and time series of the state and observations). This nonlinear

model is simple and univariate so that it facilitates the illustration of numerical results.


Xt = sin (3Xt−1) + ηt,

Yt = Xt + εt.

(1.4)

Here (Xt, Yt) ∈ R× R, ηt ∼ N (0, Q) and εt ∼ N (0, R).
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Figure 1.2 – Scatter plot (left panel) of the dynamical model with respect to the state (the line
represents an identity model), and time series plot (right panel) of the state and observations
simulated from a sinus model (1.4) with error variances Q = R = 0.1.

A highly nonlinear system considered widely in the literature [48,69,88,89,141] to perform

numerical illustrations of statistical inference problems is Kitagawa model (1.5). Both m
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1.1. Inference in parametric state-space models

and h in the SSM context are nonlinear and defined as follows
Xt = 0.5Xt−1 + 25 Xt−1

1+X2
t−1

+ 8 cos 1.2t+ ηt,

Yt = 0.05X2
t + εt

(1.5)

where (Xt, Yt) ∈ R×R, ηt ∼ N (0, Q) and εt ∼ N (0, R). This univariate nonlinear model

is chosen because of its interesting properties. With the cos-term its transition p(xt|xt−1)

can be multimodal distribution whose mean admits different values conditionally on a fixed

value of xt−1 (shown on the left panel of Figure 1.3),

p(xt|xt−1 = x) = N
(
xt; 0.5x+ x

1 + x2 + 8 cos 1.2t, Q
)
.

Moreover, the observation function is quadratic that would make confusion about whether

the state is in the positive or negative space. If the observational error variance R is large

(here R = 10), we can also generate unreliable observations which probably provide the

incorrect information of the state (see the right panel of Figure 1.3).
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Figure 1.3 – Scatter plot (left panel) of the dynamical model with respect to the state (the line
represents an identity model), and time series plot (right panel) of the state and observations
simulated from a Kitagawa model (1.5) with error variances Q = 1 and R = 10.

The more complicated model considered is the three-dimensional Lorenz 63 (L63, [107])

model which is nonlinear, non-periodic and chaotic (see left panel of Figure 1.4). This is

one of the typical toy models used in data assimilation (DA) community. Additionally,

the L63 model is used to mimic the atmospheric convection [50, 95, 153]. An example of
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Chapter 1. Statistical inference in state-space models

the L63 SSM is defined by


Xt = m(Xt−1) + ηt,

Yt =

1 0 0

0 0 1

Xt + εt

(1.6)

where (Xt, Yt) ∈ R3×R2, ηt ∼ N (0, Q), εt ∼ N (0, R) and m is numerically approximated

by integrating the following system of ordinary differential equations (ODEs) for x ∈ R3


z0 = x

dzτ
dτ = g(zτ ), τ ∈ [0, dt],

m(x) = zdt

(1.7)

where g(z) = [10(z(2)− z(1)), z(1)(28− z(3))− z(2), z(1)z(2)− 8/3z(3)]> for all z ∈ R3.

The model time increment dt in the above system indicates the level of model nonlinearity.

The larger dt the more nonlinear model. On the right panel of Figure 1.4, time series of

the true state and the observations of the L63 model with dt = 0.08 (respect to 6-hour

time step in the atmosphere) are shown.
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Figure 1.4 – 3D-Scatter plot (left panel) of the dynamical model with respect to the state,
and time series plot (right panel) of the state (lines) and observations (points) simulated from a
L63 model (1.6) with error covariances Q = 0.01I3 and R = 2I2. The second component (blue)
of the state is unobserved.
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1.1. Inference in parametric state-space models

1.1.2 Filtering and smoothing in state-space models

Given a SSM (1.1) with fixed parameter θ ∈ Θ and a sequence y1:T = (y1, y2, · · · , yT ) of

the observation process (Yt)t, we consider methodologies to infer the state sequence x0:T =

(x0, x1, · · · , xT ) of the hidden state process (Xt)t. We focus on classical filtering and smoothing

methods which enable to evaluate the corresponding distributions of the state conditional on

the observations recursively. In various references of state-space analysis (see [11, 24, 49, 56, 68,

139,172] for a few), the objectives of these methods are described as follows.

• Filtering: compute the marginal distribution (or its joint distribution) of the state given

a part of the observation sequence

pθ(xt|y1:t) = pθ(yt|xt) pθ(xt|y1:t−1)
pθ(yt|y1:t−1) =

∫
pθ(yt|xt) p(xt|xt−1)

pθ(yt|y1:t−1) pθ(xt−1|y1:t−1)dxt−1 (1.8)

where p(xt|y1:t−1) is the so-called prediction distribution or forecast distribution, and

p(yt|y1:t−1) is the marginal likelihood or the normalization of the numerator. According

to the above recursion, the filtering scheme combines two common steps:

– Forecast step is to propagate the previous filtering distribution with a kernel associated

according to the dynamical model (1.1a) (e.g. pθ(xt|xt−1)).

– Correction step is to assimilate the available observations using the information of

the observation model (1.1b) (e.g. pθ(yt|xt)).

• Smoothing: compute the marginal distribution (or its joint distribution) of the state

given all observations,

pθ (xt|y1:T ) =
∫
pθ (xt|xt+1, y1:T ) pθ (xt+1|y1:T ) dxt+1

= pθ (xt|y1:t)
∫
pθ (xt+1|xt) pθ (xt+1|y1:T )

pθ (xt+1|y1:t)
dxt+1. (1.9)

Smoothing is known as the reanalysis of the state given the filtering outputs. Dissimilar

to filtering, computing the smoothing distributions of the state is carried out both forward

and backward in time. To simulate or estimate the state at an instant time, the reverse

phase purposes to adjust the future smoothed state (including future observed information)

or its distribution and the filtering outputs (including the past and present observed
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Chapter 1. Statistical inference in state-space models

information). Therefore, the smoother generally provides better point estimation or simulation

of the state than the filter.

There are different methods to compute the filtering and smoothing distributions. In this

section, we focus on reviewing popular Kalman-based and particle-based approaches. The

Kalman class consists of the original Kalman filter and smoother and their regular extensions

(e.g. extended and ensemble Kalman recursions). The latter one contains Sequential Monte

Carlo (SMC) methods and their combinations within Markov Chain Monte Carlo (MCMC)

contexts.

1.1.2.1 Kalman-based methods

Kalman filter (KF) and smoother (KS) [34,51,74,129,134] are optimal tools in sense of providing

the exact filtering and smoothing distributions of linear Gaussian models (1.2). Given all

dynamical and observational operators (Mt, Ht) and error covariances (Qt, Rt), the conditional

distributions appearing in the decomposition formulas (1.8) and (1.9) are Gaussian distributions

with explicit means and covariances.

Let us denote the forecast [resp. analysis] mean and covariance as xft [resp. xat ] and P ft

[resp. P at ]. To derive the filtering distribution pθ(xt|y1:t) with the recursion (1.8), KF first

computes the forecast distribution, pθ(xt|y1:t−1) = N
(
xt; xft , P

f
t

)
. Then the correction step

of KF using a Kalman gain Kt (a solution of an optimization problem balancing the forecast

and the current observation) provides analysis mean and covariance of the filtering distribution.

Precisely, KF results pθ(xt|y1:t) = N (xt; xat , P at ). Expressions of these quantities are presented

in Algorithm 1.

As mentioned in the previous section, the smoothing distribution pθ(xt|y1:T ) can be calculated

by the forward-backward recursion (1.9). Under linear Gaussian assumption, KS provides the

exact smoothing distribution, pθ(xt|y1:T ) = N (xt; xst , P st ), where xst and P st are denoted as

its mean and covariance respectively. Given outputs of the KF, the smoothing distribution

is computed by using the Rauch-Tung-Striebel (RTS) formulation (1.12) (see [129]) presented

in Algorithm 2. The details of Algorithm 2 and their properties are presented in the literature

[74,129,134] and a recent review [24]. Applications of Kalman filters and smoothers in navigation

and meteorological DA can be found in [20,39,67].

In order to estimate the filtering and smoothing distributions for nonlinear models (1.3),

Kalman-like methods including Extended Kalman filter (EKF) and smoother (EKS) were developed.
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1.1. Inference in parametric state-space models

Algorithm 1: Kalman filter (KF)
• Initialization: set xa0 , P a0 .

• For t = 1 : T ,
+ Forecasting: propagate the previous analysis distribution with

xft = Mtx
a
t−1,

P ft = MtP
a
t−1M

>
t +Qt,

(1.10)

+ Correcting: adjust the forecast with the available observation yt,

ỹt = yt −Htx
f
t ,

Kt = P ft H
>
t

(
HtP

f
t H
>
t +Rt

)−1
,

xat = xft +Ktỹt,

P at = (I −KtHt)P ft ,

(1.11)

end.

Algorithm 2: Kalman smoother (KS)
For t = T − 1 : 0,

Jt = P at M
>
t+1

(
P ft

)−1
,

xst = xat + Jt

(
xst+1 − x

f
t+1

)
,

P st = P at + Jt

(
P st+1 − P

f
t+1

)
J>t ,

(1.12)

end.
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Chapter 1. Statistical inference in state-space models

The filtering and smoothing schemes are almost the same as in the Kalman algorithms except

two points. The forecast/analysis mean estimates in the first formulas of (1.10) and (1.11) are

computed using the nonlinear functions (m,h) instead of linear operators (Mt, Ht). Besides,

the state transition and observation matrices used in error covariances propagation are locally

approximated by their Jacobians

Mt = ∇m
(
xat−1

)
, Ht = ∇h

(
xft

)
.

However, running the extended Kalman recursions suffers from computational issues. The

algorithms require to compute the model Jacobian (Mt)t of the ODE system at each time step

and huge storage of full forecast covariances (P ft )t in high dimensional models is compulsory as

usual.

An alternative to handle these drawbacks is based on Monte Carlo or ensemble-based methods.

They include ensemble Kalman filter (EnKF), ensemble Kalman smoother (EnKS) and their

variants [14,15,24,56,58,108]. The ensemble-based algorithms implement ensembles of size N to

approximate the filtering and the smoothing distributions sequentially. In the EnKF algorithm,

all members in the previous ensemble are propagated one by one using the transition kernel

for every time step. The covariance matrix P ft is then approximated by empirical covariance

of the forecast ensemble. The analysis step uses this estimate of P ft to compute the Kalman

gain and correct each forecasted member. Note that the filtering distributions are not implied

directly by using Gaussian assumption with the analysis means and covariances but they are

described through ensembles. The EnKS algorithm is run with the ensembles derived from

the forward filter. Similar to the previous smoothers, the EnKS uses RTS scheme (1.12)

to adjust the analysis ensembles by taking into count both forward and backward observed

information. In Eq. (1.12), the product of the analysis covariance and the transpose of the

transition matrix is approximated by the empirical cross-covariance of the analysis ensemble at

time (t) and the forecast ensemble at time (t+1). The details of the ensemble-based methods are

presented in numerous references [24, 56, 58, 108]. In practice, small ensemble size (N ≤ 100) is

typically chosen for approximating the filtering and smoothing distributions. As a result, EnKF,

EnKS and their extensions are usually applied in real inference problems, especially geosciences

DA [2,24,55,57,96,132,169].

From a practical point of view, the extended and ensemble Kalman-based methods are

favorite tools for DA in nonlinear inverse problems. Nevertheless, there exist several issues. For
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1.1. Inference in parametric state-space models

instance, the Gaussianity of the prediction distributions {pθ(xt|y1:t−1)}t assumed to interpret the

recursions (1.8) and (1.9) may not be held because of the effects of model nonlinearity. In [93]

(see in [54] for numerical illustration), the authors proved that approximations of nonlinear

filtering and smoothing distributions derived from these methods do not converge to the Bayesian

distributions. Due to that fact, we investigate particle-based methods (SMC and variants) in

the thesis.

1.1.2.2 Particle-based methods

This section gives an overview of some regular particle filters (PFs) and smoothers (PSs) which

are usually used to treat inference problems for nonlinear SSMs (1.3). Combinations of these

SMC samplers and MCMC schemes are then mentioned. Note that Gaussian assumptions of

error noises can also be relaxed when working with these particle methods.

a. Particle filters (PFs)

Particle filters [23, 47, 48] have been proposed to compute approximations of the filtering

distribution pθ(xt|y1:t) by a system of particles and their respective weights. A general

PF algorithm is run based on a recursion of a joint distribution p(x0:t|y1:t) similar to the

recursion (1.8) by using Monte Carlo and sequential importance sampling techniques. An

approximation of filtering distribution is then deduced as a marginal of the approximation

of this joint distribution over variables x0:t−1.

Let us denote a system of particles and their corresponding weights {x(i)
0:t−1, w

(i)
t−1}i=1:N

which approximates the joint filtering distribution pθ(x0:t−1|y1:t−1) at time (t − 1). The

next step of the algorithm consists in generating the new samples {x(i)
0:t}i=1:N with a

proposal kernel πθ(xt|x0:t−1, y1:t). The correction step computes the corresponding weights

{w(i)
t }i=1:N of the particles according to the formula

W (x0:t) = pθ (x0:t|y1:t)
πθ(xt|x0:t−1, y1:t)

(1.8)
∝ pθ (yt|xt) pθ(xt|xt−1)

πθ(xt|x0:t−1, y1:t)
pθ (x0:t−1|y1:t−1) . (1.13)

The entire algorithm is presented in Algorithm 3. Here the resampling step is added in

order to reduce impoverishment, a usual problem met in PF algorithms. A systematic

resampling method (see others in [45, 77]) can be used to reselect potential particles in

{x(i)
0:t−1}i=1:Nf . In this step the filter duplicates particles with large weights and discards

particles with small weights.
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Chapter 1. Statistical inference in state-space models

Algorithm 3: Particle Filter (PF)
• Initialization:

+ Sample {x(i)
0 }i=1:Nf

∼ pθ(x0).
+ Set initial weights w(i)

0 = 1/N,∀i = 1 : N .
• For t = 1 : T ,

+ Resampling: draw indices {Iit}i=1:N with respect to weights {w(i)
t−1}i=1:N .

+ Forecasting: sample new particle,

x
(i)
t ∼ πθ

(
xt|x

(Ii
t )

0:t−1, y1:t

)
,∀i = 1 : N.

+ Weighting: compute w̃(i)
t = W

(
x

(Ii
t )

0:t−1, x
(i)
t

)
by using Eq. (1.13) then normalize the weight,

w
(i)
t = w̃

(i)
t

N∑
i=1

w̃
(i)
t

, ∀i = 1 : N .

end for.

The above algorithm is referred to as an auxiliary PF algorithm. If the proposal distribution

is chosen as

πθ(xt|x0:t−1, y1:t) = pθ(xt|xt−1) (1.14)

we get a simple filter so-called bootstrap PF. It is the quite usual choice for numerical

experiments in statistics and applications [4,49,70,95,124,169] and it is used in the thesis

for most of numerical illustrations. Another popular proposal kernel is

πθ(xt|x0:t−1, y1:t) = pθ(xt|xt−1, yt) (1.15)

leading to an optimal PF. With this choice, variance of the importance weight (1.13)

conditional on x0:t−1 and y1:t are constant and the particles are pushed towards the

observations. That may be helpful for filtering in high dimensional models where the

bootstrap filter easily degenerates. Details of the discussion on the choice of the proposal

kernel πθ can be found in [23,48,123,145].

By using the PF algorithm (3), pθ(x0:t|y1:t) is approximated by

p̂θ (x0:t|y1:t) =
N∑
i=1

δ
x

(i)
0:t

(x0:t)w(i)
t (1.16)

where δ is dirac distribution of x. Asymptotic properties of this estimator were given

in [32, 40]. In last decades, PFs have been used to handle various inference problems in
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1.1. Inference in parametric state-space models

statistics, oceanography, informatic technology, biology, economics, mechanical learning,

etc [5, 70,92,115,138,158].

b. Particle smoothers

One simple way to compute the smoothing distribution pθ(xt|y1:T ) as well as its joint

distribution pθ(x0:T |y1:T ) is based on the complete run of a PF. At the final time step,

the system of particles and weights {x(i)
0:T , w

(i)
t }i=1:N approximates the joint distribution

pθ(x0:T |y1:T ). Hence a smoothing distribution at an instant time t can be depicted by

{x(i)
t , w

(i)
T }i=1:N . However, this naive approach gets degeneracy issues when the number

of observations (T ) is large. The resampling step in the filter may lead to poor samples

which contain lots of particles sharing the same values.

Forward filter-backward smoother (FFBS) based on the recursion (1.9) is presented in

[17,46] to reduce degeneracy in estimating pθ(xt|y1:T ). After running a forward filter, the

backward pass aims at re-weighting the particles {x(i)
t }i=1:N by

ws,it = w
(i)
t

N∑
j=1

pθ
(
x

(j)
t+1|x

(i)
t

)
ws,jt+1

N∑
i=1

pθ
(
x

(j)
t+1|x

(i)
t

)
w

(i)
t

(1.17)

then the smoothing distribution is approximated by

p̂θ (xt|y1:T ) =
N∑
i=1

δ
x

(i)
t

(xt)ws,it (1.18)

In inference problems (e.g. parameter estimation) involving the joint smoothing distribution

pθ (x0:T |y1:T ), backward simulation (BS) proposed by [69] is considered as a natural technique

to simulate realizations of the state given the (forward) filter outputs. The sampler works

based on the decomposition

pθ (x0:T |y1:T ) = pθ (xT |y1:T )
T−1∏
t=0

pθ (xt|xt+1, y1:t) , (1.19)

where the so-called backward kernel is defined as

pθ(xt|xt+1, y1:t) ∝ pθ (xt+1|xt) pθ (xt|y1:t) . (1.20)
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Given the particles (x(i)
t )i=1:N

t=0:T and the weights (w(i)
t )i=1:N

t=0:T of the PF algorithm, the smoothing

trajectories can be sequentially drawn from an estimate of the backward kernel (1.20).

Other smoothers can be found in the recent reviews [64, 86]. The complete algorithm of

BS and details are presented in the next chapters.

c. Particle Gibbs samplers

Particle Gibbs samplers, a branch of Particle Markov Chain Monte Carlo (PMCMC)

approaches, are combinations of SMC and MCMC methods. These samplers permit to

iteratively simulate realizations of sophisticated or high dimensional distributions (e.g. the

nonlinear distribution pθ(x0:T |y1:T )).

In the particle Gibbs samplers, one trajectory X∗ = (x∗0, x∗1, · · · , x∗T ) ∈ X T+1, so-called

conditioning trajectory, is set as a prior. It is replaced for one of particle paths, e.g. x(N)
0:T ,

and joint with other particle paths in an SMC-like scheme. After every iteration, the

conditioning is updated by one of the particle paths generated from the SMC-like sampler.

The procedure is then repeated, and this leads to construct Markov kernels leaving an

invariant distribution which is exactly the smoothing distribution pθ(x0:T |y1:T ). The most

interesting property of the particle Gibbs samplers is that, given an arbitrary conditioning

path, these samplers, with a fixed number of particles and a significantly large number of

iterations, generate realizations distributed according to the smoothing distribution. For

instance, as illustrated in the literature of Bayesian inference [4,98,99,101,102,150], such

approaches using a low fixed number of particles (5−102) gives similar results as standard

PSs using many particles (102 − 106).

Conditional particle filter (CPF) is the first particle Gibbs sampler (also named as conditional

SMC sampler) appeared in a discussion of Andrieu et al. [4]. This sampler is based on PF

only so that the CPF approach typically gets path degeneracy as usual. N trajectories

often share the same ancestors when the length of the observation sequence is large.

Moreover, in the CPF, the N th-path is frozen for the conditioning while the other paths

are broken due to resampling. Both issues may lead to generate the same realizations of

the state and hence provide a poor approximation of the smoothing distribution. Such a

problem is called slow mixing. In [99, 100, 102], Lindsten et al. proposed a new sampler,

Conditional Particle Filtering-Ancestor Sampling (CPF-AS). The CPF-AS algorithm is

almost the same as the CPF. Instead of fixing the conditioning path at N th position,

the authors proposed to resample each of its indices (INt )t given the current conditioning
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1.1. Inference in parametric state-space models

particle and the observations up to time t. This strategy permits to renew the ancestral

link of the conditioning and hence improves the mixing. Sequentially, CPF-AS produces

a better approximation of the filtering distribution than the one obtained by the CPF.

The advancement of the CPF-AS in practice is numerically illustrated in [30, 99, 102].

Theoretical behaviors of the CPF also hold for the CPF-AS. They were studied in [99].

Applications of CPF and CPF-AS for simulation of the smoothing distribution can be

found in [4, 150].

However, the degeneracy problem in the CPF-AS sampler may still cause a poor approximation

of pθ(x0:T |y1:T ) (except a short sequence of observations is considered). In [101, 102],

backward simulation was proposed to be combined with the particle Gibbs sampler, leading

to Conditional Particle Filter-Backward Simulation (CPF-BS) smoother (see in Chapter 3

for more details).

1.1.3 Parameter estimation

In real applications, parameters (θ ∈ Θ) in SSM (1.1) are usually unspecified and using incorrect

values of θ may lead to bad reconstruction results. This is illustrated on Figure 1.5 for reconstruction

of the state in the sinus model (1.4) with θ = (Q,R). Smoothing with the right parameter

values provides a good approximation of the true trajectory (left panel) whereas smoothing with

wrong parameter values gets large biases and variances in simulating the state distributions

(right panel). Therefore, identifying a reasonable value of θ before filtering or smoothing is

necessary. A nice explanation of the problem was also given in [10]. In this section, we give

a review of off-line likelihood-based methods which are widely used for parameter estimation

given a sequence of observations y1:T and the model (1.1).

Likelihood-based methods for parameter identification include Bayesian inference and maximum

likelihood estimation. These methods can be found in recent reviews [86,152].

• Bayesian inference

The Bayesian approach aims at inferring an arbitrary parameter by simulating from the

joint distribution of the state and the parameter. Additionally, it is able to describe the

shape of parameter distribution which might be multi-modal. But the Bayesian approaches

still have some drawbacks. First, a very large number of iterations is required to get

good approximations of the parameter distributions if a standard MCMC method (see e.g.

[4,86,102]) is used. In [147,148,165] the authors proposed Bayesian approaches combined
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Figure 1.5 – Impact of values of paramater θ = (Q,R) on smoothing distributions for the
sinus model (1.4). The true state and observations have been simulated with the true value
θ∗ = (0.1, 0.1). The mean of the smoothing distributions are computed using a standard particle
smoother [46] with 100 particles. Results obtained with the true parameter values θ∗ = (0.1, 0.1)
(left panel) and wrong parameter values θ̃ = (0.01, 1) (right panel) are shown.

with EnKF algorithms and obtained approximations of the parameter distributions with

a low number of members and iterations. However, simulating the distributions in high-

dimensional SSMs is sometimes impractical. For example, it is difficult to simulate directly

the full model covariance Q which involves a lot of parameters if the latent state has values

in a high dimensional space. To simplify the problem, Q is typically supposed to have a

predefined form, such as the multiplication of a scalar and a given matrix, and only the

scale factor is estimated.

• Maximum likelihood estimation

There are two major approaches in the statistical literature to maximize numerically the

likelihood of models with latent variables: gradient ascent and Expectation-Maximization

(EM) algorithms. Between these two approaches, the gradient ascent seems less efficient in

several circumstances, for instance, gradient ascent algorithms can be numerically unstable

as they require to scale carefully the components of the score vector as that stated in [86].

The EM approach is more favoured when considering complicated models such as the ones

used in DA. The first EM algorithm was suggested by [42]. Various variants of the EM

algorithm were proposed in the literature (see e.g. [28,50,86,98,110,121,126,141,152,156,

164] and references therein). The common idea of these algorithms is to run an iterative

procedure where an auxiliary quantity (1.21) which depends on the smoothing distribution
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1.1. Inference in parametric state-space models

is maximized at each iteration until a convergence criterion is reached.

Eθ′ [ln pθ (x0:T , y1:T )] ,
∫

ln pθ (x0:T , y1:T ) pθ′ (x0:T |y1:T ) dx0:T (1.21)

where θ′ denotes a given value of the unknown parameter θ.

Starting from an initial parameter an iteration of the EM algorithm has two main steps:

– E-step: compute the smoothing distribution pθ′ (x0:T |y1:T ) given the observations

y1:T and the parameter value θ′, and deduce the auxiliary quantity (1.21),

– M-step: update the parameter value by maximizing the function (1.21) of θ.

It can be shown that this procedure leads to increase the likelihood function pθ(y1:T )

at each iteration and gives a sequence of parameter values which converges to a local

maximum of the likelihood.

For linear models, e.g. (1.2), the EM algorithm combined with Kalman smoothing (KS-

EM, [143]) has been the dominant approach to estimate parameters. In the case of

nonlinear and/or non-Gaussian models, e.g. (1.3), the expectation (1.21) under the

distribution pθ′(x0:T |y1:T ) is usually intractable and the EM algorithm cannot work in

such situation. An alternative, originally proposed in [28] and [29], is to use a Monte

Carlo approximation of (1.21) or stochastic versions of the EM [41].

To implement such procedures, it is necessary to generate samples of the smoothing

distribution. A classical alternative in many applications consists in using the EnKS

algorithm [58] leading to the EnKS-EM algorithm [50, 126, 156]. However, the EnKS

approximation does not converge to the exact distribution pθ(x0:T |y1:T ) for nonlinear state-

space models [93]. In the literature [86,89,116,121,141], standard or approximate particle

smoothing methods are generally used. Nevertheless, they demand a huge amount of

particles to get a good approximation of the target probability distribution.

As mentioned in the previous section, conditional particle smoothers (CPF, CPF-AS, CPF-

BS) [4,99,101,102,150] are able to simulate the smoothing distribution with a fixed number

of particles. These samplers can be promising tools when combined with the iterative EM

machines. In [98,102,149], the authors proposed to use a CPF-AS sampler within EM-like

algorithms. However CPF-AS suffers from degeneracy (the particle set reduces to a very

few effective particles) and consequently the estimated parameters of CPF-AS have bias
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Chapter 1. Statistical inference in state-space models

and/or large variance. In Chapter 3, we investigate the combination of CPF-BS and EM

algorithms.

1.2 Inference in non-parametric state-space models

1.2.1 Non-parametric state-space models

Non-parametric SSMs are SSMs (1.3) where the dynamical model and/or the observation model

are unknown and approximated by non-parametric estimators. An example of such models is

the case of wind data recorded at five stations located in the North-West region of France (see

on Figure 1.6). Due to failures of the collection process, instrumentals, and model formulation,

the data may include observational errors and lots of gaps (e.g. at Brignonan). In order to infer
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Figure 1.6 – An illustration of wind data with gaps recorded at five stations in the North-West
of France (produced by Météo France). Left panel: location map of the stations, right panel:
time series of wind speed where the missing entries are shown by negative values.

the state given the noisy missing data, we can define the following non-parametric SSM model


Xt = m(Xt−1) + ηt,

Yt = HtXt + εt,

(1.22)

where (Xt)t is the hidden state process of the wind system which we would like to retrieve, (Yt)t
stands for the observation process represented by the observed data y1:T , and the error noises

has Gaussian distributions N (0, Qt) and N (0, Rt) respectively. In the above model, m,Qt, Rt
are unknown and the adaptive observation operator Ht describes the situation where some state

components can be missing. For instance, if all components in the state variable are observed at

time t, Ht is an identity matrix Id (d is the fixed dimension of the state variable Xt), and if only
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1.2. Inference in non-parametric state-space models

the first component is observed Ht is set by the first row vector of Id. The size of observational

error covariance (Rt) depends on the dimension of the observation (Yt).

When working with such unknown models, classical approaches often use a simpler parametric

model to replacem. However, it is generally difficult to identify an appropriate parametric model

which can reproduce all the complexity of the phenomenon of interest. Nowadays, there exists

a huge amount of historical datasets recorded using remote and in-situ sensors or obtained

through numerical simulations and this promotes the development of data-driven approaches.

Non-parametric SSMs were first appeared and analyzed in oceanographical DA [95, 154, 155].

In next section, we first present local regression methods (so-called analog methods in real

applications, e.g. meteorological prediction [7, 8, 78, 175, 183]) learned on a historical dataset,

which is used to estimate the dynamics. These non-parametric emulators are combined within

the proposed algorithms to solve inference problems for non-parametric SSMs with unknown

dynamics in the next chapters.

1.2.2 Data-driven forecast emulators in non-parametric state-space models

Suppose that a sequence x0:T of the state process (Xt)t in (1.3) is available. This section involves

in presenting non-parametric estimates ofm at a given point x (transition mean E(Xt|Xt−1 = x))

and present several sampling methods for the transition kernels.

1.2.2.1 Local regression for m estimation

a. Local constant method

Local constant regression (LCR), known as Nadaraya-Watson kernel regression (NW), has

been used to approximate the value of m at a given x. In the literature [62], an estimate

of m is expressed by

m̂(x) =
T∑
t=1

xt Kh (xt−1 − x)
T∑
t=1
Kh (xt−1 − x)

. (1.23)

where Kh(u) is a chosen kernel with a bandwidth h. In practice, the method is applied in

lots of areas because of its simplicity. For instance, Rajagopalan [128] resampled the vector

of Utah daily weather variables conditionally on the data of the previous day. In [175]

the author recommended using analog forecast learned on a 30-year historical dataset to

simulate European daily mean temperature, see other application in [7]. Though this

method is quite attractive in forecasting, it still gives a poor estimation of the model m
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Chapter 1. Statistical inference in state-space models

in some situations. Successors estimated by this emulator are always held in the range of

the learning data. It is unable to correctly capture outliers and/or extreme values which

often occur in natural phenomena.

b. Local polynomial regression

Local polynomial regression (LPR) proposed in [60, 61] is an alternative. The idea is to

approximate the dynamical model m by Taylor’s expansion (1.24),

m
(
x′
)
≈ m(x) +

p∑
j=1

∇jm(x)
j! (x′ − x)j ,M0,x +

p∑
j=1

Mj,x(x′ − x)j (1.24)

where {∇jm(x)}j=1:p are derivatives at point x and x′ lives in a neighborhood of x. In order

to obtain estimates of m(x) and its derivatives, the coefficients {Mj,x}j=0:p are computed

by minimizing the following least square error


T∑
t=1

∥∥∥∥∥∥xt −
M0,x +

p∑
j=1

Mj,x(xt−1 − x)j
∥∥∥∥∥∥

2

Wh (xt−1 − x)

 (1.25)

In formula (1.25), Wh is a normalized weight function given by a smoothing kernel Kh
with a bandwidth h. Such a kernel makes the role of choosing neighbors around x such

that the local estimate of m is more precise.

In the cases where the dynamical function m is approximated by the first-order of the

Taylor’s expansion (1.24), LPR method is referred to as Local Linear Regression (LLR)

[61]. The method is also widely used in forecasting because of its simplicity (only two

parameters required to be estimated) and efficiency (compared to LCR). For instance, Fan

et al. [63] implemented LLR to estimate coefficients adapting for data of CD4 cells (vitals

in the immune system). LLR was also used to fit wind power data in [122]. Generally,

an estimate of the dynamical function m is obtained by solving the least square problem

(1.25) with respect to LLR coefficients (M0,x and M1,x). It yields

m̂(x) = M̂0,x =
T∑
t=1

xtWh (xt−1 − x)− M̂1,x

T∑
t=1

(xt−1 − x)Wh (xt−1 − x) , (1.26)
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1.2. Inference in non-parametric state-space models

where an estimate of the gradient ∇m(x) is

M̂1,x =−
[
T∑
t=1

xt−1x
>
t−1Wh (xt−1 − x)−

T∑
t=1

xt−1Wh (xt−1 − x)
T∑
t=1

x>t−1Wh (xt−1 − x)
]−1

×
[
T∑
t=1

xtx
>
t−1Wh (xt−1 − x)−

T∑
t=1

xtWh (xt−1 − x)
T∑
t=1

x>t−1Wh (xt−1 − x)
]
.

(1.27)

A comparison of LCR and LLR on the univariate model (1.4) is shown on Figure 1.7. LCR

method gives a large bias estimate of the dynamical model, especially in its tails, when the

learning data is not informative enough. Thanks to estimation ability of the slope, LLR

permits to retrieve reasonable estimates in such poor situations. Asymptotic behaviors of

LCR and LLR estimates related to these numerical results can be found in [38,60,103].
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Figure 1.7 – Comparison of LCR and LLR methods in estimation of the dynamical model m
on learning sequences of the state process {Xt}t of the sinus SSM (1.4) with Q = R = 0.1. The
length of the learning data T varies in [100, 1000] from left to right. Scattered points stand for
the relation between two successive values in the learning sequences.

1.2.2.2 Kernel and bandwidth selection

The choice of kernel Kh and its bandwidth h is very important in model estimation [61,75,144,

159]. The Epanechnikov and tricube kernels are the most applicable since both of them have

compact supports which help to avoid learning the points far away from x. Following the work

of [35], the tricube kernel (1.28) is more preferable in holding the derivative properties at kernel

boundaries.

Kh(x) = 70
81

(
1− ‖x‖

3

h3

)3

1 (‖x‖ 6 h) . (1.28)
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By using this kernel, the bandwidth h is chosen as the radius of the compact support of the

learning data x0:T . When the model is nonlinear, using total points in the given data is useless.

This work may easily increase the bias of estimates, moreover, require large storage space for

computing regression coefficients. An alternative was proposed in [7, 60, 91, 119, 162] where the

regression coefficients are learned on n-nearest neighborhoods and h is thence set as the radius of

every x’s neighborhood adaptively. Note that if number of nearest neighbors n is large the bias

of LLR estimates may be high, by contrast, if few neighbors are taken the variance associated

with the estimates is large. A popular method to compute an optimal value of n is normally

based on a grid-search. The best number of neighbors is chosen on such a way that a loss

function, e.g. root of mean square error (RMSE), between the true forecasts and their estimates

reaches extreme values.

1.2.2.3 Sampling methods

In many applications, not only the dynamical model m but also the distribution of the model

noise {ηt}t is of the interest. When the noise distribution is known the transition kernels

{p(xt|xt−1)}t can be deduced, consequently. Here we consider two situations of the model noise

distribution: satisfying Gaussian assumption (as well as other parametric family assumptions)

and otherwise. The Gaussian case is the most usual case in practice (e.g. in meteorological

DA). With this assumption, the transition kernels have Gaussian distributions with means and

covariances dependent on m and Q (if other parametric family distributions are considered, the

kernels are identified with their certain parameters). In the case that these quantities or relevant

static parameters are unknown, they are usually estimated by using an optimization algorithm

(e.g. EM algorithm). In a particular case, covariance Q depends on each value x, it can be

estimated by

Q̂(x) =
T∑
t=1

[xt − m̂ (xt−1)] [xt − m̂ (xt−1)]>Wh (xt−1 − x) . (1.29)

where m̂ is an estimate of m (see Eq. (1.26)). Other estimation methods can be found in

[31,61,177]. By contrast, if the Gaussian assumption is unreliable we can use resampling methods

[6,91,135] such as local bootstrap to generate the transition distributions. Briefly, to sample from

the transition kernel conditionally on the value x, the residuals (xt − m̂(xt−1)) are resampled

with respect to the local weights {Wh(xt−1 − x)}t. Then a forecast sample is defined as a

collection of the resampled residuals taking into account the deterministic estimate value m̂(x)

of the model.
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1.2. Inference in non-parametric state-space models

1.2.3 Discussion

In practice, historical datasets recorded using remote and in-situ sensors usually take into

account observational errors. A simple approach to estimate m would consist in computing

the non-parametric estimate m̂ based on the sequence y1:T instead of a sequence of the process

{Xt} but this is not satisfactory since the conditional distributions of Xt given Xt−1 = xt−1 and

Yt given Yt−1 = yt−1 do not coincide. This is illustrated on Figure 1.8 obtained using a nonlinear

univariate SSM defined in (1.4). The left plot shows a scatter plot of the true state (Xt−1, Xt)

and a non-parametric estimate m̂ obtained using LLR which is reasonably close to m. The right

plot shows a scatter-plot of the observed sequence (Yt−1, Yt). Note that Yt is obtained by adding

a random noise to Xt and this has the effect of blurring the scatter plot by moving the points

both horizontally and vertically. The blue curve shows a non-parametric estimate of E[Yt|Yt−1]

obtained using LLR, which is a biased estimate of m. In a regression context, it is well known

from the literature on errors-in-variables models that observational errors in covariates lead, in

most cases, to a bias towards zero of the estimator of the regression function (see [26]). One of

the classical approach to reduce the bias is to introduce instrumental variables which help to get

information about the observational error. This approach has been adapted for linear first-order

autoregressive models in [111] and further studied in [94]. Besides, [26] gave an overview of

different methods to build consistent estimators in the context of regression. Among them, we

notice the local polynomial regression and the Bayesian method for non-parametric estimation.

But, as far as we know, they are not generalized for time series estimation.
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Figure 1.8 – Scatter plots of (Xt−1, Xt) (left) and (Yt−1, Yt) (right) for the sinus SSM (1.4)
with Q = R = 0.1. The blue curves represent for estimates of the conditional means obtained
using LLR and the red curves represent for the true m functions.
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In the thesis, we target to develop novel methods for both model reconstruction and parameter

estimation given the noisy data.
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Non-parametric filtering in nonlinear

state-space models.
In this chapter, we present non-parametric filtering algorithms for reconstruction of the hidden

state in nonlinear SSMs given a historical dataset and an observation sequence derived from

simulations of the state process and the observation process, respectively. The proposed algorithms

consist in combining an LLR estimate of the dynamical model, learned on the historical dataset,

within the classical filtering schemes. Numerical experiments are the main contribution of this

chapter for comparisons in terms of reconstruction quality and computational costs between

• the classical approaches using the true dynamical model (see e.g. in [11,23,24,54,56,169])

and the proposed approaches using non-parametric estimates of the model,

• the non-parametric approaches using LCR estimates of the model (presented in [95, 155])

and the proposed approaches using LLR estimates of the model,

• the proposed approaches using LLR estimates of the model within different filtering schemes

(EKF, EnKF, bootstrap and optimal PF).

2.1 Introduction

Sequential data assimilation (DA) methods [3,11,24,120,169] are extensively used to approximate

the state of environmental systems from noisy (partial) observations in geosciences. These

methods are formulated underlying SSMs.

In numerous DA problems, nonlinear SSMs as (1.3) consisting of a nonlinear dynamical

model and a linear observation model are usually considered. And the hidden state therein is
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Chapter 2. Non-parametric filtering in nonlinear state-space models.

often estimated by running one of the classical filters (EKF, EnKF, and PF) given a sequence

of the observations and a model. EKF [83] is used when the dynamical model is locally close

to Gaussian linear model. This filter permits to compute filtering mean and covariance at a

low computational cost. When the model is nonlinear or the dimension of the state is high

(e.g. in geoscience DA), EnKF [58, 108] is the most suitable tool for point estimattion of the

state. It typically requires a few members to approximate the filtering distribution. However,

the EnKF approximation does not converge to the Bayesian filtering distribution [93]. PF

algorithms [23,47,47,48] are alternatives for filtering in nonlinear (non-Gaussian) SSMs. Despite

the need of lots of particles for converging the PF algorithms are very efficient in inference

problems where the simulation of conditional distributions of the state is necessary.

A key feature of these classical DA algorithms is that they repeat the integration of an

explicitly known ODE system of the dynamic. Particularly, such a numerical forecast model is

intensively expensive in EnKF and PF algorithms since it is run for each member/ particles.

Nowadays, a large amount of observations allows replacing the numerical model by non-parametric

estimates. This substitution may have several advantages in reducing the computational cost and

providing a better description of the real dynamics. Moreover, the non-parametric approaches

are more flexible in local or regional DA problems where only some components of the state

variable involved in an ODE system are of the interests and parametric estimates can focus on

the chosen components. In [95,154,155], Tandeo et al. have recently proposed the combination

of different local regression emulators (LCR, LLR) [35,61,63,71] (so-called analog emulators in

geociences [7,8,78,175,183]) and DA algorithms (EnKF, EnKS and bootstrap PF). These novel

methods have been applied to reconstruct the state of oceanographical systems in [59,153].

Since LLR generally performs the model estimation better than the LCR (see in Section 1.2.2.1),

we propose to combine the LLR method with the filtering algorithms. As an extension of the

works [95,154,155], this chapter introduces the non-parametric EKF and optimal PF algorithms.

Furthermore, numerous numerical experiments will be carried out to compare the reconstruction

performances and computational costs of the mentioned methods.

The chapter is organized in four sections. Section 2.2 introduces the proposed non-parametric

EKF and PF algorithms using LLR estimate of the dynamics. The non-parametric EnKF

proposed in [95, 154, 155] is reminded. We also list some advantages and disadvantages of

these non-parametric approaches. In Section 2.3, numerical result are illustrated on the L63

model (1.6). Section 2.4 finally includes conclusions and perspectives.
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2.2 Non-parametric filtering algorithms

Let us assume that a sequence y1:t = {y1, y2, · · · , yt} of the observation process {Yt}t and

a learning sequence of the state process {Xt}t are given. This section aims at introducing

non-parametric filtering algorithms to estimate {p(xt|y1:t)}t, the conditional distributions of

the hidden state given the observations up to time t for the nonlinear SSM (1.3) where the

dynamical model m is unknown or analytically intractable, and the observation model is linear

h(xt) = Htxt.

Firstly, the non-parametric EKF algorithm is presented in Section 2.2.1. Here we discuss the

use of LLR in estimating both the model m and its first derivative function. Next, we remind

the combination of LLR forecast emulator and the EnKF algorithm (proposed in [95, 155]) in

Section 2.2.2. In a sequel, Section 2.2.3 introduces the combination of LLR forecast emulator

and the PF algorithm using the bootstrap proposal kernel (1.14) or the optimal kernel (1.15).

2.2.1 Extended Kalman filter

The Extended Kalman filter (EKF) (see in [74, 83]) is known as an extension version of the

KF (Algorithm 1) for estimating the filtering distributions {p(xt|y1:t)}t of nonlinear Gaussian

models (1.3) whose two first model derivatives can be approximated locally. When conditional

distributions of the state given the observations (e.g. p(xt|y1:t−1)) are Gaussian, EKF recursively

computes approximations of the filtering mean E (Xt|y1:t) and covariance V (Xt|y1:t), denoted

by xat and P at . Sequentially, the filtering distribution is approximated by

p̂ (xt|y1:t) = N (xt; xat , P at ) . (2.1)

A classical EKF algorithm runs based on a two-step procedure (forecasting and correcting).

In the forecast step, the forecast mean xft is computed as a propagation of the corrected mean

xat−1 via m and the forecast covariance P ft is obtained by a linear approximation of Eq. (1.10).

This is summarized in the following scheme.


xft = m

(
xat−1

)
,

P ft = ∇m
(
xat−1

)
P at−1∇m>

(
xat−1

)
+Qt.

(2.2)

Then, the correction step is the same as Eq. (1.11) in the KF algorithm.

35



Chapter 2. Non-parametric filtering in nonlinear state-space models.

When the dynamical function m and its gradient function ∇m are unknown or intractable,

we propose to substitute LLR estimates (Eq. 1.26 and Eq. 1.27) for m and ∇m in the forecast

step (2.2) of the classical EKF algorithm, leading to Algorithm 4.

Algorithm 4: Extended Kalman Filter (EKF) with LLR forecasting
• Initialization: set xa0 , P a0 .

• For t = 1 : T ,
+ Forecasting: propagate the previous analysis mean and covariance

xft = m̂
(
xat−1

)
,

P ft = M̂1,xa
t−1
P at−1M̂

>
1,xa

t−1
+Qt,

(2.3)

where m̂(x) and M̂1,x are LLR estimates (see Eq. 1.26 and Eq. 1.27) of the dynamical function
and its gradient at any values of x.
+ Correcting: adjust the forecast with the available observation yt

ỹt = yt −Htx
f
t ,

Kt = P ft H
>
t

(
HtP

f
t H
>
t +Rt

)−1
,

xat = xft +Ktỹt,

P at = (I −KtHt)P ft ,

(2.4)

end.

One typical advantage of the algorithm is that it quickly computes approximations the

filtering distributions in low-dimensional nonlinear Gaussian models. For high dimension problems,

the extended Kalman recursions require huge storage for the full covariances (P ft , P at )t as usual

and EnKF may be more efficient.

2.2.2 Ensemble Kalman filter

Ensemble Kalman filter (EnKF) (see the origin and its variants in [14,15,24,56,81]) is a Monte

Carlo approximation of the KF which enables to handle high dimensional filtering problems.

For each time step, an ensemble of size N , denoted by {xa,(i)t }i=1:N , is run and an estimate of

the filtering distribution is deduced as follows

p̂ (xt|y1:t) = 1
N

N∑
i=1

δ
x
a,(i)
t

(xt) . (2.5)

This ensemble-based method does not require local linearity of the filtering distributions or a

huge amount of members for convergence. Additionally, EnKF uses the N -ensemble to compute
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an empirical covariance of the forecast covariance that avoids using huge computational memory

as in the EKF. Therefore EnKF is often used in practical DA problems [3, 56,80,120,180].

In the classical EnKF algorithm, the forecast step generates new members, denoted as

{xf,(i)t }i=1:N , by using the transition kernel p(xt|xa,(i)t−1 ). The correction step then obtains the

analysis xa,(i)t by minimizing the error between the forecast and the observation via a Kalman

gain. In the combination with LLR method, the estimate (1.26) of m is used to construct the

transition kernel in the forecast step. The details are described in Algorithm 5. Note that this

algorithm is the stochastic EnKF algorithm and it is recently more often to use the deterministic

EnKF algorithm (see in [137]).

Algorithm 5: Ensemble Kalman Filter (EnKF) with LLR forecasting
• Initialization: sample the first ensemble, {xa,(i)0 }i=1:N ∼ p0(x).

• For t = 1 : T ,
+ Forecasting: propagate the previous ensemble by Eq. (2.6) and deduce its empirical
covariance P̂ ft ,

x
f,(i)
t ∼ N

(
m̂
(
x
a,(i)
t−1

)
, Qt

)
, (2.6)

where m̂ is the LLR estimate (see Eq. 1.26) of the dynamical function m at each member value.
+ Correcting: adjust the forecast with the available observation yt for each member

ỹt = yt + ε
(i)
t −Htx

f,(i)
t ,

Kt = P̂ ft H
>
t

(
HtP̂

f
t H
>
t +Rt

)−1
,

x
a,(i)
t = x

f,(i)
t +Ktỹt,

(2.7)

where ε(i)t ∼ N (0, Rt), ∀i = 1 : N .
end.

Algorithm 5 can be found in the pioneering works [95,155]. It was numerically demonstrated

that RMSEs between the true state and ensemble mean derived from Algorithm 5 tend to the

ones derived from the classical EnKF when the length of the learning sequence is large enough.

Recently, the novel method has been applied in DA applications [59, 153]. Nevertheless, the

EnKF, similarly as the Kalman-based recursions, provides samples whose distribution does not

converge to the Bayes filtering distribution if the model m is nonlinear [93].

2.2.3 Particle filter

Particle Filter (PF) [23,47,47,48] is an alternative to compute the filtering distributions {p(xt|y1:t)}t
for nonlinear (non-Gaussian) SSMs. Generally, a PF algorithm was built based on both Monte
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Chapter 2. Non-parametric filtering in nonlinear state-space models.

Carlo and sequential importance resampling techniques. N particles and their respectively

normalized weights {x(i)
t , w

(i)
t }i=1:N are run on a (1.8)-like recursion and provide an empirical

approximation of the filtering distribution,

p̂ (xt|y1:t) =
N∑
i=1

w
(i)
t δx(i)

t

(xt) (2.8)

The details of the classical PF algorithm are presented in Algorithm 3 (Chapter 1 [Section 1.1.2.2]).

The combination of LLR emulator and PFs is given in Algorithm 6. Note that the optimal

proposal kernel in Algorithm 6 is given under an explicit form as the observation model is linear

and Gaussian.

Algorithm 6: Particle Filter (PF) with LLR forecasting
• Initialization:

+ Sample {x(i)
0 }i=1:Nf

∼ p(x0).

+ Set initial weights w(i)
0 = 1/N,∀i = 1 : N .

• For t = 1 : T ,

+ Resampling: draw indices {Iit}i=1:N with respect to weights {w(i)
t−1}i=1:N .

+ Forecasting: sample new particle, for all i = 1 : N

x
(i)
t ∼

 N
(
m̂
(
x

(Ii
t )

t−1

)
, Qt

)
, [bootstrap]

N
(

Σt
[
Q−1
t m̂

(
x

(Ii
t )

t−1

)
+H>t R

−1
t yt

]
, Σt

)
, [optimal]

where m̂ is the LLR estimate (see Eq. 1.26) of the dynamical function at each particle and
Σt =

(
Q−1
t +H>t R

−1
t Ht

)−1.
+ Weighting: compute importance weight

w
(i)
t ∼

 N
(
yt;x(i)

t , Rt

)
, [bootstrap]

N
(
yt; m̂

(
x

(i)
t−1

)
, HtQtH

>
t +Rt

)
, [optimal]

then calculate the corresponding normalized weight w(i)
t = w̃

(i)
t

N∑
i=1

w̃
(i)
t

, ∀i = 1 : N .

end.

In the next section, numerical comparisons of the classical and the non-parametric approaches

(EKF, EnKF, and PF) are illustrated on a toy model. For the non-parametric approaches, the

filtering algorithms are combined with LCR and LLR forecasting emulators. Note that an
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optimal number of neighbors used in regression methods is computed based on the learning

data before filtering.

2.3 Numerical results on Lorenz 63

Experiments in this section are run on the L63 model (1.6) with error noise covariances Q = I3

and R = 2I2. The dynamical model m defined in the ODE system (1.7) is solved by running

a Runge-Kutta scheme (see in [22]) with a fixed model time increment dt = 0.08 (except

in the experiment where the reconstruction quality of the filtering algorithms are compared

with different values of dt). Given the model (1.6), a T -learning sequence x0:T of the state

process {Xt}t and a sequence y′1:T ′ of the observation process {Yt}t (only the first and the third

components of the state are observed) are simulated. On Figure 2.2, an illustration of a first

part of the simulated state and observation sequences is shown.

In section 2.3.1, we first compare LLR and LCR methods in estimating m given the T -

learning data. Then, section 2.3.2 will illustrate experiments for state reconstruction in L63

model (1.6) given the observations and the learning data. The filtering schemes (EKF, EnKF,

bootstrap PF and optimal PF) are combined with the true forecast model or its estimates

denoted by m̂(LCR) and m̂(LLR). As mentioned, LCR cannot estimate the model Jacobian

matrix so the method is not combined with the EKF algorithm.

2.3.1 Comparison of LCR and LLR methods for estimation of the dynamical

model

In the first experiment, a grid-search algorithm is run on the T -learning data for identifying an

optimal number of neighbors (n) used in LCR and LLR methods (cross-validation is used to

avoid over-fitting). This is illustrated on the left panel of Figure 2.1. RMSEs (2.9) between the

true state and the forecast values derived from LLR and LCR are computed for n ∈ [10, 200],

respectively.

RMSE(forecast) =

√√√√√ T∑
t=1
‖xt − m̂ (xt−1)‖2

T
(2.9)

The forecast error of the true dynamical model is also displayed. LLR typically needs more

neighbors than LCR because it has more parameters to be estimated. But LLR almost gives

smaller RMSEs than the ones of LCR. Moreover LLR errors is closer to the true error (between
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xt and m(xt−1)) when n is larger than 50. Note that if the length of the data (T ) is large enough

the true forecast error is equal to square root of trace of model error covariance
√
Tr(Q) =

√
3.
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Figure 2.1 – Comparison of RMSEs (2.9) of LCR and LLR on the L63 model (1.6) with
dt = 0.08, Q = I3, R = 2I2. Left panel: RMSEs are computed on a learning sequence (length
T = 103) with respect to the number of neighbors (n). Right panel: RMSEs are computed on
a testing sequence (length T ′ = 103) with respect to the length of learning sequences (T ) on
which non-parametric estimates m̂ of the dynamical function m is computed.

The advantage of LLR compared to LCR is also illustrated on the right panel of Figure 2.1.

Learning sequences {x0:T } of the state process are simulated with different length T ∈ [102, 105]

and another testing sequence x′0:T ′ is generated with fixed T ′ = 103. Here LCR and LLR

estimates are learned on each T -learning data and RMSEs (2.9) between x′t and m̂(x′t−1)

are computed with respect to T . Note that, for each learning data and each non-parametric

estimation method, an n-grid search (as shown on the left panel of Figure 2.1) is run in order

to retrieve a reasonable choice of a number of necessary neighbors before forecast. LCR errors

are almost [0.05 − 0.1] larger than LLR errors. As expected, when T is large enough the LLR

error tends to the true forecast error and converges quicker than the LCR error.

2.3.2 Comparison of classical and non-parametric filtering algorithms

We now compare the state reconstruction quality of different filtering algorithms in both classical

and non-parametric setting. Given a learning sequence x0:T of the state process (for non-

parametric approaches) and a testing sequence y′1:T ′ of the observation process (the length of

the testing data T ′ is fixed to 103), filtering algorithms are run to approximate p(x′0:T ′ |y′1:T ′).

The main scores using to compare the efficiency of these algorithms consist of RMSEs (2.10)

40



2.3. Numerical results on Lorenz 63

between their mean estimates x̂′t of the filtering distribution and the true state x′t

RMSE(filtering) =

√√√√√ T ′∑
t=1
‖x′t − x̂′t‖

2

T ′
, (2.10)

and log-likelihood defined by

l(y′1:T ′) = ln p
(
y′1:T ′

)
= ln p(y′1)

T ′∏
t=2

p
(
y′t|y′1:t−1

)
= ln

∫
p
(
y′1|x′1

)
p(x′1)dx′1 +

T ′∑
t=2

ln
∫
p
(
y′t|x′t

)
p(x′t|y′1:t−1)dx′t (2.11)

where p(x′1) is the distribution propagated from the initial step and p(x′t|y′1:t−1) is the forecast

distribution for other time steps.

By using EKF algorithms, the log-likelihood (2.11) is estimated by

l̂(y′1:T ′) =
T ′∑
t=1

lnN
(
y′t;Htx

′
t
f
, HtP

′
t
f
H>t +Rt

)
, (2.12)

as (x′t
f , P ′t

f ) are mean and covariance computed in the forecast step (see in Algorithm 4 for

details). In cases of using EnKF or PF algorithms, the log-likelihood (2.11) is approximated by

l̂(y′1:T ′) =
T ′∑
t=1

ln
N∑
i=1

1
N
N
(
y′t;Htx

′
t
(i)
, Rt

)
. (2.13)

Here {x′t
(i)}i=1:N is a sample generated after forecasting in these algorithms (see in Algorithms 5

and 6). The log-likelihood score is considered since it permits to assess the empirical distributions

derived from the filtering algorithms while the RMSE score is used to compare their means only.

Furthermore, an application of the non-parametric filtering algorithms in computing model

evidence based on Eq. (2.13) is introduced in Chapter 5.

2.3.2.1 State reconstruction performance of non-parametric filtering algorithms

In the first experiment of this section, EKF, EnKF, and PF algorithms combined with m̂(LLR)

estimate are run. N = 103 members/particles are used in EnKF and PF algorithms. On

Figure 2.2, means (lines) and 95% confidence intervals (CIs, filled areas) of empirical filtering

distributions are displayed for each component (results of the optimal PF are not shown on the
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Chapter 2. Non-parametric filtering in nonlinear state-space models.

figure because those are similar to the ones of the bootstrap PF). The reconstruction quality of

these algorithms are also compared in terms of RMSE and coverage probability (CP, percentage

of the state belonging to 95% CI) presented in Table 2.1. Generally, all three algorithms well

approximate the filtering distributions. Their mean estimates are close to the true state and

95% CIs almost cover the state sequence. Mean of CPs is in [93%− 94%] which is close to the

expected value 95%. Although the second component is unobserved, these filtering algorithms

can provide its reasonable estimates (the means of empirical distributions are quite close to the

true state and the CIs almost cover the state). The estimate bias [resp. CI] is larger [resp. wider]

at several locations such as the bifurcations of the L63 model (around t = 5, 50, 140 for instance).

When filtering at these locations, the transition distribution can be bi-modal and forecast values

probably belong to two branches of the model. That leads to RMSEs [resp. CP] of the second

component (with no observed information) larger [resp. smaller] than the ones corresponding to

two other components. In a comparison among the mentioned filtering algorithms, EnKF and

PF algorithms provide sample means and 95% CIs close to each other. As a result, RMSEs and

CPs of these algorithms are similar. The EKF seems less effective than the others as the model

with dt = 0.08 is nonlinear (see the second panel in the first row of Figure 2.4). The errors of

EKF are approximately 0.06 larger than the errors of the other algorithms.

Table 2.1 – Comparison of the reconstruction quality of non-parametric EKF, EnKF and PF
algorithms on an observation sequence y′1:T ′ of the L63 model (1.6) with dt = 0.08, Q = I3, R =
2I2 and T ′ = 103 in terms of root of mean square error (RMSE) and coverage probability (CP).
The non-parametric estimate m̂(LLR), learned on another state sequence with length T = 103,
is used in these algorithms. The two scores are computed for each of the three components.
EnKF and PF algorithms are run with N = 103 particles/realizations.

Methods EKF EnKF Bootstrap PF Optimal PF

1st component RMSE 1.0281 1.0228 1.0261 1.0214
CP 94.1% 94.2% 93.8% 94.3%

2nd component RMSE 1.7585 1.7509 1.7541 1.7475
CP 94.7% 94.5% 92.7% 93.7%

3rd component RMSE 1.1147 1.1149 1.1076 1.1117
CP 93% 93.7% 93.4% 93.4%

2.3.2.2 Effect of the length of learning sequences (T ) on state reconstruction of

the non-parametric filtering algorithms

We now verify the convergence of the non-parametric filtering algorithms using LLR estimates

m̂(LLR) of the dynamical model m. Several learning sequences with different length T ∈
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Figure 2.2 – State reconstruction of non-parametric filtering algorithms on the L63 model (1.6)
with dt = 0.08, Q = I3, R = 3I2. Time series of the state and observations simulated from the
model are displayed by dark lines and points. Means (lines) and 95% CIs (filled areas) of filtering
distributions are computed for each of three components (from top to bottom) by using non-
parametric EKF, EnKF and bootstrap PF algorithms with N = 103 members/particles. These
algorithms are combined with LLR forecast emulator learned on a learning sequence with length
T = 103.

[102, 105] are generated from the state process of the L63 model (1.6) with dt = 0.08, Q =

I3, R = 2I2. The classical and non-parametric filtering algorithms are run on an observation
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sequence with length T ′ = 103. We use N = 103 members/particles for the EnKF and PF

algorithms. RMSE (2.10) and log-likelihood (2.11) are computed with respect to values of T .

These results are illustrated on Figure 2.3.

At first glance, there is a visible improvement in both RMSE and log-likelihood estimate

of the non-parametric EKF algorithm (solid line) compared to the classical EKF (dotted line).

The combination of LLR and EKF provides much better reconstruction of the state due to

the reason of computing Jacobian matrices (Mt)t. In the classical algorithm, these matrices

are computed depending on values of a particular state and time increment dt. When dt is

large, it leads to poor approximations of (Mt)t. By contrast, LLR permits to estimate the local

slopes based on only n neighbors in the learning data. However, the EnKF and PF algorithms

with a sufficiently large N still give better scores than the EKF algorithms which subject to

Gaussianity of all conditional distributions of the state in filtering (see Tables 2.2 and 2.3 for

numerical values of RMSEs and log-likelihood estimates and Figure 2.4 for another experiment

relevant to these above comments).

As displayed on the figure, the RMSEs and log-likelihood estimates derived from the non-

parametric EnKF and PF algorithms using LLR estimate (solid line) tend to the scores of the

classical ones when T ≥ 5 × 103. The results completely cohere with those illustrated on the

right panel of Figure 2.1. Compared to the discrepancy between the scores of the non-parametric

filtering algorithms at T = 104 and the ones of the classical algorithms, the discrepancy at small

values of T (for instance T ∈ [5 × 102, 2 × 103]) is not large. This may allow to run the non-

parametric filtering algorithms without the need of a huge amount of the learning data. In

summary, if the learning data is informative enough LLR estimate converges to the true model

m. Consequentially, the non-parametric EnKF and PF algorithms give similar results as the

classical algorithms.

2.3.2.3 Effect of the sample size on state reconstruction of the non-parametric

EnKF and PF algorithms

In this experiment, the reconstruction quality of the filtering algorithms using the dynamical

model m or its estimates (m̂(LCR) and m̂(LLR)) is compared in terms of RMSEs (2.10) and

log-likelihood (2.11). They are shown in Table 2.2 and Table 2.3 respectively. Remember that

the length of the learning sequence for LCR and LLR estimates is T = 103 and the number

of observations is T ′ = 103. Here the scores corresponding to EnKF and PF algorithms are
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Figure 2.3 – Comparison in state reconstruction quality (RMSE (2.10), log-likelihood (2.11))
of the classical filtering algorithms (dotted lines) using the true model (m) and non-parametric
filtering algorithms (solid lines) using LLR estimate m̂(LLR) on L63 model(1.6) with dt =
0.08, Q = I3, R = 2I2, T

′ = 103 and N = 103 members/particles. In non-parametric algorithms,
m̂(LLR) is estimated based on learning data with different length (T ).

computed with respect to their sample size (N). Due to the stochastic nature of these filtering

algorithms (derived from stochastic sampling for members/particles in the forecast step), each

algorithm is repeated 10 times. Mean and standard deviation of the RMSEs and log-likelihood

estimates of the algorithms are provided.

For all situations, the filtering algorithms using m̂(LCR) give approximately 25% larger

RMSEs and 5% smaller log-likelihood values than the others. This relates to the bias in

estimating the dynamical model (see Figure 2.1). As expected, the filtering algorithms using

m̂(LLR) provide similar scores to the ones using the true dynamical model m. The EnKF

algorithms quickly improve the scores from N = 10 to N = 50 and stabilize hereafter while PF

algorithms seem to stabilize after N = 500. Especially, bootstrap PF algorithms with N = 10

give approximately 4 times greater [resp. smaller] than the errors [resp. log-likelihood estimates]

of the EnKF. This is the practical well-known limitation of the bootstrap PF compared to the

EKF and EnKF algorithms. The optimal PF algorithms work much better than the bootstrap

in the cases using a low number of particles N ∈ [10, 100]. The reason is derived from taking into

account the observed information in the proposal kernel, probably leading to force the forecast

particles towards observations. When N = 10 the optimal PF is approximately 1.5 less effective

than the EnKF, and as N ≥ 50 the scores of the optimal PF algorithms are much closer to

the ones of the EnKF but with slightly larger variance. In summary, point-estimation results of
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the state of the EnKF algorithms seem to be not affected by the number of members (N). By

contrast, it is extremely sensitive to the bootstrap PF results. Comparing to the sensitivity of

N to reconstruction results of the bootstrap PF algorithms, the one related to the optimal PF

algorithms is significantly reduced.

Table 2.2 – Comparison of RMSEs (2.10) between the estimated state and the true state on
the L63 model (1.6) with dt = 0.08, Q = I3, R = 2I2 and T ′ = 103. Non-parametric model
estimates of LCR or LLR methods are learned on a state sequence with T = 103. The estimated
state is the mean of filtering distribution approximated by the filtering algorithms combined
with different forecast models. For EnKF and PF algorithms, RMSEs mean and standard error
of their 10 replications are shown with respect to sample size (N).

Methods Model number of members/ particles (N)
10 50 100 500 1000

EKF
true 2.5034
LCR -
LLR 2.3202

EnKF
true 2.9065, 0.3234 2.3354, 0.0086 2.3122, 0.0152 2.2858, 0.0065 2.2788, 0.0045
LCR 3.1432, 0.072 2.7113, 0.0175 2.6764, 0.0148 2.6438, 0.0049 2.6448, 0.0055
LLR 2.7757, 0.1928 2.3660, 0.0202 2.3317, 0.0144 2.3138, 0.0044 2.3104, 0.0036

Bootstrap PF
true 11.4089, 1.0973 4.5604, 2.3551 2.7465, 0.6859 2.2862, 0.0052 2.2787, 0.0064
LCR 12.9102, 0.9634 7.9979, 1.0873 6.5820, 1.8811 2.9478, 0.1249 2.7827, 0.0289
LLR 11.2913, 2.4745 3.5288, 1.1366 2.6105, 0.2596 2.3417, 0.0082 2.3252, 0.0080

Optimal PF
true 4.3691, 0.8134 2.5543, 0.2995 2.3225, 0.0298 2.2747, 0.0054 2.2725, 0.0031
LCR 6.0978, 0.6116 3.6095, 0.3500 3.0609, 0.1662 2.7456, 0.0188 2.7166, 0.0101
LLR 4.6253, 0.7205 2.5376, 0.1085 2.4284, 0.1738 2.3230, 0.0050 2.3123, 0.0057

Table 2.3 – Comparison of log-likelihood (2.11) computed by non-parametric filtering
algorithms on the L63 model (1.6) with dt = 0.08, Q = I3, R = 2I2 and T ′ = 103. Non-
parametric model estimates of LCR and LLR methods are learned a state sequence with T = 103.
For EnKF and PF algorithms, log-likelihood mean and standard error of 10 replications of each
algorithm are shown with respect to sample size (N).

Methods Model number of members/ particles (N)
10 50 100 500 1000

EKF
true -4505
LCR -
LLR -4389

EnKF
true -4937, 243 -4413, 9 -4384, 10 -4366, 3 -4359, 2
LCR -5206, 119 4664, 18 4620, 10 -4585, 2 -4580, 3
LLR -4880, 202 -4434, 11 -4407, 8 -4382.0, 2 -4380, 2

Bootstrap PF
true -21494, 3016 -6971, 3084 -4778, 663 -4370, 4 -4365, 3
LCR -26976, 3192 -12460, 2037 -9610, 2928 -4808, 102 -4673, 24
LLR -21032, 6539 -5459, 1216 -4600, 253 -4397.0, 5 -4387, 5

Optimal PF
true -6905, 1155 -4583, 224 -4402, 24 -4368, 3 -4362, 2
LCR -10127, 1227 -5732, 481 -4999, 184 -4654, 16 -4627, 11
LLR -7117, 925 -4561, 99 -4480, 153 -4390, 3 -4384, 4
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2.3.2.4 Effect of nonlinearity of the dynamic on state reconstruction of the non-

parametric algorithms

Let us now focus on the impact of model nonlinearity on reconstruction performances of the

non-parametric EKF, EnKF and PF algorithms using LLR forecast emulator. This is displayed

on Figure 2.4. In this experiment, nonlinearity level of the L63 model (1.6) with Q = I3, R = 2I2

is increased following up model time increment dt ∈ [0.01, 0.2]. For each dt, different learning

and testing sequences with length T = T ′ = 103 are generated from the corresponding state and

observation processes.

In the first row of Figure 2.4, scatter plots of the first components in two successive state

variables (Xt−1, Xt) derived from the dynamical models with different values of dt are performed.

Here one can see that the relation between Xt−1 and Xt is almost linear for dt = 0.01 and it is

highly nonlinear for dt = 0.2. In the last row, plots of RMSE (2.10) and log-likelihood (2.11),

computed by the non-parametric filtering algorithms, as functions of dt values are presented.

For dt ∈ [0.01, 0.1], the Kalman-based algorithms give similar scores as the PF algorithms.

As dt ≥ 0.1, the discrepancy is visible. The error [resp. log-likelihood] function of the EKF

algorithm suddenly increases [decreases] at dt = 0.1. The score values are approximately 5.5

and −7500 at the final dt values (not shown here). The EnKF algorithm also produces greater

errors and lower likelihood values than the PF algorithms (percentages of the difference are

approximately 20% and 15% at dt = 0.2). The difference increases with nonlinearity level of the

model. As expected, the PF algorithms give the best reconstruction quality on such nonlinear

cases.

2.4 Conclusions and Perspectives

In this chapter, we have presented non-parametric filtering algorithms for reconstruction of

the hidden state in nonlinear SSMs given a historical dataset and an observational sequence

derived from simulations of the state process and the observation process, respectively. The

proposed algorithms consist in combining an LLR estimate of the dynamical model, learned on

the historical dataset, with regular filtering schemes. Numerical experiments in this chapter

allow to make comparisons in terms of reconstruction quality and computational cost of

• the classical approaches (see e.g in [11,23,24,54,56,169]) and the proposed approaches,
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Figure 2.4 – Comparison of the impact of model nonlinearlity in state reconstruction quality
of different non-parametric filtering algorithms using LLR estimate on the L63 model (1.6) with
Q = I3, R = 2I2. Learning data with length T = 103 and observation sequences with length
T ′ = 103 are simulated from the model for every model time increment dt ∈ [0.01, 0.2]. First row:
scatter plots of the first components values in two successive state variables (Xt−1(1), Xt(1))
with respect to dt, last row: plots of RMSE (2.10) and log-likelihood (2.11) computed by
the filtering algorithms with respect to dt. EnKF and PF algorithms are run with N = 103

members/particles.

• the non-parametric approaches using LCR estimates for the model (see in [95, 155]) and

the proposed approaches using LLR estimates for the model,

• the proposed approaches using LLR estimates for the model within different filtering

scheme (EKF, EnKF, bootstrap and optimal PF).

All methods mentioned in this chapter are resumed in Diagram 2.5. There are 11 possible

combinations (3 forecast models for each of the EnKF and PF algorithms, and only m and

m̂(LLR) for the EKF).

Compared to LCR, LLR generally gives better approximation of the dynamical model.

Moreover, it permits to estimate the model gradient. The non-parametric filtering algorithms

using LLR (2c, 3c) provide better estimation of the state in terms of RMSE and log-likelihood
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Figure 2.5 – Diagram of forecast models and filtering methods introduced in the thesis.

scores than the ones using LCR (2b, 3b). If the learning data is informative enough the

algorithms (2c, 3c) give similar results as the classical algorithms (2a, 3a). Especially, we have

found that the non-parametric EKF algorithm (1c) better estimates the filtering distributions

than the classical EKF (1a). That is due to the estimation of the first derivative of the model

function in (1c) based on the local neighborhoods of the state only and independent from model

time increment.

Among the different filtering schemes (1c, 2c, 3c) using LLR estimates for the model, we

now propose several options which probably suit for different DA problems. First of all, the

EKF algorithm (1c) has the lowest cost and it should be used if the SSM (1.3) is approximately

a local linear model, and the conditional distributions of the state and the observations used

in filtering satisfy Gaussian assumption. Otherwise, the choice between the EnKF algorithm

(2c) and the PF algorithms (3c) depends on which objectives (point estimate of the state or

its distributions) one wishes to obtain and how much computational resource is available. If

the model is highly nonlinear and low-dimensional, the distributions of the state are required

to be simulated and the computational resource is large enough, the PF algorithm (3c) with

bootstrap proposal kernel (1.14) should be chosen. Otherwise, either (2c) or (3c) with optimal

proposal kernel (1.15) using a few members/particles is appropriate to infer the state.

The future works related to this topic consist in combining such non-parametric forecast

emulators with smoothing and parameter estimation algorithms, considering the cases where

model covariance Q is adaptive to the state values and then relaxing the Gaussian assumption of
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noise distributions. Furthermore, we wish to implement the proposed methods in meteorological

applications such as data assimilation, model change detection, and missing-data imputation.

Last but not least, asymptotic properties of the non-parametric approaches need to be studied.
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Data assimilation methods aim at estimating the state of a system by combining observations

with a physical model. When sequential data assimilation is considered, the joint distribution

of the latent state and the observations is described mathematically using an SSM, and filtering

or smoothing algorithms are used to approximate the conditional distribution of the state given

the observations. The most popular algorithms in the data assimilation community are based on

the Ensemble Kalman Filter and Smoother (EnKF/EnKS) and their extensions. In this chapter,

we investigate an alternative approach where a Conditional Particle Filter (CPF) is combined

with Backward Simulation (BS). This allows to explore efficiently the latent space and simulate

quickly relevant trajectories of the state conditionally to the observations. We also tackle the

problem of parameter estimation. Indeed, the models generally involve statistical parameters in

the physical models and/or in the stochastic models for the errors. These parameters impact

the results of the data assimilation algorithm and there is a need for an efficient method to

estimate them. Expectation-Maximization (EM) is the most classical algorithm in the statistical

literature to estimate the parameters in models with latent variables. It consists in updating

sequentially the parameters by maximizing a likelihood function where the state is approximated

using a smoothing algorithm. In this chapter, we propose an original Stochastic Expectation-

Maximization (SEM) algorithm combined with the CPF-BS smoother to estimate the statistical

parameters. We show on several toy models that this algorithm provides, with reasonable
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computational cost, accurate estimations of the statistical parameters and the state in highly

nonlinear SSMs, where the application of EM algorithms using EnKS is limited.

3.1 Introduction

Data assimilation (DA) has been applied in various fields such as oceanography, meteorology

or navigation [11, 24, 68, 79, 174] to reconstruct dynamical processes given observations. When

sequential DA is used, an SSM is considered. It is defined sequentially for t = 1 : T by Eq. (1.1)

where (Xt, Yt) belong to the state and observation spaces (X ,Y) and (ηt, εt) are independent

noise sequences with zero means and covariance matrices denoted respectively Q and R. The

functionsM and H describe respectively the evolution of the state (Xt) and the transformation

between the state and the observations (Yt). We denote (xt, yt) instant values of the variables

(Xt, Yt) and θ ∈ Θ the vector of parameters. For instance, θ may contain physical parameters

in the models (Mθ,Hθ) and error covariances (Q,R).

Given a fixed vector θ and T measurements y1:T = (y1, ..., yT ), DA schemes relate to compute

filtering distributions {pθ(xt|y1:t)}t=1:T or smoothing distributions {pθ(xt|y1:T )}t=1:T . However,

it is often difficult to identify a reasonable value of θ. This is due to the diversity of observation

sources, the effect of physical terms and model complexity, or numerical failures [50, 182]. And

incorrect values of θ may lead to bad reconstruction results. This is illustrated on Figure. 3.1

using the L63 model (see Eq. 1.6 for a formal definition). Smoothing with true parameter value

provides a good approximation of the true trajectory (left panel) whereas the trajectory obtained

with wrong parameter value is noisy and biased (right panel). This illustration emphasizes the

role of parameter estimation in a DA context. A nice explanation of the problem is also given

in [10].

One common approach to estimate parameters in DA community is based on empirical

innovation statistics in method of moments [10, 112, 181, 182] whose formulas were first given

in [43]. Although these methods permit an adaptive estimation of the error covariances Q and R,

physical parameters of nonlinear dynamical models are difficult to estimate with this approach.

An alternative is to implement likelihood-based methods. A recent review, including Bayes

inference and maximum likelihood estimation, can be found in [86]. The Bayesian approach

aims to infer an arbitrary parameter by simulating from the joint distribution of the state and

the parameter. Additionally, it is able to describe the shape of parameter distribution which

might be multi-modal. But the Bayesian approaches still have some drawbacks. First, a very
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Figure 3.1 – Impact of parameter values on smoothing distributions for the L63 model (1.6).
The true state (black curve) and observations (black points) have been simulated with θ =
(Q,R) = (0.01I3, 2I3). The mean of the smoothing distributions (read curve) are computed
using a standard particle smoother [46] with 100 particles. Results are obtained with the true
parameter values θ∗ = (0.01I3, 2I3) (left panel) and wrong parameter values θ̃ = (I3, I3) (right
panel).

large number of iterations is required to get good approximations of the parameter distributions

if a standard Markov Chain Monte Carlo (MCMC) method (see e.g. [4, 86, 102]) is used. In

DA community, [147, 148, 165] proposed Bayesian approaches combined with EnKF algorithms

and obtained approximations of the parameter distributions with a low number of members

and iterations. However, simulating the distributions in high-dimensional SSMs is sometimes

impractical. For example, it is difficult to simulate directly the full model covariance Q which

involves a lot of parameters if the latent state has values in a high dimensional space. To simplify

the problem, Q is typically supposed to have a predefined form, such as the multiplication of a

scalar and a given matrix, and only the scale factor is estimated. In the thesis, we hence focus

on maximum likelihood estimation.

There are two major approaches in the statistical literature to maximize numerically the

likelihood in models with latent variables: Gradient ascent and Expectation-Maximization (EM)

algorithms. As stated in [86] gradient ascent algorithms can be numerically unstable as they

require to scale carefully the components of the score vector and thence the EM approach is

generally favored when considering complicated models such as the ones used in DA. The first

EM algorithm was suggested by [42]. Various variants of the EM algorithm were proposed in

the statistical literature (see e.g. [28, 86, 98, 110, 141] and references therein) and in the DA

53



Chapter 3. A particle-based method for maximum likelihood estimation in nonlinear
state-space models

community (see [50, 106, 126, 152, 156, 164]). The common idea of these algorithms is to run an

iterative procedure where an auxiliary quantity which depends on the smoothing distribution is

maximized at each iteration until a convergence criterion is reached.

Within the EM machinery, the challenging issue is generally to compute the joint smoothing

distribution pθ(x0:T |y1:T ) of the latent state given an entire sequence of observations, where

x0:T = (x0, x1, · · · , xT ). For a linear Gaussian model (e.g. model 1.2), the Kalman smoother

(KS, see Algorithm 1 and Algorithm 2) [143] based on Rauch-Tung-Streibel (RTS) provides an

exact solution to this problem. The difficulty arises when the model is nonlinear (e.g. model 1.3)

and the state does not take its values in a finite state space. In such situations the smoothing

distribution is intractable. To tackle this issue, simulation-based methods were proposed. In

DA, the ensemble Kalman smoother (EnKS) [24,55, 58] and it variants [12, 13, 15] are the most

favoured choices. By implementing the best linear unbiased estimate strategy, this method is

able to approximate the smoothing distribution using only a few simulations of the physical

model (members) at each time step. Unfortunately the approximation does not converge to the

exact distribution pθ(x0:T |y1:T ) for nonlinear SSMs [93]. Particle smoothers have been proposed

as an alternative in [17,23,46,48,69]. However, they demand a huge amount of particles (and thus

to run the physical models many times) to get a good approximation of the target probability

distribution. Since 2010, conditional particle smoothers (CPSs) [99, 101, 102, 150], pioneered

by [4], have been developed as other strategies to simulate the smoothing distribution. Contrary

to the more usual smoothing samplers discussed above, CPSs simulate realizations using an

iterative algorithm. At each iteration, one conditioning trajectory is plugged in a standard

particle smoothing scheme. It helps the sampler to explore interesting parts of the state space

with few particles. After a sufficient number of iterations, the algorithm provides samples

approximately distributed according to the joint smoothing distribution.

In the DA community, EM algorithms have been generally used in conjunction with EnKS

(EnKS-EM algorithm). Recent contributions [50, 126, 156] implement this approach using 20−

100 members and concentrate on estimating the initial state distribution and error covariances.

In the statistical community, the combination of standard or approximate particle smoothers

(PSs) with a large number of particles and EM algorithms (PS-EM) [86, 89, 116, 121, 141] is

preferred. The number of particles is typically in the range 102 − 106 which would lead to

unrealistic computational time for usual DA problems (the number of particles corresponds

to the number of time that the physical model needs to be run at each time step). In [98],
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the author proposed to use a CPS algorithm, named Conditional particle filtering-Ancestor

sampling (CPF-AS, [100]), within a stochastic EM algorithm (CPF-AS-SEM). The authors

showed that the method can estimate Q and R using only 15 particles for univariate SSMs.

However CPF-AS suffers from degeneracy (the particle set reduces to a very few effective

particles) and consequently, the estimated parameters of CPF-AS-SEM have bias and/or large

variance. In the present chapter, we propose to combine another CPS, referred to as Conditional

particle filtering-Backward Simulation (CPF-BS, [102]), with the stochastic EM scheme. The

novel proposed maximum likelihood estimate method, abbreviated as CPF-BS-SEM, aims at

estimating the parameters with few particles and thus reasonable computational costs for DA.

In this chapter we show that our approach has better performances than the EM algorithms

combined with standard PS [141], CPF-AS [98] and EnKS [50]. Numerical illustrations are

compared in terms of estimation quality and computational cost on highly nonlinear models.

The chapter is organized as follows. In Section 3.2, we introduce the main methods used in the

chapter, including smoothing with the CPF-BS smoother and maximum likelihood estimation

using CPF-BS-SEM. Section 3.3 is devoted to numerical experiments and Section 3.4 contains

conclusions.

3.2 Methods

In this section, we first introduce the conditional particle smoother which is the key ingredient

of the proposed method. This smoother is based on conditional particle filtering (CPF) which

is described in Section 3.2.1.1. Standard particle filtering algorithm is also reminded and its

performance is compared to the one of CPF. Section 3.2.1.2 presents iterative smoothing schemes

which are the combinations of CPF and ancestor tracking algorithms. We also analyze benefits

and drawbacks of these filters/smoothers. Then an iterative smoothing sampler based on CPF-

BS is provided as an alternative to the CPF smoothers and their theoretical properties are quickly

discussed in Section 3.2.1.3. Finally, the combination of CPF-BS with the EM machinery for

maximum likelihood estimation is presented in Section 3.2.2.
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3.2.1 Smoothing using conditional particle-based methods

3.2.1.1 Particle Filtering (PF) and Conditional Particle Filtering (CPF)

In the SSM defined by (1.3), the latent state (xt)t=0:T is derived from a Markov process defined

by its prior distribution pθ(x0) and transition kernel pθ(xt|xt−1). Let us remind that the

observations (yt)t=1:T are conditionally independent given the state process and pθ(yt|xt) denotes

the conditional distribution of yt given xt. The transition kernel pθ(xt|xt−1) depends on both

the dynamical model m and the distribution of the model error ηt whereas the conditional

observation distribution pθ(yt|xt) is a function of the observation model h and the distribution

of the observation error εt. In this section we discuss algorithms to approximate the filtering

distribution pθ(xt|y1:t) which represents the conditional distribution of the state at time t given

the observations up to time t. For linear Gaussian models, the filtering distributions are Gaussian

distributions whose means and covariances can be computed using the Kalman recursions. When

SSMs are nonlinear, as it is the typical case for DA applications, the filtering distributions do

not admit a closed form and particle filtering (PF) methods have been proposed to compute

approximations of these quantities [23,47,48]. The general PF algorithm is based on the following

relation between the filtering distributions at time t− 1 and t

pθ(x0:t|y1:t) = pθ(yt|xt) pθ(xt|xt−1)
pθ(yt|y1:t−1) pθ(x0:t−1|y1:t−1) (3.1)

where pθ(yt|y1:t−1) is the normalization term of pθ(x0:t|y1:t). Note that if we are able to compute

the joint filtering distribution pθ(x0:t|y1:t) then it is possible to deduce the marginal filtering

distribution pθ(xt|y1:t) by integrating over all variables x0:t−1.

PF runs with Nf particles to approximate pθ(x0:t|y1:t) recursively in time. Let us suppose

that the filtering process has been done up to time t − 1. Since PF is based on importance

sampling, we now have a system of particles and their corresponding weights {x(i)
0:t−1, w

(i)
t−1}i=1:Nf

which approximates the joint filtering distribution pθ(x0:t−1|y1:t−1). The next step of the algorithm

consists in deriving an approximation

p̂θ (x0:t|y1:t) =
Nf∑
i=1

δ
x

(i)
0:t

(x0:t)w(i)
t (3.2)

of pθ(x0:t|y1:t) based on Eq. (3.1). It is carried out in three main steps (see left panel of Figure 3.2

for an illustration):
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• Resampling. Systematic resampling method (see in [45, 77] for a discussion on different

resampling methods) can be used to reselect potential particles in {x(i)
0:t−1}i=1:Nf . In this

step the filter duplicates particles with large weights and removes particles with small

weights.

• Forecasting. It consists in propagating the particles from time t − 1 to time t with a

proposal kernel πθ(xt|x0:t−1, y1:t).

• Weighting. Importance weights {w(i)
t }i=1:Nf of the particles {x(i)

0:t}i=1:Nf are computed

according to the formula

W (x0:t) = pθ (x0:t|y1:t)
πθ(xt|x0:t−1, y1:t)

(3.1)
∝ pθ (yt|xt) pθ(xt|xt−1)

πθ(xt|x0:t−1, y1:t)
pθ (x0:t−1|y1:t−1) . (3.3)

The entire algorithm of PF is presented in Algorithm 3 and reminded in Algorithm 7 for another

comparing objective hereafter. {Iit}
i=1:Nf
t=1:T in these algorithms are used to store the particle’s

indices across time steps in order to be able to reconstruct trajectories. These variables are key

ingredients in some of the smoothing algorithms presented later.
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Figure 3.2 – Comparison of PF and CPF schemes using Nf = 5 particles (light gray points)
in time window [t− 1, t] on the SSM (1.3). The observation model is the identity function. The
main difference is shown on black quivers as CPF replaces the particle x(Nf )

t with conditioning
particle x∗t (dark gray point).

Note that, in a general PF algorithm, particles can be propagated according to any proposal

distribution πθ. If we choose πθ(xt|x0:t−1, y1:t) = pθ(xt|xt−1) pθ(x0:t−1|y1:t−1) (see [23,48,123,145]
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or Chapter 1 [Section 1.1.2.2] for discussions on the choice of πθ), the importance weight function

(3.3) can be simplified asW (x0:t) ∝ pθ (yt|xt). With this choice, which is referred to as bootstrap

filter in the literature, the forecast step consists in sampling according to the dynamical model

m. It is the favorite choice for testing experiments [23, 95, 124, 169] and it is hence used in this

chapter for numerical illustrations.

Conditional particle filtering (CPF) was introduced the first time by [4] and then discussed by

many authors [99,101,102,150]. The main difference with PF consists in plugging a conditioning

trajectory X∗ = (x∗0, · · · , x∗T ) ∈ X T+1 into a regular filtering scheme. In practice, CPF works

in an iterative environment where the conditioning trajectory X∗ is updated at each iteration.

This is further discussed in the next section. In this section, we assume that X∗ is given. Due

to the conditioning, CPF algorithm differs from the PF algorithm in adding a replacing step

between the forecasting and weighting steps. In this step, one of the particles is replaced by one

conditioning element of the trajectory X∗. It is possible to set this conditioning particle as the

particle number Nf and this leads to updating the position of the particles at time t according

to

x
(i)
t =


x

(i)
t ∼ πθ(xt|x

(Iit)
0:t−1, y1:t), ∀i = 1 : Nf − 1

x∗t , i = Nf .

(3.4)

Similarly to the PF, the reset sample {x(i)
t }i=1:Nf is next weighted according to Eq. (3.3).

In Algorithm 7 we present the differences between PF and CPF algorithms. The additional

ingredients of CPF are highlighted using a gray color.

The general principle of the CPF algorithm is also presented on Figure 3.2. CPF does a

selection between particles sampled from the proposal kernel πθ and the conditioning particle.

We can imagine two opposite situations. If the conditioning particle is "bad" (i.e. far from the

true state) then the filtering procedure will not select it for the next time step by weighting and

resampling. But if conditioning particle is "good" (i.e. close to the true state) then it will have

a high weight and it will be duplicated and propagated at the next time step. This ensures that

if a "good" sequence is used as conditioning trajectory, then the CPF algorithm will explore the

state space in the neighborhood of this trajectory and thus, hopefully, an interesting part of the

state space. This is also illustrated on Figure 3.3 which has been drawn using the Kitagawa

SSM (given in Eq. 1.5). This univariate model was chosen because it is known that it is difficult

to compute accurate approximations of the filtering distribution: the forecasting distribution
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Algorithm 7: Particle Filtering (PF)/Conditional Particle Filtering (CPF).
• Initialization:

+ Sample {x(i)
0 }i=1:Nf

∼ pθ(x0).

+ Set initial weights w(i)
0 = 1/Nf ,∀i = 1 : Nf .

• For t = 1 : T ,

+ Resampling: draw indices {Iit}i=1:N with respect to weights {w(i)
t−1}i=1:N .

+ Forecasting: sample new particle

x
(i)
t ∼ πθ

(
xt|x

(Ii
t )

0:t−1, y1:t

)
,∀i = 1 : Nf .

+ Replacing (only for CPF): set x(Nf )
t = x∗t and INf

t = Nf .

+ Weighting: compute w̃(i)
t = W

(
x

(Ii
t )

0:t−1, x
(i)
t

)
by using Eq. (3.3) then calculate its

normalized weight w(i)
t = w̃

(i)
t

Nf∑
i=1

w̃
(i)
t

, ∀i = 1 : Nf .

end for.

pθ(xt|xt−1) can be bimodal due to the cos-term and the observation operator is quadratic. In

addition, we use a large value of R to get unreliable observations. On the left panel of the

figure, around time t = 17, PF starts to simulate trajectories which are far away from the true

state. All the particles are close to 0 and the dynamical model provides unstable and inaccurate

forecasts. At the same time, the observation yt is unreliable and cannot help to correct the

forecasts. It leads to a bad approximation of the filtering distribution since time t = 18: the

forecast distributions remain far from the true state and the filter gives bad results. CPF gives

better results thanks to a good conditioning trajectory which helps to generate relevant forecasts

(see right panel of Figure 3.3).

When the number of particles Nf is big, the effect of the conditioning particles becomes

negligible and the PF and CPF algorithms give similar results. However, running a particle

filter with a large number of particles is generally computationally impossible for DA problems.

Algorithms which can provide a good approximation of the filtering distributions using only a

few particles (typically in the range 10− 100) are needed. An alternative strategy to PF/CPF

with a large number of particles, based on iterating the CPF algorithm with a low number of

particles, is discussed in the next section.
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Figure 3.3 – Comparisons of PF and CPF performances with 10 particles on the Kitagawa
model (1.5), where T = 30, (Q,R) = (1, 10). Conditioning particles (dark gray points) are
supposed to live around to the true state trajectory (black curve). Gray lines are the links
among particles which have the same ancestor.

3.2.1.2 Smoothing with conditional particle filters

A key input to the CPF algorithm is the conditioning particles of the given trajectory X∗. As

discussed in the previous Section, the "good" conditioning particles must be "close" to the true

state in order to help the algorithm simulates interesting particles in the forecast step with

reasonable computational costs. Remark also that the distribution of the particles simulated

by running one iteration of the CPF depends on the distribution of the conditioning trajectory

X∗. The distribution of X∗ must be chosen in such a way that the output of the CPF is

precisely the smoothing distribution that we are targeting. One solution to this problem can be

found in [4] (see a summary in Theorem 3.2.1): if X∗ is simulated according to the smoothing

distribution then running the CPF algorithm with this conditioning trajectory will provide other

sequences distributed according to the smoothing distributions. A more interesting result for the

applications states that if the conditioning trajectory is "bad", then iterating the CPF algorithm

after a certain number of iterations will provide "good" sequences for X∗ which are distributed

approximately according to the smoothing distribution. At each iteration the conditioning

trajectory X∗ is updated using one of the trajectories simulated by the CPF algorithm at the

previous iteration. The corresponding procedure is described more precisely below.
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Running the CPF algorithm (Algorithm 7) until the final time step T gives a set of particles,

weights, and indices which define an empirical distribution on X T+1,

p̂θ (x0:T |y1:T ) =
Nf∑
i=1

δ
x

(i)
0:T

(x0:T )w(i)
T (3.5)

where x(i)
0:T is one particle path (realization) taken among particles (eg. one continuous gray

link over all time steps on Figure 3.3), w(i)
T is its corresponding weight and i is an index of its

particle at the final time step. The simulation of one trajectory according to Eq. (3.5), is based

on sampling its final particle with respect to the final weights (w(i)
T )i=1:Nf such that

p(xs0:T = x
(i)
0:T ) ∝ w(i)

T . (3.6)

Then, given the final particle, eg. xsT = x
(i)
T , the rest of the path is obtained by tracing the

ancestors (parent, grandparent, etc) of the particle x(i)
T . The information on the genealogy of

the particles is stored in the indices (Iit)
i=1:Nf
t=1:T since Iit is the index of the parent of x(i)

t . The

technique is named ancestor tracking (also presented in statistical literature of standard PF such

as [49]). It is illustrated on Figure 3.4. Given i = 1, the parent of particle x(1)
4 is the particle

x
(I1

4 )
3 = x

(3)
3 , its grandparent is the particle x(I3

3 )
2 = x

(3)
2 and its highest ancestor is x(I3

2 )
1 = x

(2)
1 .

At the end, we obtain one realization xs1:4 = x
(1)
1:4 = (x(2)

1 , x
(3)
2 , x

(3)
3 , x

(1)
4 ).
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Figure 3.4 – An example of ancestor tracking one smoothing trajectory (backward quiver) based
on ancestral links of filtering particles (forward quivers). Particles (gray balls) are assumed to
be obtained by a filtering algorithm with T = 4 and Nf = 3.

In practice the following procedure can be implemented to generate a path xs0:T = x
(JT )
0:T =

(x(J0)
0 , x

(J1)
1 , · · · , x(JT )

T ) according to Eq. (3.5)

• For t = T , draw index JT with p(JT = i) ∝ w(i)
T and set xsT = x

(JT )
T .
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• For t < T , set index Jt = I
Jt+1
t+1 and xst = x

(Jt)
t .

Finally the iterative smoothing algorithm using CPF can be described as follows,

Algorithm 8: Smoothing with Conditional Particle Filtering (CPF).
• Run CPF (Algorithm 7) given X∗ and observations y1:T , with fixed parameter θ and Nf particles.

• Run ancestor tracking procedure Ns times to simulate Ns trajectories according to Eq. (3.5).

• Update the conditioning particle X∗ with one of these trajectories.

According to Theorem 3.2.1 given in [4], this algorithm will generate trajectories which are

approximatively distributed according to the smoothing distribution after a certain number of

iterations, even if a low number of particles is used at each iteration. However, in practice

running one iteration of the CPF algorithm leads to generating trajectories which are generally

almost identical to the conditioning particle [102,150]. The main reason for this is the so-called

degeneracy issue: all the particles present at the final time step T share the same ancestors after

a few generations. This is illustrated on Figure 3.4: all the particles present at time t = 4 have

the same grandparent at time t = 2. This is also visible on the left panel of Figure 3.5. The

resampling makes disappear many particles whereas other particles have many children. As a

consequence, all 10 particles at the final time step T = 30 have the same ancestors for t < 20.

This degeneracy issue clearly favors the conditioning particle which is warranted to survive and

reproduce at each time step. When iterating the CPF algorithm, the next conditioning sequence

is thus very likely to be identical to the previous conditioning sequence, except maybe for the

last time steps. This leads to an algorithm which has a poor mixing and lots of iterations are

needed before converging to the smoothing distribution.

To improve the mixing, [99,101,102] proposed to modify the replacing step of Algorithm 7 as

follows. After setting the final particle x(Nf )
t = x∗t ∈ X∗ to the conditioning particle, the index

of its parent I(Nf )
t is drawn following Bayes’ rule

pθ(I
Nf
t = i|x∗t , y1:t) ∝ pθ(x∗t |x

(i)
t−1) w(i)

t−1. (3.7)

Resampling INft helps to break the conditioning trajectory X∗ into pieces so that the algorithm

is less likely to simulate trajectories which are close to X∗. The different steps of a smoother

using this algorithm referred to as Conditional Particle Filtering-Ancestor Sampling (CPF-AS)

algorithm are given below.
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Figure 3.5 – Comparison for simulating Ns = 10 realizations by using CPF smoother
(Algorithm 8), CPF-AS smoother (Algorithm 9) (both based on particle genealogy- light gray
links) and CPF-BS smoother (Algorithm 10) (based on backward kernel 3.10) given the same
forward filtering pattern with Nf = 10 particles (light gray points). The experiment is run on
the Kitagawa model (1.5) where T = 30 and (Q,R) = (1, 10).

Algorithm 9: Smoothing with Conditional Particle Filtering-Ancestor
Sampling (CPF-AS).

• Run CPF (Algorithm 7) wherein indices of conditional particles (INf

t )t=1:T are resampled with
the rule (3.7), given X∗ and observations y1:T , with fixed parameter θ and Nf particles.

• Run ancestor tracking procedure Ns times to get Ns trajectories among particles of the CPF-AS
algorithm.

• Update the conditioning particle X∗ with one of these trajectories.

In the above-mentioned references, it is shown empirically that this algorithm is efficient

to simulate trajectories of the smoothing distribution with only 5 − 20 particles. It is also

proven that it has the same good theoretical properties (see Theorem 3.2.1) as the original

CPF algorithm and that running enough iterations of the CPF-AS algorithm, starting from any

conditioning particle X∗, permits to generate trajectories which are approximately distributed

according to the smoothing distribution.

The comparison of the left and middle panels of Figure 3.5 shows that resampling the

indices permits to obtain ancestor tracks which are different from the conditioning particles.

However, like CPF smoother (Algorithm 8), tracking ancestral paths in the CPF-AS smoother

(Algorithm 9) still suffers from the degeneracy problem mentioned above. It implies that the

Ns trajectories simulated at one iteration of the CPF-AS generally coincide, except for the last

time steps, and thus give a poor description of the smoothing distribution. This is illustrated

on Figure 3.5: all the trajectories simulated with the CPF-AS coincide for t < 20 and thus

cannot describe the spread of the smoothing distribution. In practice, many particles which are
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simulated with the physical model in the forecast step are forgotten when running the ancestor

tracking and it leads to waste information and computing resources for DA applications. In the

next section, we present conditional particle smoother wherein ancestor tracking is replaced by

backward simulation in order to better use the information contained in the particles.

3.2.1.3 Smoothing with Conditional particle filter-Backward simulation (CPF-BS)

Backward simulation (BS) was first proposed in the statistical literature in association with

the regular particle filter [46, 49, 69]. Recently BS was combined with conditional smoothers

[101,102,171]. In the framework of these smoothers, the smoothing distribution pθ(x0:T |y1:T ) is

decomposed as

pθ (x0:T |y1:T ) = pθ (xT |y1:T )
T−1∏
t=0

pθ (xt|xt+1, y1:t) , (3.8)

where

pθ(xt|xt+1, y1:t) ∝ pθ (xt+1|xt) pθ (xt|y1:t) (3.9)

is the so-called backward kernel. Given the particles (x(i)
t )i=1:Nf

t=0:T and the weights (w(i)
t )i=1:Nf

t=0:T

of the CPF algorithm (Algorithm 7) we obtain an estimate (3.2) of the filtering distribution

pθ (xt|y1:t). By plugging this estimate in (3.9), we deduce the following estimate of the backward

kernel

p̂θ (xt|xt+1, y1:t) ∝
Nf∑
i=1

pθ(xt+1|x(i)
t )w(i)

t δx(i)
t

(xt) (3.10)

Using the relation (3.8) and the estimate (3.10), one smoothing trajectory xs0:T = xJ0:T
0:T =

(x(J0)
0 , x

(J1)
1 , · · · , x(JT−1)

T−1 , x
(JT )
T ) can be simulated recursively backward in time as follows.

• For t = T , draw JT with p(JT = i) ∝ w(i)
T .

• For t < T ,

+ Compute weights ws,(i)t = pθ(x
(Jt+1)
t+1 |x(i)

t ) w(i)
t using (3.10), for all i = 1 : Nf .

+ Sample Jt with p(Jt = i) ∝ ws,(i)t .

end for

To drawNs distinct realizations we just need to repeatNs times the procedure. The performance

of BS given outputs of one run of the CPF algorithm is displayed on Figure 3.5 and the complete

smoother using CPF-BS is described below (Algorithm 10).

Figure 3.6 illustrates how the iterative CPF-BS smoother works and performs on the Kitagawa

model. The smoothing procedure is initialized with a "bad" conditioning trajectory (x∗t = 0 for
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Algorithm 10: Smoothing with Conditional Particle Filtering-Backward
Simulation (CPF-BS).

• Run CPF (Algorithm 7) given (X∗, Y ) with Nf particles and fixed parameter θ.

• Run BS procedure Ns times provided the forward filtering outputs to sample Ns trajectories.

• Update the conditioning trajectory X∗ with one of these trajectories.

t ∈ {0, ..., T}). This impacts on the quality of the simulated trajectories which are far from

the true state at the first iteration. Similar issues usually occur when running regular particle

smoothers (such as Particle Filtering-Backward Simulation, PF-BS, see [46, 69]) with a small

number of particles. The conditioning trajectory is then updated and it helps to drive the

particles to interesting parts of the state space. After only 3 iterations, the simulated trajectories

stay close to the true trajectory. Note that only 10 particles are used at each iteration.
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Figure 3.6 – Performance of an iterative CPF-BS smoother (Algorithm 10) with Nf = 10
particles in simulating Ns = 10 realizations. The experiment is on the Kitagawa model (1.5)
where (Q,R) = (1, 10), T = 30. The smoother given a zero-initial conditioning (X∗ = 0 ∈ RT )
is run within 3 iterations. For each iteration the conditioning trajectory X∗ is one of realizations
obtained from the previous.

Algorithms 8, 9 and 10 generate a new conditioning trajectory at each iteration and this

defines a Markov kernel on X T+1 since the conditioning trajectory obtained at one iteration

only depends on the conditioning particle at the previous iteration. Theorem 3.2.1 shows that
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these Markov kernels have interesting theoretical properties (see also [33] for more results).

This theorem was first proven for the CPF smoother in [4]. These results were then extended

to CPF-BS in [101] and to CPF-AS in [99] with some extensions to solving inverse problems in

non-Markovian models.

Theorem 3.2.1 For any number of particles (Nf ≥ 2) and a fixed parameter θ ∈ Θ,

i. Markov kernel Kθ defined by one of conditional smoothers (CPF: Algorithm 8, CPF-

AS: Algorithm 9 and CPF-BS: Algorithm 10) leaves the invariant smoothing distribution

pθ(x0:T |y1:T ). That is, for all X∗ ∈ X T+1 and A ⊂ X T+1,

pθ(A|y1:T ) =
∫
Kθ(X∗, A) pθ(X∗|y1:T ) dX∗ (3.11)

where Kθ(X∗, A) = Eθ,X∗
[
1A(xJ0:T

0:T )
]
, and xJ0:T

0:T = {x(J0)
0 , · · · , x(JT )

T }.

ii. The kernel Kθ has pθ- irreducible and aperiodic. It hence converges to pθ(x0:T |y1:T ) for

any starting point X∗. Consequently,

‖Krθ(X∗, ·)− pθ(·|y1:T )‖TV
r→∞ as−→ 0. (3.12)

where ‖ · ‖TV is the total variation norm.

Proof 3.2.1 Theorem 3.2.1 in this chapter was proved corresponding to Theorem 5 in [4]

for CPF (Algorithm 8), Theorem 1 and Theorem 2 in [99] for CPF-AS (Algorithm 9), and

Theorem 1 in [101] for CPF-BS (Algorithm 10).

The second property of this theorem implies that running the algorithm with any initial conditioning

trajectory will permit to simulate samples distributed approximately according to the smoothing

distribution after a sufficient number of iterations. However, in practice, the choice of a good

initial trajectory is very important, in particular when the considered state space is complex

(high nonlinearity, partly observed components,...). If we set an initial conditioning trajectory

far from the truth, then lots of iterations are needed before exploring a space relevant to the

true state. In such situations, it may be useful to provide an estimate of the true state using an

alternative method (e.g. running another smoothing algorithm such as EnKS).

Despite sharing the same theoretical properties as the CPF and CPF-AS smoothers, we will

show in Section 3.3 that CPF-BS algorithm gives better results in practice. This is due to its
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ability to avoid the degeneracy problem and hence provide better descriptions of the smoothing

distribution. At first glance, the computational cost of the backward technique seems to be

higher than the one of ancestor tracking. Nevertheless, for DA applications, the computational

complexity mainly comes from the numerical model which is used to propagate the Nf particles

in the forecast step. In addition, the transition probability in the backward kernel (3.10) can be

computed by reusing the forecast information and does not require extra runs of the physical

model. The computational cost of the CPF-BS algorithm is thus similar to the ones of CPF or

CPF-AS algorithms and grows linearly with Nf .

Recently the CPF-BS with few particles (5−20) has been used to sample θ and simulate the

latent state in a Bayesian framework [99,101,102,150]. In the next section, we propose to use the

CPF-BS smoother to perform maximum likelihood estimation which is the main contribution

of this chapter.

3.2.2 Maximum likelihood estimate using CPF-BS

In this section, we discuss the estimation of the unknown parameter θ given a sequence of

measurements y1:T of the SSM (1.1). The inference will be based on maximizing the incomplete

likelihood of the observations,

L(θ) = pθ(y1:T ) =
∫
pθ (x0:T , y1:T ) dx0:T . (3.13)

The EM algorithm is the most classical numerical method to maximize the likelihood function

in models with latent variables [28,42]. It works following the auxiliary function

G(θ, θ′) = Eθ′ [ln pθ (x0:T , y1:T )] (3.14)

=
∫

ln pθ (x0:T , y1:T ) pθ′ (x0:T |y1:T ) dx0:T (3.15)

Due to Markovian assumption of the SSM (1.1) and independence properties of noises (εt, ηt)

and the initial state x0, the complete likelihood pθ(x0:T , y1:T ) which appears in (3.14) can be

decomposed as

pθ(x0:T , y1:T ) = pθ (x0)
T∏
t=1

pθ (xt|xt−1)
T∏
t=1

pθ (yt|xt) . (3.16)
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The auxiliary function G(.|θ′) is typically much simpler to optimize than the incomplete

likelihood function and the EM algorithm consists in maximizing iteratively this function.

Starting from an initial parameter θ0 an iteration r of the EM algorithm has two main steps:

• E-step: compute the auxiliary quantity G(θ, θr−1),

• M-step: compute θr = arg max
θ
G(θ, θr−1).

It can be shown that it leads to increasing the likelihood function at each iteration and gives a

sequence which converges to a local maximum of L.

The EM algorithm combined with Kalman smoothing (KS-EM, [143]) has been the dominant

approach to estimate parameters in linear Gaussian models. In nonlinear and/or non-Gaussian

models, the expectation (3.14) under the distribution pθ′(x0:T |y1:T ) is generally intractable and

the EM algorithm cannot work in such situation. An alternative, originally proposed in [28,29,

170], is to use a Monte Carlo approximation of (3.14)

Ĝ(θ, θ′) = 1
Ns

Ns∑
j=1

ln pθ
(
xj0:T , y1:T

)
, (3.17)

where (xj0:T )j=1,...,Ns are Ns trajectories simulated according to the smoothing distribution

pθ′ (x0:T |y1:T ). This algorithm is generally named Stochastic EM (SEM) algorithm in the

literature.

To implement such a procedure it is necessary to generate samples of the smoothing distribution.

In the literature [86,89,116,121,141], standard or approximate particle smoothing methods are

generally used. As discussed, it is generally computationally intractable for DA applications. A

classical alternative in DA consists in using the EnKS algorithm [58] leading to the EnKS-EM

algorithm [50,156]. Note that this procedure does not necessarily lead to increasing the likelihood

function at each iteration and may not converge. Here we explore alternative procedures based

on the smoothers introduced in the previous section.

[98] proposed to use the CPF-AS smoother in an SEM-like algorithm. Here we present its

original SEM version, leading to the CPF-AS-SEM algorithm. Given an initial parameter θ̂0

and the first conditioning X∗0 , the algorithm is summed up as follows

• E-step:
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i. Draw Ns realizations by using the CPF-AS smoother (Algorithm 9) once with fixed

parameter θ̂r−1, the conditioning X∗r−1 and the given observations y1:T , wherein X∗r
is new conditioning trajectory obtained after updating.

ii. Compute the quantity Ĝ(θ, θ̂r−1) via Eq. (3.16) and Eq. (3.17).

• M-step: Compute θ̂r = arg max
θ

Ĝ(θ, θ̂r−1),

For each iteration r, Ns smoothing trajectories are sampled given the previous conditioning

trajectory X∗r−1. It creates some (stochastic) dependence between the successive steps of the

algorithms. This leads to such algorithm slightly different from regular EM algorithms. In [98]

the author applied a similar algorithm to univariate models. Numerical results showed that this

approach can give reasonable estimates with only few particles. Unfortunately, the degeneracy

issue in the CPF-AS sampler may lead to estimates with some bias and large variance.

As discussed in the previous section, the CPF-BS smoother (Algorithm 10) outperforms the

CPF-AS in producing better descriptions of the smoothing distribution. We hence propose a

new method, CPF-BS-SEM, as an alternative to the CPF-AS-SEM for parameter estimation.

The complete algorithm of the CPF-BS-SEM is presented as

Algorithm 11: Stochastic EM algorithm using Conditional Particle Filtering-
Backward Simulation (CPF-BS-SEM).

• Initial setting: θ̂0, X∗0 .

• For iteration r ≥ 1,
+ E-step:

i. Simulate Ns samples by running CPF-BS smoother (Algorithm 10) once with fixed
parameter θ̂r−1, the conditioning X∗r−1 and the given observations y1:T , wherein X∗r is new
conditioning trajectory obtained after updating.

ii. Compute the quantity Ĝ(θ, θ̂r−1) via Eq. (3.16) and Eq. (3.17).

+ M-step: compute θ̂r = arg max
θ

Ĝ(θ, θ̂r−1).
end for.

The E-step of this algorithm permits to get several samples at the same computational

cost that the one of CPF-AS-SEM which suffers from degeneracy. That is expected to give

better estimates of the quantity G in Eq. (3.17). Depending on the complexity of the SSM, the

analytical or numerical procedure may be applied in the M-step to maximize Ĝ. For Gaussian

SSMs, the explicit expressions of estimators can be obtained directly as in the following example.
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Such models have popularly been considered in DA context and are thus used to validate the

algorithms in this chapter.

Example: Estimate parameter θ = {Q,R} in a Gaussian model


xt = m(xt−1) + ηt, ηt ∼ N (0, Q)

yt = h(xt) + εt, εt ∼ N (0, R) .
(3.18)

where m and h can be linear or nonlinear functions.

Through Eq. (3.16) and (3.17), an estimate of the function G of this Gaussian model is expressed

by

Ĝ(θ, θ̂r−1) =− T

2 ln |Q| − T

2 ln |R|+ C

− 1
2Ns

T∑
t=1

Ns∑
j=1

[
xjt −m

(
xjt−1

)]>
Q−1

[
xjt −m

(
xjt−1

)]

− 1
2Ns

T∑
t=1

Ns∑
j=1

[
yt − h

(
xjt

)]>
R−1

[
yt − h

(
xjt

)]
(3.19)

where C is independent to θ and (xjt )
j=1:Ns
t=0:T are sampled from the CPF-BS smoother with respect

to θ̂r−1. Hence, an analytical expression of the estimator θ̂r = {Q̂r, R̂r} of θ which maximizes

(3.19) is

Q̂r = 1
TNs

T∑
t=1

Ns∑
j=1

[
xjt −m

(
xjt−1

)] [
xjt −m

(
xjt−1

)]>
,

R̂r = 1
TNs

T∑
t=1

Ns∑
j=1

[
yt − h

(
xjt

)] [
yt − h

(
xjt

)]>
. (3.20)

Different strategies have been proposed in the literature for choosing the number Ns of

simulated trajectories in the E-step. If Ns is large, then the law of large numbers implies that Ĝ

is a good approximation of G and the SEM algorithm is close to the EM algorithm. It is generally

not possible to run the SEM algorithm with a large value of Ns. In such situation, it has been

proposed to increase the value of Ns at each iteration of the EM (Monte Carlo EM algorithm,

MCEM, see [28,170]) or to reuse the smoothing trajectories simulated in the previous iterations

(stochastic approximation EM algorithm, SAEM, see [41, 90, 149]). It permits to decrease the

variance of the estimates obtained with the SEM algorithms. For DA applications, it is generally

computationally infeasible to increase significantly the value of Ns but the SAEM strategy could
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be explored. In the thesis, we only consider the combination of SEM and CPF-BS to facilitate

the reading.

3.3 Numerical illustrations

Now we aim at validating the CPF-BS-SEM algorithm and comparing it with other EM algorithms

including CPF-AS-SEM, PF-BS-SEM and EnKS-EM (such algorithms are presented in the

mentioned references: [98,141] and [50] respectively). This is done through numerical experiments

on three SSMs. A univariate linear Gaussian model (1.2) is first considered. For this model,

the KS-EM algorithm can be run to provide an exact numerical approximation to the MLE and

check the accuracy of the estimates derived from the SEM algorithms. Next more complicated

nonlinear models (Kitagawa (1.5) and L63 (1.6)) are considered. We focus on showing the

comparisons in terms of parameter and state estimation of the CPF-BS-SEM and CPF-AS-

SEM algorithms with few particles on these highly nonlinear models, where we also point out

the inefficiency of the EnKS-EM algorithm.

3.3.1 Linear model

A linear Gaussian SSM is defined as in Eq. (1.2) where (xt, yt)t=1:T ∈ R× R, (Mt = A,Ht = 1)

and noise variances (Q,R) are constant. Let us denote θ = (A,Q,R) the vector of unknown

parameters. Implementations of stochastic version of the EM algorithms for this model are

discussed in [86, 98, 116]. A sequence of measurements y1:T is obtained by running (1.2) with

true parameter value θ∗ = (0.9, 1, 1) and T = 100 (shown on Figure 3.9). We set up the initial

conditioning trajectory X∗0 (only for the CPF-BS-SEM and CPF-AS-SEM algorithms) as the

constant sequence equal to 0 (the same choice is done for the models considered in Sections 3.3.2

and 3.3.3) and the initial parameter θ̂0 is sampled from a uniform distribution U([0.5, 1.5]3).

For the first experiment, the CPF-BS-SEM and CPF-AS-SEM algorithms are run with Nf =

Ns = 10 particles/realizations. Since the considered algorithms are stochastic, each of them is

run 100 times to show the estimators distributions. Note that in the M-step, the coefficient A

can be easily computed using Eq. (3.19) before computing estimates of (Q,R) with Eq. (3.20).

Figure 3.7 shows the distribution of the corresponding estimator of θ every 10 iterations. Because

the model is linear and Gaussian, we can also run the KS-EM [143] algorithm to get an accurate

approximation of the true MLE of θ. The estimate given by the KS-EM algorithm is shown on

Figure 3.7. The differences with the true values of parameters are mainly due to the sampling
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error of the MLE which is relatively important here because of the small sample size (only 100

observations to estimate 3 parameters). In the experiment, the CPF-BS-SEM and CPF-AS-SEM

algorithms start to stabilize after only 10 iterations. Even with few particles, both algorithms

provide estimates which have mean values close to the true MLE. As expected, CPF-BS-SEM

is clearly better than CPF-AS-SEM in terms of variance.
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Figure 3.7 – Comparison between CPF-BS-SEM and CPF-AS-SEM in estimating θ = (A,Q,R)
for the linear Gaussian SSM model (1.2) with true parameter θ∗ = (0.9, 1, 1) and T = 100. The
results are obtained by running 100 repetitions of the two methods with 10 particles/realizations
and 100 iterations. The empirical distribution of parameter estimates is represented every 10
iterations using one violin object with (black) quantile box and (white) median point inside.
The true MLE (dotted line) is computed using KS-EM with 104 iterations.

Then we compare the CPF-BS-SEM, CPF-AS-SEM and PF-BS-SEM algorithms varying

the number of particles/realizations, Nf = Ns ∈ {10, 100, 1000}. The empirical distributions

of the final estimators θ̂100 obtained by the different algorithms are shown on Figure 3.8. The

PF-BS-SEM algorithm with Nf = Ns = 10 or even Nf = Ns = 100 particles/realizations leads

to estimates with a significant bias which is much bigger than the ones of other algorithms. It

illustrates that the PF-BS-SEM algorithm based on the usual PF needs much more particles

than the two other algorithms which use the idea of CPF. With Nf = 1000 particles, the PF-

BS-SEM and CPF-BS-SEM give similar results since the effect of the conditioning trajectory
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becomes negligible. Then comparing the performances of the CPF-BS-SEM and CPF-AS-SEM

algorithms shows again that CPF-BS-SEM is better in terms of variance. The experiment was

done on different T -sequences of measurements and similar results were obtained.
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Figure 3.8 – Comparison of the estimates of θ = (A,Q,R) at iteration 100 of CPF-BS-
SEM, CPF-AS-SEM, and PF-BS-EM for the linear Gaussian SSM model (1.2) with true
parameter θ∗ = (0.9, 1, 1) and T = 100. These algorithms are run with different number of
particles/trajectories (Nf = Ns ∈ {10, 100, 1000}). The true MLE (dotted line) is computed
using KS-EM with 104 iterations.

The reconstruction ability of the CPF-BS-SEM algorithm is displayed on Figure 3.9. 100

iterations of the algorithm is run once and the Ns = 10 trajectories simulated in each E-step

of the last 10 iterations are stored. This produces 100 trajectories. Then empirical mean and

95% confidence interval (CI) of these 100-samples are computed and plotted on Figure 3.9. The

root of mean square error (RMSE) between the smoothed mean and the true state is 0.6996 and

the empirical coverage probability (percentage of the true states falling in the 95% CIs denoted

CP hereafter) is 86%. In theory, the value should be close to 95%, here, the CPF-BS-SEM

algorithm with non-large samples run on the short-fixed sequence of observations may give a

smaller estimate of the score. An experiment to get the expected percentage is presented later

(Table 3.1).
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Figure 3.9 – Reconstruction of the true state for the linear Gaussian SSMmodel (1.2) given T =
100 observations using the CPF-BS-SEM algorithm with 10 particles/realizations. Smoothed
mean and 95% confidence interval are computed from realizations, which are simulated from
last 10 iterations of the algorithm.

3.3.2 Kitagawa model

The algorithms are now applied on a highly nonlinear system widely considered in the literature

to perform numerical illustrations on SSM [48, 69, 88, 89, 141]. Both m and h of the model are

nonlinear and defined as in Eq. (1.5) where (xt, yt)t=1:T ∈ R × R. We denote θ = (Q,R) the

unknown parameter. One sequence of T = 100 observations generated with true parameter

value θ∗ = (1, 10) is shown on Figure 3.12. Similar values are used in [69]. The large value

of the observation variance R leads to generate low quality observations and thus complicate

the inference. Using only these 100 observations y1:100, the target is to estimate θ and the

true state x1:100. The initial parameter value is simulated according to the uniform distribution

θ̂0 ∼ U([1, 10]2).

In this section, we only compare the CPF-BS-SEM and CPF-AS-SEM algorithms since PF-

BS-SEM cannot work with a small number of particles (as shown in the linear case) and [98] also

illustrated that CPF-AS-SEM using Nf = 15 particles outperforms PF-BS-SEM using Nf =

1500 particles and Ns = 300 realizations on the Kitagawa model. In the first experiment CPF-

BS-SEM and CPF-AS-SEM are run with Nf = Ns = 10 particles/realizations. A comparison

of the two methods in terms of estimates of log likelihood and parameter θ = (Q,R) is shown

in Figure 3.10. Even with few particles the estimates obtained with the two methods seem

to stabilize after 50 iterations and again the CPF-BS-SEM algorithm permits to reduce the

variance of the estimates compared to the CPF-AS-SEM algorithm.

In the second experiment we run the two algorithms with fixed number of particles (Nf = 10)

but different numbers of realizations (Ns ∈ {1, 5, 10}). Figure 3.11 displays the corresponding
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Figure 3.10 – Comparison of the CPF-BS-SEM and CPF-AS-SEM algorithms on the Kitagawa
model (1.5), where true parameter is θ∗ = (1, 10) and number of observations is T = 100. The
results are obtained by running 100 times of these methods with 10 particles/realizations and 100
iterations. The empirical distribution of parameter estimates is represented every 10 iterations
using one violin object with (black) quantile box and (white) median point inside.

empirical distributions of θ̂100. It shows that CPF-AS-SEM gives almost the same distributions

of estimates as CPF-BS-SEM with Ns = 1. Moreover CPF-AS-SEM could not improve the

estimate when we increase Ns because of the degeneracy issue. CPF-BS-SEM with Ns = 5 and

Ns = 10 gives better estimates in terms of bias and variance. In practice it seems useless to use

a large value of Ns when using BS given forward filtering information. Here CPF-BS-SEM with

Ns = 5 has similar performance as CPF-BS-SEM with Ns = 10 (see also [69,102,150]).

Figure 3.12 shows the results obtained when reconstructing the latent space using the CPF-

BS-SEM algorithm (using the same approach than for the linear model, based on storing the

sequences simulated in the last 10 iterations of the algorithm). The mean of the empirical

smoothing distribution seems to be close to the true state. The width of the confidence intervals

varies in time and is larger (eg. at t ∈ [85, 90]) when the true state is more difficult to retrieve

from the observations. The RMSE and the empirical CP with respect to the empirical smoothing

distribution are 2.2478 and 84%.

3.3.3 Lorenz 63 model

In this section we consider the L63 model Eq. (1.6) where only the first and last components

are observed. The dynamical model m is related to the [107] model defined through the ODE

system (1.7),
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Figure 3.11 – Comparison of the estimates of θ = (Q,R) at iteration 100 of the CPF-BS-SEM
and CPF-AS-SEM algorithm on the Kitagawa model (1.5), where true parameter is θ∗ = (1, 10)
and number of observations is T = 100. The algorithms are run with fixed number of particles
(Nf = 10) and different number of trajectories (Ns ∈ {1, 5, 10}).

In order to compute m(xt−1), we run a Runge-Kutta scheme (order 5) to integrate the

system (1.7) on the time interval [0, dt] with initial condition xt−1. The value of dt affects the

nonlinearity of the dynamical model m (see top panels of Figure 2.4). For the sake of simplifying

illustrations, error covariances are assumed to be diagonal. More precisely we assume that

Q = σ2
QI3 and R = σ2

RI2 and the unknown parameter to be estimated is θ = (σ2
Q, σ

2
R) ∈ R+×R+.

Note that an analytical solution can be derived for the M-step of the EM algorithm in this

constrained model. It leads to the following expression for updating the parameters in the

iteration r of the EM algorithm

θ̂r =
(
σ̂2
Q,r, σ̂

2
R,r

)
=
(

Tr[Q̂r]
3 ,

Tr[R̂r]
2

)
(3.21)

where Q̂r and R̂r come from Eq. (3.20). The initial parameter value of the EM algorithm is

drawn using a uniform distribution θ̂0 ∼ U([0.5, 2]× [1, 4]).

For the first experiment we simulate T = 100 observations of the L63 model (1.6) with the

model time step dt = 0.15 (it corresponds to around 20 loops of the L63 system) and true

parameter θ∗ = (1, 2) (shown on Figure 3.15). The CPF-BS-SEM and CPF-AS-SEM algorithms

are compared on Figure 3.13. With only Nf = Ns = 20 particles/realizations, these two methods

provide reasonable estimates of the parameters. The comparison has been done in different

scenarios, with varying true parameter values θ∗, and similar results were obtained. A lower
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Figure 3.12 – Reconstruction of the true state using CPF-BS-SEM with 10
particles/realizations on the Kitagawa model (1.5) given T = 100 observations. Smoothed
means and 95% confidence intervals of all realizations simulated from the last 10 iterations of
the algorithm are presented.

number of particles and realizations (eg. Nf = Ns = 10) can be used in these SEM algorithms

but more iterations are needed (eg. 200) to obtain appropriate conditioning trajectories.
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Figure 3.13 – Comparison between CPF-BS-SEM and CPF-AS-SEM on the L63 model (1.6)
with model time step dt = 0.15, true parameter θ∗ = (1, 2) and T = 100 observations. Results
obtained by running 100 repetitions of these methods with 20 particles/realizations and 100
iterations. The empirical distribution of parameter estimates is represented every 10 iterations
using one violin object with (black) quantile box and (white) median point inside.

In the second experiment, we also compare the results obtained with the ones of the EnKS-

EM algorithm. The EnKS-EM algorithm with a low number of N of members often gets

numerical issues when computing empirical covariances. Values of N in the range [20, 1000]

has been chosen in lots of DA schemes using EnKS [50,58,95,126,156,163,164]. We have chosen

to run the three algorithms with 20 members/particles to have comparable computational costs.

The experiment is run on different simulated sequences of length T = 100, where the model
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time step in (1.7) varies dt ∈ {0.01, 0.08, 0.15}. According to Figure 3.14, the CPF-BS-SEM

algorithm gives better estimates compared to the CPF-AS-SEM and EnKS-EM algorithms.

The bias and variance of the estimates obtained with the three algorithms increase with dt

representing the nonlinearity of the dynamic model. Note that the discrepancy increases quicker

for the EnKS-EM algorithm. We found that it completely fails when dt = 0.25 whereas the CPF-

BS-SEM and CPF-AS-SEM algorithms still give reasonable estimates (not shown; the Python

library is available for such tests). This illustrates that the EnKS-EM algorithm is less robust

to nonlinearities compared to the two algorithms based on the conditional particle filter.
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Figure 3.14 – Comparison of the estimates of θ = (σ2
Q, σ

2
R) for the CPF-BS-SEM, CPF-AS-

SEM and EnKS-EM algorithms with 20 members/particles for the L63 models (1.6) with varying
model time step dt ∈ {0.01, 0.08, 0.15}, true parameter θ∗ = (1, 2) and number of observations
is T = 100. Each empirical distribution of the estimates of θ is computed using 100 repetitions
of each algorithm at the final iteration r = 100.

Figure 3.15 shows the results obtained when reconstructing the latent space using the CPF-

BS-SEM algorithm (using the same approach as for the linear model, based on storing the

sequences simulated in the last 10 iterations of the algorithm). The smoothed means of three

variables are close to the true state and RMSEs for each component are (0.8875, 1.0842, 1.2199).

95% CIs cover the true state components with respect to CPs (87%, 84%, 88%). Although the

second variable x2 is unobserved the algorithm provides a reasonable reconstruction of this

component.

Finally, we perform a cross-validation exercise to check the out-of-sample reconstruction

ability of the proposed method. Two sequences of the observations consisting of a learning

sequence with length T = 100 and a test sequence with length T ′ = 1000 are simulated by
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Figure 3.15 – Reconstruction of the true state for the L63 model (1.6) with dt = 0.15, T = 100
by using the CPF-BS-SEM algorithm with 20 particles/realizations. Smoothed mean and 95%
confidence interval of all realizations of the last 10 iterations of the algorithm are computed.

the L63 model (Eq. 1.6) with the true parameter values. Given the learning sequence, we first

run the CPF-BS-SEM and the CPF-AS-SEM algorithms for estimating parameters. The mean

values of the final estimates shown on Figure. 3.13 are computed. This provides point estimates

of the unknown parameters. Then the CPF-BS and CPF-AS algorithms are run on another

test sequence of observations with their corresponding estimated parameters. This provides an

estimate of the smoothing distribution. Table 3.1 gives RMSEs and CPs for the unobserved

component of all smoothing samples with respect to number of iterations in {5, 10, 50, 100}. As

expected the CPs of the two algorithms tend to 95% when the number of samples is large enough.

The CPF-BS smoother clearly outperforms the CPF-AS as it gets smaller RMSEs and larger

CPs with a small number of iterations and thus less computational cost. Similar conclusions

hold true when comparing the scores for the first and third components (results not shown here).
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Table 3.1 – Comparison of the reconstruction quality between the CPF-BS and CPF-AS
smoothers on a test sequence in terms of root of mean square error (RMSE) and coverage
probability (CP). The parameters are estimated on a sequence of length T = 100 (mean values
of the final estimates shown on Figure 3.13). The CPF-BS and CPF-AS algorithms are run on
a test sequence simulated using the L63 model (1.6) with dt = 0.15, T ′ = 1000, θ∗ = (1, 2). The
two scores are computed on the second component of the samples drawn from these smoothers
with 20 particles/realizations.

number of iterations 5 10 50 100

CPF-BS RMSE 1.5310 1.2507 1.0098 0.9891
CP 83.8% 88.6% 94.3% 95.7%

CPF-AS RMSE 2.1595 1.5711 1.0125 0.9769
CP 58.9% 78.5% 92.0% 94.8%

3.4 Conclusions

In this chapter, we show for SSMs with non-large dimension, CPF-BS and CPF-AS algorithms

permit to simulate conditioning trajectories of the latent state given observations with a low

number of particles (5 − 20, see also in [4, 99, 101, 102, 150]) compared to the standard particle

smoother algorithms. That encourages to apply CPF-based smoothing algorithms in DA contexts.

Compared to the EnKS, these algorithms permit to consider highly nonlinear and/or non-

Gaussian SSMs. The CPF-BS sampler leads to a better description of the smoothing distribution

at the same computational cost as the CPF-AS which only permits to generate one trajectory.

Combined with EMmethodology, it provides an efficient method to estimate the parameters such

as error covariances. It also permits a better estimation of the uncertainty on the reconstructed

trajectories in DA.
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models
Inference problems such as state reconstruction, parameter identification and system control

involving nonlinear state-space models with no close form nor any expression as a system of

ODEs are clearly analytically intractable. To tackle the issues, an original algorithm combining

sequential Monte Carlo method and non-parametric estimation with a stochastic Expectation-

Maximization optimization algorithm is proposed. The algorithm allows to retrieve an estimation

of the dynamical model, of the posterior distribution of the state and of the variance of the

observation error from a noisy time series (or a time series observed with errors in measurements).

In the chapter, we first motivate the objectives, then we describe the algorithm and an extensive

simulation study illustrates results obtained.

4.1 Introduction

One of the classical problems in time series analysis consists in identifying a dynamical model

from noisy data. Ignoring the noise in the inference procedure may lead to biased estimates

for the dynamics, and this becomes more and more problematic when the signal-to-noise ratio

increases.

State-space models (SSMs) provide a natural framework to study time series with

observational noise in environment, economy, computer sciences, etc [51,118,160]. Some applications

include data assimilation, system identification, model control, change detection, missing-data
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imputation [5, 24,59]. Here we recall a general SSM defined through the following equations,

 Xt = m (Xt−1) + ηt, [hidden] (4.1)

Yt = H(Xt) + εt, [observed]. (4.2)

The latent process {Xt} is a Markov chain whose transition kernel p (xt|xt−1) depends on the

deterministic model m and the distribution of the white noise {ηt}. The observations {Yt}

are assumed to be conditionally independent given the latent process. And the conditional

probability distribution function of Yt given Xt = xt, denoted by p(yt|xt), describes the link

between the latent space and the observations. It depends on the deterministic function h and

the distribution of the white noise sequence {εt}, which is assumed to be independent of {ηt}.

Throughout this chapter we assume that H is known (typically H(x) = x) and that the white

noise sequences have Gaussian distributions with ηt ∼ N (0, Q) and εt ∼ N (0, R). The Gaussian

assumption is a classical assumption for many applications but the proposed methodology is

general enough to handle the non-Gaussian case. We assume that the covariance matrices Q

and R, which describe respectively the level of noise in the dynamics and in the observations,

depend on an unknown parameter θ.

In this chapter, we are interested in situations where the dynamical model m is unknown

or numerically intractable. To deal with this issue, a classical approach consists in using a

simpler parametric model to replace m. However, it is generally difficult to find an appropriate

parametric model which can reproduce all the complexity of the phenomenon of interest. In order

to enhance the flexibility of the methodology and simplify the modeling procedure, we propose

in this chapter to use a non-parametric approach to estimate m. Such non-parametric SSMs

were originally proposed by [95,154,155] for data assimilation in oceanography or meteorology.

In these application fields, a huge amount of historical datasets recorded using remote and in-

situ sensors or obtained through numerical simulations is now available and this promotes the

development of data-driven approaches. A non-parametric estimate m̂ of m was built using

the available observations and the other quantities which appear in Eq. (4.1) (distribution of

ηt and conditional distribution p(yt|xt)) were assumed to be known). This non-parametric

estimate was plugged into usual filtering and smoothing algorithms to reconstruct the latent

space X0:T = (X0, ..., XT ) given observations y1:T = (y1, ..., yT ). It was checked, using numerical

experiments on toy models, that replacing m by m̂ leads to similar results if the sample size

used to estimate m is large enough to ensure that m̂ is "close enough" to m. Several non-
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parametric estimates of m were considered in [95]. The authors first used a nearest neighbors

method, also known as the Nadaraya-Watson approach in statistics [60, 61] and analog method

in meteorology [7,175]. This is probably the most natural but better results were obtained with

a slightly more sophisticated estimator known as local linear regression (LLR) [35,38,61]. Based

on these results, LLR is also used in this work. Some applications to real data are discussed

in [59,153].

From a statistical point of view, the proposed model is semi-parametric with a parametric

component for the white noise sequences whose distributions are described by a parameter θ

and a non-parametric component for the dynamical model m. When working with such SSMs,

we may have to tackle the different inference problems discussed below.

• Reconstruction of the latent process (smoothing algorithms). Here we assume

that the SSM is known, i.e. that model m is known (or eventually replaced by an estimate

m̂) and that the parameter θ is known. The aim is to compute the conditional distribution

of the latent state X1:T given observations y1:T . Many algorithms have been proposed in

the literature [23,24,46,49,69]. Recently, [4,99,102,171] have developed conditional particle

smoothers which are able to iteratively simulate the hidden state with few particles needed.

In this work we propose to use the Conditional Particle Filter-Backward Simulation (CPF-

BS) presented in [101,102,171] and further discussed in [30].

• Parametric estimation. Here we assume that the model m is known but that the

parameter θ is unknown. This leads to a classical parametric estimation problem where

θ is estimated from the available observations y1:T . In such situation, Expectation-

Maximization (EM) algorithm and its variants are often used to perform maximum likelihood

estimation [41,42,44,86,98,110]. The E-step consists in computing the conditional distribution

of the latent space given the observations and thus the EM algorithm needs to be combined

with a smoothing algorithm [5, 50, 86, 141, 149, 151]. In [30] (corresponding to Chapter 3

in this thesis), it was proposed to use the CPF-BS algorithm in the E-step of the EM

algorithm and found that the combination of CPF-BS algorithm and EM recursions leads

to an efficient numerical procedure to estimate the parameters of nonlinear SSMs. This

approach is also used in this chapter.

• Non-parametric estimation of the dynamical model. When the dynamical model

m is unknown and replaced by a non-parametric estimate, two situations may happen. In
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the first one, a learning sequence of the process {Xt} is available. In this situation, the

non-parametric estimate m̂ ofm can be based on this learning sequence and the parametric

setting described above can then be used to estimate θ after replacingm by m̂. In practice,

it means that we need "perfect" observations of the state (with no observational error) but

this is generally not available. In the second situation, only a sequence y1:T of the process

{Yt} with observational errors is available. This is a more usual situation in practice but

it makes the estimation of m more complicated.

In this chapter we mainly focus on the non-parametric estimation problem and discuss the

estimation ofm and θ using a sequence y1:T with observational error. This is the more challenging

problem in the problems listed above. A simple approach to estimate m would consist in

computing a non-parametric estimate m̂ based on the sequence y1:T instead of a sequence of

the process {Xt} but this is not satisfactory since the conditional distributions of Xt given

Xt−1 = xt−1 and Yt given Yt−1 = yt−1 do not coincide. This is illustrated on Figure 1.8 obtained

using the nonlinear univariate SSM defined as in Eq. (1.4) where θ = (Q,R) is fixed by (0.1, 0.1).

The left plot shows a scatter plot of (Xt−1, Xt) of the true state process and a non-parametric

estimate m̂, obtained using LLR, which is reasonably close to m. The right plot shows a scatter

plot of (Yt−1, Yt) of the observed sequence. Note that Yt is obtained by adding a random noise

to Xt and this has the effect of blurring the scatter plot by moving the points both horizontally

and vertically. The m̂-curve shows a non-parametric estimate of E[Yt|Yt−1] obtained using LLR,

which is a biased estimate of m. In a regression context, it is well known from the literature on

errors-in-variables models that observational errors in covariates lead, in most cases, to a bias

towards zero of the estimator of the regression function [26]. One of the classical approach to

reduce the bias is to introduce instrumental variables which help to get information about the

observational error. This approach has been adapted for linear first-order autoregressive models

in [111] and further studied in [94]. Besides, [26] gave an overview of different methods to build

consistent estimators in the context of regression. Among them, we notice the local polynomial

regression and the Bayesian method for non-parametric estimation but, as far as we know, they

are not generalized for time series.

In order to improve the estimate of m, we propose an original procedure where the non-

parametric estimate m̂ is updated at each iteration of the EM recursions using the smoothing

trajectories simulated with the CPF-BS algorithm in the E-step. It permits to correct sequentially

the estimation error and reduce the bias in the estimate of m. This method can be interpreted
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as a generalization of the Bayesian approach of [26] for time series. This is the main contribution

of this chapter. All the codes of the proposed algorithm used for numerical experiments in this

chapter are available on https://github.com/tchau218/npSEM.

The chapter is organized as follows. In Section 4.2, we discuss the estimation of the

parametric component using EM recursions. Then, in Section 4.3, we extend this algorithm to

estimate both the parametric and non-parametric components in SSMs. In order to validate the

proposed methodology, we perform some simulation experiments on toy models in Section 4.4.

The chapter ends with some concluding remarks in Section 4.5.

4.2 Parametric estimation in state-space models

Let us now consider the problem of estimating the parametric part of the SSM (4.1). The aim is

to estimate θ ∈ Θ (an appropriate set of the unknown parameter) given a sequence y1:T of noisy

observations. Here we assume that the true dynamical model m is known or that an estimate

m̂ has already been fitted using other information, such as an observed sequence of the state.

The notation M stands for the true dynamical model m if it is known, or for the prior estimate

m̂ otherwise.

The main idea of the algorithm is to iterate a two-step procedure. For each iteration r ≥ 1,

the first step (E-step) consists in computing p (x0:T |y1:T ; θr−1), a conditional distribution of the

latent process x0:T given the observations y1:T and the previous parameter value θr−1. The

second step (M-step) consists in updating the parameter value by maximizing an intermediate

function (4.3) obtained by integrating the complete likelihood function over the so-called smoothing

distribution computed in the E-step.

Epr [ln p (X0:T , y1:T ; θ)] ,
∫

ln p (x0:T , y1:T ; θ)× p(x0:T |y1:T ; θr−1) dx0:T (4.3)

For nonlinear (non-Gaussian) SSMs, p (x0:T |y1:T ; θr−1) does not have a tractable analytical

expression. However, sequential Monte Carlo (SMC) algorithms [23,46,49,69] allow to generate

sequences of this conditional distribution. They provide weighted samples {x(i)
0:T , w

(i)
T }i=1:N

which allow to approximate the posterior distribution using the empirical estimate

p̂r(dx0:T |y1:T ) =
N∑
i=1

w
(i)
T δx(i)

0:T
(dx0:T ), (4.4)
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According to the empirical distribution (4.4), one can obtain approximations of the expectation

(4.3). That leads to the so-called Stochastic EM (SEM) algorithms.

One of the key points of an SEM algorithm is to compute an efficient approximation of

Eq. (4.3). If N is large the law of large numbers implies that Ep̂r [log p(X1:T , y1:T ; θ)] is a good

approximation of the true expectation (4.3) and the SEM algorithm is close to EM algorithm.

In order to save computational time, the number of simulated samples N can be reduced by

using other extensions of the SEM algorithm [41,170] which are not presented in this chapter for

simplifying the presentation. However, the SEM algorithms and their variants using standard

particle approaches [5,86,116,141] still suffer from another issue. To simulate good trajectories

in the E-step, these particle smoothers are typically required a large number of particles (in a

range [102 − 106]), and this has to be done at each iteration of the EM algorithms (see [64] for

a recent review). Conditional SMC (CSMC) samplers, as known as combinations of SMC and

Markov Chain Monte Carlo (MCMC) approaches, have been developed as alternatives. The first

CSMC samplers, so-called Conditional Particle Filters (CPFs), were introduced in [4, 100] and

they were used combined with EM algorithms in [98,102,149]. CPF algorithms simulate samples

of x0:T conditionally on the current value of the parameter θ and the current value of the state

sequence (referred to as the conditioning sequence). They allow to build a Markov chain which

has the exact smoothing distribution p(dx0:T |y1:T ; θ) as invariant distribution (see [30, 150] for

numerical illustrations). Note that the convergence rate does not depend on the number of

particles but on the number of iterations of the sampler.

Nevertheless, as many sequential smoothing algorithms, when the length T of the observed

sequence is large, CPF algorithms suffer from sample impoverishment. More precisely, at the

end of the CPF, all the trajectories tend to share the same ancestors and the rate of convergence

may be very slow. A way to reduce impoverishment and low mixing is to run a Backward

Simulation algorithm after the CPF one. Backward simulation (BS), proposed initially in [69],

is a natural technique to simulate the smoothing distribution given the (forward) filter outputs

(see [17, 46, 102]). This leads to the Conditional Particle filter-Backward simulation (CPF-

BS) sampler (see Algorithm 14 in Appendix). Recently, [30] proposed to use the CPF-BS

smoothing algorithm in conjunction with the SEM algorithm. The authors showed that the

method outperforms several existing EM algorithms in terms of both state reconstruction and

parameter estimation, using low computational resources. All details can be found in Chapter 3.

The SEM algorithm is reminded as follows.
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4.3. Non-parametric estimation in state-space models

Algorithm 12: SEM algorithm for SSMs [SEM(M)]
Initialization: choose an initial parameter θ̂0 and a conditioning trajectory.
For r ≥ 1,
(1) E-step: generate N trajectories {x(i)

0:T,r}i=1:N by using CPF-BS algorithm (14)
with the given conditioning sequence, the parameter value θ̂r−1, the dynamical model
M and the observations y1:T , and deduce an empirical estimate p̂r of the smoothing
distribution p(x0:T |y1:T ; θ̂r−1).
(2) M-step: compute an estimate of of θ,

θ̂r = arg max
θ∈Θ

Ep̂r [ln p(X0:T , y1:T ; θ)]

end.

When the noises (ηt, εt) in the SSM (4.1) have Gaussian distributions with respect to unknown

covariances (Q,R), the following close form expressions can be derived as the estimators of

θ = (Q,R) in the M-step.

Q̂r =
∑N
i=1

∑T
t=1

[
x

(i)
t,r −M

(
x

(i)
t−1,r

)] [
x

(i)
t,r −M

(
x

(i)
t−1,r

)]>
NT

, (4.5)

R̂r =
∑N
i=1

∑T
t=1

[
yt −H

(
x

(i)
t,r

)] [
yt −H

(
x

(i)
t,r

)]>
NT

. (4.6)

4.3 Non-parametric estimation in state-space models

In the previous section, it is assumed that the dynamical modelm is known or that an estimate m̂

is available. The last case may happen, for example, when the evolution model (4.1) is observed

without observational error on some time intervals and thus observations of the process {Xt} are

available. When no parametric model is available for m, a non-parametric estimate of m can be

built. Here, we focus on Local Linear Regression (LLR), but other non-parametric estimation

methods can be easily plugged into the methodology described in this section (see Chapter 1

[Section 1.2.2.1] for details). In [35], the authors discussed the practical implementation of LLR

and presented several interesting case studies. The asymptotic theory of these estimators was

described in [136] (see also [61] for time series). The idea of LLR is to locally approximate m by

the first-order Taylor’s expansion, m (x′) ≈ m(x) +∇m(x)(x′−x), for any x′ in a neighborhood

of x. In practice, the intercept m(x) and the slope ∇m(x) are estimated by minimizing a

weighted mean square error. The weights are defined relating to a kernel. Here we choose to
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Chapter 4. Reconstruction and estimation for non-parametric nonlinear state-space models

use the tricube kernel (Eq. 1.28) as in [35]. This kernel used in many implementations of LLR

has a compact support and it is smooth at its boundary. One of the advantages of considering

such a bounded kernel is that it reduces the computation of the points out of the support. For

the tricube kernel, it is usual to fix a bandwidth h equal to the half width of the kernel support.

An alternative is to perform LLR on the k-nearest neighborhood of x (see [7, 91, 119, 162]). In

this case, the support is defined as the smallest rectangular area which contains the k nearest

neighbors. It leads to an adaptive way of defining the bandwidth h = hx because the support

depends on the location x.

For the example presented in the general introduction of the thesis, the LLR estimate

leads to the m̂-curve of the left panel of Figure. 1.8 when the time series {Xt} is observed

without observational error. As in parametric problems, ignoring the observational error causes

inconsistent estimation of m as it is illustrated on the right panel of Figure. 1.8 where the m̂-

curve corresponds to the LLR estimate based on a sequence of the noisy process {Yt}. We now

propose to adapt the SEM algorithm (Algorithm 12) introduced in the previous section to better

estimate m in the case where m is unknown and the only available observed data is a sequence

y1:T of the process {Yt}.

The key idea of the algorithm is to update a non-parametric estimate of m at each iteration

of the SEM algorithm using the smoothing trajectories simulated in the E-step. It permits

to reduce sequentially the bias induced by the observation noise. More details are given in

Algorithm 13.

p(x0:T , y1:T ; θ, m̂r−1) denotes the complete likelihood function where m̂r−1 is substituted

to m. Algorithm 13 looks similar to Algorithm 12. The main difference between the two

algorithms is that in the second one, at iteration r, M is an approximation of m defined

using a non-parametric estimate based on the current sequences {x̃(i)
0:T,r}i=1:N of the state {Xt}.

This is illustrated on Figure. 4.1 using the toy model (1.4). At the first iteration, an initial

parameter value θ̂0 is chosen and a non-parametric estimate m̂0 of m is computed based on

the observed sequence y1:T . Then, in the E-step, a smoothing algorithm is run. This produces

smoothed trajectories with less observation noise than in the original sequence. In the M-step,

the parameter value θ and the non-parametric estimate ofm are updated by fitting the SSM using

the smoothed trajectories as possible trajectories for the true state. To simplify the illustration,

the LLR estimation m̂r of m is learned based on one simulated trajectory denoted by x̃0:T,r.

As shown on Figure. 4.1, the distribution of x̃0:T,r is closer and closer to the one of X0:T (see
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4.3. Non-parametric estimation in state-space models

Algorithm 13: SEM-like algorithm for non-parametric SSMs [npSEM]
Initialization: choose an initial parameter θ̂0, set the first learning sequence
x̃1:T,0 = y1:T and a conditioning trajectory, and compute the corresponding LLR
estimate m̂0 on x̃1:T,0.
For r ≥ 1,
(1) E-step: generate N trajectories

{
x̃

(i)
0:T,r

}
i=1:N

by using CPF-BS algorithm (14)
with the given conditioning sequence, the parameter value θ̂r−1, the dynamical model
M = m̂r−1 and the observations y1:T , and deduce an empirical estimate p̂r of the
smoothing distribution p(x0:T |y1:T ; θ̂r−1).
(2) M-step:

i. compute an estimate of θ,

θ̂r = arg max
θ∈Θ

Ep̂r [ln p(X0:T , y1:T ; θ, m̂r−1)] .

ii. compute a LLR estimate m̂r of m with
{
x̃

(i)
0:T,r

}
i=1:N

.

end.

Figure. 1.8) when r increases and this permits to reduce the bias in the non-parametric estimate

of m. The spirit of this algorithm is close to the one of the iterative global/local estimation

(IGLE) algorithm of [176] for estimation of mixture models with mixing proportions depending

on covariates.

Algorithm 13 is referred to a SEM-like algorithm because in the M-step the parameter θ is

estimated as in Algorithm 12. But we have no warranty that the E-step leads to an increase

of a likelihood function, and the M-step is composed of a likelihood maximization for θ and a

"data update" for m which cannot be written as a solution of an optimization problem.

At each iteration, the LLR estimate of m is updated and a bandwidth has to be chosen

for the kernel. This is done using cross-validation to minimize a mean square error, and a

different optimal bandwidth is searched on a grid at each iteration. Note also that the time series

{x̃(i)
0:T,r}i=1:N are used both as a learning set to estimate m at iteration r and for the propagation

step of the CPF-BS smoother in Algorithm 13. We found, using numerical experiments, that

it leads to over-fitting. In order to reduce over-fitting, at each iteration r and for each time t,

m̂r(x̃(i)
t−1,r) is estimated using LLR based on the subsample x̃(i)

0:(`−t),(t+`):T,r where the sequence

x̃
(i)
(`−t+1):(`+t−1) is removed from the learning sequence. The lag ` is chosen as a priori.
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Figure 4.1 – An illustration of Algorithm 13 (npSEM) on the sinus model (1.4). For each
iteration, the LLR estimate (m̂r)r≥0 of the dynamical model m is learned on the smoothed
samples generated from the previous iteration (x̃1:T,0 = Y1:T for the first iteration).

4.4 Simulation results

A simulation study is now executed in order to explore some properties of the proposed algorithms

and the performances of the proposed estimates. Two different toy models are considered. The

first one is the sinus model (1.4). It is a univariate model which allows to plot the dynamical

function m and its estimates. The second model is the L63 model defined as in Eq. (1.6).

For each example, an observation sequence y1:T of length T = 1000 is simulated. Then, the

SEM and SEM-like algorithms are run to estimate Q, R and m (if it is unknown). The SEM

is run with both M = m and M = m̂. In the CPF-BS algorithms used in the SEM and SEM-

like algorithms, the numbers of particles for the filtering step and realizations for the backward

simulation step are fixed to Nf = 10 and Ns = 5 (see Appendix 4.5).

The initial conditioning sequence for the CPF-BS has to be chosen carefully to help the

algorithm converge quickly to the target posterior distribution. For that, an Ensemble Kalman
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4.4. Simulation results

Smoother (EnKS, [58]) is run with 20 members. It provides an approximation of the mean of

the smoothing distribution which is used as the first conditioning trajectory.

The convergence of the SEM and SEM-like algorithms is illustrated by plotting the evolution

of the estimates of Q and R (or mean of their diagonal values if they are matrices) with respect

to the iteration number. In the SEM-like algorithm, we also expect to improve the estimation of

m from one iteration to the next one. In order to illustrate that, the following likelihood ratio

statistics (see in [61]) is considered.

Tr = −2 ln L0
Lr

(4.7)

as L0 =
T∏
t=1

p(xt|xt−1) is the Markovian likelihood of a trajectory x0:T of the latent state

computed with the true dynamical model (m,Q). Remark that in unidimensional Gaussian

cases, this likelihood depends only on forecast error (Eq. 2.9) and the variance Q. Similarly,

the likelihood Lr with respect to the SEM or SEM-like algorithm is computed using the same

expression where the true dynamical model with (m,Q) is replaced by their estimates at the

iteration r of the algorithm. If the fitted dynamical model is close to the true one then Tr is close

to 0, whereas negative values for Tr indicate a large discrepancy between the two dynamical

models.

Finally, the estimated parameters are plugged into the CPF-BS algorithm to infer a latent

state time series x′0:T given an observed sequence y′1:T . The second lines of Tables 4.1 and 4.2

report the reconstruction errors between smoothed state time series and the true state time

series for the same observations y′1:T . More precisely, the smoothing is performed using the

CPF-BS algorithm for a fixed M with Nf = 10 , Ns = 5 and 100 iterations. The conditional

mean E(Xt|y′1:T ) is approximated by the empirical mean x̂′t computed with the output time

series of the CPF-BS and the error is measured using the root mean square error

RMSE(smoothing) =

√√√√√ T∑
t=1
‖x′t − x̂′t‖

2

T
. (4.8)

4.4.1 Sinus model

We first consider again the sinus model (1.4) with true parameter value θ∗ = (Q∗, R∗) =

(0.1, 0.1). A simulated time series is shown on Figure 1.2 where the full line represents a
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Chapter 4. Reconstruction and estimation for non-parametric nonlinear state-space models

realization of the state {Xt} and the dots represent the corresponding observations of the {Yt}

process.

On Figure. 4.2, error variances Q̂r and R̂r estimated by SEM(m), SEM(m̂) and SEM-like

algorithms are displayed for the first 200 iterations respectively. Here SEM(m) [resp. SEM(m̂)]

denotes the SEM algorithm of Section 4.2 when the true dynamical model m is known [resp.

replaced by a non-parametric estimate m̂ obtained using a sequence of the state x0:T and

LLR]. Since the length of the time series is large (T = 1000), it is expected that the estimates

from SEM(m) and SEM(m̂) are close to each other and to the true values of Q and R. The

small difference observed between the two curves as well as their erratic decrease is due to the

randomness of the Monte Carlo steps in the algorithms. The SEM-like algorithm converges

slower but this algorithm enables to retrieve the variance of the observational error and separate

the noise associated with the observations and the noise coming from the stochastic dynamical

system.
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Figure 4.2 – Comparison of the estimated parameters of SEM and npSEM algorithms on the
sinus model (1.4). The left (resp. middle) panel shows the evolution of the Q (resp. R) estimates
with respect to the iteration number of these algorithms. The right panel shows the evolution
of the likelihood-ratio statistic (4.7).

The likelihood ratio shown on Figure 4.2 permits to assess the ability of the proposed

algorithms in estimating the dynamical model (4.1). The values of the likelihood ratio associated

to the SEM(m̂) algorithm stabilize after 10 iterations. It shows that if a sequence of the true

state is available, then LLR gives a good estimate of m and the SEM(m̂) algorithm gives an

estimate of Q close to the true value (shown in the first panel of Figure 4.2). The statistic

associated to the SEM-like algorithm corresponds, at step 0, to the discrepancy between m and

the biased estimation of m shown on the last panel of Figure 1.8. The increase of the likelihood-

ratio statistics shows that the SEM-like algorithm allows to efficiently update the estimate m
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and reduce the effect of the observational error and hence obtain a reasonable estimate of Q. The

model reconstruction and the decrease of observational error are also illustrated on Figure 4.3

through scatter plots of a couple of variables at consecutive time steps (t − 1, t) at iteration 0

(observation, left panel) and at the last iteration (right panel) of the SEM-liked algorithm. In

the middle, the scatter plot of a realization of the true model is shown. We can see that the

SEM-like algorithm correctly retrieves the dynamical model from the noisy observations.
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Figure 4.3 – Scatter-plots of (Yt−1, Yt) (left), (Xt−1, Xt) (middle) and
(
X̃t−1, X̃t

)
for the SSM

defined by Eq. (1.4). X̃t stands for one of realizations generated at the final iteration of the
npSEM algorithm. The m̂-curves show estimates of the conditional mean function m obtained
using LLR.

Table 4.1 reports RMSE. The first column corresponds to the true model and the forecasting

error is close to
√
Q∗ = 0.3162 which is expected. In the second column, m is estimated using

LLR estimate based on observations of the true state x0:T . The forecasting errors of the first

and the second columns are similar and this confirms that LLR provides a good estimation of m

in this situation. In the third column, m is estimated using LLR based on observations of the

noisy state y1:T . The large error highlights the bias of this estimate. In the two next columns, Q

and R are estimated by the SEM algorithms. The fourth column reports the RMSE when m is

known (SEM(m) algorithm), the fifth one form is estimated by LLR without observational error

(SEM(m̂) algorithm). This column should be compared to the first and second one respectively,

and they show the extra error made when Q and R are unknown and estimated before running

the smoothing algorithm to reconstruct the latent state (the forecast errors on the first line are

the same). The errors are really close to each other. It shows again that the SEM algorithm

is able to retrieve accurate estimates of Q and R and that the LLR estimate is close enough

to the true m to lead to a similar approximation of the smoothing mean E(Xt|y1:T ). Finally,
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Table 4.1 – RMSEs (Eqs. 2.9 and 4.8) for forecasting and smoothing of a state sequence of
model (1.4). The parameters are estimated on a sequence of length T = 1000. The smoothing
algorithms are run with 10 particles. θ∗ denotes the true values of the parameters. X,Y and
X̃ represent sequences generated from the true state process {Xt}, the observation process {Yt}
and the npSEM algorithm, respectively.

(m, θ∗) ( m̂X , θ∗) ( m̂Y , θ∗) (m, θ̂SEM(m)) (m̂X ,θ̂SEM(m̂)) (m̂
X̃
, θ̂npSEM )

RMSE(forecast) 0.3072 0.3109 0.4528 0.3072 0.3109 0.3294
RMSE(smoothing) 0.2520 0.2523 0.3041 0.2581 0.2553 0.2597

the most interesting column is the last one where m is estimated using the npSEM algorithm.

The forecast [resp. smoothing] RMSE is about 6% [resp. 3%] greater than the error made with

the true values of Q, R and m. This is a great improvement compared to the third column and

this shows that the npSEM algorithm has efficiently reduced the bias in the estimation of the

dynamical model due to the observational errors.

4.4.2 Lorenz 63 model

In real applications (see [65,84,105,166] for a few), dynamical systems are often multidimensional

and observations can be missing. To reproduce such situations, results hereafter are given for

an L63 model with randomly missing observations. The considered L63 SSM on R3 is defined

as 
Xt = m(Xt−1) + ηt, ηt ∼ N (0, Q)

Yt = HtXt + εt, εt ∼ N (0, Rt) ,
(4.9)

True values of error covariances in the above model are fixed by (Q∗, R∗t ) = (σ2,∗
Q I3, σ

2,∗
Rt
IdYt ) =

(I3, 2IdYt ) where Id and IdYt denote the identity matrices with dimension in d and dYt ∈ {1, 2, 3}

(corresponding to the number of components observed at time t). The dynamical function m at

any value x in R3 is computed by integrating the ODE system (1.7). For each time t, Eq. (1.7)

is integrated by running a Runge-Kutta scheme (order 5). The value of dt is fixed to 0.08. In

the experiments, the length of the observed time series is T = 1000.

In Eq. (4.9), the measurement operator Ht and the covariance Rt depend on the time in

order to take into account situations where some of the components of Xt are not observed. For

instance, if the full state is observed theHt = I3 and IdYt = I3 whereas if only the first component

is observed then Ht = [1, 0, 0] and IdYt = I1. In the experiments, 10% of the observations,

chosen randomly with a uniform distribution among the T times and the 3 components, are set

to missing values. An example of the simulated time series is shown on Figure. 4.4. Given the
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observed sequence, the SEM and SEM-like algorithms are run in order to estimate the parameter

θ = (Q, σ2
Rt

) and the model m (if it is unknown).
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Figure 4.4 – Time series of the state and observations simulated from the L63 model (4.9).
10% of the observations are set as missing values (e.g. shown in time interval [50, 60]).

Figure. 4.5 illustrates the convergence of the SEM and SEM-like algorithms for the L63

model (4.9). As for the previous example, the SEM(m) and SEM(m̂) have similar behaviours

because the LLR well estimates m when a long enough time series of the state {Xt} is available.

The rate of convergence of the npSEM algorithm seems to be close to the one of the other SEM

algorithms but, after 500 iterations, σ2
Q is over-estimated and σ2

Rt
is under-estimated. Remark

however that the ratio of σ2
Q and σ2

Rt
, which is a key quantity of SSMs since it describes the

relative weights of the dynamical model and the observation in the filters, is well estimated.

We also found empirically that these biases seem to decrease with the percentage of missing

values (not shown). Note that if the number of iterations is increased then the results do not

change significantly. The covariance Q measures implicitly the confidence which we can have

in the state model. So its over-estimation is probably linked to the estimation error on m.

According to Figure. 4.5, the difference of the likelihood-ratio statistics (4.7) between SEM(m̂)

and npSEM algorithms shows that the two fitted dynamical models are close to each other.

This is also illustrated on Figure. 4.6 where scatter plots of successive variables are shown for

the three components of the L63 model. The scatter plots of the first column correspond to the

state observed with the observational error. The ones of the middle column are realizations of

the true state model. And the third column displays a simulation of the dynamical model at the

end of the npSEM algorithm. These plots show that the npSEM algorithm efficiently filters the

observational error because the right plot is much closer to the middle one than the left plot.
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Figure 4.5 – Comparison of the estimated parameters of SEM and npSEM algorithms on the
L63 model (4.9). The left (resp. middle) panel shows the evolution of the trace of Q (resp. Rt)
estimates with respect to the iteration number of the EM algorithm. The right panel shows the
evolution of the likelihood-ratio statistics (4.7).

Table 4.2 reports the RMSE mentioned in the introduction of this section. In the first column,

the RMSE of smoothing is bigger than the one of forecasting. This may seem surprising but

this can be explained by the presence of missing data. Table 4.2 shows that substituting m

by a non-parametric estimate such as LLR increases the forecasting error of about 7% and

the smoothing error to less than 3% (comparing columns 1 [resp.2] and column 4 [resp.5]).

We retrieve that smoothing, which incorporates the available observations to the forecast in

the filtering procedure, is less sensitive to the prediction error linked to the non-parametric

estimation. Furthermore, this substitution seems to have no impact on the estimation of the

parameters Q and Rt since the errors of columns 2 and 5 are similar. Now, if the state is observed

with observational errors and missing data, the RMSEs (last column) are increased of almost

20% for the forecasting and 10% for the smoothing compared to the case where the model is

completely known (column 1). The increase of RMSE is composed of two different additional

errors: the one due to the observational error and the one due to the presence of missing data

which leads to a smaller learning dataset. However, to estimate the state time series (last

column) we use no information of the model except the one contained in the observation time

series. So we can conclude that the estimator performs reasonably well and clearly improves the

naive estimator learned on the raw observations (column 3 of Table 4.2).
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Figure 4.6 – Scatter plots of (Yt−1, Yt) (left), (Xt−1, Xt) (middle) and
(
X̃t−1, X̃t

)
(right) for the

L63 model defined by (4.9). {X̃t} stands for one of realizations generated at the final iteration
of the npSEM algorithm.

4.5 Conclusions and perspectives

In this chapter, we introduce non-parametric approaches for SSMs. The proposed methodology

permits to analyze time series with observational errors without specifying a dynamical model.

We show, through numerical experiments on toy models, that it permits to successfully estimate

the dynamical model and reconstruct the latent space from noisy observations.

The theoretical properties of the proposed algorithm need to be investigated. On the

modeling aspect, we plan to relax the assumption of a constant covariance error Q for the

Table 4.2 – RMSEs (Eqs. 2.9 and 4.8) for forecasting and smoothing of a state sequence of
the L63 model (4.9). The parameters are estimated on a sequence of length T = 1000. The
smoothing algorithms are run with 10 particles. θ∗ denotes the true values of the parameters.
X,Y and X̃ represent to sequences generated from the true state process {Xt}, the observation
process {Yt} and the npSEM algorithm, respectively.

(m, θ∗) ( m̂X , θ∗) ( m̂Y , θ∗) (m, θ̂SEM(m)) (m̂X ,θ̂SEM(m̂)) (m̂
X̃
, θ̂npSEM )

RMSE(forecast) 1.0013 1.0701 1.4201 1.0013 1.0701 1.2562
RMSE(smoothing) 1.0210 1.0322 1.2227 1.0225 1.0492 1.1163
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dynamical model and consider models whereQ varies in time to handle, for example, heteroscedastic

time series. Non-parametric approaches could also be developed to estimate Q in this context.

Appendix

Note that in Algorithm 14, transition kernels have conditional means which are defined corresponding

to model M (M = m for using the true evolution model (4.1), M = m̂ or M = m̂r for a LLR

estimate of m).
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4.5. Conclusions and perspectives

Algorithm 14: Smoothing with Conditional Particle Filter-Backward
Simulation (CPF-BS)
Inputs: conditioning trajectory X∗ = x∗0:T , observations y1:T and fixed parameter θ.
1. Run CPF algorithm with the inputs given to obtain a system of Nf particles and their

weights (x(i)
t , w

(i)
t )i=1:Nf

t=0:T .

• Initialization:
+ Sample {x(i)

0 }i=1:Nf ∼ pθ(x0) and set x(Nf )
0 = x∗0.

+ Set initial weights w(i)
0 = 1/Nf ,∀i = 1 : Nf .

• For t = 1 : T ,
+ Resample indices {Iit}i=1:Nf of potential particles with respect to the previous

weights (w(i)
t−1)i=1:Nf .

+ Propagate new particle

x
(i)
t ∼ pθ

(
xt|x

(Iit)
t−1

)
,∀i = 1 : Nf .

+ Replace for the conditioning particle, x(Nf )
t = x∗t and INft = Nf .

+ Compute the weight

w
(i)
t = pθ(yt|x

(i)
t )

Nf∑
i=1

pθ(yt|x
(i)
t )

, ∀i = 1 : Nf

end for.

2. Repeat the following BS algorithm using the outputs of the CPF algorithm to gets Ns

trajectories {x̃j0:T }j=1:Ns .

• For t = T , draw x̃jT following the discrete distribution p(x̃jT = x
(i)
T ) = w

(i)
T .

• For t < T ,
+ Calculate smoothing weights

w̃
(i)
t =

pθ(x̃jt+1|x
(i)
t ) w(i)

t

Nf∑
j=1

pθ(x̃jt+1|x
(i)
t ) w(i)

t

, ∀i = 1 : Nf .

+ Draw x̃jt with respect to p(x̃jt = x
(i)
t ) = w̃

(i)
t .

end for

3. Update the new conditioning trajectory X∗ by sampling uniformly from Ns trajectories.

Outputs: realizations describing the smoothing distribution pθ(x0:T |y1:T ).
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Applications of non-parametric

algorithms
This chapter presents two applications of the non-parametric algorithms. In Section 5.1, we aim

at using a non-parametric filtering algorithm for model selection/ model comparison given a set

of observations and existing model runs. The performance of the proposed approach is compared

to the one of the classical approach on L63 models with different forcing parameterizations. This

section belongs to a part of ECOS-SUD project in collaboration between France and Argentina

(2018 − 2020). The second application is then introduced in Section 5.2. Here we propose

to apply the npSEM algorithm to impute noisy missing data in reality. Wind data shown in

Section 1.2 (produced by Météo France) is reconsidered. Imputation results of the npSEM

algorithm on the data are compared to the ones of regular regression methods.

5.1 Model selection and model comparison using a non-parametric

filtering algorithm

5.1.1 General context

Model selection or model comparison [21, 131] generally aims at determining or detecting one

model in a set of different models which well describes a sequence of observations. Some of

applications can be found in [72, 73] for climate attribution and detection, [52, 53] for Bayesian

model selection of subsurface flow models and [27] for studies of the discrimination between

phenomenological models of the glacial-interglacial cycle. Generally, models in these applications

can have different configurations (parameterization choices in physical systems, forcing terms,

model error noises, etc) or different formulations. For instance, different L63 models, where m
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is defined in Eq. (5.1) for x ∈ R3, zτ ∈ R3, λ ∈ [−8, 8] and τ ∈ [0, dt],


z0 = x,

dzτ
dτ = λF + g(zτ ), as F =

[
cos 7π

9 , sin
7π
9 , 0

]>
,

m(x) = zdt,

(5.1)

can be constructed with different values of forcing parameter λ. When λ = 0, the system of

ODEs (5.1) is the classical one (1.7) which represents a physical model in the classical world.

In the case that λ 6= 0, the L63 model including a forcing term represents a modified model in

the climate change world. On Figure 5.1, we show two trajectories (curves) derived from two

L63 dynamical models with respect to λ = λ0 = 0 (correct) and λ = λ1 = 8 (incorrect), and one

set of observations (points) derived from a L63 SSM associated to the correct model. According

to the figure, the state is located on the right wing rather than the left due to the fact that the

forcing term with the incorrect parameter λ1 = 8 shifts the L63 trajectory to the direction of

140◦.
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Figure 5.1 – Simulated trajectories derived from the L63 SSM (Eq. 4.9) with m defined in
Eq. (5.1), Ht = I3, dt = 0.01, Q = 0.001I3, R = 2I3. Correct state and observation sequences are
generated from the correct model with forcing parameter λ0 = 0, and incorrect state sequence
is generated with the incorrect model with forcing parameter λ1 = 8.

In the next section, we introduce methods based on model evidence for detecting the best

model associated to a given sequence of observations.
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5.1. Model selection and model comparison using a non-parametric filtering algorithm

5.1.2 Methods

Let {Mi}i=1:L denote a finite set of different models . Given a sequence of observations y1:T , the

classical model selection or model comparison is carried out based on computing model evidence

(ME) estimates (see e.g. in [5, 27]), ln p (y1:T |Mi) which is the global log-likelihood function

of the observations y1:T conditional on the model Mi (see Eq. 2.11 for its interpretation). If

Mi = m, one obtains the exact ME. Although the standard ME approach based on global

log-likelihood computation is widely applied in model selection and model comparison, it may

not enable to study properties of the model at specific positions such as boundaries, stationary

points or extreme values.

Alternatively, [25] proposed to compute a local log-likelihood function on every time interval

[t + 1 : t + K] ⊆ [1, T ], named as contextual model evidence (CME). For i = 1 : L and

t = 1 : T −K, CME is defined by

li(t,K) = ln p (yt+1:t+K |y1:t;Mi) =
t+K∑
s=t+1

ln p (ys|y1:s−1;Mi)

=
t+K∑
s=t+1

ln
∫
p (ys|xs) p (xs|y1:s−1;Mi) dxs, (5.2)

whereK is the length of evidencing window. In [25], one classical filtering algorithm (e.g. EnKF)

is run to

• generate N -sample {xjs}j=1:N ∼ p(xs|y1:s−1;Mi) (forecast distribution according to each

modelMi),

• compute the CME estimate of li(t,K) (5.2) whose integral is approximated by mean

of all marginal log-likelihood {p
(
ys|x(j)

s

)
}j=1:N given the forecast sample (see Chapter 2

[Section 2.3.2] for details).

The authors showed that this approach allows to compare the likelihood of different model

candidates and then assign the most appropriate model candidate describing a given observed

sequence, and compared model evidence performances of the classical EnKF algorithm and its

variants.

In this section, we consider the situations where several datasets derived from model simulation

exist. State-of-the-art model-run datasets are available through CMIP5 project https://cmip.

llnl.gov/cmip5/. Given a set of observations, the objectives consist in developing low-cost
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methods for intercomparison of the datasets and analyzing some of the factors (e.g. error noises)

involved in model identification quality. In such cases, running the numerical forecast models

is not useful due to wasting the available datasets and computational resources for integration

of systems of ODEs. Here we propose to use a non-parametric EnKF algorithm (so-called

analog EnKF (AnEnKF) algorithm in [95, 153, 155]) for computing CME estimates. It is the

classical EnKF in combination with LLR estimates of the models learned on the corresponding

datasets presented in Algorithm 5. Note that other non-parametric filtering algorithms can

be used depending on different scenarios of models (e.g. different nonlinearity level, Gaussian

or non-Gaussian assumption) and computational resources (see the discussion in Chapter 2

[Section 2.4]). Here, we focus on validating the non-parametric approach in model evidence

estimation and comparing performances of the classical and the proposed approaches in model

selection and model comparison. Criteria for assessing these methods consist of

• estimates of CME li(t,K) (5.2): the larger CME estimates the better model describing

observations in the evidencing window [t+ 1, t+K],

• estimates of average CME (5.3): the larger average CME estimate the better model

describing a given sequence of observations,

l̄i(K) =

T−K∑
t=1

li(t,K)

T −K
, ∀i = 0 : L, (5.3)

• estimates of pair-wise CME difference (5.4) (log-likelihood ratio): if Di,j is positive Mi

better matches observations on the evidencing window [t + 1, t + K] than Mj , and vice

versa,

Di,j(t,K) = li(t,K)− lj(t,K), ∀i = 0 : L, j = 0 : L, (5.4)

• percentage ofMi-identification (5.5): if p0,i(K) > 50% [resp. p0,i(K) < 50%] one obtains

more [resp. less] evidence on the model Mi, and if p0,i(K) = 50% one needs more

conditions (e.g. larger K) to select an appropriate model for the given observed sequence,

p0,i(K) =

T−K∑
t=1

1 (D0,i(t,K) ≥ 0)

T −K
100%, ∀i = 0 : L. (5.5)
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In the next section, results of model selection and model comparison on L63 models are presented

using the above criteria.

5.1.3 Results

Let us consider a L63 SSM (Eq. 4.9) where the dynamical model m is defined as in Eq. (5.1)

with dt = 0.1, λ = 0 (see in [25]) and the observation transformation operator is Ht = I3. For

each experiments, a sequence of 103 observations (see top panel of Figure 5.2 for a time series

plot of the state and observations derived from the model) and L learning data with length

T derived from L models {Mi}i=1:L with different values of forcing parameters {λi}i=0:L are

given. The EnKF algorithm using numerical model {Mi}i=0:L and the AnEnKF algorithm

(Algorithm 5) using LLR estimates (1.26) of the models learned on the given datasets are run

with 100 members in order to compute estimates of CME (5.2).

In the first experiment two L63 models {Mi}i=0:1 with λ0 = 0 (correct) and λ1 = 8

(incorrect) are considered. The correct [resp. incorrect] learning data with length T = 104

and the observed sequence with length 103 are simulated from the correct [resp. incorrect]

model. CME (local log-likelihood) of these two models is estimated with evidencing window

size K = 1. On the bottom panel of Figure 5.2, time series of the CME estimates computed

by the classical and the non-parametric EnKF algorithms are plotted. As expected, the CME

estimates in the incorrect model are almost smaller than in the correct one for both classical and

non-parametric methods. Low peaks more frequently occur in CME time series of the incorrect

model. These peaks seem to correspond to sensitive positions (e.g. bifurcations at time steps

in [475, 480] and [575, 600]) of the L63 trajectory where the forcing term of the incorrect model

easily changes the direction of the state trajectory. Sensitivity of state position to CME values

is shown later.

With the same experiment as the previous one, a comparison of the classical and non-

parametric algorithms in computing CME difference D0,1(t, 1) (Eq. 5.4) as a function of state

position is displayed on Figure 5.3. Here the CME difference values are shown with respect to the

first and third components. Obviously, the classical and non-parametric approaches give similar

estimates of the CME difference values. A number of cells with positive D0,1(t, 1) values seems

to be larger than the one with negative values, the correct model can hence be identified even

with only one observation (K = 1) in this experiment. Correct model identification seems to be

facilitated at lower bounds of L63 attractors which are the sensitive positions discussed in the

105



Chapter 5. Applications of non-parametric methodologies

400 425 450 475 500 525 550 575 600

−20

0

20

40

sp
ac

e

x(1) x(2) x(3)

400 425 450 475 500 525 550 575 600

time

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

lo
g
lik
el
ih
oo

d

classical
analog

correct
incorrect

Figure 5.2 – Top: time series plot of a segment of the state and observed sequences simulated
from the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ = 0, Q =
0.001I3, R = 2I3. Bottom: time series plot of CME estimates of li(t, 1) (Eq. 5.2) derived from
the classical and the non-parametric (analog) algorithms for both correct model (λ0 = 0) and
incorrect model (λ1 = 8).

previous experiment. In summary, this experiment based on computing the local CME estimates

or local CME difference (K = 1) allows to survey the impacts of model evidence on each of state

positions, especially on fixed points or extreme points of the models. Moreover, these scores can

be the promising metrics in order to compare the skill of different model candidates and select

the better model capturing each of the observations.

For the second experiment, the sensitivity of model identification to the amount of learning

data used in the non-parametric approach is explored. Different learning sequences with length

T ∈ [102, 5 × 104] are simulated from the correct and incorrect L63 models. 10 repetitions of

the AnEnKF algorithm, where the non-parametric emulator is estimated based on each of the

given datasets, are carried out. Means and 95% CIs of percentage of the correct identification

p0,1(1) (Eq. 5.5) computed by the algorithms are presented in Table 5.1. Results obtained by the

classical algorithm are also shown in order to compare the ones obtained by the non-parametric

algorithms. In this table, the percentage values derived from the non-parametric algorithms

increase when T increases as expected (see Figures 2.1 and 2.3 and the involved comments for an

explanation). For T ≥ 5×103, the non-parametric approach seems to stabilize and gives slightly

higher confidence in identification of the correct model than the classical approach. This may

occur in circumstances of deterministic [resp. approximately deterministic] dynamical models
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Figure 5.3 – Comparison of the classical and non-parametric algorithms in computing CME
difference D0,1(t, 1) (Eq. 5.4) with respect to state position (the illustration is for the first and
third components) on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ =
0, Q = 0.001I3, R = 2I3. Two models are considered with correct λ0 = 0 and incorrect λ1 = 8.

with null [resp. insignificant] error covariance (here Q = 0.001I3), the most usual scenarios

considered in the classical DA applications. Non-parametric estimates of these models in the

non-parametric filtering algorithms probably produce larger forecast variance, widen the support

of the forecast samples and enable to better cover the observations. The effects of error noises

on model comparison or selection are also studied in the next experiments.

Table 5.1 – Sensitivity of the model identification with respect to length of learning data (T )
used to estimate the dynamical model m in the non-parametric algorithms on the L63 SSM
(Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ = 0, Q = 0.001I3 and R = 2I3.
Correct [resp. incorrect] learning data with length T ∈ [102 − 105] and the observed sequence
with length T ′ = 103 are simulated from the correct [resp. incorrect] model with λ0 = 0 [resp.
λ1 = 8]. Means and 95% confidence intervals (CI) of the correct model identification percentage
p0,1(1) (Eq. 5.5) are computed for each of the algorithms using 10 repetitions.

Approaches T = 102 T = 5× 102 T = 103 T = 5× 103 T = 104 T = 5× 104

Classical Mean (%) 64.43
CIs (%) [63.17, 65.79]

Analog Mean (%) 54.94 61.76 63.98 66.88 67.19 67.17
CIs (%) [53.59, 56.41] [60.46, 62.66] [62.92, 64.7] [66.37, 68.0] [65.89, 68.88] [66.49,67.82]

In this experiment, one 103-observed sequence and two different 104-learning sequences

(with correct λ0 = 0 and incorrect λ1 = 8) are generated from each of L63 models with

error noise covariances Q and R varying. Means and 95% CIs of percentage of the correct

identification p0,1(1) (Eq. 5.5) computed by the classical and the proposed algorithms are

presented in Table 5.2. Generally, the correct model identification is more efficient when model

error and observational error are small. Compared to the scores of the classical approaches,

the ones of the non-parametric approaches are 3% better when model error covariance Q is
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insignificant (Q = 0.001I3). For other cases the classical approach better performs the model

identification because the forecast phase includes model noises and there is no effect on biased

estimates. However, it consumes the computational cost due to multiple runs of numerical

forecast models as mentioned. In situations where observational error covariance R is not large,

the observations close to the state and CME estimates (likelihood) strongly depend on the

observations holding behaviors of the correct model. As a result, the correct model is identified

easily as the discrepancy among the two given models is significant (λ0 = 0 and λ1 = 8). The

percentage almost reaches to 100% when Q = 0.001I3 and R = 0.01I3 even with evidencing

window size K = 1.

Table 5.2 – Sensitivity of the model identification to error noise covariances (Q,R) of the
classical and the analog EnKF algorithms on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1),
Ht = I3 and dt = 0.1. The correct [resp. incorrect] learning data with length T = 104 and the
observed sequence with length T ′ = 103 are simulated from the correct [resp. incorrect] model
with λ0 = 0 [resp. λ1 = 8]. Q [resp. R] is fixed to 0.001I3 [resp. 2I3] if the value of R [resp. Q]
varies. Means and 95% confidence intervals (CI) of the correct model identification percentage
p0,1(1) (Eq. 5.5) are computed for each of the algorithms using 10 repetitions.

Approaches Q = 0.001I3 Q = 0.01I3 Q = 0.1I3 Q = I3 Q = 10I3

Classical Mean (%) 64.43 63.12 61.19 57.14 50.65
CIs (%) [63.17, 65.79] [61.81, 63.84] [59.52, 62.44] [55.26, 59.6] [49.11, 51.61]

Analog Mean (%) 67.19 62.64 59.81 55.54 50.76
CIs (%) [65.89,68.88] [61.88, 63.52] [58.79, 60.95] [53.98, 57.68] [48.65, 52.86]

Approaches R = 0.01I3 R = 0.1I3 R = 2I3 R = 10I3 R = 20I3

Classical Mean (%) 99.69 88.96 64.43 57.39 54.67
CIs (%) [99.6, 99.78] [88.15, 89.44] [63.17, 65.79] [56.28, 58.69] [51.77, 56.44]

Analog Mean (%) 99.99 89.94 67.19 57.78 54.42
CIs (%) [99.92,100.0] [89.51, 90.42] [65.89, 68.88] [56.75, 58.75] [52.65, 56.71]

On Figure 5.4, we illustrate a strategy to select one good model among several models with

λi ∈ [−8, 8]. A 103-sequence of observations derived from the L63 model with correct parameter

λ0 = 0 is given. Several 104-learning datasets are simulated with respect to λi. The classical and

the proposed algorithms are run to compute estimates of the average CME (l̄i(1), Eq. 5.3) for

each value of the forcing parameter. According to the figure, the highest average CME estimates

correspond to models close to the correct model. The larger absolute values of the difference

between λ0 and λi, the lower model evidence. The non-parametric approach gives similar average

CME pattern than the one of the classical approach but the average CME function is 0.1 higher

because of forecast noise production (analyzed as in the experiments above). Through this
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experiment, we can deduce that computing the average CME estimates permits to return good

model indicated to the whole sequence of observations.
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Figure 5.4 – Comparison of average CME estimates (l̄i(1), Eq. 5.3) of the classical and non-
parametric approaches on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1,
Q = 0.001I3 and R = 2I3, λ0 = 0 (correct) and {λi}i ∈ [−8, 8].

Finally, the sensitivity of model identification of the non-parametric filtering algorithm to

the discrepancy of learning datasets (different values of λ) and the evidencing window size

(K) is illustrated on Figure 5.5. Percentage of correct model identification (p0,i(K), Eq. 5.5)

is computed with respect to each of the given datasets and evidencing window length. With

extremely smallK and non-large discrepancy of the learning dataset, the percentage is approximately

50% which says no confidence in comparing model description skill of these datasets and there

is the need of more observations for model identification. When K increases the percentage of

correct identification increases. Moreover, the scores tend to 100% if |λ0− λi| ≥ 6 and K = 100

(only 100 observations are used to estimate CME).

5.2 Data imputation using non-parametric stochastic Expectation-

Maximization algorithm. An application to wind data

5.2.1 General context

Data imputation is the recovery process of missing values existing in data. Its applications

can be found in numerous fields (see [18, 59, 82, 104, 140, 146, 161] for a few). Particularly

in meteorology, data recorded from in-situ sensors are usually missing because of failures of

recording devices, complex interaction or accidental variation of meteorological variables (e.g.
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Figure 5.5 – Sensitivity of the model identification (p0,i, Eq. 5.5) of the non-parametric filtering
algorithm with respect to values of forcing parameter λ (λi ∈ [−8, 8])) and window size (K ∈
[1, 100]) on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ = 0,
Q = 0.001I3 and R = 2I3.

extreme values), etc. An example of data with missing values is the wind data introduced in

Chapter 1 [Section 1.2] (see Figure 1.6 for an illustration). There exist different situations of gaps

in this data consisting of long [resp. short] gaps at one station (e.g. Ploudalmezeau [resp. Brest-

Guipavas]), simultaneous gaps at several stations (e.g. Brignogan and Ploudalmezeau), etc.

Such missing data may provide incomplete information of variables, increase bias in statistical

inference and reduce the accuracy of conclusions in data analysis. Therefore, developing an

efficient tool for reconstructing gaps becomes one of the important tasks to handle such problems.

5.2.2 Methods

There are numerous methods for missing-data imputation (see in [65, 84, 105, 125, 140, 166, 175]

for instance). One method is regression which has been used in imputing meteorological data.

Missing value of one station at a current time (t) can be computed based on complete data of

the others at time (t − 1, t, t + 1) since they are closely correlated. A general regression model

is defined below.

Y i
t = m̃

(
Yt−1, {Y j

t }j 6=i, Yt+1
)

+ ε̃it, i, j = 1 : dYt (5.6)

where m̃ denotes a regressive function of variables and {ε̃it}i denote Gaussian error noises. In

Eq. (5.6), i indicates the location of one missing component (corresponding to data at one
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station) of the observation Yt and j indicates its non-missing component. Given the model and

an observed data y1:T , different (ridge, logistic or support vector) regression approaches can be

used to estimate missing values. However, neither regression nor other imputation approaches

(e.g.interpolation, multiple imputations) [105] can well treat the observational errors derived

from modeling imperfection and errors of measurement process or instrumentals. This problem

is so-called errors-in-variables [26,94,111] leading to substantial bias in reconstruction of missing

data.

Following the numerical results and their analysis presented in Chapter 4, we propose to

apply the npSEM algorithm (Algorithm 13) to impute gaps and reduce observational errors in

the wind data. Here an SSM (e.g. Eq. 1.22) formulating a state dynamic and a transformation

between the state and incomplete observations is considered instead of a regression model (e.g.

Eq. 5.6). In the SSM, the dynamical model m of the state is unspecified and the observational

transformation is set by Ht = IdYt×d (IdYt×d is a modified identity matrix). The model error

covariance is assumed to be time-invariant and has full form while the observational error

covariance is assumed to be adaptive in time, Rt = σ2
Rt
IdYt (σ2

Rt
is a scalar value in R+).

Given the observations y1:T , the objectives consist in reconstructing the dynamical model m,

estimating the model error covariance and observational error covariance scalar (Q, σ2
Rt

) and

computing the smoothed estimates of missing values. Results of the proposed algorithm on the

wind data are presented in the next section.

5.2.3 Results

Let us take an extract of wind data in January of 2010 recorded at five stations of North-West

of Brittany, France (see location map on the left panel of Figure 1.6) as an observed data (Y1:T )

with length T = 744. 10% artificial gaps are created from the data for validation. Note that

the observed data takes into account both wind speed (U1:T ) and wind direction (Φ1:T ) by the

transformation (5.7) of the polar coordinates (Ut,Φt)t. Such a combination of these two variables

is often considered in meteorology because data at each station is now redefined on R2 that is,

therefore, easier to deal with than the couple (Ut,Φt) defined on R+× [0, 2π] (see in [1,109,127]

and references therein).

Yt = [Ut cos(Φt), Ut sin(Φt)] , ∀t = 1 : T (5.7)

where Yt ∈ RdYt .
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Given the data with artificial gaps, the npSEM algorithm is run on a SSM model (1.22)

including a dynamical model of the state process {Xt}t in Rd with dimension d = 10 and an

observation model of the observation process {Yt}t in RdYt with adaptive dimension dYt ≤ d

(∀t = 1 : T ). Error noise covariances are initially set equal to Q0 = 4Id and Rt,0 = 2IdYt . The

first learning data is the observed data. Given the first learning data and the observations, a non-

parametric EnKS algorithm (Algorithm 5 in conjunction with a backward smoothing algorithm

based on RTS scheme (1.12), see in [58]) is run with 20 members, then the mean of samples

derived from the algorithm is set for the first conditioning trajectory X∗0 . Number of particles

and number of realizations are Nf = 10 and Ns = 5 respectively. The npSEM algorithm is run

until 100 iterations. To compare the performance of the npSEM algorithm, the regular (ridge)

regression methods (LR, LLR) based on the regression model (5.6) are considered. Here RMSEs

are computed between the true values of the artificial gaps and the corresponding estimates

derived from each method.

In Figure 5.6, performances of parameter estimation, error noise reduction and state reconstruction

are shown. Through the first row of the figure, one can see that the npSEM algorithm allows to

estimate the full model covariance matrix. Variance estimates of the model error noise (shown

on diagonal of each panel) are significantly reduced. The highest estimate value of the variance

is at wind state of Brignonan station (for both directions denoted as locations 1 and 6 on the

panels). This may be due to the position of this station close to the coast leading to the strong

volatility of wind speed (as shown in the time series plot of Figure 1.6), and the existence of lots

of gaps. The algorithm also enables to reproduce the data correlation between the stations. The

covariance entries admit different values instead of zeros as in the first setting. This may also

be helpful for inference of the state of systems with correlated variables. Observational scalar

parameter estimates are also computed. The estimate function (bottom left panel) seems to

stabilize at iteration 100.

The RMSEs between the true values of the artificial gaps and the mean of smoothed samples

derived from the npSEM algorithm are displayed on the bottom right panel of Figure 5.6. The

score is chosen since the information of the true state is unavailable in real applications. As

shown, the RMSE function decreases as expected. In Table 5.3, the imputation performance of

the npSEM algorithm is also compared to the one of the regression methods. Both standard

and ridge LR/ LLR are considered based on the regression model (5.6). Regarding the table,

the standard regression methods completely fail due to ill-condition (lots of gaps but a short
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Figure 5.6 – Parameter estimation and state reconstruction of npSEM algorithm on wind data
(see Figure 1.6 for its time series plot). RMSE (Eq. 4.8) is computed between the observation
yt and smoothed mean x̂t derived from the algorithm.

sequence of the data). Ridge regression decreases much more errors. Nevertheless, the npSEM

algorithm improves the ridge regression methods. Its RMSE is approximately 1.5 and 2 less

proportional than the ones of ridge LLR and ridge LR.

Table 5.3 – RMSEs between true values of artificial gaps and imputed data derived from
different imputation methods based on regression model and state-space model. For npSEM
algorithm, imputed data are the means of smoothed samples of last 10 iterations.

Models Regression (Eq. 5.6) SSM (Eq. 1.22)
Methods LR Ridge LR LLR Ridge LLR npSEM
RMSE 7.512 1.7127 6.6385 1.4286 0.9065

Abilities of the npSEM algorithm in model reconstruction and error noise reduction of the

wind data are illustrated on Figure 5.7. The relations between two successive variables in the

original observed data (first row) and in the corrected data (last row) derived from the npSEM

algorithm are compared. For all stations, the corrected data have smaller variances than the

observed data, especially in the tails. Here the proposed algorithm can reduce the observational

errors in the data or at least calibrate ratios of the model errors and the observational errors
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such that these stochastic terms enable to compensate uncertainties in model approximation and

inferring tasks (filtering, smoothing and estimating). Using the npSEM algorithm may permit to

better reconstruct a dynamical model for the wind data than using standard regression methods

learned on this raw data directly.
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Figure 5.7 – Scatter plot of two successive variables in the observed data and the corrected
data derived from npSEM algorithm. The results are shown for the data recorded corresponding
to West-East direction.

5.3 Conclusions and Perspectives

In Section 5.1, we show that the non-parametric filtering algorithm permits to compute model

evidence given a sequence of observations and different model-run sequences of the state. We

propose different metrics to compare these datasets and select the best model-run data describing

the observations. Compared to the performance of the classical filtering algorithm, the proposed

algorithm avoids rerunning numerical forecast models which are expensive in DA. In the future

works, we would like to apply the non-parametric filtering algorithm on model evidence on

modified models such as models including smooth forcing functions and model covariance with

varying values, and high dimensional models but only few variables in the models considered.

Climate change attribution and detection based on estimating model evidence with non-parametric

filtering algorithms will be also investigated.

In Section 5.2, we propose to use the npSEM algorithm for missing-noisy data imputation on

wind data produced by Météo France. Several illustrations of the performances of the algorithm

in terms of parameter estimation, model reconstruction, data imputation, and error reduction are

displayed. Here the wind data seems to follow approximately a linear model so that a Kalman
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algorithm can be run to get similar results but with a low cost. Therefore the future works

include detecting data, which derived from nonlinear dynamics, for exhaustive applications of

the npSEM algorithm.
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Conclusions and Perspectives
6.1 Conclusions

Statistical inference tools including standard particle-based filters/smoothers, and SEMmachines

are used to infer the state of nonlinear systems and relevant parameters from noisy observed data.

However, the regular tools using a huge amount of particles require expensive computations

in practice. As one of the contributions of the thesis, we detected and then illustrated the

efficiency of CPFs/CPSs, and of their combinations with SEM algorithms in state and parameter

estimation with a low computational cost.

In the classical approaches, forecast models are derived from an explicit dynamical model

or its numerical approximations. For real applications in geosciences, numerical forecast models

have to be run for each time step. That usually leads to the need of high computational resources,

for instance when the time increment between two successive state variables in the evolution

model is large or only several components of the system are of interest but the whole model

must be run. In the thesis, we proposed novel non-parametric methods where the dynamical

model is replaced by a non-parametric estimate, learned on a historical dataset recorded from

satellites, in-situ sensors or numerical simulations of physical systems.

As the first step, we explored different combinations of non-parametric emulators (LC

and LLR) and filtering schemes (EKF, EnKF, and PF), leading to non-parametric filtering

algorithms. Through numerical experiments, we found that results derived from the non-

parametric filtering algorithms converge to those of the classical filtering algorithms if the

learning data is informative enough.

The breakthroughs of this thesis consist in developing the non-parametric SEM algorithms.

These algorithms were proposed to reconstruct unspecified dynamical models, estimate unknown

parameters, and infer the hidden state for each of the two following conditions:
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1. Perfect observations: a learning dataset simulated from the state process with no observation

error is assumed to be available.

2. Imperfect observations: only the noisy data taking into account observational errors is

given.

In the first situation, we combined the non-parametric emulator, learned on the perfect data,

with the CPS smoother and the original SEM algorithm. However, such "perfect" observations of

the state, with no observational error, are typically not available. In the second situation, only a

sequence of the process with observational errors is available. This increases estimation errors if a

non-parametric estimate is learned directly on this noisy data. To handle this problem, the thesis

introduced a novel non-parametric algorithm which combines the non-parametric emulator, the

low-cost CPS smoother with an SEM-like algorithm wherein the smoothed samples generated

from the algorithm in the current iteration are set as learning data for the latter iteration.

Finally, the potential abilities of the proposed approaches in terms of model selection/model

comparison noise error reduction, missing-data imputation and parameter estimation were illustrated

on toy examples and wind data produced by Météo France.

6.2 Perspectives

The thesis closes at this stage but opens lots of interesting subjects for future research in statistics

and various applications. Some of them are discussed as follows.

First of all, we plan to apply the proposed non-parametric algorithms consisting of non-

parametric filtering (smoothing) algorithms and non-parametric SEM algorithms to small dimensional

DA problems (e.g. tracking and system control) or local/regional applications in geosciences

(e.g. missing-data imputation, model selection, and climate change detection). An example is

the case study of climate change phenomena in Europe instead of the global climate change, or

an analysis of the seasonal variability of several factors (e.g. temperature, rainfall, and wind)

instead of the whole weather system. Here we target to emphasize the state-of-art abilities

(model estimation, state, and parameter inference) of the proposed algorithms without using an

explicit formulation of the dynamical system. In such contexts, only some components of the

state variable involved in the systems of ODEs are of interests and parametric estimates might

focus on the chosen components. Then, the use of expensive numerical forecast models derived

from integrating the systems of ODEs of the whole world/space of a physical phenomenon in the

118



6.2. Perspectives

classical algorithms is no longer necessary. Furthermore, we expect to extend the application

fields of these novel methods.

Up to the present time, the proposed non-parametric methods have been constructed as the

(partial) combination of standard regression forecast emulators (analog emulators) and particle-

based samplers. In practice, working with these tools often suffers from curse of dimensionality in

high dimensional state spaces (e.g. see in [9,66,87,130,133,168]). For the regression approaches

in machine learning, the problem is so-called "large d, small T " (e.g. the number of parameters

in slopes and intercepts of variables estimated by LLR are much larger than the number of

necessary analogs in learning data). Regarding the particle-based samplers such as bootstrap

PF/PS and bootstrap CPF/CPS, they typically meet degeneracy and sample impoverishment

(the amount of values in particle sets decreases when the dimension of the state and/or the length

of the observation sequence increases). There exist numerous solutions proposed to deal with the

curse of dimensionality problem in regression methods (e.g principle components analysis and

classical scaling [167,173,178]) and particle-based methods (e.g. proposal kernel improvements,

localization and block sampling [97,113,124,142,168,169]). As an expectation for applications of

the non-parametric inference algorithms in high dimensional problems, we continue to develop

these algorithms in conjunction with the mentioned solutions.

We also pay attention to other research topics related to the proposed filtering (smoothing)

and SEM algorithms. One potential topic consists in considering the cases of adaptive model

covariances which depend on the state values in heteroskedastic time series [51,157,179]. These

scenarios often occur in meteorological models (e.g. wind intensity and rainfall). Besides, it

is possible to relax the Gaussian assumption of error noises, that help to detect all abilities

of the particle-based methods for statistical inference in nonlinear non-Gaussian models. For

instance, in the case of extreme values in climatology, GEV distribution is more frequently used

to describe the extreme phenomena than the Gaussian distribution [36]. Discussions of potential

approaches for handling these two problems are summarized in Chapter 1 [Section 1.2.2.3].

Theoretical studies are very important in further developments of the proposed methods. In

lots of references of local regression methods (e.g. [35,60,61]), of CPFs/CPSs (e.g. [4,99,101,102]),

and of SEM machines (e.g. [41, 44, 149, 170]), their asymptotic behaviors were considered and

proven. In future research, we are going to explore properties of the proposed approaches using

the combination of the theoretical behaviors of the mentioned materials.

119



120



List of Figures
1 Illustration of statistical inference problems in SSMs addressed in the thesis. Xnb

denotes a set of neighbors of x which are used to estimate m(x) by local linear

regression (LLR) method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Scatter plot (left panel) of the dynamical model with respect to the state, and time

series plot (right panel) of the state and observations simulated from a univariate

linear SSM (1.2) where model coefficients Mt = 0.9, Ht = 1 and error variances

Q = R = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Scatter plot (left panel) of the dynamical model with respect to the state (the line

represents an identity model), and time series plot (right panel) of the state and

observations simulated from a sinus model (1.4) with error variances Q = R = 0.1. 12

1.3 Scatter plot (left panel) of the dynamical model with respect to the state (the line

represents an identity model), and time series plot (right panel) of the state and

observations simulated from a Kitagawa model (1.5) with error variances Q = 1

and R = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 3D-Scatter plot (left panel) of the dynamical model with respect to the state,

and time series plot (right panel) of the state (lines) and observations (points)

simulated from a L63 model (1.6) with error covariances Q = 0.01I3 and R = 2I2.

The second component (blue) of the state is unobserved. . . . . . . . . . . . . . . 14

1.5 Impact of values of paramater θ = (Q,R) on smoothing distributions for the sinus

model (1.4). The true state and observations have been simulated with the true

value θ∗ = (0.1, 0.1). The mean of the smoothing distributions are computed

using a standard particle smoother [46] with 100 particles. Results obtained with

the true parameter values θ∗ = (0.1, 0.1) (left panel) and wrong parameter values

θ̃ = (0.01, 1) (right panel) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . 24

121



List of Figures

1.6 An illustration of wind data with gaps recorded at five stations in the North-West

of France (produced by Météo France). Left panel: location map of the stations,

right panel: time series of wind speed where the missing entries are shown by

negative values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Comparison of LCR and LLR methods in estimation of the dynamical model

m on learning sequences of the state process {Xt}t of the sinus SSM (1.4) with

Q = R = 0.1. The length of the learning data T varies in [100, 1000] from left

to right. Scattered points stand for the relation between two successive values in

the learning sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Scatter plots of (Xt−1, Xt) (left) and (Yt−1, Yt) (right) for the sinus SSM (1.4)

with Q = R = 0.1. The blue curves represent for estimates of the conditional

means obtained using LLR and the red curves represent for the true m functions. 31

2.1 Comparison of RMSEs (2.9) of LCR and LLR on the L63 model (1.6) with dt =

0.08, Q = I3, R = 2I2. Left panel: RMSEs are computed on a learning sequence

(length T = 103) with respect to the number of neighbors (n). Right panel:

RMSEs are computed on a testing sequence (length T ′ = 103) with respect to

the length of learning sequences (T ) on which non-parametric estimates m̂ of the

dynamical function m is computed. . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 State reconstruction of non-parametric filtering algorithms on the L63 model (1.6)

with dt = 0.08, Q = I3, R = 3I2. Time series of the state and observations

simulated from the model are displayed by dark lines and points. Means (lines)

and 95% CIs (filled areas) of filtering distributions are computed for each of

three components (from top to bottom) by using non-parametric EKF, EnKF and

bootstrap PF algorithms with N = 103 members/particles. These algorithms are

combined with LLR forecast emulator learned on a learning sequence with length

T = 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Comparison in state reconstruction quality (RMSE (2.10), log-likelihood (2.11))

of the classical filtering algorithms (dotted lines) using the true model (m) and

non-parametric filtering algorithms (solid lines) using LLR estimate m̂(LLR)

on L63 model(1.6) with dt = 0.08, Q = I3, R = 2I2, T
′ = 103 and N = 103

members/particles. In non-parametric algorithms, m̂(LLR) is estimated based

on learning data with different length (T ). . . . . . . . . . . . . . . . . . . . . . . 45

122



List of Figures

2.4 Comparison of the impact of model nonlinearlity in state reconstruction quality

of different non-parametric filtering algorithms using LLR estimate on the L63

model (1.6) with Q = I3, R = 2I2. Learning data with length T = 103 and

observation sequences with length T ′ = 103 are simulated from the model for

every model time increment dt ∈ [0.01, 0.2]. First row: scatter plots of the first

components values in two successive state variables (Xt−1(1), Xt(1)) with respect

to dt, last row: plots of RMSE (2.10) and log-likelihood (2.11) computed by the

filtering algorithms with respect to dt. EnKF and PF algorithms are run with

N = 103 members/particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Diagram of forecast models and filtering methods introduced in the thesis. . . . . 49

3.1 Impact of parameter values on smoothing distributions for the L63 model (1.6).

The true state (black curve) and observations (black points) have been simulated

with θ = (Q,R) = (0.01I3, 2I3). The mean of the smoothing distributions (read

curve) are computed using a standard particle smoother [46] with 100 particles.

Results are obtained with the true parameter values θ∗ = (0.01I3, 2I3) (left panel)

and wrong parameter values θ̃ = (I3, I3) (right panel). . . . . . . . . . . . . . . . 53

3.2 Comparison of PF and CPF schemes using Nf = 5 particles (light gray points)

in time window [t− 1, t] on the SSM (1.3). The observation model is the identity

function. The main difference is shown on black quivers as CPF replaces the

particle x(Nf )
t with conditioning particle x∗t (dark gray point). . . . . . . . . . . . 57

3.3 Comparisons of PF and CPF performances with 10 particles on the Kitagawa

model (1.5), where T = 30, (Q,R) = (1, 10). Conditioning particles (dark gray

points) are supposed to live around to the true state trajectory (black curve).

Gray lines are the links among particles which have the same ancestor. . . . . . . 60

3.4 An example of ancestor tracking one smoothing trajectory (backward quiver)

based on ancestral links of filtering particles (forward quivers). Particles (gray

balls) are assumed to be obtained by a filtering algorithm with T = 4 and Nf = 3. 61

123



List of Figures

3.5 Comparison for simulatingNs = 10 realizations by using CPF smoother (Algorithm 8),

CPF-AS smoother (Algorithm 9) (both based on particle genealogy- light gray

links) and CPF-BS smoother (Algorithm 10) (based on backward kernel 3.10)

given the same forward filtering pattern with Nf = 10 particles (light gray

points). The experiment is run on the Kitagawa model (1.5) where T = 30

and (Q,R) = (1, 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Performance of an iterative CPF-BS smoother (Algorithm 10) with Nf = 10

particles in simulating Ns = 10 realizations. The experiment is on the Kitagawa

model (1.5) where (Q,R) = (1, 10), T = 30. The smoother given a zero-initial

conditioning (X∗ = 0 ∈ RT ) is run within 3 iterations. For each iteration the

conditioning trajectory X∗ is one of realizations obtained from the previous. . . . 65

3.7 Comparison between CPF-BS-SEM and CPF-AS-SEM in estimating θ = (A,Q,R)

for the linear Gaussian SSM model (1.2) with true parameter θ∗ = (0.9, 1, 1) and

T = 100. The results are obtained by running 100 repetitions of the two methods

with 10 particles/realizations and 100 iterations. The empirical distribution of

parameter estimates is represented every 10 iterations using one violin object with

(black) quantile box and (white) median point inside. The true MLE (dotted line)

is computed using KS-EM with 104 iterations. . . . . . . . . . . . . . . . . . . . . 72

3.8 Comparison of the estimates of θ = (A,Q,R) at iteration 100 of CPF-BS-SEM,

CPF-AS-SEM, and PF-BS-EM for the linear Gaussian SSM model (1.2) with true

parameter θ∗ = (0.9, 1, 1) and T = 100. These algorithms are run with different

number of particles/trajectories (Nf = Ns ∈ {10, 100, 1000}). The true MLE

(dotted line) is computed using KS-EM with 104 iterations. . . . . . . . . . . . . 73

3.9 Reconstruction of the true state for the linear Gaussian SSM model (1.2) given

T = 100 observations using the CPF-BS-SEM algorithm with 10 particles/realizations.

Smoothed mean and 95% confidence interval are computed from realizations,

which are simulated from last 10 iterations of the algorithm. . . . . . . . . . . . . 74

124



List of Figures

3.10 Comparison of the CPF-BS-SEM and CPF-AS-SEM algorithms on the Kitagawa

model (1.5), where true parameter is θ∗ = (1, 10) and number of observations is

T = 100. The results are obtained by running 100 times of these methods with 10

particles/realizations and 100 iterations. The empirical distribution of parameter

estimates is represented every 10 iterations using one violin object with (black)

quantile box and (white) median point inside. . . . . . . . . . . . . . . . . . . . . 75

3.11 Comparison of the estimates of θ = (Q,R) at iteration 100 of the CPF-BS-SEM

and CPF-AS-SEM algorithm on the Kitagawa model (1.5), where true parameter

is θ∗ = (1, 10) and number of observations is T = 100. The algorithms are run

with fixed number of particles (Nf = 10) and different number of trajectories

(Ns ∈ {1, 5, 10}). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 Reconstruction of the true state using CPF-BS-SEM with 10 particles/realizations

on the Kitagawa model (1.5) given T = 100 observations. Smoothed means and

95% confidence intervals of all realizations simulated from the last 10 iterations

of the algorithm are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.13 Comparison between CPF-BS-SEM and CPF-AS-SEM on the L63 model (1.6)

with model time step dt = 0.15, true parameter θ∗ = (1, 2) and T = 100

observations. Results obtained by running 100 repetitions of these methods

with 20 particles/realizations and 100 iterations. The empirical distribution of

parameter estimates is represented every 10 iterations using one violin object with

(black) quantile box and (white) median point inside. . . . . . . . . . . . . . . . 77

3.14 Comparison of the estimates of θ = (σ2
Q, σ

2
R) for the CPF-BS-SEM, CPF-AS-SEM

and EnKS-EM algorithms with 20 members/particles for the L63 models (1.6)

with varying model time step dt ∈ {0.01, 0.08, 0.15}, true parameter θ∗ = (1, 2)

and number of observations is T = 100. Each empirical distribution of the

estimates of θ is computed using 100 repetitions of each algorithm at the final

iteration r = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 Reconstruction of the true state for the L63 model (1.6) with dt = 0.15, T = 100

by using the CPF-BS-SEM algorithm with 20 particles/realizations. Smoothed

mean and 95% confidence interval of all realizations of the last 10 iterations of

the algorithm are computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

125



List of Figures

4.1 An illustration of Algorithm 13 (npSEM) on the sinus model (1.4). For each

iteration, the LLR estimate (m̂r)r≥0 of the dynamical model m is learned on the

smoothed samples generated from the previous iteration (x̃1:T,0 = Y1:T for the

first iteration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Comparison of the estimated parameters of SEM and npSEM algorithms on the

sinus model (1.4). The left (resp. middle) panel shows the evolution of the Q

(resp. R) estimates with respect to the iteration number of these algorithms. The

right panel shows the evolution of the likelihood-ratio statistic (4.7). . . . . . . . 92

4.3 Scatter-plots of (Yt−1, Yt) (left), (Xt−1, Xt) (middle) and
(
X̃t−1, X̃t

)
for the SSM

defined by Eq. (1.4). X̃t stands for one of realizations generated at the final

iteration of the npSEM algorithm. The m̂-curves show estimates of the conditional

mean function m obtained using LLR. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Time series of the state and observations simulated from the L63 model (4.9).

10% of the observations are set as missing values (e.g. shown in time interval

[50, 60]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Comparison of the estimated parameters of SEM and npSEM algorithms on the

L63 model (4.9). The left (resp. middle) panel shows the evolution of the trace of

Q (resp. Rt) estimates with respect to the iteration number of the EM algorithm.

The right panel shows the evolution of the likelihood-ratio statistics (4.7). . . . . 96

4.6 Scatter plots of (Yt−1, Yt) (left), (Xt−1, Xt) (middle) and
(
X̃t−1, X̃t

)
(right) for

the L63 model defined by (4.9). {X̃t} stands for one of realizations generated at

the final iteration of the npSEM algorithm. . . . . . . . . . . . . . . . . . . . . . 97

5.1 Simulated trajectories derived from the L63 SSM (Eq. 4.9) with m defined in

Eq. (5.1), Ht = I3, dt = 0.01, Q = 0.001I3, R = 2I3. Correct state and observation

sequences are generated from the correct model with forcing parameter λ0 = 0,

and incorrect state sequence is generated with the incorrect model with forcing

parameter λ1 = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Top: time series plot of a segment of the state and observed sequences simulated

from the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ =

0, Q = 0.001I3, R = 2I3. Bottom: time series plot of CME estimates of li(t, 1)

(Eq. 5.2) derived from the classical and the non-parametric (analog) algorithms

for both correct model (λ0 = 0) and incorrect model (λ1 = 8). . . . . . . . . . . . 106

126



List of Figures

5.3 Comparison of the classical and non-parametric algorithms in computing CME

difference D0,1(t, 1) (Eq. 5.4) with respect to state position (the illustration is

for the first and third components) on the L63 SSM (Eq. 4.9) with m defined

in Eq. (5.1), Ht = I3, dt = 0.1, λ = 0, Q = 0.001I3, R = 2I3. Two models are

considered with correct λ0 = 0 and incorrect λ1 = 8. . . . . . . . . . . . . . . . . 107

5.4 Comparison of average CME estimates (l̄i(1), Eq. 5.3) of the classical and non-

parametric approaches on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1),

Ht = I3, dt = 0.1, Q = 0.001I3 and R = 2I3, λ0 = 0 (correct) and {λi}i ∈ [−8, 8]. 109

5.5 Sensitivity of the model identification (p0,i, Eq. 5.5) of the non-parametric filtering

algorithm with respect to values of forcing parameter λ (λi ∈ [−8, 8])) and window

size (K ∈ [1, 100]) on the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3,

dt = 0.1, λ = 0, Q = 0.001I3 and R = 2I3. . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Parameter estimation and state reconstruction of npSEM algorithm on wind data

(see Figure 1.6 for its time series plot). RMSE (Eq. 4.8) is computed between the

observation yt and smoothed mean x̂t derived from the algorithm. . . . . . . . . 113

5.7 Scatter plot of two successive variables in the observed data and the corrected

data derived from npSEM algorithm. The results are shown for the data recorded

corresponding to West-East direction. . . . . . . . . . . . . . . . . . . . . . . . . 114

127



128



List of Tables

2.1 Comparison of the reconstruction quality of non-parametric EKF, EnKF and

PF algorithms on an observation sequence y′1:T ′ of the L63 model (1.6) with

dt = 0.08, Q = I3, R = 2I2 and T ′ = 103 in terms of root of mean square error

(RMSE) and coverage probability (CP). The non-parametric estimate m̂(LLR),

learned on another state sequence with length T = 103, is used in these algorithms.

The two scores are computed for each of the three components. EnKF and PF

algorithms are run with N = 103 particles/realizations. . . . . . . . . . . . . . . . 42

2.2 Comparison of RMSEs (2.10) between the estimated state and the true state

on the L63 model (1.6) with dt = 0.08, Q = I3, R = 2I2 and T ′ = 103. Non-

parametric model estimates of LCR or LLR methods are learned on a state

sequence with T = 103. The estimated state is the mean of filtering distribution

approximated by the filtering algorithms combined with different forecast models.

For EnKF and PF algorithms, RMSEs mean and standard error of their 10

replications are shown with respect to sample size (N). . . . . . . . . . . . . . . . 46

2.3 Comparison of log-likelihood (2.11) computed by non-parametric filtering algorithms

on the L63 model (1.6) with dt = 0.08, Q = I3, R = 2I2 and T ′ = 103. Non-

parametric model estimates of LCR and LLRmethods are learned a state sequence

with T = 103. For EnKF and PF algorithms, log-likelihood mean and standard

error of 10 replications of each algorithm are shown with respect to sample size

(N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

129



List of Tables

3.1 Comparison of the reconstruction quality between the CPF-BS and CPF-AS

smoothers on a test sequence in terms of root of mean square error (RMSE)

and coverage probability (CP). The parameters are estimated on a sequence of

length T = 100 (mean values of the final estimates shown on Figure 3.13). The

CPF-BS and CPF-AS algorithms are run on a test sequence simulated using the

L63 model (1.6) with dt = 0.15, T ′ = 1000, θ∗ = (1, 2). The two scores are

computed on the second component of the samples drawn from these smoothers

with 20 particles/realizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 RMSEs (Eqs. 2.9 and 4.8) for forecasting and smoothing of a state sequence of

model (1.4). The parameters are estimated on a sequence of length T = 1000.

The smoothing algorithms are run with 10 particles. θ∗ denotes the true values

of the parameters. X,Y and X̃ represent sequences generated from the true state

process {Xt}, the observation process {Yt} and the npSEM algorithm, respectively. 94

4.2 RMSEs (Eqs. 2.9 and 4.8) for forecasting and smoothing of a state sequence of the

L63 model (4.9). The parameters are estimated on a sequence of length T = 1000.

The smoothing algorithms are run with 10 particles. θ∗ denotes the true values of

the parameters. X,Y and X̃ represent to sequences generated from the true state

process {Xt}, the observation process {Yt} and the npSEM algorithm, respectively. 97

5.1 Sensitivity of the model identification with respect to length of learning data (T )

used to estimate the dynamical model m in the non-parametric algorithms on

the L63 SSM (Eq. 4.9) with m defined in Eq. (5.1), Ht = I3, dt = 0.1, λ = 0,

Q = 0.001I3 and R = 2I3. Correct [resp. incorrect] learning data with length

T ∈ [102 − 105] and the observed sequence with length T ′ = 103 are simulated

from the correct [resp. incorrect] model with λ0 = 0 [resp. λ1 = 8]. Means

and 95% confidence intervals (CI) of the correct model identification percentage

p0,1(1) (Eq. 5.5) are computed for each of the algorithms using 10 repetitions. . . 107

130



List of Tables

5.2 Sensitivity of the model identification to error noise covariances (Q,R) of the

classical and the analog EnKF algorithms on the L63 SSM (Eq. 4.9) with m

defined in Eq. (5.1), Ht = I3 and dt = 0.1. The correct [resp. incorrect] learning

data with length T = 104 and the observed sequence with length T ′ = 103 are

simulated from the correct [resp. incorrect] model with λ0 = 0 [resp. λ1 = 8]. Q

[resp. R] is fixed to 0.001I3 [resp. 2I3] if the value of R [resp. Q] varies. Means

and 95% confidence intervals (CI) of the correct model identification percentage

p0,1(1) (Eq. 5.5) are computed for each of the algorithms using 10 repetitions. . . 108

5.3 RMSEs between true values of artificial gaps and imputed data derived from

different imputation methods based on regression model and state-space model.

For npSEM algorithm, imputed data are the means of smoothed samples of last

10 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

131



132



Bibliography
[1] Pierre Ailliot, Julie Bessac, Valérie Monbet, and Françoise Pene. Non-homogeneous

hidden markov-switching models for wind time series. Journal of Statistical Planning

and Inference, 160:75–88, 2015.

[2] Idrissa Amour and Tuomo Kauranne. A variational ensemble kalman filtering method for

data assimilation using 2d and 3d version of coherens model. International Journal for

Numerical Methods in Fluids, 83(6):544–558, 2017.

[3] Jeffrey L Anderson. An ensemble adjustment kalman filter for data assimilation. Monthly

weather review, 129(12):2884–2903, 2001.

[4] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte

carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

72(3):269–342, 2010.

[5] Christophe Andrieu, Arnaud Doucet, Sumeetpal S Singh, and Vladislav B Tadic. Particle

methods for change detection, system identification, and control. Proceedings of the IEEE,

92(3):423–438, 2004.

[6] Germán Aneiros-Pérez, Ricardo Cao, and Juan M Vilar-Fernández. Functional methods

for time series prediction: a nonparametric approach. Journal of Forecasting, 30(4):377–

392, 2011.

[7] Mohammad Bannayan and Gerrit Hoogenboom. Weather analogue: a tool for real-time

prediction of daily weather data realizations based on a modified k-nearest neighbor

approach. Environmental Modelling & Software, 23(6):703–713, 2008.

[8] TP Barnett and RW Preisendorfer. Multifield analog prediction of short-term climate

fluctuations using a climate state vector. Journal of the Atmospheric Sciences,

35(10):1771–1787, 1978.

133



Bibliography

[9] Thomas Bengtsson, Peter Bickel, Bo Li, et al. Curse-of-dimensionality revisited: Collapse

of the particle filter in very large scale systems. In Probability and statistics: Essays in

honor of David A. Freedman, pages 316–334. Institute of Mathematical Statistics, 2008.

[10] Tyrus Berry and Timothy Sauer. Adaptive ensemble kalman filtering of non-linear systems.

Tellus A: Dynamic Meteorology and Oceanography, 65(1):20331, 2013.

[11] Laurent Bertino, Geir Evensen, and Hans Wackernagel. Sequential data assimilation

techniques in oceanography. International Statistical Review, 71(2):223–241, 2003.

[12] M. Bocquet and P. Sakov. Joint state and parameter estimation with an iterative ensemble

Kalman smoother. Nonlin. Processes Geophys., 20:803–818, 2013.

[13] M. Bocquet and P. Sakov. An iterative ensemble Kalman smoother. Q. J. R. Meteorol.

Soc., 140:1521–1535, 2014.

[14] Marc Bocquet. Ensemble kalman filtering without the intrinsic need for inflation.

Nonlinear Processes in Geophysics, 18(5):735–750, 2011.

[15] Marc Bocquet and Pavel Sakov. Combining inflation-free and iterative ensemble kalman

filters for strongly nonlinear systems. Nonlinear Processes in Geophysics, 19(3):383–399,

2012.

[16] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

[17] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state–space

models. Annals of the Institute of Statistical Mathematics, 62(1):61, 2010.

[18] Andrew Briggs, Taane Clark, Jane Wolstenholme, and Philip Clarke. Missing.... presumed

at random: cost-analysis of incomplete data. Health economics, 12(5):377–392, 2003.

[19] Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer

Science & Business Media, 2013.

[20] Robert Grover Brown, Patrick YC Hwang, et al. Introduction to random signals and

applied Kalman filtering, volume 3. Wiley New York, 1992.

[21] Kenneth P Burnham and David R Anderson. Model selection and multimodel inference:

a practical information-theoretic approach. Springer Science & Business Media, 2003.

134



Bibliography

[22] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley

& Sons, 2016.

[23] Olivier Cappé, Simon J Godsill, and Eric Moulines. An overview of existing methods and

recent advances in sequential monte carlo. Proceedings of the IEEE, 95(5):899–924, 2007.

[24] Alberto Carrassi, Marc Bocquet, Laurent Bertino, and Geir Evensen. Data assimilation in

the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary

Reviews: Climate Change, 0(0):e535, 2018.

[25] Alberto Carrassi, Marc Bocquet, Alexis Hannart, and Michael Ghil. Estimating model

evidence using data assimilation. Quarterly Journal of the Royal Meteorological Society,

143(703):866–880, 2017.

[26] Raymond J Carroll, David Ruppert, Ciprian M Crainiceanu, and Leonard A Stefanski.

Measurement error in nonlinear models: a modern perspective. Chapman and Hall/CRC,

2006.

[27] Jake Carson, Michel Crucifix, Simon Preston, and Richard D Wilkinson. Bayesian model

selection for the glacial–interglacial cycle. Journal of the Royal Statistical Society: Series

C (Applied Statistics), 67(1):25–54, 2018.

[28] Gilles Celeux, Didier Chauveau, and Jean Diebolt. On Stochastic Versions of the EM

Algorithm. Research Report RR-2514, INRIA, 1995.

[29] KS Chan and Johannes Ledolter. Monte carlo em estimation for time series models

involving counts. Journal of the American Statistical Association, 90(429):242–252, 1995.

[30] Thi Tuyet Trang Chau, Pierre Ailliot, Valérie Monbet, and Pierre Tandeo. An efficient

particle-based method for maximum likelihood estimation in nonlinear state-space models.

arXiv preprint arXiv:1804.07483, 2018.

[31] Lu-Hung Chen, Ming-Yen Cheng, and Liang Peng. Conditional variance estimation

in heteroscedastic regression models. Journal of Statistical Planning and Inference,

139(2):236–245, 2009.

[32] Nicolas Chopin et al. Central limit theorem for sequential monte carlo methods and its

application to bayesian inference. The Annals of Statistics, 32(6):2385–2411, 2004.

135



Bibliography

[33] Nicolas Chopin, Sumeetpal S Singh, et al. On particle gibbs sampling. Bernoulli,

21(3):1855–1883, 2015.

[34] Charles K Chui, Guanrong Chen, et al. Kalman filtering. Springer, 2017.

[35] William S Cleveland and Susan J Devlin. Locally weighted regression: an approach

to regression analysis by local fitting. Journal of the American statistical association,

83(403):596–610, 1988.

[36] Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical

modeling of extreme values, volume 208. Springer, 2001.

[37] Jacques JF Commandeur and Siem Jan Koopman. An introduction to state space time

series analysis. Oxford University Press, 2007.

[38] Jan G De Gooijer and Dawit Zerom. On conditional density estimation. Statistica

Neerlandica, 57(2):159–176, 2003.

[39] Dick P Dee. Simplification of the kalman filter for meteorological data assimilation.

Quarterly Journal of the Royal Meteorological Society, 117(498):365–384, 1991.

[40] Pierre Del Moral. Feynman-kac formulae. In Feynman-Kac Formulae, pages 47–93.

Springer, 2004.

[41] Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic

approximation version of the em algorithm. Annals of statistics, pages 94–128, 1999.

[42] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

[43] Gérald Desroziers, Loic Berre, Bernard Chapnik, and Paul Poli. Diagnosis of observation,

background and analysis-error statistics in observation space. Quarterly Journal of the

Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology

and physical oceanography, 131(613):3385–3396, 2005.

[44] J Diebolt, E Ip, and Ingram Olkin. A stochastic em algorithm for approximating the

maximum likelihood estimate. Markov chain Monte Carlo in practice. Chapman and

Hall, Dordrect, The Netherlands, 1996.

136



Bibliography

[45] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering.

In Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th

International Symposium on, pages 64–69. IEEE, 2005.

[46] Randal Douc, Aurelien Garivier, Eric Moulines, and Jimmy Olsson. On the forward

filtering backward smoothing particle approximations of the smoothing distribution in

general state spaces models. arXiv preprint arXiv:0904.0316, 2009.

[47] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte

carlo methods. In Sequential Monte Carlo methods in practice, pages 3–14. Springer, 2001.

[48] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo

sampling methods for bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

[49] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:

Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

[50] Denis Dreano, Pierre Tandeo, Manuel Pulido, Boujemaa Ait-El-Fquih, Thierry Chonavel,

and Ibrahim Hoteit. Estimating model-error covariances in nonlinear state-space models

using kalman smoothing and the expectation–maximization algorithm. Quarterly Journal

of the Royal Meteorological Society, 143(705):1877–1885, 2017.

[51] James Durbin and Siem Jan Koopman. Time series analysis by state space methods,

volume 38. OUP Oxford, 2012.

[52] Ahmed H Elsheikh, Ibrahim Hoteit, and Mary F Wheeler. Efficient bayesian inference

of subsurface flow models using nested sampling and sparse polynomial chaos surrogates.

Computer Methods in Applied Mechanics and Engineering, 269:515–537, 2014.

[53] Ahmed H Elsheikh, Mary F Wheeler, and Ibrahim Hoteit. Hybrid nested sampling

algorithm for bayesian model selection applied to inverse subsurface flow problems. Journal

of Computational Physics, 258:319–337, 2014.

[54] Geir Evensen. Using the extended kalman filter with a multilayer quasi-geostrophic ocean

model. Journal of Geophysical Research: Oceans, 97(C11):17905–17924, 1992.

[55] Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical

implementation. Ocean dynamics, 53(4):343–367, 2003.

137



Bibliography

[56] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business

Media, 2009.

[57] Geir Evensen. Analysis of iterative ensemble smoothers for solving inverse problems.

Computational Geosciences, 22(3):885–908, 2018.

[58] Geir Evensen and Peter Jan Van Leeuwen. An ensemble kalman smoother for nonlinear

dynamics. Monthly Weather Review, 128(6):1852–1867, 2000.

[59] Ronan Fablet, Phi Huynh Viet, and Redouane Lguensat. Data-driven models for

the spatio-temporal interpolation of satellite-derived sst fields. IEEE Transactions on

Computational Imaging, 3(4):647–657, 2017.

[60] Jianqing Fan. Local polynomial modelling and its applications: monographs on statistics

and applied probability 66. Routledge, 2018.

[61] Jianqing Fan and Qiwei Yao. Nonlinear time series: nonparametric and parametric

methods. Springer Science & Business Media, 2008.

[62] Jianqing Fan, Qiwei Yao, and Howell Tong. Estimation of conditional densities and

sensitivity measures in nonlinear dynamical systems. Biometrika, 83(1):189–206, 1996.

[63] Jianqing Fan and J-T Zhang. Two-step estimation of functional linear models with

applications to longitudinal data. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 62(2):303–322, 2000.

[64] Paul Fearnhead and Hans R Künsch. Particle filters and data assimilation. Annual Review

of Statistics and Its Application, 5:421–449, 2018.

[65] Gláucia Tatiana Ferrari and Vitor Ozaki. Missing data imputation of climate datasets:

Implications to modeling extreme drought events. Revista Brasileira de Meteorologia,

29(1):21–28, 2014.

[66] Jerome H Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data

mining and knowledge discovery, 1(1):55–77, 1997.

[67] G Galanis, P Louka, P Katsafados, G Kallos, and I Pytharoulis. Applications of kalman

filters based on non-linear functions to numerical weather predictions. Ann. Geophys,

24:1–10, 2006.

138



Bibliography

[68] Michael Ghil and Paola Malanotte-Rizzoli. Data assimilation in meteorology and

oceanography. In Advances in geophysics, volume 33, pages 141–266. Elsevier, 1991.

[69] Simon J Godsill, Arnaud Doucet, and Mike West. Monte carlo smoothing for nonlinear

time series. Journal of the american statistical association, 99(465):156–168, 2004.

[70] AH Abdul Hafez. Depth estimation using particle filters for image-based visual servoing.

Journal of Control Engineering and Applied Informatics, 18(2):48–56, 2016.

[71] Peter Hall, Rodney CL Wolff, and Qiwei Yao. Methods for estimating a conditional

distribution function. Journal of the American Statistical association, 94(445):154–163,

1999.

[72] A Hannart, J Pearl, FEL Otto, P Naveau, and M Ghil. Causal counterfactual theory for the

attribution of weather and climate-related events. Bulletin of the American Meteorological

Society, 97(1):99–110, 2016.

[73] Alexis Hannart, Alberto Carrassi, Marc Bocquet, Michael Ghil, Philippe Naveau, Manuel

Pulido, Juan Ruiz, and Pierre Tandeo. Dada: data assimilation for the detection and

attribution of weather and climate-related events. Climatic Change, 136(2):155–174, 2016.

[74] Simon Haykin. Kalman filtering and neural networks, volume 47. John Wiley & Sons,

2004.

[75] Nils-Bastian Heidenreich, Anja Schindler, and Stefan Sperlich. Bandwidth selection for

kernel density estimation: a review of fully automatic selectors. AStA Advances in

Statistical Analysis, 97(4):403–433, Oct 2013.

[76] Diederich Hinrichsen and Anthony J Pritchard. Mathematical systems theory I: modelling,

state space analysis, stability and robustness, volume 48. Springer Berlin, 2005.

[77] Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. On resampling algorithms for

particle filters. In Nonlinear Statistical Signal Processing Workshop, 2006 IEEE, pages

79–82. IEEE, 2006.

[78] Pascal Horton, Michel Jaboyedoff, and Charles Obled. Global optimization of an analog

method by means of genetic algorithms. Monthly Weather Review, 145(4):1275–1294, 2017.

139



Bibliography

[79] Ibrahim Hoteit, Dinh-Tuan Pham, George Triantafyllou, and Gerasimos Korres. A new

approximate solution of the optimal nonlinear filter for data assimilation in meteorology

and oceanography. Monthly Weather Review, 136(1):317–334, 2008.

[80] Peter L Houtekamer and Herschel L Mitchell. Data assimilation using an ensemble kalman

filter technique. Monthly Weather Review, 126(3):796–811, 1998.

[81] PL Houtekamer and Fuqing Zhang. Review of the ensemble kalman filter for atmospheric

data assimilation. Monthly Weather Review, 144(12):4489–4532, 2016.

[82] José M Jerez, Ignacio Molina, Pedro J García-Laencina, Emilio Alba, Nuria Ribelles,

Miguel Martín, and Leonardo Franco. Missing data imputation using statistical and

machine learning methods in a real breast cancer problem. Artificial intelligence in

medicine, 50(2):105–115, 2010.

[83] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear

systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068, pages

182–194. International Society for Optics and Photonics, 1997.

[84] WL Junger and A Ponce De Leon. Imputation of missing data in time series for air

pollutants. Atmospheric Environment, 102:96–104, 2015.

[85] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal

of basic Engineering, 82(1):35–45, 1960.

[86] Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, Nicolas Chopin,

et al. On particle methods for parameter estimation in state-space models. Statistical

science, 30(3):328–351, 2015.

[87] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia of Machine

Learning and Data Mining, pages 314–315. Springer, 2017.

[88] Genshiro Kitagawa. A self-organizing state-space model. Journal of the American

Statistical Association, pages 1203–1215, 1998.

[89] Juho Kokkala, Arno Solin, and Simo Särkkä. Expectation maximization based parameter

estimation by sigma-point and particle smoothing. In Information Fusion (FUSION),

2014 17th International Conference on, pages 1–8. IEEE, 2014.

140



Bibliography

[90] Estelle Kuhn and Marc Lavielle. Coupling a stochastic approximation version of em with

an mcmc procedure. ESAIM: Probability and Statistics, 8:115–131, 2004.

[91] Upmanu Lall and Ashish Sharma. A nearest neighbor bootstrap for resampling hydrologic

time series. Water Resources Research, 32(3):679–693, 1996.

[92] Bernard Lamien, Helcio Rangel Barreto Orlande, and Guillermo Enrique Eliçabe. Particle

filter and approximation error model for state estimation in hyperthermia. Journal of Heat

Transfer, 139(1):012001, 2017.

[93] François Le Gland, Valérie Monbet, and Vu Duc Tran. Large sample asymptotics for

the ensemble kalman filter. In Dan Crisan and Boris Rozovskii, editors, Handbook on

Nonlinear Filtering, chapter 22, pages 598–631. Oxford University Press, Oxford, 2009.

[94] Nayoung Lee, Hyungsik Roger Moon, and Qiankun Zhou. Many ivs estimation of dynamic

panel regression models with measurement error. Journal of Econometrics, 200(2):251–

259, 2017.

[95] Redouane Lguensat, Pierre Tandeo, Pierre Ailliot, Manuel Pulido, and Ronan Fablet. The

analog data assimilation. Monthly Weather Review, 145(10):4093–4107, 2017.

[96] Liangping Li, Ryan Puzel, and Arden Davis. Data assimilation in groundwater modelling:

ensemble kalman filter versus ensemble smoothers. Hydrological Processes, 32(13):2020–

2029, 2018.

[97] Tiancheng Li, Shudong Sun, Tariq Pervez Sattar, and Juan Manuel Corchado. Fight

sample degeneracy and impoverishment in particle filters: A review of intelligent

approaches. Expert Systems with applications, 41(8):3944–3954, 2014.

[98] Fredrik Lindsten. An efficient stochastic approximation em algorithm using conditional

particle filters. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, pages 6274–6278. IEEE, 2013.

[99] Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Particle gibbs with ancestor

sampling. The Journal of Machine Learning Research, 15(1):2145–2184, 2014.

[100] Fredrik Lindsten, Thomas Schön, and Michael I Jordan. Ancestor sampling for particle

gibbs. In Advances in Neural Information Processing Systems, pages 2591–2599, 2012.

141



Bibliography

[101] Fredrik Lindsten and Thomas B Schön. On the use of backward simulation in particle

markov chain monte carlo methods. arXiv preprint arXiv:1110.2873, 2011.

[102] Fredrik Lindsten, Thomas B Schön, et al. Backward simulation methods for monte carlo

statistical inference. Foundations and Trends R© in Machine Learning, 6(1):1–143, 2013.

[103] X CHEN O LINTON and PM ROBINSON. The estimation of conditional densities.

Asymptotics in Statistics and Probability: Papers in Honor of George Gregory Roussas,

page 71, 2000.

[104] Roderick JA Little. Missing-data adjustments in large surveys. Journal of Business &

Economic Statistics, 6(3):287–296, 1988.

[105] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume

333. John Wiley & Sons, 2014.

[106] Yun Liu, J-M Haussaire, Marc Bocquet, Yelva Roustan, Olivier Saunier, and Anne

Mathieu. Uncertainty quantification of pollutant source retrieval: comparison of bayesian

methods with application to the chernobyl and fukushima daiichi accidental releases of

radionuclides. Quarterly Journal of the Royal Meteorological Society, 143(708):2886–2901,

2017.

[107] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,

20(2):130–141, 1963.

[108] Jan Mandel. A brief tutorial on the ensemble kalman filter. arXiv preprint

arXiv:0901.3725, 2009.

[109] Kantilal Varichand Mardia. Statistics of directional data. Academic press, 2014.

[110] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions,

volume 382. John Wiley & Sons, 2007.

[111] Erik Meijer, Laura Spierdijk, and TomWansbeek. Measurement error in the linear dynamic

panel data model. In ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject

to Measurement Errors, Missing Values, and/or Outliers, pages 77–92. Springer, 2013.

142



Bibliography

[112] Takemasa Miyoshi. The gaussian approach to adaptive covariance inflation and its

implementation with the local ensemble transform kalman filter. Monthly Weather Review,

139(5):1519–1535, 2011.

[113] Christian Naesseth, Fredrik Lindsten, and Thomas Schon. Nested sequential monte carlo

methods. In International Conference on Machine Learning, pages 1292–1301, 2015.

[114] Katsuhiko Ogata. Discrete-time control systems, volume 2. Prentice Hall Englewood Cliffs,

NJ, 1995.

[115] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and David G Lowe. A

boosted particle filter: Multitarget detection and tracking. In European conference on

computer vision, pages 28–39. Springer, 2004.

[116] Jimmy Olsson, Olivier Cappé, Randal Douc, Eric Moulines, et al. Sequential monte

carlo smoothing with application to parameter estimation in nonlinear state space models.

Bernoulli, 14(1):155–179, 2008.

[117] Nicolas Papadakis, Étienne Mémin, Anne Cuzol, and Nicolas Gengembre. Data

assimilation with the weighted ensemble kalman filter. Tellus A: Dynamic Meteorology

and Oceanography, 62(5):673–697, 2010.

[118] Charles M Paulsen, Richard A Hinrichsen, and Timothy R Fisher. Measure twice,

estimate once: Pacific salmon population viability analysis for highly variable populations.

Transactions of the American Fisheries Society, 136(2):346–364, 2007.

[119] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[120] Dinh Tuan Pham, Jacques Verron, and Marie Christine Roubaud. A singular evolutive

extended kalman filter for data assimilation in oceanography. Journal of Marine systems,

16(3-4):323–340, 1998.

[121] Umberto Picchini and Adeline Samson. Coupling stochastic em and approximate bayesian

computation for parameter inference in state-space models. Computational Statistics,

33(1):179–212, 2018.

[122] Pierre Pinson, Henrik Aa Nielsen, Henrik Madsen, and Torben S Nielsen. Local linear

regression with adaptive orthogonal fitting for the wind power application. Statistics and

Computing, 18(1):59–71, 2008.

143



Bibliography

[123] Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters.

Journal of the American statistical association, 94(446):590–599, 1999.

[124] Jonathan Poterjoy. A localized particle filter for high-dimensional nonlinear systems.

Monthly Weather Review, 144(1):59–76, 2016.

[125] Rossella Lo Presti, Emanuele Barca, and Giuseppe Passarella. A methodology for

treating missing data applied to daily rainfall data in the candelaro river basin (italy).

Environmental monitoring and assessment, 160(1-4):1, 2010.

[126] Manuel Pulido, Pierre Tandeo, Marc Bocquet, Alberto Carrassi, and Magdalena Lucini.

Stochastic parameterization identification using ensemble kalman filtering combined with

maximum likelihood methods. Tellus A: Dynamic Meteorology and Oceanography, 70(1):1–

17, 2018.

[127] Xu Qin, She J Zhang, and Dong X Yan. A new circular distribution and its application

to wind data. Journal of Mathematics Research, 2(3):12, 2010.

[128] Balaji Rajagopalan and Upmanu Lall. A k-nearest-neighbor simulator for daily

precipitation and other weather variables. Water resources research, 35(10):3089–3101,

1999.

[129] Herbert E Rauch, CT Striebel, and F Tung. Maximum likelihood estimates of linear

dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

[130] Patrick Rebeschini, Ramon Van Handel, et al. Can local particle filters beat the curse of

dimensionality? The Annals of Applied Probability, 25(5):2809–2866, 2015.

[131] Sebastian Reich and Colin Cotter. Probabilistic forecasting and Bayesian data assimilation.

Cambridge University Press, 2015.

[132] Rolf H Reichle, Dennis B McLaughlin, and Dara Entekhabi. Hydrologic data assimilation

with the ensemble kalman filter. Monthly Weather Review, 130(1):103–114, 2002.

[133] James M Robins and Ya’acov Ritov. Toward a curse of dimensionality appropriate (coda)

asymptotic theory for semi-parametric models. Statistics in medicine, 16(3):285–319, 1997.

[134] Guillermo Rodriguez. Kalman filtering, smoothing, and recursive robot arm forward and

inverse dynamics. IEEE Journal on Robotics and Automation, 3(6):624–639, 1987.

144



Bibliography

[135] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method,

volume 10. John Wiley & Sons, 2016.

[136] David Ruppert and Matthew P Wand. Multivariate locally weighted least squares

regression. The annals of statistics, pages 1346–1370, 1994.

[137] Pavel Sakov and Peter R Oke. A deterministic formulation of the ensemble kalman

filter: an alternative to ensemble square root filters. Tellus A: Dynamic Meteorology

and Oceanography, 60(2):361–371, 2008.

[138] DJ Salmond and H Birch. A particle filter for track-before-detect. In American Control

Conference, 2001. Proceedings of the 2001, volume 5, pages 3755–3760. IEEE, 2001.

[139] Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press,

2013.

[140] Mohammad-Taghi Sattari, Ali Rezazadeh-Joudi, and Andrew Kusiak. Assessment of

different methods for estimation of missing data in precipitation studies. Hydrology

Research, 48(4):1032–1044, 2017.

[141] Thomas B Schön, Adrian Wills, and Brett Ninness. System identification of nonlinear

state-space models. Automatica, 47(1):39–49, 2011.

[142] François Septier and Gareth W Peters. An overview of recent advances in monte-carlo

methods for bayesian filtering in high-dimensional spaces. In Theoretical Aspects of Spatial-

Temporal Modeling, pages 31–61. Springer, 2015.

[143] Robert H Shumway and David S Stoffer. An approach to time series smoothing and

forecasting using the em algorithm. Journal of time series analysis, 3(4):253–264, 1982.

[144] Bernard W Silverman. Density estimation for statistics and data analysis. Routledge,

2018.

[145] Chris Snyder. Particle filters, the “optimal” proposal and high-dimensional systems. In

Proceedings of the ECMWF Seminar on Data Assimilation for atmosphere and ocean,

pages 1–10, 2011.

145



Bibliography

[146] Matthew Stephens and Paul Scheet. Accounting for decay of linkage disequilibrium

in haplotype inference and missing-data imputation. The American Journal of Human

Genetics, 76(3):449–462, 2005.

[147] Jonathan R Stroud and Thomas Bengtsson. Sequential state and variance estimation

within the ensemble kalman filter. Monthly Weather Review, 135(9):3194–3208, 2007.

[148] Jonathan R Stroud, Matthias Katzfuss, and Christopher K Wikle. A bayesian adaptive

ensemble kalman filter for sequential state and parameter estimation. Monthly Weather

Review, 146(1):373–386, 2018.

[149] Andreas Svensson and Fredrik Lindsten. Learning dynamical systems with particle

stochastic approximation em. arXiv preprint arXiv:1806.09548, 2018.

[150] Andreas Svensson, Thomas B. Schön, and Manon Kok. Nonlinear state space smoothing

using the conditional particle filter**this work was supported by the project probabilistic

modelling of dynamical systems (contract number: 621-2013-5524) and cadics, a linnaeus

center, both funded by the swedish research council (vr). IFAC-PapersOnLine, 48(28):975

– 980, 2015. 17th IFAC Symposium on System Identification SYSID 2015.

[151] Andreas Svensson and Thomas B Schön. A flexible state–space model for learning

nonlinear dynamical systems. Automatica, 80:189–199, 2017.

[152] Pierre Tandeo, Pierre Ailliot, Marc Bocquet, Alberto Carrassi, Takemasa Miyoshi, Manuel

Pulido, and Yicun Zhen. Joint estimation of model and observation error covariance

matrices in data assimilation: a review. arXiv preprint arXiv:1807.11221, 2018.

[153] Pierre Tandeo, Pierre Ailliot, Bertrand Chapron, Redouane Lguensat, and Ronan Fablet.

The analog data assimilation: application to 20 years of altimetric data. In CI 2015: 5th

International Workshop on Climate Informatics, pages 1–2, 2015.

[154] Pierre Tandeo, Pierre Ailliot, Ronan Fablet, Juan Ruiz, François Rousseau, and Bertrand

Chapron. The analog ensemble kalman filter and smoother. In CI 2014: 4th International

Workshop on Climate Informatics, 2014.

[155] Pierre Tandeo, Pierre Ailliot, Juan Ruiz, Alexis Hannart, Bertrand Chapron, Anne Cuzol,

Valérie Monbet, Robert Easton, and Ronan Fablet. Combining analog method and

146



Bibliography

ensemble data assimilation: application to the lorenz-63 chaotic system. In Machine

Learning and Data Mining Approaches to Climate Science, pages 3–12. Springer, 2015.

[156] Pierre Tandeo, Manuel Pulido, and François Lott. Offline parameter estimation using

enkf and maximum likelihood error covariance estimates: Application to a subgrid-

scale orography parametrization. Quarterly Journal of the Royal Meteorological Society,

141(687):383–395, 2015.

[157] James W Taylor, Patrick E McSharry, Roberto Buizza, et al. Wind power density

forecasting using ensemble predictions and time series models. IEEE Transactions on

Energy Conversion, 24(3):775, 2009.

[158] Francisco Curado Teixeira, João Quintas, Pramod Maurya, and António Pascoal. Robust

particle filter formulations with application to terrain-aided navigation. International

Journal of Adaptive Control and Signal Processing, 31(4):608–651, 2017.

[159] George R Terrell and David W Scott. Variable kernel density estimation. The Annals of

Statistics, pages 1236–1265, 1992.

[160] J Timmer. Modeling noisy time series: physiological tremor. International Journal of

Bifurcation and Chaos, 8(07):1505–1516, 1998.

[161] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert

Tibshirani, David Botstein, and Russ B Altman. Missing value estimation methods for

dna microarrays. Bioinformatics, 17(6):520–525, 2001.

[162] Concepción Crespo Turrado, María del Carmen Meizoso López, Fernando Sánchez

Lasheras, Benigno Antonio Rodríguez Gómez, José Luis Calvo Rollé, and Francisco Javier

de Cos Juez. Missing data imputation of solar radiation data under different atmospheric

conditions. Sensors, 14(11):20382–20399, 2014.

[163] Genta Ueno, Tomoyuki Higuchi, Takashi Kagimoto, and Naoki Hirose. Maximum

likelihood estimation of error covariances in ensemble-based filters and its application to a

coupled atmosphere–ocean model. Quarterly Journal of the Royal Meteorological Society,

136(650):1316–1343, 2010.

147



Bibliography

[164] Genta Ueno and Nagatomo Nakamura. Iterative algorithm for maximum-likelihood

estimation of the observation-error covariance matrix for ensemble-based filters. Quarterly

Journal of the Royal Meteorological Society, 140(678):295–315, 2014.

[165] Genta Ueno and Nagatomo Nakamura. Bayesian estimation of the observation-error

covariance matrix in ensemble-based filters. Quarterly Journal of the Royal Meteorological

Society, 142(698):2055–2080, 2016.

[166] Stef Van Buuren. Flexible imputation of missing data. Chapman and Hall/CRC, 2018.

[167] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality

reduction: a comparative. J Mach Learn Res, 10:66–71, 2009.

[168] Peter Jan van Leeuwen. Nonlinear data assimilation in geosciences: an extremely efficient

particle filter. Quarterly Journal of the Royal Meteorological Society, 136(653):1991–1999,

2010.

[169] Peter Jan Van Leeuwen. Nonlinear data assimilation for high-dimensional systems. In

Nonlinear Data Assimilation, pages 1–73. Springer, 2015.

[170] Greg CG Wei and Martin A Tanner. A monte carlo implementation of the em algorithm

and the poor man’s data augmentation algorithms. Journal of the American statistical

Association, 85(411):699–704, 1990.

[171] Nick Whiteley. Discussion on particle markov chain monte carlo methods. Journal of the

Royal Statistical Society: Series B, 72(3):306–307, 2010.

[172] Christopher K Wikle and L Mark Berliner. A bayesian tutorial for data assimilation.

Physica D: Nonlinear Phenomena, 230(1-2):1–16, 2007.

[173] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[174] Daniel B Work, Sébastien Blandin, Olli-Pekka Tossavainen, Benedetto Piccoli, and

Alexandre M Bayen. A traffic model for velocity data assimilation. Applied Mathematics

Research eXpress, 2010(1):1–35, 2010.

[175] Pascal Yiou. Anawege: a weather generator based on analogues of atmospheric circulation.

Geoscientific Model Development, 7(2):531–543, 2014.

148



Bibliography

[176] Derek S Young and David R Hunter. Mixtures of regressions with predictor-dependent

mixing proportions. Computational Statistics & Data Analysis, 54(10):2253–2266, 2010.

[177] K Yu and MC Jones. Likelihood-based local linear estimation of the conditional variance

function. Journal of the American Statistical Association, 99(465):139–144, 2004.

[178] Ming Yuan, Ali Ekici, Zhaosong Lu, and Renato Monteiro. Dimension reduction and

coefficient estimation in multivariate linear regression. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 69(3):329–346, 2007.

[179] Fadhilah Yusof and Ibrahim Lawal Kane. Volatility modeling of rainfall time series.

Theoretical and applied climatology, 113(1-2):247–258, 2013.

[180] Fuqing Zhang, Chris Snyder, and Juanzhen Sun. Impacts of initial estimate and

observation availability on convective-scale data assimilation with an ensemble kalman

filter. Monthly Weather Review, 132(5):1238–1253, 2004.

[181] Yicun Zhen and John Harlim. Adaptive error covariances estimation methods for ensemble

kalman filters. Journal of computational physics, 294:619–638, 2015.

[182] Mengbin Zhu, Peter J Van Leeuwen, and Weimin Zhang. Estimating model error

covariances using particle filters. Quarterly Journal of the Royal Meteorological Society,

2017.

[183] Eduardo Zorita and Hans Von Storch. The analog method as a simple statistical

downscaling technique: comparison with more complicated methods. Journal of climate,

12(8):2474–2489, 1999.

149



Résumé
Thèse: Méthodologies non-paramétriques pour la reconstruction et

l’estimation dans les modèles d’états non linéaires

Thi Tuyet Trang CHAU

Motivations
Grâce au développement des sciences technologiques et informatiques, la quantité et la qualité
nombre de données a augmenté au cours des dernières décennies. Cette thèse a été motivée
par les applications d’analyse de données en environnement, climatologie et océanographie.
Dans ces domaines, les exponentielles croissance de la disponibilité des données obtenues par
télédétection, in situ ou par modèle devrait se poursuivre dans les années à venir. L’avenir crée
de nombreuses opportunités, besoins et défis. En particulier, l’environnement données sont
généralement disponibles avec un échantillonnage spatio-temporel complexe, sur des grilles
irrégulières, et sujet à des erreurs d’observation dues à la complexité de la collecte des données,
de la modélisation des imperfections,etc.

Les modèles d’espaces d’état (SSM) [8,16,22,32] sont une approche populaire pour analyser
des données avec erreurs d’observation. En particulier, ils sont au cœur des technologies
d’assimilation séquentielle des données notamment en océanographie et en météorologie. Les
SSM sont consitués d’un modèle dynamique, qui décrit l’évolution physique du phénomène
d’intérêt, et un modèle d’observation qui modélise la relation entre les observations (bruitées)
et l’état (vrai). De nombreuses difficultés surviennent quand on travaille avec les SSM et dans
cette thèse nous nous concentrons sur les défis suivants (voir la Figure 1 pour une illustration
de ces défis).

i. Reconstruction d’état lorsque le modèle dynamique est connu et les paramètres sont
connus
Le filtrage et le lissage (assimilation séquentielle de données en géosciences) sont des
approches usuelles pour estimer récursivement les distributions de probabilité de l’état
conditionnellement à une séquence d’observations. Dans le cadre de l’assimilation, le
modèle dynamique est utilisé pour propager des estimations de l’état d’un temps passé
à des temps plus récents. Les prévisions sont alors corrigées en tenant compte des
observations disponibles.

Pour les modèles linéaires gaussiens, les récurrences de Kalman [16, 21, 23, 34, 35]
peuvent être utilisées pour analyser correctement les distributions de filtrage et de lissage.
Quand les modèles d’espace états sont non linéaires, comme c’est le cas typique des
applications réelles, ces distributions n’admettent pas d’expression explicite. Des méthodes
basées sur la simulation sont implémentées. Les approches basées sur le filtre de Kalman
d’ensemble (voir par exemple dans [3, 17, 18])) sont les approches d’assimilation les
plus utilisées en pratique en raison de leur efficacité à approcher les distributions de
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Figure 1: Illustration des problèmes d’inférence statistique dans la thèse.

filtrage et de lissage de problèmes de grande dimension (seulement quelques simulations
(membres) du modèle dynamique sont exécutées). Néanmoins, les approximations ne
convergent pas vers la vraie distribution conditionnelle pour des situations (hautement)
non linéaires [25]. En statistique et traitement du signal, les filtres à particules sont
utilisés comme outils puissants et flexibles pour reconstruire l’état dans des modèles
non linéaires et / ou non gaussiens. De nombreux algorithmes ont été proposés dans la
littérature [4, 13, 14, 20].

ii. Estimation des paramètres lorsque le modèle dynamique est spécifié avec paramètres
inconnus
La précision des résultats obtenus quand on reconstruit des variables physiques, à partir
données observées, à l’aide de SSM ne dépend pas uniquement des méthodes d’assimilation,
mais est liées aux paramètres statiques des erreurs. En pratique, il est souvent difficile
de spécifier des valeurs raisonnables pour ces paramètres inconnus. Ceci est dû à la
diversité des sources d’observation, à l’effet des termes physiques et complexité du
modèle ou à des échecs numériques [15,44]. Par conséquent, l’estimation des paramètres
(ou identification du système) est une tâche préliminaire importante avant de réaliser
l’assimilation de données.

Les approches statistiques habituelles pour l’estimation des paramètres sont basées sur
des méthodes bayésienne et ou du maximum de vraisemblance. Les approches bayésiennes
[1, 24, 30, 37, 38, 42] visent à simuler la répartition conjointe de l’état et du paramètre,
mais cela n’est pas toujours possible pour des SSM de grande dimension (par exemple,
inférence d’erreur de covariance). Une alternative consiste à mettre en œuvre des approches
d’estimation par maximum de vraisemblance, notamment via l’algorithme (EM) [11] et

2



ses variantes [5, 10, 12, 31].

iii. Reconstruction d’état et estimation des paramètres lorsque le modèle dynamique
est inconnu
Dans les applications en géosciences, le modèle dynamique est généralement spécifié
par des équations dérivées de la physique et résolues à l’aide de schémas numériques.
Le modèle numérique de prévision doit être exécuté pour chaque étape du processus
d’assimilation ce qui conduit à des coûts de calcul élevés dans la pratique. De plus, les
comportements chaotiques et la complexité du modèle peuvent être des raisons d’approximations
numériques inexactes. En outre, diverses sources d’incertitude (paramètres physiques
inconnus, variance du bruit d’état, forçagess) peuvent entraı̂ner un biais important entre
les prévisions et les observations. Dans de telles situations, le processus d’assimilation
peut être incohérent.

De nos jours, une énorme quantité de jeux de données enregistrés sur des satellites, in
situ ou extraits de simulations numériques est disponible. L’existence de telles données
favorise le développement de modèles basés sur les données, capables de bien décrire
la dynamique de l’état. Les combinaisons d’approches non paramétriques avec des
algorithmes standard de filtrage et de lissage ont été proposés pour la première fois
dans [26, 41].

Trois contributions principales de cette thèse à ces trois défis sont énumérées ci-dessous.

Principales contributions
i. Reconstruction d’état lorsque le modèle dynamique est connu et les paramètres sont

connus
Récemment [1, 28, 30, 43] ont mis au point des filtres à particules conditionnels qui
permettent d’approcher efficacement la distribution de lissage avec seulement quelques
particules. Dans la thèse nous étudions l’algorihme de lissage conditional particle filter
– backward smoother (CPF-BS) présenté dans [29, 30, 43] et discuté plus en détail dans
[6]. Nous allons montrer sur plusieurs modèles de jouets que, pour un coût de calcul
équivalent, l’algorithme CPF-BS donne de meilleurs résultats que les algorithmes particulaires
de lissage usuels.

ii. Estimation des paramètres lorsque le modèle dynamique est spécifié avec paramètre
inconnus Lors de l’utilisation des algorithmes EM, les paramètres sont mis à jour de
manière itérative en maximisant une fonction de vraisemblance définie à l’aide de la
distribution de lissage. Néanmoins, la distribution de lissage n’a pas d’expression explicite
dans es SSM non linéaires. Dans les articles de [2, 24, 27, 33, 36, 39], il a été proposé
de combiner les échantillonneurs standard de particules, qui permettent d’approcher la
distribution de lissage, avec des méthodes EM. Mais cela conduit généralement à un
énorme coût de calcul. Dans la thèse, nous explorons la combinaison de l’échantillonneur
CPF-BS et d’algorithmes EM, et nous montrons que cette approche est plus performante
que la combinaison des algorithmes stochastiques EnKS et EM couramment utilisés dans
les applications réelles (voir [6]).

iii. Reconstruction d’état et estimation des paramètres lorsque le modèle dynamique
est non spécifié

3



Inspirée des travaux de [26,41], cette thèse se concentre sur les méthodes non paramétriques
pour la reconstruction de l’état et du modèle dynamique en utilisant uniquement les
données observées dans des situations où le modèle dynamique n’est pas spécifié. Deux
situations sont considérées. Dans le premier cas, on suppose qu’un jeu de données
d’apprentissage simulé à partir du processus d’état sans erreur d’observation est disponible
(comme dans [26, 41]). Sur la base de ces données, le modèle dynamique peu être
estimé par une méthode non paramétrique (telle que la régression locale [7, 9, 19]. En
pratique, de telles observations ”parfaites” de l’état, sans erreur d’observation, ne sont
généralement pas disponibles. Dans la seconde situation, seule une séquence du processus
avec des erreurs d’observation est disponible. Cela augmente les erreurs d’estimation
si l’estimation non paramétrique est apprise directement sur ces données bruitées. Pour
gérer ce problème, la thèse introduit un nouvel algorithme non paramétrique qui combine
un une estimation non-paramétrique du modèle dynamique, un lisseur CPF-BS à faible
coût et un algorithme de type EM. Les performances de l’approche proposée en termes
de réduction des erreurs de bruit, d’imputation de données manquantes, d’estimation des
paramètres et de comparaison de modèles sont illustrés à l’aide d’exemples de jouets et
les données de vent produites par Météo France.

Plan de la thèse
Le chapitre 1 présente les éléments fondamentaux et illustre les problèmes abordés dans la
thèse. Les concepts des SSM et les exemples jouets sont d’abord introduits. À partir d’un
ensemble d’observations et d’un modèle avec des paramètres connus, des méthodes de filtrage
et de lissage permettant de calculer l’état caché sont rappelés. Nous synthétisons et analysons
les avantages et les inconvénients de différentes méthodes y compris les filtres de Kalman,
certaines de leurs extensions et les filtres à base de particules. Dans la suite, nous résumons les
algorithmes EM existants utilisés pour traiter les problèmes d’inférence de SSM avec paramètres
inconnus. L’efficacité de l’estimation des paramètres par des algorithmes EM combinés avec
des filtres particulaires est discutée. l’accent est mis sur les filtres à base de particules et
les lissoirs dans les modèles non linéaires. Avec l’objectif de développer des algorithmes
non paramétriques, nous passons en revue les méthodes de régression linéaires locales (LLR)
calssiques utilisées pour estimer le modèle dynamique. Enfin, nous présentons les idées clés de
l’implémentation de ces émulateurs non paramétriques dans les algorithmes proposés.

Dans le chapitre 2, nous présentons des algorithmes de filtrage non paramétriques permettant
d’estimer des distribution de filtrage dans les modèles SSM non linéaires. Ici, la régression
linéaire locale (LLR) est de nouveau utilisée pour fournir des estimations non paramétriques
du modèle dynamique. Elles sont ensuite combinées avec différents filtres tels que le filtre
de Kalman étendu (EKF), le filtre de Kalman d’ensemble (EnKF), le bootstrap et le filtres
particulaire (PF). La contribution principale de ce chapitre est la section des résultats numériques.
De nombreuses expériences sont menées pour comparer les approches proposées avec les
approches classiques, les approches proposées avec les approches non paramétriques utilisant
des estimations par plus proches voisins, et les approches proposées dans différents schémas de
filtrage. En résumé, ce chapitre étend les travaux précédents [26, 40, 41] en: (1) soulignant
que la LLR donne une meilleure prédiction numérique que les méthodes de plus proches
voisins classiques, (2) fournissant de nouvelles combinaisons d’émulateur no paramétriques
avec les filtres de Kalman étendu et des filtres particulaires, (3) comparant toutes les approches
mentionnées dans différents scénarios
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Dans les applications d’assimliation de données en géosciences, les outils les plus utilisés
pour déduire l’état du système des observations sont EnKF, EnKS et leurs extensions. Au
chapitre 3, nous étudions une approche alternative, le CPF-BS. Ce lisseur permet d’explorer
efficacement le l’espace d’état et de simuler rapidement des trajectoires pertinentes de l’état
conditionnellement aux observations. Des illustrations numériques des algorithmes CPF-BS
sur les modèles de jouets sont proposées de façon à aider les lecteurs à comprendre le processus
de lissage facilement. En outre, nous proposons de combiner le lisseur CPF-BS avec un
algorithme stochastique EM (SEM) original afin d’estimer les paramètres inconnus et l’état
caché. Nous montrons sur plusieurs problèmes jouets que cet algorithme fournit, avec un coût
de calcul raisonnable, des estimations précisesdes paramètres statiques et de l’état dans les
SSM hautement non linéaires, où l’application d’un algorithme EM en conjonction avec EnKS
est limité.

La contribution principale de cette thèse est présentée au chapitre 4. De nouveaux algorithmes
non paramétriques sont développés pour résoudre deux problèmes. Tout d’abord, notre objectif
est d’estimer les paramètres des lois des erreurs et de reconstruire l’état caché étant donné
une séquence d’observations et un ensemble d’apprentissage ”parfait” (une séquence simulée
du processus d’état sans erreur d’observation). Sachant les données d’apprentissage, la LLR
est utilisée pour construire une estimation du modèle dynamique. Sur la base du chapitre 3,
nous proposons de combiner l’émulateur statistique avec le lisseur CPF-BS à faible coût. Ce
lisseur non paramétrique est utilisé pour générer des réalisations de l’état dans un algorithme
SEM. Néanmoins, de telles données ”parfaites” existent rarement dans la réalité. Les données
dérivées du processus d’observation sont le plus souvent bruités. Et, l’estimation du modèle
dynamique sur les données bruitées mènent facilement à une augmentation du biais et de
la variance et peut avoir des effets néfastes sur les résultats de l’inférence. Pour traiter ce
problème, nous développons maintenant un algorithme de type SEM pour reconstruire la dynamique
et estimation de paramètres inconnus dans le cas où on ne dispose que d’observations bruitéss.
Enfin, différentes performances de la nouvelle méthode telles que la réduction des erreurs de
bruit, l’imputation des données manquantes et l’estimation des paramètres sont illustrées sur
les modèles de jouets.

Le chapitre 5 présente deux applications des algorithmes non paramétriques proposés.
Tout d’abord, un algorithme de filtrage non paramétrique est appliqué à la sélection et à la
comparaison de modèles étant donné un ensemble d’observations et des modèles existants.
La performance de l’approche proposée est comparée à celle de l’approche classique sur des
modèles de jouets avec différents paramètres de forçage. Ensuite, nous introduisons une application
de l’algorithme npSEM pour l’imputation de données manquantes. Les données de vent produites
par Météo France sont considérés. Les résultats de l’algorithme SEM non paramétrique sur les
données sont comparés à ceux de méthodes de régression.

Enfin, le chapitre 6 récapitule les contributions de la thèse et introduit plusieurs sujets de
recherche ultérieure.
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Titre: Méthodologies non-paramétriques pour la reconstruction et l’estimation dans les
modèles d’états non linéaires

Mots clés: estimation non-paramétrique, les algorithmes EM, régression locale, conditional particle filtering, lissage,
modèles statistiques spatio- temporels non-linéaires

Resumé : Le volume des données disponibles permettant
de décrire l’environnement, en particulier l’atmosphère et
les océans, s’est accru à un rythme exponentiel. Ces
données regroupent des observations et des sorties de
modèles numériques. Les observations (satellite, in situ,
etc.) sont généralement précises mais sujettes à des erreurs
de mesure et disponibles avec un échantillonnage spatio-
temporel irrégulier qui rend leur exploitation directe difficile.
L’amélioration de la compréhension des processus physiques
associée à la plus grande capacité des ordinateurs ont
permis des avancés importantes dans la qualité des modèles
numériques. Les solutions obtenues ne sont cependant pas
encore de qualité suffisante pour certaines applications et ces
méthodes demeurent lourdes à mettre en oeuvre. Filtrage et
lissage (les méthodes d’assimilation de données séquentielles
en pratique) sont développés pour abonder ces problèmes.
Ils sont généralement formalisées sous la forme d’un modèle
espace-état, dans lequel on distingue le modèle dynamique
qui décrit l’évolution du processus physique (état), et le
modèle d’observation qui décrit le lien entre le processus
physique et les observations disponibles.

Dans cette thèse, nous abordons trois problèmes liés
à l’inférence statistique pour les modèles espace-états:
reconstruction de l’état, estimation des paramètres et
remplacement du modèle dynamique par un émulateur
construit à partir de données. Pour le premier problème,
nous introduirons tout d’abord un algorithme de lissage
original qui combine les algorithmes Conditional Particle
Filter (CPF) et Backward Simulation (BS). Cet algorithme
CPF-BS permet une exploration efficace de l’état de la
variable physique, en raffinant séquentiellement l’exploration
autour des trajectoires qui respectent le mieux les contraintes
du modèle dynamique et des observations. Nous montrerons
sur plusieurs modèles jouets que, à temps de calcul égal,

l’algorithme CPF-BS donne de meilleurs résultats que les
autres CPF et l’algorithme EnKS stochastique qui est
couramment utilisé dans les applications opérationnelles.
Nous aborderons ensuite le problème de l’estimation
des paramètres inconnus dans les modèles espace-état.
L’algorithme le plus usuel en statistique pour estimer les
paramètres d’un modèle espace-état est l’algorithme EM
qui permet de calculer itérativement une approximation
numérique des estimateurs du maximum de vraisemblance.
Nous montrerons que les algorithmes EM et CPF-BS peuvent
être combinés efficacement pour estimer les paramètres
d’un modèle jouet. Pour certaines applications, le
modèle dynamique est inconnu ou très coûteux à résoudre
numériquement mais des observations ou des simulations
sont disponibles. Il est alors possible de reconstruire
l’état conditionnellement aux observations en utilisant des
algorithmes de filtrage/lissage dans lesquels le modèle
dynamique est remplacé par un émulateur statistique
construit à partir des observations. Nous montrerons que
les algorithmes EM et CPF-BS peuvent être adaptés dans ce
cadre et permettent d’estimer de manière non-paramétrique
le modèle dynamique de l’état à partir d’observations
bruitées. Pour certaines applications, le modèle dynamique
est inconnu ou très coûteux à résoudre numériquement mais
des observations ou des simulations sont disponibles. Il est
alors possible de reconstruire l’état conditionnellement aux
observations en utilisant des algorithmes de filtrage/lissage
dans lesquels le modèle dynamique est remplacé par un
émulateur statistique construit à partir des observations.
Nous montrerons que les algorithmes EM et CPF-BS peuvent
être adaptés dans ce cadre et permettent d’estimer de
manière non-paramétrique le modèle dynamique de l’état
à partir d’observations bruitées. Enfin, les algorithmes
proposés sont appliqués pour imputer les données de vent
(produit par Méteo France).

Title: Non-parametric methodologies for reconstruction and estimation in nonlinear state-
space models

Keywords: non-parametric estimation, EM algorithms, local regression, conditional particle filtering, smoothing,
nonlinear state-space models

Abstract : The amount of both observational and model-
simulated data within the environmental, climate and ocean
sciences has grown at an accelerating rate. Observational
(e.g. satellite, in-situ...) data are generally accurate
but still subject to observational errors and available
with a complicated spatio-temporal sampling. Increasing
computer power and understandings of physical processes
have permitted to advance in models accuracy and resolution
but purely model driven solutions may still not be accurate
enough. Filtering and smoothing (or sequential data
assimilation methods) have developed to tackle the issues.
Their contexts are usually formalized under the form of
a space-state model including the dynamical model which
describes the evolution of the physical process (state), and
the observation model which describes the link between the
physical process and the available observations.

In this thesis, we tackle three problems related to
statistical inference for nonlinear state-space models: state
reconstruction, parameter estimation and replacement of the
dynamic model by an emulator constructed from data. For
the first problem, we will introduce an original smoothing
algorithm which combines the Conditional Particle Filter
(CPF) and Backward Simulation (BS) algorithms. This
CPF-BS algorithm allows for efficient exploration of the state
of the physical variable, sequentially refining exploration

around trajectories which best meet the constraints of
the dynamic model and observations. We will show on
several toy models that, at the same computation time,
the CPF-BS algorithm gives better results than the other
CPF algorithms and the stochastic EnKS algorithm which
is commonly used in real applications. We will then
discuss the problem of estimating unknown parameters
in state-space models. The most common statistical
algorithm for estimating the parameters of a space-state
model is based on EM algorithm, which makes it possible
to iteratively compute a numerical approximation of the
maximum likelihood estimators. We will show that the
EM and CPF-BS algorithms can be combined to effectively
estimate the parameters in toy models. In some applications,
the dynamical model is unknown or very expensive to solve
numerically but observations or simulations are available.
It is thence possible to reconstruct the state conditionally
to the observations by using filtering/smoothing algorithms
in which the dynamical model is replaced by a statistical
emulator constructed from the observations. We will show
that the EM and CPF-BS algorithms can be adapted in this
framework and allow to provide non-parametric estimation
of the dynamic model of the state from noisy observations.
Finally the proposed algorithms are applied to impute wind
data (produced by Météo France).
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