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Abstract 
The rate of obesity and NAFLD prevalence is growing proportionately. Considering other 
etiological factors of NAFLD, exposure to environmental contaminants has been described, 
in recent years, as an essential cause of NAFLD development and progression. Among these 
toxicants, benzo[a]pyrene (B[a]P), a widely distributed environmental pollutant, is believed 
to contribute in NAFLD pathogenesis. Another well-known hepatotoxicant and contributor of 
fatty liver disease is ethanol. It has already been described by our team that B[a]P and 
ethanol, even at low doses, exert hepatotoxicity notably upon co-exposure, and can lead to 
NAFLD progression, if liver is already compromised with steatosis in both in vitro (HepaRG 
and WIF-B9) and in vivo (zebrafish larva) models. Furthermore, several mechanisms, 
responsible for this pathological progression to steatohepatitis-like state have also been 
described by the team using two in vitro models. However, in vivo mechanisms underlying 
steatosis progression in response to B[a]P/ethanol co-exposure are yet not elucidated. In 
this context, we have used high fat diet (HFD)-fed zebrafish larva model to assess NAFLD 
pathogenesis. Our team has recently demonstrated that, in this zebrafish larva model, prior 
steatosis can progress to steatohepatitis-like state following co-exposure to 43 mM ethanol 
with 25 nM B[a]P for 7 days. With this in vivo model, we observed two important key 
mechanisms involved in NAFLD progression i.e. membrane remodeling and mitochondrial 
iron accumulation, likely associated with AhR activation. In conclusion, we proposed that 
membrane remodeling could act as an initial signaling element to induce this mitochondrial 
iron accumulation, hence mitochondrial dysfunction leading to cell death. Taking into 
account our results, one might propose that an iron-associated cell death, possibly 
ferroptosis, would be principally responsible for the NAFLD progression following 
B[a]P/ethanol co-exposure. 

Keywords: Nonalcoholic fatty liver diseases, zebrafish larva, benzo[a]pyrene, ethanol, 
steatosis, in vivo mechanisms.  

Résumé 

La prévalence des maladies non-alcooliques du foie (NAFLD) est en constante augmentation. 
Au-delà de l’obésité, d’autres facteurs de risques pour ces maladies ont été identifiés. Parmi 
eux, l'exposition aux contaminants environnementaux a récemment été décrite. L’un d’entre 
eux est le benzo[a]pyrène (B[a]P), un polluant environnemental largement répandu et 
considéré comme le chef de file des Hydrocarbures Aromatiques Polycycliques (HAP). Notre 
équipe a déjà décrit, in vitro (HepaRG, WIF-B9) et in vivo (larve de poisson-zèbre), qu’une co-
exposition au B[a]P et à l'éthanol, un autre agent hépatotoxique bien connu, même à de 
faibles doses, pouvait conduire à la progression pathologique d’une stéatose préalable vers 
la stéatohéaptite. En outre, ces études in vitro ont permis de proposer plusieurs mécanismes 
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physiopathologiques pour expliquer ces effets. Cependant, les mécanismes in vivo n’ont pas 
encore été élucidés. Dans ce contexte, nous avons utilisé un modèle de larve de poisson-
zèbre nourri avec un régime alimentaire riche en graisses pour lequel notre équipe a déjà 
démontré la transition de la stéatose vers la stéatohépatite suite à une exposition 
simultanée à 43 mM d'éthanol et à 25 nM de B[a]P pendant 7 jours. Dans ce modèle, nous 
avons montré l’implication de deux mécanismes-clés dans la progression de la NAFLD, à 
savoir le remodelage de la membrane et l’accumulation de fer mitochondrial, deux 
processus étroitement liés à l’activation du récepteur AhR. En conclusion, nous proposons 
que le remodelage de la membrane puisse agir comme élément de signalisation initial pour 
induire cette accumulation de fer mitochondriale et donc un dysfonctionnement 
mitochondrial conduisant à la mort cellulaire. Enfin, cette mort cellulaire associée au fer, 
possiblement de la ferroptose, serait principalement responsable de la progression des 
NAFLD après la co-exposition B[a]P/éthanol. 

Mots-clés: Maladies non-alcooliques du foie gras, larve de poisson-zèbre, benzo[a]pyrène, 
éthanol, stéatose, mécanismes in vivo. 
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Introduction 
 

Chapter A. Nonalcoholic fatty liver disease 

The liver participates in many vital functions including metabolic and detoxifying functions. 
Indeed, it is the main organ involved in the management of toxic molecules of endogenous or 
exogenous origin present in the body. The liver is also involved in the regulation of the body's 
nitrogen metabolism. Other liver functions include metabolism of many nutrients as 
carbohydrates, proteins and lipids. It is implicated in the regulation of blood glucose level and 
participates in the synthesis / degradation and transport of lipids according to the energy needs 
of the body. 

Deregulation of the balance between the degradation and the formation of lipids can lead to 
their accumulation in hepatocytes and results in metabolic pathologies such as non-alcoholic 
fatty liver diseases (NAFLD). 

1. NAFLD: Overview and clinical aspects 

NAFLD are characterized by the presence of steatosis in people who consume little or no 
alcohol (i.e. less than 20 g / day for women and 30 g / day for men) (Hashimoto et al., 2015; 
Marchisello et al., 2019).  

NAFLD are divided into two pathologies: non-alcoholic fatty liver (hepatic Steatosis/NAFL) 
and non-alcoholic steatohepatitis (NASH), with a broad spectrum of severity depending on 
their fibrotic status (Chalasani et al., 2018; Friedman et al., 2018; Marchisello et al., 2019; 
Patel et al., 2016). 

Before moving to detailed discussion regarding NAFLD, below is a short review of human 
liver, its architecture and types of cells.  

1.1. Human Liver 

The liver is an intraperitoneal gland divided into 4 lobes that are further divided into functional 
units of hexagonal form called lobules. The liver is a highly vascularized organ. Approximately 
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30% of whole blood passes through the liver every minute (Racanelli and Rehermann, 2006). 
The afferent vessels, hepatic artery and the portal vein, receive blood from the aorta and the 
digestive tract, respectively. The blood flows through the sinusoids and then to the systemic 
circulation via the central vein (Strain and Neuberger, 2002) (Figure 1).  

 

Figure 1: Schematic representation of the liver structure 

Hepatocytes and cholangiocytes form the hepatic parenchyma, and Kuppfer cells, stellate cells 
and sinusoidal endothelial cells are the non-parenchymal cells of the liver. 

Hepatocytes are the major cells constituting about 80% of the weight of the liver. These cells 
are involved in the metabolic and detoxifying functions of the liver. Hepatocytes can be 
polynucleated. They have 2 poles, a biliary pole located between 2 hepatocytes and forming 
a biliary canaliculus, and a vascular pole in contact with the perisinusoidal space (space of 
Disse). The latter is located between the hepatocytes and the sinusoidal endothelial cells 
(Figure 1). 

Cholangiocytes are epithelial cells lining the bile ducts (Tabibian et al., 2013). The biliary 
canaliculi collect the bile secreted by the hepatocytes and then take it to the bile ducts. Then 
the bile is transported to the gallbladder before being transported to the duodenum. Bile 
has a role in digestion but also in the transport of exogenous substances excreted by 
hepatocytes. 
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Stellate cells are perisinusoidal cells found in the space of Disse. They provide a storage role 
for vitamin A and have immune functions. Under certain conditions such as immune 
reactions, these cells are activated and will then differentiate into myofibroblasts, which are 
able to migrate and produce extracellular matrix (including collagen). Chronic activation of 
these cells contributes to the development of hepatic fibrosis by excessive accumulation of 
extracellular matrix. 

Endothelial cells are the cells that make up the vessels of the liver. They have the distinction 
of being fenestrated and thus form a discontinuous layer with the presence of 
intracytoplasmic pores. 

Immune cells of liver include Kupffer cells, resident liver macrophages, and lymphocytes 
(predominantly T cells) (Racanelli and Rehermann, 2006). 

1.2. Hepatic Steatosis/NAFL 

Hepatic steatosis is characterized by the excessive accumulation of lipids in the liver in the 
form of lipid droplets, mainly containing triglycerides (TG), found in at least 5% of 
hepatocytes (Jiang et al., 2019; Sahini and Borlak, 2014; Sanyal et al., 2011). Hepatic 
steatosis is usually macro-vesicular, i.e., hepatocytes accumulate lipid droplets causing 
displacement of the nucleus at the cell periphery (Figure 2). However, hepatocytes from 
individuals with NAFLD may also have micro-steatosis, i.e., an accumulation of smaller 
droplets that do not affect cell structure (Gluchowski et al., 2017). The latter is found in 
approximately 10% of people with NAFLD and is associated with high grades of steatosis 
(i.e., a larger number of affected hepatocytes) (Tandra et al., 2011). Steatosis is also usually 
accompanied by hepatomegaly (increased liver volume) (Anderson and Borlak, 2008). 

 

Figure 2: Histological features of human NAFLD 
Hematoxylin and eosin (400× magnification) staining of human liver samples showing  from left to right normal 
tissue , macro-vesicular liver steatosis and steatohepatitis. Arrows in steatohepatitis panel indicate 
inflammatory infiltration, while arrow head indicates hepatocyte ballooning. (Adapted from Jahn et al., 2019). 



22 | P a g e  

 

1.3. Nonalcoholic steatohepatitis/NASH 

NASH is the most serious form of NAFLD. It includes the presence of steatosis associated 
with hepatocyte death and inflammation (Jiang et al., 2019; Sanyal et al., 2011) (Figure 2). 
The death of hepatocytes is demonstrated in histopathology by swelling and ballooning of 
cells (Chalasani et al., 2018; Lackner, 2011). The liver of patients with NASH may also present 
Mallory-Denk bodies (accumulation of damaged intermediate filaments in the cytoplasm of 
hepatocytes), indicative of suffering of hepatocytes (Takahashi and Fukusato, 2014; 
Zatloukal et al., 2007). NASH is an evolutionary pathology whose advanced stages can lead to 
hepatic cirrhosis and hepatocellular carcinoma (HCC) (Chalasani et al., 2018). 

1.4. Progression to cirrhosis and/or hepatocellular carcinoma 

Steatosis is benign, reversible and has low risk of adverse outcomes from a clinical point of 
view, but can progress to NASH (Friedman et al., 2018). It is estimated that about 10 to 20% 
of people with fatty liver will eventually develop NASH (Estes et al., 2018; Siegel and Zhu, 
2009). Steatosis can then be considered as a step of sensitizing the liver to subsequent 
aggressions causing death of hepatocytes and inflammation (NASH), and promoting further 
progression to more severe pathological forms, up to HCC (Ekstedt et al., 2006). A patient 
with NASH took 7 years on average to progresss into fibrotic state while around 20% of 
NASH patients may progress readily to advanced fibrotic stage (Friedman et al., 2018).  

 

Figure 3: The different steps of NAFLD pathological progression 

NAFL and NASH can be viewed as entirely separate entities as NASH does not follow 
steatosis every time. However, it is usually considered as continuum from steatosis to NASH 
(Yu et al., 2018). Steatohepatitis can develop into cirrhosis following the development of 
chronic fibrosis by activation of stellate cells. Cirrhosis, which can be considered as a pre-
neoplastic state, is therefore a risk factor for the development of HCC (White et al., 2012). 
However, about 35-50% of HCCs occur in people with NASH without cirrhosis (Perumpail et 
al., 2017) (Figure 3). At present, the mechanisms of development of HCC on non-cirrhotic 
livers are unclear. Nevertheless, inflammation and chronic cell death, characteristic of NASH, 
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may lead to compensatory proliferation of hepatocytes creating an environment conducive 
to initiation of carcinogenesis processes (Baffy et al., 2012; Feng, 2012; Ichim and Tait, 2016; 
Qiu et al., 2011; Wree et al., 2015). In addition, the proliferation of hepatic progenitor cells 
following hepatocyte attacks during steatohepatitis, could contribute to the development of 
HCC (de Lima et al., 2008). 

1.5. Clinical features and diagnosis of NAFLD 

Most of the time, NAFLD are asymptomatic (Friedman et al., 2018). Fatigue is the most 
common complaint. Pain in the upper right quadrant of the abdomen may also occur 
following stretching of the Glisson’s capsule, a connective tissue assembly surrounding the 
liver. Pruritus, anorexia, nausea and possibly jaundice may occasionally be found but these 
are associated with very advanced stages of NAFLD (Choudhury and Sanyal, 2004). Most 
frequently, patients are diagnosed following examinations unrelated to these conditions 
during a check-up (Choudhury and Sanyal, 2004). For example, the presence of a NAFLD may 
be suspected following abnormalities revealed in liver tests or an abdominal ultrasound 
requested for a check-up. 

Concerning clinical investigation, gold standard for the screening of the NAFLD severity is 
liver biopsy that provides more accurate histological based diagnosis (Friedman et al., 2018; 
Marchisello et al., 2019; Yu et al., 2018). However, several invasive and non invasive 
techniques are known to aid in NAFLD assessment (Figure 4). 

Blood markers like ASAT (aspartate aminotransferase) and ALAT (alanine aminotransferase) 
are indicators of liver cell death as is the case during steatohepatitis (Hadizadeh et al., 2017). 
However, these markers cannot be used as the sole indicator of steatohepatitis. Other 
serum makers as fibroblast growth factor 21 protein (FGF21), a hepatokine, correlated with 
the level of triglycerides (TG) in the liver, and CK-18, a protein constituting the intermediate 
filaments of cytokeratin in hepatocytes, cleaved by caspase 3 during the apoptotic process, 
seem promising in NAFL and NASH detection, respectively (Hadizadeh et al., 2017; Liu et al., 
2013; Yu et al., 2018).  

Among non invasive procedures, ultrasound is a simple, inexpensive and easily available 
technique to assess steatosis with fat infiltration of 10%. Some more precise and more 
sensitive, thus more expensive radiographic techniques as magnetic resonance imaging, 
elastography and computed tomography, are also available for the diagnostic purpose 
(Lăpădat et al., 2017; Marchisello et al., 2019; Yu et al., 2018). However, with these imaging 
techniques, it remains impossible to differentiate between steatosis and steatohepatitis 
without fibrosis.    
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NAFLD is diagnosed via exclusion criteria, that is, if NAFLD is suspected or proven, it is 
necessary to eliminate the other causes of fatty liver like excessive alcohol consumption, 
chronic liver diseases as viral hepatitis, autoimmune hepatitis, hemochromatosis and other 
(Chalasani et al., 2018; Marchisello et al., 2019). 

 

Figure 4: The different approaches used for NAFLD investigation 
MRI: magnetic resonance imaging; ASAT: aspartate aminotransferase; ALAT: alanine aminotransferase; FGF21: 
fibroblast growth factor 21 protein; CK-18: Cytokeratin-18. 

2. NAFLD: Epidemiology and etiology 

NAFLD are the leading cause of liver disease in developed countries (Estes et al., 2018; 
Younossi et al., 2018, 2016b). The prevalence of these diseases has been steadily increasing 
in recent years, along with the increase in obesity (Estes et al., 2018; Younossi et al., 2016b). 
Knowing that these diseases increase the risk of HCC development and mortality, the 
understanding of their etiology appears to be a major public health issue (Ekstedt et al., 
2006; Estes et al., 2018; Younossi and Henry, 2016). Thus, interest in NAFLD has been 
steadily increasing in recent years, as illustrated by the number of articles referenced in 
pubmed on the subject, rising from 6 in 2000 to 2544 in 2018 (Figure 5). 



25 | P a g e  

 

 
Figure 5: NAFLD research articles per year 

2.1. Prevalence 

NAFLD is among the most common liver diseases throughout the world. The global 
prevalence of NAFLD is about 25.2% with region-specific differences (Younossi, 2019), as 
32% of middle east and 31% south American population is affected, while the least affected 
is Africa (14%) (Marchisello et al., 2019).  In 2015, about 83.1 million people in the United 
States of America had these conditions (Estes et al., 2018), and these numbers are expected 
to approach 100 million in 2030. In addition, 3 to 5% of the world's population is said to have 
NASH (Estes et al., 2018; Younossi, 2019), and the prevalence of NASH among people with 
NAFLD is estimated upto 6.7% for Asia and 29.85% for US (Younossi et al., 2016b) (Table 1). 
The number of people with NASH in United States is projected to increase by 63% between 
2015 and 2030, from 16.5 million people to 27 million (Estes et al., 2018). As a result of the 
increase in the prevalence of NAFLD, these have become the primary cause of HCC 
development (Younossi et al., 2015). The incidence of HCC is raised from 0.087 in general 
population to 5.29 in patients with NASH per 1000 people per year (Younossi et al., 2016b). 
The rate of HCC among people with NAFLD increases by about 10% per year (Younossi et al., 
2015). NAFLD incidence has also increased the risk of death (Chalasani et al., 2018; Younossi 
and Henry, 2016). Younossi has thus recently estimated the mortality rate of 15.44/1000 
people/ year with NAFL and 25.56/1000 people/ year with NASH (Younossi, 2019). 

It is further observed that under certain pathophysiological conditions like obesity and type 2 
diabetes mellitus (T2DM), patients are more prone towards NAFLD and its prevalenvce could 
rise to 90% in obese and 60% in T2DM (Younossi, 2019).  
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Table 1: Regional prevalence of NAFLD 

Region NAFLD prevalence (%) 

World 25.2 

Middle east 32 

South America 30.45 

Asia 25 

Europe 24 

Australia 20-30 

Africa 14 

 

Steatohepatitis has become the second leading cause of hepatic transplantation after 
hepatitis C (Wong et al., 2015). Between 2004 and 2013, the number of people with 
steatohepatitis waiting for liver transplantation was tripled, and it will become the leading 
cause of liver transplantation in the next 10 years (Marchisello et al., 2019; Wong et al., 
2015).  

As a result, taking charge of NAFLD becomes a real social issue. For example, in France, the 
total cost attributed to these pathologies is about 75 billion euros per year (Younossi et al., 
2016a). 

2.2. Etiology 

Several etiological factors of NAFLD have been identified, ranging from obesity to other 
metabolic diseases, genetic and epigenetic manipulation, diet, intestinal microbiota and 
several others including mycotoxins and viral infections. These factors could be summarized 
in different groups; however, there is large cross-talk between them. 

2.2.1. Metabolic comorbidities 

NAFLD is a closely associated with metabolic comorbidities like obesity, type 2 diabetes 
mellitua (T2DM), hypertension (HTN) and dyslipidemia, altogether regrouped under the 
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term of as metabolic syndrome (MetS). NAFLD is considered to be the hepatic manifestation 
of MetS (Chalasani et al., 2018; Friedman et al., 2018; Marchisello et al., 2019; Müller and 
Sturla, 2019). The relationship between MetS and NAFLD is bidirectional, that is one induces 
the other and vice versa. Patients having MetS and NAFLD are more prone towards adverse 
hepatic and cardiovascular events (Friedman et al., 2018) (Figure 6).  

 

Figure 6: Metabolic comorbidities causing NAFLD 

The prevalence of obesity in the world has been steadily increasing over the last 30 years 
(Non-Alcoholic Fatty Liver Disease Study Group et al., 2016; Younossi, 2019). Obesity is the 
most commonly found risk factor of NAFLD. About 90% of obese people have NAFLD 
(Younossi, 2019). In people with morbid obesity, the prevalence of steatosis and NASH 
increases to 93% and 27%, respectively (Ong et al., 2005). In contrast to obesity, lean 
population in certain regions like Asia is also affected by NAFLD known as lean NAFLD (10-
30%). Insulin resistance due to visceral obesity and heterogeneity in genetic factors could be 
the proposed underlying predisposing factors for NAFLD (Marchisello et al., 2019; Younossi, 
2019)   

T2DM is also strongly associated with NAFLD. According to studies, 55% to 70% of people 
with T2DM have these liver disorders (Byrne and Targher, 2015; Fan et al., 2016; Leite et al., 
2009; Younossi, 2019). In addition, the prevalence of T2DM has also increased in recent 
years (Estes et al., 2018). Insulin resistance is known to induce NAFLD pathogenesis 
(Friedman et al., 2018). 

Around half of the patients with HTN are also known to suffer from NAFLD. These two 
comorbidities can manifest to fibrosis, arterial stiffness, myocardial remodeling, heart failure 
and renal diseases (Friedman et al., 2018). Marchisello et al. estimated that 39.34% of 
NAFLD and 67.97% of NASH patients are diagnosed with HTN (Marchisello et al., 2019).   

About 50% of people with hyperlipidemias have NAFLD (Assy et al., 2000; Eguchi and Feldstein, 
2013; Wu et al., 2016). In people with NAFL and NASH, the prevalence of hyperlipidemia is 69 
and 72%, respectively (Marchisello et al., 2019; Younossi et al., 2016b). 



28 | P a g e  

 

2.2.2. Ethnicity, gender and age 

Ethnicity could play a part in NAFLD incidence. NAFLD prevalence is thus found to be the highest 
in Hispanic and the lowest in Africans. This could be due to the impact of both, environmental 
and genetic factors (Younossi, 2019).  

Male gender is more affected than female by NAFLD (Estes et al., 2018; Lonardo et al., 2019). 
The difference observed between men and women could come from the distribution of fat in 
the body and the influence of estrogen hormones (Ballestri et al., 2017; Marchisello et al., 2019). 
Estrogen is known to have antifibrotic, antioxidant, anti-inflammatory and antiapoptotic 
properties, thus providing hepatoprotection in premenopausal women. It also favours fat 
distribution to the subcutaneous region in females instead of ectopic visceral fat in males. 
However, ovarian senescence after menopause maximizes NAFLD risk (Lonardo et al., 2019; 
Marchisello et al., 2019; Younossi, 2019). 

NAFLD prevalence increases with age (Estes et al., 2018; Frith et al., 2009). About 40% of men 
(above age 50) and women (above age 60) are affected by NAFLD. This could be due to lower 
metalloproteinase activity, reduced collagenolysis, reduced hepatic volume, decreased hepatic 
blood flow and increased susceptibility to oxidative stress. Pediatric NAFLD has also been 
reported. Proposed underlying factors are higher BMI in young adults and puberty-associated 
insulin resistance (Marchisello et al., 2019; Younossi, 2019). 

2.2.3. Genetic factors 

Differences in NAFLD prevalence could come from genetic variations. One example of genetic 
implication is related to rs738409 G (I148M) allele in Patatin-like Phospholipase domain-
containing protein-3 gene (PNPLA-3). This encodes an enzyme, known as adiponutrine. It is a 
triglycerol lipase, located in endoplamic reticulum (ER) and lipid droplets, involved in various 
lipolysis reactions, including hydrolysis of TG in adipocytes. It is thus linked with severe steatosis, 
NASH, and liver fibrosis. This allele is less expressed in African Americans while expression is 
higher in Hispanics thus explaining potential difference in prevalence, as mentiond above, 
between these two ethnic groups (Friedman et al., 2018; Kienesberger et al., 2009; Romeo et 
al., 2008; Stender et al., 2017; Younossi, 2019). Some other genetic variants include 
transmembrane 6 superfamily member 2 (TM6SF2) E167K (associated with hepatocellular fat 
retention by altering lipoprotein secretion);  HSD17B13, a lipid trafficking protein and the 
polymorphisms C-482T and T-455C in apolipoprotein C (APOC), related to insulin resistance 
(Noureddin and Sanyal, 2018; Younossi, 2019).  
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2.2.4. Epigenetic factors 

Epigenetic modifications are phenomena that affect genes without altering DNA sequences 
(J. Lee et al., 2017). They can induce persistent and hereditary changes. Prenatal nutrition or 
exposure to environmental contaminants during fetal development would result in 
epigenetic changes transmitted to the child. Several epigenetic irregularities have been 
related with fatty acid metabolism in liver, insulin resistance, oxidative stress, mitochondrial 
dysfunction, ER stress, and the release of inflammatory cytokines. These modifications can 
thus be involved in the pathological evolution of NAFLD. These epigenetic alterations usually 
take place via DNA methylation, protein acetylation, and/or micro RNAs (miRNAs) 
expression. Certain examples of methylated genes include FGFR2, MAT1A, and CASP1 
(Noureddin and Sanyal, 2018).  

The hepatic expression of some miRNAs, as miR-141/200c through reprogramming of lipid 
and inflammation signaling pathways, and miRNA-21 via restoration of PPARα expression, 
are known to be associated with NAFLD (Noureddin and Sanyal, 2018).  

2.2.5. Microbiome/ Intestin-liver axis 

There is close communication between the liver and the intestine. It involves in particular 
exchanges of nutrients and bile acids. Approximately 70% of venous outflow from the 
intestine reaches the liver via the portal vein (Doulberis et al., 2017). Impairment of this 
liver-intestine axis, following a modification of the intestinal microbiota or intestinal 
permeability, seems to be involved in liver damage during NAFLD (Doulberis et al., 2017; 
Leung et al., 2016; Poeta et al., 2017). 

The intestinal microbiota corresponds to the bacterial ecosystem present in the intestinal 
lumen. In recent years, it has emerged the notion that intestinal microbiota plays a role in 
different body functions including hepatic accumulation of lipids from the diet; its alteration, 
called dysbiosis, would thus be involved in NAFLD (Doulberis et al., 2017; Friedman et al., 
2018; Leung et al., 2016; Noureddin and Sanyal, 2018; Poeta et al., 2017). 

The analysis of the intestinal microbiota of healthy, obese or NAFLD people has revealed 
numerous differences in bacterial composition as increased Firmicutes and decreased 
Bacteroidetes (Saltzman et al., 2018). In addition, differences in bacterial composition are 
also present between individuals with fatty liver and people with NASH (Schnabl and 
Brenner, 2014; Zhu et al., 2013). Therefore, dysbiosis may also be involved in the 
pathological progression from hepatic steatosis to NASH. Note that several xenobiotics 
including benzo[a]pyrene (B[a]P), have recently been described as possibly modifying 
intestinal microbiota (Defois et al., 2017, 2018). 
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An increase in permeability and the presence of products released by bacteria could be 
involved in the pathogenesis of NASH (Abdou et al., 2016; Saltzman et al., 2018; Schnabl and 
Brenner, 2014; Volynets et al., 2012). This increase in permeability is thought to be due to an 
alteration of tight junctions between enterocytes (Miele et al., 2009). In addition, 
acetaldehyde, a metabolite of ethanol, can lead to an increase in intestinal permeability via 
disruption of the junctions between enterocytes (Basuroy et al., 2005).  

The intestinal microbiota participates in the metabolism of carbohydrates and lipids by 
fermentation of undigested nutrients. The products of these transformations can be short-
chain fatty acids or ethanol. These metabolites can pass to the liver and induce potential 
toxicity. In individuals with NASH in comparison to obese people with hepatic steatosis, 
dysbiosis is characterized by an increase in the amount of bacteria in the family 
Enterobacteriaceae and especially the genus Escherichia (Schnabl and Brenner, 2014). These 
bacteria are ethanol producers. Thus, in individuals with NASH, an increase in endogenous 
blood ethanol levels is observed (Michail et al., 2015; Volynets et al., 2012; Zhu et al., 2013). 
The ethanol thus produced is likely to contribute to the increase in intestinal permeability. In 
addition, it also contributes to the development of liver damage (Leung et al., 2016). 

Endotoxins, such as lipopolysaccharides (LPS), are localized toxins in the wall of Gram-
negative bacteria. An increase in endotoxin concentration is also found in the serum of 
individuals with NAFLD (Harte et al., 2010; Ruiz et al., 2007; Verdam et al., 2011; Volynets et 
al., 2012). LPS participates in the evolution of NAFLD because it triggers inflammation via 
activation of Kupffer cells depending on the TLR4 receptor (Szabo et al., 2010).  

2.2.6. Alcohol 

Consumption of alcohol as less as 20 g/day is suggested to be a predisposing factor for fatty 
liver to develop NASH via aggravating oxidative stress (Minato et al., 2014).  However, 
recently, study proposed beneficial effects of moderate ethanol consumption (10 g/kg/day 
for 3 months) on NAFLD in mice fed with high-fat diet (Bucher et al., 2019). Ethanol can also 
disrupt the microbiota and induce the production of LPS, which cross the weakened 
intestinal barrier. It is implicated in ALD. 

2.2.7. Environmental contaminants and drugs  

Humans are daily exposed to contaminant mixtures via food, indoor and outdoor air, or 
cigarette smoke for smokers. Several categories of environmental contaminants are 
involved, via disruption of endocrine or metabolism or signaling, in the development of 
hepatic steatosis, progression of steatohepatitis, liver cell death, inflammation and fibrosis. 
These contaminants include pesticides such as cypermethrin; dioxins such as TCDD; 
polycyclic aromatic hydrocarbons (PAHs) as B[a]P and others as mycotoxins. Variety of drugs 
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like amiodarone, methotrexate, tamoxifen are also known to induce NAFLD. NAFLD and 
NASH directly induced by toxicants could be termed as TAFLD and TASH, respectively (Foulds 
et al., 2017; Wahlang et al., 2013, 2019; Younossi, 2019). In our lab, we have developed in 
vitro and in vivo models of TAFLD and TASH by using environmental toxicant 
(Benzo[a]pyrene) along with ethanol. TAFLD and TASH in general and specifically with 
reference to B[a]P will be discussed later in next chapters of introduction of this thesis. 

2.2.8. Diet 

Diet composition and its calory content impact NAFLD. Fructose, saturated and trans fat, 
cholesterol, western diet containg high amounts of omega-6 (n-6) polyunsaturated fatty 
acids (PUFAs) and low amounts of omega-3 (n-3) PUFAs, diet with high iron and low copper 
content, play key role in triggering obesity, NAFL and NASH via induction of de novo 
lipogenesis, insulin resistance, ER stress, inflammation and apoptosis (Noureddin and Sanyal, 
2018). Methionine and choline decifient diet is also associated with steatosis (Kanuri and 
Bergheim, 2013). Choline (part of phosphatidylcholine) is important for very low-density 
lipoprotein (VLDL) and its deficiency leads to hepatic lipid accumulation. Methionine 
deficiency causes decrease in biosynthesis of glutathione (GSH), thus causing oxidative stress 
and contributing to NAFLD progression (Kim et al., 2017). 

3. NAFLD: Pathogenesis 

The theory initially proposed to illustrate the pathogenesis of NAFLD is known as "double 
hits". As per this theory, steatosis due to a high-fat diet or obesity corresponds to the ”first 
hit" and the causes leading to the pathological evolution of steatosis represent the “second 
hit" (Day and James, 1998; Friedman et al., 2018; Yu et al., 2018). However, in recent years, 
it has been found that the pathogenesis of NAFLD is more complex and the hypothesis of a 
"multi-hits" process seems more appropriate. There are several pathogenic drivers and 
various molecular mechanisms that act either in a parallel or sequential way and somehow 
synergise each other. Sometimes, patient may directly be evolved with NASH characteristics 
bypassing NAFL. Indeed, many environmental, genetic and epigenetic factors and the 
interaction between different organs are also involved at different levels in the development 
of these pathologies (Arab et al., 2018; Buzzetti et al., 2016; Friedman et al., 2018; Lonardo 
et al., 2017; Marchisello et al., 2019; Yu et al., 2018). Interestingly, recently, Wahlang et.al. 
proposed that environmental contaminants could be the 1st as well as 2nd hit in relation to 
high-fat diet for the development and progression of NAFLD (Wahlang et al., 2019).  
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Therefore, it appears that the situation is more complex than previously thought and the 
knowledge underlying the interplay between various pathogenic drivers and different 
molecular mechanisms is still growing. Below are some important gross and molecular 
events involved in NAFLD development and progression.  

3.1. Gross events during NAFLD progression  

3.1.1. Lipid accumulation in liver 

Steatosis is established when rate of lipid export or degradation is lower than its import or 
synthesis in liver, and lipid accumulation is found in at least 5% of hepatocytes (Anderson 
and Borlak, 2008; Buzzetti et al., 2016; Byrne and Targher, 2015; Friedman et al., 2018; Jiang 
et al., 2019; Marchisello et al., 2019; Noureddin and Sanyal, 2018; Yu et al., 2018) (Figure 7). 
This accumulation of lipids in hepatocytes can have several origins that are from dietary 
lipids; de novo lipogenesis and increased lipolysis in adipose tissue (Brunt et al., 2015; 
Friedman et al., 2018; Postic and Girard, 2008). 26% of FAs are derived from de novo 
lipogenesis; 15% from the diet and 59% from free circulating FAs originating from adipose 
tissue lipolysis (Yu et al., 2018). The details of fatty acid sources and its transformation in 
liver are discussed below (Figure 7). In summary, here we can propose the following AOP 
(adverse outcome pathway) to explain development of steatosis (Begriche et al., 2013; 
Friedmanet et al., 2018; Jiang et al., 2019; Lambert et al., 2014; Yu et al., 2018) (Figure 8).  

In obese individuals, the increase in energy intake results in a storage of lipids in the form of 
TG in adipocytes. FAs stored in adipocytes can be released into the general circulation. These 
FAs can then be captured by the liver, thus contributing to the development of hepatic 
steatosis (Friedman et al., 2018; Schrover et al., 2016; Yki-Järvinen, 2014). Visceral adipose 
tissue has a higher rate of lipolysis. Visceral obesity will therefore be more strongly 
correlated with the development of hepatic steatosis (Yki-Järvinen, 2014).  
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Figure 7: Mechanisms of lipid accumulation leading to NAFL 

 

Figure 8: Adverse Outcome Pathway (AOP) network for liver steatosis 
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The storage of TG in adipose cells is responsible for the swelling of these cells (Schrover et 
al., 2016; Yki-Järvinen, 2014). The increase in size of adipocytes induces the release of 
adipokines, including chemokines such as interleukin-8 (IL-8) and Monocyte Chimio-
attractant Protein-1 (MCP-1) (Skurk et al., 2007; Sun et al., 2011; Weisberg et al., 2003). This 
causes recruitment of macrophages within the adipose tissue. This recruitment may also be 
the consequence of death of adipocytes and adipose tissue hypoxia (Weisberg et al., 2003). 
Macrophage recruitment leads to the production of pro-inflammatory cytokines, mainly 
TNFα (Tumor Necrosis Factor α) (Skurk et al., 2007; Weisberg et al., 2003). In contrast, a 
decrease in the expression of adiponectin, an anti-inflammatory molecule, is also observed 
(Schrover et al., 2016). Secretion of TNFα by macrophages may induce a decrease in TG 
synthesis and storage, and an increase in lipolysis in adipocytes. In addition, this cytokine 
contributes to the dysfunction of lipid metabolism via a decrease in the expression of the 
PPARγ (Peroxisome Proliferator-Activated Receptor gamma) transcription factor (Guilherme 
et al., 2008). The latter stimulates the expression of genes involved in the absorption 
capacity of FAs as well as their storage as TG in adipocytes (Tamori et al., 2002). The 
inflammatory profile of adipose tissue is particularly well correlated with the development of 
insulin resistance and the severity of NAFLD in humans (du Plessis et al., 2015). 

De novo lipogenesis (DNL) is a metabolic pathway that allows the synthesis of FAs from 
acetyl-CoA maily derived from glycolysis. It has been shown that DNL is increased in patients 
with NAFLD (Diraison et al., 2003; Lambert et al., 2014). DNL is a metabolic pathway finely 
regulated by glucose and insulin and involves transcription factors such as Carbohydrate 
Response Element Binding Protein (ChREBP) and Sterol regulatory element-binding 
transcription factor 1c (SREBP1c) (Friedman et al., 2018; Postic and Girard, 2008). Glucose 
intake induces activation of the transcription factor ChREBP via glucose-6-phosphate 
synthesis. An increase in glucose concentration allows dephosphorylation of ChREBP, hence 
promoting nuclear translocation and transcriptional activity. This transcription factor 
activation results in the expression of enzymes implicated in DNL such as Acetyl-CoA 
Carboxylase (ACC), Fatty Acid Synthase (FAS) and Stearoyl-CoA Desaturase 1 (SCD1) (Line M. 
Grønning-Wang et al., 2013; Postic and Girard, 2008). Like ChREBP, the SREBP1c 
transcription factor induces the expression of ACC, FAS and SCD-1 (Line M. Grønning-Wang 
et al., 2013; Postic and Girard, 2008). Insulin also increases the DNL by inducing the 
expression of SREBP1c and ChREBP via the LXR transcription factor. Despite of this insulin 
resistance, the SREBP1c protein is activated in obese mouse models (Shimomura et al., 
1999). This would depend on the onset of ER stress independently of insulin-mediated 
signaling (Kammoun et al., 2009).  

Dietary source of FFA in liver appears to be minor compared to the adipolysis and DNL. 
Dietary lipids come from the intestine in the form of chylomicrons. Their absorption capacity 
is increased in NAFLD (Miquilena-Colina et al., 2011; Nishikawa et al., 2012). CD36 also 
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known as fatty acid translocase (FAT) is a long chain FA receptor, facilitating entry of FAs into 
various cell types including enterocytes, hepatocytes and adipocytes (Chen et al., 2001; 
Koonen et al., 2007). Its expression is also correlated with the severity of hepatic steatosis in 
patients with NAFLD (Miquilena-Colina et al., 2011; Nishikawa et al., 2012). 

FAs absorbed and formed during DNL can be degraded via the mitochondrial β-oxidation 
pathway or esterified to TGs (Friedman et al., 2018; Postic and Girard, 2008; Yu et al., 2018). 
In people with NAFLD, β-oxidation is increased but not sufficient enough to overcome or to 
prevent FA accumulation in the hepatocytes (Begriche et al., 2013). The increase of β-
oxidation also activates PPARα nuclear receptor. This causes the expression of carnitine 
palmitoyltransferase 1 (CPT1), enzyme allowing the entry of FAs into the mitochondria 
(Begriche et al., 2013). In addition, the β-oxidation of FAs can also be regulated by a product 
of lipogenesis. Indeed, malonyl-CoA is a recognized inhibitor of CPT1 (Foster, 2012). 
However, despite the presence of malonyl-CoA, CPT1 remains active in patients with NAFLD 
(Begriche et al., 2013). The development of insulin resistance may be responsible for a 
decrease in the affinity of CPT1 for its endogenous inhibitor, hence CPT1 remains active 
(Cook and Gamble, 1987).  

Under physiological conditions, in hepatocytes, FAs can be esterified as TG, and then stored 
in lipid droplets or secreted into the bloodstream as Very Low-Density Lipoproteins (VLDL) 
(Friedman et al., 2018; Postic and Girard, 2008). TG synthesis is catalyzed by Diacylglycerol 
O-acyltransferase (DGAT 1 and 2), enzymes located on the surface of ER (Yen et al., 2008). 
Then, the neutral lipids (TG and cholesterol esters) accumulate between the two membrane 
sheets of the ER. This accumulation of neutral lipids leads to the budding of lipid droplets 
and their secretion into the cytoplasm of hepatocytes (Gluchowski et al., 2017). The 
membrane of lipid droplets contains many proteins including perilipins, proteins involved 
especially in the protection against lipolysis and droplet formation (de la Rosa Rodriguez and 
Kersten, 2017; Gluchowski et al., 2017; Itabe et al., 2017). During hepatic steatosis, these 
droplets accumulate in hepatocytes following the increase in TG synthesis due to increasing 
the cellular content of FAs. 

3.1.2. Cell death 

Steatohepatitis is characterized by cell death involving various intra and extrahepatic cell 
types (Akazawa and Nakao, 2018; Feldstein et al., 2003; Guicciardi et al., 2013; Hirsova and 
Gores, 2015; Luedde et al., 2014). In people with NASH, the presence of "ballooned" 
hepatocytes, demonstrated in histology, and increased blood ALAT indicate the presence of 
cell death (Luedde et al., 2014). Cell death is an early event of NAFLD and associated closely 
with inflammation, lipotoxicity and fibrogenesis. Several forms of cell death contribute to 
liver injury, including apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis and 
autophagy, There is frequent overlap and crosstalk among all these types of cell death 
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(Nikoletopoulou et al., 2013; Qi et al., 2019; Wree et al., 2013; Yu et al., 2018). Apoptosis, 
programmed cell death, acts as a main player in NASH. FFAs, inducing lipotoxicity, are 
supposed to cause apoptosis via mitochondrial dysfunction and lysosomal membrane 
permeabilization. This cell death type also triggers hepatic stellate cell (HSC) activation and 
thus fibrogenesis, triggered by the release of DNA fragments and apoptotic bodies. Necrosis, 
accidental cell death, is induced by decrease in ATP, reactive oxygen species (ROS) overload 
or by toxicant exposure (Yu et al., 2018). The increase in cytosolic pool of soluble 
cytokeratin-18 (CK-18) level and its fragments revealed that necrosis and apoptosis are 
present in patients with NASH, respectively (Joka et al., 2012; Shen et al., 2012). Indeed, the 
determination of total soluble CK-18 (cleaved or not) allows the measurement of cell death 
(both necrotic and apoptotic), and the measurement of fragments specifically produced by 
caspases can measure apoptosis only (Joka et al., 2012; Kramer et al., 2004; Shen et al., 
2012). Necroptosis, caspase-independent programmed cell death or regulated necrosis, can 
also be involved in NAFLD progression. Necroptosis is  associated with various factors such 
as TNFα (Afonso et al., 2015), receptor-interacting proteins kinase 1 & 3 (RIPK1 & 3), mixed 
lineage kinase domain-like protein (MLKL), ROS production and calcium ion leakage (Yu et 
al., 2018). Another form of cell death, associated with NAFLD is pyroptosis. It is dependent 
on the activation of the inflammasome, NLRP3 (NOD-Like Receptor Pyrin domain-containing 
3) (Xu et al., 2018). Ferroptosis is a type of iron based non-apoptotic cell death. Studies 
described ferroptosis to be involved in NASH progression. It is known to be mediated by an 
iron-dependent lipid peroxidation. It also initiates an inflammatory reaction, thus inducing 
NAFLD progression (Qi et al., 2019; Tsurusaki et al., 2019). Autophagy is also described to 
play its part. Its attenuation elicits oxidative stress, induces apoptosis and activates HSCs for 
fibrogenesis (Yu et al., 2018). 

3.1.3. Inflammation 

Inflammation is a key primary characteristic of NASH. It takes place at very initial stages and 
acts as the driving force to NAFLD progression (Yu et al., 2018). Inflammation is a 
coordinated response to tissue and cell damage, and can be elicited by various etiologies, 
like gut microbiome (by over producing lipopolysaccharides), lipid deposition, mitochondrial 
dysfunction (by generating ROS), epigenetic and genetic factors. In the liver, the 
accumulation of FFA in hepatocytes may be responsible for the secretion of pro-
inflammatory cytokines by these cells (Li et al., 2019). The development of ER stress induced 
by palmitic acid treatment can thus lead to the secretion of TNFα and IL-8 following the 
activation of the transcription factor NF-κB and JNK / AP-1 (Joshi-Barve et al., 2007; Willy et 
al., 2015). The immune cells of the liver, including Kupffer cells, can be activated by FFA but 
also by pro-inflammatory adipokines via the activation of TLR4 (Toll-Like Receptor 4) and the 
inflammasome, NLRP3. As a result, an increase in pro-inflammatory cytokine production is 
observed as well as the recruitment of monocytes (Baffy, 2009; Cai et al., 2017; Ganz and 
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Szabo, 2013; Rivera et al., 2007; Tang et al., 2013; Tosello-Trampont et al., 2012; Wenfeng et 
al., 2014). At the extrahepatic level, macrophages of the M1 pro-inflammatory phenotype, 
having infiltrated the adipose tissue, secret pro-inflammatory cytokines such as TNFα or IL-6 
(du Plessis et al., 2015; Guilherme et al., 2008). Regulators of the inflammatory events in 
hepatocytes include components of the mitogen-activated protein kinase (MAPK) families, 
such as Jun N-terminal kinase (JNK), the p38 MAPK, extracellular signal-regulated kinase 
(ERK); TGFβ-activated kinase 1 (TAK1) and apoptosis signal-regulating kinase1 (ASK1); and 
the transcription factors as interferon regulatory factors (IRFs) and NF-κB. Thus, these all can 
behave as efficient targets for NAFLD treatment (Alisi et al., 2017; Asrih and Jornayvaz, 2013; 
Narayanan et al., 2016; Schuster et al., 2018). 

 

Figure 9: Inflammation-associated components involved in NAFLD 

It is important to stress that long-term unresolved inflammatory response, presence of 
immune cells and mediators, and uncontrolled wound healing response, induce hepatocyte 
degeneration and regeneration processes. This simultaneous injury and repair enhances the 
risk of genetic alteration. This, in response, increases cell survival and deregulated 
hepatocyte proliferation that ultimately favors fibrosis and HCC development (Bishayee, 
2014; Tian et al., 2019) (Figure 9). 
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3.1.4. Fibrosis 

HSCs are responsible for the development of hepatic fibrosis during NAFLD progression. 
Hepatic fibrosis is unwanted wound healing response, where excessive extracellular matrix 
accumulates due to imbalance in its production and dissolution. Cytokines produced 
following activation of Kupffer cells, such as IL-1β, as well as hepatocyte death, cause the 
activation of stellate cells (Mederacke et al., 2013; Mehal, 2014; Trautwein et al., 2015). 
Moreover, the apoptotic bodies, resulting from the death of hepatocytes, can also be 
directly phagocytosed by the stellate cells  and induce their activation (Canbay et al., 2003; 
Jiang et al., 2009; Takehara et al., 2004). HSC activation mediates complex events via 
transforming growth factor β1 (TGF-β1) and platelet-derived growth factor (PDGF). These 
cells are also key contributors of immune response. TLR4 is expressed on stellate cells, which 
on LPS detection, ultimately leads to release cytokines and activates NF-κB and JNK pathway 
(Yu et al., 2018).  

3.2. Molecular events during NAFLD progression  

NAFLD pathogenesis, initiated from development of fatty liver to its progression towards 
NASH, is complex and involves several molecular mechanisms described below, including a 
home-made proposal of AOP to illustrate it (Figure 10 & 11).  

 

Figure 10: Various pathophysiological factors and molecular events contributing to  
NAFLD progression 
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Figure 11: Possible AOP network for steatohepatitis 

3.2.1. Insulin resistance  

Insulin protects against lipolysis in adipose tissue. Under physiological conditions, 
stimulation of the insulin receptor causes phosphorylation and activation of 
phosphodiesterase (PDE-3), an enzyme that degrades cyclic adenosine monophosphate 
(cAMP) to 5'AMP. The decrease in cAMP following the activation of PDE-3 induces a 
decrease in Protein Kinase A (PKA) activity. This results in the decrease of lipolysis. Indeed, 
PKA is an enzyme that participates in the phosphorylation of HSL and Perilipin 1 (PLIN1). In 
this context, a decrease in insulin sensitivity, called insulin resistance (IR), will therefore 
allow a decrease in cAMP degradation resulting in increased activation of PKA and an 
increase in lipolysis. In addition, JNK kinase, which can also be activated by TNFα, 
participates in insulin resistance. Indeed, JNK can also inhibit the insulin receptor via 
phosphorylations (Lackey and Olefsky, 2016). 

Insulin resistance plays a key role in NAFLD progression. IR results in a decrease of glucose 
delivery to muscles and adipocytes, increases DNL and induces FFA delivery to liver (Yu et al., 
2018). In hepatocytes, the origin of insulin resistance would be the elevation of diglyceride 
(DG) level, an intermediate of lysis and/or synthesis of TG. These DGs would be responsible 
for triggering insulin resistance through activation of protein kinase Cε (PKCε). This latter 
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kinase phosphorylates and inhibits the insulin receptor (Samuel and Shulman, 2018). In 
patients with NAFLD, hepatic DG is correlated with PKCε activation and insulin resistance 
(Kumashiro et al., 2011). 

Adipokines (adiponectin, resistin and leptin), secreted by adipocytes, are the important 
regulators of insulin sensitivity. Moreover, Inflammation of adipose tissue and immune 
mediators like TNFα, IL1, IL6, NF-κB are also associated with development of insulin 
resistance. Thus, macrophage depletion in adipose tissue or inhibition of TNFα expression 
results in the normalization of insulin sensitivity (Patsouris et al., 2008; Yu et al., 2018).  

3.2.2. Lipotoxicity 

During NASH, the lipid metabolism is altered, resulting in the accumulation of lipid 
compounds that participate in the death of liver cells, especially hepatocytes. Lipotoxicity 
refers to the toxic effects induced by certain lipids and lipid derivatives. Although the 
majority of accumulated lipids in the liver in individuals with NAFLD are stored as TG, some 
lipid-associated molecules such as FFA, ceramide, lysophosphatidylcholine (LPC) and 
cholesterol can also accumulate to exert toxicity (Anjani et al., 2015; Puri et al., 2007). Due 
to their deleterious effects, especially via activation of pro-apoptotic signaling, these lipids 
can be involved in the development of NASH (Alkhouri et al., 2009; Hirsova et al., 2016; 
Mota et al., 2016). 

Unlike TG, FFA can induce cell death. Inhibition of TG synthesis leads to an increase in liver 
damage (increase in ALAT, oxidative stress and fibrosis) following an increase in liver FFAs 
(Yamaguchi et al., 2007). However, not all FFAs have the same effects. While saturated FAs 
(eg. palmitic acid) can trigger apoptotic cell death, mono-unsaturated FAs (eg. oleic acid) 
protect against the toxicity of saturated FAs. Indeed, oleic acid increases the storage of 
palmitic acid in lipid droplet TGs (Listenberger et al., 2003). In addition, the deletion of the 
gene coding for SCD1, the enzyme converting saturated FFAs to unsaturated FFAs, in a 
mouse model of NASH, induces a decrease in steatosis and an increase in liver damage (Li et 
al., 2009). 

Numerous studies have shown that palmitate, the most commonly found saturated FFA in 
animals, can induce the extrinsic and intrinsic pathways of apoptosis via several mechanisms 
(Alkhouri et al., 2009; Hirsova et al., 2016; Mota et al., 2016). The extrinsic pathway of 
apoptosis is triggered by the activation of the "death receptors", that is membrane receptors 
belonging to the TNF receptor superfamily. TNF receptor stimulation results in the activation 
of effector caspases (Hirsova and Gores, 2015). Expression of two other receptors, belonging 
to the TNF receptor superfamily, FasR and the TNF-related Apoptosis-Inducing Ligand 
receptors (TRAIL-R), are also known to be increased with NASH or with simple steatosis 
(Hirsova et al., 2013). Saturated FFAs can induce also apoptosis by the intrinsic pathway by 
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increasing the expression of two BCL-2 proapoptotic proteins, the p53 upregulated 
modulator of apoptosis (PUMA) and the Bcl-2-interacting mediator of cell death (BIM), and 
decreasing the expression of one BCL-2 antiapoptotic protein, myeloid cell leukemia 1 (MCL-
1) (Cazanave et al., 2011, 2010; Masuoka et al., 2009). FFA exposure induces autophagic 
degradation of Kelch-like ECH-associated protein (Keap1), an E3 ligase-binding protein, 
known to initiate the degradation of many proteins including Bcl-2 family proteins. Thus, 
Keap1 degradation initiated by palmitic acid contributes to the increase of PUMA and BIM 
expression (Cazanave et al., 2014).  

Lysophosphatidylcholine (LPC) is obtained by hydrolysis of a phospholipid, catalyzed by 
Phospholipase A2 (PLA2) (Han et al., 2008; Hirsova et al., 2016; Kakisaka et al., 2012). Once 
the FFA has entered the cells, it can be transformed into TG or inserted into the membranes 
in the form of phospholipids like phosphatidylcholine. The formation of LPC would be partly 
responsible for apoptotic cell death. Thus, inhibition of PLA2 decreases apoptosis (Han et al., 
2008; Kakisaka et al., 2012). In addition, the mechanisms involved in apoptosis induced by 
LPC are similar to those induced by palmitic acid (Kakisaka et al., 2012). Ceramides, another 
lipotoxic product of FFA, can be formed de novo in ER from palmitoyl-CoA and serine or from 
the hydrolysis of sphingomyelin by sphingomyelinases (SMases) (Pagadala et al., 2012). 
Exposure to saturated FFAs may induce an increase in ceramide synthesis, which may 
explain the increased level of this lipid with NASH (Pagadala et al., 2012; Wei et al., 2006). In 
addition, inflammation may be involved in the synthesis of ceramides. Indeed, the binding of 
TNFα on its receptor leads to the activation of acidic SMase (ASMase) (Pagadala et al., 2012). 
Activation of the NF-kB transcription factor also leads to an increase in the expression of the 
enzymes involved in the de novo synthesis of ceramides (Chaurasia and Summers, 2015). 

Hepatic free cholesterol content is 1.7 times higher in individuals with NASH than in healthy 
individuals (Puri et al., 2007). The accumulation of free cholesterol is due to an increase in its 
synthesis coupled with a decrease in its degradation. Indeed, in liver tissues, in comparison 
with healthy people, individuals with NAFLD have an increased expression of HMG-CoA 
reductase (the enzyme responsible for cholesterol synthesis) as well as a decrease in 
expression of CYP7A1 (the enzyme involved in the synthesis of bile acid from cholesterol) 
and decrease in the Cassette subtype ATP-Binding cholesterol efflux transporter family G 
member 1 (ABCG1) (Caballero et al., 2009; Min et al., 2012). Modulation of HMG-CoA 
reductase expression could be due to increased expression of the SREBP-2 transcription 
factor, following inflammation or ER stress (Colgan et al., 2007; Musso et al., 2013). This 
increase in free cholesterol in hepatocytes seems to contribute to the development of NASH, 
among others, by the induction of cell death (Arguello et al., 2015; Liang et al., 2015). The 
induction of apoptosis by free cholesterol appears to involve ER stress and mitochondrial 
dysfunction (Arguello et al., 2015; Gan et al., 2014; Musso et al., 2013). Indeed, cholesterol 
can be inserted into ER membranes, leading to an alteration of SERCA activity and trigger 
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unfolded protein response (UPR) (Musso et al., 2013). UPR is a collection of intracellular 
signal transduction pathways that are activated by ER in response to accumulation of 
unfolded proteins in ER lumen. In addition to ER stress, cholesterol can accumulate in 
mitochondria and inhibit mitochondrial GSH (mGSH), which causes an increase in ROS in the 
mitochondria. As a result, this induces an oxidation of cardiolipins leading to the 
permeabilization of mitochondrial membranes, and hence release of cytochrome c and 
death of hepatocytes (Musso et al., 2013). Finally, mitochondrial cholesterol accumulation 
sensitizes hepatocytes to TNFα-induced cell death. This sensitivity seems to be related to the 
depletion in mGSH (Marí et al., 2006). 

 3.2.3. Oxidative stress 

Oxidative stress is a mechanism commonly associated with the pathogenesis of NASH, since 
it participates in the induction of cell death (Bellanti et al., 2017; Browning and Horton, 
2004; Spahis et al., 2017). In the line with this, antioxidants such as vitamin E, can reduce 
certain parameters of NASH, notably cell death (Spahis et al., 2017). Several oxidative stress 
markers have been described in the liver tissues of patients with NAFLD, as lipid peroxidation 
(elevation of malondialdehyde (MDA) and / or 4-hydroxynonenal (HNE) and / or 8-iso-
prostaglandin F2α) (Chalasani et al., 2004; Seki et al., 2002; Spahis et al., 2017); DNA 
oxidation (elevation of  8-hydroxy-2' -deoxyguanosine [8-OH-dG]) (Kitada et al., 2001; Seki et 
al., 2002; Spahis et al., 2017) and oxidation of proteins (increased carbonylation of liver 
proteins) (Videla et al., 2004); nitric oxide (NO) production and CYP2E1 activation. Some of 
antioxidant markers have also been identified in clinical models of NAFLD as catalase, 
superoxide dismutases (SOD) and glutathione peroxidase (GPX) activation, glutathione, 
ubiquinone, thioredoxin and other (Ore and Akinloye, 2019). In NAFLD patients, oxidative 
stress is known to be higher and further increased in patients with NASH (Bessone et al., 
2019). As oxidative stress affects lipids, proteins and DNA, it plays crucial role in NAFLD 
progression. ROS, in addition to oxidized lipids, activate kupffer and stellate cells, thus 
triggering inflammation and fibrosis (Buzzetti et al., 2016). 

Different cellular organelles have been implicated in reactive species (RS) production as 
mitochondria, endoplasmic reticulum and peroxisomes. Inflammatory response and iron 
overload are also known as pro-oxidative factors (Bessone et al., 2019; Ore and Akinloye, 
2019; Reiniers et al., 2014; Robertson et al., 2001). Induction of mitochondrial β-oxidation 
due to increased FFA content in liver triggers RS production. Further, electrons’ leak at the 
level of electron transport chain complexes reacts with oxygen to form ROS. Peroxisomes 
also produce H2O2 during oxidative process. Cytochromes P450, in particular CYP2E1, also 
participate in the oxidation of FAs. CYP2E1 is located in the ER, acts as an alternative to β-
oxidation. It produces high-reactive carbonyl free radicals via ω-hydroxylation of long chain 
FAs. Insulin is known to inhibit CYP2E1 expression, in this context, insulin resistance 
consequently promotes its expression (Bessone et al., 2019; Ore and Akinloye, 2019).  
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Oxidative stress is also linked with a transcription factor, called as Nuclear factor erythroid 2 
related factor 2 (NRF2), expressed in liver, macrophages and other organs. It regulates the 
expression of numerous genes having antioxidant, anti-inflammatory and detoxification role. 
Reactive species induce dissociation of NRF2 from Keap1, thus resulting in NRF2 activation as 
an adaptive response. In NAFLD, NRF2 activation is found to be protective as it ameliorates 
oxidative stress and inhibits JNK pathway (Musso et al., 2016; Xu et al., 2019). 

3.2.4. Mitochondrial dysfunction 

Mitochondrial dysfunction is explained by structural and functional variations that include 
ultra-structural mitochondrial lesions, increased permeability of outer and inner 
membranes, electron transport activity depletion, ROS overproduction, ATP reduction, and 
oxidative stress-associated deletions of mitochondrial DNA. Mitochondrial dysfunction 
results in excessive hepatic lipid accumulation, elicits inflammation and fibrosis and induces 
cell death. All these mechanisms aggravate progression of NAFLD (Buzzetti et al., 2016; Li et 
al., 2019). Along with functional impairment, NAFLD is also associated with mitochondrial 
structural abnormalities like cristae disruption and hypodense matrix  (Li et al., 2019) (Figure 
12). 

 

Figure 12: Mechanisms of mitochondrial dysfunction associated with NAFLD 
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Mitochondria are the main site of FA degradation via β-oxidation, which is used to supply 
the Krebs cycle with acetyl-CoA. β-oxidation and the Krebs cycle generate NADH and FADH2 
which provide electrons to the mitochondrial respiratory chain for ATP synthesis. However, 
some of these electrons escape complexes I and III (i.e. NADH dehydrogenase and 
cytochrome c reductase) leading to a monoelectronic reduction of O2 to O2

.-. Enhanced β-
oxidation of FA increases electron escape at the level of repiratory chain complexes, which 
leads to overproduction of ROS in patients with NAFLD (Begriche et al., 2019, 2013, 2006; 
Buzzetti et al., 2016; Li et al., 2019; Pérez-Carreras et al., 2003; Sanyal et al., 2001; Yu et al., 
2018). Moreover, the activation of the PPARα transcription factor by cytokines like IL-6 and 
adipokines like leptin, leads to the expression of genes involved in the β-oxidation (Begriche 
et al., 2013). Saturated FA or TNFα can also cause the release of cytochrome c from the 
respiratory chain (Begriche et al., 2006). Mitochondrial production of ROS can lead to 
mitochondrial DNA oxidation (mtDNA), contributing to reduced activity and synthesis of 
respiratory chain complexes, thus resulting in additional ROS production. Malondialdehyde 
(MDA) from lipid peroxidation can create adducts with complex IV (Cytochrome c oxidase or 
COX), which further disrupts the respiratory chain (Begriche et al., 2006; Chen et al., 2000).  

Mitochondrial impairment is also directly associated with ER stress in liver. Both, ATP 
depletion and ROS overproduction indeed activate UPR pathway, upregulate hepatic 
enzymes linked to lipogenesis and decrease SREBP1c. this thus promotes lipid accumulation 
and triggers inflammation by activating the JNK signaling pathway (Bessone et al., 2019; 
Buzzetti et al., 2016; Li et al., 2019). 

 3.2.5. Iron homeostasis 

Iron is one of the key requirements to perform several vital functions like DNA synthesis, 
oxygen transport and respiration at cellular level. It is an obligatory component for heme to 
make hemoglobin and other proteins. Approximately 1-2 mg of iron is absorbed from dietary 
sources, 20-25 mg of iron is recycled from erythrocytes and 1 mg is excreted via epithelial 
desquamation, hair loss and other mechanisms. An adult human has 3-5 g of iron, mainly 
incorporated in hemoglobin (60-70%), conjugated with ferritin and hemosiderin in 
macrophages and hepatocytes (20-30%) (Rodrigues de Morais and Gambero, 2019).  
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Figure 13: Iron/heme homeostasis 

Under normal physiological circumstances, iron from diet is taken up by duodenal 
enterocytes from their apical end via Divalent Metal Transporter 1 (DMT1). Iron in 
enterocytes has two fates, either it is stored to ferritin or effluxed to systemic circulation by 
ferroportin (FPN1) located at basolateral surface of enterocytes. Hepcidin, synthesized and 
released by liver, inhibits FPN1 and thus favors iron internalization. Plasma iron in ferric 
(Fe3+) form binds to transferrin (TF) and endocytosed to cells via Transferrin receptors (TFRs). 
Iron from cytoplasmic endosomes is released in cytosol, reduced to ferrous state (Fe2+) by 
STEAP3 (six-transmembrane epithelial antigen of prostate 3 reductase) and then either 
utilized to produce iron-sulfur (Fe-S) clusters, heme or stored to ferritin. In addition to these 
iron transport and storage proteins, duodenal Cytochrome b (DCYT B), ceruloplasmin (CP), 
iron regulatory protein (IRP) and other factors play important roles in iron homeostasis 
(Fraenkel et al., 2009, 2005; Zhang and Hamza, 2018; Zhao et al., 2014) (Figure 13).  
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Figure 14: Iron overload induces NAFLD progression 

Several studies have shown the implication of iron in NAFLD pathogenesis and progression 
(Britton et al., 2016; Corradini and Pietrangelo, 2012; Marchisello et al., 2019). Alterations in 
iron serum level could be associated with obesity, inflammation or ER stress (Britton et al., 
2016; Corradini and Pietrangelo, 2012; Wessling-Resnick, 2010). In NASH, several possible 
mechanisms are proposed for hepatic iron overload such as insulin resistance, iron leak by 
necrosis and other. Insulin is known to have direct impact on hepcidin; as a consequence, 
during insulin resistance, hepcidin would be down regulated, which could be the mechanism 
of iron overload in NAFLD. On contrary, studies have proposed higher level of hepcidin in 
NASH (Britton et al., 2016). Iron overload has multiple effects on adipose tissue, inducing 
oxidative stress, activating macrophages and stellate cells, and triggering heme biosynthesis 
(Britton et al., 2016; Marchisello et al., 2019). Iron in adipose tissue is documented to be 
associated with adipokine regulation, adipose tissue inflammation and adipolysis. Hepatic 
iron, a highly reactive element, when in excessive quantity, elicits Fenton reaction and 
generates ROS, thus leading to hepatic lipid peroxidation, DNA damage and cell death 
including ferroptosis (Marchisello et al., 2019; Qi et al., 2019) (Figure 14). 

3.2.6. Membrane remodeling 

Membrane remodeling is defined as alteration in membrane fluidity and/or lipid raft 
physico-chemical characteristics notably its composition and function. Change in membrane 
characteristics is known to initiate intracellular signalling pathways that lead to cell death. 
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Membrane remodeling is also known to activate receptors located in membrane lipid rafts, 
called toll-like receptors (TLR 2, 4 and 9). Furthermore, membrane remodeling-associated 
TLR-4 activation could activate NLRP3 inflammasome, which then triggers inflammatory and 
fibrogenic response. (Chen et al., 2018; Das et al., 2015; Gianfrancesco et al., 2018; Magee et 
al., 2016; Roh et al., 2015; Roh and Seki, 2013; Yang et al., 2019). Membrane remodeling is 
suggested as one of the contributors in NAFLD progression (Hall et al., 2017). During NAFLD 
progression, hepatic expression of lysophosphatidylcholine acyltransferase 2 (LPCAT2) and 
phospholipase A2 (cPLA2) (genes associated with membrane remodeling) have been 
reported to be increased, thus generating excessive AA and its eicosanoid metabolites, 
which induce inflammation, oxidative stress and cell injury (Hall et al., 2017). LPCAT2 is 
responsible for the synthesis of phosphatidylcholine (PC), an important component of cell 
membrane while cPLA2 cleaves PC into arachidonic acid (AA). Ceramide synthesis is affected 
in NAFLD due to increased FFAs in liver. The fact that ceramide inhibits insulin signaling 
pathway, increases oxidative stress and inflammation, may further aggravate NAFLD 
progression (Pagadala et al., 2012). Indeed, our group has shown previously in cisplatin 
exposed colon cancer cells that an increase in ceramide content leading to lipid raft 
clustering was involved in the related cell death (Rebillard et al., 2007). 

3.2.7. Others  

In addition to the pathogenesis mechanisms described above for NAFLD progression, ER 
stress and autophagy can also play a role in NAFLD pathogenesis. 

Endoplamic reticulum (ER) is a compartment of the secretory pathway that plays an 
important role in calcium homeostasis, detoxification of xenobiotics and the synthesis of 
many cellular components including lipids. Impairment of ER functions (eg. due to increased 
presence of misfolded proteins or changes in calcium balance) is called "ER stress". This 
results in the establishment of a cellular response called Unfolded Protein Response (UPR) 
whose role is to restore ER homeostasis, inducing a decrease in protein synthesis and the 
transcription and activation of necessary proteins to correct protein folding (Pagliassotti et 
al., 2016). The presence of steatosis has been shown to induce ER stress and vice versa 
(Passeri et al., 2009). Despite the fact that the mechanisms responsible for ER stress by FA 
overload are not fully known, a link has been suggested with a modification of the lipid 
composition of the membrane of this compartment and a modification of the calcium 
homeostasis (Baiceanu et al., 2016). The ER membrane of obese mice has a lipid composition 
different from that of normal mice with, in particular, a strong increase in the 
phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio (Fu et al., 2011). The increase 
in PC is due to the increased expression of Pcyt1a (choline-phosphate cytidylyl-transferase A) 
and Pemt (Phosphatityl-ethanolamine N-methyltransferase), two enzymes involved in its 
synthesis and conversion from PE to PC (Fu et al., 2011). In addition, this modification of the 
ER membrane leads to an alteration of the Sarco / Endoplasmic Reticulum Ca2+-ATPase 
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(SERCA) activity. This causes a decrease of intra-ER Ca2+ and triggers ER stress (Arruda and 
Hotamisligil, 2015; Baiceanu et al., 2016). ER stress induces insulin resistance, lipotoxicity, 
inflammation and cell death and thus contributing to the NAFLD progression. 

Autophagy is a process of lysosomal degradation allowing the maintenance of cellular 
homeostasis by the degradation and recycling of certain cellular components such as 
proteins or even organelles. It is a process of cellular adaptation induced by various stimuli 
such as a nutritional deficiency or the accumulation of damaged mitochondria (Gual et al., 
2017; Madrigal-Matute and Cuervo, 2016). People with NAFLD have an alteration of 
autophagy in the liver (Fukuo et al., 2014; González-Rodríguez et al., 2014). Thus, the 
autophagic flow (formation of the autophagosome to the degradation by the lysosome) is 
diminished. This is characterized by an accumulation of autophagic vesicles, an increase in 
the expression of the LC3-II / LC3-I ratio and in the level of the p62 protein (Fukuo et al., 
2014; González-Rodríguez et al., 2014). Several mechanisms could be involved in the 
reduction of autophagic flow in individuals with NAFLD like decreased fusion between 
autophagosome and lysosome (Koga et al., 2010; Park et al., 2013); lack of acidification and 
activity of lysosomal acid hydrolases (including cathepsins) (Fukuo et al., 2014; Inami et al., 
2011) and ER stress (González-Rodríguez et al., 2014). The alteration of autophagy in people 
with NAFLD could participate in the evolution towards NASH. This alteration could lead to an 
accumulation of damaged deleterious mitochondria for cells as well as sensitization to 
apoptosis mediated by death receptors (Czaja, 2016).  

3.3. Alteration of transcriptional regulation during NAFLD 

Transcriptional regulation of NAFLD involves receptor-associated signaling mechanisms. 
These could include some nuclear receptors and other transcriptional factors such as AhR, 
NRF2 and hypoxia-inducible factors (HIF) (Table 2).  

3.3.1. NAFLD and nuclear receptors 

Nuclear receptors (NR) are ligand-activated transcription factors that regulate vital body 
functions like development, growth and reproduction. In addition, NRs are concern with 
nutrient metabolism thus explaining that they play key role in metabolic diseases (Cave et 
al., 2016). Human NRs consist of seven groups of NRs classified as NR0 to NR6 (Evans and 
Mangelsdorf, 2014). Regarding NAFLD, components of NR1 are particularly important as 
they are involved in glucose and lipid as well as xenobiotic metabolism and inflammation. 
These receptors, in nucleus, heterodimerize with retinoid X receptor (RXR) and comprise of 
NR1C1–3 (peroxisome proliferator activated receptors α, β, γ [PPAR]); NR1H2–3 (liver X 
receptors α, β [LXR]); NR1H4 (farnesoid X receptor α [FXR]); NR1I2 (constitutive androstane 
receptor [CAR]); and NR1I3 (pregnane X receptor [PXR]).  
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These receptors play an important role in gut-liver-adipose tissues, and control body 
response between fasting and fed state (Cave et al., 2016; Evans and Mangelsdorf, 2014; 
Fuchs et al., 2016; Noureddin and Sanyal, 2018).  

3.3.1.1. Peroxisome proliferator-activated receptors (PPAR) 

Peroxisome proliferator-activated receptors (PPAR) α, β/δ, and γ are documented as 
important regulators of lipid metabolism and inflammation. The members of PPAR include 
PPAR α (in liver), PPAR β/δ (in muscle, liver and adipose tissue), and PPAR γ (in adipose 
tissue, colon and macrophages) (Evans and Mangelsdorf, 2014). Their endogenous ligands 
include FFAs and eicosanoids. PPAR are known to up regulate the expression of many genes 
that are responsible for oxidative lipid metabolism as carnitine palmitoyl transferase I 
(CPT1), CYP4A, pyruvate dehydrogenase kinase 4 (PDK4) and acyl-CoA oxidase 1 (ACOX1). 
The expression of PPAR α is reduced in NAFLD (Francque et al., 2015; Tailleux et al., 2012). 
The activation of PPAR members is known to increase β-oxidation, induce nutrient transport 
to peripheral tissue from liver, improve insulin resistance and decrease inflammation, thus 
favoring improvement in NASH (Buechler et al., 2011; Caligiuri et al., 2016; Cave et al., 2016; 
Tailleux et al., 2012; Wahli and Michalik, 2012; Yu et al., 2016).  

3.3.1.2. Farnesoid X receptor (FXR) 

Farnesoid X receptor (FXR) is believed to be the principal regulator of bile acid synthesis. In 
addition, it also regulates carbohydrate and lipid metabolism (Cave et al., 2016; Evans and 
Mangelsdorf, 2014). These receptors are mainly expressed in liver, kidney, adrenal gland, 
intestine and adipose tissue. FXR ligands include bile acids and androsterone (Lefebvre et al., 
2009). This receptor inhibits bile acid synthesis from cholesterol by suppressing CYP71A and 
CYP8B1 (de Aguiar Vallim et al., 2013; Jones, 2012). A hepatokine named fibroblast growth 
factor 21 (FGF21) acts as a target for FXR (Lin et al., 2013). FXR is known to increase glucose 
uptake, decrease fatty acid uptake and synthesis, decrease lipogenesis and increase β-
oxidation. It is also known to inhibit SREBP-1 and upregulate PPARα (Pineda Torra et al., 
2003). In NAFLD, its hepatic expression is decreased (Neuschwander-Tetri et al., 2015; Yang 
et al., 2010); however, its activation by ligand improves steatosis, inflammation and fibrosis 
(Neuschwander-Tetri et al., 2015; Noureddin and Sanyal, 2018). 

3.3.1.3. Pregnane X receptor (PXR) 

Pregnane X receptor (PXR), also called steroid and xenobiotic sensing nuclear receptor (SXR), 
is mainly expressed in liver (hepatocytes, kupffer cells and stellate cells) and gut along with 
human breast, bone marrow, adrenal gland and brain (Haughton et al., 2006). Its 
endogenous ligands include steroids, bile acids and some other cholesterol derivatives while 
exogenous ligands include xenobiotics, for example, environmental pollutants (Al-Salman 
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and Plant, 2012; Krasowski et al., 2011; Wahlang et al., 2014; Watkins et al., 2001). PXR is 
involved in xenobiotic metabolism via induction of CYP3A4 expression, and energy 
metabolism via stearoyl CoA desaturase 1 (SCD1) and fatty acid elongase (lipogenic 
enzymes); CD36 (fatty acid transporter); SLC13A5 (mono- and di-carboxylate transporter, 
which controls hepatocellular influx of citrate); isoprenoid and cholesterol (Cave et al., 
2016). PXR is linked to NAFLD pathogenesis (Sookoian et al., 2010); however its response is 
paradoxical. Indeed, it is known to exacerbate steatosis, worsen insulin resistance and elicit 
obesity, lipogenesis and hypercholesterolemia (Li et al., 2015; Spruiell et al., 2014). It also 
suppresses PPARα and decreases β-oxidation. On other hand, it reduces fibrosis and 
mediates anti-inflammatory action by blocking the production of NFκB target genes (Cave et 
al., 2016). 

3.3.1.4. Constitutive androstane receptor (CAR) 

Constitutive androstane receptor (CAR) is different from other NRs as it can remain active 
even in ligand absence. It is mainly expressed in liver and intestine. It is also little expressed 
in kidney, lungs, muscle and heart (Arnold et al., 2004; Cave et al., 2016). Its endogenous 
ligands comprise of bilirubin, bile acids, and androstanes while exogenous ones are drugs 
like phenobarbital, environmental pollutants like PCBs, pesticides and PAH like pyrene. CAR 
is known to have protective action against toxic dietary metabolites as it regulates several 
drug metabolizing expressions including CYP2B6, sulfotransferase (SULT), uridine 5′-
diphospho-glucuronosl transferase (UGT) and multidrug resistance protein 1 (MDR1) (Beilke 
et al., 2009; Cave et al., 2016; Kodama and Negishi, 2013). CAR activity is partially regulated 
by protein kinase C (PKC), protein phosphatase 2 (PP2A) and extracellular signal-regulated 
kinase (ERK). CAR expression is favourable during caloric excess and it provides protection 
against metabolic stress and NAFLD (Dong et al., 2009). It is known to reduce obesity, 
improve insulin sensitivity and diabetes, decrease hepatic gluconeogenesis and 
hypercholesterolemia, inflammation and apoptosis (Gao et al., 2015; Masuyama and 
Hiramatsu, 2012).  

3.3.1.5. Liver X receptor (LXR) 

Liver X receptor (LXR) controls triacylglyceride and cholesterol metabolism in liver. These 
receptors are expressed in liver, kidney, intestine and adipose tissue (Cave et al., 2016). 
Their endogenous ligands mainly include oxysterols. LXR activation leads to hepatic 
lipogenesis and transport to peripheral tissues while improving hypercholesterolemia. 
NAFLD progression increases LXR expression, which further induces obesity (Gerin et al., 
2005) and steatosis (Ahn et al., 2014; Repa et al., 2000).  
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LXR directly activates SREBP-1c (master regulator of lipogenesis), Fatty acid synthase (FAS, 
catalyze rate limiting step during lipogenesis) and acetyl-CoA carboxylase whereas it 
decreases FGF21. LXR is known to decrease inflammation by inhibiting NFκB, TNFα, IL-6 and 
IL-1β (Ito et al., 2015; Venteclef et al., 2010). 

3.3.2. Others 

In addition to nuclear receptors, NAFLD is also associated with other transcription factors 
like NRF2, AhR and hypoxia-inducible factors (HIF). NRF2 has already been described in 
introduction under the heading of oxidative stress.  

AhR is a transcription factor, remains dormant as cytosolic protein and get activated by 
ligand binding. AhR is also known to increase lipid accumulation in hepatocytes by increasing 
cytosolic citrate concentration, which has central role in lipid metabolism (Neuschäfer-Rube 
et al., 2015). Another study showed that chemical inhibition of AhR prevents western diet 
induced obesity (Moyer et al., 2016). Furthermore, AhR is reported to be negatively co-
related with LXR-β and SREBP1c, thus interfering with lipid metabolism (Zhou, 2016). In the 
context of AhR and energy metabolism, one study reported that AhR activation via 
TCDD/HFD up-regulates CD36 (direct AhR transcriptional target), and down-regulates both 
Ppar-α and Srebp1c, thus leading to steatosis and lipotoxicity (Duval et al., 2017a). In 
addition to NAFLD development, AhR activation might also participate in NAFLD progression. 
It might be possible as AhR activation is associated with membrane remodeling (Tekpli et al., 
2010) mitochondrial dysfunction (Lee, 2011), alteration in iron/heme homeostasis (Fader et 
al., 2017; Fader and Zacharewski, 2017) and inflammation (Podechard et al., 2008). AhR 
activation is also reported to deactivate the mitochondrial sirtuin deacetylase 3 (SIRT3), 
which in result increases superoxide dismutase 2 (SOD2) acetylation and thus, decreases 
SOD2 activity and increases oxidative stress (He et al., 2013). In contrast to the above studies 
that describe harmful action of AhR in NAFLD, some studies also described positive role of 
AhR against NAFLD. One study reported that AhR ameliorates steatosis and subsequent 
lipotoxicity. This study has described that AhR knockout model displayed steatosis, 
inflammation and liver toxicity (Wada et al., 2016).   Another study showed that indigo, an 
AhR agonist induces IL-10 and IL-22, thus improving HFD-induced gut barrier dysfunction and 
inflammation. This overall reduces insulin resistance and fatty liver disease (Lin et al., 2019).  

HIF are transcriptional factors activated by hypoxia. Obesity is reported to induce hypoxia in 
adipocytes thus activatinges HIF, which then results in insulin resistance, down regulation of 
adiponectin, ceramide production and inflammation and thus involves in NAFLD progression 
(Gonzalez et al., 2018).   
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Table 2: Mechanisms associated with transcriptional factors contributing to NAFLD 

 

4. NAFLD: Experimental animal models 

NAFLD is a multi-etiologic disease, involving multiple pathways for its progression. Although 
in vitro studies can uncover cellular mechanisms accountable for NAFLD pathogenesis, these 
could neither fully recapitulate the complexity of human liver nor allow inter-tissue 
communication. Thus, to integrate the crosstalk between liver and other tissues like adipose 
tissue, an animal model is considered necessary to explore the impact of various body 
organs on NAFLD pathogenesis and progression (Table 3).   

The perfect in vivo non human model for NAFLD should simulate the disease characteristics 
as accurately as possible. Liver phenotype, histopathological features like macro- and micro-
vesicular steatosis, ballooning, inflammation and fibrosis should display relevance to human. 
Risk factors like obesity, metabolic deregulation and intestinal microbiome alteration should 
mimic NAFLD in the same manner as in human. Pathophysiological characteristics as insulin 
resistance, lipotoxicity, mitochondrial dysfunction and cell death should also look like to 
human. Another important feature of the ideal model is genetic resemblance. In addition to 
all these, disease model should be robust and reproducible in results (Jahn et al., 2019; 
Santhekadur et al., 2018). 

In accordance to evolutionary basis, Caenorhabditis elegans (Roundworm) and Drosophila 
melanogaster (Fruit fly) are among the primitive and simplest in vivo models used for 
modeling NAFLD.  C. elegans can be used to explore the obesity and metabolic syndrome 
associated anomalies as it has the mechanisms to control energy, lipid and insulin related 
metabolism (Kanuri and Bergheim, 2013). Drosophila contains a special organ called fat body 
that is involved in metabolic activities, stores fat and sugar and regulated by insulin. On 
fasting, fat body releases fat for energy production (Allocca et al., 2018). In addition to fat 
body, drosophila also possesses specialized cells for lipolysis, known as oenocytes. These 
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cells are located close to body wall surface and engaged in fat metabolism (Ugur et al., 
2016). As roundworm and drosophila have conserved mechanisms for energy metabolism, 
can store lipids in their body, thus both could be possibly used to simulate human for 
metabolic diseases. However, both organisms do not have actual liver, pancreas and well 
specialized immune system. Furthermore, lack of assay techniques make less eager to 
choose these models for NAFLD study. 

Small fishes like Danio rerio (zebrafish) and Oryzias latipes (medaka) are widely used by 
investigators to reveal unidentified metabolic factors and mechanisms involved in NAFLD 
pathogenesis and progression. Like rodents and other higher mammals, these vertebrates 
have well developed liver that can easily be manipulated to model hepatic diseases at 
relatively low cost and in a short time (Asaoka et al., 2014; Faillaci et al., 2018; Salmi et al., 
2019). Large numbers of dietary, genetically modified and chemical-treated fish models are 
known to be useful for assessing liver-associated disorders, including fatty liver (Asaoka et 
al., 2014).With regard to my thesis, zebrafish larva has been used as an in vivo model of 
NAFLD. This model thus will be further discussed in detail in chapter D of Introduction in the 
thesis.  

Rodents have received considerably the highest level of interest in development of in vivo 
NAFLD models. These are small size mammals, have great phenotypic and genotypic 
resemblance to human liver, and large number of assay techniques and genetic 
manipulations are known to recapitulate human NAFLD. NAFLD rodent models can be 
developed by nutrient-deficient diet as methionine and choline-deficient; by obesogenic 
high fat/sugar diets as high fat-high carbohydrate diet and choline deficient-high fat diet; or 
by genetic manipulation as leptin deficient ob/ob and leptin receptor deficient db/db mice 
models (Jahn et al., 2019; Jiang et al., 2019; Santhekadur et al., 2018). One group in our lab 
has also been working on such mice models, for example, IL-33-/-HFD mice has been used to 
study the role of IL-33 in fibrosis progression under steatohepatitis condition (Vasseur et al., 
2017). Although each rodent model has some characteristic advantages, none of them 
perfectly matches with all features displayed by human NAFLD. For example, methionine 
and choline-deficient models present steatosis and NASH but not obesity, whereas ob/ob 
models are coherent with obesity and steatosis but resistant to fibrosis (Jahn et al., 2019; 
Jiang et al., 2019; Santhekadur et al., 2018).  

Higher mammals like Monodelphis domestica (opossum) and Sus scrofa domesticus (minipig) 
could be the exceptional NAFLD model, resembling the closest to human liver and can 
develop obesity, micro and macro-vesicular fatty liver, NASH and fibrosis (Kanuri and 
Bergheim, 2013; Li et al., 2016; Schumacher-Petersen et al., 2019). However, these outsized 
animal models take more time to develop disease and need large space to maintain, thus 
rather expensive and logistically less feasible than fishes and rodents.  
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Table 3: Comparison of different animal models used for NAFLD research 

Animal models  Advantages  Disadvantages  

Roundworm 

Mechanism to control energy, 
lipid and insulin related 
metabolism  is known  

Does not have actual liver, 
pancreas and well specialized 

immune system  

Drosophila  

Contains fat body and 
oenocytes that are involved in 
metabolic activities, stores fat 
and sugar and is regulated by 

insulin  

Does not have actual liver, 
pancreas and well specialized 

immune system  

Zebrafish  

Have well developed liver that 
can easily be simulated to 
model hepatic diseases at 

relatively low cost and in less 
duration. 

Several dietary, genetically 
modified and chemical treated 

fish models are known  

Non-mammal model  

Rodents  

Mammals. 

Have great phenotypic and 
genotypic resemblance to 

human liver and large number 
of assay techniques and genetic 

manipulations are known  

Take more time to induce 
disease; Husbandry cost is 

higher than fishes.  

Higher mammals  
Resembling  the closest to 

human liver  

Outsized animal models take 
more time to develop disease 

and need large space to 
maintain, thus rather expensive 

and logistically less feasible 
than fishes and rodents  
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5. NAFLD: treatment 

At present, the efficacy of NAFLD treatments is not fully demonstrated. The treatment of 
these diseases consists first and foremost of a change in lifestyle and, if not sufficient or in 
the case of NAFLD already advanced, drug treatments (Chalasani et al., 2018; Marchisello et 
al., 2019)  

5.1. Lifestyle intervention 

The management consists mainly of a lifestyle change with diet and exercise and weight 
reduction (Chalasani et al., 2018). The change in lifestyle is aimed at weight loss. A decrease 
in weight of 3 to 5% reduces hepatic steatosis. A decrease of 7 to 10% is necessary to reduce 
the histopathological features of NASH (Chalasani et al., 2018). The recommended diet 
includes, among other things, a reduction in calories and a reduction in sugars, mainly 
fructose. Aerobic exercise as well as the reduction in sedentary lifestyle improve the 
prognosis of NAFLD (Rodriguez et al., 2012). 

5.2. Drug therapy 

Medical treatment of NAFLD is recommended in NASH cases where the risk of pathological 
progression is high. The treatment of NAFLD consists of treating risk factors such as 
hyperlipidemia, insulin resistance or the factors involved in the evolution towards NASH such 
as oxidative stress (Chalasani et al., 2018; Vizuete et al., 2017). Drugs targeting the intestine-
liver axis are also proposed (Rotman and Sanyal, 2017). 

Antidiabetics, mainly insulin sensitivity enhancers, glucagon-like peptide-1 (GLP1) receptor 
agonists and sodium/glucose cotransporter 2 (SGLT2) inhibitors are proposed to be effective 
in NAFLD (Friedman et al., 2018; Marchisello et al., 2019).  

PPAR agonists, which are generally insulin sensitizers, are considered in the treatment of 
NAFLD. Thiazolidinediones, activators of PPARγ, have effects on lipid and carbohydrate 
metabolism. In this family of drugs, pioglitazone improved the NAFLD activity score (NAS) in 
several randomized clinical trials in NAFLD patients, with and without diabetes (Chalasani et 
al., 2018). The American Association for the Study of Liver Diseases (AASLD) promotes the 
use of pioglitazone in the treatment of NASH (Vizuete et al., 2017; Yu et al., 2018).  

Lipid lowering agents as statins (known HMG-CoA reductase inhibitors) have also been 
suggested. At present, they are not recommended as primary treatment for NASH but can 
be used in cases of concomitant dyslipidemia (Vizuete et al., 2017). 
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Antioxidants are often also tested in the context of NASH treatments, giving the importance 
of oxidative stress in the pathological evolution of NAFLD. Vitamin E is the most commonly 
tested antioxidant in the treatment of NAFLD. However, the data are insufficient to conclude 
its effectiveness (Chalasani et al., 2018). Omega 3 polyunsaturated fatty acids (PUFAs) seem 
also beneficial as they act on SREBP-1c, ChREBP and PPARs, decrease lipogenesis, augment 
β-oxidation and reduce inflammation (Marchisello et al., 2019; Yu et al., 2018) . 

Anti-inflammatory and antifibrotic drugs counteract proinflammatory pathways and reduce 
fibrosis. Cenicriviroc (dual CCR2/CCR5 receptor antagonist) and MN-001 (leukotriene 
receptor antagonist) showed effects against inflammation and fibrosis progression. 
Selonsertib, ASK1 inhibitor (apoptosis signal-regulating kinase 1 inhibitor), is also known for 
the management of NAFLD (Yu et al., 2018). 

Others: Obstetric acid, activator of the nuclear receptor FXR (Farnesoid X Receptor), a bile 
acid receptor, appears to have beneficial effects on NAFLD. It is currently under clinical trial. 
An inhibitor of intestinal lipase, Orlistat, used in the treatment of obesity, is also considered 
because of the importance of the intestine-liver axis (Rotman and Sanyal, 2017). 
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Chapter B: Toxicant-Associated Fatty Liver Disease 

A close relationship exists between NAFLD and environmental contaminants (Foulds et al., 
2017; Heindel et al., 2017; Wahlang et al., 2019). Indeed, these contaminants are 
increasingly being described for their ability to aggravate liver disease (Canet and 
Cherrington, 2014; Cobbina and Akhlaghi, 2017; Merrell and Cherrington, 2011; Morgan, 
2009; Naik et al., 2013; Wahlang et al., 2013). In our modern societies, the increase in energy 
intake related to diet and sedentary life does not alone explain the rise in the prevalence of 
NAFLD. More and more studies are highlighting the potential impact of xenobiotics such as 
drugs and environmental contaminants in the occurrence and development of obesity as 
well as NAFLD (Deierlein et al., 2017; Foulds et al., 2017; Heindel et al., 2017; Magueresse-
Battistoni et al., 2017; Massart et al., 2017). 

Environmental contaminants involved in the development of obesity are called "obesogens" 
such as bisphenol A (BPA) (Muscogiuri et al., 2017; Nappi et al., 2016; Wahlang et al., 2019). 
Some of these toxins have recently been described as metabolism-disrupting chemicals to 
describe their ability to disrupt metabolic functions including hepatic lipid metabolism 
(Polychlorinated biphenyls, PCBs) (Foulds et al., 2017; Heindel et al., 2017). As a result, these 
contaminants may cause liver steatosis. In addition, some toxins are also likely to play a role 
in the transition from steatosis to steatohepatitis. It is moreover conceivable that steatosis 
may sensitize the liver to environmental toxicants (Heindel et al., 2015, 2017; Wahlang et al., 
2013). Correlations between exposure to pollutants and the occurrence of NAFLD in humans 
have thus been demonstrated (Foulds et al., 2017). In this context, toxicant-induced NAFLD 
and NASH have been termed as Toxicant-Associated Fatty Liver Disease (TAFLD) and 
Toxicant-Associated Steatohepatitis (TASH), respectively. It is defind as steatosis and 
steatohepatitis, not only explained by obesity or excessive alcohol consumption, but induced 
by exposure to exogenous toxicants (Cave et al., 2010; Joshi-Barve et al., 2015; Wahlang et 
al., 2013). 

In 2015, one study analyzed databases from the US-EPA and the National Institute of 
Environmental Health Sciences (NIEHS) in the United States to identify environmental 
toxicants potentially involved in the occurrence NAFLD and NASH. More than 120 toxic 
substances, including pesticides, metals, PCBs, dioxins and solvents, have been identified as 
potential inducers of NAFLD. Pesticides represent the category of toxicants most frequently 
associated with NAFLD; PCBs and dioxins are the lowest-dose toxicants leading to the 
development of NAFLD (Al-Eryani et al., 2015). 
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Regarding the mode of action of environmental contaminants to induce and ease 
pathological progression of fatty liver disease, it is described that pollutants can cause TAFLD 
either via endocrine disruption or metabolic disruption or signaling disruption. Chemicals 
inducing endocrine disruption interfere with hormonal function. Chemicals inducing 
metabolic disruption induce metabolic changes, might be independent of hormonal action, 
and thus result in metabolic diseases including TAFLD. Signalling disrupting chemicals, by 
acting via receptors, induce disruption of hepatic intracellular signaling mechanisms involved 
in metabolism, inflammation and fibrosis. However, there are certain pollutants like vinyl 
chloride, which can act by causing all three types of above mentioned disruption (Wahlang 
et al., 2019). It might also be the case for AhR ligands as TCDD. 

1.  Toxicants-associated fatty liver (TAFL) 

1.1. Toxicants inducing TAFL 

Several categories of environmental toxicants are involved in the induction of hepatic 
steatosis. Among these contaminants, pesticides such as cypermethrin and 
dichlorodiphenyl-dichloroethylene (DDE), a metabolite of Dichlorodiphenyltrichloroethane 
(DDT) or atrazine are found. Oral exposure to BPA and perfluorooctane sulfonic acid (PFOS) 
is also involved in development of hepatic steatosis. Other pollutants also favor steatosis, 
including dioxins such as TCDD and polychlorinated dibenzofurans (PCDF), but also dioxin-
like PCBs such as PCB-126 or a mixture of PCBs. (Heindel et al., 2017; Wahlang et al., 2019). 

1.2. Molecular mechanisms involved in TAFL development 

Environmental contaminants can initiate several mechanisms that ultimately lead to TAFL 
(Figure 15). All of these toxicants can cause steatosis by either influencing on hepatic FA 
synthesis or FA uptake, obesity, ER stress or transcriptional factors (Heindel et al., 2015, 
2017; Muscogiuri et al., 2017; Nappi et al., 2016). Toxicants like B[a]P, vinyl chloride and 
bisphenol A (BPA) are known to increase hepatic fatty acid synthesis or uptake and thus 
result in steatosis (Heindel et al., 2017). Concerning B[a]P, its exposure has also been 
reported to increase hepatocyte lipid accumulation by inducing the expression of AhR-
dependent mlndy (Slc13a5), which increases cytosolic citrate concentration and thus 
lipogenesis (Neuschäfer-Rube et al., 2015). In addition chronic (15 days) exposure to B[a]P of 
mice by intraperitoneal route causes obesity. This appears to be due to an inhibition of 
adipocyte lipolysis resulting in an increase in adipose mass but without impacting food 
intake (Irigaray et al., 2006, 2009). Volatile organic compounds (VOCs) like vinyl chloride can 
have an impact on ER and mitochondria, causing ER stress and mitochondrial dysfunction 
and thus promotes TAFLD and TASH (Wahlang et al., 2019). Contaminants like 
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polychlorinated biphenyls (PCBs), BPAs and dioxin have the ability to interact with nuclear 
receptors as PPAR,  CAR, PXR, LXR and act as an agonist or antagonist (Cave et al., 2016; 
Foulds et al., 2017; Mellor et al., 2016). The binding of these contaminants to these 
receptors results in the transcription of genes that may be involved in the development of 
steatosis (Cave et al., 2016; Ducheix et al., 2013; Foulds et al., 2017).  

Regarding AhR, it plays a role in lipid metabolism as quoted previously in this manuscript. Its 
activation can lead to hepatic steatosis by elevating the ability of hepatocytes to absorb FA 
by an increase in CD36 expression. AhR inhibition provides protection against the induction 
of obesity (Moyer et al., 2017; Xu et al., 2015). Thus, environmental contaminants such as 
TCDD and 3-methylcholanthrene induce CD36-dependent steatosis following AhR activation 
in mice (Angrish et al., 2012; Chen et al., 2012; Kawano et al., 2010; Lee et al., 2010). 
Another participating factor involved with AhR activity is TCDD-inducible poly-ADP-ribose 
polymerase (TiPARP). It is AhR target gene and acts to repress AhR functions by negative 
feedback mechanism. Studies reported that TiPARP -/- mice show enhanced sensitivity 
towards TCDD-associated hepatotoxity and also with other AhR ligands (Cho et al., 2019; 
Grimaldi et al., 2018; MacPherson et al., 2014, 2013). Furthermore, another AhR target gene, 
which on activation, leads to decrease nicotinamide adenine dinucleotide (NAD). NAD is 
required for normal activation of sirtuin3 that in turn activate SOD2. Thus, CD38, activated 
by AHR is involved in ROS production by decreasing NAD-dependent SIRT3 and thus 
promotes steatohepatitis (Bock, 2019a). In addition to these AhR activities, several beneficial 
roles of AhR are also described in context to metabolic diseases. Fibroblast growth factor 21 
(FGF21) is a direct AhR transcriptional target. AhR activated FGF21 is reported to decrease 
insulin resistance and obesity although it increases steatosis (Lu et al., 2015). Another study 
favoring AhR beneficial role is linked to microbiota. A study reported that altered microbiota 
in metabolic diseases reduces AhR ligand production, which leads to increase gut 
permeability and decrease intestinal incretin hormone secration called GLP-1. Normally, AhR 
activated GLP-1 is involved in maintain glucose homeostasis and liver function. Further, AhR 
activation mediates the release of IL22, which has been reported to decrease metabolic 
disorders (Natividad et al., 2018). 
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Figure 15: Sites of action of toxicants causing TAFLD  
(Adapted from Heindel et al., 2017) 

2.  TASH 

2.1. Toxicants inducing TASH  

Among the environmental toxicants inducing the development of TASH, various 
contaminants such as bromodichloromethane, chloroethanol, vinyl chloride, di (2-
ethylhexyl) phthalate (DEHP), perfluorooctanoic acid (PFOA) and PFOS have been reported 
(Heindel et al., 2017). Metals like arsenic and cadmium are also known for TASH induction 
(Wahlang et al., 2019).  

2.2. Molecular mechanisms associated to TASH  

Some environmental pollutants may promote the transition from steatosis to NASH without 
necessarily inducing steatosis at baseline. Indeed, some of them are capable of inducing 
apoptosis / necrosis of hepatocytes, inflammation or fibrosis of the liver. The transition from 
steatosis to TASH under the influence of these toxicants could be due to mechanisms such as 
the induction of mitochondrial dysfunction, oxidative stress, ER stress or endotoxemia (Joshi-
Barve et al., 2015; Wahlang et al., 2013). Oxidative stress and ER stress are found in several 
studies in rodents and zebrafish following exposure to TCDD, PFOS, cadmium or DEHP. 
Xenobiotics in the presence of obesity and steatosis are also known to have higher 
hepatotoxic impact and thus may trigger the worsening of fatty liver condition and necro-
inflammation, thus resulting in steatohepatitis (Allard et al., 2019). 
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Moreover, these mechanisms can be induced via the activation of certain receptors (Cave et 
al., 2016). Among the receptors activated by environmental toxicants, AhR seems to be 
involved in the development of obesity (Kerley-Hamilton et al., 2012), steatosis, but also on 
its pathological transition to NASH. In mice, exposure via chronic intraperitoneal injections 
to TCDD exacerbates the NAFLD induced by an HFD regimen (Duval et al., 2017b), and 
potentiates the induction of hepatic fibrosis in an AhR-dependent manner (Pierre et al., 
2014). In addition, fibrosis resulting from exposure to TCDD in mice involves signaling 
pathways involving Akt and NF-kB, which could therefore be activated by AhR (Han et al., 
2017). Activation of this receptor could also induce the development of NASH via the 
development of oxidative stress (J.-H. He et al., 2013). Finally, it should be noted that 
exposure to certain toxicants can also lead to an exacerbation of the effect of diets rich in fat 
and sugar in animal models. The steatosis could then sensitize the liver to the effects of 
toxicants via the modification of their metabolism. Activation of nuclear receptors like 
PPARs, PXR and other following xenobiotic exposure have also been shown to contribute in 
TAFLD progression (Klaunig et al., 2018) 

3. Crosstalk between NAFLD and xenobiotic exposure as 2nd hit 

NAFLD result in many alterations in xenobiotic metabolism (drugs and environmental 
contaminants) (Canet and Cherrington, 2014; Cobbina and Akhlaghi, 2017; Merrell and 
Cherrington, 2011; Naik et al., 2013). By altering the metabolism of xenobiotics, NAFLD can 
then cause decrease in the effectiveness of drugs but also increase in their side effects. A 
prospective study has thus shown that the individual with NAFLD has a 4-fold higher risk of 
initiating drug-induced hepatic impairments (Tarantino et al., 2007). With respect to 
environmental contaminants, arsenic has been described to impaire metabolism in mouse 
models of steatosis and NASH (Canet et al., 2012). Thus, the modified metabolism of 
environmental contaminants could be involved in the hepatic toxicity and there, it could 
promote transition to TASH. As a result, patients with NAFLD may be more sensitive to these 
contaminants. Recently, our team has described by using in vitro model that prior steatosis 
can increase the toxicity of B[a]P/ethanol co-exposure by probably altering B[a]P metabolism 
(Bucher et al., 2018b; Tête et al., 2018).  

3.1. Effects of NAFLD on phase I enzymes (Functionalization phase) 

Phase I enzymes principally include cytochrome P450 (CYP) system. It is a group of 
microsomal biotransforming enzymes, abundantly found in liver; it catalyzes oxidation, 
reduction and hydrolytic reactions. (Furge and Guengerich, 2006). The share of CYP in the 
metabolism of industrial associated contaminants is 95%. The major isoforms of CYP 
involved in the metabolism of chemicals are CYP1A2 (15%), CYP3A4 (13%), CYP1A1 (11%), 
CYP2D6 (8%), CYP2E1 (8%), CYP2C9 (7%) and CYP2C19 and 1B1 (6% each) (Rendic and 
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Guengerich, 2015). Moreover, among these CYP, CYP1A1, 1A2, 1B1, 2A6, 2E1 and 3A4 are 
those which predominantly participate in the bioactivation of carcinogenic toxicants (Rendic 
and Guengerich, 2012). 

In vivo, in the presence of NAFLD, the decrease in CYP1 expression and activity is the most 
common (DuBois et al., 2012; Osabe et al., 2008; Roe et al., 1999; Sugatani et al., 2012; 
Tanner et al., 2018; Zhang et al., 2007). However, some studies show an increase in CYP1A 
activity (Chiba et al., 2016; Koide et al., 2011). Increased protein expression and activity of 
CYP2E1 is commonly cited as a feature of NAFLD (Fisher et al., 2009b; Khemawoot et al., 
2007; Mitsuyoshi et al., 2009; Orellana et al., 2006; Varela et al., 2008; Zou et al., 2006) with 
some exceptions (Donato et al., 2007; Mitsuyoshi et al., 2009; Zhang et al., 2007). Similar 
results were obtained by our team that is during prior steatosis, expression of several phase I 
metabolism enzymes was reduced but CYP2E1 was induced (Bucher et al., 2018b). However, 
we have found that with B[a]P/ethanol co-exposure under these conditions activities of both 
CYP2E1 and CYP1 were inhibited, notably due to NO production (Tête et al., 2018). This 
alteration of metabolic enzymes expression and activity could impact on toxicants 
metabolism and their associated liver toxicity. 

3.2. Effects of NAFLD on phase II Enzymes (Conjugation phase) 

In the context of NAFLD, alterations of the enzymes responsible for conjugation phase, such 
as Glutathione S-Transferases (GST), UDP Glucuronosyl-Transferases (UGT) and 
sulfotransferases (SULT), have also been demonstrated. In rodent NAFLD models, GST 
activity was decreased in ob/ob obese male mice but increased in females (Barnett et al., 
1992; Roe et al., 1999; Watson et al., 1999) and in mice fed with high-fat diets (Koide et al., 
2011). In human, the activity of these enzymes is reduced in the liver of NASH patients while 
the mRNA expression of different isoforms of GST (A1-A4, M1-M4 and P1) is increased. 
However, glutathione (GSH) is decreased in NASH patients (Hardwick et al., 2010). UGTs are 
enzymes that allow the addition of glucuronic acid and are highly involved in the elimination 
of xenobiotics. Several in vivo studies in rodents report changes in the expression and 
activity of different isoforms of UGTs but the results are contradictory (Ghose et al., 2011; 
Kim et al., 2004; Koide et al., 2011; Osabe et al., 2008). In human, Hardwick et al. have 
demonstrated an increase in mRNA of UGT1A9 and 2B10, but a decrease in proteins without 
a change in UGT activity towards paracetamol (Hardwick et al., 2013). Regarding SULTs, In 
mice receiving a high-fat diet, the mRNA and protein expression as well as the activity of 
SULT are decreased (Ghose et al., 2011; Koide et al., 2011). In patients with NAFLD, the gene 
expression of SULT1A2 is decreased (Younossi et al., 2005). Change in phase II enzymes 
expression and activity could impact on toxicants metabolism and their associated liver 
toxicity. 
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3.3. Effects of NAFLD on phase III transporters (Excretion phase) 

In addition to expression/activity modifications of the phase 1 and 2 enzymes, NAFLD also 
affect the expression of hepatic efflux and influx transporters. Studies have thus shown an 
overall increase in the expression of efflux transporters (MRP1, MRP3, MRP4, MRP5, MDR1 
and BCRP) (Canet et al., 2014; Cheng et al., 2008; Hardwick et al., 2011; Lickteig et al., 2007), 
and a decrease in the expression of influx carriers (OATP [Organic Anion-Transporting 
Polypeptide]) (Clarke et al., 2014; Fisher et al., 2009a; Tanaka et al., 2012). Similar to phase I 
and phase II, change in phase III transporters expression and activity in NAFLD could impact 
on toxicants metabolism and their associated liver toxicity. 

4. Early age toxicant exposure  

During the early stages of life (fetal and early childhood), exposure to environmental 
toxicants could lead to the development of conditions such as obesity or NAFLD (Barouki et 
al., 2012; Foulds et al., 2017; Ortiz et al., 2014; Shimpi et al., 2017; Treviño and Katz, 2018).  
Although the deleterious effects of environmental agents occur throughout life, the 
vulnerability to these toxicants is higher during the early stages of life. This window of 
vulnerability could be explained by an incomplete development of protection mechanisms 
such as xenobiotic metabolism, DNA repair systems and also by epigenetic mechanisms 
(Foulds et al., 2017; Heindel et al., 2015). Obesogenic toxicants may also induce the 
differentiation of fetal mesenchymal stem cells into adipocytes resulting in an increase in 
their number and size (Heindel et al., 2015). Prenatal exposure to these compounds could 
also cause epigenetic modifications of genes involved in lipid metabolism. An 
epidemiological study also found a correlation between maternal exposure to high levels of 
PAHs in ambient air during pregnancy and an increase in the weight of children between 5 
and 7 years of age (Rundle et al., 2012). The smoking status of the mother during pregnancy 
is also correlated with the occurrence of childhood obesity; this could notably be 
attributable to PAHs present in cigarette smoke (Behl et al., 2013). 

5. Effects of environmental contaminant mixtures 

Humans are exposed daily to contaminant mixtures via food, indoor or outdoor air or 
cigarette smoke for smokers. Toxicant mixtures can have additive, potentiating or 
antagonistic effects on human health. For example, intraperitoneal injection of TCDD and 
Arochlor-1254 has a greater effect on NAFLD development than exposure to single 
molecules (Shan et al., 2015). In contrast, exposure of rats to oral DEHP results in a decrease 
in TCDD-induced NASH (Tomaszewski et al., 1988). Like alone, toxicants in mixture can 
induce steatosis and/or steatohepatitis. Exposure of mice to a mixture of contaminants (BPA, 
PCB-153, DEHP and TCDD) via diet leads to the appearance of hepatic steatosis (Labaronne 
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et al., 2017). Besides, oral administration of mixture of 22 environmental contaminants to 
genetically obese mice exacerbates the steatosis (Mailloux et al., 2014). Exposure of mice to 
atmospheric particulate matter by inhalation results in the development of NASH with 
fibrosis (Tan et al., 2009; Zheng et al., 2013). Furthermore, exposure to cigarette smoke can 
also induce NASH in rodents (Azzalini et al., 2010; Park et al., 2016). In addition, cigarette 
smoke in combination with alcohol consumption influences the severity of NAFLD (Bailey et 
al., 2009). In humans, the prevalence of NAFLD is higher among smokers with moderate 
alcohol consumption than among smokers who do not use alcohol (Liu et al., 2017).  

There are not a lot of studies that clearly demonstrate the impact of co-exposure of ethanol 
and environmental toxicants especially in vivo. Prior steatosis further increases the 
complexity of study. In consideration with this, our team has developed one simple mixture 
of toxicants, with which individual is exposed more frequently and that affects human health 
especially liver. In this context, our team, since past many years, has been working to assess 
the impact of co-exposure of environmental contamintant mainly B[a]P and ethanol without 
steatosis and found that co-exposure is more detrimental (Collin et al., 2014). Further, 
recently, we observed that this toxicant co-exposure, even at low doses, could favor the 
progression of steatosis towards steatohepatitis-like state (Bucher et al., 2018b).  However, 
underlying mechanisms especially under in vivo state are not described under such 
conditions. 
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Chapter C. Benzo[a]pyrene 

Benzo[a]pyrene (B[a]P) is a non polar, organic, polycyclic aromatic hydrocarbon (PAH) 
compound, present in environment, naturally or anthropogenic in origin (INERIS, 2007).  It is 
the prototypical, most studied PAH, considered as a reference for toxicological studies, as 
unfortunately, often found in “human contaminant sources”.  

It is composed of 5 aromatic rings and has a molecular weight of 252.31 g / mol (INERIS, 
2007) (Figure 16).  It is a highly lipophilic compound, and thus, can be absorbed by all routes 
of exposure and well distributed throughout the body. Due to its lipophilic characteristics, 
fat tissues show its highest concentrations.  

 

Figure 16: Chemical structure of B[a]P 

1. Sources of B[a]P 

B[a]P is found almost everywhere, that is, in air, soil, water and food. PAHs are formed 
during the process of incomplete combustion or pyrolysis of various organic products such 
as coal, gasoline, diesel, certain foods or even tobacco. B[a]P sources can be of natural or 
anthropogenic origins. Because of their sources of production, PAHs, especially B[a]P, are 
mainly released into the air. They can then migrate into waters and soils. From there, they 
are taken up by different plants via leaves and roots. They will then be transferred to animal 
and human nutrition (INERIS, 2007).  
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1.1. Natural sources of B[a]P 

B[a]P is naturally occurring in the environment within fossil fuels (such as coal, oil, gas). It is 
mainly generated during forest fires or during volcanic eruptions. However, these natural 
origins are minor in camparison to anthropogenic sources of B[a]P (Boström et al., 2002; 
Dyke et al., 2003) (Table 4). 

Table 4: B[a]P in environment (Iniris, 2006) 

Medium  Concentration  

Soil  ≈ 1 ng/g  

Water  0.01-1 ng/L  

Air  < 10 pg/L  

 

1.2. Anthropogenic origin of B[a]P 

Human activities are mainly responsible for the emission of B[a]P into the environment via 
domestic heating, the incineration of urban waste, certain industrial processes and road 
transport. B[a]P is also present in cigarette smoke. It appears that the combustion of 
biomass (oil, gasoline and mainly firewood), whether for residential or industrial purposes, is 
responsible for the majority of B[a]P emissions (Shen et al., 2013). The way of cooking is also 
one of the important B[a]P contributor. Fried and smoked chicken and fish, barbecued and 
grilled meat have higher proportions of B[a]P. Other non meat articles like fruits, vegetables, 
cereals, grains, cooking oil, potato chips and several others also contain B[a]P but at lesser 
quantity (Das and Bhutia, 2018) (Table 5).  

2. Human exposure to B[a]P 

The European Commission scientific committee on food (SCF: Scientific Committee on Food) 
has suggested B[a]P as a reference molecule for the study of PAHs (SCF, 2002). Because of its 
relatively constant presence in PAH mixtures and its toxic effects (in particular its 
carcinogenic effects in animals), B[a]P is commonly used as a marker for the occurrence of 
PAHs (European Food Safety Authority (EFSA), 2008; Fertmann et al., 2002).  
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Walker et al., 2016 has reported the range of 0.5–40 nM in serum from military personnels. 
However, other studies reported higher concentrations of B[a]P in smokers as compared to 
non smokers (Neal et al., 2008; Qin et al., 2011). Cigarettes contain 117.8 to 373.5 ng of total 
PAHs, including 1.9 to 5.1 ng B[a]P per cigarette (Lodovici et al., 2004).  

Table 5: Benzo[a]pyrene in Food items 

Type  Food item  Concentration (ng/g)  

Fried/smoked  

Chicken  5.5  

Frank ham  2.21  

Fish  1.26 

French fries  0.22 

Dairy  

Grated cheddar  0.50  

Flavored yogurt  0.18 

Cream  0.16 

Margarine  0.12 

Other  

Popped popcorn  0.56 

Onion  0.46 

Biscuit  0.13 

Cashew  0.02 

Black coffee  0.011  

 
 

(Adapted from Das and Buthia, 2018; Hummel, J. M 2018) 
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An individual smoking 20 cigarettes a day may be exposed to 105 ng B[a]P per day. Another 
study reported that smoking could contribute upto 440 ng of B[a]P intake per day.  Passive 
smokers are exposed to about 40 ng B[a]P per day. As mentioned earlier, food is the main 
source of exposure for non-smokers. One study estimated 2-500 ng of B[a]P to be injested 
via food per day while other study estimated upto 3.3 µg of B[a]P to be taken via food. 
Finally, air and water can also contribute to daily intake of B{a]P that is estimated upto 9.5-
43.5 ng for air and 1.1 ng for water. The relation between B[a]P exposure and risk of 
toxicity/cancer is well described; for example gut cancer is well associated with oral B[a]P 
ingestion (Das and Bhutia, 2018; Ramesh et al., 2004; WHO Food Additives Series 28).      

3. Metabolism of B[a]P 

Regardless of the route of entry into the body (pulmonary or oral route), B[a]P can diffuse 
into the body before being metabolized and then excreted. B[a]P is mostly found in the 
intestine, lungs and liver (Miller and Ramos, 2001; Ramesh et al., 2004; Weyand and Bevan, 
1986). In addition, the lipid-rich organs act as B[a]P storage compartments, more particularly 
adipose tissue. The distribution and metabolism of B[a]P are quite fast (during the first 24 
hours), followed by a slower step of elimination due to the slow release of B[a]P from the 
storage sites (Heredia-Ortiz et al., 2011; Heredia-Ortiz and Bouchard, 2013; Marie et al., 
2010). 

Liver is the main organ of biotransformation of xenobiotics, including B[a]P. B[a]P, by its 
hydrophobicity, can cross the plasma membranes of hepatocytes (Miller and Ramos, 2001). 
In general, the metabolism of xenobiotics in the liver allows their detoxification. However, in 
the case of B[a]P, it can lead to the formation of electrophilic metabolites and ROS that can 
have deleterious effects on cells (Miller and Ramos, 2001). There are three phases of B[a]P 
metabolism and excretion. 

3.1. Phase I functionalization reaction 

Phase 1 consists of oxidation-reduction and hydrolysis reactions leading to the addition of polar 
groups making the xenobiotic more polar, thus facilitating its elimination. This step generally 
involves the enzymatic activity of cytochromes P450 (CYP). Concerning the B[a]P, the 
functionalization phase is carried out by different CYPs (mainly CYP1), then by Epoxide 
Hydrolases (EH) and Aldo-Keto Reductases (AKR). During metabolism of B[a]P, detoxification 
pathways and bioactivation pathways are simultaneously activated (Verma et al., 2012).  
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Regarding bioactivation, four main pathways have been identified: the diol-epoxide pathway, 
the o-quinone pathway, the radical cation pathway and the 9-hydroxy B[a]P pathway (B[a]P -9-
OH) (Fang et al., 2001; Gelboin, 1980; Miller and Ramos, 2001; Stiborová et al., 2016). 
Detoxification occurs through the formation of certain phenolic compounds (Gelboin, 1980; 
Miller and Ramos, 2001). 

B[a]P is first biotransformed by CYP, which gives rise to the formation of phenolic metabolites 
such as B[a]P-3-OH, epoxides such as B[a]P-9,10-oxide and B[a]P-7,8-oxide, and radical cation. 3-
Hydroxy benzo[a]pyrene (B[a]P-3-OH), a predominantly formed metabolite, is a non-reactive 
compound which will rapidly be glucuronoconjugated. However, there is also formation of other 
phenolic compounds such as B[a]P-1-OH, B[a]P-7-OH, and B[a]P-6-OH and B[a]P-9-OH, which 
can be produced from non-enzymatic rearrangement of epoxides previously formed by CYP 
(Miller and Ramos, 2001). B[a]P-9-OH can be the origin of a reactive metabolite. B[a]P-9,10-
oxide will indeed came from B[a]P-9-OH which can lead, under the action of CYP, to the 
formation of B[a]P -9-OH-4,5-oxide (B[a]P-9-OH pathway) (Fang et al., 2001; Stiborová et al., 
2016; Verma et al., 2012). B[a]P -7,8-oxide is, in turn, metabolized by EH to form B[a]P -7,8-
trans-dihydrodiol (Gelboin, 1980; Miller and Ramos, 2001). The latter will then be metabolized 
by CYP into 4 enantiomers of B[a]P-diol-epoxides (BPDE) (epoxy diol pathway). B[a]P -7,8-trans-
dihydrodiol can also lead to the formation of a catechol and then B[a]P-7,8-dione via the action 
of AKR (O-quinone pathway) (Penning, 2004). The radical cation is a very unstable compound 
which will then generate 3 quinones: B[a]P-1,6-dione, B[a]P-3,6-dione and B[a]P -6,12-dione 
(radical cation pathway) (Sen et al., 2012a) (Figure 17). 
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Figure 17: Summary of the pathways involved in B[a]P metabolism 

 

CYPs are involved at different levels of B[a]P metabolism and lead to both bioactivation and 
detoxification of the molecule. CYP are hemoproteins forming a large family of inducible 
metalloenzymes with oxidation-reduction properties. They are mainly localized in the 
endoplasmic reticulum (ER) but may also be present in the mitochondria 
(Anandatheerthavarada et al., 1997; Avadhani et al., 2011). Several CYPs have the ability to 
metabolize B[a]P. CYP1A1 and CYP1B1 appear to be predominantly involved in the 
metabolism of B[a]P and to a lesser extent CYP1A2, CYP2C19 and CYP3A4 (Shimada, 2006; 
Šulc et al., 2016). CYP1A1 is thought to be involved in both bioactivation and detoxification 
of B[a]P (Šulc et al., 2016). However, studies suggest that, in the liver, CYP1A1, unlike 
CYP1B1, is primarily involved in B[a]P detoxification functions (Endo et al., 2008; Reed et al., 
2018; Shiizaki et al., 2017; Uno et al., 2006, 2004).  
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3.2. Phase II conjugation reaction 

In phase 2, the metabolites formed are supported by phase 2 enzymes, also called conjugation 
enzymes. These enzymes, such as Glutathione S-Transferases (GST), UDP-Glucuronyl 
Transferases (UGT) or Sulfotransferases (SULT), add hydrophilic groups (glutathione, glucuronic 
acid and sulphate, respectively) to these metabolites, hence facilitating their elimination. In 
particular, UGTs deal with phenolic metabolites of B[a]P while SULT1A1 metabolizes and GSTs 
conjugate the BPDE (Figure 17). 

3.3. Phase III excretion 

The transport phase corresponds to the excretion of the metabolites formed at the end of the 
functionalization and conjugation phases. In the liver, xenobiotics can be eliminated from the 
hepatocytes by efflux transporters to reach the peripheral blood system but also via the biliary 
canaliculi (Pfeifer et al., 2014). The groups grafted during phase 2 will allow their recognition by 
membrane transporters of the ABC (ATP-binding cassette) family such as Multidrug Resistance 
Protein (MRP) or Breast Cancer Resistance Protein (BCRP / ABCG2) resulting in elimination of 
metabolites out of the cell. Concerning B[a]P, several carriers have been shown in the transport 
of its metabolites. B[a]P and the metabolites formed will be eliminated from the body at 70-
75% in the feces and 4 to 12% by the urine. In the urine, 80% of B[a]P is found as metabolites 
and 20% in non-metabolized form (INERIS, 2006). 

4. Cellular and molecular mechanisms of B[a]P toxicity 

Many cellular processes are altered following exposure to B[a]P, with the consequent 
activation of various death or cell survival signals (Figure 18). Existing data indicate that 
exposure to B[a]P can induce necrosis and apoptotic cell death. Further, both intrinsic as 
well as extrinsic pathways of apoptosis appear to be activated by B[a]P (Chen et al., 2003; 
Chin et al., 1998; Stolpmann et al., 2012). Based upon the fact that B[a]P induces DNA 
damage, this pollutant is also known to activate p53 protein, a key molecular event in the 
related cell death (Dendelé et al., 2012; Fischer, 2017; Gregory et al., 2003; Horn and 
Vousden, 2007; Huc et al., 2006a; Vousden and Lu, 2002). In opposite to death signaling, 
B[a]P may also be responsible for the induction of anti-apoptotic signals (Hardonnière et al., 
2017b). It is done by inhibiting pro-apoptotic proteins, like Bad and Bax, and activating the 
anti-apoptotic proteins Bcl-xl and Bcl-2 (Solhaug et al., 2004). Another survival signal induced 
by B[a]P is metabolic reprogramming that involves inhibition of oxidative phosphorylation 
while increases aerobic glycolysis. This glycolytic shift is associated with the increase of IF1 
expression (physiological inhibitor of F0F1-ATPase) (Hardonnière et al., 2017a, 2016).  
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B[a]P can induce all these types of signals via production of ROS and RNS, mitochondrial 
dysfunction, membrane remodeling and others, described in detail below. Furthermore, all 
these B[a]P-associated effects appear to be mainly due to the ability of B[a]P to activate 
AhR.  

 

Figure 18: B[a]P induced cell death and cell survival through several mechanisms 

4.1. Role of AhR 

As quoted earlier in this manuscript, AhR is a transcription factor, that plays an important 
role in metabolism of xenobiotics (Bock, 2019b; Denison et al., 2011; Köhle and Bock, 2007). 
It is also involved in a wide variety of cellular processes such as cell cycle (Denison et al., 
2011), lipid/cholesterol and carbohydrate metabolism (Sato et al., 2008), immunity and 
inflammation (Esser and Rannug, 2015), and migration and cell proliferation (Barouki and 
Coumoul, 2010; Denison et al., 2011). It is also described to participate in the mechanisms of 
cancer development (Murray et al., 2014). AhR physiological roles are also associated with 
developmental function. AhR KO animal model shows developmental abnormalities related 
to the female fertility, perinatal growth, blood pressure, production of peripheral 
lymphocytes and others (Bock, 2019b; Larigot et al., 2018) (Figure 19).   
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Figure 19: AhR signaling pathways and regulatory functions  
(Adapted from Larigot et al., 2018) 

AhR is activated by many exogenous molecules including some PAHs (including B[a]P). 
However, this receptor is conventionally described as the receptor of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), an environmental pollutant. In addition, a number of 
endogenous molecules (eg. tryptophan metabolites), food derived flavonoids and others are 
agonists, while CH-223191, alpha-naphthoflavone and resveratrol are antagonists of this 
receptor (Murray et al., 2014). 

AHR is a dormant cytosolic protein, associated with Hsp90 and activated by ligand binding. 
B[a]P, by binding to AhR, causes a conformational change of the receptor and results in the 
translocation of the cytoplasmic AhR complex into the nucleus. In addition, the p23 protein 
has been proposed to potentiate the nuclear translocation of AhR following ligand binding 
by increasing the capacity of AhR to be recognized by the nuclear import protein, importin β 
(Beischlag et al., 2008). Once in the nucleus, the AhR Nuclear Translocator (ARNT) binds to 
AhR and disengages the HSP90, p23 and XAP2 proteins (Beischlag et al., 2008; Denison et al., 
2011; Esser and Rannug, 2015) (Figure 20).  
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The newly formed AhR-ARNT complex recognizes DNA sequences named "Xenobiotic 
Response Element" (XRE, also known as DRE for Dioxin Response Element), which are 
present in the promoter region of different genes, and stimulates target gene transcription 
(Esser and Rannug, 2015; Karchner et al., 2005; Ko and Shin, 2012; Planchart and Mattingly, 
2010; Rousseau et al., 2015; Saad et al., 2016). After exerting its nuclear action, AhR is 
exported into the cytoplasm to be degraded by the proteasome (Barouki et al., 2012).  

 

Figure 20: B[a]P-activated AhR genomic pathway 

Within the nucleus, AhR thus induces the expression of genes under the control of promoters 
containing XRE sequences. Several AhR target genes have already been described twice above 
in the manuscript, under the heading of transcriptional regulation of NAFLD in chapter A and 
molecular mechanisms involved in TAFL development in chapter B. Briefly, some of AhR target 
genes are associated with xenobiotic metabolism (CYP1A1, CYP1B1 and others) (Becker et al., 
2016); energy metabolism (FGF21, CD36 and others) (Lu et al., 2015; Moyer et al., 2017); 
oxidative stress (CD38) (Bock, 2019a) and iron and heme metabolism (hepcidin, ALAS) (Fader 
et al., 2017; Fader and Zacharewski, 2017) (Figure 21). AhR is known to interact with NRF2 as 
the latter is a target gene and thus involved in antioxidant function. Crosstalk between AhR and 
NRF2 is important to induce GSTs and UGTs (Bock, 2019b). Another AhR target gene includes 
AhRR (AhR repressor). AhRR functions to repress AhR activity thus its over expression is known 
to inhibit TCDD-associated tumor growth and inflammation (Vogel et al., 2016, 2019). AhR can 
also interact with a factor involved in inflammatory responses, namely Nuclear Factor-kappa B 
(NF-κB) which is a homo- or heterodimer composed of the subunits p65 (RelA), RelB, p50, p52 
or c-REL (Guyot et al., 2013; Vogel and Matsumura, 2009). There are two NF-κB activation 
pathways: the canonical pathway and the alternative pathway. Following the activation of the 
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canonical pathway, the p65 / p50 dimer is translocated to the nucleus; in the case of the 
alternative pathway, it is the RelB / p52 dimer that is translocated to the nucleus (Vogel and 
Matsumura, 2009). AhR has the ability to interact with the p65 and RelB subunits, with 
different consequences on the regulation of gene expression under NF-κB or AhR control. The 
AhR interaction with RelB induces the expression of AhR target genes (e.g. CYP1A1). It also 
induces the expression of interleukin-8 (IL-8) (Vogel et al., 2011, 2007; Vogel and Matsumura, 
2009).  

However, modulation of gene expression by the interaction of AhR with p65 is controversial. In 
some studies, the AhR / p65 complex appears to have a negative effect on the induction of AhR 
and NF-κB-controlled genes, namely CYP1A1 and interleukin-6 (IL-6), respectively (Jensen et al., 
2003; Ke et al., 2001; Tian et al., 1999).  

 

Figure 21: B[a]P-induced AhR associated mechanisms 

4.2. Metabolism-associated toxicity 

As mentioned above in thesis (Figure 21), B[a]P, via AhR activation, can produce effects of 
xenobiotic, energy and iron metabolism. Below is the detail of each type of metabolism 
affected by B[a]P.  
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4.2.1. Xenobiotic metabolism 

AhR activation is involved in the induction of genes involved in the three phases of B[a]P 
metabolism (Bock, 2019b; Köhle and Bock, 2007; Shimada, 2006). In functionalization phase, 
following the activation of AhR, B[a]P induces the expression of CYP1A1, CYP1A2 and CYP1B1 
(Nebert et al., 2004) as well as AKR1C19 (Vondrácek et al., 2009). In conjugation phase, the 
activation of AhR by ligands induces the expression of UGT1A6 and UGT1A1 (Köhle et al., 2005; 
Yueh et al., 2003). In phase III, various AhR ligands, including B[a]P, induce an increase in BCRP 
expression.  

B[a]P, by activating AhR, has the ability to stimulate its own metabolism through the 
induction of genes involved in xenobiotic metabolism, such as CYP1A1 (Miller and Ramos, 
2001; Murray et al., 2014; Shimada, 2006). In this regard, certain metabolites may 
themselves induce AhR activation. Indeed, the quinones formed during the metabolism of 
B[a]P by AKR are able to induce the expression of CYP1A1 in vitro via an AhR activation 
(Burczynski and Penning, 2000; Park et al., 2009) 

B[a]P metabolism is described to be reported with DNA and protein adduct formation 
(Figure 17). Reactive metabolites from B[a]P metabolism may interact with genomic DNA to 
form stable or unstable adducts and induce mutations, which may be the cause of 
carcinogenesis (initiation step). DNA damage, if not repaired, can also trigger cell death by 
apoptosis following the activation of the p53 protein (Baird et al., 2005; Marshall et al., 
1984; Phillips et al., 2015; Rodin and Rodin, 2005) The presence of these adducts, especially 
in circulating lymphocytes, is also considered as a marker of exposure to PAHs (Castano-
Vinyals, 2004; Kriek et al., 1998; Taioli et al., 2007). Among B[a]P metabolites, the highly 
electrophilic intermediate compounds capable of forming DNA adducts are diol epoxides, 
epoxides, quinones and the radical cation (Das and Bhutia, 2018; Ruan et al., 2006; Xue and 
Warshawsky, 2005). Diol-epoxides, especially BPDE, are considered as the most mutagenic 
and carcinogenic metabolites by their very high capacity to form adducts to the DNA 
(Shiizaki et al., 2017).  The epoxide, B[a]P-9-OH-4,5-oxide is also capable of forming a stable 
adduct to the DNA by attachment on a deoxyguanosine (Fang, 2003; Stiborová et al., 2016). 
B[a]P-7,8-dione can also form stable DNA adducts in vitro by binding to deoxyguanosines, 
deoxyadenines and deoxycytidines (Balu et al., 2004, 2006). The radical cation can form 
unstable adducts with DNA (in particular at position N7 with deoxyguanosine and at N7 with 
a deoxyadenosine). These unstable adducts cause spontaneous depurination of DNA 
(McCoull et al., 1999; Penning, 2004; Xue and Warshawsky, 2005). 

BPDE is also able to form protein adducts, also suggested as biomarkers of PAH exposure 
because they are detectable in the blood (Boysen and Hecht, 2003). These adducts are 
formed by the binding of BPDE at its C10 carbon (i.e. the same as for binding to DNA), 
especially with hemoglobin (at the level of aspartate 47) and serum albumin (at the level of 
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histidine 146, aspartate 147 and glutamate 188) (Boysen and Hecht, 2003; Day et al., 1991). 
In addition, high levels of albumin and hemoglobin adducts are detected in the blood of 
smokers compared to non-smokers (Melikian et al., 1997; Scherer et al., 2000). 

4.2.2. Lipid metabolism and membrane toxicity 

AhR activation is also involved in the alteration of lipid metabolism. Its activation by B[a]P or 
TCDD leads to a modification of the expression of genes involved in the synthesis and transport 
of fatty acids and cholesterol leading to an accumulation of fatty acids and intracellular 
triglycerides (Lee et al., 2010; Neuschwander-Tetri et al., 2015). Thus, as quoted earlier, AhR 
may be involved in hepatic steatosis. In addition, by altering the cholesterol content of the 
membrane, AhR can induce the triggering of cell death via a non-genomic pathway. 

Indeed, B[a]P has been reported to alter physicochemical properties of plasma membrane, 
thus causing membrane remodeling leading to cell death. Lipid raft disruption as well as 
membrane fluidization are demonstrated in several in vitro models (Gorria et al., 2006; 
Tekpli et al., 2010). Lipid rafts are micro-domains of the plasma membrane enriched in 
cholesterol and sphingolipids but also in specific proteins such as caveolin or flottilin (Sezgin 
et al., 2017) . Lipid raft disruption, mediated by the decrease in cholesterol content due to a 
repression of the expression of HMGCoA reductase, is involved in apoptosis (Tekpli et al., 
2010). The decrease in expression of HMGCoA reductase results from the activation of AhR 
but also from the production of hydrogen peroxide by CYP (Tekpli et al., 2010, 2012). B[a]P, 
through AhR activation, would involve a decrease in the expression of LXR (Liver X Receptor) 
and SREBP1c (Sterol Regulatory Element Binding Protein 1c), two transcription factors 
involved in lipid metabolism (Tekpli et al., 2010, 2012). 

In parallel to the p53 pathway triggered by DNA damage, the B[a]P induced membrane 
remodeling would allow the activation of a non-genotoxic pathway involving the activation 
of the intracellular pH regulator NHE-1 (Huc et al., 2004; Tekpli et al., 2010, 2012).  

4.2.3. Iron/Heme metabolism 

Under normal physiological conditions, iron from ferritin is transported across mitochondrial 
membranes via mitoferrin for heme production. In mitochondrial matrix, glycine and 
succinyl coenzyme A are used to produce δ-aminolevulinic acid (ALA) by δ-aminolevulinic 
acid synthase (ALAS). Two isoforms, ALAS I and ALAS II are known. ALA is transported to 
cytosol, where it is converted to coproporphyrinogen III (CPgen III) by series of catalytic 
reactions. CPgen III is then shifted back to mitochondrial matrix. Here, it is catalyzed by 
coproporphyrinogen oxidase (CPOX) and protoporphyrinogen oxidase (PPOX) to 
protoporphyrinogen IX (PPgen IX) and protoporphyrin IX (PPIX) respectively. At the end, 
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ferrous iron (Fe2+) is incorporated into PPIX to produce heme. Steps catalyzed by ALAS and 
ferrochelatase (FECH) are known as rate limiting steps of heme synthesis (Zhang and Hamza, 
2018).  For heme insertion into hemoproteins, heme has to be effluxed from mitochondria 
via inner mitochondrial ABC transporter, ABCB10, in erythroid cells. Other known heme 
exporters are feline leukemia virus subgroup C receptor-related protein 1a & b (FLVCR1a and 
FLVCR1b), ABCG2, also known as breast cancer resistance protein (BCRP), and multidrug 
resistance protein-5 (MRP-5). Whereas, heme responsive gene -1 (HRG1, SLC48A1) functions 
as a heme importer (Zhang and Hamza, 2018). 

Several studies described iron and heme precursor accumulation via AhR activation (Fader et 
al., 2017; Fader and Zacharewski, 2017) AhR agonists like B[a]P and TCDD are known to 
repress the master regulator of systemic iron homeostasis, hepcidin, thus increasing serum 
iron concentration. This iron overload manifests to produce ROS via Haber Weiss reaction, 
thus contributing in in oxidative stress. Furthermore, AhR activation increases hepatic hemin 
levels (oxidized product of heme). It is reported that AhR ligands induce the expression of 
aminolevulinic acid synthase 1 (Alas1), thus enhances heme biosynthesis. Iron overload 
further precipitates this effect. Free heme is said to be toxic as it oxidizes macromolecules 
like DNA, proteins and lipids. Moreover, it also plays part in inflammation. AhR agonists also 
inhibit uroporphyrinogen decarboxylase (Urod). This enzyme catalyzes uroporphyrinogen III 
to coproporphyrinogen III, heme precursor. In the presence of iron overload and Urod 
inhibition, CYP1A2 converts uroporphyrinogen III to uroporphomethene and then to 
uroporphyrin III, urinary metabolite and marker of porphyria. So, overall, AhR induces 
urinary porphyrin concentration and also increases up to 50% hemin contents in liver. In this 
context, agents activating AhR, such as B[a]P, could contribute in hepatotoxicity by 
repressing hepcidin, increasing iron load, raising heme levels and also by promoting 
oxidative stress  (Fader et al., 2017; Fader and Zacharewski, 2017) B[a]P has also been 
reported, previously by our team, to be involved in iron dependent lysosomal disruption, 
and thus cell death (Gorria et al., 2006, 2008). Note that membrane remodeling was found 
to increase iron transport into the cells (Gorria et al., 2006).  

4.3. Oxidative stress and mitochondrial dysfunction 

Exposure to B[a]P results in the production of reactive oxygen and nitrogen species and 
hence oxidative stress (Collin et al., 2014; Dutta et al., 2010; Hardonnière et al., 2015; Kehrer 
and Klotz, 2015; Klaunig et al., 2011; Ma et al., 2011; Ramya et al., 2012; Trachootham et al., 
2009). ROS production is partly dependent on activity of CYP. It also involves various 
organelles such as mitochondria and lysosomes. During the normal function of CYP, the 
consumption of NADPH is accompanied by the oxidation of a substrate. However, this 
coupling is not always completely effective, and electron transfer without oxygenation of the 
substrate can take place. These electron leaks can lead to the production of the superoxide 
anion as well as hydrogen peroxide (Zangar et al., 2004). Production of superoxide anion and 
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hydrogen peroxide can also result from metabolites such as quinones or the radical cation 
which undergo a redox cycle (Sen et al., 2012b). Mitochondrial dysfunction is well known to 
cause electron leakage from complex 3 (coenzyme Q-cytochrome c reductase) of the 
mitochondrial respiratory chain, leading to the formation of superoxide anion and hydrogen 
peroxide (Brand, 2016; Huc et al., 2006b, 2007). Moreover, B[a]P-induced intracellular iron 
accumulation, via lysosomal permeabilization, is also a cause of oxidative stress as iron is a 
catalyst for the Fenton and Haber-Weiss reactions, resulting in the formation of the hydroxyl 
radical (Collin et al., 2014).  

 

Figure 22: B[a]P causing cell death via AhR dependent and independent pathways in  
F258 rat hepatic epithelial cells 

In addition of ROS production, B[a]P and AhR are also involved in RNS production. The 
peroxynitrite anion is formed by the reaction of NO with the superoxide anion. The 
peroxynitrite anion has a very high pro-oxidative reactivity (Iwakiri and Kim, 2015). The 
production of NO following treatment with B[a]P seems to be mainly dependent on iNOS. Its 
expression can be induced by B[a]P via activation of AhR (Hardonnière et al., 2015); 
mitogen-Activated Protein Kinases (MAPK) pathway (Karin, 1995; Kleinert et al., 2003); 
activation of NF-κB (Chen et al., 2005; Kleinert et al., 2003; Kumar et al., 2007) and activation 
of the p53 protein (Hardonnière et al., 2015). 

ROS (the hydroxyl radical) and RNS (peroxynitrite) are extremely reactive. They can oxidize 
macromolecules (lipids, proteins and DNA) and cause structural and functional cellular 
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alterations (Schieber and Chandel, 2014). Cell death by oxidative stress involves several 
mechanisms such as lipid peroxidation and oxidation of DNA and proteins (de Zwart et al., 
1999).  

Regarding mitochondrial dysfunction, B[a]P is known to activate the p53 pathway and  
Na+/H+ isoform 1 exchanger (NHE-1) (Huc et al., 2006b, 2003). The activation of these two 
pathways by B[a]P induces a decrease in the expression of c-myc via the GSK3α protein 
(Dendelé et al., 2012) This event results in the relocation of HKII, a mitochondrial 
permeability transition pore inhibiting molecule, from the mitochondria to the cytoplasm 
(Dendelé et al., 2012; Huc et al., 2007). Relocation of HKII results in mitochondrial 
dysfunction, possibly via reverse activity of the F0F1-ATPase pump. These alterations are 
responsible for increased production of superoxide anion, acidification of the cytoplasm and 
release of endonuclease-G. The acidification of the cytoplasm will induce the activation of 
caspase 3 and cathepsin B and results in apoptosis (Huc et al., 2007, 2006b) (Figure 22).  

Another B[a]P associated mitochondrial dysfunction is associated with survival signal 
induced by metabolic reprogramming. As mentioned earlier in manuscript, metabolic 
reprogramming involves inhibition of oxidative phosphorylation while increases aerobic 
glycolysis (Warburg effect). This glycolytic shift is associated with increase IF1 expression 
(physiological inhibitor of F0F1-ATPase) (Hardonnière et al., 2016, 2017a). 

5. Carcinogenic effects of B[a]P 

B[a]P is classified in group 1 of carcinogens by the international agency for research on 
cancer (IARC) (“List of classifications, Volumes 1–123 – IARC,” n.d.), and termed as complete 
carcinogen (IARC, 2010). The carcinogenic effect of B[a]P depends on the route of exposure. 
Thus, following oral exposure, tumors appear in lymphoid tissues, liver, esophagus, stomach 
or tongue, and following inhalation, the appearance of tumors is found at the level of the 
respiratory and gastrointestinal tract (Hardonnière et al., 2017b). 

B[a]P could act on all three phases of carcinogenesis that are initiation, promotion and 
progression (Hardonnière et al., 2017b). The initiation phase, as described above in section 
of B[a]P metabolism, corresponds to genetic modifications and it has been shown that 
certain metabolites of B[a]P, for example, BPDE notably form adducts with DNA and have a 
high mutagenic potential. If these changes are not corrected by cell repair systems, this can 
lead to the appearance of mutations in genes, particularly in relation to the control of the 
death / survival balance and the cell proliferation (Phillips et al., 2015). 
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Figure 23: Canonical event sequence of B[a]P induced carcinogenesis  
(Adapted from Das and Bhutia, 2018 ) 

 
The promotion stage corresponds to the proliferation of cells that have become resistant to 
apoptosis. This step may involve the induction of survival signals, notably supported by 
changes in energetic metabolism (Hardonnière et al., 2016). It can also be initiated by the 
induction of apoptosis which will lead to an excessive compensatory proliferation of cells 
during hepatic regeneration (Feng, 2012; Ichim and Tait, 2016; Qiu et al., 2011). Indeed, 
although considered a beneficial process during the development of the body and in the 
treatment of cancer, apoptosis appears also to be involved in carcinogenesis, particularly in 
the liver (Ichim and Tait, 2016). Finally, tumor progression may involve inflammation and 
mechanisms like  Epithelio-Mesenchymal Transition (EMT) , a mechanism that has already 
been evidenced following exposure to B[a]P, in F258 rat hepatic epithelial cells and in A549 
human lung cells (Hardonnière et al., 2016; Liu et al., 2015; Rajput and Wilber, 2010) (Figure 
23).  

6. Inflammation and immunosuppression 

B[a]P can trigger inflammation through the production of cytokines and chemokines. Thus, 
in vitro, exposure to B[a]P of human primary macrophages results in IL-8 production, which 
is dependent on AhR activation (Podechard et al., 2008). This effect is also found in human 
keratinocytes, in a dose-dependent manner, upon treatment with 20 nM B[a]P (Tsuji et al., 
2011). Exposure to B[a]P also leads to an increase in IL-6 expression dependent on AhR 
activation (Hu et al., 2016). In addition, it may be noted that secretion of IL-22, in peripheral 
blood mononuclear cells of patients with allergic asthma, and expression of IL-1β, in synovial 
cells MH7A, induced by B[a]P are inhibited by co-treatment with an AhR antagonist (Plé et 
al., 2015). 
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Regarding immunosuppression, studies have reported B[a]P-associated immunotoxicity. 
Significant role of AhR has been reported with reference to immune functions. AhR affects T 
cell differentiation; dendritic cell differentiation and antigen presentation and thus alter 
innate and adaptive immune response. Indeed, B[a]P, via AhR activation inhibits monocytes 
differentiation to macrophages and langerhans dentritic cells (van Grevenynghe et al., 2004, 
2003). AhR has been also known to play an important role in host defense as AhR deficiency 
is linked with increase microbial susceptibility. In addition, AhR may also involve in 
autoimmune function by acting on Th17 cells, which are pathogenic drivers under 
autoimmune conditions. Finally, AhR activation is also described in tumor development via 
modulation of tumor-specific immunity (Gutiérrez-Vázquez and Quintana, 2018; 
Rothhammer and Quintana, 2019; Stockinger et al., 2014) .  

7. B[a]P and NAFLD 

Benzo[a]pyrene is among the studied environmental pollutants that are known to induce 
NAFLD. Indeed, B[a]P can increase fat accumulation, decrease lipolysis, raise visceral adipose 
mass and increase body weight in rodents (Heindel et al., 2015; Ortiz et al., 2013; Wahlang 
et al., 2019). The majority of B[a]P effect in favor of NAFLD is through AhR activation 
(Wahlang et al., 2013, 2019). Several studies showed that AhR agonists such as PAHs mimic 
hepatic steatosis by increasing liver fatty acid uptake via CD36 upregulation, repression of 
fatty acid β-oxidation via PPARα down regulation, and decrease of lipid efflux via 
apolipoprotein B100 down regulation. Further, B[a]P can also induce inflammation, oxidative 
stress, mitochondrial dysfunction and others, thus leading to steatosis progression towards 
steatohepatitis (Deierlein et al., 2017; Fader et al., 2017; Fader and Zacharewski, 2017; 
Foulds et al., 2017; Heindel et al., 2015, 2017; Ortiz et al., 2013; Wahlang et al., 2013, 2019). 
Some studies have also categorized B[a]P as 2nd hit in the progression of NAFLD, where 
primary hit could be high fat diet (Deierlein et al., 2017; Heindel et al., 2017). In conclusion, 
B[a]P is a potential environmental contaminant to induce NAFLD. 

8. Effects of co-exposure to B[a]P and ethanol 

In a realistic situation, a person, especialy in western contries is exposed to environmental 
contaminants from multliple sources ranging from air to food. Moreover, ethanol 
consumption is more common. Thus, population is actually affected by several toxicants at 
the same time. In this context, B[a]P, as it is a widely distributed environmental 
contaminant, with ethanol forms a basic mixture to be tested. Both B[a]P and ethanol have 
hepatotoxicity and their co-exposure could increase their respective toxicities. Several 
epidemiological studies have thus demonstrated a link between B[a]P and ethanol co-
exposure (or smoking) and liver cancer. Indeed, one study has shown a correlation between 
the presence of BPDE-DNA adducts in HCC individuals consuming alcohol (Su et al., 2014). 
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Some other studies have also shown a synergistic effect between smoking and alcohol use 
on HCC development and aggression (Kuper et al., 2000; Shih et al., 2012). 

Several molecular mechanisms are described with respect to co-exposure to both toxicants. 
Among these, membrane remodeling is documented in vitro by using primary rat 
hepatocytes (Collin et al., 2014). B[a]P alone is known to reduce membrane cholesterol 
content while ethanol metabolism would be responsible for producing ROS that causes lipid 
peroxidation resulting in permeabilization of the lysosomal membranes. Together, these two 
toxicants have complementary effects on the membrane remodeling, favoring lysosomal 
permeablization and an elevation of the cellular content of low molecular weight iron. Thus, 
by this way, B[a]P further potentiates ethanol toxicity (Collin et al., 2014). 

Both toxicants can also influence metabolism of each other thus manipulating toxicity. The 
metabolism of B[a]P contributes to its own toxicity. This is also the case for ethanol, 
particularly via the generation of ROS (Cederbaum, 2012). In the liver, ethanol will be mainly 
metabolized by the alcohol dehydrogenases (ADH) in the cytosol and by CYP2E1 within the 
ER (Cederbaum, 2012). Ethanol may modulate the toxicity of B[a]P via modification of the 
expression or activity of the enzymes involved in its metabolism, and vice versa. B[a]P could 
also have an effect on the metabolism of ethanol. It has been shown in vitro that B[a]P causes a 
slight decrease in the expression of ADH4 mRNA (Attignon et al., 2017b). Further, different AhR 
ligands, and in particular TCDD, decrease the expression of ADH1B, 4 and 5 in this model via 
activation of AhR (Attignon et al., 2017b). In addition, B[a]P also suppresses the activity of the 
CYP2E1 as a result of CYP1A1 activation (Attignon et al., 2017a). Thus, modulation of CYP2E1 
and ADH by B[a]P and AhR by ethanol could potentially influence their toxicity during co-
exposure.  

To summarize, both toxicants are associated with hepatotoxicity and also share some 
common mechanisms. Besides, as described above, both are linked with NAFLD but yet 
there are only very few studies describing the role of these contaminants in the presence of 
fatty liver disease. In this context, recently, our team has described some in vitro 
mechanisms underlying NAFLD progression in response to B[a]P/ethanol co-exposure 
(Bucher et al., 2018b; Tête et al., 2018). However, yet no study is available to describe in vivo 
mechanisms under such conditions. Therefore, we have chosen an in vivo zebrafish larva 
model to realize the impact of B[a]P/ethanol co-exposure under prior steatotic state. 
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Chapter D. Zebrafish (Danio rerio) 
A large range of animal models is known to be used as an in vivo model for biomedical 
experimentation. Zebrafish have become a powerful research tool to unveil biological 
aspects concerning developmental science, genomics, environmental health and toxicology, 
behavior, drug discovery and cancer. The acceptance of this model by biological 
investigators is continuously increasing. The number of research publications is greatly 
increasing with every new coming year (Figure 24).  This increase in popularity of this small 
creature is attributed to several rationals. Its small body size and fast breading allows ease 
and cost-effectiveness in experimental manipulations. Its transparency at initial larval stage, 
rapid embryonic development and external fertilization suits to carry out developmental 
studies. Its resemblance with higher mammals including human provides investigators the 
opportunity to understand diverse pathophysiological mechanisms. One of the most striking 
benefits of zebrafish model is availability of known fully sequenced genome. It attracts 
biologists to conduct detailed studies by using genetic alterations (Bambino and Chu, 2017; 
Fontana et al., 2018; Khan and Alhewairini, 2018; Teame et al., 2019). 

 

Figure 24: Number of articles on zebrafish / year 
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1. General characteristics 

Danio rerio (Zebrafish) is a tropical fresh water fish with coloured stripes on the body. It is 
famous aquarium fish, inhabitant of Bangladesh, India, Myanmar, Nepal and Pakistan. It is a 
small fish having length less than 5 cm. This omnivorous fish, having average life span of 3½ 
years, breeds throughout the year. D. rerio is considered to be evolved 340 million years ago 
from a common ancestor, Urbilateria (Danchin and Pontarotti, 2004; DeTolla et al., 1995; 
Engeszer et al., 2007; Fang, 2003; Gerhard et al., 2002; Howe et al., 2013; Meyers, 2018; 
Spence et al., 2007). It has following taxonomic hierarchy (Table 6): 

Table 6: Taxonomic hierarchy of zebrafish 

Taxonomic rank Name Taxonomic rank Name 

Super kingdom Eukaryota Kingdom Metazoa/ Animalia  

Phylum Chordata Subphylum Craniata/ Vertebrata 

Super class Actinopterygii Class  Teleostei  

Order  Cypriniformes Family Cyprinidae 

Genus Danio  Species Danio rerio 

 

2. Brief history of zebrafish use in research  

Following discovery in late 19th century, Charles Creaser in 1934 documented zebrafish 
development for the first time. Embryologists, at the beginning, started to use this model 
because of large fecundity, external fertilization and transparency of embryo. However, it is 
George Streisinger, who is known as the founder of research on zebrafish because he was 
the first largely reported to use zebrafish as a model organism for genetic investigations. In 
1980s, he with his co-workers used zebrafish model to study the impact of DNA mutation, 
and correlated it with pigmentation defects in offspring (Chakrabarti et al., 1983; Walker and 
Streisinger, 1983). In 1990s, Christiane Nusslein-Volhard in Tubingen, Germany, and 
Wolfgang Driver and Mark Fishman in Boston, USA, initiated to develop zebrafish genetic 
mutants by using ethylnitrosourea (chemical mutagen) and just in the period of two years, 
they had described 4000 mutant lines of zebrafish. This success had led to develop a range 
of different genetic alterations. Thereafter, zebrafish genome sequencing was initiated in 
2001. Since fully sequenced genome of zebrafish has been reported in 2013 (Howe et al., 
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2013), today, this model has been used by thousands of researchers globally nearly in every 
aspect of biology. Key milestones in the history of zebrafish research has been summarized 
in figure 25 (Bambino and Chu, 2017; Fontana et al., 2018; Goessling and Sadler, 2015; Khan 
and Alhewairini, 2018; Meyers, 2018; Tanguay, 2018). 

 

Figure 25: Brief history of key milestones in the research of zebrafish 
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3. Benefits and limitations of zebrafish model in research 

Zebrafish is one of the models of choice in research to unveil biomedical facts. This model 
can be used to accomplish several objectives with certain limitations.  

3.1. Benefits 

Zebrafish model can be preferred for its ease in husbandry, resemblance with mammals 
including human in terms of anatomy, physiopathology and genetics, known genome 
sequencing and other.    

3.1.1. Husbandry/Practical parameters 

 Small fish size and large fecundity rate make zebrafish husbandry easy and less expensive 
than rodents and higher mammals (Bambino and Chu, 2017).  

 Zebrafish eggs/larvae, which can be maintained in 96-microplate wells without any 
difficulty, are getting higher attention to be used for research as they fit well to 3Rs 
(replacement, reduction and refinement).  As per EU Directive 2010/63/EU, zebrafish 
larvae up to the age of 5 day post fertilization do not come under animal experiment 
regulations. Furthermore, this species is less sentient to pain and emotion (Fontana et 
al., 2018; Strähle et al., 2012).   

 The embryo of this tropical fish grows outside mother body and is transparent in its 
initial larval phase. This facilitates analysis of the development of internal organs more 
precisely.  

 Embryo grows fast; already at 4 day post fertilization, various body organs are developed 
like an adult. Moreover, it attains sexual maturity at about 10-12 weeks (Fontana et al., 
2018; Khan and Alhewairini, 2018) (Table 7). 
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Table 7: Characteristics of widely used model organisms 

 
Primates Mouse Chick Zebrafish 

Handling Hard Hard Moderate Easy 

Genetic 
similarity to 
human  

96-98% 75% 62% 70% 

Anatomic & 
pathological 
Similarity  

Yes Yes Yes Yes 

Rapid 
development  

No No Yes Yes 

Transparency No No No Yes 

Number of 
embryos  

1-2 ~10 1-2 100-600 

Transgenic 
models  

A few Many A few Many 

Husbandry 
cost  

Very 
expensive 

Expensive Cheap Cheap 

(K. Y. Lee et al., 2017; Lieschke and Currie, 2007). 

3.1.2. Genetic homology and applications 

As mentioned earlier, data regarding full sequenced gemone have been made available since 
2013. Zebrafish has protein-coding genes of about 26,206. Further, its genome has 
maximum number of species-specific genes compared to chicken, mouse or human (Howe et 
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al., 2013). Furthermore, it is described that more or less seventy percent of human genes 
have no less than one evident zebrafish orthologue (Howe et al., 2013), and it has a 
complete series of cytochrome P450 gene expressions, with many related to human, 
required for xenobiotic biotransformation (Goldstone et al., 2010).  

3.1.3. Genetically altered zebrafish models 

Zebrafish is widely used to model variety of human diseases by genetic alterations. More 
than 5000 mutant and transgenic zebrafish strains, including transient gene knock by 
morpholinos in initial larval stage, have been formulated to enhance understanding of gene 
function (Seth et al., 2013; Strähle et al., 2012). 

3.1.4. Application of zebrafish in the field of toxicology  

Due to easy husbandry, cost effectiveness, genetic homology and availability of mutant and 
transgenic zebrafish strains, zebrafish could behave as a transition model to expand in vitro 
studies to an entire mammalian model especially in the field of toxicology. It reduces the 
number of mammal models due to prior in vivo data obtained from zebrafish model. 
Similarly, zebrafish could improve toxicity screening at preclinical drug development stage 
(Sukardi et al., 2011). OECD has published standard guidelines, (eg. Test No. 236: Fish 
Embryo Acute Toxicity (FET) Test) regarding the use of zebrafish model to assess the 
potential toxicity of various substances (OECD, 2016).  One of the added advantages of this 
model is that it is easy to expose fishes with toxicants by simply adding chemicals in their 
medium, and that one can perform real time in vivo investigations to identify and determine 
toxicant risks to human well-being. Several research groups are using zebrafish to assess the 
impact of chemicals on zebrafish (Brion et al., 2012; Lutfi et al., 2017). 

3.1.5. Zebrafish liver model  

There is much coherence between zebrafish and human concerning hepatic cellular 
composition, physiology, molecular and gene regulation, signaling, response to injury and 
cellular mechanisms provoking liver ailments. This makes zebrafish a preferred model to 
study liver diseases at cellular, molecular as well as at genetic level (Chu and Sadler, 2009; 
Vernetti et al., 2017). 
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3.2. Limitations  

Like all other biological models, in addition to advantages, there are certain limitations to 
use zebrafish. Some are described below: 

• Obviously, certain diseases, due to physiological differences between mammals and 
zebrafish, like asthma or placental disorders cannot be simulated. 

• Zebrafish has no sex chromosome discrimination till 3 weeks post fertilization. Thus 
chemicals having gender specific response cannot be assayed (Bambino and Chu, 2017). 
However, it can be advantageous as impact of estrogen/androgen disruptors can be 
assayed on liver and other organs independent of sex hormone influence.  

• The exposure of drugs or chemicals exposure to zebrafish is usually by adding that 
substance in fish water. This could be a problem for water insoluble compounds. 
However, this limitation can be overcome by dispersing that substance in other solvents 
as dimethyl sulfoxide (DMSO) (Fontana et al., 2018), or in food if uptake can be 
controlled. 

• Addition of toxicant in water represents mostly dermal exposure; however certain 
amount of chemicals enters in zebrafish body orally or through gills. Thus, it may change 
pharmacokinetics of that molecule in zebrafish in comparison to human (Bambino and 
Chu, 2017; Fontana et al., 2018). 

• Zebrafish exhibits 26,206 protein-coding genes, more than any vertebrate sequenced 
before. Thus zebrafish has few duplicated genes, which, based on objective of study, 
could be favorable or disadvantage. For example, duplication of gene is a significant basis 
of novelty and variability during evolution process. However, it may represent an 
additional level of complexity as zebrafish may have different regulatory pathways and 
molecular networks for some specific functions (Fontana et al., 2018).  

Despite certain limitations, zebrafish remains successful to attract investigators for using this 
versatile model.  From here onwards in thesis, as main focus is to assess NAFLD mechanisms 
associated with toxicant exposure, I will mainly discuss zebrafish liver and xenobiotic 
metabolism and regulation. There is also some short description of immune system and 
iron/ heme homeostasis in zebrafish as both are key players in NAFLD pathogenesis, and 
B[a]P or ethanol toxicity. 
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4. Zebrafish liver 

The liver in vertebrates is the vital organ that actively participates in endocrine and exocrine 
activities. Malfunctioning of this gland is the major cause of mortality and morbidity (Pham 
et al., 2017). This brings the need to enhance our knowledge and understanding regarding 
liver anomalies in order to produce promising alternative therapies. In this context, zebrafish 
popularity has been increasing day by day for simulating liver ailments and act as a transition 
model between in vitro and whole mammalian model. In zebrafish, liver is the organ to be 
involved in maintaining metabolic homeostasis by participating in toxicant detoxification, 
serum protein production, glycogen storage, lipid synthesis, hormone production, bile 
secretion and others. This fish liver can be modeled for fatty liver disease, cholangiopathies, 
cholestasis and several others (Chu and Sadler, 2009; Goessling and Sadler, 2015; Menke et 
al., 2011; Pham et al., 2017; Vernetti et al., 2017). 

4.1. Liver Development in Zebrafish 

Like human and other mammals, zebrafish liver arises from the foregut endoderm. At the 
stage of 22 hour post fertilization (hpf), anterior endodermal cells express hepatic 
transcription factors, hhex and prox1. These liver progenitor cells distribute asymmetrically 
towards ventrolateral side (left) in embryo and dorsolateral side (right) in embryo. 
Ceruloplasmin is considered as an initial liver differentiation marker in zebrafish that 
expresses at 16 hpf in endoderm and 32 hpf in developing liver. Liver budding and gut 
bending towards leftside of embryo have been marked between 24 and 30 hpf. However, 
liver bud becomes much prominent at 48 hpf. Thereafter, intrahepatic biliary cells and 
hepatocytes differentiate from hepatoblasts. Initially, biliary cells appear in extra-hepatic 
bile duct and then infiltrate to the liver. Afterwards, endothelial and hepatic stellate 
progenitor cells appear in the liver vicinity. At 72 hpf, liver seems to have vascular and biliary 
ductal network with hepatocytes in between. Unlike mice, liver in zebrafish is not involved in 
embryonic hematopoiesis, thus dysfunction in liver does not account for abnormalities in 
hematopoiesis. Further, zebrafish embryo can develop without vasculogenesis for many 
days. At the age of 120 hpf, zebrafish larva has liver with lobes, the smallest right lobe 
extends ventrally towards pancreas and the largest left lobe lies under the anterior gut. Liver 
at this age works as adult liver, performs all functions like xenobiotic biotransformation, 
lipogenesis, protein secretion, glycogen balance and bile production. However, liver 
structure is further organized as it grows to adult (Chu and Sadler, 2009; Clift et al., 2014; 
Field et al., 2003; Ober et al., 2003; Pham et al., 2017). 



92 | P a g e  

 

 

Figure 26: Zebrafish liver structure 

4.2. Zebrafish liver anatomy and histology and its comparison with mammals 

Zebrafish liver has three adjoining lobes (right, left and ventral) without pedicle unlike 
mammals. It is composed of mainly hepatocytes and has all other major hepatic cells 
similarly to mammalian liver, except Kupffer cells. Nevertheless, liver holds immune cells 
including macrophages even if they are not recognized as fully kupffer cells (Martins et al., 
2019; Wrighton et al., 2019). In contrast to mammals, zebrafish has randomly distributed 
blood vessels in hepatic tissue; central or portal vein cannot be differentiated 
morphologically and has no any portal triads. Hepatocytes, organized in tubules, separate 
intrahepatic bile ducts and blood vessels with bile duct in the center (Figure 26). However, 
like mammals, hepatocytes in zebrafish secret bile at the apical side via bile canaliculi that 
connect to biliary ductules. Blood vessels in zebrafish on hepatocyte basal side look like 
mammalian sinusoid capillaries. On contrary to mammalian liver, intrahepatic bile ducts in 
zebrafish are composed of two types of cholangiocytes that are small preductal biliary 
epithelial cells and larger columnar cholangiocytes. Former make intracellular lumens for 
transport of bile from hepatocytes, and later shape the full intrahepatic biliary system 
(Figure 26). Endothelial cells in zebrafish line the hepatic vessels including sinusoids. Hepatic 
stellate cells, which are located between endothelial cells and hepatocytes, store lipid 
droplets (Figure 26). These cells also act as myofibroblasts in zebrafish; following hepatic 
injury, they produce extracellular matrix (Field et al., 2003; Goessling and Sadler, 2015; Pham 
et al., 2017). 
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5. Xenobiotic metabolism in zebrafish 

In zebrafish, similar to mammals, liver is the principal organ responsible for xenobiotic 
transformation. As mentioned above, liver is fully functional at earlier larval stage and 
zebrafish larva is considered as model of preferred choice for evaluating xenobiotic and 
chemical toxicity in relation to human as well as environment (de Souza Anselmo et al., 
2018; Otte et al., 2017). Similar to mammals, xenobiotic metabolism in zebrafish takes place 
via series of enzyme-based reactions, which are grossly classified as phase I and phase II 
metabolism reactions (de Souza Anselmo et al., 2018). Phase III drug efflux transporters like 
abcb4 are also identidied in zebrafish responsible for drug excretion (Fischer et al., 2013).  

5.1. Phase I enzymes/ Cytochrome P450 system 

Phase I enzymes principally include cytochrome P450 (CYP) system. Zebrafish possesses 94 
CYP genes corresponding to mammals. However, some of cytochrome P450 genes (cyp1c, 
cyp2ae and cyp2x) have no orthologue in human (de Souza Anselmo et al., 2018; Goldstone 
et al., 2010; Verbueken et al., 2018). Out of the 94 identified CYP genes, 86 genes belong to 
CYP families 1–3, and are implicated in xenobiotic metabolism (Saad et al., 2016; Verbueken 
et al., 2018). The two most important CYP isoforms in human, CYP3A4 and CYP2E1, have at 
least one orthologue in zebrafish. cyp3a65 corresponds to the CYP3A4 while cyp2y3 and 
cyp2p6 match to CYP2E1 (van Wijk et al., 2016) (Table 8).  



94 | P a g e  

 

 

Table 8: Zebrafish phase I enzymes and its human orthologues 

Zebrafish  Human orthologue  

cyp1a  CYP1A1/1A2  

cyp1b1  CYP1B1  

cyp1d1  CYP1D1P  

cyp2ad2,3,6/cyp2n13/cyp2p1-6/cyp2v1  CYP2J2  

cyp2k1-8  CYP2W1  

cyp2r1  CYP2R1  

cyp2u1  CYP2U1  

cyp2y3/cyp2p6  CYP2E1  

cyp3a65/cyp3c1  CYP3A4  

 

In cyp1 family, five CYP1 isoforms have been identified in zebrafish: cyp1a, cyp1b1, cyp1c1, 
cyp1c2, and cyp1d1. Most of these isoforms are induced by aryl hydrocarbon receptor (ahr), 
pregnane X-receptor (pxr), oxidative stress, Ultraviolet (UV) radiation and compounds like 
pesticides, polychlorinated biphenyls (PCB), B[a]P, pesticides and TCDD (Goldstone et al., 
2010; Saad et al., 2016). Cyp2 family is the largest CYP gene family in humans as zebrafish as 
well. Genes in this family are also regulated by AhR and PXR (Kubota et al., 2015, 2013; Saad 
et al., 2016; Yuan et al., 2013). Finally, in cyp3 family, most important members in zebrafish 
are cyp3a65 and cyp3c1-4. Numerous drugs and endogeneous molecules including 
testosterone are metabolized by enzymes of this family (Goldstone et al., 2010; Saad et al., 
2016). 
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5.2. Phase II enzymes 

Phase II metabolism mainly includes transferases that conjugate drugs or metabolites with 
endogenous hydrophilic components to produce readily excretable forms.  This phase 
includes enzymes for glucuronidation (UDP glucuronosyl transferases [UGTs]); sulfonation 
(sulfo transferases [SULTs]); acetylation (N-acetyl transferases [NATs]); glutathione addition 
(glutathione S-transferases [GSTs]) and other like thiopurine S-methyl transferases (TPMTs); 
and catechol O-methyltransferases (COMTs) (Table 9).   

Table 9: Zebrafish phase II enzymes and its human orthologues 

Zebrafish  Human orthologue  

sult1st2  SULT1A1  

sult1st5  SULT1B1 

sult1st6 SULT1E1 

sult1st9/sult3st1 SULT1A3 

sult4a1  SULT4A1 

ugt1  UGT1  

ugt2  UGT2  

 

Zebrafish is known to have 45 UGT genes, divided in 3 families: UGT1, UGT2 and UGT5. 
There is no orthologous association between zebrafish and mammals; however, in both, 
human and zebrafish, these enzymes have common ancestral gene that is duplicated in 
different genes thus they act similarly (de Souza Anselmo et al., 2018; van Wijk et al., 2016). 
SULTs in zebrafish are categorized as SULT 1, SULT 2, SULT 3 and SULT 6. Many of human 
SULT1 genes have zebrafish orthologues (de Souza Anselmo et al., 2018; van Wijk et al., 
2016). Acetyl transferases as N-α-acetyltransferase 10 (Naa10) have somehow similar amino 



96 | P a g e  

 

acid sequence in human and zebrafish. 27 GSTs have been identified in zebrafish with similar 
action to human orthologues (de Souza Anselmo et al., 2018).  

In total, zebrafish provides opportunity to simulate human liver because of structural and 
functional similarity in both species. Human as well zebrafish have similar hepatic 
histological features and express similar groups of metabolizing enzymes. Thus, it is 
worthwhile to say that it is reasonable to consider taking zebrafish as a representative model 
of human. 

5.3. Transcriptional regulation of xenobiotic metabolism 

Xenobiotics are known to activate certain transcription factors that regulate all processes of 
biotransformation. These transcription factors or xenobiotic receptors are activated by 
ligands. Here, a special focus will be given to AhR as it is mainly responsible for B[a]P effects.  

5.3.1.  Aryl hydrocarbon receptor (AhR) in zebrafish 

AhR is a well recognized transcription factor that regulates CYP and other drug metabolizing 
enzymes. Human and other mammals possess single functional AhR; however zebrafish has 
three orthologues, ahr1a, ahr1b, and ahr2. In addition, zebrafish has two ARNT orthologues, 
arnt1 and arnt2, and two AhR repressors, ahrr1 and ahrr2. Generally, AhR is known to have 
high affinity towards environmental pollutants like PAHs as B[a]P and halogenated aromatic 
hydrocarbons as TCDD (Karchner et al., 2005; Planchart and Mattingly, 2010; Saad et al., 
2016). In zebrafish, ahr2 is active in transcription and exhibits high-affinity to TCDD. 
However, ahr1a is considered as inactive and does not bind to TCDD. On contrary, ahr1b is 
reported to have high TCDD binding affinity, can activate transcription but needs higher 
EC50  than ahr2, that is, 5.9 nM for ahr1b and 0.7 nM for ahr2 (Karchner et al., 2005). 
Moreover, ahr1b is thought to contribute in development, in cyp1a1 regulation and in TCDD 
toxicity (Karchner et al., 2005), but this will require further investigation. 

5.3.2. NRF2 (Nfe2l2) 

Other transcriptional factor associated with regulation of xenobiotic metabolism in zebrafish 
is Nrf2. It is known as master regulator of acquired response to oxidative stress. However, it 
is considered to play an important role in xenobiotic metabolism. NRF2 transcription is 
known to be induced by both AhR and TCDD.  In zebrafish, two isoforms, nrf2a and nrf2b, 
have been identified to regulate gene transcription associated with phase I and II enzymes 
(Hahn et al., 2015; Rousseau et al., 2015). The identification of these nuclear receptors in 
zebrafish enlightens its use to perform xenobiotic toxicity assays by simulating human like 
environment.  



97 | P a g e  

 

6. Iron and heme homeostasis in zebrafish 

Almost all living creatures contain iron. Several proteins linked to iron homeostasis in 
zebrafish have been identified, performing functions like uptake, release, storage and 
transport of iron like divalent metal transporter 1 (dmt1), ferroportin (fpn1), hepcidin 
(hamp), transferrin-α (tf-α), transferrin receptors (tfr), ferritin (fthl30), ceruloplasmin (cp) 
(Fraenkel et al., 2009, 2005; Zhang and Hamza, 2018; Zhao et al., 2014). Up to date, a large 
number of zebrafish mutagenic models has also been used to identify iron and other trace 
element transporters and to screen chemical-induced metal associated toxicity (Zhao et al., 
2014).  

Regarding heme, forward and reverse genetic manipulation in zebrafish highlighted several 
genes that play key role in heme homeostasis. Zebrafish has almost similar type of heme 
metabolic pathway as in human. For example, zebrafish has mitoferrin for importing iron 
across mitochondrial membranes; δ-aminolevulinic acid synthase for δ-aminolevulinic acid 
production; ferrochelatase for ferrous iron incorporation in protoporphyrin IX; and 

mitochondrial ABC transporters for heme export (Zhang and Hamza, 2018).   

7. Brief description of immune system in zebrafish 

Like mammals, zebrafish has well organized immune system. This component has number of 
similar characteristics and some sort of same role in zebrafish body as in human and other 
mammals. 

Immune system in zebrafish consists of both innate and acquired immune system. Zebrafish 
mainly rely on innate immune system, whose cellular composition is neutrophils and 
macrophages. However, other cells of immune system are also known in zebrafish like 
eosinophils, mast cells, T-cells and B-cells (Jørgensen et al., 2018; Martins et al., 2019).   

Immune system development in zebrafish starts at the age of 20 hours post-fertilization 
(hpf). At this age, first macrophage precursors, known as primitive macrophages, appear in 
anterior lateral plate mesoderm. These cells are capable of working as immune defenders as 
they can eliminate dead cells, and sense and invade microbes. This is because larvae develop 
in open environment that immune system is activated at initial age. At 4 dpf, kidney marrow 
starts to take over embryonic hematopoietic system, and acts as the main hematopoietic 
system afterwards till rest of fish life (Torraca et al., 2014).   

As mentioned earlier, neutrophils are the most dominant and represent the 1st line of 
innate immune cells in zebrafish. These cells start to be produced at 2dpf larval age 
(Jørgensen et al., 2018; Renshaw and Trede, 2012; Stoddard et al., 2019; Torraca et al., 
2014). They are less competent in engulfing microbes; however, they are effective 
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scavengers of surface-associated bacteria (Torraca et al., 2014). Normally, neutrophils are 
followed by macrophages at the site of action to invade tissue debris. Zebrafish also possess 
dendritic cells, which are developed at the age of 8-12 dpf.  Cells of adaptive immune system 
develop at 4-6 weeks after fertilization (Novoa and Figueras, 2012). Thus, at initial life stage, 
innate immunity has the whole charge of zebrafish defense system. 

8. Available zebrafish models to study human liver diseases and liver toxicity 

Zebrafish, as adult or embryo, has been reliably used since last four decades to simulate 
human diseases by using specific diets, following exposure with certain drugs and toxicants, 
or by genetic modifications. As previously described, zebrafish, at the age of 5 dpf, has fully 
functional liver and has lot of resemblance to mammalian liver from structure and function 
to the molecular and genetic level. Thus, it is possible, by using zebrafish, to understand in 
detail the pathophysiological phenomenon lying behind liver diseases (Chakravarthy et al., 
2014; Driessen et al., 2015, 2014, 2013; Strähle et al., 2012; Vernetti et al., 2017).   

A great number of chemicals including drugs and environmental toxicants act via 
hepatotoxicity and are associated with pathological situation like steatosis, cholestasis, 
hepatitis,... To assay hepatotoxic properties of such substances in vivo, zebrafish has been 
evolved as an alternative model of biosafety due to several reasons eg. zebrafish till 5 dpf 
has a waiver from animal regulations, standard toxicity assay guidelines by OECD are 
available for zebrafish,  it is easy to expose fishes to toxicants (Chakravarthy et al., 2014; 
Driessen et al., 2015, 2014, 2013; Strähle et al., 2012; Vernetti et al., 2017).  

9. Modeling non alcoholic and toxicant-associated fatty liver disease in 
zebrafish 

In zebrafish, the causes of metabolic perturbations leading to fatty liver disease are similar 
to human and include fasting, high fructose and high fat diet, methionine depletion, toxicant 
exposure and genetic factors. In general, fatty liver disease, in both zebrafish and human, is 
characterized by histological changes like hepatocyte ballooning, molecular and biochemical 
changes as TG accumulation, activation of UPR, and rise in ROS (Amali et al., 2006; Goessling 
and Sadler, 2015; Pham et al., 2017).  

Liver steatosis, the first stage of NAFLD, is attributed by the accumulation of lipid droplets 
mainly in cytosol of hepatocytes (Amali et al., 2006; Schlegel, 2012; Schlegel and Gut, 2015). 
Like humans, in zebrafish, the proposed mechanisms of this hepatic accumulation are 
increased uptake of free fatty acids, excessive de novo hepatic lipid production from acetate 
or glucose due to insulin resistance, decreased hepatic secretion of very low density 
lipoprotein particles and impairement of β-oxidation of fatty acids in hepatocyte 
mitochondria (Schlegel and Gut, 2015). At genetic level, these metabolic perturbations are 
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associated with transcriptional up-regulation of adiponectin, CEBPa and b (CCAAT/enhancer 
binding protein a and b; transcription factors which play a role in adipogenesis), SREBP1c 
(sterol regulatory element-binding protein 1c) and peroxisomal thiolase (β-oxidation related 
gene) (Schlegel and Gut, 2015). Afterwards, NAFLD progression associated with elevated 
ROS production, inflammatory cytokine activation like TNF-α and lipotoxicity. This eventually 
manifests as NASH, which is featured by steatosis, hepatocyte ballooning and cell death, 
inflammatory cell infiltration along with Mallory–Denk bodies and fibrosis (Amali et al., 2006; 
Schlegel, 2012; Schlegel and Gut, 2015). 

Several diet induced-NAFLD zebrafish models have been described by many research teams 
(Table 10). In addition, it is also possible to induce fatty liver disease and its progression by 
toxicants in zebrafish model. Several toxicants like hexachloro cyclohexane, thioacetamide 
perfluorooctane sulfonate (PFOS), bisphenol A and others have been yet studied with 
reference to TAFLD in zebrafish model (Table 11). Finally, several genetically altered models 
of zebrafish are also reported in order to study the specific underlying mechanisms 
contributing to NAFLD (Table 12 and 13). Furthermore, pathological mechanisms underlying 
TAFLD development and progression like altered lipid metabolism, mitochondrial 
dysfunction, ER stress, oxidative stress and others have been studied.  

Table 10: Dietry zebrafish models of NAFLD 

Diet Phenotype 

High-fat diet, Hepatic steatosis 

High-fat plus high-
cholesterol diet Hepatic steatosis 

Fructose Hepatic steatosis 

(Adapted from Asaoka et al., 2014; Pham et al., 2017) 
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Table 11: Chemical-treated zebrafish models of NAFLD 

 

Chemical Phenotype 

γ-hexachlorocyclohexane Hepatic steatosis 

Thioacetamide- Steatohepatitis 

Tunicamycin, Hepatic steatosis 

Perfluorooctane sulfonate 
(PFOS) Hepatic steatosis 

Tributyltin (TBT) Hepatic steatosis 

Amiodarone Hepatic steatosis 

Bisphenol A (BPA) Steatohepatitis 

(Adapted from Asaoka et al., 2014; Pham et al., 2017) 
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Table 12: Genetic zebrafish mutants of NAFLD 

Zebrafish Mutant Liver phenotype 

foie gras/trappc11 Hepatic steatosis 

ducttrip/ahcy Hepatic steatosis 

Cdipt Hepatic steatosis 

sec63 Hepatic steatosis 

Gmps Hepatic steatosis 

stk11 Hepatic steatosis 

slc7a3a Fasting-induced steatosis 

mbtps1 Hepatic steatosis 

cnr2 Hepatic steatosis 

socs1a Hepatic steatosis 

(Adapted from Pham et al., 2017) 
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Table 13: Transgenic zebrafish models of NAFLD 

Transgenic line Transgene expressed Phenotype 

Tg(−2.8fabp10a: 
HBV.HBx-GFP) 

Hepatitis B virus X protein (HBx) 
Hepatic steatosis, hepatitis, liver 

hypoplasia 

Tg(fabp10a:  
GFP-gank) 

Ankyrin repeat protein 
(gankyrin) 

Hepatic steatosis 

Tg(fabp10a: 
dnfgfr1-EGFP) 

Dominant-negative fibroblast 
growth factor receptor 1 

(dnfgfr1) 
Hepatic steatosis, cholestasis 

Tg(fabp10a: 
EGFP-YY1) 

Ubiquitous transcription factor 
yin yang 1 (yy1) 

Hepatic steatosis 

Tg(fabp10a:Tetoff- 
CB1R:2A:eGFP) 

Cannabinoid receptor 1 (cb1r) Hepatic steatosis 

Tg(actb2:EGFP-
nr1h3) 

Tg(fabp2:EGFP-r1h3) 

Global (actb2 promoter) or 
intestinal (fabp2 promoter) 

expression of Liver X receptor 
(nrlh3) 

Hepatic steatosis 

(Adapted from Pham et al., 2017) 

10. Concluding remarks   

To conclude, zebrafish is a reliable model to study and simulate human diseases. Zebrafish 
advantages weighs more than its limitations. Its small size, easy husbandry, resemblance 
with human in terms of liver structure, function, xenobiotic metabolism, immune system and 
iron/ heme homeostasis, its pathophysiological behavior towards toxicants, human like 
genetic makeup and availability of transgenic models make this model better than several 
other models.   
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Objectives 
The rate of NAFLD prevalence is continuously rising worldwide. Among etiological factors, 
obesity is one of the crucial causes of NAFLD development. Like NAFLD, obesity prevalence is 
also increasing with figures reaching 50% of overweight people globally. Further, around 
90% of obese people have been reported with NAFLD. The first stage of NAFLD, called 
steatosis is known to sensitize the hepatocytes and make them more vulnerable towards 
aggression by secondary factors. These aggressive factors induce steatosis progression 
towards steatohepatitis. Environmental contaminants have been recently considered as 
being important aggressive factors to play part in liver disease progression. These 
contaminants are thought to produce more deleterious effects in liver, even at low doses 
especially when found in mixture, in vulnerable population like people with obesity and 
diabetes. In developed countries, individuals could be impacted by several of these factors 
via diets, lifestyle or environment with, for example, high fat diet, smoked/grilled meat and 
ethanol. In addition, they are exposed to environmental contaminants, generated from 
automobile fuel combustion, industrial smoke and cigarette. This population is thus at high 
risk to develop liver toxicity. Recently, within the frame of our Steatox ANR project, we have 
discovered by using in vitro as well as in vivo models that mixture of low doses of 
benzo[a]pyrene (B[a]P), a widespread environmental contaminant, along with ethanol, 
another well known hepatotoxicant is able to induce steatosis progression towards 
steatohepatitis-like state. Furthermore, continuing with in vitro models, we have further 
found that hepatotoxicity induced by B[a]P/ethanol co-exposure in steatotic state is partly 
due to alterations in B[a]P and ethanol metabolism and oxidative stress. We also found in 
vitro the involvement of an AhR-dependent mitochondrial dysfunction, in vitro, as an 
important player of hepatotoxicity under such experimental conditions (Bucher et al., 2018a, 
2018b; Tête et al., 2018).  

NAFLD is not only limited to the hepatocytes but also several other cells and body tissues like 
immune cells, adipose tissue, pancreas through insulin regulation and microbiota from gut 
have impact on NAFLD development and progression. Thus it is very important to explore 
the mechanisms of NAFLD progression by using any reliable and efficient in vivo model. The 
use of in vivo models will also provide opportunity to integrate all intercellular and inter-
tissue crosstalk and thus, to try to be more relevant to what can occur in human. Zebrafish 
larva model has already been used by our team to validate its reliability for determining 
hepatotoxic mechanisms in response to chemical exposure (Podechard et al., 2017); 
moreover, our team has shown that B[a]P/ethanol co-exposure can elicit NAFLD progression 
to steatohepatitis-like state in HFD-fed zebrafish larva (Bucher et al., 2018b). In this context, 
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in order to explore the in vivo mechanisms underlying NAFLD progression after such a co-
exposure to B[a]P and ethanol under steatotic state, we have chosen to use this in vivo 
model of zebrafish larva to perform the work currently presented in my thesis.  

To explore the mechanisms underlying the in vivo pathological progression of steatosis upon 
toxicant co-exposure, we first focused on membrane remodeling, as first cellular interaction 
of toxicants is at cell membrane level. Further, several in vitro as well as in vivo studies have 
proven that these toxicants, when exposed, alone can alter membrane physicochemical 
properties and induce membrane remodeling. Moreover, one in vitro study from our team 
has also determined the effects of co-exposure of B[a]P and ethanol on membrane in normal 
rat primary hepatocytes and found enhanced toxicity via membrane remodeling with co-
exposure of toxicants in comparison to alone exposure. Therefore, in our experimental 
condition i.e. HFD-fed larva co-exposed with B[a]P and ethanol, we first analysed membrane 
remodeling and found that this mechanism could be an important player of hepatotoxicity 
that can elicit NAFLD progression towards steatohepatitis. 

In order to have a more global approach, we next performed transcriptomic analysis that 
displayed several signaling and cellular mechanisms like mitochondrial dysfunction, 
alterations in heme/iron homeostasis, oxidative stress and involvement of AhR signaling. 
During my thesis work, we designed our experiments to assess each of these mechanisms in 
order to explore their role in NAFLD progression in HFD-fed zebrafish larva co-exposed to 
B[a]P and ethanol. In this context, we came across, for the first time to our knowledge, with 
intra-mitochondrial accumulation of iron.  We found that this excessive iron pool in 
mitochondria is the possible cause of mitochondrial dysfunction and possibly linked to AhR 
signaling. 
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Results 
Results obtained during the course of my PhD are presented in following two articles 

1. The Membrane Remodeling as a Key Player in the Hepatotoxicity Induced by Co-
Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae (Published in 
Biomolecules) 

2. Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial 
dysfunction as a key event of NAFLD progression induced by benzo[a]pyrene/ethanol 
co-exposure (Ready for submission) 
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Introduction 

The raise in NAFLD prevalence that manifests from steatosis to more severe liver pathologies 
constitutes an important public health concern worldwide. Steatosis, characterized by 
triglyceride accumulation in hepatocytes, is considered to sensitize liver cells towards 
aggressive factors as ethanol and environmental toxicants. These factors drive the 
pathologic progression of steatosis towards steatohepatitis. In 2018, our team has found 
that benzo[a]pyrene (B[a]P), a complete carcinogen, and ethanol, a hepatotoxicant, used in a 
mixture at low concentrations, induces the pathological progression of prior established 
steatosis towards steatohepatitis-like state (Bucher et al., 2018b). During the last years, 
various pathophysiological mechanisms responsible for NAFLD progression have been 
suggested such as oxidative stress. Besides, in recent times, membrane remodeling, 
characterized by changes in plasma membrane physico-chemical characteristics and/or in 
lipid raft dynamics, has been suggested as a common molecular mechanism of 
hepatotoxicity for various chemicals, including benzo[a]pyrene (B[a]P) and ethanol (Aliche-
Djoudi et al., 2011; Collin et al., 2014; Tekpli et al., 2010). However, participation of toxicant-
induced membrane remodeling in vivo has yet to be explored in the context of steatosis 
progression induced by co-exposure to B[a]P and ethanol.  

Experimental design 

Zebrafish larva was used as experimental in vivo model for the study. Larvae were called 
obese as these were fed with obesogenic high fat diet (HFD), which in result developed 
steatosis. Even if these larvae should not be termed as such at this stage, since adipose 
tissue is not developped or observable, we kept this term in order to simplify reading and 
explanation. Steatosis was achieved following only single day of feeding with HFD on 4-day 
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post fertilization (dpf). Steatosis was assured by means of Nile red staining. From 5 dpf, 
zebrafish larvae were exposed to sub-lethal concentrations of ethanol (43 mM) or B[a]P (25 
nM) alone or in co-exposure, up to 12 dpf in order to progress towards a steatohepatitis-like 
state. This latter state was confirmed by examining hepatocyte injury through histological 
method and by assessing mRNA expression of several genes involved in inflammation, cell 
death, hepatotoxicity and cellular stress. Membrane remodeling was assessed by staining 
with the fluoroprobe di-4-ANEPPDHQ. It provided us the GP value, characteristic of 
membrane order, which depends on physicochemical characteristics of membranes such as 
lipid packing and lipid bilayer fluidity. Lastly, role for membrane remodeling in this type of 
disease progression of steatosis was additionally evaluated with pravastatin, which has the 
capacity to decrease cholesterol contents, thus disrupting lipid raft integrity.  

Results and conclusion 

The doses, selected for toxicants, were quite low. Indeed, for ethanol, the dose used in our 
study was 43 mM, which led to an internal dose of 10 mM (0.46 g/L) inside larvae (data not 
shown). This concentration is less than drinking guidelines for general populations issued by 
the International Alliance for Responsible Drinking in 2017. Considering B[a]P, a 
concentration range of 0.5–40 nM was obtained in serum from military personnel (Walker et 

al., 2016). Thus, the dose of B[a]P selected for the present study, was 25 nM. This low dose 
toxicant co-exposure to ethanol and B[a]P produced liver toxicity as shown by a higher 
number of damaged cells and altered mRNA expression of inflammatory, cell death and 
hepatotoxic markers. It also induced membrane remodeling as it significantly increased 
global membrane order in hepatocytes of HFD fed zebrafish larvae, thus, probing an increase 
of lipid raft clustering. Pravastatin, which disturbs membrane characteristics, particularly at 
the lipid raft level (via decreasing endogenous cholesterol biosynthesis), significantly 
decreased membrane ordering and prevented the impact of toxicant co-exposure on cell 
membrane in hepatocytes of larvae; as a consequence, a decreased hepatocyte damage 
compared to zebrafish larvae unexposed to pravastatin was detected. To conclude, 
membrane remodeling was evidenced as one of the key elements causing hepatotoxicity. In 
this context, it could be a good target to counteract steatohepatitis in therapy development. 
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Abstract: The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important
public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as
benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties
of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity
and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in
the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and
ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet
were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human
exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global
membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated
by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling
was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of
toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that
B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which
could be considered as a good target mechanism for developing combination therapy to deal
with steatohepatitis.

Keywords: membrane remodeling; lipid raft; zebrafish larva; high-fat diet; liver steatosis;
steatohepatitis; co-exposure; ethanol; benzo[a]pyrene; pravastatin

1. Introduction

The significant rise in obesity prevalence in recent decades constitutes an important public
health concern worldwide. It exposes a person to several pathophysiological ailments including
steatosis defined by an excessive lipid accumulation in hepatocytes [1]. Steatosis dominates liver
diseases in countries consuming the western diet, i.e., containing an important amount of fat and/or
carbohydrates [2,3]. It is viewed as a benign hepatic lesion but can sensitize hepatocytes towards
subsequent aggressions, thereby leading to steatohepatitis, which is characterized by liver cell death,
inflammation and recurrent involvement of oxidative stress [4–11]. Furthermore, steatohepatitis can
manifest in more severe hepatic diseases like fibrosis, cirrhosis and ultimately hepatocellular carcinoma
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(HCC) [12]. Hence, people with steatosis constitute a high-risk population for their evolution towards
severe hepatic pathologies. In this context, more thorough research, notably regarding the factors
driving the pathological progression of steatosis to steatohepatitis, is urgently needed.

Depending on the etiology, fatty liver diseases can be grouped in two categories: alcoholic
liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD) with a cut-off based on alcohol
consumption of 20 g/day [13–15]. Considering NAFLD, beyond classical causes like lack of exercise,
genetic predisposition, over-nutrition of fat/carbohydrates and associated obesity, a number of
environmental toxicants has more recently been identified as implicated in similar liver diseases notably
by affecting hepatic lipid metabolism, thus raising the concept of toxicant-associated fatty liver diseases
(TAFLD) and toxicant-associated steatohepatitis (TASH) [16–19]. In addition, light or moderate alcohol
consumption has also been raised as a possible factor of NAFLD even if it is still controversial [13,20].
Overall, obesity, alcohol and environmental contaminants—i.e., frequently involved factors in
NAFLD—have been largely studied independently. Nevertheless, a few studies have shown prompt
deterioration of liver state if two factors act simultaneously [13,21–26]. However, the effects of all three
factors together on the liver state has rarely been explored to date [27]. In this context, the impact of
the environmental contaminant, benzo[a]pyrene (B[a]P), in combination with an important lifestyle
hepatotoxicant, ethanol, considering the obese (vulnerable) population frequently bearing hepatic
steatosis, was described in a recent work by our team [27]. We showed that the association of
these three different factors modeling these etiologies i.e., co-exposure to ethanol and B[a]P in
animals fed with a high-fat diet (HFD) could drive liver disease progression [27]. B[a]P—an agonist
of the aryl hydrocarbon receptor (AhR)—belongs to the polycyclic aromatic hydrocarbon family,
and is a well-known genotoxic carcinogen for humans. It is a widespread environmental pollutant,
which derives from diesel exhaust fumes, grilled food, cigarette smoke among other causes;
it is biotransformed by liver, and it is suggested that it induces liver steatosis and HCC, not only in
experimental models but also in humans [22,28–30].

During the last few years, various mechanisms responsible for chemical-induced hepatotoxicity
have been suggested. Among them, in recent times, membrane remodeling—defined as changes
in membrane fluidity and/or in lipid raft characteristics—have been identified as a common toxic
mechanism for several chemicals, including B[a]P and ethanol, both in vitro and in vivo [31–35].
In fact, it has been shown that B[a]P can activate the cytosolic receptor AhR with a consequent
translocation of the ligand–receptor complex to the nucleus; after heterodimerization with its partner,
the aryl receptor nuclear translocator. AhR could then act as a transcription factor. This AhR activation
along with reactive oxygen species (ROS) production—linked to the metabolism of B[a]P—could affect
lipid metabolism, thereby decreasing cholesterol synthesis and inducing membrane remodeling;
such remodeling was responsible for hepatocyte death in vitro [30,36,37]. Ethanol-induced membrane
remodeling is also largely reported to be involved in hepatocyte toxicity and in liver injury both
in vitro and in vivo, notably through toll-like receptors (TLR) activation, which are proteins described
as located in plasma membrane lipid rafts of liver cells [33–35,38,39]. Furthermore, our team has
also described that, in vitro, membrane remodeling can play a key role in cell death induced by
B[a]P/ethanol co-exposure of non steatotic hepatocytes, even at low doses [40]. In addition, a role for
membrane remodeling is asserted in non-alcoholic steatohepatitis linked to obesity and HFD, as TLRs
have been identified as key players of this disease [4,41]. Finally, involvement of membrane remodeling
in chemical-induced in vivo hepatotoxicity has been shown in a model of a zebrafish larva [33].
However, even if we have found that co-exposure to low doses of B[a]P and ethanol could drive the
progression of HFD-induced steatosis to a steatohepatitis-like state in this model [27], the involvement
of membrane remodeling in this multifactorial NAFLD progression has not been explored yet.

To this end, we have focused our study on the model of zebrafish larva for several reasons.
Zebrafish and humans largely share genomic homology. These animals exhibit rapid but similar
liver development to rodents and humans, with which they share common physio-pathological
processes [42–45]. From 5 days post-fertilization (dpf), the liver is indeed functional and expresses
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enzymes responsible for xenobiotic metabolism that resemble those expressed in humans like
cytochrome P450 2E1 (CYP2E1) and alcohol dehydrogenase for alcohol or CYP1A for B[a]P [43,46–49].
Beside the numerous advantages of zebrafish larva, notably for assessing hepatotoxicant effects [50–53],
this model has already been demonstrated as very useful for studying fatty liver diseases [54–59].
In addition, the suitability of this model for studying the involvement of membrane remodeling in
chemical-induced liver toxicity has already been reported [33]. Finally, we have recently described that
co-exposure of HFD-fed larva to B[a]P and alcohol leads to a steatohepatitis-like state of the liver [27].

In the present study, the objective was, thus, to test the possible involvement of membrane
remodeling in the disease progression of steatosis in zebrafish HFD-fed larvae upon co-exposure to
two second hits, that is B[a]P and ethanol, at low doses. Therefore, at first, we evaluated steatosis with
a Nile red staining; then its evolution towards steatohepatitis-like state after seven days of co-exposure
was studied by examination of a histological liver injury and an assessment of the expression of several
genes involved in the characteristic features of steatohepatitis—inflammation, cell death, markers
of hepatotoxicity and general cellular stress response. In a second part, we evaluated membrane
remodeling by staining with the fluoroprobe di-4-ANEPPDHQ, which is sensitive to membrane order.
Finally, the involvement of membrane remodeling in this pathological progression of steatosis was
explored by using pravastatin—a drug described for its capacity to disturb membrane properties,
especially at the lipid-raft level through the inhibition of endogenous cholesterol synthesis.

2. Results

2.1. Progression of High-Fat Diet Induced Steatosis to a Steatohepatitis-Like State in Zebrafish Larvae upon
Co-Exposure to B[a]P and Ethanol

We previously developed an in vivo zebrafish larva model with or without steatosis for studying
the effects of various toxicants [27,33]. We found that liver steatosis could be induced in zebrafish larvae
at 5 dpf, with only one day of HFD that increased oil red o staining, liver size with respect to whole body,
triglyceride content, and mRNA level of apolipoprotein A-II (apoa2 and cyp2y3 gene—homologous of
the human CYP2E1 gene—in comparison to a standard diet (SD) [27]. In the present study, steatosis
was further confirmed by using Nile red staining. The fluorescence ratio of the stained liver of
HFD-fed larvae was, indeed, significantly higher compared to the SD-fed larvae liver (Figure 1A,B),
thus indicative of an accumulation of neutral lipids in the liver of HFD-fed larvae.

Following the onset of steatosis, larvae were then exposed to ethanol or B[a]P alone or in
co-exposure at sub-lethal concentrations for seven days in order to elicit pathological progression
of this disease. For each toxicant, a dose of exposure was chosen in respect to the human level of
exposure. Thus, the dose used for ethanol was 43 mM that reached 10 mM (0.46 g/L) inside larvae
(data not shown). This concentration is less than drinking guidelines for general populations issued by
the International Alliance for Responsible Drinking in 2017 [60]. Considering B[a]P, a concentration
range of 0.5–40 nM was obtained in serum from military personnel [61]. Thus, the dose of B[a]P,
selected for the present study, was 25 nM. Liver cell damage—a prime characteristic of a progression
towards steatohepatitis [6,11,62]—was analyzed by producing histological liver sections of zebrafish
larva (Figure 1C), and damaged hepatocytes—ballooning cells, vacuolated cells and hepatocyte
dropouts—were counted in each experimental condition. As shown in the histogram (Figure 1D),
ethanol and B[a]P alone enhanced liver toxicity as visualized by an increased number of damaged
cells in comparison to the control, with a further significant effect of co-exposure compared to all
other conditions.

The second main characteristic of steatohepatitis—i.e., inflammation [6–11,62]—was tested by
analyzing the mRNA expressions of various inflammatory gene markers, such as crp, nfkb, il1b and il6,
in whole larvae (Figure 2A). mRNA expressions of all four inflammatory markers were significantly
higher in larvae co-exposed with B[a]P and ethanol in comparison to control larvae with a more marked
effect regarding crp. Ethanol or B[a]P alone were also able to induce these expressions but a further
significant induction was observed on crp expression when larvae were exposed to both toxicants.
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Figure 1. Progression of high-fat diet (HFD) induced steatosis in zebrafish larvae to a 
steatohepatitis-like state upon co-exposure to ethanol and benzo[a]pyrene. Zebrafish larvae were fed 
with a HFD from 4 days post-fertilization (dpf) until 5 dpf and compared to larvae fed with a 
standard diet (SD) in order to observe the development of steatosis at 5 dpf (A,B). Lipid 
accumulation was analyzed after Nile red staining in HFD larvae as well as in SD larvae using 
confocal microscopy (excitation/emission (ex/em) wavelength: 488/500–560 nm, magnification ×400). 
(A) Representative images of larva staining are presented in which the liver has been outlined in 
white. (B) In order to estimate the relative amount of neutral lipids in the liver, the ratio of 
fluorescence intensity was calculated from images of more than 15 larvae per diet as follows: 
Fluorescence ratio = (intensity of neutral lipid staining with Nile red (ex/em wavelength: 488/500–560 
nm)/(intensity of unspecific staining (autofluorescence; ex/em wavelength: 405/450–480 nm))). 
Values are the mean ± standard error of the mean (SEM) of at least 12 larvae per diet. Zebrafish 
larvae fed with HFD from 4 dpf and exposed to ethanol and/or B[a]P for seven days from 5 to 12-dpf 
to achieve four conditions—untreated (C) or treated with 25 nM B[a]P (B), 43 mM ethanol (E) or a 
combination of both toxicants (BE,C,D). (C) Liver damage was evaluated on zebrafish liver sections 
after HES staining (magnification ×400). Black dotted line outlines liver. Histological liver sections 
were magnified to show, surrounded by the white dotted line, a normal hepatocyte, a vacuolized 
hepatocyte, a cellular dropout and a ballooning hepatocyte (red arrow). Images are representative of 
at least five larvae. (D) From images obtained in (C), the histological count of damaged cells was 
realized. Values are the mean ± SEM of at least five larvae. ## Significantly different from SD larvae; * 
Significantly different from HFD control larvae; a Significantly different from larvae treated by 
ethanol only; b Significantly different from larvae treated by B[a]P only. 
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Figure 1. Progression of high-fat diet (HFD) induced steatosis in zebrafish larvae to a steatohepatitis-like
state upon co-exposure to ethanol and benzo[a]pyrene. Zebrafish larvae were fed with a HFD from
4 days post-fertilization (dpf) until 5 dpf and compared to larvae fed with a standard diet (SD) in order
to observe the development of steatosis at 5 dpf (A,B). Lipid accumulation was analyzed after Nile
red staining in HFD larvae as well as in SD larvae using confocal microscopy (excitation/emission
(ex/em) wavelength: 488/500–560 nm, magnification ×400). (A) Representative images of larva
staining are presented in which the liver has been outlined in white. (B) In order to estimate the relative
amount of neutral lipids in the liver, the ratio of fluorescence intensity was calculated from images of
more than 15 larvae per diet as follows: Fluorescence ratio = (intensity of neutral lipid staining with
Nile red (ex/em wavelength: 488/500–560 nm)/(intensity of unspecific staining (autofluorescence;
ex/em wavelength: 405/450–480 nm))). Values are the mean ± standard error of the mean (SEM) of at
least 12 larvae per diet. Zebrafish larvae fed with HFD from 4 dpf and exposed to ethanol and/or B[a]P
for seven days from 5 to 12-dpf to achieve four conditions—untreated (C) or treated with 25 nM B[a]P
(B), 43 mM ethanol (E) or a combination of both toxicants (BE,C,D). (C) Liver damage was evaluated
on zebrafish liver sections after HES staining (magnification ×400). Black dotted line outlines liver.
Histological liver sections were magnified to show, surrounded by the white dotted line, a normal
hepatocyte, a vacuolized hepatocyte, a cellular dropout and a ballooning hepatocyte (red arrow).
Images are representative of at least five larvae. (D) From images obtained in (C), the histological
count of damaged cells was realized. Values are the mean ± SEM of at least five larvae. ## Significantly
different from SD larvae; * Significantly different from HFD control larvae; a Significantly different
from larvae treated by ethanol only; b Significantly different from larvae treated by B[a]P only.
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Figure 2. Impact of B[a]P/ethanol co-exposure on the mRNA expression of several genes involved
in different biological processes characteristic of steatohepatitis. mRNA expression was evaluated
by quantitative reverse transcription polymerase chain reaction (RT-qPCR) (A–D). Zebrafish larvae
were fed with HFD from 4 dpf and exposed to ethanol and/or B[a]P for seven days from 5 to 12
dpf to achieve four conditions—untreated (C) or treated with 25 nM B[a]P (B), 43 mM ethanol (E)
or a combination of both toxicants (BE). For the experiments with paracetamol, 1 mM paracetamol was
added to the incubation medium containing zebrafish larvae from 5 to 12 dpf. mRNA expression of
genes characteristic of inflammation and cell death (A), hepatotoxicity (B,C) and general cellular stress
response (D) are shown. Data are expressed relative to mRNA levels found in HFD control larvae,
set at 0 (log 2 change). Values are the mean ± SEM. * Significantly different from HFD control larvae;
a Significantly different from larvae treated by ethanol only; b Significantly different from larvae treated
by B[a]P only.



Biomolecules 2018, 8, 26 6 of 20

The cell death marker, casp3a, was also found to increase significantly in toxicant co-exposed
larvae, which is coherent with a classical increase of apoptosis in steatohepatitis [63,64] (Figure 2A).
However, a similar increase as for co-exposure was also observed with each toxicant alone. Several
studies have described markers characteristic of hepatotoxicity in zebrafish such as tgfb, tfa, zgc163022
in addition to nfkb, casp3a and some other [50,52]. For validation of these hepatotoxic markers in
our conditions, we treated zebrafish larvae with paracetamol (1 mM), a well-known hepatotoxic
agent, for the same long-term exposure as for B[a]P and ethanol and tested the expression of markers
representative of hepatotoxicity (Figure 2B). Our data clearly indicated that paracetamol significantly
altered the expression of these hepatotoxic markers with a rise of tgfb and zgc163022 and an inhibition
of tfa expression as already described for short-term exposure [50,56]. Therefore, we decided to
quantify the mRNA expression of these hepatotoxic markers in larvae co-exposed with ethanol
and B[a]P. As illustrated in Figure 2C, a significant change in expression of tgfb, tfa and zgc163022
was observed, in a similar way as with paracetamol, especially in co-exposed larvae. This thus
confirmed the hepatotoxicity of the B[a]P/ethanol co-exposure. Finally, the expression of genes
induced in response to general cellular stress, such as nrf2a, nqo1 and gstp1, was also tested since cellular
stress is commonly associated with NAFLD and xenobiotic metabolism/toxicity [65,66]. We found
that the expression of these genes was significantly augmented with either toxicant (Figure 2D).
In coherence with crp, co-exposure further enhanced, in a significant manner, the expression of all
three genes induced in response to general cellular stress in comparison to toxicants alone (Figure 2D).
Together, these results confirm that co-exposure to both toxicants drives the progression of steatosis
toward a steatohepatitis-like state even if further investigation will be required to fully confirm the
inflammatory state, notably by looking for immune cell infiltration.

2.2. Involvement of Membrane Remodeling in the Hepatotoxicity Induced by B[a]P and Ethanol Co-Exposure in
Zebrafish Larvae

Previously, our team described the reliability of the zebrafish model to study the effects of
hepatotoxicants on plasma membranes [33]. Further, membrane remodeling was identified as a key
mechanism of co-exposure to B[a]P and ethanol to induce hepatotoxicity in vitro [40] and for ethanol
in vivo [33]. However, the involvement of membrane remodeling in vivo has never been investigated
in the context of steatosis progression, notably upon co-exposure with B[a]P and ethanol. In the present
study, the impact of such a co-exposure on membrane remodeling was thus determined by analysis
of membrane order with the fluorescent hydrophobic probe—di-4-ANEPPDHQ. This allowed us
to calculate a generalized polarization (GP) value representative of membrane order that depends
on the chemical and physical properties of membranes—lipid composition and packing, fluidity
and lipid bilayer thickness, and local hydration. In addition, lipid rafts—specialized membrane
microdomains that can also be defined by their high membrane order—could be visualized through
membrane areas with high GP values [33,67–69]. After staining the whole zebrafish larvae with
di-4-ANEPPDHQ, liver images—characteristic of membrane order—were acquired by computing
the GP value obtained from fluorescence images of lipid bilayers with low-membrane lipid order—
the liquid disordered (Ld) phase—and with high-membrane lipid order—the liquid ordered (Lo) phase.
It was observed that exposure of zebrafish larvae to ethanol or B[a]P alone has no significant effect
on global membrane order in liver cells (data not shown). However, when tested in combination,
they enhanced global membrane order in a significant manner in the liver of HFD-fed zebrafish larvae
(Figure 3A). Furthermore, numerous membrane domains with high GP value-defining lipid rafts,
possibly reflecting their clustering, were observed at the level of the plasma membrane of liver cells in
larvae treated with toxicant co-exposure in comparison to untreated larvae (Figure 3B). This, therefore,
indicated that B[a]P/ethanol co-exposure induced membrane remodeling in HFD-fed larvae.
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Figure 3. Co-exposure to alcohol and benzo[a]pyrene-induced membrane remodeling in the liver of
HFD zebrafish larvae. Membrane order and lipid raft spatial distribution characteristics of membrane
remodeling was assessed in liver cells of steatotic zebrafish larvae after co-exposure to ethanol and
B[a]P for seven days from 5 to 12 dpf. Zebrafish larvae under two conditions—untreated (C) or treated
with combination of 43 mM ethanol and 25 nM B[a]P (BE)—were stained with di-4-ANEPPDHQ—
a membrane order-sensitive fluorescent probe—and analyzed by confocal fluorescence microscopy.
Membrane order in membranes of zebrafish liver was measured by computing the generalized
polarization (GP) factor. (A) Changes in GP values were expressed as the difference between individual
larva GP value and the mean of GP found in control larvae (∆GP). (B) On the left, some representative
liver images of each treatment have been selected according to the respective mean of delta GP
(magnification ×400). Pixels with higher GP values (which could be considered as lipid rafts) have
been highlighted in yellow to pinpoint lipid raft spatial distribution. The liver area outlined in the
white square on the left images are magnified on the right side to show lipid raft spatial distribution in
the plasma membrane. Values are the mean ± standard error of the mean (SEM) of at least 25 larvae.
* Significantly different from HFD control larvae.

2.3. Role for Membrane Remodeling in the Protective Effect of Pravastatin against Co-Exposure-Induced
Hepatotoxicity in Zebrafish Larvae

Finally, with the aim of testing the involvement of membrane remodeling in hepatotoxicity
produced by B[a]P/ethanol co-exposure, a lipid raft disrupter, pravastatin [70], was used as it was
demonstrated to be effective in zebrafish larvae [33] (Figure S1). Pravastatin—a cholesterol synthesis
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inhibitor—prevented the effects of co-exposure to B[a]P and ethanol on the cell membrane in zebrafish
larvae by significantly reducing the membrane order (Figure 4A). Moreover, it also decreased the
impact of co-exposure on the lipid raft spatial distribution in the plasma membrane of liver cells,
thus pointing to a prevention of lipid-raft clustering (Figure 4B). Regarding the consequences in terms
of hepatotoxicity, the histological analysis of liver from steatotic zebrafish larvae co-exposed with
pravastatin and toxicants showed less liver cell damage (Figure 4C) compared to larvae unexposed
to pravastatin (Figure 1C). Indeed, this molecule significantly reduced the number of damaged cells
(Figure 4D). The last set of experiments was performed to test the impact of pravastatin on the mRNA
expression of the genes altered by B[a]P/ethanol co-exposure. Our data showed that pravastatin
prevented alterations in the expression of several genes involved in inflammation (crp, il6), cell death
(casp3a) and also one hepatotoxic marker (zgc163022). However, no effect on tfa and on genes related
to cellular stress response (nrf2a, nqo1 and gstp1) was detected (Figure 5A–C). Note that pravastatin
alone enhanced the expression of nfkb, il1b and, to a lesser extent, tgfb (Figure 5A,B). Overall, our
results indicated that pravastatin could protect liver from injury induced by toxicant co-exposure,
thus indicating the involvement of membrane remodeling and especially lipid-raft clustering in the
pathological progression of steatosis upon co-exposure to B[a]P and ethanol.
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Figure 4. Protective effect of pravastatin towards membrane remodeling and hepatotoxicity-induced
by B[a]P/ethanol in HFD zebrafish larvae. Membrane remodeling was assessed in the liver of HFD
steatotic zebrafish larvae after exposure to ethanol and B[a]P for seven days with and without
pravastatin (0.5 µM) from 5 to 12 dpf. Zebrafish larvae under four conditions, control (untreated
(C) ± Pravastatin), or treated with combination of both toxicants (BE ± Pravastatin; 25 nM B[a]P
and 43 mM ethanol) were stained with di-4-ANEPPDHQ—a membrane order-sensitive fluorescent
probe—and analyzed on confocal fluorescence microscopy. Membrane order in membranes of zebrafish
liver was measured by computing GP factor. (A) Changes in GP values were expressed as the difference
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between individual larva GP value and the mean of GP found in control larvae (∆GP). Values are
the mean ± SEM of at least eight larvae. (B) On the left, some representative liver images of each
treatment have been selected according to the respective mean of delta GP (magnification ×400).
Pixels with higher GP values (could be considered as lipid rafts) have been highlighted in yellow
through membrane area of liver cells to pinpoint lipid raft spatial distribution. Liver area outlined
in white square on left images are magnified on right side to show lipid raft spatial distribution in
plasma membrane. (C) Liver damages were evaluated on zebrafish liver section after HES staining
(magnification ×400). Black dotted line outlines liver. Images are representative of at least 3 larvae.
(D) From images obtained in (C), histological count of damaged cells was realized. Values are the
mean ± SEM of at least three larvae. * Significantly different from HFD control larvae; P Significant
difference between larvae treated by pravastatin compared to untreated counterparts.
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Figure 5. Impact of pravastatin on mRNA expression of several genes involved in different biological
processes characteristic of steatohepatitis after exposing HFD zebrafish larvae to a combination of
B[a]P and ethanol. mRNA expressions of several genes were evaluated by RT-qPCR (A–C). Zebrafish
larvae were fed with HFD from 4 dpf and from 5 dpf, they were either left untreated (C) or treated with
co-exposure of 43 mM ethanol and 25 nM B[a]P (BE) until 12 dpf. Both conditions were also treated
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with 0.5 µM pravastatin as quoted as (C ± pravastatin) and (BE ± pravastatin), respectively.
mRNA expressions of genes characteristic of inflammation and cell death (A), hepatotoxicity (B) and
general cellular stress response (C) are shown. Data are expressed relative to mRNA level found
in HFD control larvae, set at 0 (log 2 change). Values are the mean ± SEM. * Significantly different
from HFD control larvae; P Significant difference between larvae treated by pravastatin compared to
untreated counterparts.

3. Discussion

Several mechanisms are known to be involved in the toxicity of B[a]P and ethanol towards
the liver—oxidative stress, cell death, inflammation and mitochondrial dysfunction [33,36,40,71–74].
In addition, another process that has been highlighted in this context is membrane remodeling.
In fact, B[a]P was suggested to repress HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) in vitro
via AhR activation and ROS, thus hindering cholesterol synthesis and modulating the lipid content of
lipid rafts, finally leading to hepatocyte cell death [36]. Ethanol is also described to alter cell membrane
properties by modifying fluidity and lipid-raft clustering in plasma membrane in vitro and in vivo with
consequences on cell death and liver injury [33,38]. More recently, co-exposure to B[a]P and ethanol
was also shown in vitro in primary hepatocytes to induce membrane remodeling, with consequences in
terms of hepatotoxicity [40]. Besides, these same compounds used in combination were demonstrated
to induce the progression of steatosis to a steatohepatitis-like state, notably in a model of zebrafish
larva. At the same time, HFD—the principal cause of steatosis—was also identified as modifying the
physicochemical properties of the membrane by altering its lipid composition or lipid-raft protein
activity; it was proposed that this process was involved in NAFLD progression in association or not
with hepatotoxicants [41,75,76]. Therefore, in the present study, membrane remodeling was explored
in vivo, using the steatotic zebrafish larva model co-exposed with B[a]P and ethanol in order to assess
its implications for steatohepatitis development. We found that B[a]P and ethanol, when applied
together, significantly altered zebrafish liver cell membrane properties by increasing the overall
membrane order in comparison to the control. In parallel, a larger staining of high-ordered membrane
domains—showing higher lipid-raft spatial distribution—was also seen in the plasma membranes of
larvae liver cells when co-exposed with B[a]P and ethanol, thus emphasizing more lipid-raft clustering.
This increase in membrane order and modification of lipid-raft spatial distribution—two indicators of
membrane remodeling—were coherent with histological sections, showing more damaged hepatocytes
in toxicant co-exposed larvae. However, exact characterization of membrane remodeling—global
and local membrane fluidity and lipid-raft microdomain structures—still needs further investigation
with special emphasis on B[a]P effects on cholesterol content and discrepancies over its effects in
comparison to those observed in vitro [36,40]. Higher membrane remodeling and, notably, the higher
level of plasma membrane lipid-raft clustering, suggest alteration of the lipid raft-associated signaling
pathway. Several previous studies have proven that alterations in cell membrane properties can
modulate several membrane receptors linked with lipid rafts such as toll-like receptors (TLR 2, 4
and 9), which induce, notably through the activation of NF-κB release, a variety of pro-inflammatory
cytokines such as interleukins (IL-1β and IL-6) and TNFα [39,41,62,77,78]. Here, mRNA expression
of several inflammatory and hepatotoxic markers was found to be increased including il1b, il6 and
nfkb. The simultaneous membrane remodeling, hepatocellular damage, and increase in inflammatory
markers associated with lipid rafts, therefore, suggested a link between hepatotoxicity of co-exposure
to B[a]P and ethanol and membrane remodeling.

The participation of membrane remodeling in co-exposure-induced hepatotoxicity was thus tested
in zebrafish larvae by assessing the impact of pravastatin; this molecule is indeed a known lipid-raft
disrupter. The addition of pravastatin along with B[a]P and ethanol counteracted the effects of toxicant
co-exposure on membrane order (Figure 4A) and prevented changes in lipid raft spatial distribution
(Figure 4B). Histological analysis then showed less hepatocyte damage, likely due to the protective
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action of pravastatin on the hepatocyte cell membrane. To confirm the role of membrane remodeling,
we tested pravastatin in vitro on the WIF-B9 hepatic cell line—an in vitro model of well differentiated
hepatocytes [33,79–81]. This cell line exhibited a similar type of results as in the zebrafish larvae
model; indeed, pravastatin decreased the number of apoptotic cells induced by toxicant co-exposure
in a steatotic state (Figure S2). These protective effects towards cell death were further supported
by the fact that pravastatin in zebrafish larvae prevented the effects of co-exposure on the mRNA
expression of casp3a and the hepatotoxic marker zgc163022. Besides the protection afforded towards
cell death, this molecule also inhibited the increase in mRNA expression of inflammatory markers,
namely crp and il6, in line with the previously described role for lipid rafts in steatohepatitis-related
inflammation [41,77]. Altogether, these results, therefore, indicate that pravastatin would decrease
the observed hepatotoxicity by counteracting membrane remodeling, thereby further endorsing the
contribution of membrane remodeling as a key player in the pathological progression of steatosis
induced by a mixture of toxicants such as B[a]P and ethanol. One might have argued that the
protective effect would have been through induction of cyp1a expression or through a decrease of
ethanol metabolism via inhibition of cyp2y3 expression, the zebrafish homolog of CYP2E1, or through
NRF2 pathway activation. Indeed, it has been previously reported that CYP1A1 can afford some
protective action against NAFLD in dioxin- [82] or B[a]P-exposed mice [22]; besides, it is known that
CYP2E1 is involved in ethanol toxicity [83], even in the zebrafish model [54]. Similarly, NRF2 pathway
activation may also provide protection through xenobiotic metabolism or via an action against oxidative
stress [84–86]. However, in our model, pravastatin had no significant effect on cyp1a or cyp2y3
expression (supplementary Figure S3A,B) nor on nrf2a and its regulated genes (Figure 5C), thus further
reinforcing a key role for membrane remodeling.

Although, pravastatin appeared to prevent hepatotoxicity, it seems that this protection would
be only partial in our model; indeed the alterations observed in the mRNA expression of several
genes were not all blocked. Henriksbo and Schertzer [87] have previously described the impact of
pravastatin per se on inflammatory markers such as CRP, IL-1β and IL-6. Whereas they reported
a decrease in CRP and IL-6 mRNA expression, which is clearly in favor of a protection afforded towards
inflammation, they also found that pravastatin increased the expression of IL-1β. Quite a similar result
was obtained in our study with an increased mRNA expression of il1b upon pravastatin; likewise,
an increase in nfkb expression (another inflammatory marker) was detected. This increase in some
inflammatory mediators/regulators might suggest exacerbation of inflammation in the liver and/or
whole larvae by pravastatin. A relatively similar type of finding regarding the liver was previously
observed with statins by others [88,89]. Such a proper effect of pravastatin might explain why no
protective effect of this compound towards toxicant co-exposure impact on these genes could be
observed (Figure 5A). Regarding the other genes studied, that is tfa and tgfb, both previously shown
as hepatotoxic markers [50,56], no effect of pravastatin towards co-exposure effects was detected.
As already mentioned, B[a]P and ethanol could produce hepatotoxicity via several mechanisms.
Based upon our results, pravastatin via cholesterol synthesis inhibition appeared to prevent toxicant
effects on membrane remodeling, which thus pointed to membrane remodeling as being involved in
steatosis progression. However, even though such a mechanism would be involved, we cannot
yet exclude other mechanisms for the action of statins such as an effect on mitochondrial fatty
acid oxidation [90], SREBP-2 (sterol regulatory element binding transcription factor 2) induced
autophagy [91], and others [92–94], to be effective in NAFLD [95–99].

Overall, this study shows for the first time that toxicant co-exposure can favor the progression
of liver steatosis towards a steatohepatitis-like state by inducing membrane remodeling, which is
involved in both cell death and inflammation. This mechanism can be switched off by a lipid-raft
disrupter. Therefore, this mechanism could be considered as a good target in addition to other
mechanisms—oxidative stress, inflammation, apoptosis and fibrosis [63]—for developing combination
therapy to deal with steatohepatitis.
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4. Materials and Methods

4.1. Zebrafish Larvae Handling and Exposure

Animals were handled, treated and killed in agreement with the European Union regulations
concerning the use and protection of experimental animals (Directive 2010/63/EU). All protocols were
approved by local ethic committee CREEA (Comité Rennais d’Éthique en matière d’Expérimentation
Animale, Rennes, France; approval number R-2012-NP-01). Fertilized zebrafish embryos—collected
following natural spawning—were obtained from the Structure Fédérative de Recherche Biosit
(INRA LPGP, Rennes, France). Embryos and larvae—sex unknown—were raised at 28 ◦C according
to standard procedures and as previously described [33]. From 4 dpf until the last day of treatment
renewal—at 9 dpf—larvae were fed daily with a SD, 10% of fat (Tetramin, Tetra, Blacksburg, VA, USA),
or with a HFD made of chicken egg yolk, ~53% of fat (Sigma-Aldrich, St. Louis, MO, USA),
for 1 h before medium renewal. Both diets were also previously used in zebrafish [27,100,101]. At 5 dpf,
larvae were exposed with 43 mM ethanol directly added to the incubation medium and/or by 25 nM
B[a]P in dimethyl sulfoxide (DMSO)—DMSO final proportion: 0.001% v/v—or by this vehicle only until
12-dpf. For experiments with pravastatin, 0.5 µM pravastatin (Sigma-Aldrich), was added along with
toxicants simultaneously; for experiments with paracetamol (1 mM; Acetaminophen; Sigma-Aldrich),
this was added to the incubation medium.

4.2. Neutral Lipid Staining with Nile Red

At 5 dpf, after 24 h of feeding, zebrafish larvae were washed in phosphate buffered saline (PBS)
and then fixed in 4% paraformaldehyde in PBS at 4 ◦C. A staining protocol of neutral lipids in liver
with Nile red was adapted from previous works [59,102]. After washing in PBS, whole larvae were
stained for 1 h with Nile red at 5 µg/mL (N3013, Sigma-Aldrich; stock solution was prepared at
100 µg/mL in acetone). Then, larvae were washed twice in PBS and mounted on slides with PBS.
Images of zebrafish larvae were acquired with a confocal fluorescence microscope LEICA DMI 6000 CS
(Leica Microsystems, Wetzlar, Germany). To evaluate neutral lipid content, a first image—characteristic
of neutral lipid fluorescence—was taken under excitation at 488 nm using an argon ion laser with
a photomultiplier tube (PMT) range of 500–560 nm (image A) whereas a second image—insensitive
to neutral lipids—was taken under excitation at 405 nm with a diode laser with a PMT range of
450–480 nm (image B) (magnification ×400). Using Fiji imaging processing software(ImageJ, [103]),
fluorescence intensity per liver area was calculated for both images; finally, the fluorescence ratio of
image A to image B was determined.

4.3. Histological Analysis of Liver Toxicity in Zebrafish Larvae

Histological analysis was performed as previously described [27]. Briefly, after treatment, larvae
at 12 dpf were washed in PBS and then fixed in 4% paraformaldehyde in PBS at 4 ◦C before being
embedded in paraffin. Then, 5 µm sections were stained with hematoxylin, eosin and safran red (HES)
and imaged on a Nanozoomer NDP (Hamamatsu Photonics K.K., Hamamatsu, Japan) (magnification
×400). A histological count of dead/damaged cells was performed from images (two or three sections)
of at least three larvae per condition. Damaged/dead cells were counted as cellular dropouts [104],
ballooning cells [105], and vacuolated hepatocytes [51].

4.4. Analysis of Gene mRNA Expression

Analysis of gene mRNA expression was performed as previously defined [27]. For mRNA
extraction, 10–20 larvae were pooled and homogenized in 100 µL TRIzol reagent and total RNA was
extracted according to the manufacturer’s protocol with TRIzol reagent. RNA samples (1 µg) were
then reverse-transcribed using the High-Capacity cDNA Reverse Transcription Kit (Life Technologies,
Carlsbad, CA, USA). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) (5 ng of
cDNA per well) was performed using SYBR Green on the CFX384 Touch Real-Time PCR Detection
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System (Bio-Rad, Hercules, CA, USA). mRNA expression was normalized by means of actb2, 18s and
gapdh mRNA levels. The ∆∆Ct method was used to indicate the relative expression of each selected
gene. Sequences of the tested zebrafish primers are provided in Table 1.

4.5. Membrane Order Determination by Fluorescence Staining

Plasma membrane order in zebrafish liver was assessed, as previously defined [33], by confocal
fluorescence microscopy using the membrane order-sensitive fluorescent probe, di-4-ANEPPDHQ
(Molecular Probes, Life Technologies). This probe displays a fluorescent spectral blue-shift from 620 nm
when incorporated into lipid bilayers with a low-membrane lipid order (liquid disordered phase, Ld)
to 560 nm when inserted into lipid bilayers with high-membrane lipid order (liquid-ordered phase, Lo).
After acquisition using confocal fluorescence microscopy of both disordered and ordered-phase
fluorescence images, a new image, indicative of membrane lipid order, was obtained by calculating the
GP value—a ratiometric measurement of fluorescence intensities for each pixel which is associated to
membrane lipid order [33,67]. Larva staining was realized as previously described [33]. After staining,
they were mounted in 80% glycerol-PBS solution for the observation with confocal fluorescence
microscope LEICA DMI 6000 CS (Leica Microsystems, Wetzlar, Germany). Under excitation at 488 nm
with an argon ion laser, ordered membrane images were acquired with a PMT range of 500–580 nm,
whereas for disordered membrane images the PMT range was 620–750 nm (magnification ×400).
Using Fiji imaging processing software (ImageJ, [103]) and the macro published by Owen et al. [67],
GP images were generated according to the following calculation: GP = (I500–580 − I620–750)/
(I500–580 + I620–750). In order to avoid potential variation due to the different batches of larva used
or to different staining, for each experiment—one batch of zebrafish larvae/one staining procedure—
GP values were expressed as the difference between individual larva GP value and the mean of GP
found in control larvae (∆GP) within the same experiment.

Lipid-raft spatial distribution: lipid rafts are specialized membrane microdomains that can be
defined by their high membrane order. Therefore, they were highlighted by selecting pixels with high
GP values in comparison to the mean GP found in the control condition. Overall, the range of ∆GP
values for lipid rafts was 0.142 to 0.381 in comparison to the mean value found for all membranes
in the livers of the control larvae in the experiment (∆GP = 0). Visualization of the membrane area
with high GP value reflects the membrane regions with a local high lipid-raft distribution suggesting
a higher level of clustering. Using Fiji imaging processing software (ImageJ, [103]), pixels with a high
density were selected in GP images, which highlighted high-ordered membrane domains in yellow
through the membrane area of the liver cells. Images presented are pseudo-colored GP images in
which ∆GP values are indicated on a colour scale [67].

4.6. Statistical Analysis

All values were presented as mean ± SEM (standard error of the mean) from at least three
independent experiments. Multiple comparisons among groups were performed using one-way
analysis of variance (ANOVA) followed by a Newman–Keuls post-test. To evaluate the effect of the
HFD diet, a one-tailed Student’s t-test was performed. All statistical analyses were performed using
GraphPad Prism5 software (GraphPad Software, San Diego, CA, USA). Differences were considered
significant when p < 0.05.
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Table 1. List of primers used for RT-qPCR experiments.

Gene Official Full Name Accession Number Forward Primer Reverse Primer

actb2 Actin, beta 2 NM_181601.4 5′-TTCTCTTAAGTCGACAACCCCC-3′ 5′-TACCAACCATGACACCCTGAT-3′

18s - NR_145818.1 5′-TTACCCCAGGCTCGGAAAAC-3′ 5′-CGGGAAGGTCTTTGAACCCA-3′

gapdh Glyceraldehyde-3-phosphate dehydrogenase NM_001115114.1 5′-GAGGCTTCTCACAAACGAGGA-3′ 5′-TGGCCACGATCTCCACTTTC-3′

crp C-reactive protein NM_001045860.1 5′-CATTAGAGGCTACCGAAGGTTT-3′ 5’-GACTCAGGGGTTTTTCAGGATA-3′

nfkb3 (rela) Nuclear factor kappa B NM_001001839.2 5′-CAACGACACCACGAAAACG-3′ 5′-CGTCAGGAATCTTGAATGGGT-3′

il1b Interleukin 1β NM_212844.2 5′-GAACAGAATGAAGCACATCAAACC-3′ 5′-ACGGCACTGAATCCACCAC-3′

il6 Interleukun6 NM_001261449.1 5’-TCAACTTCTCCAGCGTGATG-3′ 5’-TCTTTCCCTCTTTTCCTCCTG-3′

casp3a Caspase 3a NM_131877.3 5’-TCGGTTCTCGCTGTTGAAGG-3′ 5′-GTCTCCGTATCCGCATGTCC-3′

tgfb1a Transforming growth factor β 1a NM_182873.1 5′-GGAAGGCAACACAAGGTGGA-3′ 5′-GGCTTACTTATCAATCCCGACT-3′

tfa Transferrin a NM_001291499.1 5’-GAAAATCCCAGAGTCAGCCA-3’ 5′-TTCATCTCCAACAGCCTTCC-3′

zgc163022 Ferric chelate reductase 1 NM_001089557.2 5’-CCCAGAGGCTGCTGTTTATT-3’ 5′-GCCGTGATTAGGCATCATAGAG-3′

nrf2a Nuclear factor (eruthroid-derived 2)-like2 NM_182889.1 5′-TCGGGTTTGTCCCTAGATG-3′ 5′-AGGTTTGGAGTGTCCGCTA-3′

gstp1 Glutathione S-transferase pi NM_131734.3 5′-ACACACTCACATACTTCGCA-3′ 5′-GTCGCCCTTCATCCACTCTT-3′

nqo1 NADPH dehydrogenase, quinone 1 NM_001204272.1 5′-TCTGACAAAGAAAGGCTACAAAGTC-3′ 5′-ATACACAAAGTGCTCGGGATT-3′
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Figure S1: Protective effect of pravastatin against the toxicity induced by B[a]P/ethanol co-exposure in steatotic
WIF-B9 cell line; Figure S2: mRNA expression of cyp1a after exposing HFD zebrafish larvae to B[a]P and
ethanol with or without pravastatin; Supplementary Methodology: WIF-B9 cell culture and treatment and
Toxicity evaluation.
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Introduction 

The prevalence of NAFLD has reached 25% of global population and is expected to rise 
further in coming years. There are many risk factors known for NAFLD development and 
progression. In past few years, terms TAFLD and TASH have been coined for toxicant-induced 
fatty liver condition. The key risk factor for TAFLD and TASH is environmental contaminants. 
These toxicants are thought to be more deleterious in presence of obesity, diabetes and 
steatosis (Al-Eryani et al., 2015; Bonini and Sargis, 2018; Latini et al., 2010; Wahlang et al., 
2019). As steatosis sensitizes liver cells towards aggressive factors, like environmental 
contaminants, recently, we have shown that mixture of benzo[a]pyrene (B[a]P), a complete 
carcinogen, and ethanol, a hepatotoxicant, even at low concentrations, induces the 
pathological progression of prior established steatosis towards steatohepatitis-like state. 
Several mechanisms have been found for toxicant-associated steatosis progression, in vitro 
under such conditions. For in vivo, recently, we have also found the involvement of 
membrane remodeling as one of key mechanisms of hepatotoxicity involved in toxicant-
associated steatosis progression. However, other in vivo mechanisms are yet to be unraveled 
in this context. To achieve the objective, high fat diet-fed zebrafish larva was used as in vivo 
model, and a non-targeted transcriptomic analysis was realized. 

Experimental design 

Steatosis in zebrafish was achieved following only single day of feeding with high fat diet 
(HFD) on 4-day post fertilization (dpf). From 5 dpf, zebrafish larvae were exposed to sub-
toxic concentrations of ethanol (43 mM) or B[a]P (25 nM) alone or in co-exposure, up to 12 
dpf in order to progress toward steatohepatitis-like state. In order to explore the in vivo 
molecular mechanisms implicated in the steatosis progression under these conditions, 
transcriptomic analysis using affymetrix microarray technology (GeneChip™ Zebrafish Gene 
1.0 ST Array) was performed. Data were analyzed by GOEA and IPA analysis. RT-qPCR of 
samples obtained from zebrafish and steatotic HepaRG cells (wild type and AhR knock out) 
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co-exposed to B[a]P and ethanol was carried out to analyze various mRNA expressions. 
Mitochondrial oxygen consumption was determined by using Seahorse technology (Agilent). 
Mitochondrial ultrastructure was viewed by transmission electron microscopy (TEM). Heme, 
hemin and bilirubin concentrations were assayed by using commercial kits. Lipid 
peroxidation level was determined with C11-Bodipy581/591 staining. Labile iron was assessed 
by Mito-FerroGreen staining. Role of AhR, oxidative stress and mitochondrial iron was 
determined by exposing HFD-fed zebrafish with AhR antagonist CH223191, quercetin and 
deferoxamine, respectively, in addition to B[a]P/ethanol co-exposure. 

Results and conclusion 

Transcriptomic data analysis led to the identification of four key signaling and cellular 
processes terms: mitochondrial dysfunction; alterations in heme homeostasis; involvement 
of AhR signaling and oxidative stress. Large number of the transcripts found to be 
dysregulated in microarray was validated by RT-qPCR with significant change. Furthermore, 
mRNA expression results from steatotic human HepaRG cells co-exposed to B[a]P and 
ethanol were in line with zebrafish results. This displayed the relevance of zebrafish model 
with a human model. Reduced oxygen consumption and disrupted mitochondrial 
ultrastructure by toxicant co-exposure confirmed mitochondrial dysfunction. AhR antagonist 
improved mitochondrial oxygen consumption and reversed the mRNA expressions altered in 
zebrafish under these conditions of exposure. This links mitochondrial dysfunction to AhR 
dysfunction. Alterations in mRNA expression of many mitochondria-related genes were also 
prevented in AhR-knock-out HepaRG cells. Co-exposure in our zebrafish model was found to 
raise the levels of both heme and hemin, which is thought to cause oxidative stress. Increase 
in lipid peroxidation validated this effect that was also reversed by the antioxidant quercetin. 
This confirms the involvement of oxidative stress in steatosis progression. Finally, increased 
labile iron in mitochondria pointed to iron as possibly involved in mitochondrial dysfunction. 
To test such hypothesis, the iron chelator, deferoxamine, was used. We found that it 
decreased labile iron in mitochondria. This protective effect was related to prevention of 
changes in mRNA expression of genes representative of co-exposure-induced toxicity. In 
conclusion, steatosis progression in response to toxicant co-exposure is associated with 
oxidative stress and mitochondrial dysfunction, stemming from AhR activation and 
deregulation of iron homeostasis. In this regard, these mechanisms could be beneficial to 
target in terms of therapy development against steatohepatitis.1 

                                                             

1 Note : Due to the nature/complexity of supplementary data file, these have been provided 
indenpendantly by e-mail. 
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International Agency for Research on Cancer, IPA: Ingenuity pathway analysis, KEGG: Kyoto 
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Transmission electronic microscopy. 



132 | P a g e  

 

 

Abstract (300 words) 

Among etiological factors of non-alcoholic fatty liver disease (NAFLD), a worldwide 

epidemic, environmental contaminants have gained importance. In this group, 

benzo[a]pyrene (B[a]P),  potent environmental carcinogen, in combination with 

ethanol was shown to induce the transition of steatosis toward a steatohepatitis—

like state both in vitro and in vivo.  However, underlying mechanisms involved in the 

exacerbation of toxicant-induced NAFLD remain to decipher in vivo. In this context, 

we used high fat diet (HFD) zebrafish model, in which we observed pathological 

progression of steatosis following a 7 days co-exposure to 43 mM ethanol and 25 nM 

B[a]P. Transcriptomic approach with Gene ontology enrichment analysis (GOEA) and 

Ingenuity pathway analysis (IPA) highlighted mitochondrial dysfunction, alterations in 

heme and iron homeostasis, involvement of AhR signaling and oxidative stress. Most 

of mRNA dysregulations found in microarray were validated by RT-qPCR. Further, 

similar changes were also reproduced in a human in vitro model, HepaRG cells. 

Focusing on mitochondria, structural and functional disruptions were confirmed by 

transmission electronic microscopy and seahorse technology respectively. 

Involvement of AhR signaling in these toxicological events, i.e. mitochondrial 

dysfunction, alterations in heme and iron homeostasis, was evidenced by the use of 

an AhR antagonist, CH223191. AhR-associated disruptions were further validated by 

analyzing respective mRNA expressions obtained from AhR-knock-out HepaRG cells. 

Furthermore, co-exposure was found to increase the levels of both heme and hemin, 

potentially explaining induction of oxidative stress as detected by an increase in lipid 
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peroxidation. Mitochondrial labile iron content was also raised in toxicant exposed 

larvae. This increase in iron pool was prevented by iron chelator, deferoxamine, 

which also inhibited liver co-exposure toxicity as evaluated by RT-qPCR. In conclusion, 

these results suggest that increase in mitochondrial iron content induced by 

B[a]P/ethanol co-exposure is responsible for the mitochondrial dysfunction thus 

promoting pathological progression of NAFLD. 

 

 

 

Keyword : 

NAFLD-TAFLD, heme homeostasis, iron, mitochondrial dysfunction, AhR, B[a]P, ethanol, 

zebrafish, liver 

 

Highlights 

 Transcriptomic analysis identified mechanisms involved in NAFLD progression 

induced by B[a]P/ethanol co-exposure in vivo in HFD fed zebrafish larvae. 

 B[a]P/ethanol co-exposure-induced NAFLD aggravation depends on mitochondrial 

dysfunction 

 AhR activation is necessary for B[a]P/ethanol-induced toxicity. 

 For the first time, mitochondrial iron overload appears as a key event in this context 
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1. Introduction 

 Non-alcoholic fatty liver disease (NAFLD) is now well recognized as a growing 

worldwide epidemic, responsible for an increasing number of chronic liver diseases and 

consecutive mortality 1. NAFLD covers a large panel of liver diseases, starting from liver 

steatosis to its pathological progression into non-alcoholic steatohepatitis (NASH), with 

possible evolution towards severe and irreversible complications such as cirrhosis and/or 

hepatocellular carcinoma 2. The global prevalence of NAFLD is around 25% of general 

population all over the world, while for NASH, it reaches between 3 to 5% 1. It should be 

noted that some subpopulations are particularly affected by NAFLD, notably those exhibiting 

metabolic diseases such as type 2 Diabetes mellitus (T2DM) and obesity. For example, 

NAFLD prevalence could rise to 90% in obese people and to 60% in T2DM patients 1. Among 

etiological factors of NAFLD, as indicated previously, metabolic diseases, obesity and T2DM 

are the highest risk factors before dietary habits (including low/moderate alcohol 

consumption), genetic polymorphisms, gender, epigenetic factors and environmental factors 

3. However, the role of environmental factors in NAFLD development has gained interest 

during last years, leading to the concept of TAFLD and TASH (Toxicant-Associated Fatty Liver 

Diseases and Toxicant-Associated Steatohepatitis) as proposed by the Cave laboratory 4–7. In 

line with this, several pollutants, including ligands of AhR (aryl hydrocarbon receptor), have 

thus been shown to induce steatosis or favor its pathological progression 4,7. 

In this context, another challenging concern is about the impact of chemical mixtures 

on NAFLD particularly in high-risk populations such as people already bearing steatosis. In 

that way, we have previously demonstrated that co-exposure to benzo[a]pyrene (B[a]P), the 

reference molecule of the PAH (polycyclic aryl hydrocarbon) family, in combination with a 
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well-known hepatotoxicant, ethanol, induces the transition of steatosis toward a 

steatohepatitis—like state both in vitro and in vivo 8–11. B[a]P, a widespread environmental 

contaminant, is a potent carcinogen to human (classified in group 1 by IARC), and a strong 

AhR ligand 12–14. B[a]P is an ubiquitous pollutant formed, like other PAHs, during incomplete 

combustion of organic compounds. Human exposure to B[a]P, excluding smoking or 

occupational exposure, is mainly food-borne notably with barbecued/grilled/broiled/smoked 

meats, grain and cereals 12,14. Most of the toxic effects of B[a]P depend on its bioactivation 

by cytochrome P450s, which mainly occurs in liver. This thus explains the adverse effects of 

this pollutant on this organ through several mechanisms including oxidative stress, 

genotoxicity, mitochondrial dysfunction, cell death,…12,14–17. B[a]P, as other toxicants, has 

been implicated in NAFLD development and progression 7. Regarding the impact of 

B[a]P/ethanol co-exposure on steatosis progression, we recently evidenced several 

mechanisms using in vitro models 9,11. However, the underlying mechanisms involved in the 

exacerbation of NAFLD upon such a co-exposure remain to decipher in vivo. 

 To this aim, we used an in vivo model of zebrafish larva in order to have an 

integrative model in which the complexity and variety of cell and organ interactions are 

present and relevant of human NAFLD pathogenesis 18–21. In addition to technical advantages 

like small size and transparency, zebrafish larva also present broad similarities with human 

concerning liver functions and sensitivity towards xenobiotics and alcohol (metabolism, 

toxicity, cellular and transcriptomic responses) 19,20,22–25. Besides, the full machinery for B[a]P 

metabolism exists in zebrafish notably with the expression of ahr2, the ligand-activated 

ortholog of AhR 26. For the present study, we used a recently established zebrafish larva 
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model of high fat diet (HFD)-induced steatosis in which we observed steatosis progression 

following a 7 days co-exposure to 43 mM ethanol and 25 nM B[a]P 8,10. 

 In order to elucidate the mechanisms involved in the pathological progression of 

steatosis induced upon B[a]P/ethanol co-exposure of HFD-zebrafish larvae, a transcriptomic 

approach was performed. Following confirmation by RT-qPCR, disruptions of key processes, 

i.e. mitochondrial dysfunctions, alterations of heme and iron metabolism, of AhR signaling 

and of oxidative stress, were more deeply investigated. Our main results strongly suggest the 

involvement of a mitochondrial overload of labile iron in the liver disease progression upon 

B[a]P/ethanol co-exposure. Further, these effects were prevented by the common iron-

chelating drug, deferoxamine. 

 
2. Materials and Methods 

2.1. Zebrafish larvae handling and exposures  

Animals were handled, treated and killed in agreement with the European Union regulations 

concerning the use and protection of experimental animals (Directive 2010/63/EU). All 

protocols were approved by local ethic committee CREEA (Comité Rennais d’Ethique en 

matière d’Expérimentation Animale). Zebrafish fertilized embryos—collected following 

natural spawning—were obtained from the Structure Fédérative de Recherche Biosit (INRA 

LPGP, Rennes, France). Embryos and larvae—sex unknown—were raised at 28°C according 

to standard procedures and as previously described8,10. Briefly, from 4-dpf until last day of 

treatment renewal—at 9-dpf—larvae were fed 1 time daily with a high-fat diet (HFD; dried 

chicken egg yolk containing around 53% of fat; Sigma-Aldrich). At 5-dpf, larvae were exposed 

till 12 dpf with 43 mM ethanol directly added to the incubation medium and/or by 25 nM 

B[a]P in dimethyl sulfoxide (DMSO; final proportion: 0.001% v/v) or by this vehicle only. For 
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co-treatment experiments, 1 µM CH223191, 25 µM quercetin, or 100 µM deferoxamine 

(Sigma-Aldrich, St. Louis, MO, USA), were respectively added along with toxicants. 

 

2.2. Microarray experiments 

a. RNA extraction and microarray hybridization 

Whole larvae RNA samples were extracted from a pool of 25 zebrafish larvae using TRIzol 

reagent method (Thermofisher Scientific) and then purified on-column by DNAse digestion 

using a RNeasy Mini Kit (Qiagen, Courtaboeuf, France). Quantification of RNA was next 

performed using nanodrop ND-1000 spectrophotometer (Nano-Drop Technologies, 

Rockland, DE, USA). RNA integrity was assessed with Agilent RNA 6000 Nano kit using the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Only RNA with an RNA 

integrity number >9 was used for further analysis (2100 expert software, Agilent 

Technologies). 5 RNA samples per each condition (Control, B[a]P, Ethanol and B[a]P/Ethanol) 

were collected. Each RNA sample was amplified and labelled using the Gene Chip ™ WT PLUS 

Reagent Kit; and then hybridized to GeneChip ™ Zebrafish Gene 1.0 ST array (ThermoFischer 

Scientific) according  to manufacturer’s procedures. Finally, microarrays were scanned, and 

images were analyzed and rigorously quality controlled for hybridization artefacts.  

 

b. Data normalization & statistical filtration of differentially expressed genes 

As previously described27; the resulting .CEL files were processed using the oligo package 

from R/Bioconductor28. Data were then normalized and corrected with the Brainarray 

custom chip description files for directly mapping Affymetrix probe to Entrez gene 
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identifiers29. Data were uploaded to the NCBI Gene Expression Omnibus (GEO) repository 

under the accession number GSEXXXXXX30.  

The statistical filtration of the genes differentially expressed was performed using AMEN 

(Annotation, Mapping, Expression and Network) suite of tools31. Briefly, we first filtered 

genes with at mean signal above the background expression cutoff (mean signals for one 

gene expression ≥ overall signals median (6.42)). Then, we selected genes with an expression 

fold-change greater or equal to 1.3 between control and B[a]P/ethanol-exposed zebrafish (F-

value adjusted with the FDR method: P≤0.05; 525 genes identified, 315 up-regulated/210 

down-regulated). 

 

Clustering and GOEA (gene ontology enrichment analysis) 

The 525 B[a]P/ethanol-differentially expressed genes were next clustered in 8 expression 

patterns (4 for each up- and down-regulated set of genes) by the k-means algorithm and 

integrating expression levels found in all 4 experimental conditions (control, each toxicant 

alone exposed group and together). The quality of the resulting k-means clusters was 

verified with Silhouette plots. The 8 resulting patterns were ordered according to peak 

expression levels in the 4 different exposure groups (control, B[a]P, Ethanol, B[a]P/Ethanol). 

Then all subsets of genes were used for gene ontology enrichment analysis (GOEA) (up- and 

down-regulated gene sets and 8 expression pattern sets). GOEA were performed using 

AMEN tool, as previously described, to identify significantly enriched terms from the gene 

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases 31. Briefly, A 

specific annotation term was considered enriched in a group of co-expressed genes if the P 

value was <0.001 (Fisher exact probability). From this procedure, 362 terms considering all 
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groups were found and next subject to a custom principal component analysis to refine the 

list to only 16 terms (ref). 

 

Functional analysis by ingenuity pathway analysis (IPA) 

The list of 525 genes zebrafish differentially-expressed after B[a]P/ethanol co-exposure was 

used to generate a list of 259 human unique homolog genes (taking mean of expression 

levels for 1 human gene reference found for several zebrafish gene references). Then, this 

list of 259 human genes was uploaded into IPA software (IPA, Ingenuity Systems, QIAGEN, 

available online: www.ingenuity.com) for analysis of Ingenuity canonical pathways, Ingenuity 

Toxicity lists and Ingenuity Tox functions analysis by comparison with the Ingenuity 

Knowledge Databases. 

 

2.3. HepaRG cell culture, treatment and mRNA sampling 

Human HepaRG cell lines, wild-type or knock-out for AhR, were cultivated with 

supplementation in fatty acids (stearic and oleic acids, 150 μM each, 2 days in pretreatment 

and during 2 weeks of treatment), treated or not with B[a]P (2.5 μM) and ethanol (25mM) 

during 2 weeks, as previously described 8,9. After treatment, mRNA sampling was performed 

as reported by Bucher et al.8,9. 

 

2.4. mRNA extraction from zebrafish larvae 

After treatment of zebrafish larvae, mRNA samples were collected from pool of 10-20 whole 

zebrafish larvae using TRIzol reagent, as previously described10.  
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2.5. Analysis of mRNA expression by RT-qPCR 

mRNA expression analyses were performed by RT-qPCR, as previously defined8. Briefly, 

mRNA samples (1 µg) were subject to reverse-transcription using the High-Capacity cDNA 

Reverse Transcription Kit (Life Technologies, Carlsbad, CA, USA). Then, quantitative 

polymerase chain reaction (qPCR) (5 ng of cDNA per well) was performed using SYBR Green 

on the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). mRNA 

expression was normalized by means of actb2, 18s and gapdh mRNA levels for zebrafish and 

HepaRG samples. The Ct method was used to indicate the relative expression of each 

selected gene. Sequences of the tested primers are provided in supplementary Table S1. 

 

2.6. In vivo assessment of mitochondrial oxygen consumption 

In order to evaluate oxygen consumption rate (OCR) of mitochondria in zebrafish larvae 

using Seahorse XFe24 Analyzer (Agilent Technologies), we used specific exposure conditions 

and adapted protocol from Raftery et al.32. Briefly, larvae were from 4 dpf as usual but 

exposed to toxicants for only one day (5 to 6 dpf) using higher concentrations (1 µM B[a]P 

and 173 mM ethanol). Following treatment, larvae were anesthetized with 31.25 mg/L 

tricaine (MS-222, Sigma-Aldrich) in bath water (bath water composition reported in previous 

article8). Then, larvae were placed in well bottom of 24 multi-well plate for Seahorse (1 

larva/well). Larvae were fixed in place using a grid insert, and volume of bath water was 

adjusted to 500 µL per well. Twenty min after anesthesia onset, larvae were placed in 

Seahorse XFe24 analyzer for assessment of OCR (28°C, 1 read per cycle of 4 min) using 

following phases and inhibitors: Phase 1 : 6 cycles (24 min); Phase 2 : addition of 2.5 µM 

FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), 8 cycles (32 min); Phase 3: 
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addition of 6.25 mM NaN3 (sodium azide), 20 cycles (80 min). Using Wave software (version 

2.6.0, Agilent Technologies), OCR levels were analyzed in order to obtain basal, maximal & 

spare mitochondrial and non-mitochondrial respiration levels with at least 7 larvae per 

condition. 

 

2.7. Transmission electronic microscopy (TEM) 

After exposure, 12 dpf larvae were fixed in 2% paraformaldehyde + 2% glutaraldehyde in 

cacodylate buffer during 1 hour at room temperature. Then, after 3 washes in cacodylate 

buffer, larvae were impregnated in heavy metal solution (1% osmium tetroxide, 1,5% 

potassium ferrocyanide) for 1 hour. Next, samples were dehydrated with graded alcohol 

series following standard procedures and embedded in eponate resin. Following section 

cutting (0.5 µM on a Leica UC7 microtome) and staining (with toluidine blue), liver was 

localized by optical microscopy for further imaging by TEM. Afterwards, ultrathin sections of 

70 nM were cut, collected on copper grids, poststained with 2% uranyl acetate solution and 

finally imaged with a TEM (JEOL 1400 transmission electron microscope operated at 120 kV).  

 

2.8. Biochemical assessment of heme metabolism-related compounds 

To evaluate the content of heme, hemin and bilirubin, we used commercial kits (Heme Assay 

kit and Bilirubin Assay Kit from Sigma-Aldrich; Hemin Assay Kit from Abcam, Cambridge, UK). 

Briefly, from a pool of 50 larvae homogenized in 300 µL of PBS buffer, 100 µL of homogenate 

were used for heme detection, 2 µL for hemin test and 150 µL for bilirubin test, and 

procedures were performed according to manufacturer’s instruction. 
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2.9. Lipid peroxidation assays 

Assessment of lipid peroxidation in liver of 12 dpf larvae was performed by fluorescent 

microscopy using C11-Bodipy 581/591 (Molecular Probes, Life Technologies, Courtaboeuf, 

France), as previously described 33. 

 

2.10. In vivo assessment of mitochondrial labile iron content 

In order to estimate the level of labile iron (Fe2+) content at 12 dpf, living larvae were 

incubated with 5 µM Mito-FerroGreen probe during 2h (Dojindo EU GmbH, Munich, 

Germany). After staining, larvae were euthanized and mounted in PBS solution for imaging 

on confocal microscope (LEICA DMI 6000 CS; Leica Microsystems, Wetzlar, Germany). Briefly, 

fluorescent intensities of Mito-FerroGreen in liver were acquired by laser excitation and 

photomultiplier tube (PMT) (excitation at 488 nm; PMT range 500-550 nm). Liver localization 

was also confirmed by imaging larva with transmitted light. Finally, quantification of 

fluorescent intensity of Mito-FerroGreen was performed using Fiji imaging processing 

software (ImageJ, 34). 

 

2.11. Histological liver damage evaluation 

Histological staining of paraffin-embedded zebrafish larvae and counting of damaged liver 

cells were performed as previously described 8. 

 

2.12. Statistical analysis 

Except for transcriptomic analysis for which specific presentation and statistical analysis 

were performed, all values were presented as mean ± SEM (standard error of the mean) 
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from at least three independent experiments. Multiple comparisons among groups were 

performed using one-way analysis of variance (ANOVA) followed by a Newman–Keuls post-

test using GraphPad Prism5 software (GraphPad Software, San Diego, CA, USA). Differences 

were considered significant when p < 0.05 (* or #), p< 0.01 (**), p< 0.001 (***). 
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3. Results 

3.1. Transcriptomic analysis identifies heme homeostasis and mitochondrial dysfunction as 

potential events of liver disease progression in B[a]P/ethanol co-exposed HFD zebrafish 

larvae 

In order to decipher the cellular mechanisms involved in the progression of liver steatosis in 

HFD zebrafish larvae co-exposed to B[a]P and ethanol, we performed a transcriptomic 

analysis using affymetrix microarray technology (GeneChip™ Zebrafish Gene 1.0 ST Array). 

Briefly, zebrafish larvae were fed from 4 dpf once a day with a HFD , and then chronically 

exposed to 43 mM ethanol and/or to 25 nM B[a]P from 5 dpf until 12 dpf. Five mRNA 

samples per condition (Control, B[a]P, Ethanol, B[a]P+Ethanol) were extracted from whole 

larvae (25 individuals per sample), and used for transcriptomic analysis. In total, 525 genes 

were found to be significantly and differentially expressed after co-exposure compared to 

control (P value < 0.05; log2 fold-change > ±1.3) with 325 up-regulated and 210 down-

regulated genes (see supplementary Table S2 for all data). Expression profiles of these 525 

genes are summarized in a heat-map organized around 2 clusters corresponding to up- and 

down-regulated genes (considering only co-exposure vs control); and then subdivided in 

several expression patterns by a non-supervised method of dynamic tree cut (considering all 

4 condition groups) (Figure 1A and 1B). Next, in order to investigate key processes involved 

in co-exposure effect towards pathological progression, we realized a GOEA on these 525 

genes considering gene ontology consortium and KEGG pathways annotation (362 terms 

summarized in supplementary Table S3). To reduce the number of returned terms, this 

GOEA was then followed by a homemade custom PCA (REF) that finally returns a short list of  
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Figure 1: Transcriptomic analyses reveal major-disrupted biological processes in 
B[a]P/ethanol co-exposed zebrafish larvae 



147 | P a g e  

 

Table 1. Synthetic results of Ingenuity Pathway Analysis (IPA) of human genes 
homologousto B[a]P/ethanol-modulated zebrafish genes 
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only 16 GO and KEGG terms (see materials & methods for more information) (Figure 1C). 

Considering up-regulated genes, several terms refer to porphyrin metabolism and 

mitochondria (GO: 0006787 porphyrin-containing compound catabolic process; GO: 0031966 

mitochondrial membrane; KEGG: 00860 porphyrin and chlorophyll metabolism). 

Interestingly, these terms were recovered in most of the 4 expression patterns (P1 to P4) of 

the up-regulated gene cluster thereby indicating that the observed alterations were not due 

just to one toxicant; rather both B[a]P and ethanol were effective, particularly when used in 

combination. Regarding down-regulated genes, most of the terms appeared to be related to 

immunity. In addition to GOEA, we also performed Ingenuity Pathways Analysis (IPA). In that 

way, we recovered all unique human homolog genes (259 genes)  from the 525 zebrafish 

genes in order to improve relevance of findings regarding human health (Table 1). Doing so, 

several terms were selected and presented for canonical pathways, toxicity lists and toxicity 

functions (Table 1); full results are provided in supplementary Table S4. In line with GOEA, 

the selected terms highlight mitochondria dysfunction and alterations in heme homeostasis; 

involvement of AhR signaling and oxidative stress (Table 1). Finally, analysis of toxicity 

functions markedly-outlined the impact of B[a]P/ethanol co-exposure on liver diseases in 

agreement with our previous work8,10,11. 

 
3.2. Validation and investigation by RT-qPCR of molecular dysregulation induced by co-

exposure 

One of the main processes identified through transcriptomic analysis in in vivo steatosis 

progression upon B[a]P/ethanol co-exposure appeared to be mitochondrial dysfunction. In 

fact, this was in line with our recent work realized in vitro on human HepaRG cell line9. In 

order to get further insight into mitochondrial dysfunction, especially in vivo, we decided to 
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perform RT-qPCR on several target genes selected either from our transcriptomic analysis or 

according to their role in mitochondrial function (Figure 2A). Most of the transcripts found to 

be dysregulated in microarray (indicated by an arrow in Figure 2), were validated by RT-qPCR 

with significant change. Among mitochondria-related genes, the expression of several 

transporters of metabolites (abcg2a, slc25a25a, slc25a47a, slc25a48 and tspo) was induced, 

thus suggesting alterations of mitochondrial metabolism. Interestingly, abcg2a and tspo are 

also known to be involved in heme homeostasis. Regarding genes related to electron 

transport chain, mitochondrial respiration and ATP production, several were found to be 

induced (sdha, sdhaf3, uqcc1 and uqcc3), thus further pointing to alterations of 

mitochondrial respiration capacity (Figure 2A). In addition, expression of known regulators of 

mitochondrial activity (hebp2, parla, sirt3) was modified upon co-exposure; note that hepb2 

and parla have been implicated in cell death35,36, which is in agreement with the deleterious 

effects of B[a]P/ethanol co-exposure previously reported in vitro8,9,11.  

Another key process revealed by microarray analysis was porphyrin metabolism, notably 

included in the more general term of heme metabolism (as suggested by changes of 

expression for tspo and abcg2a). In addition, another process identified by IPA and also 

closely linked to heme metabolism, was iron homeostasis. Therefore, we decided to further 

evaluate the expression of several genes associated with heme and iron metabolism (Figure 

2B). Most of the changes in gene expression found by microarray analysis were validated by 

RT-qPCR (abcb6, fech, blvra, blvrb, tfa). In addition, co-exposure significantly altered the 

expression of several genes involved in heme synthesis (alas1, alas2), iron transport 

(slc25a37 and slc25a28 that are the mitochondrial iron transporters mitoferrin 1 and 2, 

respectively; slc40a1 alias ferroportin 1), or iron storage (fth1a and fthl30, the ortholog  
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Figure 2: Validation and investigation by RT-qPCR analysis of mRNA 
expression changes in B[a]P/ethanol co-exposed zebrafish larvae. 
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genes of ferritin heavy and light chains, respectively; tfa for transferrin a) (Figure 2B). 

Altogether, these results strongly support the idea of a perturbation in heme and iron 

homeostasis following B[a]P/ethanol co-exposure in our steatotic model of zebrafish larva. 

Furthermore, oxidative stress-related genes (markers of oxidative stress and/or 

genes involved in ROS/NOS production/elimination) were also investigated by RT-qPCR. Our 

data thus confirmed changes in the expression of catalase (cat) and peroxiredoxin 1 (prdx1); 

they also showed induction of nos2a, prdx6, sod2 and sod3b (Figure 2C), thus suggesting the 

implication of oxidative stress in the in vivo effect of co-exposure. Finally, potential 

activation of AhR signaling was explored by assessing the expression of several AhR-related 

genes (Figure 2C). Three genes, for which expression was increased in transcriptomic 

analysis, were validated by RT-qPCR (cyp1a, gstp1, nfe2le2a alias nrf2). In addition, nqo1 

(NAD(P)H dehydrogenase quinone 1, an indirect target of AhR) was also found to be 

significantly induced by B[a]P/ethanol co-exposure whereas expression of ahr2 (ortholog of 

human AhR) was not significantly affected (Figure 2C). 

 

3.3. Relevance of co-exposure impacts in a human liver cell model: HepaRG 

We previously demonstrated that co-exposing an in vitro human model of hepatocytes 

(namely HepaRG cells supplemented with fatty acids (FA)8) led to the progression of 

steatosis to a steatohepatitis-like stage, due to mitochondrial dysfunction and resultant 

oxidative stress (Bucher et al., 2018b). In order to test whether some of the above results 

obtained on whole larvae were also relevant of human NAFLD progression upon similar co-

exposure, we assessed, by RT-qPCR, the expression of several genes related to mitochondrial 

dysfunction, alterations of heme metabolism and iron homeostasis and AhR signalling 
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(Figure 3). To do so, the in vitro model of FA-supplemented HepaRG cells previously 

developed8 was used. As illustrated in Figure 4, regarding most of the studied genes, the 

changes in mRNA expression observed in zebrafish larva were also reproduced in steatotic 

HepaRG cells co-exposed to B[a]P and ethanol (as indicated by white arrows) , even though 

the amplitude of changes could be less. Therefore, these results that further validated the 

HFD-fed zebrafish larva as a suitable model to study human NAFLD progression, prompted us 

to more thoroughly investigate the in vivo role of the observed alterations. 

 

 

Figure 3: Assessment by RT-qPCR of possible co-exposure impacts relevant to 
human using HepaRG cell line 
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3.4. Assessment of mitochondrial dysfunction 

Due to the well-recognized role of mitochondrial dysfunction in NAFLD37 and as 

mitochondrion was identified as a main target of B[a]P/ethanol co-exposure from zebrafish 

transcriptomic analysis, we decided to evaluate mitochondrial respiration in co-exposed 

steatotic zebrafish larva (Figure 4A). To this aim, we used a protocol adapted from Raftery et 

al. (2017) based on the Agilent Seahorse technology, which allows the measurement of 

oxygen consumption from living zebrafish larva 32, as described in Materials and Methods. 

We observed that co-exposure significantly inhibited both basal and maximal respiration 

without any effect on spare and non-mitochondrial respiration (Figure 4A). Then, in order to 

get further insight into mitochondrial dysfunction, we performed transmission electron 

microscopy (TEM) to study the ultrastructure of liver cells in co-exposed HFD zebrafish larvae 

(Figure 4B). Images obtained in large field (higher panel of pictures) showed well-organized 

hepatocytes under control condition and few biliary canaliculi. However, under co-exposure 

condition, the shape of hepatocytes was not as clear. Regarding more specifically the 

mitochondria in HFD control larva, they appeared to represent a large part of hepatocyte 

surface, with a circular form and numerous cristae (middle and lower panel of pictures in 

figure 4B) under control conditions. In contrast, after a 7-days co-exposure to toxicants, only 

a few mitochondria per hepatocyte could be observed, with a smaller size and flatter form, 

and less observable cristae. Therefore, these ultrastructure observations were in accordance 

with the decreased oxygen consumption induced by B[a]P/ ethanol co-exposure. 
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Figure 4: Evaluation of mitochondrial alterations induced by B[a]P/ethanol co-
exposure liver of steatotic zebrafish larva. 
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3.5. Involvement of AhR in in vivo mitochondrial dysfunction and liver damages during 

NAFLD progression induced by B[a]P/ethanol co-exposure  

AhR and/or B[a]P have already been reported to be in involved in mitochondrial dysfunction 

in diverse in vitro models 9,13,38. Based upon the fact that our transcriptomic analysis from co-

exposed HFD zebrafish larva outlined AhR signaling (see Table 1), we decided to investigate 

the role for this receptor in the mitochondrial dysfunction, detected under our conditions. 

To do so, we used the specific AhR antagonist CH223191 (1 µM). First, we found that 

alterations in mitochondrial respiration induced in co-exposed HFD larvae (especially the 

decrease in basal and maximal respiration), were prevented by CH223191 (Figure 5A). We 

also noted that CH223191 alone could induce both maximal and non-mitochondrial 

respiration (Figure 5A). To ensure that this antagonist did inhibit AhR activation in our 

zebrafish model, we analyzed mRNA expression of known AhR target genes after CH223191 

treatment of co-exposed larvae (Figure 5B). As expected, an inhibition of cyp1a, nqo1 and 

nrf2, gene expression induced by B[a]P/ethanol co-exposure, was detected (Figure 5B). 

Concerning gstp1 mRNA expression, no inhibition was observed; CH223191 alone rather 

induced this expression to a similar level as upon toxicant co-exposure, with a further 

increase upon co-treatment with the three molecules (Figure 5B). Thus, it probably means 

that the observed effect on gstp1 expression would be a secondary response linked to its 

role in detoxification rather than being directly targeted by AhR.  

Looking at genes related to mitochondria (Figure 5C), we found that CH223191 was able to 

prevent co-exposure effects on abcg2a and sdha. Regarding tspo and uqcc3, a significant 

induction was observed with the antagonist alone, but no further increase (rather a slight 

decrease) occured when larvae were co-exposed to B[a]P/ethanol (Figure 5C). Regarding  



156 | P a g e  

 

 

 

Figure 5: Involvement of AhR activation in mitochondrial dysfunction and liver 
toxicityinduced by B[a]P/ethanol co-exposure 
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heme and iron-related genes, CH223191 reversed co-exposure effect on fech, fth1a, 

slc25a28, slc40a1 and tfa but not blvra, fthl30 and slc25a37 (Figure 5D). Taken together, 

these observations suggest that AhR activation might disturb mitochondrial activity partly 

through a transcriptional action. In order to further test the in vivo role of AhR in the 

steatosis progression upon co-exposure, the effects of CH223191 on the expression of mRNA 

markers of toxicity were analyzed by RT-qPCR (Figure 5E). We found that CH223191 

inhibited the increase in mRNA expression of both casp3 and il6, thus suggesting reduction 

of cell death and inflammation, whereas it increased prdx1 expression. As for gstp1, this 

latter increase might be associated with a secondary cell response against co-exposure-

induced oxidative damage. In total, these results indicate an involvement of AhR in the in 

vivo progression of liver steatosis following B[a]P/ethanol co-exposure. Note that in AhR-

knock-out HepaRG cells, most of the changes induced by co-exposure in the expression of 

genes related to mitochondria (ABCG2, UQCC3), iron homeostasis (FECH, SLC25A28, 

SLC40A1, TF) or, as expected, AhR activation (NFE2L2 alias NRF2 and NQO1), were prevented 

(Figure 5F). 

 

3.6. B[a]P/ethanol co-exposure leads to disruption of heme metabolism and to an 

oxidative stress involved in liver injury 

As our transcriptomic data clearly pointed to heme metabolism as a possible target of 

B[a]P/ethanol co-exposure, alterations of this process were more thoroughly analyzed 

through biochemical assessment. Thus, levels of heme, hemin (the oxidized and free form of 

heme) and bilirubin (one of the major metabolic compounds of heme degradation) were 

determined in our model of HFD-fed zebrafish larvae. Co-exposure was found to increase the  
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Figure 6: Disruption of heme metabolism and involvement of oxidative stress 
in B[a]P/ethanol co-exposure liver injury 
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levels of both heme and hemin (Figure 6A and B, respectively), whereas bilirubin level 

remained unchanged (Figure 6C). As increase in cellular heme and hemin amounts has been 

reported to be toxic for cells mainly via oxidative stress39, we decided to test whether 

B[a]P/ethanol co-exposure induced such a phenomenon under our experimental conditions, 

and if so, whether it was involved in the related liver damages using a common antioxidant, 

quercetin. Thus, lipid peroxidation was evaluated by fluorescent imaging using C11-bodipy 

583/591 staining in liver of zebrafish larvae (Figure 6D). As expected, an increase in lipid 

peroxidation was observed upon B[a]P/ethanol co-exposure, such an effect being prevented 

by quercetin (25 µM) co-treatment (Figure 6D). In order to test the involvement of oxidative 

stress in liver disease progression, liver damages were estimated by counting the damaged 

cells after histological staining by Hematoxylin/eosin (Figure 6E). As previously reported 8, 

we found that co-exposure increased the proportion of damaged cells in liver (Figure 6E), 

and quercetin partly prevented this effect. These data therefore showed the involvement of 

oxidative stress in the pathological progression of steatosis upon B[a]P/ethanol co-exposure 

of HFD-fed zebrafish larvae. 

 

3.7. Iron is a crucial player in the liver mitochondrial dysfunction and toxicity induced by 

B[a]P/ethanol co-exposure of HFD zebrafish larva 

Our present results have highlighted the role of (i) mitochondrial dysfunction, (ii) 

dysregulation of heme homeostasis, and (iii) oxidative stress in co-exposure-induced in vivo 

steatosis progression. In addition, the transcriptomic analysis suggested changes in iron 

homeostasis, notably in mitochondria. In this context, it appeared necessary to further 

explore the involvement of iron homeostasis in mitochondrial dysfunction and liver toxicity 
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under our experimental conditions. First, the level of labile iron in mitochondria (mostly 

represented by ferrous iron Fe2+ 40) was evaluated. To do so, living HFD-fed zebrafish larva, 

co-exposed or not, were loaded with the fluorescent mitochondrial Fe2+-sensitive probe, 

Mito-FerroGreen, before imaging of the liver by confocal microscopy (Figure 7). We 

observed that co-exposure markedly increased the level of labile iron in mitochondria, as 

shown by a stronger fluorescence intensity in the liver of treated animals compared to 

untreated counterparts (Figure 7A, zebrafish liver is delineated by a white dot-line). In 

addition, quantitative analysis of liver fluorescent intensity detected in several larvae clearly 

showed the significant increase of the mitochondrial Fe2+ pool in liver upon co-exposure 

(Figure 7B).  

 

 

Figure 7: B[a]P/ethanol co-exposure induces iron accumulation in liver 
mitochondria 
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In order to determine, how this increase of iron might affect mitochondria and thus could 

lead to toxicity upon co-exposure of our zebrafish model, we decided to test the potential 

protective effect of the iron chelator, deferoxamine (100 µM) (Figure 8). We firstly evaluated 

the content of liver mitochondrial Fe2+ using Mito-FerroGreen fluorescence imaging. As 

expected, a co-treatment of larva with deferoxamine totally prevented the increase of 

mitochondrial Fe2+ content (Figure 8A). Then, the role of iron in the toxicity was evaluated by 

RT-qPCR assessment of genes related to mitochondria (Figure 8B), to heme and iron 

homeostasis (Figure 8C), and to cellular stress and toxicity (Figure 8D). Interestingly, 

deferoxamine inhibited most of the changes induced by co-exposure related to 

mitochondria (abcg2a, sdha, uqcc3) (Figure 8B), or to iron and heme homeostasis (fech, 

fth1a, fthl30, slc25a37, slc25a28, slc40a1, tfa) (Figure 8C). In addition, regarding the 

expression of the gene markers of toxicity (i.e. prdx1 for oxidative stress, casp3a for cell 

death and il6 for inflammation), deferoxamine inhibited all the changes induced by co-

exposure (Figure 8D). Taken together, these results are in favor of the involvement of a 

mitochondrial iron overload in the mitochondrial dysfunction induced by B[a]P/ethanol co-

exposure, and hence related toxicity. Note that deferoxamine did not prevent the effects of 

co-exposure on the mRNA expression of cyp1a, nbfe2l2 and nqo1, thus confirming that the 

protective effect of deferoxamine was linked to iron chelation rather than an inhibition of 

AhR signaling (Figure 8E). 
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Figure 8: Involvement of iron accumulation in liver mitochondrial dysfunction 
and toxicity induced by B[a]P/ethanol co-exposure of steatotic zebrafish larva 
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4. Discussion 

With the important rise of NAFLD prevalence over the last decades, this most 

common liver disease has become a major health issue, due to its complication to more 

severe pathologies like NASH, cirrhosis and cancer. Besides the well-known causes of NAFLD 

(i.e. genetic factors, nutrition, obesity, diabetes), more and more studies pointed to 

environmental toxicants as etiological factors for liver steatosis; this has led to the 

emergence of the concept of TAFLD and TASH5–7. Recently we have found, both in vitro and 

in vivo, that co-exposure to B[a]P and ethanol, at doses not toxic in the absence of steatosis 

(2nd hit), could  favor the NAFLD (1st hit) progression8–11. In this context, several mechanisms 

have been identified in vitro including alterations of B[a]P and ethanol metabolism8,11, role 

of NOS production11, and mitochondrial dysfunction9. However, the underlying mechanisms 

remained to be deciphered in our in vivo HFD-fed zebrafish larva.  

To this aim, we performed a global non-targeted approach by transcriptomic analysis. 

From this, we focused on the 525 genes presenting significant changes in expression after 

co-exposure compared to control HFD larvae. Thus, following clustering of these genes 

considering their expression found upon exposure to either toxicant alone or together, we 

performed a two steps-GOEA analysis, i.e. a row GOEA followed by a reduction of recovered 

terms by PCA (Figure 1). Most of the annotation regarding down-regulated genes was linked 

to immunity. Such a result was not surprising, even in the context of liver inflammation and 

NASH previously observed in our in vivo model co-exposed to B[a]P and ethanol8,10. Indeed 

each toxicant is known to induce immunosuppressive effects27,41–43. Interestingly, most of 

the immunosuppressive effects previously reported refer to host defense, which is coherent 
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with the biological process term returned by our GOEA (Figure 1B; IFNg-mediated signaling 

pathways, neutrophil degradation or phagocytotic vesicle for example). Taken together, our 

results could thus support the idea that in the presence of NAFLD, in vivo exposure to 

toxicants might also favor infections, and doing so, potentially further aggravate liver 

diseases. This will need further investigation.  

Concerning up-regulated genes, GOEA and IPA were quite redundant around several 

terms, namely porphyrin/heme/iron metabolism; mitochondrial dysfunction, NAFLD/liver 

toxicity and AhR signaling (Figure1 and Table 1). These observations were in line with our 

recent work on the mechanisms involved in the in vitro impact of B[a]P/ethanol co-exposure 

on the progression of prior steatosis in human hepatocarcinoma HepaRG cell line; indeed, 

we found a role for an AhR-dependent mitochondrial dysfunction9. Based on this, we 

decided to further investigate these processes in our in vivo zebrafish model, with special 

emphasis on AhR signaling and mitochondrial iron/heme homeostasis.  

Mitochondrial dysfunction is well-known to be involved in liver diseases, notably 

NAFLD44. From transcriptomic and RT-qPCR analysis, several alterations related to 

mitochondria were presently identified, with an up-regulation in the expression of several 

genes involved in respiratory complexe formation (sdha, sdhaf3 in complex II, upcc1 and 

uqcc3 in complex III), and a down-regulation of sdhc, part of complex II (Figure 2A), thus 

suggesting disruption of mitochondrial respiration. Note that a similar change in UQCC3 

expression was also found in human HepaRG cells under these conditions (Figure 3). 

Disruption of mitochondrial respiration in co-exposed HFD zebrafish larvae was confirmed by 

the decrease in basal and maximal mitochondrial respiration (Figure 4A), both prevented by 

AhR inhibition (Fig. 6A), like in co-exposed steatotic HepaRG cells9. Such functional alteration 
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was related to changes in the ultrastructure of mitochondria (smaller and flattened, less 

cristae) (Figure 4B) that might be associated with more mitochondrial fission and ultimately 

with promotion of NAFLD45. Considering all these results, one might then hypothesize that 

the decrease in mitochondria respiration detected under our conditions could be associated 

with a decrease of the respiratory chain ability to produce ATP and/or a decrease of fatty 

acid oxidation; both potentially depending on and promoting oxidative stress in a vicious 

cycle45–47. With respect to respiratory chain activity and related ATP production (i.e. 

parameters related to oxidative phosphorylation [OXPHOS]), it is worth emphasizing that 

B[a]P and ethanol, used alone or in combination, have already been reported to decrease 

these parameters in steatotic hepatocytes and other models8,9,11,15,46,48. Such an alteration of 

OXPHOS is commonly associated with an increase of ROS production and progression of 

NAFLD toward NASH particularly upon exposure to xenobiotic 7. In line with this, a lipid 

peroxidation in liver was detected under our experimental conditions and was found to be 

involved in co-exposure toxicity (Figure 6).  

Another altered process revealed by transcriptomic analysis was heme metabolism. 

Interestingly, several studies have shown that heme accumulation can favor oxidative stress 

and NAFLD progression, and have suggested that elevation of heme catabolism (through 

increase in heme oxygenase 1 (HO1), for example) could be therapeutic perspective of 

NAFLD49. In the context of NAFLD progression induced by B[a]P/ethanol co-exposure, we 

have found for the first time that there is an accumulation of both heme and hemin;  no 

change in the heme catabolic process was found, as visualized by the absence of increase in 

bilirubin level (Figure 6), despite a significant increase in blvra (biliverdin reductase) gene 

expression (Figure 2B). Previous studies have reported that the strong AhR ligand, TCDD, 
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could alter heme homeostasis and promote NASH in mice50. This observation, along with our 

present results, would thus put heme homeostasis as a potential central hub in response to 

cellular chemical stress during NAFLD. As the expression of several genes of heme 

biosynthesis was found to be elevated in zebrafish larva (Figure 2B) or in HepaRG (Figure 3), 

one could suggest that heme and hemin elevation would depend on a transcriptional 

regulation rather than a down-regulation of the catabolic pathway. In line with this, note 

that no change in hmox1a mRNA expression was detected under our conditions (Figure 2B); 

furthermore, the bilirubin level remained unchanged (Figure 6C), despite an increase in both 

blvra and blvrb expression (Figure 2B). A common consequence of heme accumulation and 

particularly of hemin accumulation, is an increase of oxidative stress responsible for cell 

death39. Thus, the presently observed biochemical effects would fit well with the increase in 

lipid peroxidation and its role in hepatotoxicity (Figure 6) detected in HFD zebrafish larva co-

exposed to B[a]P and ethanol. However, several studies have also highlighted that heme and 

hemin are potential inducers of cellular antioxidant systems and could then act to protect 

cells against oxidative stress51,52. In this context, the elucidation of the precise role of heme 

and hemin in our in vivo model of pathological progression of steatosis will require further 

experiments. This should help us to determine if heme and hemin accumulation: (i) has toxic 

effects, i.e increases oxidative stress; or (ii) at the opposite, favors protective effect, for 

example by increasing HO1 activity 52; or (iii) is an adaptive response to adjust content to the 

need of heme-containing proteins like cytochromes of respiratory chain or cytochrome 

P450s. 

Even if the exact role of heme homeostasis remains to be determined in our model, it 

is well recognized that heme metabolism is closely linked to iron homeostasis that is a well-
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known cause of oxidative stress through Fenton reaction, and is implicated in NAFLD53–55. As 

a mitochondrial dysfunction was presently detected, the content of labile iron contained in 

mitochondria was evaluated. Despite the fact that an increased deposition of iron has 

previously been detected in NAFLD54, to our knowledge, this is the first time that an increase 

(2-fold) in mitochondrial Fe2+ pool is observed in the context of in vivo pathological 

progression of steatosis upon exposure to toxicants (Figure 7). This elevation of 

mitochondrial iron was actually in agreement with the changes observed in gene expression. 

Indeed, up-regulation of numerous iron-related genes like ferritin (fth1a, fthl30) and 

mitoferrin 1 and 2 (slc25a37, slc25a28) was detected. Interestingly, most of the gene 

regulations regarding iron homeostasis observed under our experimental conditions were 

prevented in vivo by CH22311 or in vitro in human AhR-KO HepaRG cells (Figure 5C and 5F). 

This thus indicated a possible role for AhR in the increase in iron content. Besides an 

elevation of mitochondrial iron in liver, we cannot yet exclude that iron content could also 

be elevated in other cell compartments, notably in ferritin complex, or in blood (linked to 

transferrin or hemoglobin).  

In order to estimate the role of this mitochondrial iron accumulation in our context, 

we used a recognized iron chelator, namely deferoxamine (Figure 8). Not only this chelator 

prevented the alterations in mitochondrial iron pool (Figure 8A) and in mRNA expression 

detected for most of the genes linked to heme and iron homeostasis (Figure 8C), but it also 

prevented the induction of gene markers of cell death (casp3a), inflammation (il6), and 

oxidative stress (prdx1) (Figure 8D). Note that AhR inhibition prevented, in our in vivo model, 

the decrease in mitochondrial respiration and gene transcriptomic changes related to cell 

death and inflammation (Figure 5). Several in vitro and in vivo studies favor a role for iron in 
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the liver alterations induced by environmental contaminants50,56. Concerning B[a]P toxicity, 

this PAH as well as TCDD have been reported in vivo to modulate expression of hepcidin, to 

disturb heme homeostasis and to induce liver inflammation50,57–59. Nevertheless, a clear link 

between xenobiotic exposure, iron overload and liver toxicity has been, so far, only 

demonstrated in vivo for TCDD, not for B[a]P57. Nonetheless, B[a]P was shown in vitro to 

increase iron uptake in an hepatic cell line with consecutive increase of oxidative stress and 

cell death60. Regarding co-exposure to B[a]P and ethanol, only one study, from our team, has 

previously demonstrated in vitro that this mixture induced an iron overload responsible for 

an exacerbation of oxidative stress, and hence of hepatocyte death61. Considering the 

mechanisms of iron accumulation, several possibilities could be proposed and will need to 

be further investigated in future. First, transcriptomic regulation induced by co-exposure 

might favor iron uptake and retention, and limit iron export from liver. This hypothesis is 

coherent with the induction of genes such as ferritins (fth1a, fthl30) and mitoferrin 

(slc25a37, slc25a28) in our co-exposed HFD-fed zebrafish larva model, and with increase of 

iron uptake in F258 hepatic cell following B[a]P exposure60. The second possibility refers to 

membrane remodeling, i.e change in membrane fluidity and/or modulation of lipid rafts 

signaling. Indeed, such a membrane remodeling has been involved in B[a]P-induced iron 

elevation and apoptosis in rat hepatic epithelial F258 cells60, and in labile iron increase, 

lysosomal membrane permeabilization, oxidative stress and cell death induced cooperatively 

by B[a]P and ethanol in hepatic WIF-B9 cells61. Regarding this latter point, it is worth noting 

that we previously demonstrated an implication of membrane remodeling in the 

pathological progression of steatosis in our model of HFD-fed zebrafish larvae upon 

B[a]P/ethanol co-exposure10. 
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In total, our data strongly indicate that mitochondrial iron accumulation, likely 

dependent on AhR activation, would be largely responsible for the progression from 

steatosis to a steatohepatitis-like state following B[a]P/ethanol co-exposure. Iron 

accumulation, notably in mitochondria, is thus shown for the first time to our knowledge as 

a key event in toxicant-induced liver disease exacerbation in a context of NAFLD. 

Remarkably, these conclusions seem to be relevant in human heath as iron deposition in 

human liver has been correlated with oxidative stress and progression towards 

steatohepatitis or fibrosis53. However, the role for xenobiotic exposure, particularly in 

mixture, in human liver iron overload and NAFLD is still not elucidated and need to be 

explored. 

 

Conclusions 

On the whole, this study, using a model of HFD-fed steatotic zebrafish larva, has shed 

new light on the mechanisms involved in the in vivo transition of steatosis towards 

steatohepatitis induced by B[a]P/ethanol co-exposure. Indeed, this co-exposure activates 

AhR, then leading to transcriptomic alterations of heme and iron homeostasis, and also of 

mitochondrial functions. The consequences of such alterations were notably an elevation of 

heme and hemin content in zebrafish larvae, probably dependent on an increase in heme 

synthesis, since no change in bilirubin could be observed. The role of heme and hemin are 

still speculative but they most likely play a role in NAFLD progression through oxidative 

stress. Looking at mitochondrial disruptions, the main changes impacted morphology 

(smaller and flattened mitochondria), mitochondrial respiration, and labile iron (Fe2+) 

content. We proposed that iron overload in mitochondria, possibly depending on AhR 
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activation and likely acting via oxidative stress, would represent a key event in the steatosis 

progression induced by B[a]P/ethanol co-exposure of  HFD zebrafish larvae as iron chelation 

has been found to be largely protective towards cell death and inflammation. 
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Figure legends 

Figure 1: Transcriptomic analyses reveal major-disrupted biological processes in 

B[a]P/ethanol co-exposed zebrafish larvae. Transcriptomic analyses using GeneChipTM 

Zebrafish gene 1.0 ST array were performed on mRNA samples from 12 dpf HFD-fed 

zebrafish larvae exposed to 25 nM B[a]P and/or 43 mM ethanol during 7 days (n=5). (A) A 

flow chart outlines transcriptomic approach and statistical analysis for gene selection and 

clustering. (B) A heat-map summarizes changes of expression of the 525 B[a]P/ethanol (BE)-

modulated transcripts and their clustering depending on each condition. (C) Table indicating 

main results of gene ontology enrichment analysis using AMEN tool on GO and KEGG 

annotations. For each set of genes (up- and down-regulated ones in intense red and blue 

color, respectively; patterns [P1 to P8] in light red or blue color), significant enriched terms 

are given with an enrichment ratio indicating the number of annotated genes recovered out 

of the number of genes expected for this annotation. 

 

Table 1. Synthetic results of Ingenuity Pathway Analysis (IPA) of human genes homologous 

to B[a]P/ethanol-modulated zebrafish genes. Enrichment analysis using IPA software was 

performed on a set of genes corresponding to the 259 unique human genes recovered by 

sequence homology from the 525 B[a]P/ethanol modulated zebrafish genes. For each kind of 

annotation (Ingenuity Canonical Pathways, Ingenuity Toxicity Lists or Ingenuity Tox 

Functions), each enriched-term is given with its p-value [-log(p-value) exactly]; a ratio 

representing number of annotated-genes in analyzed set out of total of known annotated-
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genes; number of annotated-genes found in analyzed set ; the rank of enriched term in the 

list of enriched-terms for this kind of annotation. 

 

Figure 2: Validation and investigation by RT-qPCR analysis of mRNA expression changes in 

B[a]P/ethanol co-exposed zebrafish larvae. Zebrafish larvae were fed with HFD from 4 dpf 

and then treated with control vehicule (C) or exposed to 25nM B[a]P and 43 mM ethanol 

(BE) for seven days ( from 5 to 12 dpf). mRNA samples were collected from pool of 10 to 20 

larvae, and mRNA expression was evaluated by quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) for different groups of function-related genes, i.e. 

mitochondria-related genes (A), heme & iron-related genes (B), oxidative stress & AhR 

signaling-related genes (C). Data are expressed relative to mRNA levels found in HFD 

untreated control larvae (C), set at 0 (log 2 change). Values are the mean ± SEM (n≥5). *, **, 

*** statistically different from HFD control with respectively p<0.05; p<0.01 and p<0.001. 

Trends of change in gene expression found in microarray are indicated by white arrows 

when consistent with RT-qPCR observations or in gray arrows when not. 

 

Figure 3: Assessment by RT-qPCR of possible co-exposure impacts relevant to human using 

HepaRG cell line. 2.3. HepaRG cells were supplemented with fatty acids during 2 days (15 

µM stearic acid and 150 µM oleic acid) and co-treated (BE) or not (C) with B[a]P (2.5 μM) and 

ethanol (25mM) for 2 weeks (see reference 8 for further details). mRNA expression was 

evaluated by RT-qPCR for different groups of function-related genes, i.e. mitochondria-

related genes, heme & iron-related genes, oxidative stress & AhR signaling-related genes. 

Data are expressed relative to mRNA levels found in HepaRG control cells (C), set at 0 (log 2 
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change). Values are the mean ± SEM (n≥3). *, **, statistically different from HepaRG 

untreated cells with respectively p<0.05 and p<0.01. Trends of change in gene expression 

found by RT-qPCR in zebrafish are indicated by white arrows when consistent with RT-qPCR 

observations in HepaTG cells. 

 

Figure 4: Evaluation of mitochondrial alterations induced by B[a]P/ethanol co-exposure 

liver of steatotic zebrafish larva. Zebrafish larvae were fed with HFD from 4 dpf and then 

treated at 5 dpf with control vehicule (C) or exposed to B[a]P and ethanol (BE) (1 µM B[a]P + 

173 mM ethanol for 1 day in (A), or 25 nM B[a]P + 43 mM ethanol for 7 days in (B)). (A) 

Measurement on Seahorse XFe24 Analyzer of mitochondrial oxygen consumption in 

zebrafish larva. Values are the mean of oxygen consumption rate (OCR, in pmol of O2/min) ± 

SEM measured from at least 7 larvae per condition. *, ** statistically different from HFD 

control with p<0.05; p<0.01 respectively. (B) Zebrafish liver section imaging by transmission 

electronic microscopy. Upper panels present a large view of liver section whereas the middle 

ones show images of hepatocyte, with higher magnification in bottom panel to better 

evaluate mitochondria morphologies. Images are representative of 3 larvae per condition 

(BC, biliary canaliculi; N, nucleus; M, mitochondria).  

 

Figure 5: Involvement of AhR activation in mitochondrial dysfunction and liver toxicity 

induced by B[a]P/ethanol co-exposure. Zebrafish larvae were fed with HFD from 4 dpf and 

then treated at 5 dpf with control vehicule (C) or exposed to B[a]P and ethanol (BE) (1 µM 

B[a]P + 173 mM ethanol for 1 day in (A), or 25 nM B[a]P + 43 mM ethanol for 7 days in (B-E)). 

For these experiments, some larvae were also co-treated with 1 µM CH223191 (CH), a 



178 | P a g e  

 

specific AhR antagonist. In (F), HepaRG cells wild-type (WT) or knock-out for AhR (KO) (see 

reference 9 for details) were supplemented with fatty acids during 2 days (15 µM stearic acid 

and 150 µM oleic acid) and co-treated (BE) or not (C) with B[a]P (2.5 μM) and ethanol 

(25mM) for 2 weeks. (A) Measurement on Seahorse XFe24 Analyzer of mitochondrial oxygen 

consumption in zebrafish larva. Values are the mean of oxygen consumption rate (OCR, in 

pmol of O2/min) ± SEM measured from at least 7 larvae per condition. mRNA expression was 

evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for 

different groups of function-related genes in zebrafish, i.e. AhR signaling-related genes (B), 

mitochondria-related genes (C), heme & iron-related genes (D), oxidative stress, cell-death 

and inflammation genes (E) and in HepaRG cells in (F). Data are expressed relative to mRNA 

levels found in HFD untreated control larvae (C) (A to E) or in HepaRG WT control cells (F), 

set at 0 (log 2 change). RT-qPCR values are the mean ± SEM (n≥3). *, ** statistically different 

from HFD control zebrafish or between indicated conditions (A to E) or from HepaRG WT 

control cells (F) with p<0.05; p<0.01 respectively. # indicates a statistical difference between 

WT and KO cells with p<0.05 (F). 

 

Figure 6: Disruption of heme metabolism and involvement of oxidative stress in 

B[a]P/ethanol co-exposure liver injury. Zebrafish larvae were fed with HFD from 4 dpf and 

then treated with control vehicule (C) or exposed to 25 nM B[a]P and 43 mM ethanol (BE) 

for 7 days ( from 5 to 12 dpf). Levels of heme (A), hemin (B) and bilirubin (C) were evaluated 

from homogenates of pools of whole larva. (D) Lipid peroxidation, marker of oxidative stress, 

was assessed in zebrafish larva by quantification of fluorescence intensities in liver following 

staining of larvae with C11-Bodipy 581/591 (BC11). (E) Liver damaged cells counting was 
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performed on histological sections of zebrafish stained by HES from at least 3 larvae per 

condition. Values are the mean ± SEM. *, statistically different from HFD control or between 

indicated conditions with p<0.05. 

 

Figure 7: B[a]P/ethanol co-exposure induces iron accumulation in liver mitochondria. 

Zebrafish larvae were fed with HFD from 4 dpf and then treated with control vehicule (C) or 

exposed to 25 nM B[a]P and 43 mM ethanol (BE) for 7 days ( from 5 to 12 dpf). (A) Imaging 

of free iron (Fe2+) in the liver of zebrafish larvae was done by confocal microscopy after 

staining with Mito-FerroGreen probe. Merge of transmitted light and green fluorescent 

imaging are given in upper panels whereas bottom panels present enlargement of liver only 

in green fluorescent channel (magnification x200; dotted line outline liver). (B) Relative 

mitochondrial iron content was assessed by quantification of green fluorescent intensities 

found in liver of zebrafish using previous confocal images. Values of fluorescence intensity 

detected in each zebrafish liver are plotted as a point whereas mean ± SEM are presented by 

line. **, statistically different between indicated conditions with p<0.01. 

 

Figure 8: Involvement of iron accumulation in liver mitochondrial dysfunction and toxicity 

induced by B[a]P/ethanol co-exposure of steatotic zebrafish larva. Zebrafish larvae were 

fed with HFD from 4 dpf and then treated with control vehicule (C) or exposed to 25 nM 

B[a]P and 43 mM ethanol (BE) for 7 days ( from 5 to 12 dpf). Some larvae were also co-

treated with an iron chelator, 100 µM deferoxamine (Def). (A) Relative mitochondrial iron 

content was assessed by quantification of Mito-FerroGreen fluorescence intensities detected 

in the liver of zebrafish using confocal images. mRNA expression was evaluated by 
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quantitative reverse transcription polymerase chain reaction (RT-qPCR) for different groups 

of function-related genes in zebrafish, i.e. mitochondria-related genes (B), heme & iron-

related genes (C), oxidative stress, cell-death and inflammation genes (D), and AhR signaling-

related genes (E). Values are the mean ± SEM (n≥3). *, **, statistically different from HFD 

control or between indicated conditions with p<0.05; p<0.01 respectively. 
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Discussion 

1. General discussion 

World health organization (WHO) has reported 1.9 billion people as overweight and 650 
million people as obese. Obesity acts as a trigger for several metabolic disorders, for 
example NAFLD. It has been recently reported that about 90 % of obese population is 
diagnosed with NAFLD and that the rate of obesity and NAFLD prevalence is increasing 
proportionately (Younossi, 2019). Considering other risk factors of NAFLD, exposure to 
environmental contaminants is considered, in recent times, as an important cause of NAFLD 
development and progression. As a consequence, the Cave’s group in US has proposed the 
term TAFLD, when fatty liver disease is caused by toxicants. Among these toxicants, 
benzo[a]pyrene, a widely distributed environmental pollutant, is believed to contribute in 
TAFLD pathogenesis (Wahlang et al., 2019). Another well-known contributor of fatty liver 
disease is ethanol drinking. Since last few years, our lab has been working on these risk 
factors and established the fact that B[a]P and ethanol, even at low doses, exert 
hepatotoxicity and can lead to NAFLD progression, if liver is already compromised with 
steatosis in both, in vitro and in vivo, conditions. Furthermore, our team has recently 
developed a steatotic zebrafish larva model by using high fat diet, which can progress to 
steatohepatitis-like state, when co-exposed with 43 mM ethanol and 25 nM B[a]P for 7 days 
(Bucher et al., 2018b). In continuity, our team has also coined several pathophysiological 
mechanisms responsible for pathological progression to steatohepatitis-like state using two 
in vitro models  (Bucher et al., 2018a; Tête et al., 2018). However, as several body tissues 
play their role in NAFLD and to attempt to be more relevant to human situation, it is crucial 
to describe the underlying mechanisms involved in steatosis progression in response to B[a]P 
and ethanol co-exposure by using an in vivo model. In this context, we have used zebrafish 
larva model to assess NAFLD pathogenesis at cellular and molecular level. The following 
discussion part is mainly focused on the obtained results during the course of my PhD, using 
the in vivo model of zebrafish larva, in order to decipher mechanisms that could play a role 
in the in vivo transition of steatosis towards steatohepatitis-like state upon B[a]P/ethanol co-
exposure.  

2. Mechanisms involved in steatosis progression towards steatohepatitis-like 
state in HFD-fed zebrafish larva  

A variety of mechanisms has been described for the hepatotoxicity associated with exposure 
to B[a]P or ethanol either alone or in co-exposure under in vitro non-steatotic conditions 
(Collin et al., 2014; Hardonnière et al., 2016, 2017a; Tekpli et al., 2010). These mechanisms 
notably include membrane remodeling, oxidative stress and mitochondrial dysfunction. Our 
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team recently has also described the involvement of B[a]P/ethanol metabolism, NO 
production and mitochondrial dysfunction in the hepatotoxicity induced by B[a]P/ethanol 
co-exposure under steatotic in vitro state (Bucher et al., 2018a, 2018b; Tête et al., 2018). 
Moreover, these latter studies have highlighted a potential cooperation between the two 
chemicals as changes in their respective metabolisms (with a decreased B[a]P metabolism 
leading to an increased ethanol metabolism via an AhR-dependent ADH activation) could 
partially explain a higher toxicity during co-exposure, (Tête et al., 2018). In this context, the 
reliability of zebrafish model with respect to the determination of the mechanisms 
underlying chemical-induced hepatotoxicity has already been investigated by our team 
(Podechard et al., 2017). With the in vivo zebrafish larva model, fed with HFD, we have first 
studied membrane remodeling mechanism as targeted approach, whereas a non-targeted 
transcriptomic analysis allowed us to show that oxidative stress and mitochondrial 
dysfunction could also play key roles in hepatocellular toxicity and inflammation observed in 
vivo. Furthermore, we found an important role for AhR and iron overload in these 
phenotypical responses.  

2.1. Targeted approach: Membrane remodeling as a key actor in the pathological 
progression of liver steatosis 

Changes in membrane lipid raft characteristics and/or alteration in membrane fluidity 
features, termed membrane remodeling, is one of the well described hepatotoxic 
mechanism for several chemicals. Our team has already described the involvement of 
membrane remodeling associated with B[a]P in vitro (Tekpli et al., 2010), ethanol in vitro 
(Nourissat et al., 2008), co-exposure to both toxicants in vitro (Collin et al., 2014) and with 
ethanol in vivo (Podechard et al., 2017). In addition, HFD, which in current study was used to 
induce steatosis before toxicant co-exposure, is also notified by other research teams to 
alter membrane lipid composition and lipid raft protein activity, with an impact on 
membrane physicochemical properties and membrane remodeling (Liu et al., 2014). For 
these reasons, in the current study, we explored the in vivo implication of membrane 
remodeling in NASH development, using HFD-fed zebrafish larva co-exposed with B[a]P and 
ethanol. We came with the fact that such a co-exposure significantly altered membrane 
properties in zebrafish liver cells by increasing the overall membrane order compared to 
control. In addition, we observed greater staining of high-ordered membrane domains, thus 
highlighting more lipid-raft clustering in the plasma membrane of zebrafish liver cells upon 
toxicant co-exposure. This rise in membrane order and alteration in lipid-raft spatial 
distribution therefore indicates membrane remodeling and could be considered as first 
event toxicant co-exposure toxicity.   
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2.1.1. Origin of membrane remodeling 

Regarding the possible mechanisms underlying the detected membrane remodeling, our 
team has previously well described them in vitro with ethanol and B[a]P, exposed either 
alone or in co-exposure. B[a]P, via AhR and ROS production, represses HMGCR (3-hydroxy-3-
methylglutaryl-CoA reductase), thus inhibiting cholesterol synthesis. B[a]P is also known to 
inhibit LXR-β and SREBP1c via AhR-dependant pathway. Thus overall, B[a]P alters the lipid 
composition of membrane lipid rafts and increase membrane fluidity. (Tekpli et al., 2010, 
2012, 2013) (Figure 29). With reference to ethanol-induced membrane remodeling, our 
team previously has described that this hepatotoxicant increases membrane fluidity in vitro 
as well as in vivo (Aliche-Djoudi et al., 2011; Podechard et al., 2017). Further, in vitro studies 
have explained the origin of ethanol-induced membrane fluidity. In this context, our team 
has previously reported that ethanol, via its metabolism, increases ROS production and thus, 
lipid peroxidation. This results in increase of membrane fluidity and clustering of lipid rafts. 
In order to determine the origin of membrane remodeling in zebrafish model under our 
experimental conditions, it would be nice to assess the impact of AhR and ROS on 
membrane composition and properties in future. 

2.1.2. Role of membrane remodeling 

In order to assess this origin of membrane remodeling in our experimental condition, we 
used lipid raft disrupter, named pravastatin. This drug is an HMGCR inhibitor that decreases 
cholesterol synthesis. The pravastatin addition in larval media along with B[a]P and ethanol 
prevented the effects of toxicant on membrane order and on lipid raft spatial distribution, 
and hence membrane remodeling. Furthermore, the addition of pravastatin in our 
experimental condition also decreased liver cell damage. We have obtained similar type of 
results in vitro on the WIF-B9 hepatic cell line, where pravastatin inhibited the toxicant 
effects on hepatotoxicity. It has been previously shown using in vitro models that B[a]P-
induced membrane remodeling can trigger cell death via NHE-1 activation (Tekpli et al., 
2010, 2012). In vitro ethanol exposure is also reported to elicit membrane remodeling and 
consequently leading to cell death via phospholipase C (PLC) activation (Nourissat et al., 
2008). Furthermore, with co-exposure, both toxicants have enhanced effect on PLC 
translocation to membrane (Collin et al., 2014). As hepatocyte death is a primary feature of 
NASH as well as TASH (Ibrahim et al., 2018; Wahlang et al., 2013, 2019), hence membrane 
remodeling could be proposed as a key mechanism to be involved in NAFLD progression 
upon exposure to toxicants. 

In addition to liver cell damage, in the current study, we have also observed increased mRNA 
expression of several markers of inflammation as crp, il1b, il6 and nfkb, and pravastatin 
addition prevented the rise of only crp and il6. This effect is coherent with previous studies 
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that explained lipid raft role in steatohepatitis-associated inflammation (Chen et al., 2018; 
Das et al., 2015; Gianfrancesco et al., 2018). Indeed, various research groups have described 
that changes in cell membrane physicochemical properties can activate several membrane 
receptors, located in membrane lipid rafts, called as toll-like receptors (TLR 2, 4 and 9). This 
activation induces the NF-κB pathway, which results in the production of several 
inflammatory markers as IL-1β and IL-6 and TNF-α (Das et al., 2015; Gianfrancesco et al., 
2018; Magee et al., 2016; Roh et al., 2015; Roh and Seki, 2013). Furthermore, membrane 
remodeling-associated TLR-4 activation could also activate NLRP3 inflammasome, which 
then triggers inflammatory and fibrogenic response. NLRP3 inflammasome activation is also 
known to increase lipid accumulation in liver cells via high mobility group box 1 (HMGB1) 
production, thus further contributing in NASH progression (Chen et al., 2018; Yang et al., 
2019). 

2.2. Non-targeted approach: transcriptomic analysis 

In continuation with our current finding showing membrane remodeling as an important 
mechanism of hepatotoxicity triggered by B[a]P/ethanol co-exposure in zebrafish larva 
model fed with HFD, we have performed transcriptomic analysis to discover further 
mechanisms involved in this context. Thus, we have found oxidative stress and 
mitochondrial dysfunction as important mechanisms that are involved in hepatocellular 
toxicity and inflammation leading to in vivo NAFLD progression. This is in line with our recent 
in vitro data on the role of oxidative stress and mitochondrial dysfunction NAFLD progression 
associated with B[a]P and ethanol (Bucher et al., 2018a). However, for the 1st time to our 
knowledge, we have found AhR-dependent iron overload in mitochondria of liver cells of 
HFD-fed zebrafish larva co-exposed with B[a]P and ethanol.  

2.2.1. Outcomes of transcriptomic analysis 

In this current study, during transcriptomic analysis, we got 315 genes that were up-
regulated and 210 down-regulated genes. After analyzing data with GOEA and IPA, clusters 
of down-regulated genes gave terms associated with immune system. On the other hand, 
up-regulated genes were aggregated to highlight terms like porphyrin/heme/iron 
metabolism; mitochondrial dysfunction; oxidative stress; NAFLD/liver toxicity and AhR 
signaling. Even if this transcriptomic analysis was done on mRNA samples from the whole 
larvae, results obtained could be trustly used to evaluate liver dysfunctions/NAFLD 
progression as IPA analysis outlines a clear liver disruption signature (Table 1 from the paper 
2 on Ingenuity Tox function). In addition, in article from Bucher et al. (2018a), we also found 
good correlation regarding mRNA expression changes from whole larvae sample and from 
mRNA sample obtained from liver following laser micro-dissection.  
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2.2.2. Down-regulated genes: Immunosuppression  

Regarding the down-regulated genes associated with immunity under our experimental 
conditions, it is noteworthy that several studies have shown that B[a]P and ethanol can 
activate both pro- and anti-inflammatory pathways, thus leading to immune modulation 
(Cella and Colonna, 2015; Liamin et al., 2018; Szabo and Saha, 2015). As described above in 
discussion, toxicant co-exposure triggers several proinflammatory mediators in relation to 
membrane remodeling-associated receptor activation. In contrast, studies have also shown 
that AhR activation, can suppress immune system, thus promoting allograft tolerance in islet 
transplantation model (Hauben et al., 2008). Other studies have shown that B[a]P inhibits 
monocyte differentiation to macrophages via AhR-associated mechanism, and thus induces 
immunotoxicity (van Grevenynghe et al., 2004, 2003). TCDD, a strong AhR agonist, was also 
described with immunosuppressive effects in mice (Funatake et al., 2005). AhR role is also 
described in autoimmune and inflammatory diseases. In addition, prolonged AhR activation 
is also linked with infections (Cella and Colonna, 2015). Regarding alcohol, it is also related to 
immune responses; whereas acute alcohol exposure may inhibit inflammatory reactions, its 
chronic exposure induces proinflammatory response. Chronic alcohol exposure is also 
associated with viral and bacterial infections (Szabo and Saha, 2015). Further several studies 
suggested that infections make individuals more prone towards NAFLD (Adinolfi et al., 2016; 
Papagianni and Tziomalos, 2018). In this context, we can propose that toxicant dependent 
immunosuppresion could be one of possible mechanisms to ease NAFLD progression.  

2.2.3. Up-regulated genes 

Pertaining to up-regulated genes, as early mentioned, highlighted terms were 
porphyrin/heme/iron metabolism; mitochondrial dysfunction; oxidative stress; and AhR 
signaling.  In this context, we measured the mRNA expressions of several genes associated 
with described terms and we confirmed altered mRNA expression of many genes. These RT-
qPCR results were coherent with our recent work on human hepatocarcinoma HepaRG cell 
line regarding several of the terms evidenced. Using the same mRNA samples as previous 
studied (Bucher et al., 2018a, 2018b), we found that numerous mRNA expressions follow the 
same trend as for zebrafish larva, even though lower changes were detected. This validates 
the fact that the liver in zebrafish model was likely the main target of co-exposure. Based on 
these results, we started to work on individual mechanisms and tried to find link between 
these mechanisms.  

2.2.3.1. Mitochondrial dysfunction 

Mitochondrial dysfunction is widely described to be associated with NAFLD (Grattagliano et 
al., 2019). Our transcriptomic analysis and RT-qPCR data on zebrafish model has overall 
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shown the up-regulation in mRNA expression of several genes involved in electron transport 
chain, thus indicating altered mitochondrial respiration activity and therefore, mitochondrial 
dysfunction. Furthermore, in our experimental condition, we observed decrease in basal and 
maximal mitochondrial respiration that additionally confirmed mitochondrial activity 
disruption. These results were similar to the in vitro study performed on steatotic HepaRG 
cells co-exposed with B[a]P and ethanol, where a  decrease in mitochondrial respiratory 
chain activity and reduced mitochondrial respiration as well as lower mitochondrial DNA 
levels were found (Bucher et al., 2018a). In addition to functional disruption of 
mitochondria, we have also observed structural changes in mitochondria in liver cells of 
zebrafish larvae, characterized by flattened, smaller and less number of cristae. Taking all 
results into account, it can be proposed that compromised mitochondrial respiration 
detected in HFD-fed zebrafish larvae could be linked with reduced oxidative phosphorylation 
([OXPHOS]: respiratory chain ability to produce ATP), a characteristic molecular feature of 
NAFLD progression (Begriche et al., 2019; Li et al., 2019).  Furthermore, this compromised 
mitochondrial activity with alteration in OXPHOS is also proposed to be the part of a vicious 
ROS generation cycle, another feature of NAFLD progression  (Li et al., 2019; Nassir and 
Ibdah, 2014). In line with this, a lipid peroxidation in liver, one of the consequence of ROS 
production in NAFLD (Bellanti et al., 2017), was also detected under our experimental 
zebrafish model conditions. Mitochondrial dysfunctions as OXPHOS alteration and ROS 
production, are  also reported to be associated with toxicants like B[a]P and ethanol, either 
alone or in combination, by several investigators in steatotic and non-steatotic models 
(Begriche et al., 2019; Bucher et al., 2018a, 2018b; Das and Bhutia, 2018; Hardonnière et al., 
2016; Tête et al., 2018). The common mechanism of mitochondrial dysfunction between 
NAFLD and toxicant exposure connects these to TAFLD progression as it is also reported that 
TAFLD involves mitochondrial dysfunction (Heindel et al., 2017; Joshi-Barve et al., 2015; 
Wahlang et al., 2019). Furthermore, zebrafish larva model under our conditions have shown 
to be competent to study TAFLD progression with reference to mitochondrial dysfunction 
(Figure 29).  

2.2.3.2. Heme homeostasis 

Another process, revealed by transcriptomic data, in our experimental model of HFD-fed 
zebrafish larva co-exposed with B[a]P and ethanol was heme metabolism. There are several 
studies that have found association between heme accumulation, oxidative stress and 
NAFLD progression, especially with reference to heme oxygenase 1 (HO-1), the enzyme 
involved in heme catabolism (Raffaele et al., 2019). It has been shown in various studies that 
decrease in heme catabolism leads to NAFLD progression (Raffaele et al., 2019), and on the 
other way round, increase in heme catabolism could be beneficial against NAFLD progression 
(Severson et al., 2016). Moreover, HO-1 activity has recently been reported to be used as a 
NAFLD diagnostic measure in human (Yuan et al., 2019). In our HFD-fed zebrafish model 
exposed with B[a]P/ethanol, we have observed an accumulation of heme and its oxidized 
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form, hemin. Along with this, we have also found an up regulation of mRNA expression of 
several genes associated with heme biosynthesis in both, in vivo HFD-fed zebrafish model 
and in vitro model of steatotic HepaRG cell line, upon B[a]P/ethanol co-exposure. The 
increase in genes responsible for heme biosynthesis can suggest that the increase in both 
heme and hemin levels would be linked with transcriptional regulation rather than a 
decrease in catabolic pathway. To support this idea, we have determined bilirubin content 
(catabolic product of heme) and we have found no change in bilirubin level. In line with this, 
the mRNA expression of hmox1a was also unchanged. As heme is an important cofactor 
required for cytochrome c and cytochromes in complexes II, III and IV of electron transport 
change, thus alteration in heme metabolism could interfere with OXPHOS and cause 
mitochondrial dysfunction (Chiabrando et al., 2018). The increase in heme, especially hemin, 
is indeed reported to enhance oxidative stress, lipid peroxidation, ER stress by affecting on 
proteostasis, inflammation and thus cell death (Chiabrando et al., 2018; Kumar and 
Bandyopadhyay, 2005). As already mentioned in discussion, we have detected an increased 
inflammation and lipid peroxidation (higher C11-Bodipy581/591 staining) in liver of HFD-fed 
zebrafish, co-exposed with B[a]P and ethanol. In contrast to this, some studies have also 
related higher heme/hemin level with activation of cellular antioxidant systems as a 
feedback response to counteract oxidative stress (Donegan et al., 2019; Luan et al., 2017). In 
order to decipher the exact role of heme in zebrafish model under our conditions, toxicant 
impact could be assessed by decreasing heme levels via HO-1 activation.  

2.2.3.3. Iron homeostasis 

Although precise role of heme in terms of protection or toxicity is not clear, heme 
metabolism is nevertheless well known to be linked with iron homeostasis (Gao et al., 2019; 
Kafina and Paw, 2017; Wilks and Heinzl, 2014).  Iron is a well described source of oxidative 
stress via Fenton reaction and is involved in NAFLD progression (Britton et al., 2016; 
Corradini and Pietrangelo, 2012; Marchisello et al., 2019). As iron/heme metabolism is 
closely linked with mitochondria and as in our experimental zebrafish model, we have 
observed mitochondrial dysfunction, we processed to determine the free iron content in this 
organelle. Although iron accumulation has previously been shown to occur in NAFLD, to our 
knowledge, for the first time we were able to detect a two-fold increase of free iron content 
(Fe2+) in mitochondria (observed via Mito-FerroGreen staining on confocal microscopy) of 
HFD-fed zebrafish larva liver cells under toxicant exposure. In line with this, we have also 
detected increased mRNA expression of ferritin (fth1a, fthl30) and mitoferrin 1 and 2 
(slc25a37, slc25a28) (Figure 27).  
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Figure 27: Iron/heme homeostasis in HFD-fed zebrafish larva co-exposed with 
B[a]P/ethanol 

Besides an increase in mitochondrial Fe2+ pool, we cannot yet rule out the possibility of 
altered iron content in other cellular compartments or in organs other than liver. With 
relation to this, we have thus observed an increase in Perls’ staining (indicator of iron 
accumulation) in pancreatic region of zebrafish larva under our experimental conditions. 
During my thesis, as major focus was liver, no further experiments were conducted to 
uncover the role of pancreatic iron accumulation under our experimental conditions. 
However, it would need further investigation, as such an effect could impact insulin 
production and hence increase the risk of diabetes and hence NAFLD (Backe et al., 2016; 
Koonyosying et al., 2019) (Figure 28). 
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Figure 28: Iron content in cellular compartmensts or organs other than liver 
Black arrows show blue Perls’ staining (indicator of iron accumulation) in cellular compartmensts or organs 
near to the liver.  

2.2.4. Role of mitochondrial iron pool and its relationship with AhR in NAFLD progression 

In order to unravel the role of mitochondrial iron accumulation in NAFLD progression, we 
exposed HFD-fed zebrafish with iron chelator, deferoxamine along with B[a]P and ethanol. 
This drug, deferoxamine, notably prevented the accumulation of iron in mitochondria. In 
addition, it inhibited the increase in mRNA expression of several iron and heme homeostasis-
associated genes. We have also observed that deferoxamine prevented the rise in gene 
markers of oxidative stress (prdx1), inflammation (il6) and cell death (casp3a). As 
mitochondrial iron chelation has reduced overall cellular toxicity possibly by inhibiting 
oxidative stress, inflammation and cell death, we can thus propose that mitochondrial iron 
accumulation would be associated with mitochondrial dysfunction, thereby leading to 
NAFLD progression towards NASH. 

Numerous of studies have linked the role of iron in hepatotoxicity with exposure to 
environmental contaminants (Fader et al., 2017). Regarding B[a]P and TCDD, both AhR 
ligands have been reported to alter hepcidin expression in vivo and thus, to affect heme 
homeostasis and consequently resulting in liver inflammation (Fader et al., 2017; Fader and 
Zacharewski, 2017; Volz et al., 2005; Wang et al., 2009). Furthermore, TCDD and B[a]P, in 
vivo and in vitro respectively, have been shown to induce iron overload in liver cells leading 
to cellular toxicity (Fader and Zacharewski, 2017; Gorria et al., 2006). Finally, as described 
earlier in discussion, our team has shown, by using rat primary hepatocytes that 
B[a]P/ethanol co-exposure induced an iron overload, thereby exacerbating oxidative stress 
and hepatocyte death (Collin et al., 2014). With reference to this literature review and for 
understanding the mechanism of mitochondrial iron accumulation in our tested condition, 
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we decided to explore the role of AhR. For this reason initially, we tried to develop an ahr 
knockout (KO) Zebrafish, namely ahr2hu3335. It is a functionally null ahr2 zebrafish line, 
exhibiting a TTG to TAG point mutation in residue 534; this then results in a premature stop 
codon in the transactivation domain of the AhR protein. For genotyping of F1 zebrafish 
generation, obtained from spawning of heterozygous (+/- ahr) F0 generation, high resolution 
melting (HRM) analysis was performed. HRM is post-PCR analysis method used to identify 
variations in nucleic acid sequences based on detecting small differences in PCR melting 
(dissociation) curves. It clearly distinguishes homozygous variant samples from homozygous 
wild type samples. After the identification of ahr knockout, these fishes were processed for 
spawning but, unfortunately, they were unable to spawn. Unspawing of this type of KO 
fishes was confirmed by a recently published work, in which this unspawing was supported 
by the fact that AHR is involved in fertility, embryo nourishment, maintenance of pregnancy, 
and normal ovarian function in mammals (Garcia et al., 2018). Based upon the fact that we 
were unable to develop an ahr KO zebrafish model during my thesis period, we decided to 
use chemical inhibition aproach of AhR by CH-223191. CH-223191 is a widely accepted AhR 
antagonist (Moyer et al., 2016). Furthermore, we also tested the mRNA expression obtained 
from AHR knock out human HepaRG cell line, in collaboration with Bernard Fromenty’s team 
within the STEATOX framework. In line with the literature, we found that most of the mRNA 
expressions of genes associated with iron homeostasis observed under our experimental 
conditions were inhibited in both, in vivo by CH22311, and in vitro in human AhR-KO HepaRG 
cells. This therefore suggested a possible role for AhR in the increase in iron content. In 
addition, as expected, AhR inhibition by CH-223191 also prevented the decrease in basal and 
maximal mitochondrial respiration, thus prevented mitochondrial dysfunction. Similar 
results regarding AhR impact on basal and maximal mitochondrial respiration were reported 
with steatotic HepaRG cells in AhR KO model (Bucher et al., 2018a). Taking all results 
together, we can thus propose that B[a]P/ethanol co-exposure might induce an AhR-
dependent mitochondrial iron accumulation.  

Furthermore, we have shown via qPCR data that this latter event is responsible for 
mitochondrial dysfunction, thus causing oxidative stress and cell death, and hence 
exacerbating NAFLD and its progression towards NASH.  

2.2.5. Possible proposed mechanisms for the AhR-dependent mitochondrial iron 

accumulation 

Regarding the mechanisms for the AhR-dependent mitochondrial iron accumulation, several 
hypotheses could be putforward and will require detailed systemic investigations in future. 
First, co-exposure-mediated transcriptomic regulation might favor iron uptake and retention 
thanks to a decrease in iron export from liver. This hypothesis is coherent with our 
experimental condition of HFD-fed zebrafish larva model co-exposed with B[a]P and ethanol, 
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since we observed higher mRNA expression of genes like ferritins (fth1a, fthl30) and 
mitoferrins (slc25a37, slc25a28). Besides, our team had previously found increase of iron 
uptake due to membrane fluidization in F258 hepatic epithelial cells upon B[a]P exposure  
(Gorria et al., 2006). The second hypothesis refers to membrane remodeling. As already 
explained above in discussion, we observed membrane remodeling in vivo in our HFD-fed 
zebrafish model as well as in vitro in primary rat hepatocytes when co-exposed to B[a]P and 
ethanol. Interestingly, our team has reported in primary rat hepatocyte model that 
membrane remodeling in response to B[a]P/ethanol co-exposure resulted in lysosomal 
permeabilization leading to increased iron content. In this context, it can be proposed that 
increased intracellular iron, by either of above hypotheses, could move to mitochondria for 
iron utilization, as mRNA expression of mitochondrial iron transport gene (mitoferrin) was 
found to be increased in our experimental conditions; this would then enhance heme 
biosynthesis. This idea is supported by the fact that we found higher mRNA expression of 
several genes controlling heme biosynthesis including ferrochelatase (fech), protein 
responsible for iron incorporation. Even if these proposed mechanisms need several 
experiments to confirm each transition step leading towards cellular toxicity, we could 
propose a global mechanism pathway and a potential AOP to illustrate conclusions we have 
made on B[a]P/ethanol co-exposure impact with regards to NAFLD progression  (Figure 29, 
30).   

2.2.6. Involvement of ferroptosis in NAFLD progression 

As the results described above displayed mitochondrial iron accumulation, lipid 
peroxidation, heme/hemin production and as these mechanisms can be the causes of cell 
death, we might propose ferroptosis as involved in the progression of NAFLD upon toxicant 
exposure. Ferroptosis is a recently described specific type of cell death (Friedmann Angeli et 
al., 2019; Mou et al., 2019; NaveenKumar et al., 2019). It is a non-apoptotic type of cell 
death, mainly dependent on iron and oxidative stress (Qi et al., 2019; Tsurusaki et al., 2019). 
Lipid peroxidation due to oxidative stress and disrupted mitochondrial structure, depletion 
of cellular glutathione (GSH) and increase in glutathione peroxidase-h (GPx-h) are the main 
characteristics of ferroptosis (Mou et al., 2019). As iron has the central role in ROS 
production, oxidative stress and lipid peroxidation, ferroptosis is known to be suppressed by 
iron chelators as deferoxamine and with antioxidants (Mou et al., 2019; Tsurusaki et al., 
2019). This type of cell death has been very recently described as early event of NASH 
progression (Qi et al., 2019; Tsurusaki et al., 2019). However, it was initially described with 
reference to tumor (Qi et al., 2019). Ferroptosis is also known to trigger inflammatory 
reaction and immune cell activation. In line with this, ferroptosis inhibition has been 
reported to decrease inflammation (Tsurusaki et al., 2019). Under our experimental 
conditions, it would thus be interesting to test the involvement of ferroptosis notably by 
testing the effects of a specific inhibitor, like ferrostatin-1. This inhibitor is reported to hinder 
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GSH-associated ROS production, inhibits lipid oxidation and thus, ferroptosis type of cell 
death (Cao and Dixon, 2016; Skouta et al., 2014). 

 

Figure 29: B[a]P/ethanol co-exposure-induced pathophysiological mechanisms involved in 
NAFLD progression 
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Figure 30: B[a]P/ethanol co-exposure-induced pathophysiological mechanisms involved in 
NAFLD progression (AOP) 

 

3. Global future perspectives  

In addition to the specific experiments suggested above in each section to be performed in 
order to explore the mechanisms more in detail, below is the global future perspectives of 
our study that could finally help proposing effective therapies for counteracting toxicant-
associated NAFLD progression.  

3.1. Membrane remodeling 

Although we found the involvement of membrane remodeling as a key actor in NAFLD 
progression in response to B[a]P/ethanol co-exposure in zebrafish model, the in vivo 
mechanisms underlying membrane remodeling need to be explored in detail as similar to in 
vitro studies. For example, one in vitro study showed that membrane remodeling notably 
membrane fluidization is caused by sphingomyelinase-dependent ceramide generation 
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(Rebillard et al., 2007). As zebrafish larva model is already developed to study 
sphingomyelinase-associated effects (Boecke et al., 2012; Mendelson et al., 2017), 
membrane remodeling in this context can be studied using this zebrafish model. Similarly, 
caveolin-containing lipid raft signaling could also be studied in zebrafish model as this model 
is well established to study caveolae (Frank and Lisanti, 2006). Furthermore, accurate 
depiction of membrane remodeling i.e. membrane fluidity and lipid-raft microdomain 
structures at plasma membrane and organelle level still requires additional investigation 
with special focus on B[a]P and other environmental toxicants. In vivo identification of 
precise mechanisms will lead us to relate the situation more logically with human.   

Furthermore, several chemicals including environmental contaminants have been described 
to alter membrane properties in vivo and in vitro (Podechard et al., 2017; Tekpli et al., 2011). 
However, the role of membrane remodeling in TAFLD still needs to be further deciphered. 
Zebrafish larva model can be used in this context to understand toxicant-induced 
pathological mechanisms, which can help to develop new therapies notably based on 
“membrane therapy”. In line with this, several agents acting on membrane 
composition/properties as ursodeoxycholic acid (UDCA), statins and long chain omega-3 
fatty acids (eg. docosahexaenoic acid [DHA]) have been reported to be used for NAFLD 
treatment (Beaton and Al-Judaibi, 2016; Doumas et al., 2018; Scorletti and Byrne, 2018).   

3.2. Toxicant-induced iron accumulation 

Iron overload in human liver has been linked with oxidative stress and NAFLD progression 
towards steatohepatitis or fibrosis (Britton et al., 2016). In addition, as mentioned above in 
discussion, AhR is also associated with iron homeostasis in liver (Fader et al., 2017; Fader 
and Zacharewski, 2017; Volz et al., 2005; Wang et al., 2009). However, the clear link 
between the role of toxicant exposure with reference to liver iron accumulation and its 
association with NAFLD progression is still not clearly described. In this context, in vivo 
model of zebrafish model could play a vital role to decipher the association among toxicant 
exposure, liver iron accumulation and NAFLD progression. Such studies will make possible to 
design new therapies notably based on “iron chelating therapy”.      

3.3. Other possible players in steatosis pathological progression  

NAFLD is described as a multi-hit disease, affected by several factors, ultimately leading to its 
progression. Following are two very recently described components, microbiota and 
extracellular vesicles, associated with NAFLD that could be studied with the use of in vivo 
zebrafish model. 
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3.3.1. Microbiota   

Alterations in liver-intestine axis following microbiota modifications are known to increase 
liver damages and are thus involved in NAFLD progression (Ji et al., 2019). Increased 
intestinal permeability and endotoxin-associated inflammatory reactions are the possible 
causes of dysbiosis-associated NAFLD (Guerreiro et al., 2018; Szabo et al., 2010). Besides, 
both toxicants, B[a]P and ethanol via AhR activation and metabolism respectively, are 
reported to be associated individually with gut microbiota alterations (Defois et al., 2018; 
Leung et al., 2016; Ma et al., 2019). However, the association between toxicant-induced 
microbiota alterations and its impact on NAFLD progression is not yet clearly explained. In 
this context, zebrafish larva model can be efficiently used for describing the role of toxicants 
in NAFLD progression as like human, zebrafish gut, even at larval stage, harbors variety of 
commensal bacteria (Zhao and Pack, 2017). Furthermore, microbiota alterations have also 
reported to modify drug therapy response (Alexander et al., 2017). Thus, it would also be 
beneficial to take toxicant-associated microbiota alterations in to account, while designing 
NAFLD therapy.  

3.3.2. Extracellular vesicles  

Another contributing mechanism of NAFLD progression could be associated with 
extracellular vesicles (EVs) (Eguchi and Feldstein, 2018). These are small membrane vesicles, 
released from damaged/stressed cells in highly regulated manner into body fluids where 
they participate in cell to cell or tissue to tissue communication (Morán and Cubero, 2018). 
As NAFLD progression involves lipotoxicity and cell damage, it has been reported in recent 
years that this cellular damage induces hepatocytes and other liver cells to release EVs that 
could then contribute in NAFLD progression via inflammation and fibrosis. Furthermore, as 
EVs are released in body fluids, they can thus be a novel biomarker of NAFLD progression 
(Eguchi and Feldstein, 2018). Moreover, our team has, very recently, shown by using in vitro 
models that PAHs including B[a]P can trigger EV release (Le Goff et al., 2019; van Meteren et 
al., 2019). Recently, techniques have been developed to visualize EVs in the body of 
zebrafish larva (Verweij et al., 2019). In line with this, our transcriptomic data associated 
with HFD-fed zebrafish larva co-exposed with B[a]P/ethanol has also displayed cellular terms 
associated with vesicles. Thus, this in vivo model could also be used to explore the role of 
EVs, in pathogenesis and diagnosis of toxicant-associated NAFLD progression, especialy upon 
exposure to environmental pollutants. 
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Conclusion 
The continuous rise in NAFLD prevalence demands more studies to understand its multi-
etiological mechanisms underlying its pathological progression. Moreover, the list of 
chemicals involved in NAFLD development and progression is continuously rising, and 
includes persistent organic pollutants, volatile organic compounds, heavy metals and several 
others. As both NAFLD and environmental contaminants affect human health, by interacting 
at several body organs including liver, a reliable experimental model is needed, which can 
allow us to observe and correlate the impact of both above mentioned factors with human 
physiology. In this context, the in vivo zebrafish larva can be a model of choice as it has well 
developed functional liver just at the age of 5 dpf, with good similarity to human in terms of 
both liver structure and function along with genetic homology.  

Zebrafish model has led us to assess the impact of toxicant co-exposure, even at low doses 
that are relevent to human exposure, under steatotic condition, where this toxicant co-
exposure induced progression of steatosis towards steatohepatitis-like state. During my 
thesis, with the aim of deciphering the in vivo mechanisms involved in NAFLD progression 
upon co-exposure to B[a]P and ethanol in HFD-fed zebrafish larva, we came across two 
important key actors, i.e. membrane remodeling and mitochondrial iron accumulation, likely 
associated with AhR activation.  

In conclusion, we proposed that membrane remodeling could act as an initial signaling 
element to induce this iron accumulation. In addition, iron-associated cell death, namely 
ferroptosis, would be principally accountable for the NAFLD progression following 
B[a]P/ethanol co-exposure. Furthermore, this hypothesis should be tested to ensure that 
membrane remodeling is really involved in ferroptosis. Indeed, toxicant-associated 
membrane remodeling might then be a new player in ferroptosis. Finally, these mechanisms, 
if they can be generalized to other toxicants, could help to develop approaches targeting 
these underlying mechanisms, and thus could help to propose an effective therapy against 
toxicant-associated NAFLD progression.  
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Résumé en français 
La prévalence des NAFLD (maladies non-alcooliques du foie gras, non-alcoholic fatty liver 
diseases en anglais) est en constante augmentation, les NAFLD touchant désormais près de 
25 % de la population mondiale (Younossi, 2019). Le premier stade des NAFLD, appelé 
stéatose, est connu pour sensibiliser les hépatocytes et les rendre plus vulnérables à une 
agression par des facteurs secondaires. Ces facteurs agressifs induisent la progression de la 
stéatose vers la stéatohépatite. Parmi les facteurs étiologiques les plus fréquents, l'obésité 
est l'une des causes premières du développement des NAFLD puisqu’environ 90 % des 
personnes obèses sont atteintes de NAFLD (Younossi, 2019). La consommation d'alcool est 
un autre facteur bien connu de ces maladies. En plus de ces facteurs étiologiques classiques, 
les contaminants environnementaux ont récemment été identifiés comme facteurs 
importants capables de jouer un rôle dans la progression des maladies du foie. Ceci a ainsi 
amené le groupe de Matthew C. Cave aux Etats-Unis à proposer le terme TAFLD (Toxicant-
associated fatty liver disease), lorsque ces maladies du foie gras sont causées par des 
substances toxiques. Parmi ces dernières, il est suggéré que le benzo[a]pyrène (B[a]P), un 
polluant environnemental ubiquitaire, contribuerait à la pathogénèse des TAFLD (Wahlang 
et al., 2019). Dans ce contexte, notre équipe a développé un axe de recherche visant à 
répondre à la question suivante : quels sont les effets de mélange de polluants 
environnementaux et d’alcool sur la progression des NAFLD ? 

Récemment, dans le cadre du projet ANR Steatox, notre équipe a démontré, en utilisant des 
modèles in vitro et in vivo, que le mélange de faibles doses de B[a]P et d’éthanol est capable 
d'induire la progression de la stéatose vers un état proche de la stéatohépatite. En outre, en 
poursuivant avec des modèles in vitro reproduisant l’état de stéatose, nous avons montré 
que l'hépatotoxicité induite par la co-exposition B[a]P/éthanol est en partie due à des 
altérations du métabolisme de ces xénobiotiques et au stress oxydant. De plus, nous avons 
également constaté l'implication d'un dysfonctionnement mitochondrial dépendant du 
récepteur AhR comme un élément important de la toxicité de ce mélange (Bucher et al., 
2018a, 2018b ; Tête et al., 2018).  

Toutefois, les NAFLD ne se limitent pas qu’aux hépatocytes. En effet, plusieurs autres 
cellules, tissus et organes comme les cellules immunitaires, le pancréas par la régulation de 
l'insuline, et le microbiote ont un impact sur le développement et la progression de la 
NAFLD. Il est donc très important d'explorer les mécanismes de la progression des NAFLD en 
utilisant un modèle in vivo fiable présentant tous les échanges entre les cellules et les 
organes afin d'être le plus pertinent par rapport au mécanismes rencontrés chez l’homme. 
La larve de poisson zèbre a déjà été utilisé par notre équipe pour démontrer sa pertinence 
pour la détermination des mécanismes hépatotoxiques en réponse à une exposition 
chimique (Podechard et al., 2017). De plus, nous avons montré que la co-exposition au 
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B[a]P/éthanol peut provoquer une progression des NAFLD vers un état semblable à la 
stéatohépatite chez les larves de poisson-zèbre nourries avec un régime enrichi en graisse 
(Bucher et al., 2018b). C'est pourquoi, afin d'explorer les mécanismes in vivo qui sous-
tendent la progression des NAFLD après co-exposition au B[a]P et à l'éthanol lors d’une 
stéatose préalable, nous avons choisi d'utiliser des larves de poisson zèbre. 

Dans cette démarche, nous avons d'abord évalué, par une approche ciblée, le remodelage 
membranaire, c.-à-d. un changement de la fluidité de la membrane ou l’altération des 
radeaux lipidiques, comme pouvant être un évènement précoce des effets cellulaires de ces 
substances toxiques. En effet, notre équipe avait déjà déterminé que, dans des hépatocytes 
de rat en culture primaire, la co-exposition B[a]P/éthanol présentait une toxicité accrue par 
rapport à une exposition seule et que cette augmentation de la toxicité dépendait du 
remodelage membranaire (Collin et al., 2014). Pour atteindre notre objectif in vivo, des 
larves de poisson zèbre âgées de 4 jours ont été nourries avec un régime enrichi en graisses 
afin de développer une stéatose après une journée. À partir de 5 jours, les larves de poisson 
zèbre ont été exposées à des concentrations sublétales d'éthanol (43 mM) ou de B[a]P (25 
nM) seules ou en co-exposition, jusqu'à 12 jours afin d'induire une progression vers un état 
semblable à la stéatohépatite. Ce dernier état a été confirmé par l'examen des lésions des 
hépatocytes sur des coupes histologiques et par l'évaluation de l'expression de l'ARNm de 
plusieurs gènes impliqués dans l'inflammation, la mort cellulaire, l'hépatotoxicité et le stress 
cellulaire. Le remodelage membranaire a été évalué par microscopie confocale après 
coloration à l'aide de la sonde fluorescente di-4-ANEPPDHQ. Cela nous a permis de 
déterminer pour chaque pixel, une valeur GP, caractéristique de l'ordre membranaire, qui 
dépend des caractéristiques physico-chimiques des membranes telles que la compaction des 
lipides et la fluidité des bicouches lipidiques. De plus, le rôle du remodelage membranaire 
dans la progression de la stéatose vers la stéatohépatite a été évalué en utilisant la 
pravastatine, capable de diminuer le taux de cholestérol et de perturber ainsi l'intégrité des 
radeaux lipidiques. Nous avons ainsi constaté que la co-exposition B[a]P/éthanol augmentait 
globalement l’ordre membranaire dans les cellules hépatiques du poisson zèbre et favorisait 
l’agrégation des radeaux lipidiques dans les membranes de ces cellules. Le rôle du 
remodelage membranaire induit par la co-exposition B[a]P/éthanol comme événement 
précoce du mécanisme de toxicité a été confirmé par l’inhibition des effets délétères de ces 
composés en présence de pravastatine, déstructurant les radeaux lipidiques. En ce qui 
concerne les mécanismes possibles sous-jacents au remodelage membranaire, notre équipe 
les a précédemment bien décrits in vitro pour l'éthanol et le B[a]P, seuls ou en co-exposition. 
Le B[a]P, via AhR et la production d’espèces réactives de l’oxygène (ERO), est connu pour 
réprimer l'HMGCR (3-hydroxy-3-méthylglutaryl-CoA réductase), inhibant ainsi la synthèse du 
cholestérol. Le B[a]P est également connu pour inhiber LXR-β et SREBP1c par la voie 
dépendante de l'AhR. Ainsi, globalement, le B[a]P modifie la composition en lipides des 
radeaux lipidiques et augmente la fluidité de la membrane (Tekpli et al., 2010, 2012, 2013). 
Concernant le remodelage membranaire induit par l'éthanol, notre équipe a précédemment 
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décrit que l’augmentation de la production d’ERO et la peroxydation lipidique consécutive 
favoriseraient l’augmentation de la fluidité membranaire in vitro ainsi qu'in vivo, l’agrégation 
des radeaux lipidiques (Aliche-Djoudi et al., 2011 ; Podechard et al., 2017). Il serait 
maintenant intéressant d’évaluer si des mécanismes similaires pourraient expliquer le 
remodelage membranaire observé in vivo dans nos conditions expérimentales. 

Afin d'avoir une approche plus globale et sans a priori, nous avons ensuite effectué une 
analyse transcriptomique, en utilisant la technologie des puces Affymetrix (GeneChip™ 
Zebrafish Gene 1.0 ST Array), pour identifier d'autres mécanismes potentiellement induits 
par la co-exposition B[a]P/éthanol dans la progression pathologique de la stéatose 
hépatique dans notre modèle de poisson zèbre. Par cette analyse, nous avons identifié 315 
gènes surexprimés et 210 gènes sous-exprimés lors de la co-exposition par rapport au 
témoin. Ces gènes ont ensuite été étudiés par bio-informatique (analyses d’enrichissement 
ontologique : GOEA et IPA), ce qui a permis de constater que les gènes sous-exprimés 
étaient principalement associés au système immunitaire tandis que les gènes surexprimés 
étaient en lien avec des termes tels que le métabolisme de la porphyrine, de l'hème et du 
fer, le dysfonctionnement mitochondrial, le stress oxydant et la signalisation associée à AhR. 
Par la suite, un grand nombre de ces modifications d’expressions identifiées sur les puces à 
ADN ont été validées par RT-qPCR avec des taux significatifs. En outre, des résultats 
concordants ont été obtenus en étudiant des ARNm issus de cellules de la lignée 
hépatocytaire humaine HepaRG en situation de stéatose et co-exposées au B[a]P et à 
l'éthanol. Ces derniers résultats démontrent particulièrement la pertinence du modèle du 
poisson zèbre pour l’extrapolation de résultats vers les modèles humains. Afin d’étudier plus 
précisément les mécanismes potentiels identifiés, chacun d’eux a été évalué 
individuellement dans la progression des NAFLD dans notre modèle de poisson zèbre. Ainsi 
les mitochondries et leurs fonctions ont été évaluées par le suivi de la consommation 
mitochondriale d'oxygène grâce à la technologie Seahorse (Agilent) et par l’observation de 
leur ultrastructure en microscopie électronique à transmission (MET). L’étude du 
métabolisme de l’hème et du fer et du stress oxydant a été réalisée par le dosage de l'hème, 
de l'hémine et de la bilirubine ; par la détermination de la peroxydation lipidique dans le foie 
après marquage au C11-Bodipy581/591 ; par la mesure du fer libre mitochondrial après 
coloration avec le fluorophore Mito-FerroGreen. Enfin, les rôles du stress oxydant ou du fer 
mitochondrial dans la toxicité hépatique de la co-exposition ont été déterminés grâce à 
l’utilisation, respectivement, d’un antioxydant, la quercétine  et  de la déféroxamine, un 
chélateur de fer. Ainsi, la réduction de la consommation d'oxygène et la perturbation de 
l'ultrastructure mitochondriale ont confirmé l’apparition d’un dysfonctionnement 
mitochondrial suite à la co-exposition B[a]P/éthanol. D’autre part, la co-exposition dans 
notre modèle de poisson-zèbre s'est avérée augmenter les niveaux d'hème et d'hémine. Cet 
effet est connu pour provoquer un stress oxydant, ce qui a en partie été confirmé par une 
augmentation conjointe de la peroxydation lipidique. L’implication du stress oxydant dans la 
progression de la stéatose a été suggéré par l’effet protecteur de la quercétine. En outre, 
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nous avons montré, pour la première fois à notre connaissance, une accumulation intra-
mitochondriale de fer dans les cellules hépatiques de larves de poisson-zèbre sous régime 
enrichi en graisse après co-exposition au B[a]P et à l'éthanol. Nous avons supposé que cette 
accumulation excessive de fer dans les mitochondries pourrait être la cause possible du 
dysfonctionnement mitochondrial. Afin d'élucider le rôle de l'accumulation de fer 
mitochondrial dans la progression de la NAFLD, nous avons ainsi exposé des poissons zèbres 
sous régime enrichi en graisse à un chélateur du fer, la déféroxamine, ainsi qu'au B[a]P et à 
l'éthanol. Ce médicament, la déféroxamine, a notamment empêché l'accumulation de fer 
dans les mitochondries. De plus, il a inhibé l'augmentation de l'expression de l'ARNm de 
plusieurs gènes associés à l'homéostasie du fer et de l'hème. Nous avons également observé 
que la déféroxamine empêchait l'augmentation des marqueurs géniques du stress oxydant 
(prdx1), de l'inflammation (il6) et de la mort cellulaire (casp3a). Comme la chélation du fer 
mitochondrial a réduit la toxicité cellulaire globale, vraisemblablement en inhibant le stress 
oxydant, l'inflammation et la mort cellulaire, nous pouvons donc proposer que 
l'accumulation de fer mitochondrial serait responsable du dysfonctionnement 
mitochondrial, conduisant ainsi à la progression de la stéatose vers la stéatohépatite. 

De nombreuses études ont établi un lien entre le rôle du fer, l’activation d’AhR et 
l'hépatotoxicité induite par l'exposition aux contaminants environnementaux (Collin et al., 
2014 ; Fader et al., 2017 ; Fader et Zacharewski, 2017 ; Gorria et al., 2006 ; Volz et al., 2005 ; 
Wang et al., 2009). Ainsi pour mieux comprendre l’implication d’AhR en lien avec 
l'accumulation du fer mitochondrial dans notre modèle, nous avons décidé d'explorer le rôle 
de ce récepteur à travers différentes expériences. Nous avons ainsi utilisé une approche 
d'inhibition chimique d'AhR dans notre modèle de poisson zèbre avec le CH-223191, un 
antagoniste largement reconnu de ce récepteur (Moyer et al., 2016). En outre, nous avons 
également évalué l’impact de l’extinction d’AhR dans le modèle in vitro de cellules HepaRG 
AhR-KO (knock out pour AhR). Conformément à la littérature, nous avons constaté que la 
plupart des expressions de l'ARNm des gènes associés à l'homéostasie du fer observées dans 
nos conditions expérimentales étaient inhibées à la fois in vivo par le CH22311 et in vitro 
dans les cellules humaines HepaRG AhR-KO. Cela suggère donc un rôle possible d'AhR dans 
l'augmentation de la teneur en fer. En outre, comme attendu, l'inhibition d'AhR par le CH-
223191 a également empêché la diminution de la respiration basale et maximale des 
mitochondries, prévenant ainsi le dysfonctionnement des mitochondries. Des résultats 
similaires concernant l'impact d'AhR sur la respiration mitochondriale basale et maximale 
ont été rapportés avec des cellules HepaRG AhR-KO en comparaison aux cellules HepaRG 
normales (Bucher et al., 2018a). Si l'on considère l'ensemble des données, on peut donc 
proposer que la co-exposition au B[a]P/éthanol pourrait induire une accumulation de fer 
mitochondrial dépendante d’AhR. Comme les résultats décrits ci-dessus ont montré une 
accumulation de fer mitochondrial, une peroxydation lipidique, une production 
d'hème/hémine et comme ces mécanismes peuvent être les causes de la mort cellulaire, 
nous pouvons proposer que la ferroptose pourrait être impliquée dans la progression des 
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NAFLD lors d'une exposition à des substances toxiques ; en effet, ce type de mort cellulaire a 
été très récemment décrit comme événement précoce de la progression vers la 
stéatohépatite (Qi et al., 2019 ; Tsurusaki et al., 2019). Il serait donc intéressant de tester 
l'implication de la ferroptose dans nos conditions expérimentales, notamment en testant les 
effets d'un inhibiteur spécifique, comme la ferrostatine-1. Cet inhibiteur entraverait 
l’augmentation d’ERO associée à la diminution du glutathion intracellulaire, inhiberait 
l'oxydation des lipides et donc la mort cellulaire de type ferroptose (Cao et Dixon, 2016 ; 
Skouta et al., 2014). 

En conclusion, dans le but de décrypter les mécanismes in vivo impliqués dans la progression 
des NAFLD lors d'une co-exposition au B[a]P et à l'éthanol chez les larves de poisson zèbre 
nourries par un régime enrichi en graisse, nous avons identifié deux acteurs clés importants, 
à savoir le remodelage membranaire et l'accumulation de fer mitochondrial, susceptibles 
d'être associés à l'activation d'AhR. Nous proposons que le remodelage membranaire 
pourrait agir comme un élément de signalisation initial pour induire l'accumulation de fer 
mitochondrial et donc la mort cellulaire, à savoir la ferroptose. Ainsi, le remodelage 
membranaire associé à ces toxiques pourrait alors être un nouvel acteur de la ferroptose. 
Enfin, ces mécanismes, s'ils peuvent être généralisés à d'autres substances toxiques, 
pourraient contribuer à proposer une thérapie efficace contre la progression des NAFLD 
associée aux agents chimiques toxiques. 
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Co-exposure to benzo[a]pyrene 
and ethanol induces a pathological 
progression of liver steatosis in vitro 
and in vivo
Simon Bucher1, Arnaud Tête2, Normand Podechard2, Marie Liamin2, Dounia Le Guillou1, 
Martine Chevanne2, Cédric Coulouarn1, Muhammad Imran2, Isabelle Gallais2,  
Morgane Fernier2, Quentin Hamdaoui1, Marie-Anne Robin1, Odile Sergent2,  
Bernard Fromenty1 & Dominique Lagadic-Gossmann2

Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic 
factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed 
how these different factors might interplay regarding the progression of liver diseases. The impact 
of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related 
hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; 
hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was 
induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). 
Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards 
B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers 
upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. 
A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under 
these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro 
and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the 
development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism 
alterations.

Hepatic steatosis, or fatty liver disease, is a growing epidemic characterized by an accumulation of lipids (mainly 
triglycerides) in hepatocytes. Although steatosis has long been considered as a benign liver disease, this state 
renders the liver more susceptible to further harmful stress, then leading to chronic cell death and inflammation, 
the so-called steatohepatitis1,2. This chronic inflammatory state forms the fertile ground for more severe liver 
diseases, namely fibrosis, cirrhosis and cancer3,4. When unrelated to alcohol, both steatosis and steatohepatitis 
are generally gathered under the term NAFLD for nonalcoholic fatty liver disease, with steatohepatitis termed 
as NASH for nonalcoholic steatohepatitis1,2. NAFLD currently affects around 30% of worldwide general popu-
lation, and is considered as the most common chronic liver disease in several countries, particularly in high-fat 
diet (HFD)-consuming countries1,2,5,6. As obesity predisposes in most cases to steatosis and due to the increasing 
prevalence of obesity, a further increase in NAFLD is expected in the near future with even more serious con-
sequences in terms of clinics and health costs1,7. NAFLD therefore constitutes a major public concern and thus 
deserves more thorough investigation, notably regarding the factors favoring the pathologic progression of stea-
tosis towards steatohepatitis.

Although fatty liver and steatohepatitis most commonly stem from overnutrition and lack of exercise, other 
causes have been recently put forward, such as environmental factors. Indeed, several environmental toxicants, 
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more recently termed metabolism-disrupting chemicals8, have been reported as perturbing the function of endo-
crine and metabolic organs, including the liver, a key controller of body lipid metabolism9. Although several of 
these chemicals could be obesogen9,10, not all would lead to an increase in body fat mass and insulin resistance. 
This is in this context that the terms of toxicant-associated fatty liver disease (TAFLD) and toxicant-associated 
steatohepatitis (TASH) have been proposed by Cave’s group, to indicate the spectrum of fatty liver injury in chem-
ically exposed-non obese individuals11–13. Hence, hepatic steatosis and steatohepatitis can be caused by multiple 
etiologic factors, the three most frequent causes therefore being alcohol (alcoholic liver disease or ALD), obesity/
metabolic syndrome, and environmental toxicants (including drugs), as recently reviewed13. These three major 
etiologies appear to exhibit differences as well as common pathways in terms of the mechanisms involved in the 
development of steatohepatitis13. In this context, how they could interplay remains an underexplored field, despite 
the fact that some reports indicate worsening of steatohepatitis when present in binary combination (alcohol and 
obesity14,15; environmental contaminants and obesity9,16; drugs and obesity17).

Therefore, the present study aimed at evaluating how these three different factors might interplay with respect 
to the progression of liver diseases. To do so, we decided to test the impact of the co-exposure to both the environ-
mental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, following prior estab-
lishment of hepatic steatosis induced by either fatty acid (FA) supplementation (in vitro) or high fat diet (HFD; in 
vivo). The polycyclic aromatic hydrocarbon B[a]P is present in cigarette smoke, diesel exhaust particles as well as 
smoked and grilled food among others. In non-smokers, exposure occurs mainly via diet18. This well-recognized 
genotoxic carcinogen to humans is thus metabolized by the liver (see eg.19), and has been suggested to induce liver 
steatosis20,21 as well as hepatocellular carcinoma (HCC), especially in human22,23. Besides, epidemiological studies 
suggest a synergistic effect of B[a]P and alcohol on HCC risk24. Moreover, we recently evidenced a cooperative 
interaction of B[a]P and ethanol towards cell death in rat primary hepatocytes25. In this context, we decided to 
work on several biological models of hepatic steatosis in order to get strong support regarding our findings. First, 
we used the human HepaRG cell line since this is physiologically one of the closest cell lines to primary human 
hepatocyte26. Secondly, the hybrid human/rat WIF-B9 cell line was chosen due to its high level of differentiation 
into hepatocyte and its sensitivity to low concentrations of chemicals, notably alcohol27,28, compared to HepaRG 
cells; such a feature appears to be interesting when studying concentrations of chemicals relevant to human expo-
sure. Finally, we focused our study on the zebrafish larva model to test in vivo our hypothesis; indeed this model 
is now well recognized as sharing pathophysiological processes with human, especially concerning liver diseases, 
with advantages of time and cost-efficiency in comparison to mammal or rodent models29–31.

The present study showed for the first time that the presence of a prior steatosis enhanced the toxicity of  
B[a]P/ethanol co-exposure both in vitro and in vivo, and that such a co-exposure, even at sub-toxic concentra-
tions, might favor the appearance of a steatohepatitis-like state with an increased expression of several inflamma-
tion markers. Alterations in xenobiotic metabolism may explain, at least in part, some of these deleterious effects.

Methods
In vitro and in vivo models of liver steatosis. For both cell line models, phases of steatosis induction 
and B[a]P/ethanol treatments were determined to be an optimal compromise between a proper differentiated 
hepatocyte state and a maximum duration of treatment that cells could undergo. Protocols of exposure for all 
models are given in Fig. S1.

HepaRG cell culture and treatments. HepaRG cells were cultured according to the standard protocol previously 
described32. After 2 weeks, cell differentiation was induced with 2% DMSO for 2 additional weeks. Differentiated 
cells were then treated during 16 days with or without a mixture of fatty acids (150 µM stearic acid and 150 µM 
oleic acid; see supplementary Methods for commercial source, and Fig. S1 for exposure protocol) in a medium 
containing 5% FBS and 1% DMSO. Our protocol of steatosis induction was adapted from a previous study carried 
out in HepaRG cells, for which both fatty acids were used for a 1-week period33. After 2 days from the onset of 
the experiments, steatotic and non-steatotic cells were treated with or without B[a]P and/or ethanol every 2 or 3 
days. For cytotoxicity studies, B[a]P concentrations ranged from 0.01 to 50 µM, and ethanol concentrations were 
set to 25 and 50 mM. For all further experiments, the selected concentrations were 1 and 2.5 µM for B[a]P and 
25 mM for ethanol.

WIF-B9 cell culture and treatments. WIF-B9 is a hybrid cell line obtained by fusion of Fao rat hepatoma cells 
and WI-38 human fibroblasts34. The WIF-B9 cells were a generous gift from Dr Doris Cassio (UMR Inserm 
S757, Université Paris-Sud, Orsay, France). Cells were cultured in F-12 Ham medium with Coon’s modifica-
tion containing 5% FCS, 0.22 g/L sodium bicarbonate, 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.25 μg/
mL amphotericin B, 2 mM glutamine, and supplemented with HAT (10 μM hypoxanthine, 40 nM aminopterin, 
1.6 μM thymidine). WIF-B9 cells were seeded at 12.5 × 103 cells/cm2; cells were cultured for 7 days until obtaining 
∼80% of confluence, before treatment.

The FA-albumin complex containing medium was prepared by FA saponification with a NaOH/ethanol solu-
tion at 70 °C for 30 min. After ethanol evaporation under nitrogen, FA salts were solubilized in culture medium 
supplemented with 90 µM FA-free bovine serum albumin. The FA/albumin molar ratio was 6.1:1. Steatosis was 
induced by a two days treatment with a medium containing the FA/albumin complex composed of 450 µM oleic 
acid and 100 µM palmitic acid. Steatotic and non-steatotic cells were then exposed or not for an overall 5 days 
period to the toxicants (10 nM B[a]P with or without 5 mM ethanol; see Fig. S1 for exposure protocol). Media and 
treatments with toxicants were renewed on day 3 and kept until end of experiment. Regarding the time of xeno-
biotic exposure for these cells, the choice of 5 days was based on previous data showing that for longer treatments 
of non-steatotic cells with B[a]P, there might be a compensatory proliferation (unpublished data).
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Zebrafish larvae handling and exposures. Animals were handled, treated and killed in agreement with the 
European Union regulations concerning the use and protection of experimental animals (Directive 2010/63/EU). 
All protocols were approved by local ethic committee CREEA (Comité Rennais d’Ethique en matière d’Expéri-
mentation Animale). Zebrafish fertilized embryos, collected following natural spawning, were obtained from the 
Structure Fédérative de Recherche Biosit (INRA LPGP, Rennes, France). Embryos and larvae were raised at 28 °C 
according to standard procedures. Zebrafish larvae (sex unknown) were maintained as previously described35. 
From 4 days post-fertilization (dpf) until last day of treatment renewal (at  9 dpf), larvae were fed daily during 
1 hour before medium renewal with a standard diet (SD, 10% of fat, Tetramin®) or with a high fat diet (HFD) 
made of chicken egg yolk (53% of fat, Sigma-Aldrich). These diets were chosen in accordance with other publica-
tions particularly concerning the lack of standardized diet for zebrafish36,37. At 5 dpf, zebrafish larvae were treated 
by 43 mM ethanol directly added to the incubation medium and/or by 25 nM B[a]P in DMSO (DMSO final pro-
portion: 0.001% v/v), or by this vehicle only (see Fig. S1 for exposure protocol).

Evaluation of steatosis. Oil red O staining. WIF-B9 cells: Oil red O staining was performed to visualize 
neutral lipid droplet accumulation. Cells were washed in phosphate buffer saline (PBS), then stained for 10 min 
with a solution of 0.15% oil red O in 60% isopropanol-PBS. Staining was completed by the addition of hematox-
ylin and eosin for 1 min followed by two washes in PBS. Cell pictures were acquired using a Zeiss Axiolab micro-
scope (Carl Zeiss Microscopy GmbH, Jena, Germany).

Zebrafish larvae: At 5 or 12 dpf, larvae were washed in PBS and then fixed in 4% paraformaldehyde in PBS 
at 4 °C for at least 12 h before being stained overnight in a solution of 0.15% oil red O in 60% isopropanol-PBS. 
Then, larvae were washed three times in PBS and mounted in 80% glycerol-PBS. Images of zebrafish larvae were 
acquired with a LEICA binocular loupe (LEICA Microsystems SAS, Nanterre, France) (magnification x40). Liver 
and larvae sizes were determined from these images using Fiji imaging processing software (ImageJ, National 
Institutes of Health, Bethesda, MD).

Triglyceride assays. HepaRG cells: Cellular triglyceride content was measured using a colorimetric kit purchased 
from Biovision (Milpitas, CA), using the manufacturer’s recommendations. The amount of cellular triglycerides 
was normalized to total proteins determined by the bicinchoninic acid (BCA) method.

WIF-B9 cells and zebrafish larvae: For both cell and larvae samples, total lipid extraction was performed 
according to the Folch method. Total lipids were dissolved in 50 µL of ethanol and 6 µL were used for triglyceride 
measurement with the LabAssay™ Triglyceride Kit (Wako Chemicals GmbH, Neuss, Germany), according to 
the manufacturer’s instructions. Briefly, 300 µL of reaction mix were added to each sample for 5 min at 37 °C, and 
absorbance at 600 nm and 700 nm was measured using a Spectrostar Nano microplate reader (BMG Labtech, 
Ortenberg, Germany). Finally, triglyceride concentration was determined after normalization of absorbance (Δ 
absorbance (abs) = abs at 600 nm minus abs 700 nm), and using a standard curve.

Cholesterol and free fatty acid assays in WIF-B9 cells. Total cholesterol and free fatty acids (FFAs) were also 
measured in steatotic and non-steatotic WIF-B9 cells after two days of treatment with the FA mixture or not. 
Cholesterol quantification was performed by the Infinity cholesterol kit (Thermo Fisher Scientific, Cergy Pontoise, 
France), according to the manufacturer’s instructions. Briefly, 200 µL of reaction solution was added to each sam-
ple for 30 minutes at 37 °C, and absorbance at 492 nm was then measured using a Spectrostar Nano microplate 
reader. Regarding FFA quantification, it was performed by the NEFA-HR kit (Wako Chemicals GmbH, Neuss, 
Germany) according to the manufacturer’s instructions. After addition of the reaction solution and incubation at 
37 °C, absorbance at 546 nm and 660 nm was measured using a Spectrostar Nano microplate reader. FFA concen-
tration was determined after normalization (Δ abs = abs at 546 nm minus abs at 660 nm).

In vitro and in vivo toxicity assays. ATP levels and MTT test. ATP levels were measured with the 
CellTiter-Glo® Luminescent Cell Viability assay purchased from Promega (Charbonnières, France), according 
to the manufacturer’s instructions. Luminescence was measured using the POLARstar Omega microplate reader 
(BMG Labtech, Ortenberg, Germany) or the Spectramax Gemini XS microplate spectrofluorometer (Molecular 
Devices, Sunnyvale, CA). For the MTT test, cells were rinsed with PBS and incubated during 1 hour with a MTT 
solution (0.5 mg/mL in a serum-free and DMSO-free medium). After washing, cells were lysed with pure DMSO. 
Absorbance at 540 nm was measured using the POLARstar Omega microplate reader.

Hoechst/sytox green staining. Apoptotic cell death in WIF-B9 cells was assessed by visualization of chromatin 
condensation or fragmentation after nuclear staining. After treatments, cells were stained with 50 μg/mL Hoechst 
33342 and 93.5 nM Sytox green in the dark for 30 min at 37 °C. Cells were then examined by fluorescence micros-
copy using the ZEISS Axio Scope A1 microscope (>300 cells analyzed per condition of treatment).

Histological analysis of liver toxicity in zebrafish larvae. Histological analysis was performed as previously 
described35. Briefly, after treatments, larvae at 12 dpf were washed in PBS and then fixed in 4% paraformaldehyde 
in PBS at 4 °C before being embedded in paraffin. Then, 4 µm-sections were stained with hematoxylin, eosin and 
safran red (HES) and imaged on Nanozoomer NDP (Hamamatsu Photonics K.K., Japan) (magnification x400). 
Histological count of dead/damaged cells was performed from images (1 or 2 sections) of at least 3 larvae per 
condition. Damaged/dead cells were counted as cellular dropouts, ballooning or vacuolated hepatocytes.

Analysis of gene mRNA expression. HepaRG cells. Total RNA was extracted from ∼106 HepaRG 
cells with the Nucleospin® RNA isolation system (Macherey-Nagel, Hoerdt, France), which included a 
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DNase treatment step. RNA was then reverse-transcribed into cDNA using the High-Capacity cDNA Reverse 
Transcriptase kit (Thermo Fisher Scientific, Cergy Pontoise, France). Real-time quantitative PCR (RT-qPCR) 
was performed using the SYBR Green PCR Master Mix on an Applied Biosystems 7900HT Fast Real-Time PCR 
System (Applied Biosystem, Woolston, UK). Expression of the human TATA box binding protein (TBP) was used 
as reference, and the 2−ΔΔCt method was used to express the relative expression of each selected gene. Sequences 
of the tested human primers are provided in Table S1. For the transcriptomic analysis in HepaRG cells, see sup-
plementary Methods.

WIF-B9 cells. Total RNA was extracted from ∼106 WIF-B9 cells with TRIzol® reagent (Invitrogen, Cergy 
Pontoise, France) according to the manufacturer’s protocol. For each RNA sample, one µg of RNA was 
reverse-transcribed into cDNA using the High capacity cDNA Reverse Transcription Kit (Applied Biosystems). 
RT-qPCR was then performed using SYBR Green on the CFX384 Touch™ Real-Time PCR Detection System 
(Bio-Rad, Hercules, CA). Expression of the rat β-actin was used as reference, and the 2−ΔΔCt method was used to 
express the relative expression of each selected gene. Sequences of the rat primers are provided in Table S1.

Zebrafish larvae. For RNA extraction, 10 to 20 larvae were pooled and homogenized in 100 µL PBS and total 
RNA was extracted with TRIzol® reagent according to the manufacturer’s protocol. RNA samples (1 μg) were 
then reverse-transcribed using the High capacity cDNA Reverse Transcription Kit. RT-qPCR (5 ng of cDNA 
per well) was performed using the same protocol as for the WIF-B9 cells. mRNA expression was normalized by 
means of actb2, 18s and gapdh mRNA levels. The 2−ΔΔCt method was used to express the relative expression of 
each selected gene. Sequences of the zebrafish primers are provided in Table S1. For the evaluation of the hepatic 
mRNA expression of C-reactive protein (crp), see supplementary Methods.

Interleukin-6 quantification. The concentrations of interleukin-6 (IL-6) secreted by HepaRG cells in cul-
ture medium were measured using the Duoset ELISA kit (R&D Systems, Abingdon, United Kingdom), according 
to the manufacturer’s instructions. IL-6 concentration in each well was normalized by the amount of total pro-
teins determined by the BCA method.

Cytochrome P450 activity and HPLC analysis in HepaRG cells. Cytochrome P450 (CYP) activity.  
Cytochrome P450 2E1 (CYP2E1) activity was assessed by determining the formation of 6-hydroxychlorzoxazone 
(6-OH-CZX), as recently reported33. Ethoxyresorufin O-deethylase (EROD) activity was used to measure CYP1A1, 
CYP1A2 and CYP1B1 activities38,39 in HepaRG cells after the 14-day exposure with B[a]P and/or EtOH in steatotic 
or non steatotic cells. Resorufin formation was monitored using a POLARstar Omega microplate reader (BMG 
Labtech, Ortenberg, Germany); excitation and emission wavelengths were 520 and 590 nm, respectively. Reaction 
rates were determined under linear conditions and normalized to total protein concentrations.

B[a]P metabolite detection by HPLC. At the end of the 14-day treatments, cells were washed with warm PBS 
and incubated during 15 min in a red phenol-free William’s E medium at 37 °C and 5% of CO2. This step aimed 
at removing all B[a]P metabolites synthesized during the 14-day treatment. Next, the medium was replaced by a 
phenol red-free William’s E medium containing 25 µM B[a]P with or without 5 mM salicylamide, a strong inhib-
itor of phase II xenobiotic metabolism enzymes (XMEs). After 6 hours at 37 °C and 5% of CO2, the medium was 
collected and centrifuged 15 min at 20,000 g at 4 °C, and 50 µL of the supernatant was directly injected into the 
HPLC system. The HPLC analysis was performed with the Agilent 1100TM system equipped with an Accucore 
PFP column (150 mm × 3 mm, particle size 2.6 µm) coupled with a fluorescent detector, as used by others for  
B[a]P metabolite detection40–42. A gradient of 0.1% acetic acid and acetonitrile was used throughout the exper-
iment at a flow rate of 0.650 mL/min. Acetonitrile proportion ranged from 12.5 to 50% for 25 min and from 50 
to 90% for 1.5 min. The wavelengths used to detect B[a]P metabolites, including B[a]P trans-7,8-dihydrodiol 
and 3-OH-B[a]P-glucuronide, were 365 and 405 nm for excitation and emission, respectively. The peaks of the 
different B[a]P metabolites were identified comparing the spectra of the cells incubated with and without B[a]P. 
Metabolite levels were semi-quantified using the area of each peak compared to the control condition, and were 
normalized by the amount of proteins. The results were expressed as percentage of control values. The peaks of 
B[a]P trans-7,8-dihydrodiol and 3-OH-B[a]P-glucuronide were identified using the respective standards pur-
chased from Toronto Chemicals Research (North York, Canada).

Statistical analysis. All values were presented as means ± SEM (standard error of mean) from at least three 
independent experiments. Multiple comparisons among groups were performed using two-way analysis of vari-
ance (ANOVA) followed by a Bonferroni post-test, or one-way ANOVA followed by a Newman-Keuls post-test. 
To evaluate effects of HFD diet, one-tailed Student t-tests were performed. All statistical analyses were performed 
using GraphPad Prism5 software (GraphPad Software, San Diego, CA, USA). Differences were considered sig-
nificant when P < 0.05. For cytotoxicity assay, 10% effective concentration (EC10) values were determined using 
GraphPad Prism software (GraphPad Software, LaJolla, CA).

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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Results
Prior steatosis increases the long-term toxicity of B[a]P/ethanol co-exposure in the human 
hepatoma HepaRG cell line. Recently, by using the metabolically competent human hepatoma HepaRG 
cell line, we have set up an in vitro human cell model of NAFLD for studying the toxicity of diverse drugs33. 
In order to evaluate the long-term effects of lifestyle-related toxicants, we therefore decided to use this model, 
especially as it is appropriate for such exposure times. First, this cell model was improved to further mimic the in 
vivo situation, notably by using a mixture of two FAs and by extending the duration of FA treatment to 16 days. 
Under these conditions, a lipid overload in cells was detected by microscopy as soon as 2 days of FA treatment, 
with a time-dependency as emphasized by an increase in the size and number of lipid droplets following 16 days 
of FA treatment (Fig. 1a). Lipid accumulation was further validated when measuring the triglyceride cell content, 
with a ∼6-fold increase in the presence of FAs as compared to control (Fig. 1b). A significant increase in APOA4 
mRNA expression was also observed in steatotic cells (Fig. 1c), as recently reported in the context of NAFLD33,43. 
Moreover, CYP2E1 activity was significantly enhanced by 50% in steatotic cells (data not shown), in keeping with 
several investigations performed in patients with NAFLD44–46.

The next set of experiments was carried out in order to determine the dose-response cytotoxicity curve 
of B[a]P, used alone or in combination with ethanol (25 or 50 mM), after a 14 day-treatment in steatotic and 
non-steatotic HepaRG cells. In non-steatotic cells, B[a]P toxicity, as evaluated by MTT test, remained unchanged 
by ethanol, whatever the concentration used (Fig. 1d). In steatotic cells, a marked leftward shift of the curve, that 
is a higher B[a]P cytotoxicity, was observed, with a further shift in presence of ethanol. This was clearly evidenced 
when calculating the EC10 for B[a]P cytotoxicity (Fig. 1e). Indeed, whereas no change in B[a]P EC10 was detected 
in control cells whatever the concentration of ethanol, a significant decrease in this EC10 was observed in steatotic 
cells (4.68 ± 0.95 versus 9.12 ± 2.24 µM in non-steatotic cells), which was further reduced by ethanol (3.12 ± 1.14 
and 2.41 ± 0.84 µM for 25 and 50 mM ethanol, respectively). Similar results were obtained when measuring ATP 
concentration, with a significant difference already reached for 25 mM ethanol (3.07 ± 0.39 versus 4.83 ± 0.91 µM 
without ethanol; Fig. 1f,g). Altogether, these results clearly showed that a prior steatosis enhanced B[a]P cytotox-
icity with an exacerbation of this effect in presence of ethanol. Based upon these results, subsequent investigations 
in HepaRG cells were carried out with 2.5 µM for B[a]P and 25 mM for ethanol. Notably, the high concentrations 
of B[a]P and ethanol used in differentiated HepaRG cells might be explained, at least in part, by high phase II and 
III XME activities47–49.

Prior steatosis increases the toxicity of co-exposure to B[a]P/ethanol used at low concentra-
tions in WIF-B9 cell line. In order to test if a sensitizing effect of steatosis could also be observed at concen-
trations of toxicants closer to human exposure, the hybrid WIF-B9 hepatic cell line was also used in this study. 
Indeed this cell line, which expresses both rat and human XMEs27, was recently shown by our group as reproduc-
ing the signaling cascade previously demonstrated in ethanol-treated primary rat hepatocytes35,50,51. Besides, it 
was found by McVicker and coworkers that co-exposing a parent cell line (WIF-B) to both ethanol and oleic acid 
markedly increased apoptosis when compared to ethanol alone28. Furthermore, it was shown that rat CYP1A1 
and 1A2 were the most inducible CYPs (up to 100-fold with β-naphthoflavone) in WIF-B9 cells27. Finally, we pre-
viously found an increase in CYP2E1 activity upon ethanol treatment in control cells (unpublished data). Hence, 
all these data indicate that the WIF-B9 cell line is suitable to study ethanol and B[a]P metabolism and cytotoxicity.

A first set of experiments was thus performed in order to validate our FA overload protocol in WIF-B9 cells. 
Data from Fig. 2a–c showed that a 2 days exposure with a mixture of FAs increased the number of lipid droplets 
(a), and the triglyceride (b) and cholesterol (c) cellular contents. In contrast, no change was observed regard-
ing the FFA content (Fig. 2d), in line with the very low toxicity detected under control conditions (Fig. 2f,g). 
Interestingly, the mRNA expression of fibroblast growth factor 21 (Fgf21), a known marker of NAFLD52, was 
markedly increased in steatotic WIF-B9 cells (Fig. 2e). All these data firmly validated our in vitro steatosis model.

Prior to testing the effects of B[a]P/ethanol co-exposure in steatotic WIF-B9 cells, experiments were per-
formed in order to set the sub-toxic concentration of each toxicant used for subsequent investigations. Following 
a MTT test carried out after 5 days of treatment (Fig. S2), the selected concentrations were 10 nM and 5 mM, 
for B[a]P and ethanol, respectively, which is close to human exposure; indeed, up to 6.2 nM of B[a]P has been 
detected in sera of smoking women53; regarding alcohol, 5 mM [i.e. 0.23 g/l] is within the drinking guidelines for 
general populations published in 2017 by the International Alliance for Responsible Drinking [http://www.iard.
org/policy-tables/drinking-guidelines-general-population/]). Cell toxicity was then evaluated by counting apop-
totic cells (Fig. 2f) and measuring intracellular ATP content (Fig. 2g). Whereas the toxicity of chemicals alone or 
in co-exposure was low (albeit significant) after a 5 days exposure in non-steatotic WIF-B9 cells, the percentage 
of apoptotic cells markedly increased in steatotic cells (Fig. 2f). This was paralleled by a significant decrease in 
ATP content, especially in steatotic cells (Fig. 2g). It is worth noting that the toxicity of B[a]P/ethanol co-exposure 
was significantly higher than that of each toxicant alone. Altogether, these results showed that prior steatosis 
sensitized WIF-B9 hepatocytes to the toxicity of very low, sub-toxic concentrations of B[a]P and ethanol, with a 
stronger effect of co-exposure.

Obese larvae exhibit high hepatotoxicity towards B[a]P/ethanol co-exposure. In order to test 
whether steatosis could also enhance in vivo the hepatotoxicity of B[a]P/ethanol co-exposure, zebrafish larvae fed 
with a HFD (HFD larvae) were used as a suitable model for obesity-related NAFLD54,55. It is also noteworthy that 
ethanol can induce liver steatosis in zebrafish larvae56,57. We first showed that our feeding conditions did induce 
liver steatosis. Indeed, as shown in Fig. 3, a one-day HFD not only increased the oil red-O staining in liver (a) but 
also the size of liver relatively to whole body (b), when compared to standard diet (SD). Regarding a potential 
interference with adipose tissue on the oil red-O staining at 5 dpf, it could be easily discarded as adipose tissue in 
larvae is known to appear only from 8 dpf 58,59. The triglyceride content of whole larvae was also found to increase 
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Figure 1. Toxicity of B[a]P in differentiated HepaRG cells is favored by steatosis and ethanol co-exposure. 
(a) Phase contrast microscopy of non-steatotic cells (−FA) and steatotic cells (+FA) after 2 and 16 days of 
incubation with a mixture of stearic acid and oleic acid. (b) Cellular triglyceride content in non-steatotic (−FA) 
and steatotic (+FA) cells after 16 days of FA overload. (c) mRNA levels of APOA4 in non-steatotic (−FA) and 
steatotic (+FA) cells after 16 days of FA overload. (d) Cell viability determined by the MTT test in non-steatotic 
(−FA) and steatotic (+FA) cells exposed for 14 days to 0, 25 and 50 mM ethanol and a large range of B[a]P 
concentrations. (e) Corresponding B[a]P EC10 values in non-steatotic (-FA) and steatotic (+FA) cells exposed 
to 0, 25 and 50 mM ethanol. (f,g) Cell viability assessed by cellular ATP levels and corresponding B[a]P EC10 in 
non-steatotic (−FA) and steatotic (+FA) cells exposed for 14 days to 0, 25 and 50 mM ethanol and a large range 
of B[a]P concentrations. Results are means ± SEM for at least three independent cultures. (b,c) #Significantly 
different from non-steatotic (−FA) cells. (e,g) #Significantly different from non-steatotic cells; *Significantly 
different from non-steatotic HepaRG cells treated by the same concentration of ethanol; aSignificantly different 
from steatotic HepaRG cells not treated by ethanol.
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Figure 2. Toxicity of B[a]P in differentiated WIF-B9 cells is favored by steatosis and ethanol co-exposure. 
(a–e) Prior steatosis was induced by a 2 days incubation with palmitic acid and oleic acid (+FA conditions). 
(a) Fluorescence microscopy analysis of neutral lipid droplets after oil red O staining in non-steatotic (−FA) 
and steatotic (+FA) cells. Cellular triglyceride (b), cholesterol (c) and FFA (d) contents in non-steatotic (−FA) 
and steatotic (+FA). (e) mRNA levels of Fgf21 in non-steatotic (−FA) and steatotic (+FA) cells. (f,g) Non-
steatotic (−FA) and steatotic (+FA) cells were untreated (C) or treated with 10 nM B[a]P (B), 5 mM ethanol 
(E) or a combination of both toxicants (BE) for 5 days prior to evaluation of cytotoxicity by (f) counting 
apoptotic cells or (g) analyzing ATP content. Results are means ± SEM for at least three independent cultures. 
(b,c,e) #Significantly different from non-steatotic cells. (f,g) #Significantly different from non-steatotic cells; 
*Significantly different from untreated non-steatotic or steatotic cells; aSignificantly different from non-steatotic 
or steatotic cells treated by ethanol only; bSignificantly different from non-steatotic or steatotic cells treated by 
B[a]P only.
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upon HFD from one day of HFD (5dpf), with a marked effect observed after 8 days of diet (12 dpf) (Fig. 3c). The 
mRNA levels of apoa2 and cyp2y3 (homologous to the human CYP2E1 gene), two genes whose expression is 
modulated during NAFLD46,60, were enhanced in whole HFD larvae (Fig. 3d).

For subsequent investigations, 25 nM B[a]P and 43 mM ethanol (corresponding to 10 mM ethanol inside lar-
vae; data not shown) were chosen as these concentrations induced a very low mortality within the SD larvae 
population following 7 days of treatment (Fig. S3). In order to evaluate hepatotoxicity, a histological analysis 

Figure 3. Induction of steatosis in zebrafish larvae under high-fat diet and exacerbation of liver damage 
severity upon co-exposure in larvae with steatosis. Zebrafish larvae were fed with a standard diet (SD) or a high-
fat diet (HFD) from 4 dpf until 5 dpf (a–d) or until 12 dpf (c–f). Lipid accumulation (a) was analyzed after oil 
red O staining in HFD larvae as well as in SD larvae. White dotted line in the right-hand side panels outlines 
liver in the 2x-magnifications. (b) From images acquired in (a), the ratio of liver sizes to whole larva sizes was 
determined on 5 dpf zebrafish larvae. Images are representative of at least 3 larvae. Triglyceride content (c) as 
well as mRNA levels of apoa2 and cyp2y3 (d) were determined in SD and HFD larvae. In (d), data are expressed 
relative to mRNA level found in SD larvae, arbitrarily set at 1 unit for each time (5 and 12 dpf). (e,f) From 5 
dpf, SD and HFD zebrafish were either left untreated (C), or treated with 25 nM B[a]P (B), 43 mM ethanol (E) 
or a combination of both toxicants (BE) for 7 days. (e) Liver damages were evaluated on zebrafish liver section 
after HES staining (magnification x400). Black dotted line outlines liver. Damaged/dead cells were indicated 
by red arrows for hepatocyte dropouts, and by black arrows for ballooned or vacuolated hepatocytes. Images 
are representative of at least 3 larvae. Values are the mean ± SEM of at least three independent experiments or 
larvae. (f) From images obtained in (e), histological count of damaged cells was realized. (b–d) #Significantly 
different from SD larvae. (f) #Significantly different from SD larvae; *Significantly different from untreated SD or 
HFD larvae; aSignificantly different from larvae treated by ethanol only; bSignificantly different from SD or HFD 
larvae treated by B[a]P only.
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was performed. HFD markedly increased liver alterations upon B[a]P/ethanol co-exposure when compared to 
SD, with an increase in the number of damaged/dead cells (Fig. 3e). This was clearly visualized on the histo-
gram plotting the number of damaged/dead cells counted under the different experimental conditions (Fig. 3f). 
Importantly, toxicity of B[a]P/ethanol co-exposure was significantly higher compared to each chemical alone. 
Therefore, the in vivo steatosis also sensitizes liver to B[a]P/ethanol-related toxicity.

B[a]P/ethanol co-exposure triggers inflammation in NAFLD both in vitro and in vivo. The next 
set of experiments was performed in order to test whether the increased toxicity of B[a]P/ethanol co-exposure 
was paralleled by the onset of an inflammatory state. First, the expression of several pro-inflammatory cytokines 
was analyzed in both in vitro cell models. In HepaRG cells treated or not with B[a]P (2.5 µM) and/or ethanol 
(25 mM) for 14 days, a significant increase in interleukin 6 (IL6) and interleukin 1β (IL1β) mRNA expression 
was observed in steatotic cells as compared to non-steatotic cells (Fig. 4a,c). However, no significant effect of 
toxicants, used alone or in co-exposure, was detected in steatotic cells. Nevertheless, secreted IL6 levels were 
enhanced, especially upon B[a]P/ethanol co-exposure, with a stronger effect detected in steatotic HepaRG cells 
(Fig. 4b). Regarding the IL1β pathway, a significant increase in mRNA expression of the IL1β receptor IL1R1 was 
also detected especially upon toxicant co-exposure in steatotic cells (Fig. 4d).

In WIF-B9 cells treated or not by B[a]P (10 nM) and/or ethanol (5 mM) for 5 days, a significant increase 
in tumor necrosis factor α (Tnfα) mRNA expression was found (by ∼2.8-fold) upon toxicant co-exposure in 
steatotic cells (Fig. 4e). Such an onset of inflammation in steatotic WIF-B9 cells was confirmed by analyzing 
the mRNA expression of Crp (Fig. 4f), a well-known marker of inflammation61. Indeed, Crp mRNA expression 
was higher not only in presence of steatosis, but was further increased when steatotic cells were co-treated with  
B[a]P/ethanol.

Regarding the in vivo model, the co-exposure of zebrafish larvae to B[a]P (25 nM)/ethanol (43 mM) for 7 days 
resulted in a significant increase in crp, tnfa and il1b mRNA expression in whole animals but only under HFD 
conditions (Fig. 5a–c), thus corroborating the effects observed in vitro. Note that crp mRNA expression was sig-
nificantly higher in HFD larvae compared to SD larvae in the absence of any treatment (Fig. 5a). In line with the 
results obtained from whole larvae, hepatic crp mRNA expression in HFD larvae was higher with B[a]P/ethanol 
co-exposure compared to each toxicant alone (Fig. S4).

Effects of steatosis and ethanol co-exposure on phase I and II XMEs in HepaRG cells. In order 
to get insight into the possible mechanisms involved in the sensitizing effects of steatosis and ethanol co-exposure 
towards B[a]P toxicity, we performed a series of investigations in HepaRG cells to determine whether lipid 
overload and ethanol could impair the expression of the main XMEs involved in B[a]P metabolism, especially 
CYP1A1, 1A2 and 1B1. As expected, the mRNA expression of these CYPs was markedly enhanced after 14 days 
of treatment with 2.5 µM B[a]P in steatotic and non-steatotic HepaRG cells, with the strongest effect observed 
for CYP1A1 (Fig. 6a–c). Of note, increased CYP1A2 mRNA expression was lesser in the presence of steatosis 
(Fig. 6b). Moreover, mRNA expression of CYP1A1, 1A2 and 1B1 was significantly decreased by 25 mM ethanol 
co-exposure both in steatotic and non-steatotic cells (Fig. 6a–c). Next, EROD activity was assessed in order to 
evaluate the overall activity of these CYPs. EROD activity was markedly increased by B[a]P but no difference was 
observed between steatotic and non-steatotic HepaRG cells (Fig. 6d). However, ethanol co-exposure resulted in 
a lesser increase of EROD activity (with similar effects when comparing steatotic and non-steatotic cells), thus 
reflecting the mRNA expression profile of CYP1A1 and 1B1. Therefore, it appears that the activation of the CYP1 
pathway by B[a]P alone or with ethanol was not affected by prior steatosis in HepaRG cells.

We also took advantage of a whole-genome transcriptome analysis (GSE102536 – see supplementary Methods 
for protocol) to determine whether steatosis and ethanol altered the expression of other XMEs involved or not in 
B[a]P biotransformation (Table S2). Notably, this analysis confirmed our results regarding the mRNA expression 
of CYP1A1, 1A2 and 1B1, especially the lower expression of CYP1A2 in steatotic HepaRG cells treated or not 
with B[a]P and ethanol. Furthermore, the transcriptome analysis clearly showed that lipid overload repressed the 
expression of other phase I XMEs involved in B[a]P metabolism such as CYP3A4, CYP2C19, aldo-keto reduc-
tases (AKRs) and epoxide hydrolases (EPHXs)19,62. Steatosis also induced a downregulation of several phase II 
XMEs involved in B[a]P detoxification including glutathione-S-transferases (GSTs), sulfotransferases (SULTs) 
and UDP-glucuronosyl transferases (UGTs), as well as a downregulation of XMEs involved in ethanol metabo-
lism such as alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The mRNA expression of 
CYP2E1 was however increased in steatotic HepaRG cells in the absence of any treatment. It was also noteworthy 
that, among the 12 experimental conditions tested, the lowest mRNA expression of phase I and phase II XMEs 
was mostly observed in steatotic HepaRG cells treated with 2.5 µM B[a]P. Moreover, the lowest expression of 
several phase II XMEs such as GSTM2P1, GSTA7P, SULT1B1, SULT1C2, UGT2B7 and UGT2A3 was observed 
in steatotic HepaRG cells co-exposed to 2.5 µM B[a]P and 25 mM ethanol (Table S2).

Effects of steatosis and ethanol co-exposure on the amount of B[a]P metabolites produced in 
HepaRG cells. Based upon the above results, it appeared that the whole B[a]P metabolism might be altered in 
steatotic HepaRG cells exposed to ethanol. Hence, at the end of the 14-day exposure and after a 15-min washout, 
we assessed the formation of B[a]P metabolites after an acute incubation of cells with 25 µM B[a]P. Importantly, 
this analysis was performed not only in steatotic and non-steatotic HepaRG cells treated for 14 days with 2.5 µM 
B[a]P with or without ethanol but also in cells not previously exposed to this toxicant. Thus, the ability of HepaRG 
cells to metabolize B[a]P was determined even in cells that have not been chronically exposed to B[a]P.

Examples of three representative HPLC chromatograms are shown in Fig. 7a, corresponding to non-steatotic 
cells exposed to B[a]P, non-steatotic cells co-exposed to B[a]P/ethanol, and steatotic cells co-exposed to  
B[a]P/ethanol. Several peaks could be identified on these HPLC chromatograms, with a clear reduction of the 
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overall amount of B[a]P metabolites by ethanol co-exposure and a further decrease in the presence of steatosis 
(Fig. 7a). Notably, steatosis-induced reduction of all detected B[a]P metabolites was observed under the different 
experimental conditions when the amount of B[a]P metabolites was assessed using the areas under the curve 
(AUC) (Fig. 7b).

In order to get further information regarding the nature of the detected B[a]P metabolites, we next performed 
investigations in HepaRG cells acutely exposed to 25 µM B[a]P and 5 mM salicylamide, a known inhibitor of 

Figure 4. B[a]P/ethanol co-exposure favors a pro-inflammatory state in steatotic HepaRG and WIF-B9 cells. 
(a–d) Non-steatotic (−FA) and steatotic (+FA) HepaRG cells were untreated (C) or treated with 2.5 µM B[a]P 
(B), 25 mM ethanol (E) or a combination of both toxicants (BE). (e,f) Non-steatotic (−FA) and steatotic (+FA) 
WIF-B9 cells were untreated (C) or treated with 10 nM B[a]P (B), 5 mM ethanol (E) or a combination of both 
toxicants (BE). (a,c,d) mRNA expression of IL-6, IL1B and IL1R1. (b) Secreted IL6 levels in the culture medium. 
(e,f) mRNA expression of Tnfα and Crp. Results are means ± SEM for at least three independent cultures. 
#Significantly different from non-steatotic cells; *Significantly different from untreated non-steatotic or steatotic 
cells; aSignificantly different from non-steatotic or steatotic cells treated by ethanol only; bSignificantly different 
from non-steatotic or steatotic cells treated by B[a]P only.
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phase II enzymes. Interestingly, most of the peaks were reduced by salicylamide (Fig. 8a), thus indicating that they 
corresponded to metabolites produced by phase II XMEs. We also identified two important B[a]P metabolites, 
namely 3-OH-B[a]P-glucuronide and B[a]P trans-7,8-dihydrodiol (Fig. S5), using the corresponding standards 
(respectively metabolites 2 and 1 on the chromatograms in Fig. 8A). Notably, salicylamide treatment reduced the 
peak corresponding to 3-OH-B[a]P-glucuronide and concomitantly increased the peak corresponding to B[a]P 
trans-7,8-dihydrodiol (Fig. S6), a precursor of several toxic B[a]P metabolites (Fig. S5).

The amounts of B[a]P trans-7,8-dihydrodiol and 3-OH-B[a]P-glucuronide were next assessed. Whereas 
no significant difference in the amount of B[a]P trans-7,8-dihydrodiol could be observed between steatotic 
and non-steatotic HepaRG cells (Fig. 8b), that of 3-OH-B[a]P-glucuronide was significantly reduced in the 

Figure 5. B[a]P/ethanol co-exposure favors a pro-inflammatory state in in HFD zebrafish larvae. Zebrafish larvae 
were fed with a standard diet (SD) or a high fat diet (HFD) and were either left untreated (C), or treated with 25 nM 
B[a]P (B), 43 mM ethanol (E) or a combination of both toxicants (BE) for 7 days. (a–c) mRNA expression of crp, 
tnfa and il1b, respectively. Data are expressed relative to mRNA level found in control SD larvae, arbitrarily set at 
1 unit. Values are the mean ± SEM of at least twelve independent experiments. #Significantly different from SD 
larvae; *Significantly different from untreated SD or HFD larvae; aSignificantly different from larvae treated by 
ethanol only; bSignificantly different from SD or HFD larvae treated by B[a]P only.
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presence of steatosis (Fig. 8c). It was worth noting that a significant decrease in the amount of both metabolites 
was detected in steatotic HepaRG cells co-exposed to B[a]P/ethanol as compared to steatotic cells treated with  
B[a]P alone (Fig. 8b,c). Interestingly, the ratio of B[a]P trans-7,8-dihydrodiol level to the amount of all metabo-
lites was found markedly enhanced in steatotic HepaRG cells co-exposed to B[a]P/ethanol (Fig. 8d). Altogether, 
these results suggested that steatosis and ethanol co-exposure could induce a shift in B[a]P metabolism with an 
impairment of its detoxification.

Discussion
Hepatic steatosis and steatohepatitis have been related to diverse etiologic factors, the most frequent being alcohol 
(ALD), obesity (NAFLD), and environmental toxicants (TASH)9,13. However, to our knowledge, no study has 
been performed so far with the aim of analyzing how these three different factors might interplay with respect 
to the progression of liver diseases. In this context, we decided to test the impact of the co-exposure to both the 
environmental carcinogen B[a]P and the lifestyle-related hepatotoxicant ethanol, on different models of hepatic 
steatosis induced by either FA overload (in vitro) or HFD (in vivo). The present study shows for the first time that 
the presence of a prior steatosis significantly enhanced the toxicity of B[a]P/ethanol co-exposure, and that such 
a co-exposure might favor the appearance of a steatohepatitis-like state, even at concentrations determined as 
sub-toxic under FA-free conditions.

Using two different in vitro models of steatosis, a significant increase in cell death (notably associated with a 
decrease in intracellular ATP content) was detected upon co-exposure to both toxicants. This cytotoxicity was 
associated with an increase in the mRNA expression of some cytokines (IL1β and its receptor IL1R1, in HepaRG 
cells; Tnfα in WIF-B9 cells), as well as in Crp mRNA expression in these latter cells. Secreted IL6 was also detected 
in HepaRG cells. This therefore might indicate the onset of inflammation. The differences observed with regard 
to the type of altered cytokines between HepaRG and WIF-B9 cells might stem from either the concentrations 
of toxicants (B[a]P/ethanol: 2.5 µM/25 mM for HepaRG cells versus 10 nM/5 mM for WIF-B9 cells), the time 

Figure 6. mRNA expression of CYP1A1, CYP1A2 and CYP1B1 and EROD activity are disturbed in non-
steatotic and steatotic HepaRG cells treated with B[a]P and ethanol. Non-steatotic (−FA) and steatotic (+FA) 
HepaRG cells were untreated (C) or treated with 2.5 µM B[a]P (B), 25 mM ethanol (E) or a combination of 
both toxicants (BE). (a–c) mRNA expression of CYP1A1, CYP1A2 and CYP1B1. (d) EROD activity. Results 
are means ± SEM for at least three independent cultures. #Significantly different from non-steatotic cells; 
*Significantly different from untreated non-steatotic or steatotic cells; aSignificantly different from non-steatotic 
or steatotic cells treated by ethanol only; bSignificantly different from non-steatotic or steatotic cells treated by 
B[a]P only.
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of co-exposure (14 days for HepaRG cells versus 5 days for WIF-B9 cells), or interspecies features (human for 
HepaRG cells versus hybrid human/rat for WIF-B9 cells).

Notably, an increase in cell death as well as in the expression of several markers of inflammation (crp, tnfa, 
il1b), was also found in HFD zebrafish larvae co-exposed to B[a]P and ethanol. Zebrafish larvae possess a func-
tional immune system (as evidenced by neutrophil recruitment63), thus showing that the pathological progression 
of steatosis observed in our two in vitro models could also be seen in an in vivo model of NAFLD which is closer 
to the clinical situation. These observations not only emphasize the utility of the two in vitro models of steatosis 
presently developed, as already reported28,33, but also further reinforce the attractiveness of the zebrafish larvae as 
a suitable model to study xenobiotic-related liver diseases35. Moreover, the fact that the steatohepatitis-like state 
was observed with different FA mixtures (in vitro) and different lipids (in vivo) strengthens the robustness of our 
experimental results and their possible extrapolation to NAFLD patients who are likely to eat different types of 
high-fat diets.

It was previously shown that alcohol intoxication in the context of obesity was able to aggravate NAFLD14,15. 
Similarly, recent data demonstrated that endocrine disruptors, such as bisphenol A or PCB153, could also worsen 
NAFLD when promoted by high fat diet9. In the present study, at the concentrations tested, the effects of ethanol 
or B[a]P alone in steatotic cells were quite minor, if any, especially on inflammation markers. From our data, it 
therefore clearly appears that this is the combination of all three risk factors (obesity, alcohol consumption, expo-
sure to environmental toxicants) that can enhance the risk of fatty liver disease progression. This might give a clue 

Figure 7. B[a]P metabolism is disturbed in HepaRG cells by steatosis and ethanol co-exposure. Non-steatotic 
(−FA) and steatotic (+FA) HepaRG cells were untreated (C) or treated with 2.5 µM B[a]P (B), 25 mM ethanol 
(E) or a combination of both toxicants (BE). At the end of the 14-day toxicant exposure and after a 15-minute 
washout, B[a]P metabolites were analyzed in the culture media after an acute incubation of 25 µM B[a]P.  
(a) Examples of three representative HPLC chromatograms corresponding to non-steatotic cells exposed to 
B[a]P (B), non-steatotic cells co-exposed to B[a]P and ethanol (BE), and steatotic cells co-exposed to B[a]P and 
ethanol (BE + FA). (b) Amount of all detected B[a]P metabolites determined as the sum of their AUCs (areas 
under the curve) and normalized to the total cellular protein content. Results are means ± SEM for at least three 
independent cultures. #Significantly different from non-steatotic cells; *Significantly different from untreated 
non-steatotic cells; aSignificantly different from non-steatotic cells treated by ethanol only; bSignificantly 
different from non-steatotic cells treated by B[a]P only.
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Figure 8. B[a]P metabolism by phase I and II XMEs is disturbed in HepaRG cells by steatosis and ethanol co-
exposure. Non-steatotic (−FA) and steatotic (+FA) HepaRG cells were untreated (C) or treated with 2.5 µM 
B[a]P (B), 25 mM ethanol (E) or a combination of both toxicants (BE). At the end of the 14-day toxicant 
exposure and after a 15-minute washout, B[a]P metabolites were analyzed in the culture media after an acute 
incubation of 25 µM B[a]P with or without 5 mM salicylamide, a strong inhibitor of phase II XMEs.  
(a) Examples of two representative HPLC chromatograms corresponding to non-steatotic cells treated for 14 
days with B[a]P, and then acutely exposed to B[a]P (B) or B[a]P with salicylamide (B + Sali). (b) Amount of 
B[a]P trans-7,8-dihydrodiol (peak 1 on panel a) assessed by its AUC and normalized to the total cellular protein 
content. (c) Amount of 3-OH-B[a]P-glucuronide (peak 2 on panel a) assessed by its AUC and normalized to 
the total cellular protein content. (d) Ratio of the amount of B[a]P trans-7,8-dihydrodiol to the amount of all 
detected metabolites. Results are means ± SEM for at least three independent cultures. #Significantly different 
from non-steatotic cells; *Significantly different from untreated non-steatotic or steatotic cells; aSignificantly 
different from non-steatotic or steatotic cells treated by ethanol only; bSignificantly different from non-steatotic 
or steatotic cells treated by B[a]P only.
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as to why there has been a large increase in the incidence of fatty liver diseases throughout the past two decades, 
accompanied by an increased risk of HCC among patients with NAFLD5.

We previously demonstrated in primary rat hepatocytes that the cooperative interaction between B[a]P and 
ethanol on cell death involved both B[a]P and ethanol metabolism25. Besides, a few studies indicated an impact 
of liver steatosis on xenobiotic metabolism, with possible consequences on drug biotransformation64–69, and toxi-
cokinetics of environmental contaminants70. We therefore decided to focus on xenobiotic metabolism in HepaRG 
cells, especially that related to B[a]P. As expected from previous works64–67, steatosis per se down-regulated the 
expression of several phase I and II XMEs of HepaRG cells, with some exceptions such as CYP2E1, ALDH1A3 
and GSTM2P1 whose expression was increased (Table S2). Such CYP2E1 induction has already been reported in 
clinical and experimental NAFLD33,44,46.

Regarding more specifically B[a]P metabolism, it is worth noting that neither CYP1A1 nor CYP1B1 mRNA 
expressions were affected by steatosis alone, in contrast to CYP1A2 whose expression was reduced. Despite a 
marked induction of these CYPs by B[a]P, ethanol however decreased it in both steatotic and non-steatotic cells. 
One might propose that such an impact of ethanol would be related to its inducing effect on CYP2E1 in HepaRG 
cells. Indeed, it has been previously shown that CYP2E1 overexpression repressed the activity of the CYP1A1 gene 
promoter and vice versa, via a cross-regulation involving reactive oxygen species production between those two 
enzymes71,72. However, when looking at the present transcriptomics data, it appears that like CYP1A1, CYP2E1 
mRNA expression was also down-regulated in cells exposed to B[a]P/ethanol mixture (Table S2), and so was the 
activity of both CYP1A1 (Fig. 6d) and CYP2E1 (data not shown), especially in steatotic cells. Based upon the 
fact that the mRNA expression of several phase I and phase II XMEs was affected in steatotic cells exposed to 
both B[a]P and ethanol (Table S2), pathophysiological parameters such as oxidative stress72,73, inflammation74,75, 
or lipid accumulation68,69, might be involved in these effects, e.g. by controlling the activity or expression of key 
nuclear receptors. With regard to an effect of inflammation, it has been previously reported that CYP1A2 expres-
sion is decreased in the presence of pro-inflammatory cytokines such as TNFα and IL1β, likely through an effect 
on the aryl hydrocarbon receptor (AhR)76. Such a mechanism might be involved in the decrease in CYP1A2 
mRNA expression presently observed in steatotic HepaRG cells since the IL1β pathway was upregulated.

The fact that xenobiotic metabolism was altered by steatosis and toxicant co-exposure led us to analyze the 
B[a]P metabolites produced under our different conditions. From the present results, it was clear that far less 
metabolites were produced by steatotic HepaRG cells following the 14 days treatment with both B[a]P (2.5 µM) 
and ethanol (25 mM) as compared to non-steatotic cells (Fig. 7b). Such a decrease in the overall amount of metab-
olites might result from the reduced expression of the enzymes involved in B[a]P biotransformation, as discussed 
above. As EROD activity did not seem to be affected by steatosis whatever the test conditions, one might then sup-
pose that enzymes other than CYP1 would be targeted. In line with this, our transcriptomic analysis evidenced 
in steatotic cells a reduced expression of several enzymes involved in B[a]P metabolism including CYP3A4 and 
2C19 as well as AKRs, EPHXs, GSTs and UGTs77,78. Moreover, a significant reduction in the amount of 3-OH- 
B[a]P-glucuronide was observed in steatotic cells (Fig. 8c), thus indicating that B[a]P detoxification via the UGT 
pathway would be impaired. Interestingly, previous works showed a decrease in the activity of phase II XMEs as 
NAFLD progresses from steatosis to steatohepatitis79.

It is noteworthy that B[a]P trans-7,8-dihydrodiol is the precursor of (±)-anti-B[a]P-diol-epoxide (BPDE) 
(Figure S4), the major carcinogenic intermediate of B[a]P80. Our results showing an increase in the ratio of  
B[a]P trans-7,8-dihydrodiol/all metabolites in steatotic cells co-exposed to B[a]P/ethanol (Fig. 8d) thus sug-
gested an impairment of B[a]P detoxification. As a consequence, one might then expect higher formation of 
BPDE-DNA adducts and other DNA damages, eventually leading to an increased cell toxicity and higher risk 
of carcinogenesis. In addition to DNA damages, it would also be interesting to analyze the DNA repair systems. 
Indeed, a recent study dealing with the impact of acidic pH on B[a]P metabolism demonstrated a delayed B[a]P 
metabolism associated with a decreased DNA repair activity, ultimately leading to higher DNA damage and DNA 
adduct formation81.

In conclusion, we presently report for the first time that a co-exposure to B[a]P/ethanol favors in vitro and  
in vivo the progression of fatty liver to a more severe stage characterized by cytotoxicity and a pro-inflammatory 
state. This progression seems to be promoted by a profound effect of steatosis and ethanol on the expression on 
phase I and II XMEs leading to a change in the balance between B[a]P bioactivation and detoxification. Based 
upon the fact that NAFLD is a growing public health burden, associated with a significant economic impact1,7, 
elucidation of the mechanisms whereby B[a]P and ethanol co-exposure aggravate NAFLD will have to be thor-
oughly tackled in the near future.
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A B S T R A C T

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcino-
genic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying
this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids,
were then exposed to B[a]P/ethanol (10 nM/5mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated
to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging
NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell
death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would
then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription
factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative com-
pound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death,
further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its
antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol
production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was
shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative
mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the
context of prior steatosis.

1. Introduction

Hepatic steatosis (fatty liver) and steatohepatitis (characterized by
both cell death and inflammation), have been related to diverse etio-
logic factors, the three major being alcohol, obesity and environmental
pollutants [1]. With the growing epidemics of obesity, which predis-
poses in most cases to steatosis, and due to the number of metabolism-
disrupting chemicals present in our environment, a further increase in
the prevalence of steatosis and steatohepatitis, and hence related liver

diseases (cirrhosis, cancers), is expected to occur in the near future
[1–6]. Besides the well-known steatotic effect of alcohol [7], several
studies have reported that environmental pollutants would also be in-
volved in the development of fatty liver disease, the so-called toxicant-
associated fatty liver disease (TAFLD) [1]. In this context, it has been
suggested that the three major etiologies of steatosis as listed above,
could interplay to favor the development of steatohepatitis, although
this aspect remains largely underexplored [1]. In line with this, our
previous work demonstrated that the presence of a prior steatosis
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enhanced the hepatotoxicity of a co-exposure to ethanol and the well-
known environmental carcinogen benzo[a]pyrene (B[a]P), both in vitro
and in vivo, and favored the appearance of a steatohepatitis-like state,
with the development of inflammation [8]. In that study, B[a]P was
chosen based upon the fact that this carcinogen is a widespread pol-
lutant present in diesel exhaust particles, cigarette smoke and grilled
and smoked food, among others [9,10]. Even though a direct link be-
tween B[a]P exposure and non-alcoholic fatty liver disease (NAFLD)
has been mainly evidenced in rodents [11], different epidemiological
studies indicate that high meat consumption, especially grilled meat, as
well as cigarette smoking, that is, two major routes of B[a]P exposure,
are associated with increased risk of NAFLD [12–15]. Besides it is im-
portant to stress that, for non-smokers in developed countries, human
dietary exposure to B[a]P (0.5–320 ng/day) is generally larger than that
by inhalation (0.15–25 ng/day), thus pointing to food ingestion as the
main route of exposure to B[a]P for a large part of the general popu-
lation [16]. In this context, liver appears as an evident target for B[a]P,
as already reported notably with respect to liver cancer [17,18]. Re-
garding the relevance for focusing on co-exposure to B[a]P and ethanol,
it is noteworthy that tobacco smoking and alcohol consumption were
found as interacting to favor liver cancer [19,20], thus supporting our
choice for studying the effects of hepatocyte co-exposure to B[a]P and
ethanol. However, although we have previously evidenced that such a
co-exposure constitutes a second hit to favor the pathological progres-
sion of a prior steatosis, notably by increasing cell death [8], the in-
tracellular mechanisms underlying this increase still remained to deci-
pher, especially how B[a]P and ethanol might mechanistically
cooperate in this particular context of prior steatosis.

Diverse studies have reported that steatosis could affect xenobiotic
metabolism through alterations of the expression of various enzymes
related to phases I, II and III [21–24], with expected consequences in
terms of chemical toxicokinetics [25]. Nevertheless, except for a pro-
posed role for CYP2E1 and CYP4A in NAFLD, notably via an effect on
reactive oxygen species (ROS) production [26–28], the involvement of
xenobiotic metabolism in the pathological progression of liver steatosis
is still poorly investigated. We recently demonstrated that B[a]P me-
tabolism was globally reduced by co-exposing steatotic HepaRG cells to
both B[a]P (2.5 µM) and ethanol (25mM) [8]. However, whether such
a hampered metabolism could be responsible for the related cell death
has not been tested yet. Based upon the fact that our group previously
found that co-exposing healthy rat primary hepatocytes to ethanol and
B[a]P induced an apoptosis dependent on metabolism of both chemi-
cals [29], the present study therefore aimed at evaluating the possible
involvement of xenobiotic metabolism in the increased cell death de-
tected in steatotic hepatocytes under co-exposure to these two chemi-
cals. To do so, we decided to test the involvement of phase I metabolism
of B[a]P and ethanol in the related cell death in steatotic hepatocytes of
the WIF-B9 cell line. This cell line was chosen since a progression of
steatosis towards a steatohepatitis-like stage was observed with B[a]P
and ethanol even at very low concentrations (10 nM and 5mM, re-
spectively), which are close to those humans can be usually exposed to
[8]. Besides, it is known that depending on B[a]P concentration, dif-
ferent signaling pathways can be triggered [30,31].

In the present study, we demonstrated that the cell death induced by
co-exposing steatotic WIF-B9 hepatocytes to B[a]P and ethanol resulted
from a p53 activation triggered by a potentiated DNA damage.
Furthermore, our results pointed to nitric oxide (NO) production as a
possible important player in this process. First, it seemed to modify both
B[a]P and ethanol metabolisms that thereafter might closely interplay
via AhR and ADH to produce reactive oxygen species (ROS). Second,
NO by reacting with superoxide anion, would form peroxynitrite with
important consequences in terms of DNA damage and cell death. In
total, our work suggests cooperative mechanistic interactions between
B[a]P and ethanol, which would involve AhR, ADH and NO as key
players, to favor oxidative damages and hence hepatocyte death in a
context of a prior steatosis.

2. Material and methods

2.1. Chemicals, antibodies and reagents

Benzo[a]pyrene (purity: ≥ 96%), chlorzoxazone (CZX), 1-Methyl-N-
[2-methyl-4-[2-(2-methylphenyl) diazenyl]phenyl-1H-pyrazole-5-carbox-
amide (CH-223191), 2–4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide (CPTIO), 4′,6-Diamidine-2′-phenylindole dihydrochloride
(Dapi), N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin (Ac-DEVD-
AMC), 7-ethoxyresorufin, Hoechst-33342, NG-Monomethyl-L-arginine
acetate salt (L-NMMA), 4-methylpyrazole (4-MP), β-nicotinamide adenine
dinucleotide (NADH), α-Naphthoflavone (αNF), pifithrin-α (PFT), sali-
cylamide, thiourea and α-tocopherol (vitamin E) were all purchased from
Sigma-Aldrich (Saint Quentin Fallavier, France). Ethanol (EtOH; purity:
99.97%) used for cell treatment was obtained from Prolabo (Paris,
France). N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone
(zVAD-FMK) was from Calbiochem (Millipore, Saint-Quentin Les
Yvelines, France). NFκB inhibitor Bay 11–7082 was purchased from
Promega (Charbonnières, France). Dihydroethidium (DHE) and Sytox®
green were obtained from Invitrogen, (Cergy Pontoise, France). Fe(III)
5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS)
was from Santa Cruz Biotechnology (Heidelberg, Germany). [3H]thymi-
dine was purchased from Amersham Biosciences (Buck, United Kingdom).
6-Hydroxy Chlorzoxazone (6-OH-CZX) and Chlorzoxazone O-Glucuronide
(OCZX) were obtained from Toronto Research Chemicals (North York,
Canada), and chlorzoxazone N-Glucuronide (NCZX) from Bertin Pharma
(Montigny-le-Bretonneux, France).

Concerning western blotting and immunocytochemistry experi-
ments, mouse monoclonal anti-phospho-H2AX (Ser139) (05-636) and
rabbit polyclonal anti-CYP2E1 (AB1252) antibodies were purchased
from Merck Millipore (Molsheim, France); mouse monoclonal anti-
HSC70 (sc-7298) and mouse monoclonal anti-p65 (sc-8008) antibodies
were obtained from Santa Cruz Biotechnology (Heidelberg, Germany);
rabbit polyclonal anti-CYP1A1 (Ab79819) and rabbit polyclonal anti-
iNOS (Ab3523) antibodies were purchased from Abcam (Paris, France);
mouse monoclonal anti-p53 (2524 S) and rabbit monoclonal anti-
phospho-p65 (Ser536) (3033) were purchased from Cell Signaling
Technology (Saint Quentin, France), while rabbit polyclonal anti-AhR
(BML-SA550) and rabbit polyclonal anti-53BP1 (NB100–304) were
obtained from Enzo life science (Villeurbanne, France) and Novus
Biological (Abingdon, United Kingdom), respectively. The Alexa Fluor
conjugates were acquired from Invitrogen (Cergy Pontoise, France),
and secondary antibodies conjugated with horseradish peroxidase were
from DAKO (Les Ulis, France).

Concerning the chemicals used for B[a]P metabolite and DNA adduct
analyses, benzo[a]pyrene-d12, 1-hydroxybenz[a]anthracene-13C6, 1-, 2-,
3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11- and 12-OH-benzo[a]pyrene, 4,5-di-OH-
benzo[a]pyrene-trans, 4,5-di-OH-benzo[a]pyrene-cis, 9,10-di-OH-benzo
[a]pyrene-trans, 7,8-di-OH-benzo[a]pyrene-cis and 7,8-di-OH-benzo[a]
pyrene-trans, B[a]P-r-7,t-8,t-9-tetrahydrotriol, B[a]P-r-7,t-8,c-9-tetra-
hydrotriol, (± )-benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]
PRTTC), (± )-benzo[a]pyrene-r-7,t-8,t-9,t-10-tetrahydrotetrol (B[a]P-
RTTT), (± )-benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol (B[a]P-
RTCC), and (± )-anti-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetra-
hydrobenzo[a]pyrene-d8 [(± )anti-B[a]PDE-d8] were obtained from
MRI-Global (Kansas City, MO, United States). (± ) Benzo[a]pyrene-r-7,t-
8,c-9,t-10-tetrahydrotetrol (B[a]P-RTCT) was obtained from Toronto
Research Chemicals (North York, Canada). The purity of almost all the
compounds investigated was more than 98% and was taken into con-
sideration for the preparation of the standard solutions. Thus, B[a]P
standard, internal standards and standard stock solutions of B[a]P me-
tabolites were prepared in acetonitrile at 10mg/l. Working solutions
were prepared in acetonitrile by successive ten-fold dilutions at con-
centration ranging from 1000mg/l to 10mg/l and were stored at
−20 °C. Phree phospholipid removal columns were purchased from
Phenomenex (Utrecht, the Netherlands). The derivatization reagent
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MTBSTFA (purity 97% or greater) containing 1% tert-butyldimethyl-
chlorosilane, sulfatase and beta-glucuronidase from Helix pomatia juice
were supplied by Sigma-Aldrich (Bornem, Belgium). Ultrapure water was
produced by means of an AFS-8 system from Millipore (Brussels,
Belgium). The derivatization agents N-methyl-N-(trimethylsilyl)tri-
fluoroacetamide (MSTFA: purity 96% or greater) and N-methyl-N-tert-
butyldimethylsilyltrifluoroacetamide (MTBSTFA: purity 97% or greater)
containing 1% tert-butyldimethylchlorosilane were obtained from
Macherey-Nagel (Filterservice, Eupen, Belgium) and Sigma-Aldrich
(Diegem, Belgium), respectively. The quality “Dioxins, Pesti-S” was
chosen for ethyl-acetate and cyclohexane, and the quality “ULC-MS” was
selected for acetonitrile and water. All solvents were supplied by Biosolve
(Dieuze, France).

2.2. WIF-B9 cell culture and treatments

WIF-B9 cell line was a generous gift from Dr Doris Cassio (UMR
Inserm S757, Université Paris-Sud, Orsay, France). This hybrid hepatic
cell line was obtained by fusion of Fao rat hepatoma cells and WI-38
human fibroblasts [32]. WIF-B9 cells were cultured in F-12 Ham
medium with Coon's modification (Sigma-Aldrich, Saint Quentin Fal-
lavier, France) containing 5% fetal calf serum (Eurobio, Courtaboeuf,
France), 0.22 g/l sodium bicarbonate, 100 U/ml penicillin, 0.1mg/ml
streptomycin, 0.25 μg/ml amphotericin B, 2mM glutamine, and sup-
plemented with HAT (10 μM hypoxanthine, 40 nM aminopterin, 1.6 μM
thymidine), and were incubated at 37 °C in an atmosphere constituted
of 5% CO2 and 95% air. Cells were seeded at 12.5×103 cells/cm2 and
were cultured for 7 days until obtaining approximately 80% of con-
fluence, before any treatment. Prior steatosis was then induced by a 2-
days treatment of cells with a culture medium containing a mixture of
fatty acid/albumin complexes, as previously described [8]. Steatotic or
non-steatotic cells were exposed to toxicants (10 nM B[a]P with or
without 5mM ethanol) or dimethyl sulfoxide for control cultures, for
3 h up to 5 days depending on experiments. Exposure protocol was
given in Bucher et al. [8]. In case of treatment with inhibitors, cultures
were pre-treated for 1 h prior to co-exposure with toxicants.

2.3. Cell death and toxicity evaluation

2.3.1. Apoptosis and necrosis evaluation
Cells were tested for both apoptotic and necrotic cell death by

fluorescence microscopic observation after Hoechst/Sytox green
staining. After toxicant exposure, cells were stained with 50 μg/ml
Hoechst 33342 and 93.5 nM Sytox green in the dark at 37 °C for 30min.
Apoptotic and necrotic cells were then counted using a ZEISS Axio
Scope A1 microscope. Cells with condensed and/or fragmented chro-
matin were counted as apoptotic and sytox green-stained cells were
counted as necrotic cells. More than 300 cells were analyzed per con-
dition.

2.3.2. Measurement of caspases 3/7 activity
The caspase 3/7 activity assays were performed using Ac-DEVD-AMC

tetrapeptide as fluorogenic substrate, as previously described [29].

2.3.3. Measurement of intracellular ATP levels
Intracellular ATP content was measured with the CellTiter-Glo®

Luminescent Cell Viability assay (Promega, Charbonnières, France), ac-
cording to the manufacturer's instructions, as previously described [8].

2.3.4. Evaluation of mitochondrial ultrastructural changes
Ultrastructural changes of mitochondria were visualized by trans-

mission electron microscopy. After 5 days of toxicant exposure, cells
were rinsed with 0.15M Na cacodylate buffer, pH 7.4 and fixed by
drop-wise addition of glutaraldehyde (2.5%) in cacodylate 0.15M, for
1 h. They were then washed with 0.15M Na cacodylate buffer and post-
fixed with 1.5% osmium tetroxide for 1 h. Samples were next washed

with cacodylate buffer and were dehydrated through a series of graded
ethanol from 70% to 100%. Samples were then infiltrated in a mixture
of acetone–Eponate (50/50) for 3 h and in pure Eponate for 16 h.
Finally, samples were embedded in DMP30–Eponate for 24 h at 60 °C.
Sections (0.5 µm) were cut on a Leica UC7 microtome (Leica
Microsystems, Wetzlar, Germany) and stained with toluidine blue.
Ultrathin sections (90 nm) were obtained, mounted onto copper grids,
and counterstained with 4% uranyl acetate and Reynolds’ lead citrate.
Sample examination was performed with a JEOL 1400 transmission
electron microscope operated at 120 kV.

2.4. Immunofluorescence experiments

2.4.1. DNA damage analysis by γ-H2AX and 53BP1 immunostaining
DNA damage was assessed by analyzing the H2AX phosphorylation

on Ser139 (called γ-H2AX) by immunocytochemistry, as previously
described [33]. After 5 days of treatments, cells grown on coverslips
were fixed in 4% paraformaldehyde for 15min, washed with PBS and
then permeabilized in 0.5% Triton-X-100 for 10min. After blocking
unspecific binding sites, cells were then incubated with 1:1000 diluted
anti-γ-H2AX antibody for 2 h. In some experiments, in order to test the
nature of DNA damage, cells were also co-incubated with anti-53BP1
antibody (1:3000 dilution) which allows detection of double-strand
breaks (Supplementary Fig. S1A).

After washing in PBS, cells were next incubated for 2 h with sec-
ondary Alexa fluor FITC- and Texas Red-conjugated secondary anti-
bodies. After a last washing, nuclei were stained with 300 nM DAPI for
5min. Slides were then viewed using an automated microscope Leica
DMRXA2 (Leica Microsystems, Wetzlar, Germany) with a 63× fluor-
escence objective. Cells were counted as positive for DNA damage when
the number of nuclear γ-H2AX foci was> 5. More than 100 cells were
evaluated per condition of treatment. Example of negative and positive
cells is shown in Supplementary Fig. S1A.

2.4.2. p53 immunostaining
Same protocol as for γ-H2AX immunostaining was performed for

analysis of p53. The dilution of anti-p53 antibody applied for these
experiments was 1:500.

2.4.3. iNOS immunostaining
After 48 h of treatment, cells were fixed in 4% paraformaldehyde for

15min, washed with PBS. Following blocking of unspecific binding
sites, cells were then incubated with anti-iNOS antibody overnight
(1:50 dilution) at 4 °C. After washing in PBS, cells were incubated for
2 h with secondary Alexa fluor FITC-conjugated secondary antibodies.
After a further washing, nuclei were stained with 300 nM DAPI for
5min. Slides were viewed using confocal fluorescence microscope
LEICA DMI 6000 CS (Leica Microsystems, Wetzlar, Germany) with a
63× fluorescence objective. Quantification of green fluorescence
(iNOS) was given relative to blue fluorescence (DAPI).

2.5. Analysis of mRNA expression

This analysis was realized as previously described [8]. Sequences of
the rat primers presently tested are provided in Supplementary Table
S1. Note that a CT (Cycle Threshold) over 30 cycles was indicative of a
low gene expression in WIF-B9 cells.

2.6. Western blotting

After 2 or 5 days of treatment, cells were harvested and sonicated on
ice in RIPA buffer supplemented with protein inhibitors (1mM ortho-
vanadate, 1 mM phenylmethylsulfonyl fluoride, 5 µg/ml leupeptin,
0.1 µg/ml aprotinin, 0.5 mM dithiothreitol), or a cocktail of protein
inhibitors (Roche). After determination of protein concentration,
30–100 μg of whole-cell lysates were heated for 5min at 95 °C, loaded
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in a 4.5% stacking gel, and then separated by sodium dodecyl sulfa-
te–polymerase gel electrophoresis (SDS–PAGE). Gels were then elec-
troblotted onto nitrocellulose membranes (Millipore) overnight at 4 °C.
Membranes were next blocked with a Tris-buffered saline solution
supplemented with 2% bovine serum albumin for 2 h and then hy-
bridized with primary antibodies overnight at 4 °C. Membranes were
then incubated with appropriate horseradish peroxidase-conjugated
secondary antibodies for 1 h. Immunolabeled proteins were then vi-
sualized by chemiluminescence using the LAS-3000 analyzer (Fujifilm).
Image processing was performed using Multi Gauge software (Fujifilm).
For protein loading evaluation, a primary antibody against HSC70 was
used.

2.7. Measurement of cytochrome P450s’ and ADH activities

2.7.1. CYP1 activity
Ethoxyresorufin O-deethylase (EROD) assay, used to estimate the

CYP1 activity, is based on the conversion of ethoxyresorufin into re-
sorufin by CYP1 enzymes. Briefly, after 5 days of treatment, cells were
incubated in PBS supplemented with 1.5mM salicylamide (used to in-
hibit phase II-conjugating enzymes) and 5 µM ethoxyresorufin.
Fluorescence of resorufin (λ excitation at 544 nm and λ emission at
584 nm) was monitored for 30min at 37 °C using a microplate reader
(EnSpire Multimode 2300 Plate Reader; Perkin Elmer, Waltham, United
States). Readings were compared to a resorufin standard curve in-
cluding blanks. EROD activity was expressed as pg resorufin per min
and mg protein.

2.7.2. CYP2E1 activity
CYP2E1 activity is usually assessed by the measurement of the

conversion of chlorzoxazone (CZX) to 6-hydroxychlorzoxazone (6-OH-
CZX) in biological fluids and microsomes. However, as no 6-OH CZX
was detected in WIF-B9 cells, CYP2E1 activity was determined by
analysis of the formation of chlorzoxazone O-glucuronide (OCZX) by a
high-performance liquid chromatography (HPLC) method [34]. Briefly,
after 5 days of treatment, cells were washed in William's E medium
without phenol red and then incubated with 500 µl of 300 µM chlor-
zoxazone (CZX) for 6 h at 37 °C. After centrifugation (14,000 g, 10min)
of culture media, 100 µl of the supernatant were injected onto a HPLC
chromatograph [Agilent 1260 Infinity (Agilent, Nantes, france)]. CZX
and its metabolites were resolved by a binary gradient on a Zorbax
Eclipse plus C18 reversed phasecolumn (5 µm, 4.6×250mm) (Agilent,
Nantes, France) equipped with a C18 pre-column insert (2 µm,
4.6×12.5mm) (Zorbax reliance Cartridge guard, Agilent, Nantes,
France) and set at 20 °C. Mobile phases A and B were respectively
constituted of trimethylamine in acetic acid (0.1%) and acetonitrile.
The total flow rate was 2.2ml/min. The solvent program was as fol-
lows: 98% mobile phase A from 0 to 3.5min, a step gradient to 35.5% B
at 16min, 90% mobile phase B maintained from 18.5 to 27min, fol-
lowed by re-equilibration with 98% mobile phase A from 28 to 35min.
CZX and its metabolites were monitored at 287 nm with a variable
wavelength UV detector. The retention times of OCZX, NCZX, 6-OH-
CZX and CZX were approximately 8, 11.9, 12.4 and 17.8mins, re-
spectively. 6-OH-CZX was not detectable possibly because of a high
activity of UGT which converts it to OCZX [34]. CYP2E1 enzymatic
activity was thus considered to correspond to the rate of formed OCZX,
and was expressed as pmol/min/mg protein.

2.7.3. Alcohol dehydrogenase activity
Alcohol dehydrogenase (ADH) activity was assessed by measurement

of the reduced form of β-nicotinamide adenine dinucleotide (β-NADH)
stemming from ethanol oxidation in presence of the oxidized form β-
NAD+. Briefly, after washing with PBS, cells were sonicated in 0.1M
glycine buffer at pH 10. The 1ml reaction mixture was constituted of
600 µl pH 10 glycine buffer, 100 µl ethanol, 100 µl β-NAD (5mg/ml) and
200 µl cell lysate. Formation of β-NADH was monitored by measuring the

absorbance at 340 nm for 30min at 37 °C using a microplate reader
(EnSpire Multimode 2300 Plate Reader; Perkin Elmer, Waltham, United
States). Specific ADH activity was expressed as units/min/mg protein,
and the values were quoted relative to control cells.

2.8. Analyses of B[a]P metabolites and DNA adduct formation

2.8.1. Analyses of B[a]P and its metabolites in culture medium
Culture medium sample (400 µl) was firstly homogenized with 10 µl

of glacial acetic acid (10%) in order to reach a pH of 5.6, then 20 µl of
the mixed internal standard solution (0.1mg/l) were added. Enzymatic
hydrolysis was performed for 2 h at 37 °C using 20 µl of sulfatase (2.5
units/µl) and 5 µl of beta-glucuronidase (127 units/µl). The residue was
applied onto a phree phospholipid removal column and 1200 µl of
acetonitrile with formic acid (1%) were added before centrifugation at
5000 g for 10mins. The eluate was divided into two equal parts to allow
the separated analysis of B[a]P and its metabolites. Concerning the
analysis of B[a]P, 50 µl of pure water were added before the evapora-
tion under a nitrogen stream at 37 °C to avoid dryness. Then a Liquid-
Liquid Extraction (LLE) was carried out twice with water-cyclohexane-
ethyl acetate (50:25:25; v/v/v). The upper layer containing B[a]P was
collected and dried until 25 µl. Pertaining to the analysis of metabolites,
the residue was again divided in two equivalent parts and dried under a
nitrogen flow at 37 °C. Derivatization of OH-PAHs was conducted by
adding 25 µl of MTBSTFA to the extract whereas 25 µl of MSTFA were
added to the second extract for the derivatization of di-OH-B[a]P, tri-
OH-B[a]P and tetra-OH-B[a]P. The latter steps were completed after
30min at 60 °C. One µl of each final extract was then injected into the
GC-MS/MS system. Analyses were carried out with an Agilent 7890 A
gas chromatograph equipped with a HP-5MS capillary column (30m,
0.25mm i.d., 0.25mm film thickness), coupled with an Agilent 7000B
triple quadrupole mass spectrometer operating in electron impact io-
nization mode and an Agilent CTC PAL autosampler. Details of analy-
tical conditions used for chromatography and MS/MS detection were
previously described [35,36]. Calibration curves were performed using
culture medium specimens supplemented with increased concentration
levels of B[a]P and of their metabolites from 0.01 to 10 ng/ml of culture
medium. Limits of quantification (LOQs) were evaluated at 0.079
pmol/ml of culture media for B[a]P, ranged from 0.19 to 0.79 pmol/ml
for monohydroxylated- and evaluated at 0.07 pmol/ml for dihy-
droxylated forms of B[a]P.

2.8.2. DNA adduct measurements
Tetrahydroxylated-benzo[a]pyrene (tetra-OH-B[a]P) resulting from

the hydrolysis of their respective diol-epoxide precursors, involved in
DNA-adduct formation, have been analyzed in DNA samples using a
previously published method [37].

2.9. Detection of oxidative stress

2.9.1. Determination of ROS production
Intracellular ROS production was assessed using dihydroethidium

(DHE), a fluorescent probe sensitive to superoxide anion. DHE has been
shown to be oxidized specifically by superoxide to form 2-OH-ethidium
(2-OH-E+), but also unspecifically to form ethidium (E+); both pro-
ducts are fluorescent with a significant spectrum overlap when excita-
tion light in the range of 450–500 nm is used [38,39]. Even though the
applicability was not proven by a HPLC-based method in our model of
WIF-B9 cells, we used the difference in the excitation spectra in the
350–450 nm range which was found to be more selective for 2‐OH‐E+

in human aortic endothelial cells [40]. Briefly, after 5 days of treat-
ment, cells were exposed to DHE (25 µM) in HEPES buffer for 1 h. Then,
fluorescence of 2-OH-E+ was recorded by a SpectraMax Gemini spec-
trofluorimeter (Molecular Devices, Sunnyvale, United States) (Ex
396 nm/Em 580 nm). Results were given as fluorescence arbitrary units
(AU)/mg protein.
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2.9.2. Evaluation of lipid peroxidation
Lipid peroxidation was assessed in culture media by measuring free

malondialdehyde (MDA), a secondary end-product of lipid hydroper-
oxide decomposition. Briefly, after 5 days of treatment, culture media
were collected and filtered through a 1000-Da ultrafiltration membrane
(Millipore, Saint-Quentin-les-Yvelines, France) in a 10-ml Amicon cell
(Amicon, United States) pressurized at 3 bars with nitrogen gas. Two
hundred fifty microliters of the filtrate were then analyzed by size ex-
clusion chromatography, as previously described [41]. The HPLC
system [Agilent 1260 Infinity (Agilent, Nantes, France)] was equipped
with a TSK-gel G1000 PW (7.5 mm×30 cm) size exclusion column
(TOSOH Bioscience, Tokyo, Japan). The eluant was composed of 0.1M
disodium phosphate buffer, pH 8 at a flow rate of 1ml/min. The elution
was monitored by a UV detector set at 267 nm.

2.9.3. Measurement of NO production
NO production was assessed by measuring dinitrosyl iron complex

(DNIC) in cells. DNIC, corresponding to the binding of NO to iron-
containing molecules, were directly detected in intact cells using elec-
tron paramagnetic resonance (EPR), according to a method previously
described [42]. Briefly, after 5 days of treatment, culture media were
removed and cells were scraped, washed, re-suspended in a buffer
containing 50mmol/l HEPES and 250mmol/l sucrose at pH 7.5. Then,
cells were transferred to quartz EPR tubes and frozen. EPR examination
was performed at 100 K using a Bruker Elexsys E500 spectrometer with
10-G modulation amplitude, 100-kHz modulation frequency, 9.41-GHz
frequency, and 20-mWmicrowave power. Intensity of DNIC spectra was
estimated by double integration of both lines and expressed as arbitrary
units (AU) normalized to total protein concentration.

2.10. Statistical analysis

All values were presented as means ± SD from at least three in-
dependent experiments. Statistical analyses were performed using ei-
ther two-way analysis of variance (ANOVA) followed by a post hoc
Bonferroni test, or one-way ANOVA followed by a Student-Newman-
Keuls post-test. Significance was accepted at p < 0.05. All statistical
analyses were performed using GraphPad Prism5 software (San Diego,
United States).

3. Results

3.1. Role for effector caspases and activation of the tumor suppressor p53
protein related to DNA damage in the cell death induced by co-exposing
steatotic WIF-B9 hepatocytes to B[a]P and ethanol

We previously demonstrated that co-exposure of pre-steatotic WIF-
B9 to B[a]P (10 nM) and ethanol (5mM) for 5 days led to a significant
increase in the number of cells with condensed/fragmented chromatin
along with a decrease in intracellular ATP [8]. In order to further
characterize the type of cell death involved, and as caspase activation
was previously shown to be involved in the toxicity of B[a]P/ethanol
co-exposure detected in healthy primary hepatocytes [29], a role for
effector caspases was tested using the broad caspase inhibitor zVAD
(10 µM). As shown in Fig. 1A, following zVAD treatment, a significant
decrease in the number of cells with condensed/fragmented chromatin
was observed in the presence of B[a]P/ethanol co-exposure. Note that
the cell death induced by B[a]P alone was also fully inhibited. Fur-
thermore, an increase in caspase activity was detected upon co-ex-
posure, which was significantly higher compared to B[a]P alone
(Fig. 1B). It is important to stress that neither increased cell necrosis
(Supplementary Fig. S1B) nor changes in cell proliferation
(Supplementary Fig. S1C) were observed in steatotic cells whatever the
treatment applied.

As DNA damage is usually related to B[a]P-induced cell death
[43,44], we then looked for the appearance of such a phenomenon, by

analyzing the phosphorylation of H2AX on Ser139, an H2A histone
variant (called γ-H2AX once phosphorylated; [33]). As shown in
Fig. 1C, a marked increase in DNA damage was observed upon co-ex-
posure to B[a]P/ethanol, especially in steatotic cells. Activation of the
tumor suppressor protein p53 is generally associated with B[a]P-in-
duced DNA damage and subsequent cell death [44,45]. Therefore, the
effect of pifithrin-α (PFT; 10 µM), known to inhibit p53 activation, was
next tested. As illustrated in Fig. 1D, PFT significantly inhibited the
number of apoptotic cells induced by B[a]P/ethanol co-exposure as
well as following B[a]P treatment alone in presence of steatosis. Note
that no effect of PFT on CYP1 activity was presently detected (data not
shown). Whereas no marked increase was observed in total p53 protein
content upon toxicant co-exposure or B[a]P alone as compared to
control steatotic cells (Supplementary Fig. S1D), a clear nuclear trans-
location of p53 occurred upon both these treatments (Fig. 1E). This
translocation of p53 to nucleus upon co-exposure was paralleled by an
induction by ∼ 50% of the p21 mRNA expression (Fig. 1F), a well-
known gene target of p53 [33]. It is also worth emphasizing that co-
exposure induced marked changes of mitochondria morphology, with
cristae loss and swelling of the organelles (Supplementary Fig. S2A),
without any change in the free fatty acid content of the cells
(Supplementary Fig. S2B). This thus ruled out lipotoxicity as a possible
cause of this co-exposure-induced cell death.

Altogether, these results demonstrated that the cell death induced
by co-exposing steatotic WIF-B9 hepatocytes to B[a]P and ethanol was
partly a caspase-dependent apoptosis, resulting from p53 activation
triggered by marked DNA damage.

3.2. Involvement of B[a]P metabolism in the cell death induced by co-
exposing steatotic WIF-B9 hepatocytes to B[a]P and ethanol

In order to test the possible involvement of CYP1-dependent B[a]P
metabolism, we used a known inhibitor of these CYPs, i.e. α-naphtho-
flavone (αNF; 10 µM). Our data clearly showed that cell treatment for 5
days with αNF prevented the cell death induced by co-exposure to B[a]
P and ethanol of steatotic cells. Indeed, we found that the increase in
the number of cells with condensed/fragmented chromatin (Fig. 2A)
and the decrease in intracellular ATP (Fig. 2B) upon co-exposure, were
both significantly prevented when αNF was present. The toxic effects of
B[a]P alone were also inhibited (Fig. 2A, B). Furthermore, we observed
that DNA damage, as evaluated by γH2Ax staining, induced by toxicant
co-exposure or B[a]P alone, was fully blocked by αNF (Fig. 2C). These
results therefore pointed out a possible role for B[a]P metabolism,
possibly via CYP1, in the toxic effects of B[a]P/ethanol co-exposure or B
[a]P alone under steatotic conditions.

The next set of experiments was thus carried out in order to thor-
oughly look at B[a]P metabolism. As no difference was detected re-
garding CYP1B1 expression (and so for the expression of both CYP3A1
and epoxide hydrolases EPHX1 and EPHX2) between steatosis and non-
steatosis conditions (Supplementary Fig. S3), and due to the fact that
WIF-B9 cells constitutively express CYP1A1 [46] which plays an im-
portant role in B[a]P metabolism [44], we decided to focus on the
expression of this CYP. Data in Fig. 2D evidenced an increase in this
CYP mRNA expression upon both B[a]P/ethanol co-exposure as well as
B[a]P treatment alone, notably in steatotic cells. However, no differ-
ence was observed between both treatments. Furthermore, from the
western blotting experiments, it was clear that no change in CYP1A1
protein level occurred upon toxicant co-exposure (Fig. 2E). With regard
to the activity of CYP1 enzymes, analysis of EROD activity at 5 days
showed a significant increase in EROD activity upon both B[a]P alone
and B[a]P/ethanol co-exposure in non-steatotic cells, with no difference
between both treatments (Fig. 2F). However, in presence of steatosis,
EROD activity was significantly decreased upon both treatments com-
pared to non-steatotic counterparts. A similar trend was also observed
following 48 h of treatments, although less marked for co-exposure
(Supplementary Fig. S4A). As expected, αNF inhibited EROD activity
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detected in both non-steatotic and steatotic cells at 5 days of treatment
(Supplementary Fig. S4B).

As steatosis hampered the activity of CYP1 enzyme upon toxicant
co-exposure and B[a]P alone, we next studied metabolism of B[a]P
under our experimental conditions. A gas chromatography tandem
mass-spectrometry method dedicated to the analysis of B[a]P and its
metabolites (both hydroxy and dihydroxy) was therefore applied to the
culture media coming from cells exposed to all test conditions at 5 days
(see Supplementary Fig. S5 and supplementary Table S2 for detailed
results). As shown in Supplementary Fig. S5A, it appeared that the
amount of B[a]P remaining in media was higher in presence of stea-
tosis, which would fit well with the decrease of CYP1 activity. Fig. 3
quotes the proportion of B[a]P relatively to total hydroxy- and total
dihydroxy-metabolites of B[a]P detected for each treatment. Data from
this figure confirmed that steatosis reduced B[a]P metabolism with a
greater proportion of B[a]P detected (≥ 30%) in steatotic cells, as
compared to non-steatotic counterparts treated by B[a]P alone (11%) or
in combination with ethanol (17%). Another interesting observation is
the fact that the relative proportion of diOH-metabolites upon B[a]P
alone or B[a]P/ethanol co-exposure was markedly reduced in steatotic
compared to non-steatotic counterparts (Fig. 3). Altogether, this thus
evidenced a change in B[a]P metabolism towards less production of

diol metabolites of B[a]P upon steatosis. Note that in media collected
from B[a]P-treated steatotic cells co-exposed or not with ethanol, the
concentration of 7–8-diOH-B[a]P-trans, the precursor of B[a]P-diol-
epoxide, was barely detected (Supplementary Table S2B), in line with
the absence of detected DNA-adducts regardless of the conditions of
exposure (data not shown).

3.3. Involvement of ethanol metabolism in the cell death induced by co-
exposing steatotic WIF-B9 hepatocytes to B[a]P and ethanol

The next step was to test the involvement of ethanol metabolism in
the toxicity induced by co-exposure in steatotic cells. To do so, cells
were co-treated with 4-methyl pyrazole (4-MP; 500 µM), a known in-
hibitor of both CYP2E1 and alcohol dehydrogenase (ADH; [47,48]). As
shown in Fig. 4A, 4-MP significantly inhibited the cell death induced by
B[a]P/ethanol co-exposure in steatotic cells. As ethanol metabolism
was previously reported to induce DNA damage thereby triggering p53
activation [49], 4-MP was also tested towards co-exposure-induced
DNA damage in steatotic cells. It was clear from Fig. 4B that the per-
centage of γH2AX-positive cells was significantly reduced upon 4-MP
treatment, therefore highlighting a role for ethanol metabolism in the
DNA damage induced by co-exposure under steatotic conditions.

Fig. 1. Role for caspases 3/7 and DNA damage-
related p53 activation in the cell death of
steatotic WIF-B9 cells co-exposed to B[a]P and
ethanol. Non-steatotic or steatotic hepatocytes
were treated or not (C; treated with DMSO)
with 5mM ethanol (E), 10 nM B[a]P (B) or a
combination of both toxicants (BE) for 5 days.
Apoptosis was evaluated by counting cells with
condensed/fragmented chromatin after nu-
clear staining with Hoechst 33342 in presence
or not of a pan-caspase inhibitor zVAD (10 µM)
(A) and by analyzing DEVDase activities of
caspases 3/7 by spectrofluorimetry (B). DNA
damage was evaluated by analyzing the phos-
phorylation of H2AX on Ser139 (γH2AX) by
immunocytochemistry (C). Evaluation of p53
involvement in cell death was realized by
testing the effect of the p53 inhibitor pifithrin
α (PFT; 10 µM) on apoptosis (D). Fluorescence
microscopy analysis of p53 expression and lo-
calization (E). mRNA expression of p21, a
known gene target of p53, was evaluated by
RT-qPCR. Data were given relative to mRNA
level determined in control cells (F). All results
are means ± SD for at least three independent
cultures. *: Significantly different from condi-
tion without inhibitor (zVAD or PFT). a:
Significantly different from corresponding
control (with or without steatosis). b:
Significantly different from B[a]P alone. #:
Significantly different from condition without
prior steatosis.
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We next analyzed the expression and activity of CYP2E1 following 5
days of co-exposure to B[a]P and ethanol, based upon the fact that this
CYP was reported to be increased in liver steatosis, although this point
is still a matter of debate [23,50]. Our data clearly indicated that nei-
ther mRNA expression nor protein level was altered under co-exposure
of steatotic cells (Supplementary Fig. S6A and B); note also that no
change in Cyp2e1 mRNA expression was observed following 48 h of
treatment (Supplementary Fig. S6C). Regarding the activity of this CYP,
a decrease was rather observed in steatotic cells, whatever the condi-
tion tested (Fig. 4C). As 4-MP is also known to inhibit ADH, the major
enzyme system for metabolizing alcohol especially at low concentra-
tions [51,52], activity of this enzyme was next analyzed (Fig. 4D); this
time, the activity was measured following only 3 h of treatment since it
is known that chronic alcohol consumption does not result in increased
ADH activity [51]. Our data showed first that the ADH activity was
markedly potentiated by co-exposure to both B[a]P and ethanol of
steatotic cells, whereas no effect of B[a]P or ethanol alone was detected
(Fig. 4D). As AhR (aryl hydrocarbon receptor) has been previously
shown to play a role in the regulation of liver ADH expression [53] and
based upon the fact that αNF, a known antagonist of AhR in addition to

be a CYP1 inhibitor, prevented the cell death induced by co-exposure in
steatotic cells (Fig. 2A), we decided to test a possible role for this B[a]P-
activated receptor [44]. Fig. 4E showed that co-treatment with CH-
223191 (CH; 3 µM), an AhR specific antagonist, fully inhibited the in-
crease in ADH activity elicited by co-exposing steatotic cells to both B
[a]P and ethanol for 3 h. Note that CH was also found to prevent the
related cell death as well as that induced by B[a]P alone (Fig. 4F). In
order to test whether the increase of ADH activity could be linked to an
increase in mRNA expression, we looked at different ADH isoforms
known to be expressed in rat liver, that is, ADH1, 4, 5 and 7 [54]. A
slight increase in mRNA expression, though not significant, was ob-
served upon co-exposure to B[a]P and ethanol of steatotic cells at 3 h
especially regarding ADH7; however, due to large variability in our
experiments, it was difficult to conclude about the effects of CH-223191
(Supplementary Fig. S7A and B). Regarding aldehyde dehydrogenase
(ALDH) expression, note that, although some changes in ALDH3 ex-
pression occurred with a trend towards a decrease upon co-exposure or
B[a]P alone, the expression of this gene would be low in WIF-B9 cells
(Supplementary Fig. S7C).

Altogether, these results therefore pointed to a role for ethanol

Fig. 2. Involvement of B[a]P metabolism in
the cell death induced by B[a]P/ethanol co-
exposure in steatotic WIF-B9 cells. Non-stea-
totic or steatotic hepatocytes were treated or
not (C; treated with DMSO) with 5mM ethanol
(E), 10 nM B[a]P (B) or a combination of both
toxicants (BE) for 5 days, in presence or not of
inhibitor. The involvement of B[a]P metabo-
lism was tested by analyzing the effects of the
AhR/CYP1 inhibitor αNF (10 µM) on (A)
apoptosis evaluated following Hoechst 33342
staining, (B) intracellular ATP content and (C)
DNA damage evaluated by counting cells po-
sitive for γH2AX staining. (D) Cyp1a1 mRNA
expression was evaluated by RT-qPCR, and
given relative to mRNA level in control non-
steatotic cells. (E) CYP1A1 protein level was
evaluated by western-blotting analysis.
Representative western blots and relative band
density quantification are illustrated. (F) CYP1
enzyme activity was assessed by measuring
EROD activity from intact cells. Results are
means ± SD for at least three independent
cultures. *: Significantly different from condi-
tion without αNF. a: Significantly different
from corresponding control (with or without
steatosis). b: Significantly different from B[a]P
alone. #: Significantly different from condition
without prior steatosis.
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metabolism, via an AhR-dependent ADH activation, in the toxic effects
of the co-exposure to B[a]P/ethanol under steatotic conditions.

3.4. Involvement of oxidative stress in the cell death induced by co-exposing
steatotic WIF-B9 hepatocytes to B[a]P and ethanol

In order to get further insight into the intracellular mechanisms
involved in the toxic effects of B[a]P/ethanol co-exposure in steatotic
hepatocytes, we tested a possible role for oxidative stress. Indeed, this
phenomenon is well recognized as a “second hit” for the pathological
progression of NAFLD (see eg. [55,56] for recent reviews). Besides,
ethanol and B[a]P metabolisms are known to induce oxidative stress
[44,57–59]. Using co-treatment with thiourea (6.25mM; a scavenger of
hydroxyl radicals, superoxide anion and hydrogen peroxide [60,61]),
we first found that cell death (Fig. 5A) induced by co-exposing steatotic
cells to B[a]P and ethanol was significantly inhibited, thus suggesting a
role for oxidative stress in this process; note that the effects of B[a]P
alone were also prevented. In order to evidence the trigger of oxidative
stress, oxidative damages were next searched. This was performed by
measuring the production of malondialdehyde (MDA), a main lipid
peroxidation product. As shown in Fig. 5B, a marked increase in MDA
content was detected upon co-exposure compared to control under

Fig. 3. Formation of B[a]P metabolites was altered by steatosis and upon
ethanol co-exposure. Non-steatotic or steatotic hepatocytes were treated with
10 nM B[a]P alone or in combination with 5mM ethanol for 5 days. B[a]P
metabolites in culture media were analyzed by gas chromatography tandem
mass-spectrometry. Results are quoted as proportion of B[a]P relatively to total
OH- and total diOH-B[a]P metabolites detected under the different conditions
(cf. supplementary Table S2 for values). Results are means ± SD for at least
three independent cultures.

Fig. 4. Involvement of ethanol metabolism in
the cell death induced by B[a]P/ethanol co-
exposure in steatotic WIF-B9 cells. Non-stea-
totic or steatotic hepatocytes were treated or
not (C; treated with DMSO) with 5mM ethanol
(E), 10 nM B[a]P (B) or a combination of both
toxicants (BE) for 5 days (A–C, F) or 3 h (D,E),
in presence or not of inhibitor. The involve-
ment of ethanol metabolism was analyzed by
testing the effect of the CYP2E1/ADH inhibitor
4-MP (500 µM), on (A) apoptosis after Hoechst
33342 staining, and (B) DNA damage eval-
uated by counting cells positive for γH2AX
staining. (C) CYP2E1 activity was assessed by
HPLC analyses (UV detection) of the formation
of OCZX. ADH activity was evaluated by mea-
suring the NADH production by spectro-
photometry in the absence (D) or presence (E)
of the AhR inhibitor CH-223191 (CH; 3 µM).
This activity was given relative to control cells.
(F) Involvement of AhR in apoptosis was
evaluated after co-treatment with CH. Results
are means ± SD for at least three independent
cultures. *: Significantly different from condi-
tion without inhibitor (4-MP or CH). a:
Significantly different from corresponding
control (with or without steatosis). b:
Significantly different from B[a]P alone. #:
Significantly different from condition without
prior steatosis.
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steatotic conditions; an increase, although less important, was also
detected upon B[a]P alone. This increase upon co-exposure was in-
hibited by both αNF and 4-MP (Supplementary Fig. S8). It is worth
noting that steatosis per se already led to a significant rise in MDA
content when compared to control non-steatotic cells (Fig. 5B). In ad-
dition, using the co-treatment with thiourea, the DNA damage induced
by co-exposing steatotic cells to B[a]P and ethanol was inhibited, thus
suggesting DNA oxidation (Fig. 5C). Using vitamin E (100 µM), we
found that lipid peroxidation could be partly involved in the toxic ef-
fects of co-exposure although these effects were less pronounced com-
pared to thiourea (Supplementary Fig. S9). In order to elucidate the
trigger mechanism of such an oxidative stress, we then decided to look
for superoxide anion (O2

.-) production, since mitochondria were found
to be markedly injured (Supplementary Fig. S2A). However, by using
the fluorescent probe DHE, we were unable to detect any significant
change of the fluorescence of 2-hydroxyethidium (Fig. 5D) in steatotic
cells co-exposed to B[a]P and ethanol compared to other treatment
conditions.

These results therefore demonstrated a role for oxidative stress in
the cell death induced by co-exposing steatotic cells to B[a]P and
ethanol.

3.5. Role for nitric oxide in the cell death induced by co-exposing steatotic
WIF-B9 hepatocytes to B[a]P and ethanol

Due to the fact that no significant superoxide anion production
could be detected upon co-exposure (Fig. 5D) despite clear alterations
of mitochondria (Supplementary Fig. S2A) and involvement of oxida-
tive stress (Fig. 5A, C) in the related toxic effects, we then hypothesized
that peroxynitrite anion might have been generated under our condi-
tions. Indeed, it is well known that NO can very rapidly react with O2

.-

to yield peroxynitrite (ONOO-), a highly reactive oxidant species with
important consequences in terms of cytotoxicity and pathophysiology
[62,63]. This could explain a lesser availability of O2

.- for its detection
by DHE. Our first set of experiments was performed in order to test
whether an increase in NO production could occur under our experi-
mental conditions. As shown in Fig. 6A, a potentiation of this

production was detected only upon co-exposure to B[a]P and ethanol in
steatotic cells following 5 days of treatment compared to other treat-
ments. Note that steatosis per se induced a significant increase in NO
production compared to non-steatotic cells. To evaluate a possible role
for NO in the toxicity of co-exposure, cells were then co-treated with the
NO scavenger carboxy-PTIO (CPTIO; 25 µM). As illustrated in Fig. 6B,
this molecule fully inhibited the cell death induced by B[a]P/ethanol
co-exposure in steatotic cells; an inhibition was also observed when
considering effects of B[a]P alone. As NO has been involved in DNA
damage [64], CPTIO was also tested versus this parameter. We found
that when CPTIO was present, DNA damage was markedly inhibited for
both toxicant co-exposure and B[a]P alone (Fig. 6C). As NO can favor
lipid peroxidation, CPTIO was also tested towards MDA production. As
shown in Supplementary Fig. S8, the presence of CPTIO fully prevented
such a production. Altogether, these results pointed to NO as a key
player in the toxic effects of B[a]P/ethanol co-exposure in steatotic
cells.

The following set of experiments was performed in order to get
further insight into a possible role for peroxynitrite anion in the cell
death induced by B[a]P/ethanol co-exposure of steatotic cells. To do so,
the metalloporphyrin catalyst FeTPPS, which catalyzes peroxynitrite
decomposition [65], was then tested. Our data first showed a significant
inhibition of the cell death induced by either toxicant co-exposure or B
[a]P alone in the presence of FeTPPS (2.5 µM) under steatotic condi-
tions (Fig. 6D). Besides, as peroxynitrite is known to induce DNA da-
mage [66], FeTPPS was also tested towards this parameter. As shown in
Fig. 6E, this catalyst fully prevented this damage induced by B[a]P/
ethanol co-exposure or B[a]P alone. Thus, peroxynitrite appeared to
play an important role in the potentiation of the cell death induced by B
[a]P/ethanol co-exposure under steatotic conditions.

Then, another issue about the key role of NO in the cytotoxicity of B
[a]P/ethanol co-exposure in steatotic cells was addressed concerning
the reduction of CYP1 activity (Fig. 2F), leading to a decrease in B[a]P
metabolism (Fig. 3; note that a change in B[a]P partitioning due to the
presence of lipid droplets [67,68] cannot as yet be ruled out with regard
to this reduced metabolism). Indeed it is known that NO is capable of
binding the heme of cytochrome P450s, thereby leading to their

Fig. 5. Involvement of oxidative stress in the
cell death induced by B[a]P/ethanol co-ex-
posure in steatotic WIF-B9 cells. Non-steatotic
or steatotic hepatocytes were treated or not (C;
treated with DMSO) with 5mM ethanol (E),
10 nM B[a]P (B) or a combination of both
toxicants (BE) for 5 days, in presence or not of
antioxidant. The involvement of oxidative
stress in toxicity was evaluated by testing the
effects of the antioxidant molecule thiourea
(6.25mM) on (A) apoptosis after Hoechst
33342 staining, and (C) DNA damage eval-
uated by counting cells positive for γH2AX
staining. (B) Lipid peroxidation was assessed
by measuring the production of mal-
ondialdehyde (MDA) by HPLC. (D) The super-
oxide anion production was assessed by the
measurement in fluorescence of 2-OH-ethi-
dium using DHE probe. Results are means ±
SD for at least three independent cultures. *:
Significantly different from condition without
thiourea. a: Significantly different from corre-
sponding control (with or without steatosis). b:
Significantly different from B[a]P alone. #:
Significantly different from condition without
prior steatosis.
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inhibition [62], thus suggesting a possible role for NO in the reduced
activity in our model. Using CPTIO, we found a significant increase in
EROD activity in steatotic cells, with a marked effect upon either B[a]
P/ethanol co-exposure or B[a]P treatment alone; a similar activation
was then observed upon these treatments between steatotic and non-
steatotic cells (Supplementary Fig. S10A). Interestingly, an increase in
CYP2E1 activity in steatotic cells was also observed in presence of
CPTIO, whatever the test condition (Supplementary Fig. S10B).

3.6. Role for the induction of iNOS expression via AhR and NFκB activation
in NO production

In an attempt to identify the origin of NO, the activation of the
inducible form of the nitric oxide synthase (iNOS) was analyzed. To do
so, the induction of this enzyme was studied by immunofluorescence
using a primary antibody specifically targeting the iNOS and a sec-
ondary fluorescent antibody. As shown in Fig. 7A and B, a marked in-
duction of iNOS was observed upon co-exposing steatotic cells to B[a]P
and ethanol for 48 h, as visualized by the increase of the green fluor-
escence in the cytoplasm compared to control steatotic cells. As iNOS
has been previously suggested to be regulated by AhR notably upon B
[a]P [69] as well as by NFκB [70], a possible role for the transcription
factors AhR and NFκB was tested using CH-223191 (3 µM) or Bay
11–7082 (10 µM), respectively. Our data showed that in presence of

either inhibitor, activation of iNOS was significantly prevented in
steatotic cells co-exposed to B[a]P and ethanol (Fig. 7A and C). We also
found that Bay 11-7082 also markedly reduced the related toxicity
(Supplementary Fig. S11A). Using thiourea (6.25mM), we also found
that ROS were involved in iNOS induction (Fig. 7A and C). Whereas
AhR activation was validated by the fact that CH-223191 inhibited
EROD activity under our experimental conditions (Supplementary Fig.
S4D), we wanted to confirm activation of the NFκB pathway. As shown
in Supplementary Fig. S11B, co-exposure to B[a]P and ethanol did in-
duce a phosphorylation of the p65 subunit of NFκB in steatotic hepa-
tocytes following 24 h of treatment, and this was associated with an
increase of the intercellular adhesion molecule-1 (Icam-1) mRNA ex-
pression at 48 h (Supplementary Fig. S11C), another known target of
NFκB [71]. Altogether, the data showed NFκB activation. Having de-
monstrated an induction of iNOS under our experimental conditions,
we then wanted to test its role in cell death induced by B[a]P/ethanol
co-exposure by using a specific inhibitor of NOS, that is, L-NMMA. We
found that the cell death induced by the co-exposure in the presence of
L-NMMA (500 µM) was significantly reduced (Fig. 7D) even though the
effect appeared to be less marked than with CPTIO. Note that the B[a]P
toxic effect was also inhibited by L-NMMA. Taken together, these data
thus suggested that an AhR- and NFκB-dependent iNOS activation
might be partly responsible for the cytotoxicity of B[a]P/ethanol co-
exposure in steatotic cells.

Fig. 6. Involvement of nitric oxide and perox-
ynitrite in the cell death induced by B[a]P/
ethanol co-exposure in steatotic WIF-B9 cells.
Non-steatotic or steatotic hepatocytes were
treated or not (C; treated with DMSO) with
5mM ethanol (E), 10 nM B[a]P (B) or a com-
bination of both toxicants (BE) for 5 days, in
presence or not of the NO scavenger CPTIO
(25 µM) or the peroxynitrite decomposition
catalyst FeTPPS (2.5 µM). (A) NO production
was assessed by EPR detection of dinitrosyl
iron complex (DNIC) signal in cells (AU: arbi-
trary unit). The involvement of NO in toxicity
was analyzed by testing the effects of CPTIO on
(B) apoptosis after Hoechst 33342 staining and
(C) DNA damage evaluated by counting cells
positive for γH2AX staining. The involvement
of peroxynitrite in toxicity was tested by ana-
lyzing the effects of FeTPPS on (D) apoptosis
after Hoechst 33342 staining, and (E) DNA
damage evaluated by counting cells positive
for γH2AX staining. Results are means ± SD
for at least three independent cultures. *:
Significantly different from condition without
inhibitor. a: Significantly different from corre-
sponding control (with or without steatosis). b:
Significantly different from B[a]P alone. #:
Significantly different from condition without
prior steatosis.
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4. Discussion

With the epidemics of obesity, NAFLD is becoming the most
common chronic liver disease, notably in Western countries. NAFLD at
the stage of simple steatosis can progress to more severe stages such as
non-alcoholic steatohepatitis (NASH), notably upon exposure to en-
vironmental pollutants or to alcohol [1]. These factors are capable of
interacting together to favor cell death and inflammation, that is NASH,
as we previously demonstrated, both in vitro and in vivo, in the case of
co-exposure of prior steatotic hepatocytes to both the carcinogenic
pollutant B[a]P and ethanol [8]. Here we report for the first time in
steatotic hepatocytes, that the cell death induced by such a co-exposure
might involve cooperative mechanistic interactions between the two
xenobiotics, notably via AhR and NO, with consequences in terms of
oxidative damages, notably induced by peroxynitrite.

Regarding activation of p53, B[a]P is known to favor such a sig-
naling event following DNA damage, notably resulting from the for-
mation of DNA adducts after metabolism of this pollutant into BPDE, a
well-recognized carcinogenic metabolite (see eg. [44] for review).

Therefore, we were not surprised to evidence a significant DNA damage
following co-exposure to B[a]P and ethanol. However, at first glance,
what was puzzling was the fact that (i)-CYP1 activity was decreased
upon steatosis, and (ii)-analysis of B[a]P metabolites clearly showed
that metabolism of this xenobiotic in steatotic cells co-exposed to
ethanol was significantly reduced. Regarding this latter point, it is
worth emphasizing that upon steatosis, B[a]P metabolism mainly led to
the production of monohydroxy metabolites (especially 3-OH-B[a]P)
i.e. metabolites largely engaged in detoxification [72,73], with a very
faint production of dihydroxy metabolites (Fig. 3 and supplementary
Fig. S5B) and no tetrols – resulting from the hydrolysis of DNA-adducts
detected in cell media. This was in line with the absence of detection of
BPDE-N2-dGuo DNA adducts, usually related to the production of the B
[a]P metabolite trans-7,8-dihydrodiol, but mainly detected for higher
concentrations of B[a]P than those presently tested [8,33,43]. Note that
the profile of expression for several phase II enzymes of xenobiotic
metabolism was rather similar between steatosis and non-steatosis cells
(Supplementary Fig. S12). Based upon our data obtained with the an-
tioxidant molecule thiourea and the NO scavenger CPTIO, it appeared

Fig. 7. Effects of B[a]P/ethanol co-exposure on
iNOS expression in steatotic WIF-B9 cells and
role for AhR and NFκB in these effects. Non-
steatotic or steatotic hepatocytes were treated
or not (C; treated with DMSO) with 5mM
ethanol (E), 10 nM B[a]P (B) or a combination
of both toxicants (BE) for 2 (A–C) or 5 days (B),
in presence or not of inhibitor. (A) iNOS ex-
pression was analyzed by immuno-
fluorescence. AhR, NFκB and ROS involvement
was tested by using CH-223191 (CH, 3 µM),
Bay 11–7082 (Bay, 10 µM) or thiourea
(6.25mM), respectively. (B, C) Quantification
of the fluorescence intensity corresponding to
iNOS staining versus DAPI (nuclear) staining.
(D) The involvement of iNOS in cell death was
tested by using LNMMA (500 µM), a NOS in-
hibitor, after Hoechst 33342 staining. Results
are means ± SD for at least three independent
cultures. *: Significantly different from condi-
tion without inhibitor. a: Significantly different
from corresponding control (with or without
steatosis). b: Significantly different from B[a]P
alone.
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that, under our steatotic conditions, an oxidative stress and perhaps a
nitrosative stress, might be the main, if not the sole, determinant of
DNA damage induced by toxicant co-exposure. Oxidative stress is a
well-recognized “second hit” in the pathogenesis of NASH [74], and
oxidative DNA damage has been previously detected in both rodent
NASH models [75] and biopsies from patients with NASH [76]. Indeed,
an increase in the hepatic expression of 8-oxo-7,8-dihydro-2′-deox-
yguanosine (8-OHdG), associated with detection of ROS (H2O2, O2

.-),
lipid peroxidation products and induction of oxidative stress response
genes, was reported in livers of HFD models or NASH patients [75,76].
As the effect of vitamin E (Supplementary Fig. S9B) appeared to be only
partial compared to thiourea or CPTIO (Fig. 6C), lipid peroxides would
be only partially involved in DNA attack and might be secondary to the
formation of peroxynitrite. Indeed, a marked inhibition of the increase
in the γH2AX staining was observed when using the catalyst FeTPPS
(Fig. 6E) which allowed peroxynitrite decomposition [65], thus
pointing to this species as playing a key role in the detected DNA da-
mage. In addition, a marked increase in NO cellular content was ob-
served in steatotic cells co-exposed to B[a]P and ethanol (Fig. 6A). A
role for peroxynitrite in damaging DNA, either directly or indirectly, is
well known [66,77], and has already been reported in the case of
NAFLD [78], even though only few data exist regarding this latter pa-
thology. In this context, our study might further support an important
role for peroxynitrite in the pathological progression of steatosis and, to
our knowledge, would be the first to evidence an impact on nuclear
DNA of steatotic hepatocytes with consequences in terms of cytotoxi-
city. Indeed, data from Garcia-Ruiz and coworkers [78] rather high-
lighted peroxynitrite-mediated alterations of mitochondrial DNA in
HFD-fed mice.

As stated above, metabolism of B[a]P in steatotic cells co-exposed to
ethanol was altered with a significant reduction in the sum of mono-
hydroxy and dihydroxy metabolites produced; as a consequence, sig-
nificantly more B[a]P was recovered when compared to non-steatotic
conditions (Fig. 3; Supplementary Fig. S5A). Such a global decrease in B
[a]P metabolism was previously observed by our group following a 6 h-
treatment with 25 µM B[a]P of pre-challenged steatotic human HepaRG
cells (i.e. after 14 days of co-exposure to B[a]P/ethanol at relatively
high concentrations [2.5 µM and 25mM, respectively]); however in this
latter case, the detected amount of the dihydroxy metabolite B[a]P
trans-7,8-dihydrodiol, which is the precursor of BPDE, was found to be
enhanced when compared to total metabolites [8]. The differences
might stem either from the higher concentrations of B[a]P used in that
study or from the additional presence of CYP1B1 along with CYP1A1 in
those cells. Indeed, it is worth noting that previous works have in-
dicated that CYP1A1 would be involved in both the generation and
degradation of BPDE, while CYP1B1 would only exhibit BPDE gen-
erating activity (see [79] for review). Besides, a very recent work by
Uno and coworkers [11] that dealt with the effect of co-exposing
Cyp1a1(-/-) mice to both Western diet and B[a]P evidenced the de-
velopment of NAFLD and hepatic inflammation in these mice compared
to wild-type mice, thus indicating a protective role of CYP1A1 against
NAFLD pathogenesis; note that Cyp1b1 mRNA expression in Cyp1a1(-/-
) mice was induced under these conditions, in contrast to what we
observed (rather a decrease in Cyp1b1 expression in co-exposed stea-
totic cells compared to non-steatotic counterparts; Supplementary Fig.
S3B). The fact that we presently found a decrease of CYP1 activity as-
sociated with an enhanced toxicity in exposed steatotic cells would be
in line with a protective action of CYP1A1 activation. However, what
was puzzling was the inhibition of cell death with αNF (Fig. 2). In this
context, B[a]P metabolism, even decreased, would appear as a neces-
sary, albeit not sufficient, step in the observed toxicity. It is worth
noting that αNF is also a known antagonist of AhR. Interestingly, CH-
223191, a specific antagonist of AhR, fully prevented the activation of
the ethanol metabolism enzyme ADH, elicited by the co-exposure to B
[a]P and ethanol of steatotic cells (Fig. 4E). Ethanol metabolism via
ADH would thus be essential to induce this toxicity, as evidenced by

using the inhibitor 4-MP, thus further emphasizing the cooperative
action of these two xenobiotics [29]. In order to reconcile all these data,
one might postulate that, due to the fact that B[a]P was less metabo-
lized in steatotic cells co-exposed to ethanol, there would be an increase
of its level inside cells, thus favoring a more prolonged activation of
AhR, as previously proposed [80], with consequences notably in terms
of ethanol metabolism (Fig. 8). It should be remembered how important
ethanol metabolism via ADH is for ROS production, especially super-
oxide anion, via mitochondria (notably through an effect of acet-
aldehyde) [81]. How AhR might regulate ADH activity under our
conditions remained however to be determined. Such a regulation did
not seem to involve a transcriptional regulation, in contrast to previous
works showing a negative control of ADH mRNA expression upon AhR
activation [53]. Based upon the fact that ADH activity relies upon
NAD+ and since AhR can play a role in tryptophan and hence NAD+

synthesis [82–84], one might then hypothesize that the AhR-dependent
increase in ADH activity might rely on an effect on NAD+ synthesis.
This will have to be further investigated.

In the present study, no activation of CYP2E1, another ethanol
metabolism enzyme, was detected in steatotic cells co-exposed to B[a]P
and ethanol; a significant reduction was even observed in these cells
compared to non-steatotic counterparts (Fig. 4C). Whereas CYP2E1
activation has been previously related to NAFLD [26], such an activa-
tion might actually depend on the stage of NAFLD [85]. As we found
that both CY2E1 and CYP1A activities were significantly hampered in
steatotic cells, a common mechanism to explain these results was then
considered, that might involve NO. Indeed, NO is known to react with
heme-containing enzymes, including certain isoforms of CYPs, such as
CYP2E1 and CYP1A1, thereby leading to a reduction of their activities
[86–88]. Besides, as stated above, co-exposing steatotic cells to both B
[a]P and ethanol elicited a marked increase in NO production. Using
the NO scavenger CPTIO, a CYP1 activity similar to what was found in
non-steatotic cells upon co-exposure was recovered (Supplementary
Fig. S10A). An increase in CYP2E1 activity was also observed in pre-
sence of CPTIO, whatever the test condition (Supplementary Fig. 10B).
In this context, NO might play a pivotal role in cell death (i)-by redu-
cing CYP1A1 activity, thereby possibly hampering B[a]P bio-
transformation, and inhibiting CYP2E1 activity, thus favoring ethanol
metabolism via ADH and hence superoxide anion production by mi-
tochondria; and (ii)-by reacting with this latter ROS species to form
peroxynitrite, thereby promoting DNA damage and lipid peroxidation
(Fig. 8).

Due to the the possible key role of NO, an origin for its production
was looked for, leading us to identify iNOS as a source; indeed we
evidenced an increase in iNOS expression using immunolocalization
experiments (Fig. 7A) and found that the NOS inhibitor LNMMA sig-
nificantly inhibited apoptosis (Fig. 7D), although to a lesser extent
compared to the NO scavenger CPTIO (Fig. 6B). An induction of iNOS
has already been associated in vivo with the pathogenesis of NASH [89],
and has been suggested to be related to inflammation in this patholo-
gical situation [90]. We previously demonstrated in rat liver epithelial
F258 cells that B[a]P could induce iNOS expression through AhR ac-
tivation [69]. Using the AhR antagonist CH-223191, we found here that
this receptor might also be involved in iNOS induction upon co-ex-
posure to B[a]P and ethanol of steatotic cells. In parallel, a role for ROS
and NFκB might also be possible in our cell model. Activation of NFκB
by ROS is a well-known process [91], and such a phenomenon has been
previously evidenced in NASH, notably using in vivo rodent models
[92,93]. Regarding the possible role for both AhR and NFκB in iNOS
activation, several hypotheses might be put forward; indeed, one might
suppose either direct interactions between AhR and NFκB (as already
observed with the NFκB subunit RelB; [94]) to regulate iNOS mRNA
expression, a regulation of the mRNA expression of AhR by NFκB by
binding of RelA on AhR gene promoter [95], or an action of AhR on
ROS production with consequences on NFκB [96]. With respect to the
presently reported effects, it is worth stressing that no change in mRNA
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expression of AhR was observed under our experimental conditions
whatever the time of treatment applied (48 h or 5 days; data not shown
and Supplementary Fig. S4C), which would rule out any possible reg-
ulation of AhR gene expression by NFκB. Since thiourea inhibited iNOS
activation and as AhR might be possibly involved in the very early (3 h)
activation of the ethanol-metabolizing enzyme ADH (Fig. 4E), the most
likely hypothesis would then be that AhR activation would lead to a
secondary NFκB activation through ROS (Fig. 8).

5. Conclusion

The present study suggests for the first time that the cell death in-
duced by co-exposing hepatocytes with prior steatosis to both B[a]P
and ethanol would involve a p53- and caspase-dependent apoptotic
process triggered by peroxynitrite-induced DNA damage and lipid
peroxidation. Cooperative mechanistic interactions between metabo-
lism of both toxicants appeared essential, notably via an increase in
ethanol metabolism by ADH possibly depending on AhR activation by B
[a]P, likely leading to an increase in superoxide anion production by
ethanol. Besides its involvement in DNA damage and lipid peroxidation
by reacting with superoxide anion to form ONOO-, NO would also play
a key role through modifying B[a]P metabolism, thus leading to a po-
tential long-lasting activation of AhR, necessary to sustain cell death
signaling (Fig. 8). Based upon our data, it would thus be interesting in
the future to more thoroughly look at the role of NO in the pathological
progression of steatosis, notably upon xenobiotic exposure, since in-
hibition of NO biosynthesis might help to restore normal bio-
transformation capacity of the liver.
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1. M.Imran, O.Sergent, L.Sparfel, B.Evrard, F.Chalmel, L. Huc, D.Lagadic-Gossmann, 

N.Podechard; “Zebrafish larva: a reliable alternative of mammalian model to evaluate 

the impact of environmental contaminants on the mechanisms of liver disease 

progression”; La Journée Recherche 2019; 16 January, 2019;  Rennes, France. 

The rise in NAFLD (non-alcoholic fatty liver disease) prevalence constitutes an important public health 

concern worldwide. This disease, starting from hepatic steatosis (i.e. lipid accumulation) to one of its 

pathological complications, i.e. steatohepatitis, has been related to diverse etiologic factors, including 

alcohol, obesity and environmental pollutants. However, only few studies have so far been realized in 

order to understand how these different factors might interplay regarding the progression of liver 

diseases. Since NAFLD are pathologies that depend in part on intercellular interactions between liver 

cells but also on communications between the liver and the other organs, an in vivo model is thus 

needed to integrate the complete physiology, which is not the case regarding in vitro model. In this 

context, keeping concern of 3Rs (Replacement, Reduction, Refinement) issues, we decided to explore the 

possibility to use zebrafish larva to determine the impact on NAFLD of an environmental carcinogen, 

benzo[a]pyrene (B[a]P), in binary combination with ethanol, a well-known hepatotoxic lifestyle toxicant. 

Indeed, this model has two main advantages: (i) close similarities with human genetics and liver 

physiopathology; (ii) transparency of larva that allows to develop wide variety of imaging techniques 

adapted to high throughput studies. Concretely, we have generated a model of larva rapidly developing 

HFD-induced steatosis (1 day) before exposure to xenobiotics for 7 days. Using this model and diverse 

approaches including imaging, we have highlighted a role of co-exposure to B[a]P and ethanol in the 

progression of steatosis towards a steatohepatitis-like state, notably dependent on mechanisms linked 

to membrane remodeling, as evidenced using pravastatin,  a known lipid-lowering drug. In conclusion, 

zebrafish larva behaves as a promising model to more thoroughly study the mechanisms of liver disease 

progression, and to allow screening of environmental contaminants that are deleterious for human 

health as endocrine disrupters. 

Keywords 

In vivo model, zebrafish larva, liver, steatosis, steatohepatitis, environmental contaminants, imaging. 

 

 

 

 

  



2. M.Imran, B.Evrard, F.Chalmel, L.Sparfel, I.Gallais, O.Sergent, D.Lagadic-Gossmann, 

N.Podechard; “ Steatotic zebrafish larva to evaluate mechanisms involved in NAFLD 
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The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health 

concern worldwide. Including obesity, environmental factors or alcohol consumption have also been 

described as risk factors of NAFLD. However, there are very few studies that have explored the combined 

role of these factors. So, we decided to investigate the influence of a co-exposure to low doses of alcohol 

and benzo[a]pyrene (B[a]P), a prototype of polycyclic aromatic hydrocarbons notably found in cigarette 

smoke and diet, in high-fat fed zebrafish larva, a suitable in vivo model of steatosis. In this context, we 

aimed to assess pathological progression and underlying mechanisms.  

On 4-day post fertilization (dpf), zebrafish larvae were fed with a high fat diet to develop steatosis. Then, 

on 5 dpf, larvae were exposed to sub-toxic doses of B[a]P (25 nM) and ethanol (43 mM) for a chronic 

treatment of 7 days. After treatment, steatohepatitis was characterized by examining histological liver 

injury and by qPCR analyses1. Specific chemical inhibitors were used to decipher mechanisms involved. 

Taking advantages of larvae transparency, plasma membrane order was analysed by fluorescence 

microscopy. Transcriptomic analyses were performed on Affymetrix GeneChips. In parallel, 

Mitochondrial oxygen consumption was evaluated in vivo using XFe24 Extracellular Flux Analyzer.  

In steatotic zebrafish larva, mixture of alcohol and B[a]P induced liver toxicity leading to a 

steatohepatitis-like state. Using specific inhibitors, several mechanisms were identified as oxidative 

stress, plasma membrane remodeling2 (changes in membrane fluidity and lipid-raft characteristics). 

Next, from transcriptomic analyses—done to identify global mechanisms and pathways—mitochondrial 

metabolism appeared to be a key player of NAFLD progression in response to xenobiotics. Finally, 

metabolic disruption was revealed by a decrease in mitochondrial respiratory capacity following toxicant 

mixture and it was also supported by qPCR validation of several mitochondrial mRNA targets.  

Overall, using the suitable larval zebrafish model, it can be concluded that mixture of alcohol/B[a]P can 

induce NAFLD disease progression via membrane remodeling, oxidative stress and likely through 

mitochondrial metabolic disruption. Thus, in future, these results could provide biomarkers and be 

considered for developing combination therapy to deal with steatohepatitis. 
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 alternative of mammalian model to evaluate the impact of environmental 

contaminants on the mechanisms of liver disease progression”; ECOPA: Symposium: 

How new experimental tools in life sciences challenge the 3Rs vision?; 5-6 November, 

2018;  Paris, France. 

 

The rise in NAFLD (non-alcoholic fatty liver disease) prevalence constitutes an important public health 

concern worldwide. This disease, starting from hepatic steatosis (i.e. lipid accumulation) to one of its 

pathological complications, i.e. steatohepatitis, has been related to diverse etiologic factors, including 

alcohol, obesity and environmental pollutants(1). However, only few studies have so far been realized in 

order to understand how these different factors might interplay regarding the progression of liver 

diseases. Since NAFLD are pathologies that depend in part on intercellular interactions between liver 

cells but also on communications between the liver and the other organs, an in vivo model is thus 

needed to integrate the complete physiology, which is not the case regarding in vitro model. In this 

context, keeping concern of 3Rs issues, we decided to explore the possibility to use zebrafish larva to 

determine the impact on NAFLD of an environmental carcinogen, benzo[a]pyrene (B[a]P), in binary 

combination with ethanol, a well-known hepatotoxic lifestyle toxicant. Indeed, this model has two main 

advantages: (i) close similarities with human genetics and liver physiopathology; (ii) transparency of 

larva that allows to develop wide variety of imaging techniques adapted to high throughput studies(2). 

Concretely, we have generated a model of larva rapidly developing HFD-induced steatosis (1 day) before 

exposure to xenobiotics for 7 days. Using this model and diverse approaches including imaging, we have 

highlighted a role of co-exposure to B[a]P and ethanol in the progression of steatosis towards a 

steatohepatitis-like state, notably dependent on mechanisms linked to membrane remodeling(3-4). In 

conclusion, zebrafish larva behaves as a promising model to more thoroughly study the mechanisms of 

liver disease progression, and to allow screening of environmental contaminants that are deleterious for 

human health as endocrine disrupters. 
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Background and Aims: The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an 

important public health concern worldwide. Including obesity, environmental factors or alcohol 

consumption have also been described as risk factors of NAFLD. However, there are very few studies 

that have explored the combined role of these factors. So we decided to investigate the influence of a 

co-exposure to low doses of alcohol and benzo[a]pyrene (B[a]P), a prototype of polycyclic aromatic 

hydrocarbons notably found in cigarette smoke and diet, in high-fat fed zebrafish larva, a suitable in vivo 

model of steatosis. In this context, we aimed to assess pathological progression and underlying 

mechanisms. 

Method: On 4-day post fertilization (dpf), zebrafish larvae were fed with a high fat diet to develop 

steatosis. Then, on 5 dpf, larvae were exposed to sub-toxic doses of B[a]P (25 nM) and ethanol (43 mM) 

for a chronic treatment of 7 days. After treatment, steatohepatitis characterization was done by 

examining histological liver injury and by qPCR. Specific chemical inhibitors were used to decipher 

mechanisms involved. Taking advantages of larvae transparency, plasma membrane order was analysed 

by fluorescence microscopy. Transcriptomic analyses were performed on Affymetrix GeneChips.  

Mitochondrial oxygen consumption was evaluated in vivo using XFe24 Extracellular Flux Analyzer. 

Results: In steatotic zebrafish larva, mixture of alcohol and B[a]P was demonstrated to induce liver 

toxicity leading to a steatohepatitis-like state. Using specific inhibitors, several mechanisms were 

identified as oxidative stress, plasma membrane remodeling (changes in membrane fluidity and lipid-raft 

characteristics). Next, from transcriptomic analyses—done to identify global mechanisms and 

pathways—mitochondrial metabolism appeared to be a key player of NAFLD progression in response to 

xenobiotics. Finally, metabolic disruption was revealed by a decrease in mitochondrial respiratory 

capacity following toxicant co-exposure and it was also supported by qPCR validation of several 

mitochondrial mRNA targets. 

Conclusion: Overall, using the suitable larval zebrafish model, it can be concluded that alcohol/B[a]P co-

exposure can induce NAFLD disease progression via membrane remodeling, oxidative stress and likely 

through mitochondrial metabolic disruption. Thus, in future, these mechanisms could be considered for 

developing combination therapy to deal with steatohepatitis.  
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The rise in NAFLD (non-alcoholic fatty liver disease) prevalence constitutes an important public health 

concern worldwide. This disease, starting from hepatic steatosis (i.e. lipid accumulation) to one of its 

pathological complications, steatohepatitis, has been related to diverse etiologic factors, including 

alcohol, obesity and environmental pollutants. However, only few studies have so far analyzed how 

these different factors might interplay regarding the progression of liver diseases. The impact of the co-

exposure to the environmental carcinogen, benzo[a]pyrene (B[a]P) and the lifestyle-related 

hepatotoxicant, ethanol has been investigated in the progression of steatosis to a steatohepatitis-like 

state in obese zebrafish larvae. Larvae bearing steatosis upon high-fat diet were exposed to ethanol 

and/or B[a]P for 7 days at low concentrations coherent with human exposure in order to elicit 

progression towards steatohepatitis, evaluated by histological liver injury and assessment of several 

characteristic gene expressions. Afterwards, transcriptomic analysis was performed, which raised the 

possibility of alterations in the mitochondrial metabolism. Therefore, mitochondrial oxygen 

consumption was studied in this model after 24h of toxicant exposure using XFe24 Extracellular Flux 

Analyzer (Seahorse technology). A decrease in basal, maximum and spare respiratory capacity with 

toxicant co-exposure suggested the involvement of mitochondrial metabolism in the pathological 

evolution of steatosis. In addition, such an involvement was also supported by qPCR validation of several 

mitochondrial mRNA targets. In total, we evidenced a metabolic disruption upon co-exposure to B[a]P, 

also known as an endocrine disruptor, and ethanol during NAFLD progression. (Financial support: ANR-

13-CESA-0009; HEC Pakistan). 
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Fatty liver (steatosis) is the most common hepatic disease in western countries, occurring in 80% 

of over-weight people. Steatosis characterized as a lipid accumulation in the liver is not harmful by itself, 

but can progress to severe forms such as steatohepatitis. Steatosis can be considered as a liver 

sensitizing stage to external aggressions that favor pathological progression. However, the origin of 

these aggressions and the related molecular mechanisms still need to be clarified. In this context, we 

hypothesized that co-exposure to hepatotoxic chemicals from environment or linked to lifestyle might 

promote this disease progression. Thus, the aim of our study was to develop an in vivo model to 

determine the impact of an environmental carcinogen, benzo[a]pyrene (B[a]P), in binary combination 

with ethanol, a well-known hepatotoxic lifestyle toxicant. 

 In Zebrafish, which shares similar genomic homology and liver development with humans, 

steatosis was obtained after only one day of feeding with high fat diet on 4 day post-fertilization (dpf); 

then larvae were treated with 43 mM ethanol and/or 25 nM B[a]P from 5 to12 dpf. When comparing the 

effect of each treatment, it could be inferred that toxicants induced liver toxicity, which was 

demonstrated by an enhanced cell death on histological sections, with a further potentiation when prior 

steatosis was applied.  Besides, rt-qPCR results showed an induction of il1b, tgfb and nf-kb expression 

upon exposure to toxicants. Affymetrix GeneChip zebrafish transcriptomic analysis further showed the 

altered expression of genes related to xenobiotic biotransformation, mitochondrial metabolism, iron 

homeostasis, inflammatory and immune response, and oxidoreductase activity in exposed steatotic 

larvae.  

In conclusion, the occurrence of both hepatotoxic-inflammatory markers and liver injuries 

confirm that zebrafish larvae behave as a promising model to more thoroughly study the mechanisms 

involved in the effects of B[a]P and ethanol co-exposure on the progression of steatosis to a 

steatohepatitis-like state. 
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Supplementary Figure 1. Protective effect of pravastatin against the toxicity induced by 

B[a]P/ethanol co-exposure in steatotic WIF-B9 cell line 

Steatotic WIF-B9 cells were untreated (C) or treated for an overall 5 days period to 5 mM ethanol 

(E), 10 nM B[a]P (B) or combination of both toxicants (BE). Apoptotic cell death with 10 μM 

pravastatin was determined by microscopic counting after hepatocyte staining with Hoechst 

33242. Values are the mean ± SEM of three independent experiments. *Significantly different 

from steatosis control condition; aSignificantly different from condition treated by ethanol only; 
bSignificantly different from condition treated by B[a]P only; PSignificantly different from cells 

treated by pravastatin. 
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Supplementary figure 2 

Supplementary Figure 2. mRNA expression of cyp1a and cyp2y3 after exposing HFD 

zebrafish larvae to B[a]P and ethanol with or without pravastatin 

mRNA expression of cyp1a (A) and cyp2y3 (B) was evaluated by rt-qPCR . Zebrafish larvae were 

started to be fed with high-fat diet (HFD) from 4 dpf and from 5 dpf, they were either left 

untreated (C) or treated with co-exposure of 43 mM ethanol and 25 nM B[a]P (BE) until 12 dpf. 

Both conditions were also treated with 0.5µM pravastatin as quoted as (C±pravastatin) and 

(BE±pravastatin), respectively. Data are expressed relative to mRNA level found in HFD control 

larvae, set at 0 (log 2 change).Values are the mean ± SEM. *Significantly different from HFD 

control larvae. PSignificant difference between larvae treated by pravastatin compared to 

untreated counterparts. 
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Methodology: 

WIF-B9 cell culture and treatment: WIF-B9 is a hybrid cell line obtained by fusion of Fao rat 

hepatoma cells and WI-38 human fibroblasts [33, 79–81]. The WIF-B9 cells were a generous gift 

from Dr Doris Cassio (UMR Inserm S757, Université Paris-Sud, Orsay, France). Cells were 

cultured in F-12 Ham medium with Coon's modification containing 5% FCS, 0.22 g/L sodium 

bicarbonate, 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.25 μg/mL amphotericin B, 2 mM 

glutamine, and supplemented with HAT (10 μM hypoxanthine, 40 nM aminopterin, 1.6 μM 

thymidine). WIF-B9 cells were seeded at 12.5x103 cells/cm2; cells were cultured for 7 days until 

obtaining ∼ 80% of confluence, before treatment.  

The FA-albumin complex containing medium was prepared by FA saponification with a 

NaOH/ethanol solution at 70°C for 30 min. After ethanol evaporation under nitrogen, FA salts 

were solubilized in culture medium supplemented with 90 μM FA-free bovine serum albumin. 

Steatosis was induced by a two days treatment with a medium containing the FA/albumin 

complex composed of 450 μM oleic acid and 100 μM palmitic acid. Steatotic cells were then 

exposed or not for an overall 5 days period to the toxicants (10 nM B[a]P with or without 5 mM 

ethanol). Media and treatments with toxicants were renewed on day 3. For experiments with raft 

disrupting agent, cells were co-exposed with 10 μM pravastatin (Sigma-Aldrich) and toxicants—

B[a]P  and ethanol. Pravastatin was added 1 hour before the addition of toxicants. 

 

Toxicity evaluation: WIF-B9 cells were tested for apoptotic cell death by fluorescence 

microscopic observation of cells stained with Hoechst 33342 (Life Technologies) and propidium 

iodide (Sigma-Aldrich). After each treatment, cells were stained with 10 μg ml-1 Hoechst 33342 

and 10 μg ml-1 propidium iodide in the dark for 15 min at 37 °C. Cells were then examined by 

fluorescence microscopy (Olympus BX60; Olympus, Rungis, France). The total population was 

always more than 400 cells. Cells with condensed and/or fragmented chromatin were counted as 

apoptotic cells. 
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Titre : Mécanismes de progression pathologique de la stéatose hépatique induite par un mélange de 
contaminant de l'environnement et d'alcool 

 Mots clés : Maladies non-alcooliques du foie gras, larve de poisson-zèbre, benzo[a]pyrène, éthanol, 
stéatose, mécanismes in vivo. 

Résumé : La prévalence des maladies non-
alcooliques du foie (NAFLD) est en constante 
augmentation. Au-delà de l’obésité, d’autres facteurs 
de risques pour ces maladies ont été identifiés. 
Parmi eux, l'exposition aux contaminants 
environnementaux a récemment été décrite. L’un 
d’entre eux est le benzo[a]pyrène (B[a]P), un 
polluant environnemental largement répandu et 
considéré comme le chef de file des Hydrocarbures 
Aromatiques Polycycliques (HAP). Notre équipe a 
déjà décrit, in vitro (HepaRG, WIF-B9) et in vivo 
(larve de poisson-zèbre), qu’une co-exposition au 
B[a]P et à l'éthanol, un autre agent hépatotoxique 
bien connu, même à de faibles doses, pouvait 
conduire à la progression pathologique d’une 
stéatose préalable vers la stéatohéaptite. En outre, 
ces études in vitro ont permis de proposer plusieurs 
mécanismes physiopathologiques pour expliquer ces 
effets. Cependant, les mécanismes in vivo n’ont pas 
encore été élucidés.  Dans ce contexte, nous  avons  

utilisé un  modèle de larve de  poisson-zèbre nourri 
avec un régime alimentaire riche en graisses pour 
lequel notre équipe a déjà démontré la transition de 
la stéatose vers la stéatohépatite suite à une 
exposition simultanée à 43 mM d'éthanol et à 25 nM 
de B[a]P pendant 7 jours. Dans ce modèle, nous 
avons montré l’implication de deux mécanismes-clés 
dans la progression de la NAFLD, à savoir le 
remodelage de la membrane et l’accumulation de fer 
mitochondrial, deux processus étroitement liés à 
l’activation du récepteur AhR. En conclusion, nous 
proposons que le remodelage de la membrane 
puisse agir comme élément de signalisation initial 
pour induire cette accumulation mitochondriale de fer 
et donc un dysfonctionnement de cet organite 
conduisant à la mort cellulaire. Enfin, cette mort 
cellulaire associée au fer, possiblement de la 
ferroptose, serait principalement responsable de la 
progression des NAFLD après la co-exposition 
B[a]P/éthanol. 
 

 

Title : Mechanisms of pathological progression of liver steatosis induced by a mixture of environmental 
contaminant and alcohol  

Keywords :  Nonalcoholic fatty liver diseases, zebrafish larva, benzo[a]pyrene, ethanol, steatosis, in vivo 
mechanisms 

 
The rate of obesity and NAFLD prevalence is 

growing proportionately. Considering other etiological 
factors of NAFLD, exposure to environmental 
contaminants has been described, in recent years, 
as an essential cause of NAFLD development and 
progression. Among these toxicants, benzo[a]pyrene 
(B[a]P), a widely distributed environmental pollutant, 
is believed to contribute in NAFLD pathogenesis. 
Another well-known hepatotoxicant and contributor of 
fatty liver disease is ethanol. It has already been 
described by our team that B[a]P and ethanol, even 
at low doses, exert hepatotoxicity notably upon co-
exposure, and can lead to NAFLD progression, if 
liver is already compromised with steatosis in both in 
vitro (HepaRG, WIF-B9) and in vivo (zebrafish larva) 
models. Furthermore, several mechanisms, 
responsible for this pathological progression to 
steatohepatitis-like state have also been described 
by the team using two in vitro models. However, the 
in vivo mechanisms underlying steatosis progression 
in response to B[a]P/ethanol co-exposure are yet not  
elucidated. In this context, we have used high fat diet  

 

(HFD)-fed zebrafish larva model to assess NAFLD 
pathogenesis. Our team has recently demonstrated 
that, in this zebrafish larva model, prior steatosis 
can progress to steatohepatitis-like state following 
co-exposure to 43 mM ethanol with 25 nM B[a]P for 
7 days. With this in vivo model, we observed two 
important key mechanisms involved in NAFLD 
progression i.e. membrane remodeling and 
mitochondrial iron accumulation, likely associated 
with AhR activation. In conclusion, we proposed 
that membrane remodeling could act as an initial 
signaling element to induce this mitochondrial iron 
accumulation, hence mitochondrial dysfunction 
leading to cell death. Taking into account our 
results, one might propose that an iron-associated 
cell death, possibly ferroptosis, would be principally 
responsible for the NAFLD progression following 
B[a]P/ethanol co-exposure. 
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