Modélisation numérique de l'amorçage et la propagation des fissures dans les tôles métalliques ductiles pour les simulations de crash

par Valentin Davaze

Thèse de doctorat en Mécanique

Sous la direction de Jacques Besson.

Soutenue le 11-12-2019

à Paris Sciences et Lettres , dans le cadre de Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique , en partenariat avec ENSMP MAT. Centre des matériaux (Evry, Essonne) (laboratoire) et de École nationale supérieure des mines (Paris) (établissement de préparation de la thèse) .

Le président du jury était Jean-Philippe Ponthot.

Le jury était composé de Jacques Besson, Claire Gauthier, Sylvia Feld-Payet, Bertrand Langrand, Nicolas Vallino.

Les rapporteurs étaient Khémais Saanouni, Dirk Mohr.


  • Résumé

    Lors d’un crash automobile, les pièces faites de tôles métalliques sont sujettes à rupture. La rupture des matériauxductiles n’est actuellement pas prédite de manière fiable dans un contexte industriel, entraînant des coûts et délaissupplémentaires sur la conception. Cette problématique est alors abordée dans cette thèse CIFRE du Groupe PSAmenée en collaboration avec l’Onera et le Centre des Matériaux. L’objectif de ces travaux est de développer et d’implanterune stratégie numérique fiable de prédiction de fissure par la méthode des Éléments Finis (EF) dans les calculs de crashautomobile. Une première partie de ce travail consiste en la caractérisation puis la modélisation du comportementjusqu’à l’amorçage d’un matériau ductile représentatif: les tôles d’acier DP450. Pour ce faire, des essais sont réaliséssur une large gamme de vitesses de chargement, de triaxialités, et à différentes températures. À partir des résultatsobtenus, un modèle numérique de comportement est établi en tenant compte des différents phénomènes observésinfluençant la fissuration: la plasticité, les effets de vitesse et l’endommagement. Le modèle ainsi défini permet de tenircompte de la plupart des phénomènes observés. Cependant, le recours aux modèles adoucissants pour la modélisationde l’endommagement et des effets thermiques à haute vitesse entraîne une dépendance pathologique des résultatsau maillage utilisé (taille, orientation). Ce problème est résolu par l’implantation d’une méthode de régularisation non-localeadaptée aux calculs en dynamique rapide. Une variable non-locale est alors calculée à travers l’enrichissementd’éléments finis (solides et coques). Celle-ci est traitée comme un nouveau degré de liberté, facilitant ainsi l’échange del’information entre les éléments tout en conservant la parallélisation du code. Cette variable est ensuite introduite dansles équations constitutives permettant par la suite d’obtenir l’indépendance des résultats au maillage. La validation del’approche proposée est finalement réalisée grâce à la confrontation avec des résultats expérimentaux.

  • Titre traduit

    Numerical modelling of crack initiation and propagation in ductile metallic sheets for crash simulations


  • Résumé

    In the event of a car crash, parts made of metal sheets are subjected to failure. Failure of ductile materials is currentlynot reliably predicted in an industrial context, involving additional costs and delays in the design process. This issue isthen addressed in this Ph.D thesis work of the PSA Group carried out in collaboration with Onera and the Centre des Matériaux. The aim of this work is to develop and implement a reliable numerical strategy for crack prediction using the Finite Element Method (FE) in automotive crash simulations. A first part of this work consists in characterizing and then modelling the plastic and fracture behavior of a representative ductile material: the DP450 steel sheets. To do so, tests are performed over a wide range of loading rates, stress triaxialities, and at different temperatures. From the obtained results,a numerical constitutive model is built by taking into account the different observed phenomena influencing crack initiationand propagation: plasticity, strain-rate effects and damage. The constitutive model thus enables to take into account mostof the observed phenomena. However, the use of softening models for modelling damage and thermal effects at highloading rate leads to a pathological dependence of the results on the mesh size and the mesh orientation. This problem issolved by the implementation of a non-local regularization method adapted to dynamic explicit computations. A non-localvariable is then computed through the enrichment of finite elements (continuum and shell). It is therefore treated as a new degree of freedom, which facilitates the exchange of data between the elements while preserving the parallelizationof the code. This variable is then introduced into the constitutive equations, allowing to obtain mesh independent results.The validation of the proposed approach is finally realized through the simulation of experimental results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Paris Sciences et Lettres. Thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.