Graph-based registration for biomedical images

par Hong Nhung Pham

Thèse de doctorat en Traitement du Signal et des Images

Sous la direction de Philippe Carré, David Helbert et de Pascal Bourdon.

Soutenue le 11-02-2019

à Poitiers , dans le cadre de École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges) , en partenariat avec XLIM (laboratoire) , Université de Poitiers. UFR des sciences fondamentales et appliquées (faculte) et de XLIM / XLIM (laboratoire) .

Le président du jury était Ludovic Macaire.

Le jury était composé de Philippe Carré, David Helbert, Pascal Bourdon, Sylvie Treuillet, Frederic Louradour.

Les rapporteurs étaient Jean-Christophe Burie, Jean-Pierre Da Costa.

  • Titre traduit

    Recalage basé graphe pour les images médicales


  • Résumé

    Le contexte de cette thèse est le recalage d'images endomicroscopiques. Le microendoscope multiphotonique fournit différentes trajectoires de balayage que nous considérons dans ce travail. Nous proposons d'abord une méthode de recalage non rigide dont l'estimation du mouvement est transformée en un problème d'appariement d'attributs dans le cadre des Log-Demons et d'ondelettes sur graphes. Nous étudions les ondelettes de graphe spectral (SGW) pour capturer les formes des images, en effet, la représentation des données sur les graphes est plus adaptée aux données avec des structures complexes. Nos expériences sur des images endomicroscopiques montrent que cette méthode est supérieure aux techniques de recalage d'images non rigides existantes. Nous proposons ensuite une nouvelle stratégie de recalage d'images pour les images endomicroscopiques acquises sur des grilles irrégulières. La transformée en ondelettes sur graphe est flexible et peut être appliquée à différents types de données, quelles que soient la densité de points et la complexité de la structure de données. Nous montrons également comment le cadre des Log-Demons peut être adapté à l'optimisation de la fonction objective définie pour les images acquises avec un échantillonnage irrégulier.


  • Résumé

    The context of this thesis is the image registration for endomicroscopic images. Multiphoton microendoscope provides different scanning trajectories which are considered in this work. First we propose a nonrigid registration method whose motion estimation is cast into a feature matching problem under the Log-Demons framework using Graph Wavelets. We investigate the Spectral Graph Wavelets (SGWs) to capture the shape feature of the images. The data representation on graphs is more adapted to data with complex structures. Our experiments on endomicroscopic images show that this method outperforms the existing nonrigid image registration techniques. We then propose a novel image registration strategy for endomicroscopic images acquired on irregular grids. The Graph Wavelet transform is flexible to apply on different types of data regardless of the data point densities and how complex the data structure is. We also show how the Log-Demons framework can be adapted to the optimization of the objective function defined for images with an irregular sampling.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.