Modélisation physique de la dynamique des écoulements à bulles par remontée d’échelle à partir de simulations fines

par Antoine Du Cluzeau

Thèse de doctorat en Sciences de l'Ingénieur

Sous la direction de Adrien Toutant et de Jean Michel Martinez.


  • Résumé

    Le CEA aspire à la création d'un réacteur nucléaire numérique qui nécessite une grande connaissance des écoulements diphasiques. Dans le but d'améliorer notre compréhension des scénarios accidentels, cette thèse s’attache à étudier et à modéliser la dynamique complexe des écoulements à bulles. Les principaux enjeux de la thèse sont d’étudier et de modéliser les forces interfaciales responsables de la migration des bulles ainsi que de proposer un modèle de turbulence à la hauteur de la connaissance actuelle des phénomènes. Afin d'atteindre ces objectifs, une base de données statistique est réalisée à partir d'expériences numériques (simulations numériques directes) d'essaims et de canaux à bulles. Une nouvelle méthode de modélisation des forces interfaciales est développée. Elle révèle une nouvelle force baptisée force de dispersion laminaire qui a un rôle important dans la migration des bulles. Un modèle de cette force est donc proposé. La turbulence dans les écoulements à bulles est constituée de SPT (Single Phase Turbulence), de WIT (Wake Induced Turbulence) et de WIF (Wake Induced Fluctuations). Le SPT est la turbulence issue du cisaillement moyen, le WIT représente les fluctuations temporelles turbulentes issue de la déstabilisation collectives des sillages, et le WIF est fait de fluctuations spatiales engendrées par le sillage moyen. Dans cette thèse, nous proposons une nouvelle forme de modélisation à trois équations de la turbulence, où chaque contribution possède sa propre fermeture. Le modèle à trois équations tensorielles ainsi écrit est complet et peut être dès aujourd'hui utilisé dans un code de calcul moyenné.

  • Titre traduit

    Physical modeling of the dynamics of bubbly flows by upscaling from direct numerical simulations


  • Résumé

    The CEA aspires to create a numerical nuclear reactor which requires a great knowledge of two-phase flows. In order to improve our understanding of accidental scenarios, this thesis focuses on studying the complex dynamics of bubbly flows in order to model them. The main challenges of the thesis are to study and model the interfacial forces responsible for the migration of bubbles as well as to propose a model of turbulence in agreement with the current knowledge of the phenomena. In order to achieve these objectives, a statistical database is produced from numerical experiments (direct numerical simulations) of swarms and bubble channels. In this thesis, a new method for interfacial forces modeling is developed. It reveals a new force coined as laminar dispersion force. This force has an important role in bubble migration. It is then modeled and validated on five simulations of bubble channels. Concerning turbulence in bubbly flows, it is comprised of SPT (Single Phase Turbulence), WIT (Wake Induced Turbulence) and WIF (Wake Induced Fluctuations) which characterize distinct phenomena. The SPT is the turbulence produced by the averaged shear, the WIT represent the temporal and turbulent fluctuations due to destabilizations and collective instabilities of wakes, and the WIF reflect the spatial fluctuations generated by the averaged wake and the potential flow around the bubbles. In this thesis, we propose a tensorial three-equations modeling of turbulence, where each contribution has its own closure. The tensorial three-equation model is complete and can be assessed as of now in an averaged calculation code.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Perpignan Via Domitia. Service commun de la documentation. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.