Développement d'une méthode compressible avec évaporation pour la simulation d'interface résolue dans le cadre de l'atomisation.

par Romain Canu

Thèse de doctorat en Physique

Sous la direction de François-Xavier Demoulin.

Le président du jury était Arnaud Mura.

Le jury était composé de Marc Massot, Adrien Toutant, Giovanni GhiGliotti, Benjamin Duret.

Les rapporteurs étaient Marc Massot, Adrien Toutant.


  • Résumé

    Cette thèse montre le développement d’un code de calcul pour les simulations numériques directes d’écoulements diphasiques compressibles avec évaporation. Un couplage entre les méthodes Level Set et VOF est réalisé pour le suivi d’interface. Afin de résoudre les équations de la mécanique des fluides, une méthode basée sur la pression est employée et, pour découpler la vitesse de la pression, une méthode de projection est effectuée. Cette méthode permet l’implicitation des termes liés à l’acoustique et donc de diminuer la contrainte sur le pas de temps. Le liquide et le gaz sont traités de manière compressible permettant des variations locales des masses volumiques grâce à l’utilisation d’équations d’état. L’évaporation est simulée de deux manières différentes ; une première, où un taux d’évaporation constant est employé et une seconde, où ce taux est calculé par la thermique. Parallèlement à ce sujet, une étude de la distribution des courbures dans une injection de liquide est réalisée. Cette étude permet d’étendre le concept de distribution des tailles de gouttes dans un spray et d’améliorer les informations disponibles dans le modèle ELSA. Enfin, une autre étude est effectuée sur la recherche d’un critère, basé sur les courbures à l’interface, pour estimer la qualité d’une simulation.

  • Titre traduit

    Development of a compressible method with vaporisation for the simulation of resolved interface in the atomisation context


  • Résumé

    This PhD thesis shows the development of a numerical method for solving two-phase flows with vaporisation. A coupling between Level Set and VOF methods is realised for the interface capturing. In order to solve fluid mechanics equations, a pressure based method is employed and, to decouple velocity and pressure, a projection method is performed. This method allows the implicitation of the acoustic terms and the time step constraint reduction. Liquid and gas are considered as compressible allowing local density variations with equations of state. The vaporisation is computed in two different ways ; a first one where the vaporisation rate is constant and a second one, where this rate is calculated by thermodynamics. Along with this topic, a study on curvature distribution in a liquid injection configuration is realised. This study allows to extend the drop size distribution concept in a spray and to improve available informations on ELSA model. Finally, an other study is performed on thedevelopment of a criterion, based on interface curvatures, which estimates the quality of a simulation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

Développement d'une méthode compressible avec évaporation pour la simulation d'interface résolue dans le cadre de l'atomisation.


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rouen. BU Lettres, Sciences humaines. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication

Informations

  • Sous le titre : Développement d'une méthode compressible avec évaporation pour la simulation d'interface résolue dans le cadre de l'atomisation.
  • Détails : 1 vol. (199 p.)
  • Annexes : Bibliogr. 204 références
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.