Ramification et points de petite hauteur

par Arnaud Plessis

Thèse de doctorat en Mathématiques

Sous la direction de Francesco Amoroso.

Soutenue le 18-10-2019

à Normandie , dans le cadre de École doctorale mathématiques, information et ingénierie des systèmes (Caen) , en partenariat avec Laboratoire de Mathématiques Nicolas Oresme (Caen ; 2002-....) (laboratoire) et de Université de Caen Normandie (établissement de préparation) .

Le président du jury était Yuri Bilu.

Le jury était composé de Francesco Amoroso, Ilaria Del Corso, Vincent Bosser, Sara Checcoli, Aurélien Galateau.

Les rapporteurs étaient Yuri Bilu, Ilaria Del Corso.


  • Résumé

    Dans cette thèse, on s'intéressera aux points de petite hauteur dans le groupe multiplicatif et sur une courbe elliptique.Dans le cas du groupe multiplicatif, on étudiera tout d'abord les corps dont les points de petites hauteurs sont les racines de l'unité.Ensuite, on localisera les points de petite hauteur dans un corps généré par certains groupes de rang fini.Pour cela, on aura besoin d'étudier les groupes de ramification de certaines extensions radicales.Ces résultats vont dans la direction d'une conjecture de Rémond.Il existe aussi un analogue de cette conjecture dans le cas des variétés abéliennes et il semblerait qu'on puisse même l'étendre au cas des variétés semi-abéliennes isotriviales.Cette nouvelle conjecture permet de relier entre eux certains théorèmes déjà présent dans la littérature.Cependant, ces résultats ne concerne que le cas où les points de petite hauteur sont des points de torsion.Pour conclure cette thèse, on donnera un premier exemple de cette conjecture dans le cas où les points de petite hauteur ne sont pas nécessairement des points de torsion.

  • Titre traduit

    Ramification and points of small height


  • Résumé

    In this thesis, we will focus on points of small height in both multiplicative group and on an elliptic curve.Firstly, in the multiplicative group case, we will study fields whose points of small height are eNSUITE? roots of the unity.In a second time, we will localise the points of small height on a field generated by some groups of finite rank, according to a conjecture of Rémond. To this end, we will study ramification groups concerning radiciel extensions.There also exists an analogue of this conjecture of Rémond on the abelian varieties case and it would seem that we can expand it by including split semi-abelian varieties. This new conjecture allows us to connect some theorems already present in the literature.However, these results only concern the case where the points of small height are torsion points.To conclude this thesis, we will give a first example of this conjecture in the case where points of small height are not necessarily torsion points.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Ramification et points de petite hauteur


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Caen Normandie. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Ramification et points de petite hauteur
  • Détails : 1 vol.(91 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.