Thèse soutenue

Etude de la dynamique des dislocations de monocristaux de cuivre sous chargement cyclique : Emission acoustique et caractérisations microstructurales

FR  |  
EN
Auteur / Autrice : Gabriel L'Hôte
Direction : Joël CourbonStéphanie Deschanel
Type : Thèse de doctorat
Discipline(s) : Matériaux
Date : Soutenance le 11/12/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : MATEIS - Matériaux : Ingénierie et Science - UMR 5510 (Rhône) - Matériaux- ingénierie et science [Villeurbanne] / MATEIS
Jury : Président / Présidente : Patrick Villechaise
Examinateurs / Examinatrices : Joël Courbon, Stéphanie Deschanel, Patrick Villechaise, Mikhail Lebyodkin, Marc Legros, Sophie Cazottes, Anne-Lise Gloanec, Jérôme Weiss
Rapporteurs / Rapporteuses : Mikhail Lebyodkin, Marc Legros

Résumé

FR  |  
EN

Pendant la déformation plastique des matériaux cristallins, une plasticité douce, faite de nombreux mouvements de dislocations non corrélés peut coexister avec une plasticité plus sauvage, sous la forme de mouvements collaboratifs : les avalanches de dislocations. La coexistence des deux plasticités dépend de la mise en place d’une structure de dislocations, celle-ci étant supposée entraver la propagation des avalanches. On se propose d’étudier la corrélation entre les évolutions microstructurales et les arrangements de dislocations sous chargement cyclique, d'une part, et la nature de la dynamique collective des dislocations, d'autre part, pour le cas de monocristaux de cuivre purs. Différents essais de fatigue à amplitude de contrainte imposée sont effectués pour étudier l’influence (i) du chemin de chargement, (ii) le rapport de chargement et (iii) l’orientation cristallographique sur les phénomènes de plasticité. La technique d’émission acoustique (EA) est utilisée pour étudier les deux types de plasticité. L’EA continue peut-être associée à la plasticité douce, tandis que l'EA discrète, présentant des signaux plus énergétiques que ceux émis en continu sont associés à la plasticité sauvage. Les microstructures de dislocations sont étudiées à l’aide des techniques EBSD (Electron Backscattered Diffraction, pour mesurer la désorientation cristalline) et ECCI (Electron Channeling Contrast Imaging, pour imager les dislocations au MEB) à la fin de chaque palier de fatigue. Le couplage EA-ECCI donne de précieuses informations quant à la dynamique des dislocations. Le suivi par ECCI, lors d’un essai de fatigue à Rσ=0,1 montre qu’une structure de dislocation n’est stable que pour le niveau de contrainte qui la vue naître. L’émergence d'une structure de dislocations constituent un obstacle aux mouvements des avalanches. Toutefois, l’application d’une amplitude de contrainte plus importante permet un réarrangement de la structure, celui-ci se faisant en grande partie sous la forme d’avalanches de dislocations pouvant se déplacer sur de plus longues distances que le libre parcours moyen. Les petits mouvements de dislocations non corrélés sont confinés à l'intérieur des structures de dislocations, entre les arrangements denses de dislocations (cellules, murs, etc.). La plasticité douce est en conséquence de plus en plus restreinte à mesure que le libre parcours moyen diminue. Le rapport de chargement (Rσ=-1) a une grande influence sur la formation des structures de dislocations, avec l’émergence de structures veines, matrices, bandes de glissement persistant et cellules denses, mais aussi sur la dynamique des dislocations, avec une évolution progressive de la plasticité douce au cours des cycles et une réduction du nombre d’avalanches pendant le durcissement du matériau. Concernant l’influence de l’orientation cristallographique, un nombre plus important de systèmes de glissement activés permet de limiter la contribution des avalanches à la plasticité.