Machine thermique nano-électro-mécanique

par Alexis Descombin

Thèse de doctorat en Physique

Sous la direction de Anthony Ayari.

Soutenue le 18-10-2019

à Lyon , dans le cadre de École doctorale de Physique et d’Astrophysique (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Institut Lumière Matière (laboratoire) .

Le président du jury était Catherine Journet.

Le jury était composé de Anthony Ayari, Evelyne Salançon.

Les rapporteurs étaient Bernard Legrand, Eddy Collin.


  • Résumé

    L'objectif de cette thèse est l'étude des échanges et de la dissipation d'énergie aux échelles mésoscopiques, à travers l'étude de nanotubes, de nanofils ou de pointes taillées par exemple. Notre intérêt pour la dissipation d'énergie nous portera vers les NEMS (Nano Electro Mechanical Systems) et leur facteur de qualité. Pour étudier les échanges d'énergie nous nous intéresserons à la thermodynamique aux petites échelles et notamment aux machines thermiques qui exploitent ces échanges d'énergie pour extraire un travail utile (mécanique, électrique...). Ce travail se concentre dans un premier temps sur la dissipation d'énergie et plus particulièrement sur le facteur de qualité de nanotubes de carbone mono-paroi à température ambiante et sur la façon de l'augmenter par application d'une tension électrique. Cette tension électrique induit un fort tirage sur le nanotube et la modification concomitante de la forme du mode résonant modifie la dissipation d’énergie. Ce phénomène, couplé à une modification des propriétés de l’ancrage (effet d’ancrage mou ajustable en tension) résultant également de la tension, diminue drastiquement la dissipation d’énergie et on atteint alors des facteurs de qualité record. Dans un second temps, nous nous intéressons aux machines thermiques : une machine stochastique cyclique et une machine électrique continue. La machine thermique stochastique est réalisée avec un nanofil vibrant sous ultra haut vide. La thermodynamique stochastique permet de redéfinir le travail et la chaleur pour un objet qui stocke des quantités d’énergies similaires aux fluctuations du bain thermique avec lequel il est en contact. Le premier objectif est de réaliser un cycle de Carnot permettant d'atteindre le rendement du même nom, inaccessible pour les machines macroscopiques. Pour la machine thermique continue nous étudions numériquement un prototype de machine thermique électrique basé sur des effets de résonance d'effet tunnel qui pourrait être une amélioration du principe des machines thermoïoniques. L’utilisation de l’effet tunnel permet à priori de réduire la température de la source chaude de la machine puisque l’on a plus besoin de vaincre le travail de sortie des deux électrodes. Les résonances dans l’effet tunnel, obtenues par confinement dans une dimension, permettent un filtrage en énergie des électrons passant d’un réservoir thermique à l’autre, ce qui a pour effet d’améliorer le rendement de la machine

  • Titre traduit

    Nano electro mechanical heat engine


  • Résumé

    The purpose of this work is the study of energy transfer and dissipation at the mesoscopic scale, through the study of nanotubes, nanowires, or sharp tips for example. Our interest for energy dissipation will lead us to dive into Nano Electro Mechanical Systems (NEMS) and their quality factor. Energy transfers will be studied with small scale thermodynamics and stochastic heat engines which use those energy transfers to produce useful work (mechanical, electrical…). This work is focused in a first time on the energy dissipation and particularly on the quality factor of single wall carbon nanotubes at room temperature and the ways to improve it by applying an electrical voltage. This voltage induces a strong pulling on the nanotube and the resulting vibrating shape modification changes the dissipation. This phenomenon, coupled with a clamping modification (tunable soft clamping) also stemming from the voltage, drastically reduces the dissipation. We can then achieve record high quality factors. In a second time we take interest in heat engines: a stochastic cyclic heat engine and a continuous electrical heat engine. The stochastic heat engine is realized with a vibrating nanowire under high vacuum. The stochastic thermodynamics allow us to redefine work and heat for an object that stores energies of the order of magnitude of thermal fluctuations in the thermal bath it interacts with. The aim is to build a Carnot cycle and achieve the corresponding yield, out of reach for macroscopic engines. Concerning the continuous heat engine we study numerically a prototype for an electrical heat engine based on resonant tunneling which could be an improvement of the thermionic heat engines. Allowing the thermal reservoirs to exchange electrons through tunneling allows in principle to reduce the temperature of the hot source because overcoming the work function of both electrodes is not necessary anymore. The resonances in the tunnel effect, obtained through confinement of one dimension, is useful for filtering the energy of the electrons tunneling from one reservoir to another, thus increasing the yield of the heat engine


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.