Champs électriques : un potentiel système de codage des informations spatiales dans l'embryon

par Sarah Dinvaut

Thèse de doctorat en Neurodéveloppement

Sous la direction de Julien Falk et de Valérie Castellani.

Soutenue le 20-06-2019

à Lyon , dans le cadre de École Doctorale de Biologie Moléculaire Intégrative et Cellulaire (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Institut NeuroMyoGène (laboratoire) .

Le président du jury était Jean-Louis Bessereau.

Le jury était composé de Julien Falk, Valérie Castellani, Alexandre Pattyn.

Les rapporteurs étaient François Amblard, Alice Davy.


  • Résumé

    La navigation des axones sur de longues distances est jalonnée de zones de choix, entraînant des changements de direction pour suivre des trajectoires hautement stéréotypées. Dans ce modèle de guidage séquentiel, chaque étape est vue comme essentielle à la suivante. De façon intrigante, quelques exemples suggèrent que le suivi strict de la trajectoire puisse être dispensable pour que les axones atteignent leur destination finale. Nous nous sommes intéressés à cette capacité trajectoire indépendante des axones à localiser leur cible. Pour ce faire, nous avons utilisé deux populations neuronales de la moelle épinière ayant des cibles diamétralement opposées dans l'organisme : les interneurones dorsaux, qui projettent dans le système nerveux central, et les motoneurones ventraux, qui ciblent les muscles en périphérie. Après avoir été déplacés chirurgicalement dans des embryons de poulet, ces deux populations de neurones envoient des axones vers leurs territoires cibles qu'ils atteignent par des trajectoires inédites. Ces observations suggèrent l'existence d'un système de guidage global délivrant aux axones des informations spatiales à large échelle. Outre les signaux moléculaires de guidage bien connus, les signaux bioélectriques sont également des candidats intéressants pour remplir cette fonction. Des champs électriques (CE) ont été détectés dans les embryons en développement et sont connus pour être des vecteurs d'information spatiale. Nous avons testé sur des neurones en culture si des CE comparables à ceux mesurés pendant le développement embryonnaire pourraient guider l'élongation des axones moteurs et d'interneurones dorsaux de poulet. Nous avons trouvé que les deux types d'axones s'orientent en direction de la cathode (-) dans un CE. Cependant, ils présentent des sensibilités significativement différentes aux CE, qui pourraient contribuer à des choix de trajectoires différents in vivo. Ensuite, nous avons observé un effet inhibiteur de la Concanavaline A (ConA) sur la réponse des axones aux champs, indiquant un rôle des récepteurs membranaires connus pour lier la ConA. Nous avons donc réalisé un screen pharmacologique sur des pompes et des canaux ioniques qui se lient à la ConA, conduisant à l'identification des pompes Na+/K+ ATPases comme des candidats prometteurs. Des expériences préliminaires d'invalidation des sous-unités de ces pompes suggèrent qu'elles contribuent à la réponse aux CE et à la navigation axonale in vitro et in vivo. Finalement, nos résultats apportent une vision nouvelle des mécanismes assurant la fidélité et la résilience du guidage axonal, et révèlent la contribution méconnue des signaux bioélectriques et des pompes Na+/K+ ATPases au développement neuronal

  • Titre traduit

    Coding spatial information in embryo with electric fields


  • Résumé

    Long distance navigation of axons is marked by choice points, instructing highly stereotyped directional changes of axon trajectories. In this stepwise model, each step is thought to be essential for the next one, but intriguingly, examples suggest that pathway experience can be dispensable for axons to reach their final destination. We investigated pathway-independent ability of axons to locate their target, using two populations of spinal cord neurons having drastically different target location in the organism: the dorsal interneurons, which target the central nervous system and ventral motoneurons, which target muscles. After grafting these neurons at ectopic positions in the chicken embryo, both neuron-types were observed to form axons which, remarkably, oriented towards and reached appropriate targets. This suggests that, in the embryo, an overall guidance information might exist that enables the axons to locate positions over large scales. Beside well-studied chemical cues, bioelectric signals are attractive candidates for this function. Electric Fields (EF) were detected in the embryo and reported to encode spatial information. Thus, using in vitro set-ups, we investigated whether EFs in the range of the ones measured in the embryo could influence the navigation of chick motor and dorsal interneuron axons. We found that both axon subsets orient parallel to EFs. Yet, they significantly exhibited different sensitivities, which could contribute to elicit different trajectory choices in vivo. Next, we found that Concanavalin A (ConA) could block axon response to EF, supporting a role of cell surface receptors known to bind to ConA. Thus, we performed a pharmacological screening on ion channels and pumps that bind ConA and identified Na+/K+ ATPases as promising candidates. Preliminary knock-down experiments targeting Na+/K+ ATPases subunits suggest their contribution to CE response and axon navigation in vitro and in vivo. Collectively, our findings should provide novel insights into the mechanisms ensuring axon guidance fidelity and resilience and reveal unknown contributions of bioelectric signals and Na+/K+ ATPases during neuronal development



Le texte intégral de cette thèse sera accessible librement à partir du 23-04-2020

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.