Caractérisation, analyse et modélisation du MOSFET de puissance en carbure de silicium

par Dinh Lam Dang

Thèse de doctorat en Génie électrique

Sous la direction de Stéphane Rael et de Matthieu Urbain.

Le président du jury était Corinne Alonso.

Le jury était composé de Nadir Idir, Stéphane Lefebvre.

Les rapporteurs étaient Nadir Idir, Stéphane Lefebvre.


  • Résumé

    Le carbure de silicium (SiC) semble être actuellement le candidat le plus viable des semi-conducteurs à large bande interdite pour remplacer le silicium (Si) dans un avenir proche. En raison de ses propriétés intrinsèques, le SiC permet de développer des dispositifs à semi-conducteurs aux caractéristiques supérieures offrant de grandes améliorations de performances, et se traduisant également par des conceptions plus efficaces et compactes dans diverses applications de l'électronique de puissance. Les MOSFET de 1,2 kV SiC, de loin les composants les plus répandus de la famille pour équiper les sources de puissance, ont rapidement été déployés pour remplacer les modules IGBT Si en raison de leur résistance à l'état passant faible et de leurs excellentes performances de commutation dans toutes les plages de température. Cependant, encore à un stade précoce de développement, les MOSFET SiC présentent leurs problèmes techniques et économiques propres, lesquels problèmes ont freiné leur expansion en électronique de puissance. La caractérisation et la modélisation, en particulier l'état de fonctionnement du MOSFET SiC, ont été examinées dans le cadre de cette thèse afin de mettre en lumière les spécificités et les conséquences qui en découlent sur la conception des convertisseurs de puissance. C’est ainsi qu’une méthodologie de caractérisation statique pour les MOSFET à haute tension a été développée. Les caractéristiques ont été mesurées par méthodes appropriées permettant à la température de la jonction de rester constante pendant la mesure. Les résultats expérimentaux ont été analysés et comparés à ceux relatifs aux dispositifs conventionnels en Si. Ensuite, un nouveau modèle compact du module MOSFET SiC a été mis au point sur le logiciel Saber pour des simulations orientées circuit. Ce modèle prend en compte les phénomènes physiques observés, notamment les effets des pièges d’interface, le comportement JFET intrinsèque, le canal court et la température. En tant que version modifiée de Shichman Hodges, le modèle utilise un nombre raisonnable de paramètres d’ajustement, lesquels sont principalement extraits par identification des courbes de données expérimentales à l’aide d’un logiciel d’optimisation, et pour les autres étant basés sur les données disponibles dans la fiche technique du composant étudié. Finalement, nous avons abordé la caractérisation électro-thermique des MOSFET de SiC. Pour remédier à la présence de pièges d'interface, des bancs de test dédiés ont été développés pour la mesure de la température MOSFET au SiC sur la base du TSEP. Une simulation par éléments finis 3D (FEM) est réalisée pour étudier la distribution thermique à l'intérieur du module. En comparant avec les expériences, le modèle électro-thermique a été validé avec une précision acceptable.

  • Titre traduit

    Characterization, analysis and modeling of silicon carbide power MOSFET


  • Résumé

    Silicon carbide (SiC) has actively been emerged as the most viable candidate of the wide band gap (WBG) semiconductors to replace silicon (Si) in the near future. Due to its inherent properties, SiC enables the development of new generation semiconductor devices that offer great performance improvements, resulting in more efficient and compact designs in various power electronics applications. The 1.2 kV SiC MOSFETs, which are by far the most important devices in the SiC family, have been quickly used as the replacement of Si IGBTs in many applications due to their superior characteristics. However, at an early stage of development, SiC MOSFETs come with their own list of technical and economic issues which have somehow limited their widespread implementation for power electronics applications. The characterization and modeling, in particular on-state of the SiC MOSFET, have been investigated in this dissertation to develop insight of the unique characteristics along with the effects on the design of power converters. In such a way, the characterization test benches for high voltage power MOSFETs have been developed. The device is characterized using appropriate methods, which allows the junction temperature to remain constant during the measurement. The characteristics are then analyzed and compared to these of Si counterpart to provide further understanding of SiC MOSFETs. Subsequently, a novel compact model has been developed for circuit simulation, taking into account physical phenomena including interface traps, short-channel, intrinsic JFET and temperature effects. As a modified version of the Shichman Hodges, the model employs a few adjustment parameters, which are mostly derived from curve fitting of experimental data, using optimization tool software. The proposed model with fairly simple current equation thus is expedient to represent the DC behavior of power MOSFET for a wide range of operation conditions. In the end, the thermal characterization of SiC MOSFETs is examined. The on-resistance has been proposed as a temperature-sensitive electrical parameter (TSEP) to estimate the junction temperature. In the presence of the interface traps, the dedicated test benches have been developed for SiC MOSFET temperature measurement based on TSEP. 3D Finite element (FEM) simulation is performed to investigate thermal distribution inside the module. By comparing with the experiments, the electro-thermal model is validated with acceptable accuracy.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.