Procédé de co-atomisation séchage pour l'encapsulation d'un principe actif au sein de nanoparticules de silice mésoporeuse - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Co-spray drying process for mesoporous silica nanoparticles drug loading

Procédé de co-atomisation séchage pour l'encapsulation d'un principe actif au sein de nanoparticules de silice mésoporeuse

Lucas Ruffel
  • Fonction : Auteur
  • PersonId : 1272563
  • IdRef : 242669247

Résumé

Nanosystems for nanomedicine have been extensively studied as a therapeutic tool for drug delivery. Thanks to their surface properties, their morphology, organized porous network and biocompatibility, MCM-41 type Mesoporous Silica Nanoparticles (MSN) are among the most common nanocarriers. Synthesis and external/internal functionalization of these MSN have been increasingly studied, as well as their biological properties. Nevertheless, the conventional drug loading processes of MSN, such as impregnation, do not enable sufficient efficiency and are difficult to scale-up. To overcome these limitations, we implemented an innovative co-spray-drying process, using the Nano Spray-Dryer B-90, to load MSN. Ibuprofen has been chosen as a model molecule, due to its physico-chemical properties, including a slightly water-solubility, its molecular size, and an abundant literature on this molecule. Complementary techniques such as DLS, SEM, TEM, SAXS, solid-state NMR, N2 adsorption, TGA/TDA were used to perform a multi-scale characterization of the loaded particles. Spray-dried powders have been analysed from aggregates size and morphology to pore loading (ibuprofen conformation and ibuprofen interaction with silica). The reference spray dried powder characterization demonstrates the effective ibuprofen loading inside MSN pores, in a liquid-like state without preferential interaction with the silica matrix. Two consecutive stages of pore filling have been proposed. The first one is due to ibuprofen physisorption in the MSN in the initial suspension, resulting of an equilibrium between free ibuprofen in solution and adsorbed molecules. The second stage occurs during the drying step. Inside the droplets, the evaporation leads to the diffusion of the molecules from the solvent to the pores. The ibuprofen/silica weight ratio inside the initial suspension strongly affects the location (inside or outside the mesopores) and the conformation (crystallized, amorphous or liquidlike) of ibuprofen. The quantification of each phase led to estimate precise loading rates and demonstrated tunable pore filling. Thus, for high initial ibuprofen:silica ratios the pores are still loaded whereas a crystalline ibuprofen phase appears out of the porous network. The increase of the loading rate is then due to the densification of the intraporous ibuprofen, switching from a liquid-like state to an amorphous one. The initial solid concentration of the suspension and the solvent composition influences the MSN agglomerates density. Furthermore, the process parameters: mesh pore size, suspension flow rate, gas temperature and flow rate have a minor effect on the drug loading. However, they strongly affect the agglomerate size, morphology, density, and the recovery powder yield. Those effects result from the influence of these parameters on the droplets and on the drying kinetics. A preliminary study allowed to evaluate the drug release MSN-loaded properties, and to highlight a fast and total release of the loaded
Les nanosystèmes à visée biomédicale sont de plus en plus étudiés en tant qu’outil thérapeutique pour la délivrance contrôlée de substances actives. Grâce à leurs propriétés de surface, leur morphologie, leur réseau poreux organisé ainsi que leur biocompatibilité, les nanoparticules de silice mésoporeuse de type MCM-41 (notées MSN) font partie des nanovecteurs les plus répandus. Leur synthèse et leur fonctionnalisation externe/interne ont été largement étudiées ainsi que leurs propriétés biologiques. Néanmoins, les procédés conventionnels de charge en molécules actives de MSN, comme l'imprégnation, ne présentent pas une efficacité de charge suffisante et sont difficiles à envisager à l'échelle industrielle. Pour surmonter ces limitations, nous avons mis en place un procédé innovant de co-séchage par atomisation pour les MSN, utilisant le Nano Spray Dryer B-90. L’ibuprofène a été choisi comme molécule modèle en raison de ses propriétés physico-chimiques, dont son caractère très faiblement hydrosoluble, de sa taille moléculaire et de la littérature abondante associée. Des techniques complémentaires, telles que DLS, MEB, MET, SAXS, RMN du solide, Adsorption d’azote, ATG/ATD, … etc ont été utilisées pour effectuer une caractérisation multi-échelle des particules chargées. Les poudres séchées par atomisation ont été analysées du point de vue de la taille et de la morphologie des agrégats de MSN formés lors de l’atomisation, de la charge des pores et de la conformation de l'ibuprofène et de ses interactions avec la silice. La caractérisation de poudre atomisée dans des conditions considérées comme référentes prouve que l’ibuprofène se charge dans les pores des MSN et se trouve dans un état qualifié de pseudo-liquide au sein du réseau, interagissant de manière non préférentielle avec la matrice de silice. Un mécanisme de charge en deux étapes a été proposé.Une première étape de charge au sein de la suspension initiale résulte de l’équilibre entre les molécules d’ibuprofène libres en solution et celles physisorbées à l’intérieur des pores des MSN. La seconde étape est réalisée au cours du séchage provoquant l’évaporation du solvant et la diffusion des molécules d’ibuprofène libres dans le réseau de pores. Le rapport massique ibuprofène/silice dans la suspension initiale affecte fortement la localisation (dans les mésopores ou en dehors) et l’état physique (cristallisé, amorphe ou pseudo-liquide) de l'ibuprofène. La quantification de chacune de ces phases a permis de calculer des taux de charge précis. Ainsi, pour des ratios élevés en ibuprofène dans la suspension initiale, il a été démontré que le remplissage des pores continue de s’exercer, alors même que de l’ibuprofène cristallin se forme à l’extérieur des pores. L’augmentation du taux de remplissage des pores s’accompagne dans ce cas d’une densification de l’ibuprofène dans le réseau poreux, passant d’un état pseudo-liquide à un état amorphe. La concentration initiale en solide dans la suspension ainsi que la composition du solvant modifient la densité des agglomérats de MSN. En outre, les paramètres liés au procédé : la taille des pores de la buse d’atomisation, le débit de suspension d’alimentation, la température et le débit du gaz sécheur ont un effet moindre sur la charge en principe actif mais impactent la taille, la morphologie et la densité des agglomérats, ainsi que le rendement de récupération de la poudre en fin d’opération. Ces effets résultent de l’influence de ces paramètres sur la composition des gouttes formées par la buse d’atomisation et sur la cinétique de séchage. Une étude préliminaire a permis d’évaluer les propriétés de libération des MSN chargées et de mettre en évidence une libération rapide et complète de l’ibuprofène encapsulé.
Fichier principal
Vignette du fichier
RUFFEL_Lucas2.pdf (13.46 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04169829 , version 1 (24-07-2023)

Identifiants

  • HAL Id : tel-04169829 , version 1

Citer

Lucas Ruffel. Procédé de co-atomisation séchage pour l'encapsulation d'un principe actif au sein de nanoparticules de silice mésoporeuse. Génie des procédés. Institut National Polytechnique de Toulouse - INPT, 2019. Français. ⟨NNT : 2019INPT0130⟩. ⟨tel-04169829⟩
52 Consultations
45 Téléchargements

Partager

Gmail Facebook X LinkedIn More