Thèse soutenue

Variabilité atmosphérique en Antarctique de l'Ouest : Impact sur la circulation océanique et sur le bilan de masse de surface de la calotte
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marion Donat-Magnin
Direction : Hubert GalléeNicolas Jourdain
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Univers et de l'Environnement
Date : Soutenance le 14/11/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut des géosciences de l'environnement (Grenoble)
Jury : Président / Présidente : Catherine Ritz
Examinateurs / Examinatrices : David Salas y Mélia, Christophe Genthon
Rapporteurs / Rapporteuses : Masa Kageyama, Hugues Goosse

Résumé

FR  |  
EN

Depuis les années 90, l’Antarctique de l’Ouest, dont le secteur d’Amundsen, affiche une importante perte de masse provenant principalement de l’accélération des glaciers côtiers en réponse à une fonte océanique plus conséquente sous les plateformes de glace. Ces plateformes sont généralement confinées est agissent comme un verrou pour l’écoulement. En subissant davantage de fonte basale, les plateformes deviennent fragiles et les glaciers en amont s’accélèrent, contribuant ainsi à augmenter le niveau des mers. L’avenir de l’Antarctique de l’Ouest est particulièrement préoccupant car sa configuration rend la calotte sujette à une instabilité marine. Par ailleurs, ces plateformes pourraient s’affaiblir sous l’effet d’une augmentation de la fonte de surface dans un climat plus chaud (hydrofracturation), rendant là aussi une instabilité possible. L’arrivée de ces instabilités pourrait être freinée ou compensée par l’évolution du bilan de masse de surface qui se compose majoritairement de précipitations neigeuses, sporadiquement augmenté par la pluie, et légèrement amoindri par la sublimation et le runoff. Cette thèse porte sur la modélisation de l’ensemble des processus atmosphériques et océaniques pouvant faire évoluer la contribution de l’Antarctique de l’Ouest au niveau des mers.Pour cela une projection océanique représentant les cavités sous-glaciaires a d’abord été réalisée avec le modèle NEMO. La circulation induite par la fonte océanique modifie la réponse de l’océan côtier à un futur changement de circulation atmosphérique, si bien qu’utiliser des modèles de climat ne représentant pas les cavités donne une indication faussée du réchauffement de l’océan autour de la calotte. Nous avons également mis en évidence une rétroaction positive entre la fonte sous-glaciaire et le retrait de la ligne d’échouage, entraînant une augmentation de la fonte jusqu’à 2.5 fois. Ces résultats indiquent la nécessité de coupler des modèles de calotte et d’océan pour établir des projections futures, même si les projections envisagées dans cette thèse restent relativement idéalisées.Pour établir des projections de bilan de masse de surface, il est nécessaire d’utiliser un modèle atmosphérique avec une représentation fine des processus polaires, notamment ceux liés au manteau neigeux. Ainsi nous avons utilisé le modèle atmosphérique régional MAR pour établir des projections dans le secteur d’Amundsen. Nous avons d’abord montré que MAR est approprié pour représenter le climat de surface observé en Antarctique de l’Ouest. Nous avons trouvé qu’aucun des modes climatiques (ASL, SAM, ENSO) n’expliquent plus de 50% de la variance de la fonte et du SMB en été à l’échelle interannuelle, et il est donc difficile d’utiliser des projections des modes climatiques comme indication de l’évolution du climat de surface.Forcé par le signal multi-modèle CMIP5 dans le scénario rcp85, MAR prévoit une augmentation du bilan de masse de surface de 30-40% d’ici 2100. Cette augmentation est équivalente à une baisse de 0.33 mm/an de niveau des mers, ce qui compenserait l’effet de la dynamique si celle-ci restait à son niveau actuel (0.26 mm/an). Ces projections indiquent également 5 à 15 fois plus de fonte de surface sur les plateformes du secteur Amundsen, mais la quasi-totalité de la fonte produite chaque année continue à regeler dans la couche de neige annuelle, et ne devrait donc contribuer de manière importante ni au bilan de masse de surface ni à l’hydrofracturation.Il ressort de ces travaux qu’un couplage océan/calotte dans les modèles de climat est primordial pour simuler le futur de l’Antarctique et de l’océan Austral. Une représentation fine des processus liés à la fonte de surface et au regel dans le névé est également essentielle car la possibilité d’hydrofracturation des plateformes dans un climat plus chaud relève d’un équilibre subtil entre l’augmentation de l’accumulation, de la température, et les rétroactions liées à l’albédo et à l’humidité.