Amélioration de la prédictibilité des performances pour les environnements de stockage de données dans les nuages

par Vikas Jaiman

Thèse de doctorat en Informatique

Sous la direction de Vivien Quéma.

Le président du jury était Noël de Palma.

Le jury était composé de Étienne Rivière, Sonia Ben Mokhtar.

Les rapporteurs étaient Gaël Thomas, Laurent Réveillère.


  • Résumé

    De nos jours, les utilisateurs de services interactifs comme le e-commerce, ou les moteurs de recherche, ont de grandes attentes sur la performance et la réactivité de ces services. En effet, les études ont montré que des lenteurs (même pendant une courte durée) impacte directement le chiffre d'affaire. Avoir des performances prédictives est donc devenu une priorité pour ces fournisseurs de services depuis une dizaine d'années.Mais empêcher la variabilité dans les systèmes de stockage distribué est un challenge car les requêtes des utilisateurs finaux transitent par des centaines de servers et les problèmes de performances engendrés par chacun de ces serveurs peuvent influencer sur la latence observée. Même dans les environnements correctement dimensionnés, des problèmes comme de la contention sur les ressources partagés ou un déséquilibre de charge entre les serveurs influent sur les latences des requêtes et en particulier sur la queue de leur distribution (95ème et 99ème centile).L’objectif de cette thèse est de développer des mécanises permettant de réduire les latences et d’obtenir des performances prédictives dans les environnements de stockage de données dans les nuages. Une contre-mesure efficace pour réduire la latence de queue dans les environnements de stockage de données dans les nuages est de fournir des algorithmes efficaces pour la sélection de réplique. Dans la sélection de réplique, une requête tentant d’accéder à une information donnée (aussi appelé valeur) identifiée par une clé unique est dirigée vers la meilleure réplique présumée. Cependant, sous des charges de travail hétérogènes, ces algorithmes entraînent des latences accrues pour les requêtes ayant un court temps d'exécution et qui sont planifiées à la suite de requêtes ayant des long temps d’exécution. Nous proposons Héron, un algorithme de sélection de répliques qui gère des charges de travail avec des requêtes ayant un temps d’exécution hétérogène. Nous évaluons Héron dans un cluster de machines en utilisant un jeu de données synthétique inspiré du jeu de données de Facebook ainsi que deux jeux de données réels provenant de Flickr et WikiMedia. Nos résultats montrent que Héron surpasse les algorithmes de l’état de l’art en réduisant jusqu’à 41% la latence médiane et la latence de queue.Dans la deuxième contribution de cette thèse, nous nous sommes concentrés sur les charges de travail multi-GET afin de réduire la latence dans les environnements de stockage de données dans les nuages Le défi consiste à estimer les opérations limitantes et à les planifier sur des serveurs non-coordonnés avec un minimum de surcoût. Pour atteindre cet objectif, nous présentons TailX, un algorithme d’ordonnancement de tâches multi-GET qui réduit les temps de latence de queue sous des charges de travail hétérogènes. Nous implémentons TailX dans Cassandra, une base de données clé-valeur largement utilisée. Il en résulte une amélioration des performances globales des environnements de stockage de données dans les nuages pour une grande variété de charges de travail hétérogènes.

  • Titre traduit

    Improving Performance Predictability in Cloud Data Stores


  • Résumé

    Today, users of interactive services such as e-commerce, web search have increasingly high expectations on the performance and responsiveness of these services. Indeed, studies have shown that a slow service (even for short periods of time) directly impacts the revenue. Enforcing predictable performance has thus been a priority of major service providers in the last decade. But avoiding latency variability in distributed storage systems is challenging since end user requests go through hundreds of servers and performance hiccups at any of these servers may inflate the observed latency. Even in well-provisioned systems, factors such as the contention on shared resources or the unbalanced load between servers affect the latencies of requests and in particular the tail (95th and 99th percentile) of their distribution.The goal of this thesis to develop mechanisms for reducing latencies and achieve performance predictability in cloud data stores. One effective countermeasure for reducing tail latency in cloud data stores is to provide efficient replica selection algorithms. In replica selection, a request attempting to access a given piece of data (also called value) identified by a unique key is directed to the presumably best replica. However, under heterogeneous workloads, these algorithms lead to increased latencies for requests with a short execution time that get scheduled behind requests with large execution times. We propose Héron, a replica selection algorithm that supports workloads of heterogeneous request execution times. We evaluate Héron in a cluster of machines using a synthetic dataset inspired from the Facebook dataset as well as two real datasets from Flickr and WikiMedia. Our results show that Héron outperforms state-of-the-art algorithms by reducing both median and tail latency by up to 41%.In the second contribution of the thesis, we focus on multiget workloads to reduce the latency in cloud data stores. The challenge is to estimate the bottleneck operations and schedule them on uncoordinated backend servers with minimal overhead. To reach this objective, we present TailX, a task aware multiget scheduling algorithm that reduces tail latencies under heterogeneous workloads. We implement TailX in Cassandra, a widely used key-value store. The result is an improved overall performance of the cloud data stores for a wide variety of heterogeneous workloads.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.