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Abstract

This doctoral thesis includes three essays investigating several top-

ics in empirical asset pricing. Essay 1 examines statistical and eco-

nomic evidence of out-of-sample Treasury bond return predictability

for a real-time Bayesian investor who learns about parameters, states,

and predictive models over time. We can identify some statistical

evidence using information in forward rates, however such statistical

predictability can not generate any economic value for investors. Fur-

thermore, the strong statistical and economic evidence from using fully

revised macroeconomic data vanishes when real-time and survey-based

macroeconomic information is used. We also show that highly levered

investments can improve short-run bond return predictability.

Essay 2 investigates bond risk premia in the framework of predic-

tive systems. Different from the traditional linear predictive models,

predictive systems allow predictors to be imperfectly correlated with

conditional expected returns, and could incorporate prior beliefs on

the negative correlation between unexpected and expected returns.

We find that predictive systems can deliver stronger evidence of pre-



dictability than linear predictive models. Furthermore, bond risk pre-

mia inferred by predictive systems are countercyclical and increase with

inflation risk, consistent with what consumption-based asset pricing

models imply.

Essay 3 examines the predictive power of stock market investor senti-

ment for Treasury bond returns. Consistent with previous literature,

we can identify some in-sample evidence of bond return predictability

using sentiment index as predictor. However, this does not gener-

ate out-of-sample statistical evidence or economic value for a Bayesian

agent. How to translate in-sample evidence of bond return predictabil-

ity into real-time economic gains remains a challenge.

Keywords: Bond Return Predictability, Bond Risk Premia, Param-

eter Uncertainty, Macroeconomic Information, Imperfect Predictors,

Predictive Systems, Real Economy, Investor Sentiment, Asset Pricing.
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Chapter 1

General Introduction
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Résumé en Français

Cette thèse de doctorat comprend trois essais en valorisation des actifs fi-

nanciers, avec une attention particulière sur la prévisibilité du rendement des

bons du Trésor Amricain. Ce sujet a reçu beaucoup d’attention dans la littérature

récente, mais il reste beaucoup de phénomènes à comprendre.

Dans le premier essai, Apprentisage en temps réel et la prévisibilité

du rendement des bons du Trésor Américain, co-écrit avec Andras Fulop

et Junye LI, nous étudions la preuve statistique et économique de la prévisibilité

du rendement des bons en temp réel pour un investisseur bayésien qui se famil-

iarise avec les paramètres, les états et les modèles au fil du temps. Les études

précédentes ont decouvert des preuves de cette prévisibilité. Par exemple, Fama

et Bliss (1987) et Campbell et Shiller (1991) trouve que linformation dans la courbe

de rendement est utile pour prédire les rendements futurs. Cochrane et Piazzesi

(2005) trouve que une combination des taux a terme peut expliquer la variation

des rendements future avec un R2 de 44%. Toutefois, ces sont des preuve statis-

tiques et ces tests ne sont pas effectué en temps réel. Les investisseurs peuvent

etre plus intéressés a savoir sil y a la preuve de la prévisibilité en temps réel.

Récemment, Thornton et Valente (2012) trouve que la prévisibilité generé par les

taux en terme ne peuvent pas génerer des valeurs économique. Une autre courant

de littérature tente didentifier des prédicteur dont la variation se situe en dehors

de la courbe de rendement, en particulier certains prédicteurs contenant des infor-

mations macroeconomiques. Les études empiriques par Ludvigson et Ng (2009),
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Cooper et Priestly (2009), Joslin, Priebsch, et Singleton (2014) et Jiang et Tong

(2017), entre autres, montrent que les information macroéconomiques sont utile

a prédire rendements futurs. Gargano, Pettenuzzo, et Timmermann (2017) met-

tent en oeuvre une enquete en utilisant les rendement mensuels et les méthodes

MCMC. Ils trouve que les preuves statistiques peuvent se transformer en gains

économiques en temps reels. Toutefois, presque toutes ces études utilisent des

données macroéconomiques entièrement révisées. Un article récent soutient que la

révision des données macroéconomiques peut donner lieu à des preuves fallacieuses

de la prévisibilité.

Dans le premier essai, nous revisitons cette question controversée. nous con-

sidérons un investisseur bayésien confronté à un problème d’apprentissage. Elle

met à jour ses croyances sur les paramètres, les états et les modèles prédictifs au fil

du temps. Nous mettons en uvre l’apprentissage bayésien en utilisant l’approche

proposée par Fulop et Li (2013). Cet algorithme est générique, efficace et haute-

ment parallèle. Nos données de retour mensuel vont de janvier 1962 à septembre

2017. Nous considérons deux prédicteurs basés sur les taux à terme : le prédicteur

de Fama et Bliss (1987) et Cochrane et Piazzesi (2005). Nous construisons cinq

prédicteurs basés sur des variables macroéconomiques, dans lesprit de Ludvigson

et Ng (2009). nous évaluons la prévisibilité statistique en temps réel en utilisant

le R2 par Campbell et Thompson (2008), et évaluons la prévisibilité économique

par CERs. Nous avons des résultats intéressants. Nous trouvons des preuves

statistiques de la prévisibilité du rendement des obligations en utilisant les infor-
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mations de la courbe de rendement comme prédicteur. Cependant, ces preuves ne

créent pas de valeur économique en temps réel. Lorsque nous utilisons des données

macroéconomiques entirement révisées, nous constatons à la fois des preuves statis-

tiques significatives et des gains économiques significatives. Cependant, lorsque

nous utilisons des données macroéconomiques en temps réel, ces preuves disparais-

sent.

Cet article apporte trois contributions à la littérature. Premièrement, nous

fournissons un cadre économétrique générique permettant un apprentissage bayésien

en temps réel. Deuxièmement, nous attirons l’attention sur l’utilisation d’informations

macroéconomiques entièrement révisées par rapport à des informations en temps

réel dans les exercices de prévision. Troisièmement, nous constatons que des

investissements extrêmes sur le marché obligataire peuvent améliorer les gains

économiques à court terme.

Dans le deuxième essai, Systèmes prédictifs, macro-économie et prévisibilité

des rendements obligataires j’étudie les primes de risque obligataire dans le

cadre de systèmes prédictifs. Un grand nombre d’articles précédents sur les primes

de risque obligataire se sont concentrés sur la proposition de divers prédicteurs et

s’appuyaient fortement sur le modèle de régression linéaire standard. Le modèle

est simple et direct, mais il est assez restrictif dans lhypothèse dune relation

linéaire parfaite entre les rendements attendus et la valeur actuelle du prédicteur.

de plus, en réalit, le prédicteur peut contenir du bruit en raison d’erreurs de

mesure potentielles. Lorsque nous utilisons le modle de régression linéaire et un

4



prédicteur potentiellement bruyant, nous pouvons observer des estimations très

contre-intuitives des primes de risque obligataire. Par exemple, lorsque nous util-

isons le prédicteur de Fama et Bliss (1987), les primes de risque obligataire dans

le modèle de régression linéaire montrent 3 pics non raisonnables au milieu des

expansions. Une hypothèse est que ces pics inhabituels sont causés par l’utilisation

d’un modéle de régression linéaire.

Si tel est le cas, nous devons envisager dutiliser dautres modèles pour produire

des primes de risque obligataire plus raisonnables. Dans cet essai, nous utilisons

le cadre de système prédictif proposé par Pastor et Stambaugh (2009) pour es-

timer les primes de risque obligataire. Ce cadre est conu avec une simplicité

empirique et un support théorique. D’un côté, ce cadre traite du problème de

prédicteur bruyant. En revanche, dans les systèmes prédictifs, la corrélation entre

les rendements attendus et inattendus est cruciale pour déterminer les primes de

risque obligataire, et nous pouvons imposer des croyances antérieures sur cette

corrélation. il s’avère que cela peut affecter de manière substantielle les estima-

tions des primes de risque obligataire.

Dans l’analyse empirique, nous utilisons le gibbs sampling pour estimer les

paramètres et les états dans les systèmes prédictifs. Nous rapportons dabord

que les systèmes prédictifs fournissent une preuve de prévisibilité plus forte que

les modèles de régression linéaire. Pour comprendre les sources économiques de

nos résultats, nous étudions comment cette prévisibilité est liée aux variables

macroéconomiques. Premièrement, selon le modèle de formation d’habitudes de
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Wachter (2006), les primes de risque obligataire devraient augmenter en période

de récession, et devrait se déplacer de manière anticyclique. Nous testons donc la

corrélation entre plusieurs variables de substitution de la condition macroéconomique

et les primes de risque obligataire. Nous trouvons que les estimations des primes

de risque obligataire sous des systèmes prédictifs sont anticycliques, alors que cer-

taines estimations issues de modèles de régression linéaire ne le sont pas. deuxièmement,

Bansal et Shaliastovich (2013) et Creal et wu (2017) soulignent que le risque

d’inflation est un facteur clé des primes de risque obligataire. Nous testons donc

la corrélation entre les primes de risque obligataire et proxy du risque d’inflation.

Nous montrons que les primes de risque obligataire déduites des systèmes prédictifs

augmentent avec le risque dinflation, conformément aux resultats des travaux

précédents.

Nous devrions utiliser des systèmes prédictifs pour estimer les primes de risque

sur actions ou sur obligations. Les resultats de cet essay et de Pastor et Stambaugh

(2009) montrent que les systèmes prédictifs peuvent produire des preuves plus

solides de la prévisibilité des rendements des actions ou des obligations.

Dans le troisième essai, Sentiment des investisseurs et prévisibilité du

rendement des obligations, j’étudie le pouvoir du sentiment des investisseurs

boursiers pour prédire les rendements des obligations. Les marchés des actions et

des obligations sont deux cibles extrêmement importantes pour les investisseurs,

les économistes et les dcideurs. Plusieurs articles ont tenté de comprendre la

corrélation entre les rendements des actions et des obligations. Par exemple, Baele,
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Bekaert, et Inghelbrecht (2010) montrent que la corrélation entre les rendements

quotidiens des actions et des obligations pourrait varier dans le temps entre -

0,6 et 0,6. Baker et Wurgler (2012) étudient le lien entre les obligations et la

section transversale des actions. Leurs résultats suggrent que le sentiment des

investisseurs, un prédicteur de la section transversale des rendements boursiers,

prédit également les rendements obligataires. Toutefois, cette observation nest pas

établie en temps réel et est statistique. Ainsi, dans cet essai, nous testons si l’indice

de sentiment des marchès boursiers peut prédire les rendements des obligations

en temps rèel. Nous considérons à la fois le modèle de régression linéaire et les

systèmes prédictifs.

Nous pouvons identifier certaines preuves dans l’échantillon de la prévisibilité

du rendement des obligations en utilisant le sentiment comme prédicteur. Toute-

fois, lorsque nous utilisons uniquement des informations en temps réel, il nya pra-

tiquement aucune preuve de prévisibilité. Des tests de robustesse supplémentaires

donnent des résultats similaires. Nos résultats sont cohérents avec ceux de Thorn-

ton et Valente (2012) et Sarno, schneider, et wagner (2016). Comment trouver

des preuves en temps réel de la prévisibilité du rendement des obligations reste un

défi. Nous nous attendons à voir plus de recherches sur ce sujet.
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Introduction

This doctoral thesis investigates several topics in empirical asset pricing, with a

focus on Treasury bond return predictability. Treasury bonds not only play an im-

portant role in many investors’ portfolios, but also attract attention of economists

and policymakers. Understanding the risk and return dynamics for this asset has

been a long-lasting topic in asset pricing, yet many interesting questions remain

to be answered.

In the first essay, “Real-Time Bayesian Learning and Bond Return

Predictability”, co-authored with Andras Fulop and Junye Li, we study real-

time statistical and economic evidence of bond return predictability.

In the literature, a standard way to test evidence of predictability is to run

regressions of excess bond returns on some predetermined predictors. Empirical

investigations have uncovered some evidence of bond return predictability. For

example, Fama and Bliss (1987) and Campbell and Shiller (1991) find that ex-

cess bond returns are predictable by forward spreads or yield spreads. Cochrane

and Piazzesi (2005) find that a single combination of forward rates can predict

excess returns on one- to five-year maturity bonds with R2 of 0.44 during the

period between January 1964 and December 2003. However, a lot of previous

evidence is statistical and in-sample. Investors in markets may be more concerned

about whether there exists out-of-sample evidence of bond return predictability

and whether such out-of-sample statistical predictability can translate into eco-

nomic gains. More recently, Thornton and Valente (2012) find that information

8



contained in forward rates can not generate systematic economic value to an in-

vestor who has mean-variance preferences. Sarno, Schneider, and Wagner (2016)

find that under affine term structure model framework the evident statistical pre-

dictability of bond risk premia hardly turns into investors’ economic gains.

Another strand of research try to identify predictors whose variations lie out-

side the span of yield curve, especially variables containing macroeconomic in-

formation. Empirical studies by Ludvigson and Ng (2009), Cooper and Priestly

(2009), Huang and Shi (2014), Joslin, Priebsch, and Singleton (2014) and Jiang

and Tong (2017), among others, show that macroeconomic information is included

in forecasts of future excess bond returns. Gargano, Pettenuzzo, and Timmer-

mann (2017) implement an out-of-sample investigation using non-overlapping ex-

cess bond returns and Bayesian Markov Chain Monte Carlo (MCMC) methods.

They find strong evidence that statistically significant out-of-sample bond return

predictability by the macroeconomic factor can translate into economic value.

However, nearly all these studies use the fully revised macroeconomic data and

ignore issues related to data revision and publication delay. A recent paper by

Ghysels, Horan, and Moench (2018) argue that macroeconomic data revision may

result in spurious evidence of bond return predictability.

In the first essay, we revisit this seemingly contentious issue. We consider

a Bayesian investor who faces the same learning problems as confronted by the

econometrician. Except the expectations hypothesis that assumes no predictabil-

ity, she has access to additional predictive models that may feature stochastic

9



volatility. She takes parameters, latent states, and/or predictive models as un-

knowns and updates her beliefs using Bayes’ rule in real time with respect to

information accumulation. Our Bayesian investor computes the predictive return

distribution at each time using available real-time information and maximizes her

expected utility by taking into account all relevant uncertainties. We implement

Bayesian learning on predictive models by following the marginalized resample-

move approach proposed by Fulop and Li (2013). This algorithm is generic, effi-

cient, and highly parallel in the sense that it does not suffer from the convergence

issue and requires minor computational and design effort with comparison to tra-

ditional Bayesian MCMC methods. In essence, our treatment here is similar to

those of Johannes, Korteweg, and Polson (2014), Fulop, Li, and Yu (2015), and

Johannes, Lochstoer, and Mou (2016).

We construct monthly bond excess returns on US zero-coupon bonds with

maturity 2-, 3-, 4-, and 5-year using the updated dataset of Gurkaynak, Sack,

and Wright (2007). The data range from January 1962 to September 2017, in

total 669 months. Most studies in bond return predictability reply on overlapping

excess bond returns at monthly forecasting frequency. Bauer and Hamilton (2017)

show that bond returns with overlapping holding-period may induce strong serial

correlations in error terms and may raise additional econometric problems when

predictors are also persistent. Moreover, Gargano, Pettenuzzo, and Timmermann

(2017) point out that some dramatic swings in bond prices can occur over short

periods and could be overlooked by using annual overlapping returns. Therefore,
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similar to Gargano, Pettenuzzo, and Timmermann (2017), we consider one-month

holding period and construct monthly non-overlapping excess returns.

We consider two predictors based on forward rates: the forward spreads (FB)

of Fama and Bliss (1987) and the forward factor (CP) of Cochrane and Piazzesi

(2005), and construct five predictors based on macroeconomic variables: (i) LN,

which is constructed using the fully revised macroeconomic data by following the

approach of Ludvigson and Ng (2009) and is also used by Gargano, Pettenuzzo,

and Timmermann (2017); (2) LNRT1, which is constructed using the historically

available real-time macroeconomic vintage data and Bayesian Information Cri-

terion (BIC); (iii) LNRT2, which is simply the first principle component of the

historically available real-time macroeconomic vintage data; (iv) LNRT3, which is

the first principle component of “first-released” real-time macroeconomic vintage

data (Ghysels, Horan, and Moench, 2018); and (v) LNSF, which, similar to Erik-

sen (2017), is constructed using the forward-looking survey-based macroeconomic

data. Given data availability, all empirical tests based on LNSF are performed on

quarterly frequency.

We evaluate statistical out-of-sample predictability using the out-of-sample

R-squared, R2
OS, of Campbell and Thompson (2008), and evaluate economic out-

of-sample predictability using certainty equivalence returns (CERs) by assuming

a power-utility Bayesian investor. We obtain some interesting findings. First,

we find some statistical evidence of bond return predictability using information

contained in forward rates. However, such statistical evidence can hardly translate
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into investors’ economic gains, no matter how strong investors’ risk aversion is.

These results are consistent to what Thornton and Valente (2009) and Sarno,

Schneider, and Wagner (2016) have found.

Second, when we use the fully revised macroeconomic factor, LN, we find

qualitatively similar results to those of Gargano, Pettenuzzo, and Timmermann

(2017). That is, significant statistical evidence of bond return predictability can

translate into significant investors’ economic gains. However, as discussed by

Ghysels, Horan, and Moench (2018), a real-time investor would only have access to

real-time macroeconomic data. Therefore, we check whether we can obtain similar

significant statistical and economic evidence when LN is replaced by real-time

macroeconomic predictors. We find that whenever the real-time macro factors,

LNRT1/LNRT2/LNRT3, are used, both statistical and economic predictability

of bond returns vanishes. This result stands in stark contrast to that found by

Gargano, Pettenuzzo, and Timmermann (2017). Furthermore, when the forward-

looking survey-based real-time macro factor, LNSF, is used, we also hardly find

any statistical and economic evidence of bond return predictability. This result

is different from that found by Eriksen (2017) who uses overlapping returns and

ignores the real-time learning. We further show that model combinations do not

seem to help uncover significant statistical and economic evidence of bond return

predictability whenever the real-time and survey-based macro factors are used,

even though some weak evidence can be observed.

Finally, the previous literature has predominantly adopted restrictions on port-
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folio weights in testing economic evidence. The usual lower and upper weight

bounds for risky bonds are -1 and 2, allowing for possibility of shorting and bor-

rowing. Our previous tests on economic gains also use similar restrictions. How-

ever, while such bounds seem natural for equity markets, government bonds are

much less risky, resulting in for instance much lower margins in repo transactions

backed by these securities. Hence, sophisticated fixed-income investors may be

able to achieve much more aggressive short and long positions than those implied

by these bounds. Therefore, we redo the asset allocation exercise without setting

any weight constraints. Interestingly, we find that most of the economic gains

quantitatively improve, especially for the short-maturity bonds.

This paper makes three main contributions to the literature. First, we pro-

vide a generic econometric framework allowing for real-time Bayesian learning

about bond return predictability that takes into account all relevant uncertain-

ties. Thornton and Valente (2012) and Sarno, Schneider, and Wagner (2016)

follow classical approaches and therefore ignore such uncertainties. Gargano, Pet-

tenuzzo, and Timmermann (2017) employ Bayesian MCMC methods and do allow

for parameter and model uncertainties. However, in investigating out-of-sample

predictability, MCMC algorithms need to be repeatedly run at each time, making

it hard to evaluate the speed of convergence and leading to a large computational

cost. Our real-time Bayesian learning is tailor-made for sequential inference and

is naturally parallel. The only model-dependent requirement of the method is a

filtering mechanism for the model in question that provide at least an unbiased
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likelihood. Therefore, it can be customised to different predictive models easily

with comparison to Bayesian MCMC methods that are typically more model-

dependent.

Second, we call attention to using fully-revised vs. real-time/survey-based

macroeconomic information in forecasting exercises. As we face a real-life asset

allocation problem, we need to take into account issues related to data revision

and publication lag and restrict investors’ information set to real-time data only

available at each time. Ghysels, Horan, and Moench (2018) argue that macroeco-

nomic data revision may result in spurious evidence of bond return predictability.

Our results are in line with theirs.

Third, we find interesting result that in bond market it is relatively easy for

investors to make extreme investments in the short run with comparison to in

equity markets and such extreme investments could improve short-run bond return

predictability, though it is still not statistically significant in real time.

In the second essay, “Predictive Systems, Real Economy, and Bond

Risk Premia”, I study bond risk premia in the framework of predictive systems.

A lot of previous papers studying bond risk premia focus on proposing various

predictors of bond returns and rely heavily on the standard linear regression model.

The model is simple and straightforward, but it is quite restrictive in assuming

a perfect linear relationship between the expected return and the current value

of the predictor. Moreover, in reality the predetermined predictor can contain

noise, due to problems such as measurement error. When we use the traditional
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linear regression model, combined with a possibly noisy predictor, we may observe

very counterintuitive spikes of bond risk premia in expansions. For example, if

we use the forward spread from Fama and Bliss (1987) as predictor, the dash-

dotted line in Figure C.5 represents the expected return estimates under linear

regression model. There are 3 unreasonable spikes occurring in the middle of

expansions around 1987, 1992-1995 and 2013-2015 (shaded area represents NBER

recessions). One speculation is that these unusual spikes are caused by the use

of linear regression model. Therefore we have to consider using other models to

produce more economically meaningful bond risk premia.

In this essay, we use the predictive system framework from Pastor and Stam-

baugh (2009) to estimate bond risk premia. This framework is designed with both

empirical simplicity and theoretical support. Pastor and Stambaugh (2009) ini-

tially use it to estimate equity risk premia, but it can be easily applied to bond

market. On one hand, the framework deals with noisy predictor problem. Under

predictive systems, we do not have to follow the common practice in assuming

that expected return depends only on the current value of the predictor. Instead,

when predictors are noisy or imperfect, expected returns will depend on the his-

tory of returns and predictors. On the other hand, within the predictive system

framework, the correlation between unexpected returns and expected returns is

crucial in determining the risk premium. Per Pastor and Stambaugh (2009), this

correlation should be negative for equity returns, because intuitively equity prices

tend to fall when discount rates rise. Although stock returns are driven by both
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cash flow shocks and discount rate news, the latter should have dominant effect.

In other words, this negative correlation means that when expected returns expe-

rience a positive shock, stock returns will very likely experience a negative shock

and prices will decrease. For Treasury bond returns, this correlation could be even

more negative, as Treasury bond prices are only subject to discount rate news.

We consider three different prior beliefs to incorporate the hypothesis that bond

prices tend to fall when discount rates increase: a more informative prior belief, a

less informative prior belief, and a noninformative prior belief. Different priors will

generate different parameter estimates, and will result in different expected return

estimates, as conditional expected return under the predictive system framework

is a function of parameters and observation of returns and predictors.

We use the dataset by Gurkaynak, Sack, and Wright (2007) to construct

monthly excess bond returns. We use non-overlapping bond returns to avoid the

econometric problem pointed out by Bauer and Hamilton (2018). Also, according

to Gargano, Pettenuzzo, and Timmermann (2017), using monthly non-overlapping

returns, instead of 12-month overlapping returns, can better capture short-term

variations in bond risk premia. We consider a wide range of predictors in the liter-

ature: the forward spreads (FB) from Fama and Bliss (1987), the combination of

forward rates (CP) from Cochrane and Piazzesi (2005), the cycle factor (CF) from

decomposition of yield curve in Cieslak and Povala (2015), and the macroeconomic

predictor (LN) constructed in the spirit of Ludvigson and Ng (2009).

In the empirical analysis, we use the Gibbs sampling algorithm from Pastor and
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Stambaugh (2009) to estimate parameters and states in predictive systems. We

first report that predictive systems deliver stronger evidence of predictability than

linear regression models. For example, when we use the forward spread as predictor

and regress the realized returns on expected returns estimated using predictive

systems and linear regression model, the R2 values from linear regression models

are between 1% and 4% whereas the R2 values from predictive systems are between

3% and 8%. Moreover, if we compare the R2 values within predictive systems, the

specifications imposing negative prior beliefs (negative prior correlations between

unexpected and expected returns) generally produce higher R2 values than the

noninformative predictive system.

To understand the economic sources of our findings, we investigate how such

predictability is related to macroeconomic variables. First, according to the habit-

formation model of Wachter (2006), bond risk premia should increase in recessions

because of reduced surplus consumption. So, bond risk premia should move in a

countercyclical manner. To test this, we use several proxies of macroeconomic con-

ditions and find that estimates of bond risk premia inferred by predictive systems

are countercyclical, whereas some estimates of risk premia from linear regression

models do not show such a pattern. Second, the long-run risk models by Bansal

and Shaliastovich (2013) and Creal and Wu (2017) point out that inflation risk

is a key driver of bond risk premia, and the empirical work of Wright (2011)

also suggest inflation risk is an important component of bond risk premia. So we

test the correlation between bond risk premia and proxy of inflation risk. Our
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results show that bond risk premia inferred by predictive systems increase with

inflation uncertainty. In sum, predictive systems can generate more economically

meaningful dynamics of bond risk premia than standard linear regression models.

We should use predictive systems to estimate equity or bond risk premia. Pas-

tor and Stambaugh (2009) show that predictive systems produce better in-sample

fitting for predicting equity returns. Our results show that predictive systems

can produce stronger evidence of bond return predictability than simple linear

regression models, and the inferred bond risk premia are much more economically

reasonable. Whenever we propose a new predictor for equity or bond returns, we

should consider using predictive systems to improve the evidence of predictabil-

ity. Moreover, our results confirm that several macroeconomic variables can be

potential economic drivers of time-varying bond risk premia, consistent with the

prediction of consumption-based asset pricing models.

In the third essay, “Investor Sentiment and Bond Return Predictabil-

ity”, I study the power of stock market investor sentiment in predicting Treasury

bond returns.

Equity and Treasury Bond markets are two extremely important targets for

today’s investors, economists, and policymakers. The bond market is closely linked

with monetary policy, and is expected to interact with the stock market. Several

papers have tried to understand the correlation between stock and government

bond returns. For example, Baele, Bekaert, and Inghelbrecht (2010) show that

correlation between daily equity and bond returns could vary over time between
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-0.60 and 0.60. Baker and Wurgler (2012) study the link between government

bonds and the cross section of stocks. They observe that stock market sentiment

and flights to quality are anecdotally associated over time during special financial

market episodes, such as during the recent financial crisis. Their results suggest

that sentiment, a predictor of the cross section of stock returns, predicts excess

government bond returns. This delivers evidence that the expected returns of

stocks and bonds are firmly linked.

However, the above observation of Baker and Wurgler (2012) is drawn on pure

in-sample tests. Recently, several studies focus on whether in-sample evidence of

bond return predictability could generate economic values for real-time investors.

Thornton and Valente (2012) find that using forward spreads as predictor does not

create higher utility compared with using expectations hypothesis model, which

indicates no predictability. Sarno, Schneider, and Wagner (2016) use affine term

structure models and reach similar conclusion. Although Gargano, Pettenuzzo,

and Timmermann (2017) find that in-sample evidence is linked with out-of-sample

statistical and economic evidence, their tests use fully revised and not real time

information. Fulop, Li, and Wan (2018) find that the strong statistical and eco-

nomic evidence from fully revised macroeconomic data vanishes when real-time or

survey-based information is used instead. So, up to now in the literature, there is

generally negative evidence of real-time bond return predictability.

In this essay, we test whether the stock market sentiment index can predict

government bond returns both in and out of sample. Traditional tests mainly
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rely on linear regression model, but we also consider the predictive system model

proposed by Pastor and Stambaugh (2009). The predictive system was originally

used to estimate equity risk premia and was used recently by Wan (2018) to

evaluate bond risk premia. In real time analysis, we avoid hindsight problem and

use only information available in real time.

Our results show that we can identify some in-sample evidence of bond return

predictability. Using stock market sentiment as predictor, we can generate in-

sample R-squared of similar magnitude as when we use information from the yield

curve. For example, when we use predictive system model with more informative

priors, the R2 values generated using Fama and Bliss (1987) predictor vary from

6.19% to 6.50%, and those generated using sentiment index vary from 6.32% to

6.49%. However, when we switch to use only real-time data, both statistical and

economic measures suggest that there is hardly any evidence of predictability. Ad-

ditional robustness tests deliver similar results. Our conclusion is consistent with

what Thornton and Valente (2012) and Sarno, Schneider, and Wagner (2016) have

found. How to prove the link between in-sample and out-of-sample predictability

still remains a challenge. We expect to see more research on this topic.
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Chapter 2

Real-Time Bayesian Learning and
Bond Return Predictability∗
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2.1 Introduction

The expectations hypothesis (EH) of the term structure of interest rates asserts

that the long-term rate is equal to the average of expected future short rates plus

a constant risk premium. A standard way to test the expectations hypothesis is

to run predictability regressions of excess bond returns on some predetermined

predictors. Empirical investigations have uncovered some evidence of bond re-

turn predictability. Fama and Bliss (1987) and Campbell and Shiller (1991) find

that excess bond returns are predictable by forward spreads or yield spreads.

Cochrane and Piazzesi (2005) find that information contained in the entire term

structure of interest rates can capture more than 30% of the variation of excess

bond returns over the period from January 1964 to December 2003. However, such

evidence is statistical and in-sample. Investors in markets may be more concerned

about whether there exists out-of-sample evidence of bond return predictability

and whether such out-of-sample statistical predictability can translate into eco-

nomic gains. Thornton and Valente (2012) find that information contained in

forward rates can not generate systematic economic value to an investor who has

mean-variance preferences. Sarno, Schneider, and Wagner (2016) find that un-

der affine term structure model framework the evident statistical predictability of

bond risk premia hardly turns into investors’ economic gains.

Recently, empirical studies by Ludvigson and Ng (2009), Cooper and Priestly

(2009), Huang and Shi (2014), Joslin, Priebsch, and Singleton (2014) and Jiang
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and Tong (2017), among others, show that macroeconomic variables contain rich

information on future excess bond returns beyond information contained only in

yield curve. Gargano, Pettenuzzo, and Timmermann (2017) implement an out-

of-sample investigation using non-overlapping excess bond returns and Bayesian

Markov Chain Monte Carlo (MCMC) methods. They find strong evidence that

statistically significant out-of-sample bond return predictability by the macroeco-

nomic factor can translate into economic value. However, nearly all these studies

use the fully revised macroeconomic data and ignore issues related to data revi-

sion and publication delay. A recent paper by Ghysels, Horan, and Moench (2018)

argue that macroeconomic data revision may result in spurious evidence of bond

return predictability.

In this paper, we revisit this seemingly contentious issue. We consider a

Bayesian investor who faces the same learning problems as confronted by the

econometrician. Except the expectations hypothesis that assumes no predictabil-

ity, she has access to additional predictive models that may feature stochastic

volatility. She takes parameters, latent states, and/or predictive models as un-

knowns and updates her beliefs using Bayes’ rule in real time with respect to

information accumulation. Our Bayesian investor computes the predictive return

distribution at each time based on what she has learned and maximizes her ex-

pected utility by taking into account all relevant uncertainties. We implement

Bayesian learning on predictive models by following the marginalized resample-

move approach proposed by Fulop and Li (2013). This algorithm is generic, effi-
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cient, and highly parallel in the sense that it does not suffer from the convergence

issue and requires minor computational and design effort with comparison to tra-

ditional Bayesian MCMC methods. In essence, our treatment here is similar to

those of Johannes, Korteweg, and Polson (2014), Fulop, Li, and Yu (2015), and

Johannes, Lochstoer, and Mou (2016).

We construct monthly bond excess returns on US zero-coupon bonds with

maturity 2-, 3-, 4-, and 5-year using the updated dataset of Gurkaynak, Sack,

and Wright (2007). The data range from January 1962 to September 2017, in

total 669 months. Most studies in bond return predictability focus on predictive

regressions for annual overlapping excess bond returns at monthly forecasting

frequency. Bauer and Hamilton (2017) show that bond returns with overlapping

holding-period may induce strong serial correlations in error terms and may raise

additional econometric problems when predictors are also persistent. Moreover,

Gargano, Pettenuzzo, and Timmermann (2017) point out that some dramatic

swings in bond prices can occur over short periods and could be overlooked by

using annual overlapping returns. Therefore, similar to Gargano, Pettenuzzo,

and Timmermann (2017), we consider one-month holding period and construct

monthly non-overlapping excess returns.

We consider two predictors based on forward rates: the forward spreads (FB)

of Fama and Bliss (1987) and the forward factor (CP) of Cochrane and Piazzesi

(2005), and construct five predictors based on macroeconomic variables: (i) LN,

which is constructed using the fully revised macroeconomic data by following the
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approach of Ludvigson and Ng (2009) and is also used by Gargano, Pettenuzzo,

and Timmermann (2017); (2) LNRT1, which is constructed using the historically

available real-time macroeconomic vintage data and Bayesian Information Cri-

terion (BIC); (iii) LNRT2, which is simply the first principle component of the

historically available real-time macroeconomic vintage data; (iv) LNRT3, which is

the first principle component of “first-released” real-time macroeconomic vintage

data (Ghysels, Horan, and Moench, 2018); and (v) LNSF, which, similar to Erik-

sen (2017), is constructed using the forward-looking survey-based macroeconomic

data. Given data availability, all empirical tests based on LNSF are performed on

quarterly frequency.

We evaluate statistical out-of-sample predictability using the out-of-sample

R-squared, R2
OS, of Campbell and Thompson (2008), and evaluate economic out-

of-sample predictability using certainty equivalence returns (CERs) by assuming

a power-utility Bayesian investor. We obtain some interesting findings. First,

we find some statistical evidence of bond return predictability using information

contained in forward rates. However, such statistical evidence can hardly translate

into investors’ economic gains, no matter how strong investors’ risk aversion is.

These results are consistent to what Thornton and Valente (2009) and Sarno,

Schneider, and Wagner (2016) have found.

Second, when we use the fully revised macroeconomic factor, LN, we find qual-

itatively similar results to what Gargano, Pettenuzzo, and Timmermann (2017)

have found. That is, significant statistical evidence of bond return predictability
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can translate into significant investors’ economic gains. However, as discussed by

Ghysels, Horan, and Moench (2018), a real-time investor would only have access

to real-time macroeconomic data. Therefore, we check whether we can obtain sim-

ilar significant statistical and economic evidence when LN is replaced by real-time

macroeconomic predictors. We find that whenever the real-time macro factors,

LNRT1/LNRT2/LNRT3, are used, both statistical and economic predictability

of bond returns vanishes. This result stands in stark contrast to that found by

Gargano, Pettenuzzo, and Timmermann (2017). Furthermore, when the forward-

looking survey-based real-time macro factor, LNSF, is used, we also hardly find

any statistical and economic evidence of bond return predictability. This result

is different from that found by Eriksen (2017) who uses overlapping returns and

ignores the real-time learning. We further show that model combinations do not

seem to help uncover significant statistical and economic evidence of bond return

predictability whenever the real-time and survey-based macro factors are used,

even though some weak evidence can be observed.

Finally, the previous literature has predominantly adopted restrictions on port-

folio weights in testing for economic evidence. The usual lower and upper weight

bounds for risky bonds are -1 and 2, allowing for possibility of shorting and bor-

rowing. Our previous tests on economic gains also use similar restrictions. How-

ever, while such bounds seem natural for equity markets, government bonds are

much less risky, resulting in for instance much lower margins in repo transactions

backed by these securities. Hence, sophisticated fixed-income investors may be
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able to achieve much more aggressive short and long positions than those implied

by these bounds. Therefore, we redo the asset allocation exercise without setting

any weight constraints. Interestingly, we find that most of the economic gains

quantitatively improve, especially for the short-maturity bonds.

Our work makes three main contributions to the literature. First, we pro-

vide a generic econometric framework allowing for real-time Bayesian learning

about bond return predictability that takes into account all relevant uncertain-

ties. Thornton and Valente (2012) and Sarno, Schneider, and Wagner (2016)

follow classical approaches and therefore ignore such uncertainties. Gargano, Pet-

tenuzzo, and Timmermann (2017) employ Bayesian MCMC methods and do allow

for parameter and model uncertainties. However, in investigating out-of-sample

predictability, MCMC algorithms need to be repeatedly run at each time, making

it hard to evaluate the speed of convergence and leading to a large computational

cost. Our real-time Bayesian learning is tailor-made for sequential inference and

is naturally parallel. The only model-dependent requirement of the method is a

filtering mechanism for the model in question that provide at least an unbiased

likelihood. Therefore, it can be customised to different predictive models easily

with comparison to Bayesian MCMC methods that are typically more model-

dependent.

Second, we call attention to using fully-revised vs. real-time/survey-based

macroeconomic information in forecasting exercises. As we face a real-life asset

allocation problem, we need to take into account issues related to data revision
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and publication lag and restrict investors’ information set to real-time data only

available at each time. Ghysels, Horan, and Moench (2018) argue that macroeco-

nomic data revision may result in spurious evidence of bond return predictability.

Our results are in line with theirs.

Third, we find interesting result that in bond market it is relatively easy for

investors to make extreme investments in the short run with comparison to in

equity markets and such extreme investments could improve short-run bond return

predictability, though it is still not statistically significant in real time.

The remainder of the paper is organized as follows. Section 2.2 presents the

predictive models and introduces the Bayesian learning approach. Section 2.3 dis-

cusses how we statistically and economically evaluate the predictive performance

of each model. Section 2.4 presents the data and summary statistics. Section 2.5

provides the main empirical results and Section 2.6 concludes the paper.

2.2 Bayesian Learning and Bond Return Pre-

dictability

2.2.1 Predictive Models

In line with the existing literature, we define the log-yield of an n-year bond as

y
(n)
t ≡ −

1

n
p
(n)
t , (2.1)

where p
(n)
t = lnP

(n)
t , and P

(n)
t is the nominal price of an n-year zero-coupon bond

at time t. A forward rate is defined as

f
(n−m,n)
t ≡ p

(n−m)
t − p(n)t , (2.2)
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and the excess return of an n-year bond is computed as the difference between

the holding period return from buying an n-year bond at time t and selling it

m-period later and the yield on a m-period T-bill rate at time t,

rx
(n)
t+m = p

(n−m)
t+m − p(n)t −m · y

(m)
t , (2.3)

where m is the holding period in year and y
(m)
t is the annualized T-bill rate. In

this paper, we assume m is one-month or one-quarter, and n can be 2, 3, 4, or 5

years.

The standard approach to investigate bond return predictability usually takes

a model of the form

rx
(n)
t+1 = α + βXt + εt+1, (2.4)

where Xt is a set of the pre-determined predictors, εt ∼ N(0, σ2
rx) is a mean-

zero constant variance error term, and the coefficients α, β, and σrx are unknown

parameters. Equation (2.3) suggests that rx
(n)
t+1 represents the non-overlapping

excess bond return with one-month or one-quarter holding period.

In addition, there is considerable evidence that suggests bond return volatility

is time-varying (Gray, 1996; Bekaert, Hodrick, and Marshall, 1997; Bekaert and

Hodrick, 2001). Therefore, except the standard model of Equation (2.4), we also

introduce the stochastic volatility model, which takes the form of

rx
(n)
t+1 = α + βXt + eht+1εt+1, (2.5)

where εt ∼ N(0, 1) is a standard normal noise, and ht+1 is log-volatility at time
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t+ 1, which is assumed to follow

ht+1 = µ+ φht + vt+1, (2.6)

where ht is stationary and mean-reverting when |φ| < 1, and vt ∼ N(0, σ2
h). We

assume independence between εt and vt.

Empirical studies have found that forward rates or forward spreads contain

information on future bond returns. Fama and Bliss (1987) find that the forward-

spot spread has predictive power for excess bond returns and that its forecasting

power increases with the forecasting horizon. Cochrane and Piazzesi (2005) show

that the whole term structure of forward rates can capture more than 30% of the

variation of excess bond returns over the period from January 1964 to December

2003. Furthermore, Joslin, Priebsch, and Singleton (2014) provide empirical evi-

dence that macroeconomic variables contain rich information on yields, and Lud-

vigson and Ng (2009) extract macro factors from a large set of macroeconomic

variables and show that these factors have predictive power for future excess bond

returns.

Therefore, we consider two types of predictors: predictors based on forward

rates, i.e., the forward spreads (FB) of Fama and Bliss (1987) and the forward

factor (CP) of Cochrane and Piazzesi (2005), and predictors based on different

types of macroeconomic variables.

The FB factor is simply defined as:

FB
(n,m)
t = f

(n−m,n)
t −m · y(m)

t . (2.7)
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We construct the CP factor following Cochrane and Piazzesi (2005) as follows. At

time t + 1, average excess bond return across maturities is regressed on a set of

forward rates at time t,

rxt+1 = λ0 + λft + ut+1, (2.8)

where rxt+1 = 1
4

∑5
n=2 rx

(n)
t+1 and ft = [f

(1−1/12,1)
t , f

(2−1/12,2)
t , f

(3−1/12,3)
t , f

(4−1/12,4)
t , f

(5−1/12,5)
t ].

Then the CP factor for time t+ 1 is computed as

CPt+1 = λ̂0 + λ̂ft+1. (2.9)

The macro factors are constructed from a large set of different types of macroeco-

nomic variables using principal component analysis similar to that of Ludvigson

and Ng (2009). First, find an optimal combination of principal components (and

their higher powers), F̂t, using some statistical criteria, and then build the LN-type

factors as follows

LNt+1 = γ̂0 + γ̂F̂t+1, (2.10)

where γ̂0 and γ̂ are estimated in the following regression

rxt+1 = γ0 + γF̂t + et+1. (2.11)

More details on construction of different LN-type macro predictors will be dis-

cussed in Section 2.4.

We only consider single-predictor predictive models. We christen each model

using the name of its predictor followed by the abbreviation of constant volatility

(CV) or stochastic volatility (SV). For example, a model that takes CP as its
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predictor and assumes stochastic volatility has a name of CP-SV. In Equation

(2.4), when β = 0, no predictor is used, and this case is in fact the expectations

hypothesis (EH), which will be taken as a benchmark for comparison with the

predictive models. We also look into a stochastic volatility version of the EH

model, whose performance is found to be even worse than the standard EH model.

Therefore, we report results that take EH-CV as the only benchmark.

2.2.2 Bayesian Learning and Belief Updating

We assume a Bayesian investor who faces the same belief updating problem as

the econometrician (Hansen, 2007). She simultaneously learns about parameters,

latent states, and models sequentially over time when new information arrives.

For a given predictive model Mi, there is a set of unknown static parameters, Θ,

and/or a vector of the hidden state, ht, when stochastic volatility is introduced.

The observations include a time series of excess bond returns and predictors,

y1:t = {rx(n)1:t , X1:t|t}. X1:t|t denotes the time series of the predictor from time 1 to t

based on information only available up to time t and suggests that our predictors

are updated in real time at each time in the out-of-sample period.

At each time t, Bayesian learning consists of forming the joint posterior distri-

bution of the static parameters and the hidden state based on information available

only up to time t,

p(ht,Θ|y1:t,Mi) = p(ht|Θ, y1:t,Mi)p(Θ|y1:t,Mi), (2.12)

where p(ht|y1:t,Θ,Mi) solves the state learning (filtering) problem, and p(Θ|y1:t,Mi)
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addresses the parameter learning issue. Bayesian learning or Investor’s belief up-

dating therefore corresponds to updating this joint posterior distribution.

For the linear predictive model of Equation (2.4), Bayesian learning is straight-

forward using the particle-based algorithm proposed by Chopin (2002). However,

when stochastic volatility is introduced, the model becomes non-linear and state-

dependent. Therefore, for the purpose of state filtering and likelihood estimation,

we use a particle filter, which is similar to that used in Johannes, Korteweg, and

Polson (2014). We note that the decomposition (2.12) suggests a hierarchical

framework for model inference and learning. At each time t, for a given set of

model parameters proposed from some proposal, we can run the particle filter,

which delivers the empirical distribution of the hidden states, p(ht|Θ, y1:t,Mi),

and the estimate of the likelihood, p(rx
(n)
1:t |Θ,Mi). Parameter learning can then

be implemented as follows, p(Θ|y1:t,Mi) ∝ p(y1:t|Θ,Mi)p(Θ|Mi). To achieve this

aim, we rely on the marginalized resample-move approach developed by Fulop and

Li (2013). The key point here is that the likelihood estimate from a particle filter

is unbiased (Del Moral 2004). In essence, our treatment here is similar to those

of Johannes, Korteweg, and Polson (2014), Fulop, Li, and Yu (2015), and Jo-

hannes, Lochstoer, and Mou (2016). In contrast to traditional Bayesian MCMC

methods such as those used by Gargano, Pettenuzzo, and Timmermann (2017),

our Bayesian learning approach does not suffer from convergence issues and can

be easily parallelized, making it computationally fast and convenient to use in

practice.
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The above Bayesian learning approach provides as natural outputs the predic-

tive distribution of excess bond returns

p(rx
(n)
t+1|y1:t,Mi) =

∫
p(rx

(n)
t+1|ht,Θ, y1:t,Mi)p(ht|Θ, y1:t,Mi)p(Θ|y1:t,Mi)dhtdΘ,

(2.13)

and an estimate of the marginal likelihood,

p(rx
(n)
1:t |Mi) =

t−1∏
s=1

p(rx
(n)
s+1|y1:s,Mi), (2.14)

both of which account for all uncertainties related to parameters and state. Equa-

tion (2.14) summarizes model fit over time (model learning) and can be used to

construct a sequential Bayes factor for sequential model comparison. For any two

modelsMi andMj, the Bayes factor at time t has the following recursive formula

BF t ≡
p(rx

(n)
1:t |Mi)

p(rx
(n)
1:t |Mj)

=
p(rx

(n)
t |y1:t−1,Mi)

p(rx
(n)
t |y1:t−1,Mj)

BF t−1, (2.15)

which is completely out-of-sample, and can be used for sequential comparison of

both nested and non-nested models.

Bayesian learning and belief updating generate persistent and long-term shocks

to investor’s beliefs. To see this, define θt = E[θ|y1:t] as the posterior mean of a

parameter θ obtained using information up to time t. The iterated expectation

suggests

E[θt+1|y1:t] = E[E[θ|y1:t+1]|y1:t] = E[θ|y1:t] = θt. (2.16)

Therefore, θt is a martingale, indicating that shocks to investor’s beliefs on this

parameter are not only persistent but also permanent. Thus, in Bayesian learning,
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the investor gradually updates her beliefs that the value of a parameter is higher

or lower than that previously thought and/or that a model fits the data better

than the other.

The Bayesian learning process is initialized by investor’s initial beliefs or prior

distributions and then is moved forward using a Gaussian mixture proposal for

the fixed parameters in one block. Given that in our marginalized approach the

likelihood estimate is a complicated nonlinear function of the fixed parameters,

conjugate priors are not available. For parameters that have supports of real line,

we assume normal distributions for their priors. However, if a parameter under

consideration has a finite support, we take a truncated normal as its prior, and

if a parameter under consideration needs to be positive, we take a lognormal or

a truncated normal as its prior. The hyper-parameters of the prior distributions

are calibrated using a training sample, that is, an initial dataset is used to provide

information on the location and scale of the parameters. We find that the model

parameters are not sensitive to the selection of the priors. Therefore, we give flat

priors to the model parameters. Table B.1 provides two sets of the priors that are

used in the paper.

2.2.3 Model Combinations

Model combination is an important tool to handle model uncertainty. Timmer-

mann (2006) argues that model combination can be viewed as a diversification

strategy that improves predictive performance in the same manner that asset di-
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versification improves portfolio performance. Rapach, Strauss, and Zhou (2010)

and Dangle and Halling (2012) show that model combinations can generate better

forecasts than the individual models in forecasting stock returns. In this section,

we introduce four model combination schemes for forecasting bond excess returns.

Different from MCMC methods, our Bayesian learning algorithm has a natural

output of the marginal likelihood of Equation (2.14), which can be directly used

to combine models.

2.2.3.1 Sequential Best Model (SBM)

Sequential best model (SBM) selects the model with the largest marginal likelihood

at each time t, i.e., it gives a weight of one to the model that has the largest

marginal likelihood and a weight of zero to other models,

pSBM(rx
(n)
t+1|y1:t) = p(rx

(n)
t+1|y1:t,Mi)I(max

M
p(rx

(n)
1:t |M) =Mi). (2.17)

The best model may change over time, suggesting that a different model may be

used for forecasting bond returns at each time.

2.2.3.2 Bayesian Model Average (BMA)

It could be beneficial to determine combining weights according to model perfor-

mance. Bayesian model averaging (BMA) provides a coherent mechanism for this

purpose (Hoeting et al., 1999). It is a model combination approach based on the

marginal likelihood of each model,

pBMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx(n)t+1|y1:t,Mi), (2.18)
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where wi,t = p(Mi|rx(n)1:t ), and p(Mi|rx(n)1:t ) is the posterior probability of model i,

p(Mi|rx(n)1:t ) =
p(rx

(n)
1:t |Mi)p(Mi)∑N

j=1 p(rx
(n)
1:t |Mj)p(Mj)

, (2.19)

in which p(rx
(n)
1:t |Mi) denotes the marginal likelihood of model i, and p(Mi) is the

prior probability of model i. In implementation, we assume equal prior probability

for each model.

2.2.3.3 Equal-weighted Model Average (EMA)

Equal-weighted model average (EMA) simply assumes equal weight on each model,

that is,

pEMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx(n)t+1|y1:t,Mi), (2.20)

where N is the number of models considered and wi,t = 1/N for all i and all t.

2.2.3.4 Utility-based Model Average (UMA)

The above model combination schemes basically use statistical evidence to con-

struct combining weights, wi,t. However, investors are more concerned about

whether the statistical evidence of predictability could translate into real eco-

nomic gains. Therefore, it is tempting to construct combining weights according

to models’ economic performance. We will see in the next section that our in-

vestor is Bayesian and tries to maximize her expected utility using the predictive

distribution of excess bond returns. Models’ economic performance is then eval-

uated using certainty equivalence returns (CER). Therefore, we propose a simple

utility-based model average scheme (UMA) that constructs combing weights using
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CER’s at each time. Specifically,

pUMA(rx
(n)
t+1|y1:t) =

N∑
i=1

wi,t × p(rx(n)t+1|y1:t,Mj), (2.21)

where wi,t = p(Mi|rx(n)1:t ) and is given by

p(Mi|rx(n)1:t ) =
CERi,t∑N
j=1CERj,t

, (2.22)

in which CERi,t is the certainty equivalent return computed using Equation (2.31)

for the period from the beginning date of out-of-sample to the current time t.

2.3 Assessing Out-of-Sample Performance

2.3.1 Statistical Evaluation

Given the predictive distribution of excess bond returns, we can compute the

posterior mean to obtain the point forecast at each time t for each model or model

combination. Denote this point forecast as r̂x
(n)
t+1 and define the sum of squared

forecast errors (SSE) from initial time of the out-of-sample period, t0, to time t as

ŜSE(t) =
t∑

s=t0

(rx
(n)
s+1 − r̂x

(n)
s+1)

2. (2.23)

Furthermore, denote the point forecast from the expectations hypothesis as rx
(n)
t+1.

Then the SSE for the expectations hypothesis model is given by

SSE(t) =
t∑

s=t0

(rx
(n)
s+1 − rx

(n)
s+1)

2. (2.24)

A natural measure of predictive performance of a model is the out-of-sample

R2 (R2
OS) proposed by Campbell and Thompson (2008). The R2

OS statistic is
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computed as

R2
OS = 1− ŜSE(T )

SSE(T )
, (2.25)

where T denotes the end of the out-of-sample period. The R2
OS is analogous to

the standard R2 and measures the proportional reduction in prediction errors of

the forecast from the predictive model relative to the EH forecast.

It is clear that when R2
OS > 0, the predictive model statistically outperforms

the expectations hypothesis. We can further test whether this outperformance is

statistically significant using the statistic developed by Clark and West (2007).

The Clark-West statistic adjusts the well-known Diebold and Mariano (1995) and

West (1996) statistic and generates asymptotically valid inference when comparing

nested model forecasts. Clark and West (2007) show that this statistic performs

well in terms of power and size properties.

2.3.2 Economic Value and Certainty Equivalence Returns

In evaluating economic predictability, we consider a real-time Bayesian investor

who construct a portfolio consisting of a risk-free zero-coupon bond and a risky

bond with maturity n and maximizes her expected utility over the next period

portfolio value, Wt+1,

max
ω

E[U(Wt+1)|y1:t,Mi], (2.26)

where U(·) represents the investor’s utility function, which is assumed to be a

power utility with the relative risk aversion controlled by γ,

U(Wt+1) ≡ U(ω
(n)
t , rx

(n)
t+1) =

W 1−γ
t+1

1− γ
. (2.27)
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The portfolio value evolves according to

Wt+1 = (1− ω(n)
t ) exp(rft ) + ω

(n)
t exp(rft + rx

(n)
t+1), (2.28)

where rft is the risk-free rate, and ω
(n)
t is the portfolio weight on the risky bond

with maturity n.

Then the expected utility can be computed for each model as follows,

E[U(Wt+1)|y1:t,Mi] =

∫
U(ω

(n)
t , rx

(n)
t+1)p(rx

(n)
t+1|y1:t,Mi)drx

(n)
t+1, (2.29)

where the predictive distribution of excess bond returns, p(rx
(n)
t+1|y1:t,Mi), is given

by Equation (2.13).

Our investor is Bayesian. When computing expected utility in Equation (2.29),

she takes into account all relevant uncertainties. At each time, the investor choose

the portfolio weight to maximize her expected utility. In our Bayesian learning,

we have M particles for each variable at each time. Then the optimal weight can

be obtained by

ŵ
(n)
t = arg max

1

M

M∑
j=1


[
(1− ω(n)

t ) exp(rft ) + ω
(n)
t exp(rft + rx

(n),(j)
t+1 )

]1−γ
1− γ

 .

(2.30)

The above portfolio weight in Equation (2.30) is then used to compute the

investor’s realized utility at each time t. We denote the realized utility from a

predictive model as Ût and denote the realized utility from the EH benchmark

as Ūt. Then the certainty equivalence return (CER) for each predictive model

is defined as a value that equates the average realized utility from the model
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to that from the expectations hypothesis over the forecasting period. Following

Pettenuzzo, Timmermann, and Valkanov (2014), we have

CER =

(∑T
t=1 Ût∑T
t=1 Ūt

) 1
1−γ

− 1. (2.31)

2.4 Data and Summary Statistics

We construct monthly or quarterly frequency yields on US zero-coupon bonds with

maturity 2-, 3-, 4-, and 5-year using the updated yield dataset of Gurkaynak, Sack,

and Wright (2007). Most studies in bond return predictability focus on predictive

regressions for overlapping annual excess bond returns in monthly/quarterly fore-

casting frequency. Bauer and Hamilton (2017) argue that the overlapping bond

returns induce strong serial correlations in error terms in predictive regressions,

and may raise additional econometric problems when predictors are persistent.

Moveover, Gargano, Pettenuzzo, and Timmermann (2017) point out that non-

overlapping returns may better reflect short-term swings in bond prices. Therefore,

similar to Gargano, Pettenuzzo, and Timmermann (2017), we consider one-month

or one-quarter holding period and construct non-overlapping monthly or quarterly

excess bond returns. The data span from January 1962 to September 2017.

Ghysels, Horan, and Moench (2018) argue that macroeconomic data revision

and publication delay may generate spurious evidence of bond return predictabil-

ity. Eriksen (2017) find evidence that macroeconomic information extracted from

survey of professional forecasts has predictive power for excess bond returns.

41



Therefore, we employ three types of macroeconomic data: the first is fully-revised,

the second is real-time, and the third is forward-looking survey-based, to construct

LN-type macro predictors.

We construct our first LN-type macro predictor, LN, using the fully-revised

macroeconomic data, downloaded from St. Louis Fed, by relying on the optimal

subset of PCs and their powers recommended by Ludvigson and Ng (2009) and

Gargano, Pettenuzzo, and Timmermann (2017).1

We then construct two LN-type macro predictors, LNRT1 and LNRT2, using

the historically available real-time macroeconomic data published by McCracken

and Ng (2016).2 Due to publication delay, at each month t we can only have the

observation of each macroeconomic variable for month t− 1. We denote this most

recent observation of variable i as Macroit−1|t, i ∈ {1 : I}. We then construct

LNRT1 as follows. At each month t+ 1 in real time, we can observe rx{1:t+1} and

the macroeconomic panel data, Macro1:I{0:t}|t+1. We first determine the number of

principal components and extract them from the real-time macro panel using the

method proposed by Bai and Ng (2002). At the beginning of the out-of-sample

period, we pin down the optimal subset from the first three powers of all PCs

using Bayesian Information Criterion, resulting in F̂t+1 = [F̂3,t+1, F̂
3
6,t+1]. We then

re-build LNRT1 at each subsequent time. LNRT2 is constructed simply as the

1This subset is [F̂1,t, F̂
3
1,t, F̂3,t, F̂4,t, F̂8,t]. Ludvigson and Ng (2009) choose this subset using

BIC and overlapping excess returns. The fully-revised macroeconomic data are downloaded at
https://research.stlouisfed.org/econ/mccracken/fred-databases, accessed November 2017.

2The vintage data can be downloaded at https://research.stlouisfed.org/econ/mccracken/fred-
databases.
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real-time first PC.

The macro predictors, LNRT1 and LNRT2, are extracted from the best macroe-

conomic information available at each historical point. Similar practice is used by

Eriksen (2017) and Giacoletti, Laursen, and Singleton (2018). However, Ghy-

sels, Horan, and Moench (2018) define “real-time” in a different way: real-time

value is the “first release” of one macro series for one specific historical month.

For instance, the GDP growth of March 1980 released in April 1980 might be

different from the GDP growth of March 1980 released in January 2010 due to

possible revisions happening between 1980 and 2010 (if we consider a one-month

publication delay), and the observation released in April 1980 is called the “first

release” for GDP growth of March 1980. We then construct the corresponding

first-release-based real-time macro factor, LNRT3, as the first principle compo-

nent of 63 macroeconomic series, which are the same as those used in Ghysels,

Horan, and Moench (2018).3 Given data availability, the whole sample for LNRT3

is from April 1982 to December 2015.

Finally, we construct a survey-based LN-type macro predictor, LNSF. The

survey forecasts data are from Survey of Professional Forecasters. Given data

availability, all empirical tests based on survey forecasts data are performed on

quarterly frequency from the fourth quarter of 1968 to the fourth quarter of 2014.

We collect survey forecasts for six macroeconomic fundamentals that include GDP,

the GDP price index, corporate profits after tax, the unemployment rate, indus-

3In addition, we build another predictor using Bayesian Information Criterion and the first
releases of macro data. However, it performs worse than LNRT3.
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trial production, and housing starts. Similar to Eriksen (2017), for each variable we

compute one to four quarters ahead expected growth rates relative to forecaster’s

own nowcast and then aggregate the individual growth forecasts to median fore-

cast. Therefore, there are a total of 24 macroeconomic forecast time series, whose

first three PCs are used to build LNSF.

Table B.2 presents summary statistics for full-sample excess bond returns and

predictors. Panel A shows that both mean and standard deviation of the annual-

ized monthly excess returns increase with respect to maturity. For example, the

mean excess return is about 1.32% with a standard deviation of 2.82% for the

2-year bond, whereas it increases to 2.11% with a standard deviation of 5.98%

for the 5-year bond. Furthermore, we notice that both skewness and kurtosis

decreases with respect to maturity. For example, the skewness and kurtosis for

the 2-year excess bond returns are 0.55 and 16.4, respectively, whereas they are

only 0.02 and 6.96 for the 5-year returns. This suggests that the short-maturity

excess bond returns are more right-skewed and more leptokurtic than the long-

maturity ones. Both short- and long-maturity excess bond returns are very weakly

autocorrelated, as the first-order autocorrelations range from 0.12 (5-year) to 0.17

(2-year). Figure C.1 plots the time series of excess returns for 2-, 3-, 4-, and 5-year

bonds. We can see that all excess returns are quite volatile during the period of

1980-1983, whereas during the period of the recent global financial crisis, return

volatility is by no means comparable.

Panel B presents summary statistics for the predictors: FB, CP, and LN-type
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macro factors. We find that (1) the 2-year FB is positively skewed, whereas other

FBs are negatively skewed, and kurtosis of FBs decrease with respect to maturity.

The FB factors are very persistent; (2) the CP factor is positively skewed and

leptokurtic, and its persistence is weaker than FBs’; (3) the LN-type macro factors

have very different statistical properties.

It is important to emphasize that when we empirically implement Bayesian

learning in the out-of-sample period, both CP and LN-type macro factors are

reconstructed at each time using information available only up to that time in

order to avoid any hindsight problems.

2.5 Empirical Results

2.5.1 Parameter Learning and Sequential Model Compar-
ison

Different from batch estimation methods such as Bayesian MCMC methods, our

Bayesian learning approach provides us the whole picture of how parameter pos-

teriors evolve over time with respect to the accumulation of information for each

model. In this section, we focus on a stochastic volatility model and a constant

volatility model, both of which take FB as their only predictor (i.e., FB-SV and

FB-CV). Figure C.2 presents the sequential learning of the fixed parameters for

FB-SV, and Figure C.3 presents the sequential learning of the fixed parameters for

FB-CV, on 3-year excess bond returns. For each parameter, the posterior mean

(solid line) and the (5, 95)% credible interval (dashed lines) are plotted.
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There are a number of notable features from these two figures. First, the in-

vestor’s beliefs on parameters are quite uncertain in the beginning as the (5, 95)%

credible intervals are very large for all parameters. Then, as information accumu-

lates, the credible intervals become narrower and narrower over time, suggesting

that parameter uncertainties decrease over time.

Second, the speed of learning is different across parameters. For the expected

return parameters, α and β, learning is faster for α than for β in both FB-SV and

FB-CV. It takes only a few years for α to reach small credible intervals, whereas it

takes more than 10 years for β to have relatively small credible intervals. For the

parameters governing volatility, µ, φ, and σh, the learning speed for σh is much

slower than the others. Its posterior mean is slowly going up in the beginning,

and then is slowly going down after around 1970. Moreover, it takes very long

time for its (5, 95)% credible interval to sufficiently narrow down.

Third, the last panel of Figure C.2 presents the sequential estimates of stochas-

tic volatility for FB-SV model. Consistent with the investor’s beliefs on param-

eters, her belief on volatility is quite uncertain in the beginning, whereas after a

short period, she becomes quite certain on volatility dynamics, mirrored by very

narrow (5, 95)% credible intervals. There is a large spike of volatility around the

beginning of 1980s.

Fourth, the learning process of σrx in FB-CV in Figure C.3 reveals potential

evidence of misspecification of the constant volatility model, as its learned value

slowly drifts up and reaches its highest value around 1982 when bond returns are
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very volatile, and then it keeps going down up to the end of the sample. This

volatility estimate could be seen as a much smoothed version of the stochastic

volatility in Figure C.2.

Last, thanks to its recursive nature, our Bayesian learning approach produces

the sequential marginal likelihood at each time for each model as shown in Equa-

tion (2.14). We can then construct the sequential Bayes factors and use them for

real-time model analysis and comparison. The last panel of Figure C.3 presents

the sequential log Bayes factors between FB-SV and FB-CV. It gives us a richer

picture of model performance over time. First, no matter which maturity is consid-

ered, when market information is scarce and the variation of excess bond returns

is very small (see Figure C.1) in the beginning of the sample, FB-SV performs

nearly the same as FB-CV. Second, as the market information accumulates over

time, the data begin to strongly favour the stochastic volatility model. Third,

most of the up-moves in Bayes factors happen during market turmoils. This phe-

nomenon is particularly striking around 1980 when all four time series of excess

bond returns have high volatility and indicates that the investors mainly update

their beliefs on model specifications during market turmoils. Fourth, the outper-

formance of the stochastic volatility model over the constant volatility model is

the strongest on the 5-year excess bond returns before 1980, whereas afterwards,

its outperformance becomes the strongest on the 2-year excess bond returns.
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2.5.2 Evidence of Bond Return Predictability

Due to availability of real-time macroeconomic vintage data, we set the out-of-

sample period from August 1999 to September 2017 in the analysis with FB, CP,

LN and LNRT1/LNRT2, and from April 1994 to December 2015 in the analysis

with LNRT3; However, when we use LNSF as the predictor, the out-of-sample

period is set from the first quarter of 1994 to the fourth quarter of 2014. At

each time t, our Bayesian learning approach provides us with the full predictive

density for each model, p(rx
(n)
t+1|y1:t,Mi), based on which we take its posterior

mean as the point forecast to construct R2
OS for evaluating its statistical predictive

performance. In investigating economic evidence, we first restrict the portfolio

weight, ω
(n)
t , in between -1 and 2 as in Thornton and Valente (2012) and Sarno,

Schneider, and Wagner (2016) to prevent extreme investments (Goyal and Welch,

2008; Ferreira and Santa-Clara, 2011). We then relax this restriction in Subsection

2.5.2.4. For most part of this section, we use the first set of priors in Table B.1 in

our Bayesian learning. We will have a robustness check on sensitivity to priors in

the last subsection.

2.5.2.1 Information Contained in Forward Rates

Fama and Bliss (1987) find that FB can predict future excess bond returns and

that its forecasting power increases with the forecasting horizon, and Cochrane

and Piazzesi (2005) show that the whole term structure of forward rates, CP, can

capture more than 30% of the variation of excess bond returns over the period
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from January 1964 to December 2003. However, these results are pure in-sample

statistical evidence. In this paper, we implement an out-of-sample investigation

and see whether FB and CP have any predictive power to excess bond returns

both statistically and economically.

Panel A of Table B.3 presents R2
OS’s from the models using FB and CP as pre-

dictors. We have the following findings. First, R2
OS’s based on FB (FB-CV and

FB-SV) increase with respect to maturity and only those R2
OS’s for long-maturity

bond returns are statistically significant; Second, it seems that the introduction of

stochastic volatility makes no difference whenever FB is used. For example, for the

4-year excess bond returns, the R2
OS from FB-CV is 2.45% and statistically signif-

icant, whereas the corresponding R2
OS from FB-SV is only 1.86% and marginally

significant, and for 5-year excess bond returns, both FB-CV and FB-SV generates

similar R2
OS and statistically significant, 2.72% vs. 2.81%, respectively. Third,

the results from the models based on CP are different because CP-SV performs

better than CP-CV and only those R2
OS’s for short-maturity excess bond returns

are (marginally) significant.

The results from Panel A point to some statistical evidence of out-of-sample

bond return predictability using information contained in forward rates. We then

investigate whether such statistical evidence can translate into investors’ economic

gains. Our investor is Bayesian, who takes into account all relevant uncertainty

when maximizing her expected utility in Equation (2.26). We compute the corre-

sponding certainty equivalent returns (CERs) for each model using formula (2.31),
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and test if the annualized CER values are statistically greater than zero using a

one-sided Diebold-Mariano test as discussed in Gargano, Pettenuzzo, and Tim-

mermamm (2017).

Panels B, C, and D present CERs from the models using FB and CP as predic-

tors by setting the coefficient of relative risk aversion at 3, 5, and 10, respectively.

We find that no matter which model is used and which maturity is considered,

all CERs are not statistically significant. However, we do find that whenever in-

vestors become more risk-averse, those CERs for long-maturity (4- and 5-year)

bond returns are positive. These results indicate that any statistical evidence

based on forward rates is hard to translate into economic gains, consistent to

what Thornton and Valente (2012), Sarno, Schneider, and Wagner (2016), and

Gargano, Pettenuzzo, and Timmermamm (2017) have found.

2.5.2.2 Revised, Real-Time, and Forward-Looking Macroeconomic In-
formation

Several studies show that macroeconomic variables contain rich information on fu-

ture excess bond returns beyond information contained in yield curve (Ludvigson

and Ng, 2009; Cooper and Priestly, 2009; Huang and Shi, 2014; Joslin, Priebsch,

and Singleton, 2014; Jiang and Tong, 2017). Gargano, Pettenuzzo, and Timmer-

mamm (2017) implement an out-of-sample test and show that statistical evidence

based on macroeconomic information can translate into investors’ economic gains.

However, most of these works use the fully-revised macroeconomic variables and

ignore data revision and publication delay. A recent paper by Ghysels, Horan,
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and Moench (2018) argue that macroeconomic data revision and publication de-

lay may introduce spurious bond return predictability. Having taken into account

the issue of data revision and publication delay, Eriksen (2017) find evidence that

macroeconomic information extracted from survey of professional forecasts has

predictive power for future excess bond returns.

To check whether macroeconomic variables contain useful information on fu-

ture excess bond returns and whether macroeconomic data revision and publica-

tion delay make a difference, we construct five LN-type macroeconomic factors as

discussed in Section 2.4: LN from fully-revised macroeconomic data; LNRT1 and

LNRT2 from historically available real-time macroeconomic data; LNRT3 from

the first released macroeconomic data; and LNSF from the survey of professional

forecasts.

Panel A of Table B.4 presents R2
OS’s from the models using LN-type macro

factors as predictors, and Panels B, C, and D report CERs from these models

with the coefficient of relative risk aversion equal to 3, 5, and 10, respectively.

We find strong statistical evidence of bond return predictability when combining

the fully revised macro factor, LN, and stochastic volatility. For example, the

R2
OS’s from LN-SV are 3.08%, 3.74%, 3.83%, and 3.62% for 2-, 3-, 4-, and 5-year

bond returns, respectively, and are all statistically significant. More importantly,

this statistical predictability can translate into significant economic gains for 4-

and 5-year excess bond return when the coefficient of risk aversion is equal to 5

(Panel C), and for 2-, 3-, and 4-year excess bond return when the coefficient of
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risk aversion is equal to 10 (Panel D). These results are qualitatively similar to

those found by Gargano, Pettenuzzo, and Timmermamm (2017). In fact, we also

find similar results from using LN by setting the out-of-sample period ranging

from January 1990 to December 2015, which is the same as that used in Gargano,

Pettenuzzo, and Timmermamm (2017).

However, we have to take into account the issue of macroeconomic data revision

and publication delay in analysis of bond return predictability. For this reason, we

implement the same empirical investigation as above using real-time and survey-

based LN-type macro factors, LNRT1, LNRT2, LNRT3 and LNSF, instead of

LN. We find strikingly different results. No matter which real-time/survey-based

macro factors we use, whether we introduce stochastic volatility, or how strong the

investor’s risk aversion is, there hardly exist either statistical evidence or economic

evidence of bond return predictability. It seems that there is evidence that the

first principle component extracted from a large panel of real-time macroeconomic

data (LNRT2) works better than that constructed using the Bayesian Information

Criterion (LNRT1). LNRT3 produces negative statistical R2
OS’s and economic

gains are close to zero. In addition, our result based on LNSF is different from

that in Eriksen (2017) who finds both statistical and economic evidence of bond

return predictability from the survey-based macro factor. The main reason may

be because Eriksen (2017) ignores real-time learning and uses overlapping returns.
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2.5.2.3 Model Combinations

We now move on to check whether model combinations can help find any statistical

and/or economic evidence of bond return predictability. Given that the four LN-

type predictors are constructed completely differently, we implement our model

combination schemes for five groups of models, each of which contains only one

macro predictor. Panel A of Table B.5 presents the model combination results

from using predictors of FB, CP, and LN. We find that the R2
OS’s from BMA,

EMA and UMA are in general larger than those in Table B.3 and Table B.4 and

are significant nearly for all-maturity excess bond returns. Furthermore, we find

that the CERs from EMA and UMA are positive and significant for 4- and 5-year

excess bond returns when the coefficient of relative risk aversion is equal to 5, and

the CERs from BMA, EMA, and UMA are positive and significant for 2-, 3- and

4-year excess bond returns when the coefficient of relative risk aversion is equal to

10.

Panels B and C presents the model combination results from using predic-

tors of FB and CP, together with LNRT1 and LNRT2, respectively. We find

that whenever the real-time macro factors are used, the statistical and economic

evidence we have found in Panel A vanishes, though we notice some statistical

evidence in Panel C from SBM and UMA for 2-year bond returns when LNRT2

is used. Whenever we combine models based on FB, CP and LNRT3 in Panel D,

we find some significant statistical evidence from SBM and EMA for all-maturity
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bond returns. However, none of these model combination schemes produces any

significant economic gains, no matter how strong the investor’s risk-aversion is.

Panel E presents model combination results from using FB, CP and LNSF

based on quarterly data. Similarly, we can not see any obvious statistical and

economic evidence of bond return predictability. However, it seems that for 4-

and 5-year bond returns, EMA produces some (weak) statistical evidence and

economic evidence when investor becomes more risk-averse.

2.5.2.4 Extreme Investments and Predictive Performance

Up to now, we have restricted portfolio weight in between -1 and 2 when we

implement asset allocation. However, different from the equity market, it may be

feasible for investors to take extreme positions in the bond market, facilitated by

Repo agreements for instance. Therefore, in this part, we allow investors to take

their investment decision without any restrictions on portfolio weights.

Table B.6 presents CERs from all individual models with the coefficient of

risk aversion equal 5. We find that with comparison to those in Table B.3 and

Table B.4, nearly all CERs greatly improve, especially those for short-maturity

bonds (2-year and 3-year). This suggest that without imposing any restrictions

on portfolio weights, the economic evidence becomes more pronounced, especially

for the short-maturity risky bonds. The investment on the 2-year bond is now the

most profitable across all maturities.

However, we still find that CERs from FB- and CP-based models are hardly
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statistically significant. The CERs from LN-based models (LN-CV and LN-SV)

for 2-year bond returns become much higher and highly statistically significant.

Among all models based on real-time/survey-based macro factors, CERs from

LNRT2-CV is 1.51% and statistically significant for 2-year bond returns and both

LNSF-CV and LNSF-SV produce positive CERs (1.03% and 2.31%), which are

marginally statistically significant. Similar results are also observed when we set

the coefficient of risk aversion equal to 3 or 10.

It seems a new result in literature on bond return predictability and con-

trast with the general finding on equities where constraints on portfolio weights

tend to improve predictive performance in out of sample (see, e.g., Pettenuzzo,

Timmermann, and Valkanov, 2014). The reason may be that government bonds

are much less risky compared to equity, hence even smaller fluctuations in the

conditional expected return and/or conditional volatility suggest wildly varying

portfolio weights.

Table B.7 presents CERs from model combinations with the coefficient of risk

aversion equal to 5. As before, we consider the same five groups of models. With

comparison to Table B.5 and Table B.6, most of CERs for each maturity improve

greatly, especially for 2-year bond. When models based on LN are grouped to-

gether with models based on FB and CP, we find that BMA, EMA, and UMA

generate high and statistically significant CERs for 2-year bond, and EMA and

UMA generate statistically significant CERs for 3-year bond. However, consistent

to what we have found in Table B.5, such significance vanishes when the real-
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time macro factor, LNRT1/LNRT2/LNRT3, is grouped together with FB and

CP (Panel B, C, and D). In panel E, when combining models based on FB, CP,

and LNSF, we find that the CERs from EMA are marginally significant for all-

maturity bonds, whereas CERs from the other three combination schemes are not

statistically significant. We find qualitatively similar results when the coefficient

of risk aversion is equal to 3 or 10.

2.5.2.5 Sensitivity to Priors

Our Bayesian learning is initialized by the investor’s priors on model parameters.

We then test whether our results are robust to alternative priors. We use the

second set of priors Table B.1, which assumes a normal distribution for a parameter

that has support of real line, and assumes a truncated normal distribution for a

parameter that has finite support. The hyper-parameters are chosen such that

the priors are not informative. We obtain nearly the same results as those in the

previous subsections. Therefore, we conclude that our results are not sensitive to

the choice of priors at all.

2.6 Concluding Remarks

The paper studies both statistical and economic evidence of out-of-sample bond

return predictability for a real-time Bayesian investor who learns about param-

eters, hidden states, and predictive models over time when new information be-

comes available. We take two predictors based on forward rates, i.e., forward

spreads (FB) of Fama and Bliss (1987) and the forward factor (CP) proposed by
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Cochrane and Piazzesi (2005), and construct five predictors based on macroeco-

nomic variables: one is constructed using the fully revised macroeconomic data by

following the approach of Ludvigson and Ng (2009) and is also used by Gargano,

Pettenuzzo, and Timmermann (2017), three are constructed using the real-time

macroeconomic panel data, and one is constructed from forward-looking survey

forecasts on macroeconomic variables. We compare the predictive performance

of expectations hypothesis and predictive models. Statistical out-of-sample pre-

dictability is evaluated using the out-of-sample R-squared, R2
OS, of Campbell and

Thompson (2008), whereas economic out-of-sample predictability is evaluated us-

ing certainty equivalence returns (CERs) by assuming a power-utility investor.

Most studies in bond return predictability focus on predictive regressions for

annual excess bond returns with monthly forecasting horizon. Such overlapping

returns introduce strong serial correlations in the error terms and may raise addi-

tional econometric problems when predictors are persistent (Bauer and Hamilton,

2017). Also, Gargano, Pettenuzzo, and Timmermann (2017) point out that some

dramatic swings in bond prices can occur over short periods lasting less than a

year, and could be overlooked by using annual overlapping returns. Therefore,

similar to Gargano, Pettenuzzo, and Timmermann (2017), we mainly consider

one-month and one-quarter holding period and construct non-overlapping excess

bond returns. We find some statistical evidence using information contained in

forward rates. However, such statistical predictability can not generate any eco-

nomic value for investors. Furthermore, strong statistical and economic evidence

57



from fully revised macroeconomic data vanishes when real-time and survey-based

macroeconomic information is used. We also show that extreme investments in

bonds could improve short-run bond return predictability.
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Chapter 3

Predictive Systems, Real
Economy, and Bond Risk Premia∗

∗I am grateful to my supervisors, Andras Fulop and Junye Li. I also thank Roméo Tédongap
and Elise Gourier for helpful comments.
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3.1 Introduction

Understanding time-variation in U.S. Treasury bond risk premia is one of the most

discussed topics in asset pricing. A lot of previous papers focus on proposing var-

ious predictors of bond returns and rely heavily on the standard linear regression

model. The model is simple and straightforward, however it is restrictive in as-

suming a perfect linear relationship between the expected return and the current

value of the predictor. Moreover, in reality the predetermined predictor can con-

tain noise, due to problems such as measurement error. Sometimes we observe

very counterintuitive variation of bond risk premia if we use the traditional lin-

ear regression model. For example, if we use the forward spread from Fama and

Bliss (1987) as predictor, the dash-dotted line in Figure C.5 represents the ex-

pected return estimates under linear regression model. There are 3 unreasonable

spikes occurring in the middle of expansions around 1987, 1992-1995 and 2013-

2015 (shaded area represents NBER recessions). One speculation is that these

unusual spikes are caused by the use of linear regression model. Therefore we

have to ask: can we use other models to produce more economically reasonable

bond risk premia?

In this paper, we use the predictive system framework from Pastor and Stam-

baugh (2009) to estimate bond risk premia. This framework is designed with

both empirical simplicity and theoretical support. Pastor and Stambaugh (2009)

initially use it to estimate equity risk premia, but it can be applied to bond mar-
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ket. On one hand, the framework deals with noisy predictor problem. Under

predictive systems, we do not have to follow the common practice in assuming

that expected return depends only on the current value of the predictor. Instead,

when predictors are noisy or imperfect, expected returns will depend on the his-

tory of returns and predictors. On the other hand, within the predictive system

framework, the correlation between unexpected returns and expected returns is

crucial in determining the risk premium. Per Pastor and Stambaugh (2009), this

correlation should be negative for equity returns, because intuitively equity prices

tend to fall when discount rates rise. Although stock returns are driven by both

cash flow shocks and discount rate news, the latter should have dominant effect.

In other words, this negative correlation means that when expected returns expe-

rience a positive shock, stock returns will very likely experience a negative shock

and prices will decrease. For Treasury bond returns, this correlation could be even

more negative, as Treasury bond prices are only subject to discount rate news.

We consider three different prior beliefs to incorporate the hypothesis that bond

prices tend to fall when discount rates rise: a more informative prior belief, a less

informative prior belief, and a noninformative prior belief. Different priors will

generate different parameter estimates, and will result in different expected return

estimates, as conditional expected return under the predictive system framework

is a function of parameters and observation of returns and predictors.

We use the dataset by Gurkaynak, Sack, and Wright (2007) to construct

monthly excess bond returns. We use non-overlapping bond returns to avoid
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the econometric problem pointed out by Bauer and Hamilton (2018). Also, using

monthly non-overlapping returns, instead of 12-month overlapping returns, can

better capture short-term variations in bond risk premia. We consider a wide

range of predictors in the literature: the forward spreads (FB) from Fama and

Bliss (1987), the combination of forward rates (CP) from Cochrane and Piazzesi

(2005), the cycle factor (CF) from decomposition of yield curve in Cieslak and

Povala (2015), and the macroeconomic predictor (LN) constructed in the spirit of

Ludvigson and Ng (2009).

In the empirical tests, we use the Gibbs sampling algorithm from Pastor and

Stambaugh (2009) to estimate parameters and states in predictive systems. We

first report that predictive systems generate stronger evidence of predictability

than linear regression models. For example, when we use the forward spread as

predictor and regress the realized returns on expected returns estimated using pre-

dictive systems and linear regression model, the R2 values from linear regression

models are between 1% and 4% whereas the R2 values from predictive systems

are between 3% and 8%. Moreover, if we compare the R2 values within predictive

systems, the specifications imposing negative prior beliefs (negative prior corre-

lations between unexpected and expected returns) generally produce higher R2

values than the noninformative predictive system.

To understand the economic sources of our findings, we investigate the extent

to which such predictability is related to macroeconomic variables. First, accord-

ing to the habit-formation model of Wachter (2006), bond risk premia should
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increase in recessions because of reduced surplus consumption. So, bond risk pre-

mia should move in a countercyclical manner. To test this, we use several proxies

of macroeconomic conditions and find that estimates of bond risk premia inferred

by predictive systems are countercyclical, whereas some estimates of risk premia

from linear regression models do not show such a pattern. Second, the long-run

risk models by Bansal and Shaliastovich (2013) and Creal and Wu (2017) point

out that inflation risk is a key driver of bond risk premia, and the empirical work

of Wright (2011) also suggest inflation risk is an important component of bond risk

premia. So we test the correlation between bond risk premia and proxy of inflation

risk. Our results show that bond risk premia inferred by predictive systems rise

with inflation uncertainty. In sum, predictive systems can generate more econom-

ically meaningful dynamics of bond risk premia than standard linear regression

models.

In addition, we also perform out-of-sample tests and report the results in Ap-

pendix. We assume a real-time Bayesian investor who takes parameters, latent

states, and predictive models as unknown and updates her beliefs using Bayes’

rule with respect to information accumulation. She computes the predictive re-

turn distribution at each time and maximizes her expected utility by taking into

account all relevant uncertainties. Real-time results show that predictive systems

generally produce stronger statistical evidence than linear regression models, but

such evidence is weaker than in full-sample analysis. This is consistent with the

findings of Cieslak and Povala (2015), Haddad and Sraer (2018), and Farmer,
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Schmidt, and Timmermann (2018) that predictability evidence may be weakened

in real time. Moreover, such evidence does not translate into economic gains for

the Bayesian investor. Previous studies (Goyal and Welch (2008), Thornton and

Valente (2012), Sarno, Schneider, and Wagner (2016), etc) also identify the con-

trast between statistical and economic metrics in evaluating model performance.

Furthermore, we find many more procyclical risk premia when using real-time

forecasts of expected returns. This indicates a difference between full-sample and

out-of-sample results and imply that full-sample estimates of bond risk premia are

more accurate.

We should use predictive systems to estimate equity or bond risk premia. Pas-

tor and Stambaugh (2009) show that predictive systems produce better in-sample

fitting when predicting equity returns. Our results show that predictive systems

can produce stronger statistical evidence of bond return predictability than simple

linear regression models, and the inferred bond risk premia are much more eco-

nomically reasonable. Whenever we propose a new predictor for equity or bond

returns, we should think of using predictive systems to improve the predictability

evidence. Moreover, our results confirm that several macroeconomic variables can

be potential economic drivers of time-varying bond risk premia, consistent with

the prediction of consumption-based asset pricing models.

Literature Review. Our paper relates to the long-lasting literature on time-

varying bond risk premia. A lot of papers rely on standard linear regression models
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and focus on proposing different predictors: Starting from Fama and Bliss (1987),

some papers use information within the term structure of interest rates to cap-

ture bond return variation (Campbell and Shiller (1991), Cochrane and Piazzesi

(2005), etc). Another series of papers use macroeconomic information to explore

predictability evidence as Campbell and Cochrane (1999) theorize that bond in-

vestors must be compensated for risks associated with macroeconomic activity.

Ludvigson and Ng (2009) employ methods of dynamic factor analysis to extract

information from a large panel of macroeconomic fundamentals and find that us-

ing some principal components as predictor can generate marked countercyclical

risk premia. Wright (2011) use international evidence to show that inflation risk

is an important component of bond risk premia as the largest risk premia declines

occurred in countries that made radical changes in monetary policy, such as intro-

ducing inflation targeting. Eriksen (2017) constructs a proxy of expected business

conditions using forward-looking survey forecasts and shows that the inclusion of

this proxy in standard predictive regressions improves forecast performance both

in and out of sample. Cieslak and Povala (2015) decompose yield curve into long-

run inflation trend, short-term monetary policy expectations, and a cycle/risk

premium factor, and the last significantly captures the movement of excess bond

returns. Besides, some recent papers propose other types of variables with differ-

ent theoretical support. Greenwood and Voyanos (2014) show empirically that the

supply and maturity structure of government debt alter the price of duration risk

and that the maturity-weighted-debt-to-GDP ratio is positively related to future
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bond returns. Hanson (2014) argue that when the risk tolerance of bond investors

is limited in the short run, fluctuations in mortgage-backed-securities duration

can generate significant variation in bond risk premia. Haddad and Sraer (2018)

proposes a measure of banks’ net exposure to interest rate risk and find that the

intermediary sector is compensated for bearing such risk.

Another stream of literature use Affine Term Structure Models (ATSM) to

model Treasury bond yields and expected returns. Starting from Duffee (2002)

and Dai and Singleton (2002), numerous papers have tried to study bond risk

premia under ATSM framework. In particular, Joslin, Priebsch, and Singleton

(2014) develop dynamic term structure models with unspanned macro risk and

the output and inflation risks accounted for a large portion of the variation in risk

premia. Besides, some studies try to use consumption-based asset pricing models

to estimate bond risk premia. Among these, Wachter (2006) proposes a habit-

formation model which accounts for many features of the nominal term structure

of interest rates. Bansal and Shaliastovich (2013) show that bond risk premia

rise with inflation risk and fall with real growth risk, then they use a long-run

risk model to account for bond return predictability and violation of uncovered

interest rate parity in currency market.

Our work also relates to the literature on how prior beliefs or certain eco-

nomic constraints can generate different asset pricing implications. Some previous

studies on return predictability allow for parameter uncertainty, but assume non-

informative priors (Stambaugh (1999), Barberis (2000), etc). Recently, Shanken
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and Tamayo (2012) considers a range of prior beliefs about the risk-return trade-

off and the degree of predictability. They find that these beliefs can significantly

impact the Bayesian investor’s economic gains. Pettenuzzo, Timmermann, and

Valkanov (2014) impose positive sign on equity risk premia and certain bounds on

conditional Sharpe ratio, and find that such constraints improve both statistical

and economic forecast performance. Because the Bayesian methodology can easily

incorporate prior beliefs on certain important parameters, it is widely used in the

above literature and in estimation of state-space models.

The rest of the paper is organized as follows. Section 3.2 and 3.3 describe

variables, models, and data we use. Section 3.4 presents full-sample evidence of

predictability. Section 3.5 discusses the link between our expected return estimates

and real economy. Section 3.6 concludes.

3.2 Models and Predictors

3.2.1 Predictive Regressions vs. Predictive Systems

We define the log-yield of an n-year bond as y
(n)
t ≡ − 1

n
p
(n)
t , where p

(n)
t ≡ lnP

(n)
t ,

and P
(n)
t is the nominal price of an n-year zero-coupon bond at time t. The forward

rate is f
(n−m,n)
t ≡ p

(n−m)
t − p(n)t , and the excess return of an n-year bond is the

return from buying an n-year bond at time t and selling it m-period later in excess

of the yield on a m-period T-bill rate at time t,

rx
(n)
t+m = p

(n−m)
t+m − p(n)t −m · y

(m)
t , (3.1)
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where m is the holding period measured in years and y
(m)
t is the annualized T-bill

rate. Throughout this paper, we assume n can be 2, 3, 4, or 5 years, and m is

one-month, so in the following part we replace rx
(n)
t+m with rx

(n)
t+1.

The standard way of testing bond return predictability uses the linear regres-

sion model:

rx
(n)
t+1 = α + βXt + εt+1, (3.2)

where Xt is the predetermined predictor, εt ∼ N(0, σ2
rx) is the error term with

a zero-mean normal distribution, and the coefficients α, β, and σrx are unknown

parameters. rx
(n)
t+1 represents the non-overlapping excess bond return with one-

month holding period.

Equation (3.2) seems too restrictive to assume a perfect linear relationship

between the conditional expected return and the predictor, as in reality predictors

are very likely to contain noise and therefore can not deliver the expected return

perfectly. Therefore Pastor and Stambaugh (2009) propose the following predictive

system to describe the relationship between the predictor and the expected return:

rx
(n)
t+1 = µt + ut+1 (3.3)

Xt+1 = (1− A)EX + AXt + vt+1 (3.4)

µt+1 = (1−B)Erx +Bµt + wt+1 (3.5)

where µt denotes the latent data generating process of conditional expected re-

turns. Both µt and the predictor Xt follow an AR(1) process. The noise terms
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{ut, vt, wt} are assumed to be distributed identically and independently across t

with a covariance Σ,

 ut
vt
wt

 ∼ N

 0
0
0

 ,Σ ≡
 σ2

u σuv σuw
σvu σ2

v σvw
σwu σwv σ2

w

 (3.6)

Under the predictive system framework, the predictor Xt can directly impact

the expected return µt through the correlation ρvw. Assuming we use one pre-

dictor, the predictor is “perfect” (i.e., the conditional expected return is a linear

function of this predictor) only when A = B and ρvw = ±1. The other covariance

parameter ρuw is of great importance for the whole system as we could incor-

porate some economically motivated beliefs through this parameter. Henceforth,

we follow Pastor and Stambaugh (2009) and refer to ρuw as the “correlation be-

tween expected and unexpected returns”, a slightly inaccurate but much simpler

description. A negative ρuw means that unanticipated positive shocks in expected

returns tend to be accompanied by unexpected negative returns, therefore asset

prices will fall when discount rates increase, which is exactly in line with real-life

observation. Pastor and Stambaugh argue that although stock returns are sub-

ject to both cash flow shocks and discount rate shocks, the latter will have the

dominant effect, therefore ρuw should be negative. But if we apply similar theory

to bond returns, ρuw is very likely to be close to -1, since the nominal cash flows

of Treasury bonds are fixed and the price variation is driven only by discount

rate shocks. In order to show how this intuition will affect our results, we follow

Pastor and Stambaugh and use three different priors for ρuw: a more informative
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prior which restricts ρuw to lie largely below -0.5, a less informative prior which

restricts ρuw to lie largely below 0, and a noninformative prior which does not

restrict the distribution of ρuw at all. We can interpret these priors as aggressive,

less aggressive, and noninformative. More details on the priors and estimation of

the predictive system will be shown in Section 3.4.1 and A.4.2.

Pastor and Stambaugh (2009) show that conditional expected returns from the

predictive system will be a weighted average of past returns and predictors,

E(rxt+1|It) = Erx +
∞∑
s=0

(λsεt−s + ϕ′svt−s), (3.7)

where εt = rt−E(rt|It−1), vt is the noise term in Equation (3.4), It = {rx(n)1:t , X1:t}

(rx
(n)
1:t and X1:t denote the time series of returns and predictors from time 1 to t ),

and λ and ϕ are functions of time and parameters in equations (3.3), (3.4), and

(3.5) (more details on these equations are in the Appendix). Intuitively, different

priors on ρuw will result in different conditional expected returns, and will further

influence evidence of predictability under different specifications.

3.2.2 Predictors

Empirical studies have proposed numerous predictors and we choose the most

representative ones with monthly data frequency. Fama and Bliss (1987) find

that the forward spread has predictive power for excess bond returns and that its

power increases with the forecasting horizon. Cochrane and Piazzesi (2005) show

that a combination of forward rates can capture more than 30% of the variation of

excess bond returns over the period from January 1964 to December 2003. Cieslak
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and Povala (2015) find that a risk-premium factor constructed from yield curve

decomposition can forecast bond returns across different maturities. Furthermore,

Ludvigson and Ng (2009) uncover principal components from a large set of fully

revised macroeconomic variables and show that these factors have predictive power

for future excess bond returns.

Therefore, we consider the following predictors: the forward spreads (FB) from

Fama and Bliss (1987), the forward rates factor (CP) from Cochrane and Piazzesi

(2005), the risk-premium/cycle factor (CF) from Cieslak and Povala (2015), and

Ludvigson and Ng (2009) predictor is constructed using a panel of macroeconomic

variables as Ghysels, Horan, and Moench (2018). In our full-sample analysis, we

use fully revised macroeconomic information to construct CF and LN predictor,

whereas in our out-of-sample tests we use strictly real-time information to avoid

hindsight problem and reconstruct CP, CF, and LN at each time. More details on

predictors will be discussed in Section 3.3.

The FB factor is the forward spread:

FB
(n,m)
t = f

(n−m,n)
t −m · y(m)

t . (3.8)

As our forecasting frequency is monthly, we have FB(2,1/12), FB(3,1/12), FB(4,1/12),

and FB(5,1/12) to forecast rx(2), rx(3), rx(4), and rx(5), respectively.

We construct the CP factor following Cochrane and Piazzesi (2005). At time

t+ 1, average excess bond return across maturities is regressed on a set of forward

71



rates at time t,

rxt+1 = ι0 + ιft + ut+1, (3.9)

where rxt+1 = 1
4

∑5
n=2 rx

(n)
t+1, and

ft = [f
(1−1/12,1)
t , f

(2−1/12,2)
t , f

(3−1/12,3)
t , f

(4−1/12,4)
t , f

(5−1/12,5)
t ]. Then the CP fac-

tor for time t+ 1 is constructed as

CPt+1 = ι̂0 + ι̂ft+1. (3.10)

We construct the cycle factor (CF) following Cieslak and Povala (2015). First

we compute trend inflation from: τCPIt = (1 − υ)
∑t−1

i=0 υ
iπt−i, where υ = 0.987,

πt = ln(CPIt) − ln(CPIt−1), and we truncate the sum at N = 120.1 Then we

regress yields from 1-year to 20-year maturity on trend inflation and label each

residual series as maturity-specific cycle c
(n)
t . We define c̄t ≡ (1/19)

∑20
i=2 c

(i)
t and

regress average excess bond return on c(1) and c̄,

rxt+1 = l0 + l1c
(1)
t + l2c̄t + ut+1, (3.11)

and the CF factor is computed as,

CFt+1 = l̂0 + l̂1c
(1)
t + l̂2c̄t. (3.12)

The LN factor is constructed from a large set of macroeconomic variables using

principal component analysis similar to that of Ludvigson and Ng (2009). We use

only the first principal component (PC) extracted from the macroeconomic panel,

1We choose values for the hyper-parameters N and υ, and use truncation following Cieslak
and Povala (2015). They show that the results are insensitive to the choice of these numbers.
Also, we follow them and use the full term structure in creating c̄.
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as Ghysels, Horan, and Moench (2018) and Huang, Jiang, and Tong (2018) point

out that the first PC has the strongest predictive power.2 We regress average

excess return on the first PC,

rxt+1 = γ0 + γP̂C1t + ut+1, (3.13)

and the LN predictor is computed as,

LNt+1 = γ̂0 + γ̂P̂C1t+1, (3.14)

In this paper we only consider single-predictor specifications. The benchmark

model for our tests is the expectations hypothesis (EH), where no predictor is

used, or β = 0 in Equation (3.2).

3.3 Data and Summary Statistics

Some prior studies (Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), etc)

use overlapping 12-month excess bond returns in monthly/quarterly forecasting

frequency. Recently, Bauer and Hamilton (2018) show that overlapping bond re-

turns will induce strong serial correlations in regression residuals, and may raise

additional econometric problems when predictors are persistent. Also, Gargano,

Pettenuzzo, and Timmermann (2017) argue that some dramatic swings in bond

returns may happen over short periods of time and non-overlapping returns can

better capture such short-term variations. Therefore, we construct monthly yields

2We also use Bayesian Information Criterion (BIC) to choose the optimal PC structure from
each macro data (Bai and Ng (2002), McCracken and Ng (2016)), but the produced predictors
generally do not deliver stronger evidence of predictability than the ones using only the first PC.
This subject may also raise future research questions on how to choose the optimal PC structure.
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on US zero-coupon bonds with maturity 2-, 3-, 4-, and 5-year using the updated

dataset of Gurkaynak, Sack, and Wright (2007, GSW henceforth).3 We consider

monthly non-overlapping excess returns, because Bauer and Hamilton (2018) show

that using 12-month overlapping returns can produce strong serial correlations in

error terms and may cause spurious regression results when predictors are also

persistent. Gargano, Pettenuzzo, and Timmermann (2017) argue that the infer-

ence problems pointed out by Bauer and Hamilton (2017) largely disappear when

using one-month nonoverlapping returns. Moreover, monthly non-overlapping re-

turns can better reflect short-term variations in bond risk premia, as some dra-

matic swings in bond prices occur over short periods of time lasting less than a

year (Gargano, Pettenuzzo, and Timmermann (2017)). Our full sample is from

April 1982 to December 2015. Numerous papers (Taylor (1999), Clarida, Gali,

and Gertler (2000), etc) point out that the Federal Reserve changed its monetary

policy during the early 1980s. Joslin, Priebsch, and Singleton (2014) choose the

starting date to be 1985 to make sure this is well after the implementation of new

operating procedures.

We use GSW dataset to construct FB and CP predictors. For CF predictor, we

first construct trend inflation using Consumer Price Index from FRED database

of St. Louis Fed, and we regress yields (also from GSW data) across the term

structure on trend inflation to get maturity specific cycle factor. Then we regress

3Previous studies such as Cieslak and Povala (2015) and Gargano, Pettenuzzo, and Timmer-
mann (2017) have discussed that different datasets can generate almost identical yields. We
refer more detailed discussions to those papers.
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average excess return on one-year cycle and mean cycle, and the fitted value is the

CF predictor. For LN, we select the most representative macroeconomic variables

as Ghysels, Horan, and Moench (2018) and extract the first principal component4.

Table B.8 presents summary statistics for full-sample excess bond returns and

predictors. Panel A shows that both mean and standard deviation of the monthly

excess returns increase with respect to maturity, whereas skewness, kurtosis, and

first-order autocorrelations decrease with maturity. The mean and standard devi-

ation for the 2-year return are about 0.19% and 0.63%, whereas they increase to

0.36% and 1.61% for the 5-year bond. The skewness and kurtosis for the 2-year

excess bond returns are 0.36 and 4.61, respectively, whereas they decrease to 0.03

and 3.52 for the 5-year returns. Gargano, Pettenuzzo, and Timmermann (2017)

show that the autocorrelations for 12-month overlapping returns can be over 0.93,

but the first-order autocorrelations of 1-month non-overlapping returns in the last

row of Panel A are much lower and range from 0.12 (5-year) to 0.22 (2-year).

Panel B presents full-sample summary statistics for the predictors: FB, CP,

CF, and LN predictors. We can see that the FB, CP, and CF factors are highly

persistent with first-order correlations over 0.9, whereas AC(1) for full-sample LN

predictor is 0.81. Panel C reports the correlation matrix of predictors. FB, CP,

and CF predictors are all positively correlated with each other and the coefficients

are above 0.37. These three predictors represent information from the yield curve.

LN is only slightly correlated with other predictors because this macroeconomic

4Ghysels, Horan, and Moench (2018) point out that these variables cover largely the same
economic categories as the original LN data.
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predictor contains information from outside of the yield curve.

3.4 Evidence of Predictability

3.4.1 Bayesian Estimation and Prior Beliefs

In our analysis, we employ the Gibbs sampling by Pastor and Stambaugh (2009)

to estimate the parameters and state in the predictive systems. We impose eco-

nomically motivated prior beliefs on the key parameter of interest, ρuw: we plot

the three priors in Figure C.4. The “more informative” prior is specified such that

the prior distribution of ρuw has nearly 99.5% of its mass below -0.73, with a mean

of -0.90. The “less informative” prior is specified such that the prior has nearly

99.5% of its mass below -0.043, with a mean of -0.65. The “noninformative” prior

is specified such that the prior is flat on most of the (-1, 1) range, with a mean

of 0. Note that in this paper whenever we say “more informative”, “less infor-

mative”, or “noninformative”, it is meant for the key parameter ρuw. Intuitively,

putting different priors on ρuw while keeping unrestricted priors for other parame-

ters in Σ requires a hyperparameter approach. Pastor and Stambaugh choose the

prior beliefs on ρuw according to findings from previous papers on equity research,

such as Campbell (1991). But intuitively the negative correlation should be more

evident for bond returns because bond prices are only subject to discount rate

shocks. Therefore, our choice of the more and less informative priors are slightly

more aggressive than the ones by Pastor and Stambaugh, just to account for the
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possibility of a more negative ρuw.5 We can see that the prior distributions for ρuv

and ρvw in Figure C.4 are largely noninformative between -1 and 1. In addition,

Pastor and Stambaugh point out that the expected return process is likely to be

persistent, we follow their practice and assume a slightly restrictive prior on B,

which is B ∼ N(0.99, 0.152). It would be interesting to see how information from

the data interacts with these prior distributions as the Bayesian agent will update

beliefs with new information. The prior distributions on all other parameters are

noninformative. More details are provided in the Appendix.

3.4.2 Empirical Results

We assess the degree of predictability by adjusted R-squared (R2). For the linear

regression model we regress the excess returns on the predictor; for the predictive

system, we regress excess returns on the expected return µt which is filtered by

Gibbs sampling. A positive R2 value suggests evidence of predictability and a

higher R2 indicates that more variance of returns is explained by the independent

variable. Pastor and Stambaugh (2009) compute the ratio of R2 from the system to

the R2 from the regression as V ar[E(µt|It)]/V ar[E(µt|X1:t)]. This ratio is always

above one because X1:t ⊂ It ≡ {rx(n)1:t , X1:t}. In other words, because the system

uses more information, the estimates of µt from the predictive system should be

at least as precise as the estimates from the linear regression model.

We report results in Panel A of Table B.9. In each block, we compare the R2

5We also perform tests using exactly the same prior distributions as in Pastor and Stambaugh
(2009). Our main results remain the same.
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values from predictive regressions and predictive systems. The predictive systems

are labelled by their prior beliefs about ρuw: whenever we say “More Informative”,

“Less Informative”, or “Noninformative”, it is meant for the key parameter ρuw.

We have some interesting findings. First, using linear regression models, FB

and CP produce the highest R2 values of all predictors, ranging from 1.93% for

the 5-year return to 4.34% for the 2-year return. This highlights the importance

of information from the term structure in explaining bond return variations. R2

values from LN are between 1.66% and 3.72%, confirming that bond returns are

linked to macroeconomic information. Also, R2 values from linear regression mod-

els decrease with return maturity, except for CF predictor.

Second, using the same predictor, predictive systems produce much higher

R2’s than the corresponding predictive regression. This is not surprising as the

estimates of expected returns from the predictive system should be at least as

precise as the OLS estimates. Comparing among predictors, CF generates the

highest R2 values using predictive systems, ranging from 8.99% for the 2-year

return to 5.89% for the 5-year return. Also, in general the more informative and

less informative priors can generate higher R2’s than the noninformative one. This

indicates that it is useful to incorporate prior beliefs about the negative correlation

between expected and unexpected returns.

In Panel B, we plot the correlation matrix of expected returns for the same

predictor under different predictive models. To save space, we report results for

3-year excess returns. Across different predictors, the highest correlation (ranging
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from 0.83 to 0.96) comes from estimates for more informative and less informative

systems, i.e., when the negative priors are effective. Other correlations are much

lower, and the correlation between expected return forecasts from linear regression

model and more informative predictive system is only between 0.07 and 0.48.

We plot the full-sample posterior distributions for ρuw, ρuv, and ρvw in Figure

C.4. In this example, FB is used to predict 3-Year excess returns. First, posterior

distributions of ρuw from the two informative priors are still largely negative. The

posterior distribution of ρuw from the noninformative specification is extremely

wide, and its majority lies between 0 and 1, showing a high degree of uncertainty

regarding this correlation. Second, consistent with Pastor and Stambaugh (2009),

the data should be quite informative about ρuv because both return and predic-

tor are observable. The three posterior distributions of ρuv are almost identical,

lying between -0.5 and -0.2. Third, we find very different estimates of ρvw. This

parameter describes how much the predictor can directly impact the expected re-

turn estimates: the more informative prior produces highest ρvw, indicating more

information in return process is used when we estimate expected returns. As

we use less aggressive priors, the center of the distribution moves towards zero.

These correlations are well below 1. This confirms that the predictor is noisy and

imperfectly correlated with µt.
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3.5 Link to Real Economy

In Figure C.5, we plot estimates of expected returns from different specifications.

We use the FB factor to predict 3-year returns. The shaded area represents NBER

recessions. The expected return estimates from the linear regression model seem

too volatile to be plausible and there are 3 counterintuitive spikes occurring in

expansions around 1987, 1992-1995 and 2013-2015. The bond risk premia from

predictive systems seem more reasonable as they increase in recessions. Some

previous theoretical work also point out that bond risk premia should move in a

countercyclical manner. The habit-formation model by Wachter (2006) show that

reduced surplus consumption in bad times will result in higher bond risk premia.

To evaluate the cyclical pattern of bond risk premia, we test its correlation with

several proxies of macroeconomic conditions. The proxies include the Chicago

Fed National Activity Index (CFNAI), the macroeconomic and financial uncer-

tainty indices from Jurado, Ludvigson, and Ng (2015). If bond risk premia are

countercyclical, they should have negative correlations with CFNAI, but positive

correlations with macro and financial uncertainty.

We report the results in Table B.10. To save space, we only show the results

for 2-year and 5-year returns. First, for FB, CP, and CF, almost all correlations

between macro variables and bond risk premia inferred from linear regression

models are close to 0. For example, linear regression models using CP and CF

predictors produce bond risk premia which are positively correlated with CFNAI.
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This is against theoretical prediction. Predictive systems produce bond risk premia

that are negatvie correlated with CFNAI and positively correlated with macro and

financial uncertainty. This indicates that the information in returns is useful in

producing such countercyclical dynamics in bond risk premia. Also, when the

sign is “correct” (indicating countercyclical risk premia), the absolute values of

correlations from predictive systems are generally higher than those from linear

regression models. Interestingly, the bond risk premia inferred using uninformative

predictive systems produce the highest absolute values of correlations. Next, in

the last block for LN predictor, signs of the correlations indicate that bond risk

premia are all countercyclical. The correlations inferred from linear regression

models have the strongest correlations with macro variables. This is not surprising

because the first principal component of macro variables is closely related to real

economic activity (Ludvigson and Ng (2009)). In sum, these results show that

consistent with the prediction of Wachter (2006), bond risk premia inferred by

predictive systems are indeed countercyclical, whereas some risk premia inferred

by linear regression models are not.

Next, several papers point out that inflation risk should affect bond returns.

Bansal and Shaliastovich (2013) use long-run risk model to show that bond risk

premia rise with uncertainty about expected inflation. Creal and Wu (2017) ex-

tend the habit model of Campbell and Cochrane (1999) and allow both price and

quantity of risk to be time-varying. They also point out that one important under-

lying risk is inflation risk. Wright (2011) use international evidence to show that
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inflation risk can be one crucial component in bond risk premia. To empirically

test this hypothesis, we use data from Survey of Professional Forecasters published

by Philadelphia Fed, and measure inflation uncertainty by cross-sectional forecast

dispersion (Wright (2011), Gargano, Pettenuzzo, and Timmermann (2017)). We

report the correlations between expected bond returns and inflation uncertainty in

the last 2 columns of Table B.10. All of the correlations under predictive systems

are significantly positive. When we use linear regression models and CF predictor,

bond risk premia are negatively correlated with inflation risk.

In sum, the bond risk premia inferred using predictive systems are counter-

cyclical and increase with inflation risk, and this is consistent with theoretical

implications.

3.6 Concluding Remarks

This paper studies bond return predictability in the framework of predictive sys-

tems. We take into account a wide range of predictors in the literature. Predic-

tive systems are designed to deal with imperfect predictors and can incorporate

prior beliefs about the potentially negative correlation between unexpected and

expected returns. We have some interesting findings. First, predictive systems

can produce much stronger evidence of predictability than linear regression mod-

els. Second, we investigate the link between expected bond returns and a set of

macroeconomic variables. We find that bond risk premia inferred using predictive

systems are countercyclical and increase with inflation risk. This is in line with
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the implications of several consumption-based asset pricing models, so predictive

systems can produce more economically reasonable bond risk premia, and several

macroeconomic variables are potential drivers of its variation.

We highly recommend the use of predictive systems to improve the evidence of

equity or bond return predictability. The standard linear regression model may be

too restrictive in assuming a perfect linear relationship between expected returns

and current value of the predictor, and sometimes it produces counterintuitive

bond risk premia.

There are a number of interesting subjects for future research. First, Cochrane

and Piazzesi (2005) uncover a common factor from 2-year to 5-year bond excess

returns. It would be interesting to identify similar factor structure from different

maturity bond returns under predictive systems, and compare it with the factor

based on linear regression models. Second, we do not consider stochastic volatility.

Some previous studies on equity return predictability (Johannes, Korteweg, and

Polson (2014)) have shown benefits of this feature. Third, it may be useful to

impose other economically motivated constraints on equity or bond risk premia.

For example, Pettenuzzo, Timmermann, and Valkanov (2014) find that ruling out

negative equity premium and bounding the conditional Sharpe ratio can improve

predictive accuracy. One may think of creating new models (e.g., nonlinear pre-

dictive systems) and algorithms to incorporate other features.
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Chapter 4

Investor Sentiment and Bond
Return Predictability
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4.1 Introduction

Equity and Treasury Bond markets are two extremely important targets for to-

day’s investors, economists, and policymakers. The bond market is closely linked

with monetary policy, and is expected to interact with the stock market. Any tiny

change of U.S. interest rate “will likely change the dynamics of investing in the

stock market”1. Several papers have tried to understand the correlation between

stock and government bond returns. For example, Baele, Bekaert, and Inghel-

brecht (2010) show that correlation between daily equity and bond returns could

vary over time between -0.60 and 0.60, and liquidity proxies play an important role

in explaining such correlation. Baker and Wurgler (2012) study the link between

government bonds and the cross section of stocks. They observe that stock market

sentiment and flights to quality are anecdotally associated over time during special

financial market episodes, such as during the recent financial crisis. Their results

suggest that sentiment, a predictor of the cross section of stock returns, predicts

excess government bond returns. This delivers evidence that the expected returns

of stocks and bonds are firmly linked.

However, the above observation of Baker and Wurgler (2012) is drawn on pure

in-sample tests. Recently, several studies focus on whether in-sample evidence of

bond return predictability could generate economic values for real-time investors.

Thornton and Valente (2012) find that using forward spreads as predictor does not

1Article by U.S. News Website. Simon Constable: How Rising Interest Rates Will Hurt
the Stock Market. https://money.usnews.com/investing/bonds/articles/2017-12-05/how-rising-
interest-rates-will-hurt-the-stock-market
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create higher utility compared with using expectations hypothesis model, which

indicates no predictability. Sarno, Schneider, and Wagner (2016) use affine term

structure models and reach similar conclusion. Although Gargano, Pettenuzzo,

and Timmermann (2017) find that in-sample evidence is linked with out-of-sample

statistical and economic evidence, their tests use fully revised and not real time

information. Fulop, Li, and Wan (2018) find that the strong statistical and eco-

nomic evidence from fully revised macroeconomic data vanishes when real-time

and survey-based information is used instead. So, up to now in the literature, in

general we do not observe evidence of out-of-sample bond return predictability.

In this paper, we test whether the stock market sentiment index can predict

government bond returns both in and out of sample. Traditional tests mainly

rely on linear regression model, but we also consider the predictive system model

proposed by Pastor and Stambaugh (2009). The predictive system was originally

used to estimate equity risk premia and was used recently by Wan (2018) to

evaluate bond risk premia. In real time analysis, we avoid hindsight problem and

use only information available in real time.

Our results show that we can identify some in-sample evidence of bond return

predictability. Using stock market sentiment as predictor, we can generate in-

sample R-squared of similar magnitude as when we use information from the yield

curve. For example, when we use predictive system model with more informative

priors, the R2 values generated using Fama and Bliss (1987) predictor range from

6.19% to 6.50% for 2-year to 5-year returns, and those generated using sentiment
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index range from 6.32% to 6.49%. However, when we switch to use only real-time

data, both statistical and economic metrics suggest that there is hardly any evi-

dence of predictability. Our additional robustness tests deliver similar observation.

Thus, how to prove the link between in-sample and out-of-sample predictability

still remains a challenge.

The rest of the paper is organized as follows. Section 4.2 presents variables,

predictive models and introduces our methodology. Section 4.3 presents the data

and summary statistics. Section 4.4 provides the main empirical results and Sec-

tion 4.5 concludes the paper.

4.2 Models and Methodology

4.2.1 Linear Regression Model

In the current literature, a lot of papers rely on traditional linear regression models

to test bond return predictability. We first define the log-yield of an n-year bond

as y
(n)
t ≡ − 1

n
p
(n)
t , where p

(n)
t = lnP

(n)
t , and P

(n)
t is the nominal price of an n-

year zero-coupon Treasury Bond at time t. The excess return of an n-year bond

is computed as follows: first we compute the difference between the return from

buying an n-year bond at time t and selling it one month later, then we deduct

the one-month risk free rate. In this paper, we assume the data frequency is one-

month, and maturity of the bond, n, can be 2, 3, 4, or 5 years. Then the linear

predictive model is:

r
(n)
t+1 = α + βXt + εt+1, (4.1)
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where Xt is a set of pre-determined predictors, εt ∼ N(0, σ2
x) is the error term.

Fama and Bliss (1987) find that the forward spread has predictive power for

excess bond returns. Fulop, Li, and Wan (2018) find some real time statistical

evidence using information in forward rates. Thus, we use the forward spreads

(FB) from Fama and Bliss (1987) as another predictor for comparison. The FB

factor is defined as: FB
(n,1/12)
t = f

(n−1/12,n)
t − 1/12 · y(1/12)t .

The sentiment index of Baker and Wurgler (2006) is based on the common

variation in several underlying proxies of sentiment: the closed-end fund discount,

the number of IPOs, average first-day returns on IPOs, the equity share in new

issues, and the dividend premium.2 We follow Baker and Wurgler and use the first

principal component (PC) of the above proxies to construct the sentiment index.

In out-of-sample analysis, we extract the PC using only information available in

real time and re-construct the sentiment index.

4.2.2 Predictive System Framework

In addition to linear regression model, we consider a model proposed by Pastor

and Stambaugh (2009), the predictive system framework. Pastor and Stambaugh

use this framework to estimate equity risk premia: it allows the predictor to be im-

perfectly correlated with expected returns. Under this framework, the prior beliefs

about the correlation between expected and unexpected returns can substantially

affect estimates of equity risk premia. Their results show that predictive systems

2According to the data published on Jeffrey Wurgler’s website, NYSE turnover is no longer
considered a proxy of sentiment, given the explosion of high-frequency trading and the migration
of trading.
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can deliver higher in-sample R-squared when we regress the realized returns on

expected returns estimated using predictive system. Recently, Wan (2018) uses

this framework in Treasury bond market, and finds that the bond risk premia are

more economically reasonable when we use predictive systems instead of linear

predictive models.

The predictive system is defined as follows:

r
(n)
t+1 = µt + ut+1 (4.2)

Xt+1 = (1− A)EX + AXt + vt+1 (4.3)

µt+1 = (1−B)Erx +Bµt + wt+1 (4.4)

where µt, a latent factor, represents the expected return process. Both the

predictor and µt follow AR(1) process. The error terms {ut, vt, wt} are assumed

to be distributed identically and independently across t with a covariance Σ:

 ut
vt
wt

 ∼ N

 0
0
0

 ,Σ ≡
 σ2

u σuv σuw
σvu σ2

v σvw
σwu σwv σ2

w


Under predictive systems, when the predictor delivers expected returns per-

fectly, the model will revert back to linear regression model. However, most pre-

dictors contain noise. In this case, the expected return process will be a weighted

average of both returns and predictors. Also, according to Pastor and Stambaugh

(2009), the correlation coefficient ρuw can substantially affect the estimates of

equity risk premia. A negative ρuw means that unexpected positive shocks to
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expected returns are likely to be accompanied by unexpected negative realized re-

turns, therefore asset prices decrease when discount rates rise, which is consistent

with real-life observation and financial theory. We refer to ρuw as the “correlation

between expected and unexpected returns”, which is slightly inaccurate but much

simpler. We follow Pastor and Stambaugh (2009) and assume three different priors

for ρuw. More details will be given in Section 4.2.3.

We only consider single-predictor predictive models. In the linear model, when

no predictor is used, we turn to the expectations hypothesis (EH) model. The EH

model assumes no predictability and serves as a benchmark for comparison with

the predictive models.

4.2.3 Estimation Methodology

In full sample analysis, we use the OLS method to estimate parameters from the

linear regression models. We use the MCMC sampler to estimate parameters

from predictive systems. We follow Pastor and Stambaugh (2009) and assume

three different sets of priors on the parameter ρuw. Similar choice of priors has

been adopted by Wan (2018). The more informative prior assumes the prior

distribution of ρuw is largely negative: it has 99.5% of its mass below -0.73 and a

mean of -0.90. The less informative prior assumes the prior distribution has nearly

99.5% of its mass below 0 and a mean of -0.65. The non informative prior assumes

almost a flat prior distribution of ρuw between -1 and 1. In this article, whenever

we use the terms, “more informative”, “less informative”, and “non informative”,
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it refers to ρuw.

In out-of-sample tests, we assume a Bayesian investor who updates her beliefs

about parameters as new information accummulates. For the linear model, we

employ the particle-based learning algorithm developed by Chopin (2002) and

used by Fulop, Li, and Wan (2018). To estimate the parameters in predictive

systems, we use the algorithm proposed by Wan (2018), which is a straightforward

combination of Gibbs sampling (e.g., Casella and George (1992)) and the learning

algorithm of Chopin (2002). In the first step of the algorithm, we use Gibbs

sampler to estimate the warming-up part of the data. Then in the out-of-sample

period, we update the parameters over time with new information. Whenever

we face particle degeneracy problems, we use several Gibbs steps to replenish the

particle set.

4.3 Data

Our sample period is from January 1966 to November 2015 (599 months in all).

We construct monthly returns on US zero-coupon Treasury bonds with maturity

2-, 3-, 4-, and 5-year using the dataset of Gurkaynak, Sack, and Wright (2007)3.

We use non-overlapping bond returns and the holding period is one month. Both

Bauer and Hamilton (2017) and Gargano, Pettenuzzo, and Timmermann (2017)

have discussed the use of non-overlapping returns: this can avoid problems such

as the strong serial correlated error terms, and non-overlapping returns can better

3The data is available at: http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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reflect short-term variation in bond prices.

Our FB factor is also constructed using the Gurkaynak, Sack, and Wright

(2007) data. We use the data published on Jeffrey Wurgler’s website to construct

the updated sentiment index. In Table B.14, we show the data summary statistics.

Both mean and standard deviation of bond returns increase with maturity. For

example, the mean excess return is about 0.121 percent with a standard devia-

tion of 0.857 for 2-year maturity, whereas it increases to 0.194% with a standard

deviation of 1.811 for 5-year maturity. Both skewness and kurtosis decrease with

maturity: the skewness and kurtosis for 2-year bond return are 0.493 and 14.956,

respectively, and they increase to -0.003 and 6.407 for the 5-year return. The

first-order autocorrelations of returns are quite low, ranging from 0.115 to 0.167.

The mean and standard deviation for FB factor increase with bond maturity. All

skewness for FB factor is below 0, whereas the skewness of sentiment index (ST,

henceforth) is positive. The FB and ST factors are highly persistent: the first-

order autocorrelation coefficients are all very close to 1, ranging from 0.878 to

0.986. We also computed the correlations between different predictor series. The

correlations among FB predictors are very close to 1, ranging from 0.86 to 0.99,

whereas correlation between FB and ST ranges from 0.05 to 0.12. This indicates

that the information sets contained within the two predictors are quite different.

We also plot the updated sentiment index in Figure C.9. Although in this

updated version share turnover is no longer considered as a proxy of sentiment,

it experiences very similar variation as the originial index in Baker and Wurgler
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(2006). ST shows a spike around 1968-1969, then decreases until around 1975.

Then it increases from mid 1970s to mid 1980s. Baker and Wurgler (2006) suggest

this may be associated with Reagan-era optimism. Then around 2001, it reaches

another spike around the dot-com bubble. Quite surprisingly, sentiment does not

capture the recent financial crisis. Similar figure has been shown and discussed by

Huang, Jiang, Tu, and Zhou (2015).

4.4 Empirical Results

4.4.1 In-Sample Evidence

Our measure for in-sample evidence of bond return predictability is the adjusted R-

squared (R2). The R2 for linear regression model is straightforwardly computed by

regressing excess returns on the predictor. For the predictive systems, we regress

excess returns on the filtered expected returns, µt. We report the R2 values in

Table B.15. First, in the upper panel, we show the results first for FB factor. We

can see that the predictive systems generate higher R2 values than linear regression

models, and when we impose informative priors on the parameter of interest, ρuw,

we obtain higher R2 values. The predictive systems with more informative priors

generate highest R2 values in all maturities, ranging from 6.19% to 6.50%, while

the linear predictive models generate R2 values between 1.66% and 2.13%. This

suggests that it is useful to combine information from the excess bond return

series when we estimate expected returns. Second, when we use sentiment index

as predictor, R2 values from the linear models are slightly smaller than those based
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on FB factor. But when we use the predictive system framework, the R2 values

from using ST factor are comparable to those based on FB factor. For example,

when the model is predictive system with less informative priors, the R2 values

based on FB factor range from 3.73% to 4.44%, whereas the R2 values from using

ST factor range from 3.86% to 4.07%.

To sum up, we can observe some in-sample evidence of bond return predictabil-

ity when we use the investor sentiment index as predictor, and such evidence of

stronger under predictive systems.

4.4.2 Real-Time Evidence

In the out-of-sample analysis, we assume a Bayesian agent who updates her beliefs

about economic variables over time. The key requirement is that we need to avoid

hindsight problem and can only rely on information available up to each time

point. We estimate the predicted expected returns E(rt+1|It), where It denotes

information only available at time t. Our full sample is from January 1966 to

November 2015, and we use the first twenty years’ data (from January 1966 to

December 1985) as training sample, so the second part serves as the out of sample

period.

Our statistical measure for real time bond return predictability is the classic

out-of-sample R-squared, R2
OS, from Campbell and Thompson (2008):

R2
OS = 1− SSEi(T1, T )

SSEEH(T1, T )
, (4.5)

where T1 and T denote the beginning and end of the out-of-sample period, and
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SSEi and SSEEH denote the sum of squared forecast errors from certain predic-

tive model i and the EH benchmark. We use the Clark and West (2007) statistic to

evaluate the significance of R2
OS. A positive and significant R2

OS suggests evidence

of real time predictability.

We show the R2
OS values in the upper panel of Table B.16. First, only 3 R2

OS

values based on FB-Linear and 1 R2
OS value based on FB-Less are positive and

weakly significant. All the other values based on FB and ST are negative or close

to 0, ranging from -1.44% to 0.78%. Second, although previously we observe using

predictive systems can generate higher in-sample R-squared than linear regression

models, in real time tests the R2
OS values from the two models are in similar

magnitude.

Next, we evaluate whether there exists economic evidence of predictability. We

assume a real-time Bayesian investor who updates her investment decisions with

respect to new information. She constructs a portfolio with risk-free asset and

long term bond, and maximizes her expected utility at each time point in the

out of sample. We assume she has a power utility function and a risk aversion

of 5. Similar practice has been adopted by Gargano, Pettenuzzo, and Timmer-

mann (2017) and Fulop, Li, and Wan (2018), among others. We follow Campbell

and Thompson (2008), and transform the realized utility into certainty equiva-

lent returns (CERs). We use Diebold-Mariano measure to test the significance

of CER. A positive and significant CER suggests evidence of real-time economic

predictability.
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The CER values are shown in the lower panel of Table B.16. We can see that

no matter which predictor or model is used, non of the CERs is significant. All

CER values are quite close to 0, ranging from -0.80% to 0.65%. Clearly there is a

sharp difference between in-sample and real-time evidence of predictability. This

is consistent with the findings of a lot of previous papers, such as Thornton and

Valente (2012), Fulop, Li, and Wan (2018), etc.

To sum up, although we can identify some in-sample evidence of predictability,

we do not observe any statistical or economic evidence when we use only real time

information.

4.4.3 Robustness Tests

In this section, we conduct several robustness tests. First, we use different risk

aversion coefficients for the Bayesian agent in the asset allocation exercise. Pre-

viously we choose 5 as risk aversion coefficient, in this robustness test we choose

it to be 3 or 10. We report the computed CERs in Table B.17. We can see that

only one CER value is positive and mildly significant, and all other values are

insignificant and close to 0, ranging from -0.88% to 0.94%.

Next, we change prior distributions of ρuw when we use predictive systems.

Also, we can modify the prior distribution for coefficients in the linear predictive

models according to Fulop, Li, and Wan (2018). However, non of these options

signficantly change our results. Thus, our main observation remains the same

that there is hardly any out-of-sample evidence of predictability using investor
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sentiment as predictor.

4.5 Concluding Remarks

The influential paper from Baker and Wurgler (2006, 2007) highlights how equity

market investor sentiment affects the cross-section of stock returns. Their follow-

up paper (Baker and Wurgler (2012)) suggests that investor sentiment also predicts

excess bond returns. However, their results are based on pure in-sample tests.

Recently, there is a trend in the literature to test whether previously found in-

sample evidence of bond return predictability can turn into real time statistical

evidence and economic value (Thornton and Valente (2012), Sarno, Schneider, and

Wagner (2016), Gargano, Pettenuzzo, and Timmermann (2017), etc). Thus, we

assume a Bayesian investor and updates her beliefs in real time to accommodate

for new information. We also consider both the traditional linear regression model

and the predictive system framework (Pastor and Stambaugh (2009)) to capture

the variation in expected bond returns.

Our results show that although we can identify some in-sample evidence based

on sentiment index, in real time exercise this hardly generates statistical evidence

or economic value for investors. Consistent with a lot of previous literature (Thorn-

ton and Valente (2012), Fulop, Li, and Wan (2018), etc), how to identify real-time

statistical and economic predictability still remains a challenge.

There are a few interesting directions for future research. First, we may con-

sider stochastic volatility in the predictive models. Some previous studies (e.g.,
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Johannes, Korteweg, and Polson (2014)) have shown it is worthy of adding this

feature in the model. Second, in the original paper by Baker and Wurgler (2006),

they point out some regime-switching feature of returns with respect to sentiment

index. They show that when beginning-of-period sentiment is low, subsequent

returns are high for small stocks, young stocks, high volatility stocks, etc, whereas

these stocks earn low subsequent returns when sentiment is high. Thus, it may

be useful to introduce regime-switching feature into predictive models when we

use the sentiment as predictor. Third, we may consider to use the Partial Least

Squares method by Wold (1966) and extended by Kelly and Pruitt (2015) to

denoise the sentiment index. The paper by Huang, Jiang, Tu, and Zhou (2015)

construct a modified sentiment measure using similar method to predict the aggre-

gate stock return. Last, it may be interesting to use other stock market predictors

to capture the variation in bond returns (e.g., Goyal and Welch (2008)). The

relationship between the stock and bond markets is extremely important to in-

vestors, economists, and policymakers. However, this relationship may be also

time-varying. Several papers have tried to explain the decoupling of the two mar-

kets, but no consensus exists so far. We expect to see more papers on this topic.
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Appendix A

Appendix for Essay Two:
Predictive Systems, Real
Economy, and Bond Risk Premia
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A.1 Prior Distributions for Predictive Systems

Define the predictive system as

rt+1 = µt + ut+1 (A.1)

Xt+1 = (1− A)EX + AXt + vt+1 (A.2)

µt+1 = (1−B)Er +Bµt + wt+1 (A.3)

(Note that we define rt as excess return) ut
vt
wt

 ∼ N

 0
0
0

 ,Σ ≡
 σ2

u σuv σuw
σvu σ2

v σvw
σwu σwv σ2

w

 .
 (A.4)

Our choice of priors on (Ex, A,Er, B) is similar as that of Pastor and Stam-

baugh (2009). The four priors are independent. We restrict both A and B in be-

tween (−1, 1). We choose a slightly informative prior for B, B ∼ N(0.99, 0.152),

to account for the concept that µ will be persistent. A, Er, and Ex all follow

normal distribution with large standard deviations.

We divide the covariance matrix Σ into two parts: Σ11 ≡
[
σ2
u σuw

σwu σ2
w

]
, and

the rest of elements Σ(v) ≡ (σ2
v , σuv, σvw). We choose informative prior for Σ11

but noninformative one for Σ(v). We follow Pastor and Stambaugh (2009) and

construct a hypothetical sample in which there are T2 observations of (u,w) but

only T1 � T2 observations of v. We choose T1 to be 4 and T2 to be one fifth of

the full sample size.

We follow Pastor and Stambaugh (2009) and choose an inverted Wishart prior
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for Σ11, Σ11 ∼ IW (T2Σ̂11, T2−K) and the prior mean is E(Σ11) = Σ̂11(T2/T2− 4)

as we use one predictor. Denote Σ̂11 = [M11 M12;M21 M22]. We choose elements

of Σ11 such that the prior mean of σ2
u equals 95% of the sample variance of bond

excess returns. The prior mean of σ2
w is chosen to set the variance of µt equal

5% of the sample variance of bond excess returns, combine with a B of 0.97.

To set priors on ρuw, we assume that M12 for the more informative prior case

follows a uniform distribution on the interval (−0.95
√
M11M22,−0.87

√
M11M22);

M12 for the less informative prior case follows a uniform distribution on the in-

terval (−0.95
√
M11M22,−0.35

√
M11M22); M12 for the noninformative prior case

follows a uniform distribution on the interval (−0.95
√
M11M22, 0.95

√
M11M22).

Our choice of more and less informative priors are slightly more aggressive than

the choice of Pastor and Stambaugh, to account for the possibility that there may

be a more negative correlation between expected and unexpected returns for Trea-

sury bonds.

The priors for elements in Σ(v) are noninformative as Pastor and Stambaugh

(2009). In particular, we run a regression of vt on (ut, wt) with zero intercept.

That is, C = [σuv σvw]Σ−111 , and Ω = σ2
v −CΣ11C

′. We assume Ω ∼ IW (T1Ω1, T1)

and vec(C)|Ω ∼ N(ĉ1,Ω⊗ (X ′1X1)
−1). We choose the matrix X ′1X1 to be a small

positive number times the identity matrix, such that the prior variance of C is

large. Thus, the choices of Ω1, ĉ1 are inconsequential.
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A.2 Bayesian Estimation of Predictive Systems

A.2.1 Full-Sample Estimation

The full sample estimation of predictive systems is based on Gibbs sampling, a

Markov Chain Monte Carlo (MCMC) method (Casella and George (1992)). We

sample parameters from their prior distritions. Then we draw the parameters (Er,

A, Ex, B, Σ) conditional on current draws of µt, then we use the forward filtering,

backward sampling algorithm (Carter and Kohn (1994)) to draw the series of µt

conditional on current draws of (Er, A, Ex, B, Σ).

A.2.2 Real-Time Estimation

In the out-of-sample estimation, we employ a new algorithm to combine Gibbs

sampling and sequential Monte Carlo method by Chopin (2002). In the initial

warm-up stage, we use exactly the same options of Gibbs sampling as in full sample

estimation. Then the output of parameter distribution will serve as priors for the

learning stage, which will greatly speed up the estimation. For each parameter

set (Er, A, Ex, B, Σ), we set equal initial weight and run a Kalman filter as

the system is linear. We update the weights of the parameter sets according to

the estimated likelihood. If we do not enrich the parameter population, this will

lead to a gradual deterioration of the performance of the algorithm. To solve

this, whenever the effective sample size is below a fixed threshold, we turn to

the resample-move step and use a few Gibbs steps to rejuvenate the parameter

population. Note that in the move step, we still alternate between drawing states
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conditional on parameters and drawing parameters conditional on states.

A.3 Expected Returns and Past Values

Define the predictive system as

rt+1 = µt + ut+1 (A.5)

Xt+1 = (1− A)EX + AXt + vt+1 (A.6)

µt+1 = (1−B)Er +Bµt + wt+1 (A.7)

(Note that we define rt as excess return) ut
vt
wt

 ∼ N

 0
0
0

 ,Σ ≡
 σ2

u σuv σuw
σvu σ2

v σvw
σwu σwv σ2

w

 .
 (A.8)

We use similar notations as in the Appendix of Pastor and Stambaugh (2009). By

the standard methodology of Kalman filtering, define

zt = [rt xt]
′, Ez = [Er Ex]

′, Vzz =

[
Vrr Vrx
Vxr Vxx

]
, Vzµ = [Vrµ Vxµ]′

at = E(µt|Dt−1), bt = E(µt|Dt), et = E(zt|µt, Dt−1)

ft = E(zt|Dt−1), Pt = V ar(µt|Dt−1), Qt = V ar(µt|Dt)
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Rt = V ar(zt|µt, Dt−1), St = V ar(zt|Dt−1), Gt = Cov(zt, µ
′
t|Dt−1)

Then we can express the vector of conditional expected returns, bt = E(µt|Dt), as

a function of past returns and predictors. Define

[Mt Nt] ≡ Pt(Pt +G′tR
−1
t Gt)

−1G′tR
−1
t = G′tS

−1
t ,

then for t > 1, bt = (1−B)Er + (B −M)bt−1 +Mtrt +Ntvt.

For t=1, b1−Er = M1(r1− b0) +N1v1, where v1 is innovation in the predictor.

If we repeat substitution, then

bt = Er +
∑t

s=1 Λs(rs − bs−1) +
∑t

s=1 Φsvs, where Λs = Bt−sMs, Φs = Bt−sNs.

Thus, the conditional expected return can be seen as a linear combination of

past return forecast errors and past innovations in the predictors.
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A.4 Out-of-Sample Predictability

A.4.1 Real-Time Data

In out-of-sample tests, we take into account publication delay and data revisions of

macroeconomic variables, so at each month t we can only obtain the observation of

each macroeconomic variable for month t−1 or even month t−2. We reconstruct

CP, CF, and LN using real-time information at each time. Currently there are

two definitions of “real-time” macroeconomic information in the literature, and we

define two LN-type predictors accordingly. LNHB (“HB” stands for historical best

information) is constructed using the first principal component of the most recently

published macroeconomic data. Similar notion of real-time data is adopted by

Eriksen (2017) and Giacoletti, Laursen, and Singleton (2018). LNFR (“FR” stands

for first releases) is constructed using the first principal component of the first

released macroeconomic information, as Ghysels, Horan, and Moench (2018).

A.4.2 Real-Time Learning

In the out-of-sample analysis, we assume a real-time Bayesian investor who faces

the same belief updating problem as the econometrician (Hansen (2007)). She

needs to learn about parameters, latent states, and models over time when new ob-

servation arrives. The information set includes the history of excess bond returns

and predictors, It = {rx(n)1:t , X1:t}. X1:t|t denotes the time series of the predictor

from time 1 to t based on information only available up to time t and suggests

that our predictors are updated in real time. At each time t, Bayesian learning
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aims to pin down the joint posterior distribution of the unknown parameters, Θ,

and the hidden state, µt, with observation It and model Mi,

p(µt,Θ|It,Mi) = p(µt|Θ, I1:t,Mi)p(Θ|It,Mi), (A.9)

where p(µt|It,Θ,Mi) solves the state filtering problem, and p(Θ|It,Mi) addresses

the parameter learning issue.

For the linear predictive model of Equation (3.2), Bayesian learning is straight-

forward with the particle-based learning algorithm proposed by Chopin (2002).

Similar learning algorithm is used by Fulop, Li, and Wan (2018) in comparing

revised and real-time macro predictors. When we estimate the predictive system

in real time, we face problems such as multi-dimensional learning and restricted

prior beliefs. To take into account both the parameter learning and state fil-

tering over time, we design a new learning algorithm, which takes advantage of

both traditional Gibbs sampling (e.g., Casella and George (1992)) and sequential

learning algorithm (Chopin (2002)). It easily accounts for the prior distribution

but requires much less computational effort than simply repeating Gibbs sam-

pling at each time. In the first/warm-up/in-sample stage of the algorithm, Gibbs

sampling is used to pin down the distributions of parameters and states, under

different prior beliefs of certain parameters. Then the output (the posterior dis-

tribution of p(Θ|It,Mi)) can serve as a prior for the second/learning stage. At

each time of the learning period, we use the parallel sequential learning method

to update the weight of each parameter set from its distribution. Whenever we
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face sample degeneracy problem (i.e., the efficient population size is below a cer-

tain threshold), we turn to the resample-move step and use several Gibbs steps

to replenish the parameter population. In the warm-up stage, we use same priors

and hyper-parameters as in Section 3.4.1.

To illustrate the real-time learning process, we first plot some parameter learn-

ing results from the predictive system in Figure C.6. In this example, the CP

predictor is used to forecast 5-year excess returns. Our out-of-sample learning

starts at April 1994. Note that in the Bayesian algorithm, we use the output of

Gibbs sampling as prior in the learning stage, so the confidence intervals in 1994

are already quite tight. First, we observe evidence of time-varying parameters. All

three variance parameters decrease over time. Variance of unanticipated shocks to

the predictor (σ2
v) decreases from over 0.03 to under 0.01. The AR(1) coefficient

of the predictor (A) gradually increases from around 0.82 to above 0.9, whereas

B, Erx, and Ex do not show much variation. Second, some parameters are easier

to learn than the others. The confidence intervals for σ2
v and A converge as more

information accumulates, whereas the confidence intervals for other parameters do

not tighten up over time.

In Figure C.7 we plot the sequential learning results for the key parameter, ρuw.

Confidence interval from the noninformative prior is the largest among the three

panels, and it shrinks when we switch to more aggressive priors. The mean of ρuw

from the noninformative prior is negative at the beginning and increases to nearly

0.5 then decreases. The distributions of ρuw from the more and the less informative
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priors show very slight variation over time. Different priors will certainly impact

the estimates of conditional expected returns (µt). As an example, in Figure

C.8 we plot the real-time forecasts of conditional expected returns from different

specifications. The estimates from the linear regression model seem extremely

volatile, and estimates from predictive systems are much smoother and more stable

over time. The more informative prior provides the most persistent estimates of

expected returns, and the degree of smoothing decreases as we use less aggressive

priors.

Thanks to the learning algorithm, we obtain the predictive distribution of the

bond returns at each time,

p(rx
(n)
t+1|It,Mi) =

∫
p(rx

(n)
t+1|µt,Θ, It,Mi)p(µt|Θ, It,Mi)p(Θ|It,Mi)dµtdΘ.

(A.10)

We will use this distribution to compare statistical and economic performances of

different models.

A.4.3 Statistical Evidence

In the out-of-sample analysis, given the full predictive distribution of excess re-

turns, we can use the posterior mean as the point forecast of each model at each

time t. Campbell and Thompson (2008) define the statistical performance mea-

sure, the out-of-sample R2 (R2
OS), as

R2
OS = 1− SSEi(T0, T )

SSEEH(T0, T )
, (A.11)
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where T0 and T denote the beginning and end of the out-of-sample period, and

SSEi and SSEEH denote the sum of squared forecast errors from the predictive

model and the EH benchmark. The R2
OS is analogous to the standard R2 and

a positive R2
OS suggests evidence of return predictability. We use the statistic

developed by Clark and West (2007) to evaluate the significance of R2
OS.

Our full sample is from April 1982 to December 2015, and we choose the first

12 years to be the warm-up stage for the learning algorithm, so out-of-sample

period starts in April 1994. We report the statistical evidence of predictability in

Panel A of Table B.11. First, for the linear regression models, FB and CF can

generate positive and significant R2
OS, and the evidence for the 5-year return is

only weakly significant. R2
OS’s for CP and LN predictors are all negative. Second,

the more complex predictive systems generally outperform the simpler linear re-

gression models, except for CF with long maturity returns. R2
OS’s from predictive

systems in forecasting 2-year returns are all significant, but their values and level

of significance gradually decrease as maturity increases. This pattern is similar to

what we find from the in-sample analysis. R2
OS’s from FB and CP using predictive

systems are all positive. This confirms the advantage of using predictive systems,

and if we use simple linear regression models the predictive ability of predictors

such as CP would have been ignored. Third, comparing within the systems, the

noninformative predictive system produces the highest R2
OS in the short maturity,

but its performance deteriorates with maturity and is gradually caught up by the

more and less informative systems. Last, of all predictors, FB produces the highest
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R2
OS and those values are significant for different maturities. This again highlights

the importance of information from the term structure in explaining bond return

variations.

In sum, the results from Panel A prove some statistical evidence of out-of-

sample predictability and underline the importance of using predictive systems.

However, the real-time evidence is weaker than in full-sample tests. This is con-

sistent with the findings of Cieslak and Povala (2015), Haddad and Sraer (2018),

and Farmer, Schmidt, and Timmermann (2018). Next we investigate whether such

statistical evidence can translate into economic gains for the Bayesian investor.

A.4.4 Economic Evidence

To evaluate the out-of-sample economic predictability, we consider the asset allo-

cation decisions of a real-time Bayesian investor who selects optimal weights for a

risk-free one-month interest rate and a risky bond with maturity n, to maximize

her expected utility of the next period portfolio value. Following the practices of

Gargano, Pettenuzzo, and Timmermann (2017) and Fulop, Li, and Wan (2018), we

assume a power-utility and transform the investor’s realized utility into certainty

equivalent returns (CERs). A positive and significant CER indicates evidence of

economic predictability.

Panel B of Table B.11 presents CERs from different specifications. We set

the risk aversion to be 5 and restrict the investment weights on risk-free rate and

long-term bond yield in between -1 and 2 to avoid extreme investments (Gargano,

110



Pettenuzzo, and Timmermann (2017)). We find that no matter which predictor

is used and which maturity is considered, non of the CERs is significant. All the

values are either negative or close to 0. Predictive systems using FB, CP, and

LNFR on average generate higher CERs than the corresponding linear regression

model, whereas systems using CF underform.

The above results clearly indicate a gap between statistical and economic met-

rics of predictive performance. Similar gap is also identified by Goyal and Welch

(2008), Thornton and Valente (2012) and Sarno, Schneider, and Wagner (2016).

In addition, in some previous out-of-sample results, we observe that B (the

AR(1) coefficient of the expected returns) can drop to below 0.9. Ferson, Sarkissian,

and Simin (2003) discuss several reasons to believe µt for equity returns is persis-

tent, and we think the logic could be analogous for bond returns. Therefore we

force the AR(1) coefficient of µt, B, to be 0.95 in the predictive systems, and test

whether this will improve the results. In another setting, we assume a higher risk

aversion coefficient (γ = 10) for the Bayesian investor. However, unreported re-

sults from these tests do not significantly improve the out-of-sample performance.

A.4.5 Link to Real Economy: Real-Time Analysis

In this section, we study how real-time bond excess return forecasts relate to

macroeconomic variables. First, we report the correlations between out-of-sample

expected return forecasts and macroeconomic condition proxies in Table B.12. For

FB, CP, and CF predictors, we find many more procyclical risk premia from both
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linear regression model and predictive systems than in the full-sample analysis.

For example, using FB and more informative predictive system now produces pos-

itive correlation with CFNAI and negative correlation with macro uncertainty.

For the two real-time LN predictors, linear regression models still produce sig-

nificantly countercyclical risk premia. This is not surprising because the first

principal component is closely linked to real growth. But using LN and predictive

systems can produce some procyclical risk premia (e.g., predictive system with

more informative prior). One might think that the difference between full-sample

and real-time results are due to the choice of sample period (as the out-of-sample

period is the latter part of full-sample), but when we test correlations between

macro conditions and expected returns during the same period (from April 1994

to December 2015), we still observe similar patterns. Second, we compute the

correlations between out-of-sample expected return forecasts and inflation uncer-

tainty. We find more negative values than in full-sample tests, and those positive

values are generally smaller and less significant.

In sum, the above results show that real-time interactions between bond risk

premia and macro variables are weaker. Bond risk premia estimated using full

sample information may be more accurate.

A.4.6 Model Combinations

In addition to parameter uncertainty and state uncertainty, the Bayesian investor

faces model uncertainty. Gargano, Pettenuzzo, and Timmermann (2017) argue
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that model combination can stabilize forecasts relative to those from individual

models, and work similarly as a diversification strategy to improve portfolio perfor-

mance. In this section, we introduce different schemes to combine the predictive

power of individual models, including predictive regressions and predictive sys-

tems.

We use the same combination schemes as Fulop, Li, and Wan (2018): Se-

quential Best Model (SBM) chooses the single model with the largest marginal

likelihood at each time t; Bayesian Model Averaging (BMA) distributes weights

according to the marginal likelihood of each model; Equal-weighted Model Aver-

aging (EMA) assumes equal weight on each model; Utility-based Model Averaing

(UMA) distributes weights according to realized utility.

Table B.13 presents the statistical and economic results for the combination

schemes. We compare each scheme with the no-predictability EH model. In Panel

A, R2
OS’s are all positive and significant, but the magnitude of R2

OS and level of

significance decrease with return maturity. Panels B presents the CERs. We test

the economic performance using a risk aversion of 5. Although we observe some

positive CERs, they are all insignificant and close to 0.
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Table B.1: The Prior Distributions

Set One Set Two

α N(0, 10) N(0, 10)

β N(0, 10) N(0, 10)

σrx log(σrx) ∼ N(-2, 5) Truncated Normal: N(0, 10), σrx > 0

µ N(0, 5) N(0, 5)

φ Truncated Normal: N(0, 5), φ ∈(-1, 1) Truncated Normal: N(0, 5), φ ∈(-1, 1)

σh log(σh) ∼ N(-2, 5) Truncated Normal: N(0, 15), σh > 0

The table presents two sets of prior distributions for parameters in different models. The linear

model is given in Equation (3.2). Parameters for the linear models are: α, β, and σrx The

stochastic volatility model is given in Equations (2.5) and (2.6). Parameters for the SV models

are: α, β, µ, φ, and σh.
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Table B.2: Full-Sample Summary Statistics

Panel A: Excess Bond Returns

2-Year 3-Year 4-Year 5-Year

Mean 1.321 1.642 1.902 2.114

St.dev 2.822 3.960 4.992 5.979

Skew 0.550 0.234 0.071 0.023

Kurt 16.384 11.588 8.468 6.959

AC(1) 0.167 0.149 0.132 0.116

Panel B: Predictors

FB2 FB3 FB4 FB5 CP LN LNRT1 LNRT2 LNRT3 LNSF

Mean 0.104 0.128 0.147 0.162 0.146 0.146 0.146 0.146 0.270 0.428

St.dev 0.095 0.110 0.122 0.132 0.197 0.265 0.107 0.092 0.060 0.535

Skew 0.015 -0.233 -0.265 -0.212 0.668 0.402 -1.372 1.254 1.042 -1.622

Kurt 4.016 3.642 3.283 2.965 4.466 3.469 9.876 6.639 5.935 6.398

AC(1) 0.880 0.899 0.913 0.923 0.703 0.471 0.542 0.718 0.711 0.896

This table presents the summary statistics of bond excess returns and full-sample predictors.

Panel A reports the mean, standard deviation, skewness, kurtosis, and first-order autocorrela-

tion of annualized monthly excess returns (in percentage). Panel B shows the mean, standard

deviation, skewness, kurtosis, and first-order autocorrelation of the predictors. Full-sample data

is from January 1962 to September 2017. For LNRT3, the full sample is from April 1982 to

December 2015, and for LNSF, the full sample is from 1968:Q4 to 2014:Q4.
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Table B.3: Out-of-Sample Predictability: Forward Rates

A. R2
OS C. CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

FB-CV −0.17 1.42∗ 2.45∗∗ 2.72∗∗ −0.96 −0.80 0.05 0.95

FB-SV −2.17 0.25 1.86∗ 2.81∗∗ −1.03 −0.89 −0.04 0.87

CP-CV 0.39∗ 0.59∗ 0.48 1.42 −0.68 −0.84 −0.59 0.00

CP-SV 1.97∗∗ 1.08∗ 1.70 2.15∗ −0.06 −0.28 0.75 1.40

B. CER: γ = 3 D. CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

FB-CV −0.97 −1.24 −0.96 −0.22 −0.31 0.48 1.08 1.22

FB-SV −1.07 −1.32 −1.17 −0.36 −0.35 0.35 0.70 0.87

CP-CV −0.69 −1.15 −1.74 −1.14 −0.12 0.11 0.07 0.24

CP-SV −0.01 −0.61 −0.52 0.48 0.40 0.74 1.17 1.10

This table presents the out-of-sample R-squared, R2
OS , and annualized CERs (in percentage) for

the predictive models based on FB and CP. The portfolio weight is restricted in between -1 and

2. The statistical significance of R2
OS is measured using the Clark and West (2007) statistic, and

the statistical significance of CERs is measured by the one-sided Diebold-Mariano statistic. *

denotes significance at 10% level, ** significance at 5% level, and *** significance at 1% level.

The out-of-sample period is from August 1999 to September 2017.
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Table B.4: Out-of-Sample Predictability: Macro Factors

A. R2
OS C. CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

LN-CV −13.40 −4.44 −0.61 0.64∗ 0.24 0.91 2.19∗∗∗ 2.90∗∗∗
LN-SV 3.08∗∗ 3.74∗∗ 3.83∗∗ 3.62∗∗ 0.24 0.89 2.01∗∗ 2.55∗∗
LNRT1-CV −38.04 −25.25 −17.35 −12.03 −0.38 −0.47 0.06 0.17

LNRT1-SV −15.11 −22.45 −19.05 −10.28 −0.66 −2.04 −1.94 −1.22

LNRT2-CV 0.13 −0.44 −0.11 0.32 −0.03 0.09 0.33 0.71

LNRT2-SV −0.28 −1.32 −1.60 −1.20 −0.13 −0.16 0.00 −0.17

LNRT3-CV −4.86 −3.35 −2.69 −1.80 0.01 0.00 −0.09 −0.18

LNRT3-SV −0.30 −2.64 −2.27 −1.31 0.01 0.02 −0.08 −0.15

LNSF-CV −13.18 −7.86 −5.66 −2.93 0.16 0.53 0.64 0.93

LNSF-SV −9.64 −6.62 −3.16 −2.29 0.10 0.40 0.76 0.89

B. CER: γ = 3 D. CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

LN-CV 0.20 0.42 0.82 1.54 0.92∗∗ 2.02∗∗∗ 2.40∗∗∗ 2.15∗
LN-SV 0.15 0.53 0.68 1.43 0.89∗∗ 1.97∗∗∗ 2.29∗∗ 1.93∗
LNRT1-CV −0.25 −0.63 −0.72 −0.33 −0.01 −0.05 −0.03 −0.01

LNRT1-SV −0.51 −2.18 −3.26 −2.71 −0.45 −0.70 −0.75 −0.45

LNRT2-CV 0.00 −0.08 0.06 0.63 0.47∗∗ 0.31 0.17 0.20

LNRT2-SV −0.04 −0.37 −0.97 −0.67 0.40 0.77 0.14 −0.24

LNRT3-CV 0.00 0.02 0.01 0.02 −0.01 −0.15 −0.07 −0.23

LNRT3-SV 0.00 0.01 0.01 0.03 −0.01 −0.17 0.01 −0.22

LNSF-CV 0.00 0.16 0.53 0.73 0.39 0.59 0.55 0.61

LNSF-SV 0.00 0.00 0.34 0.61 0.54 0.58 0.77 0.65

This table presents the out-of-sample R-squared, R2
OS , and annualized CERs (in percentage) for

the predictive models based on macro factors, LN, LNRT1, LNRT2, LNRT3 and LNSF. The

portfolio weight is restricted in between -1 and 2. The statistical significance of R2
OS is measured

using the Clark and West (2007) statistic, and the statistical significance of CERs is measured by

the one-sided Diebold-Mariano statistic. * denotes significance at 10% level, ** significance at

5% level, and *** significance at 1% level. For LN and LNRT1/LNRT2, the out-of-sample period

is from August 1999 to September 2017. For LNRT3, the out-of-sample period is from April

1994 to December 2015; and for LNSF, the out-of-sample period is from 1994:Q1 to 2014:Q4.
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Table B.5: Out-of-Sample Predictability: Model Combinations

Panel A: FB, CP, and LN

R2
OS CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM 0.61∗∗ −0.78 0.47 3.36∗ −0.32 −0.18 0.39 1.61

BMA 3.71∗∗ 3.83∗∗ 3.33∗ 2.46 0.34 0.86 1.49∗∗ 1.00

EMA 5.79∗∗ 5.24∗∗ 4.97∗∗ 4.78∗∗ −0.01 0.39 1.39∗∗ 2.05∗∗
UMA 3.33∗∗∗ 0.58∗∗ 2.99∗∗ 3.23∗ 0.30 0.92 2.05∗∗ 2.51∗∗

CER: γ = 3 CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM −0.33 −0.53 −0.95 0.51 0.29 0.83 0.69 0.78

BMA 0.25 0.42 0.40 0.05 0.99∗∗∗ 1.99∗∗∗ 1.95∗∗ 0.73

EMA 0.00 0.11 0.18 0.86 0.53∗∗ 1.43∗∗∗ 1.57∗∗ 1.49∗
UMA 0.31 0.50 0.72 1.27 0.91∗∗∗ 2.04∗∗∗ 2.30∗∗∗ 1.79∗

Panel B: FB, CP, and LNRT1

R2
OS CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM −2.57 −25.48 −21.90 −3.80 −0.57 −1.46 −1.84 −1.73

BMA −0.49 0.22 1.77∗ 2.32∗ −0.78 −0.90 0.15 0.59

EMA −0.47 −0.40 1.69∗ 2.80∗ −0.40 −0.52 0.16 0.69

UMA 1.08∗ −1.33 1.15 0.40 −0.42 −0.75 −0.06 −0.35

CER: γ = 3 CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM −0.56 −1.56 −2.78 −2.20 −0.25 −0.89 −1.59 −1.82

BMA −0.79 −1.33 −0.86 −0.68 −0.23 0.33 0.62 0.59

EMA −0.38 −0.65 −0.61 −0.08 −0.08 0.35 0.67 0.72

UMA −0.43 −0.77 −1.17 −1.20 0.04 0.08 0.58 −0.06

Panel C: FB, CP, and LNRT2

R2
OS CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM 1.72∗∗ −0.16 0.61 1.21 0.04 −0.48 −0.04 0.69

BMA −0.41 0.26 1.86∗ 2.46∗ −0.39 −0.91 0.33 0.69

EMA 1.98∗ 1.81∗ 1.94∗ 2.15∗ −0.22 −0.17 0.48 0.84

UMA 2.01∗∗ −1.82 1.66 0.08 −0.34 −0.57 0.30 −0.34

CER: γ = 3 CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM 0.05 −0.71 −1.31 −0.33 0.43 0.36 0.32 0.18

BMA −0.36 −1.31 −0.66 −0.49 0.01 0.40 0.74 0.74

EMA −0.22 −0.33 −0.37 0.04 0.23 0.64∗ 0.71 0.71

UMA −0.38 −0.79 −0.91 −0.90 0.22 −0.03 0.65 −0.15
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(Continued)

Panel D: FB, CP, and LNRT3

R2
OS CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM 10.69∗∗∗ 4.07∗∗ 2.33∗∗ 2.71∗∗∗ 0.06 −0.19 −0.14 −0.11

BMA −5.49 −3.19 −2.22 −0.97 −1.96 −2.61 −2.82 −2.64

EMA 3.82∗∗∗ 2.08∗∗ 1.44∗∗ 1.42∗∗ −0.03 −0.16 −0.40 −0.69

UMA −0.52 −2.43 0.72∗ 0.64 −0.07 −0.23 −0.67 −1.03

CER: γ = 3 CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM 0.06 −0.21 −0.39 −0.50 0.03 −0.21 −0.04 0.08

BMA −2.03 −2.55 −2.88 −2.71 −1.90 −2.12 −1.70 −1.20

EMA 0.03 0.02 −0.08 −0.20 −0.18 −0.51 −0.28 −0.12

UMA −0.05 −0.16 −0.37 −0.46 −0.17 −0.37 −0.53 −0.38

Panel E: FB, CP, and LNSF

R2
OS CER: γ = 5

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM −1.37 −6.69 −2.51 −0.52 −0.04 −0.07 1.05 1.24

BMA −3.43 −4.81 −1.43 −1.58 −0.74 −0.59 0.00 −0.07

EMA 1.46 2.31 3.49∗ 3.77∗ −0.29 0.15 0.67 0.98∗
UMA −14.57 −10.39 −5.80 −1.38 −0.23 −0.25 0.01 0.46

CER: γ = 3 CER: γ = 10

2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

SBM −0.24 −0.86 0.19 0.99 0.52 0.35 0.83 0.84

BMA −0.96 −1.69 −0.93 −0.72 0.05 0.13 0.36 0.29

EMA −0.36 −0.49 −0.15 0.34 0.29 0.56∗ 0.66∗ 0.68∗
UMA −0.40 −1.03 −0.86 −0.14 0.29 0.31 0.25 0.37

This table presents the out-of-sample R-squared, R2
OS , and annualized CERs (%) for model

combinations. The portfolio weight is between -1 and 2. * denotes significance at 10% level, **

significance at 5% level, and *** significance at 1% level. For panels A, B and C, out-of-sample

period is from August 1999 to September 2017. For panel D, out-of-sample period is from April

1994 to December 2015. For panel E, out-of-sample period is from 1994:Q1 to 2014:Q4.
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Table B.6: Out-of-Sample Predictability: Extreme Investments

2-year 3-year 4-year 5-year

FB-CV −0.09 1.12 2.17 2.47

CP-CV 1.05 0.70 0.42 0.81

LN-CV 7.03∗∗ 4.90 2.80 1.19

LNRT1-CV 0.68 0.45 0.37 0.33

LNRT2-CV 1.51∗∗ 0.58 0.34 0.41

LNRT3-CV −0.10 −0.92 −1.34 −1.14

LNSF-CV 1.03∗ 1.14 1.06 1.17

FB-SV 0.28 0.75 0.85 1.21

CP-SV 2.26 −0.14 −0.04 0.54

LN-SV 11.03∗∗ 6.67 2.87 2.00

LNRT1-SV 1.95 −0.17 −0.77 −0.22

LNRT2-SV 4.20 0.33 −0.99 −0.92

LNRT3-SV 0.06 −1.36 −1.08 −0.95

LNSF-SV 2.31∗ 1.40 1.51 1.33

This table presents annualized CERs (in percentage) for all individual predictive models without

any restrictions on portfolio weight. The coefficient of the relative risk aversion is set to 5. The

statistical significance of CERs is measured by the one-sided Diebold-Mariano statistic. * denotes

significance at 10% level, ** significance at 5% level, and *** significance at 1% level. For FB,

CP, LN, LNRT1 and LNRT2, the out-of-sample period is from August 1999 to September 2017.

For LNRT3, the out-of-sample period is from April 1994 to December 2015. For LNSF, the

out-of-sample period is from 1994:Q1 to 2014:Q4.
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Table B.7: Out-of-Sample Predictability: Model Combinations with Unbounded

Weights

2-year 3-year 4-year 5-year

Panel A: FB, CP, and LN

SBM 2.01 1.56 −2.65 −0.71

BMA 12.64∗∗ 7.41 1.78 0.17

EMA 4.02∗∗∗ 3.72∗∗ 3.43∗ 3.01

UMA 8.31∗∗∗ 5.95∗ 2.58 2.62

Panel B: FB, CP, and LNRT1

SBM −3.98 −4.80 −5.57 −5.64

BMA 1.62 0.20 0.08 0.45

EMA 1.02 1.33 1.69 1.77

UMA 1.05 −0.83 0.47 −0.65

Panel C: FB, CP, and LNRT2

SBM 0.08 −1.37 −1.77 −0.50

BMA 3.34 0.72 −0.09 0.70

EMA 1.75∗ 1.72 1.44 1.57

UMA 2.14 −0.09 1.20 −0.22

Panel D: FB, CP, and LNRT3

SBM 2.65 −0.65 −0.60 0.09

BMA −6.23 −4.66 −3.43 −2.43

EMA −1.26 −0.59 −0.54 −0.25

UMA −0.70 −1.63 −1.02 −0.77

Panel E: FB, CP, and LNSF

SBM 1.68 0.60 1.34 1.44

BMA 1.93 0.35 0.65 0.48

EMA 0.91∗ 1.06∗ 1.25∗ 1.29∗
UMA 1.07 0.59 0.40 0.70

This table presents annualized CERs (in percentage) for the four model combination schemes

without any restrictions on portfolio weight. The coefficient of the relative risk aversion is set to

5. The statistical significance of CERs is measured by the one-sided Diebold-Mariano statistic. *

denotes significance at 10% level, ** significance at 5% level, and *** significance at 1% level. For

panels A, B and C, the out-of-sample period is from August 1999 to September 2017. For panel

D, the out-of-sample period is from April 1994 to December 2015. For panel E, the out-of-sample

data is quarterly from 1994:Q1 to 2014:Q4.
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Table B.8: Summary Statistics

Panel A: Excess Bond Returns

2-Year 3-Year 4-Year 5-Year

Mean 0.19 0.25 0.31 0.36

St.dev 0.63 0.97 1.29 1.61

Skew 0.36 0.12 0.04 0.03

Kurt 4.61 3.83 3.56 3.52

AC(1) 0.22 0.17 0.14 0.12

Panel B: Predictors

FB2 FB3 FB4 FB5 CP CF LN

Mean 0.12 0.16 0.19 0.21 0.27 0.27 0.27

St.dev 0.09 0.10 0.11 0.12 0.20 0.12 0.17

Skew 0.45 0.06 -0.12 -0.18 0.37 -0.08 1.36

Kurt 3.66 2.80 2.41 2.23 2.65 2.28 7.34

AC(1) 0.90 0.92 0.93 0.93 0.94 0.94 0.81

Panel C: Correlation Matrix

FB2 FB3 FB4 FB5 CP CF LN

FB2 1.00 0.96 0.88 0.81 0.62 0.57 -0.11

FB3 1.00 0.98 0.94 0.59 0.60 -0.01

FB4 1.00 0.99 0.53 0.59 0.06

FB5 1.00 0.45 0.57 0.13

CP 1.00 0.37 -0.10

CF 1.00 -0.02

LN 1.00

This table presents the summary statistics of bond excess returns and full-sample predictors.

Panel A and B report the mean, standard deviation, skewness, kurtosis, and first-order au-

tocorrelation of monthly excess returns and predictors (in percentage). Panel C presents the

correlation matrix of predictors. Sample period is from April 1982 to December 2015.
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Table B.9: Explanatory Power of Predictive Models and Correlation Matrix of

Expected Returns

Panel A: Full-Sample R2 Panel B: Correlations of Expected Returns

2-Yr 3-Yr 4-Yr 5-Yr Linear More Less Non

FB-Linear 4.12 2.83 2.26 1.93 FB-Linear 1.00 0.07 0.50 0.55

FB-More 7.97 6.01 3.68 3.37 FB-More 1.00 0.83 0.30

FB-Less 7.46 5.23 4.20 3.71 FB-Less 1.00 0.70

FB-Non 6.65 5.04 4.14 3.74 FB-Non 1.00

CP-Linear 4.34 3.36 3.00 2.81 CP-Linear 1.00 0.48 0.69 0.75

CP-More 7.80 5.85 3.65 3.54 CP-More 1.00 0.93 0.38

CP-Less 6.36 4.66 4.20 3.57 CP-Less 1.00 0.62

CP-Non 6.09 4.22 3.71 3.39 CP-Non 1.00

CF-Linear 0.79 1.03 1.23 1.39 CF-Linear 1.00 0.23 0.42 0.33

CF-More 8.69 7.05 6.36 5.89 CF-More 1.00 0.86 0.58

CF-Less 8.99 7.31 6.43 5.81 CF-Less 1.00 0.90

CF-Non 7.38 6.04 5.34 4.90 CF-Non 1.00

LN-Linear 3.72 2.79 2.13 1.66 LN-Linear 1.00 0.07 0.12 0.36

LN-More 7.96 6.20 4.95 4.36 LN-More 1.00 0.96 0.22

LN-Less 5.97 4.44 3.71 3.19 LN-Less 1.00 0.35

LN-Non 5.27 3.52 2.92 2.71 LN-Non 1.00

Panel A presents the full-sample adjusted R2 (in percentage) for FB, CP, CF and LN predictors

under different predictive models. Within each block, “More”, “Less”, and “Non” represent

results from the predictive systems with three different prior beliefs on ρuw. Panel B presents

the correlation matrix of expected returns for the same predictor under different models to

predict 3-year excess returns. Full-sample period is from April 1982 to December 2015.
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Table B.10: Correlations with Macroeconomic Variables

CFNAI Macro Uncertainty Fin Uncertainty Inflation Uncertainty

Model 2-Yr 5-Yr 2-Yr 5-Yr 2-Yr 5-Yr 2-Yr 5-Yr

FB-Linear 0.16∗∗∗−0.03 −0.01 0.10∗∗ 0.03 0.15∗∗∗ 0.15∗ 0.20∗∗
FB-More −0.05 −0.12∗∗ 0.21∗∗∗ 0.25∗∗∗ 0.08 0.12∗∗ 0.26∗∗∗ 0.23∗∗∗
FB-Less −0.11∗∗−0.21∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.18∗∗∗ 0.24∗∗∗ 0.32∗∗∗ 0.28∗∗∗
FB-Non −0.15∗∗∗−0.34∗∗∗ 0.31∗∗∗ 0.41∗∗∗ 0.22∗∗∗ 0.33∗∗∗ 0.36∗∗∗ 0.38∗∗∗
CP-Linear 0.09∗ 0.09∗ 0.08∗ 0.08∗ 0.02 0.02 0.32∗∗∗ 0.32∗∗∗
CP-More −0.06 −0.06 0.21∗∗∗ 0.21∗∗∗ 0.08 0.08 0.26∗∗∗ 0.23∗∗∗
CP-Less −0.12∗∗−0.07 0.25∗∗∗ 0.20∗∗∗ 0.16∗∗∗ 0.10∗∗ 0.31∗∗∗ 0.27∗∗∗
CP-Non −0.19∗∗∗−0.24∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.24∗∗∗ 0.23∗∗∗ 0.37∗∗∗ 0.37∗∗∗
CF-Linear 0.12∗∗ 0.12∗∗−0.24∗∗∗ −0.24∗∗∗ 0.06 0.06 −0.21∗∗∗ −0.21∗∗∗
CF-More −0.07 −0.13∗∗ 0.20∗∗∗ 0.23∗∗∗ 0.12∗∗∗ 0.19∗∗∗ 0.23∗∗∗ 0.21∗∗
CF-Less −0.15∗∗∗−0.22∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.31∗∗∗ 0.26∗∗∗ 0.21∗∗
CF-Non −0.19∗∗∗−0.27∗∗∗ 0.31∗∗∗ 0.31∗∗∗ 0.28∗∗∗ 0.34∗∗∗ 0.32∗∗∗ 0.26∗∗∗
LN-Linear −0.89∗∗∗−0.89∗∗∗ 0.68∗∗∗ 0.68∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.38∗∗∗ 0.38∗∗∗
LN-More −0.07 −0.11∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.09∗ 0.10∗ 0.26∗∗∗ 0.22∗∗∗
LN-Less −0.14∗∗∗−0.10∗∗ 0.27∗∗∗ 0.18∗ 0.17∗∗∗ 0.11∗∗ 0.30∗∗∗ 0.19∗∗
LN-Non −0.23∗∗∗−0.34∗∗∗ 0.34∗∗∗ 0.37∗∗∗ 0.27∗∗∗ 0.24∗∗∗ 0.36∗∗∗ 0.30∗∗∗

This table presents correlations between macroeconomic variables and expected bond returns.

We report results for 2-year and 5-year maturity returns. CFNAI is the Chicago Fed National

Activity Index. Macro and financial uncertainty are from Jurado, Ludvigson, and Ng (2015).

Inflation uncertainty is from Survey of Professional Forecasters. * denotes significance at 10%

level, ** denotes significance at 5% level, and *** denotes significance at 1% level. The full-

sample period is from April 1982 to December 2015.
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Table B.11: Out-of-Sample Predictability: R2
OS and CER

Panel A: R2
OS Panel B: CER: γ = 5

Model 2-Yr 3-Yr 4-Yr 5-Yr 2-Yr 3-Yr 4-Yr 5-Yr

FB-Linear 1.41∗∗∗ 1.66∗∗ 1.73∗∗ 1.13∗ −0.75 −0.89 −0.87 −0.96

FB-More 2.96∗∗∗ 1.65∗∗ 1.85∗∗ 1.87∗∗∗ −0.05 −0.33 −0.12 −0.03

FB-Less 4.00∗∗∗ 2.04∗∗ 1.28∗∗ 1.27∗∗ 0.01 −0.05 0.02 −0.11

FB-Non 4.96∗∗∗ 1.78∗∗ 0.80 0.66 −0.01 −0.06 −0.09 −0.04

CP-Linear −1.34 −2.33 −2.66 −2.12 −1.77 −2.48 −2.85 −2.91

CP-More 2.42∗∗∗ 0.51∗∗ 0.72 0.89 −0.31 −1.01 −0.80 −0.79

CP-Less 3.76∗∗∗ 1.56∗∗ 0.33 0.58 −0.04 −0.19 −0.72 −0.89

CP-Non 4.23∗∗∗ 1.65∗∗ 0.78∗ 0.03 −0.08 −0.20 −0.43 −0.89

CF-Linear 2.56∗∗ 1.58∗∗ 0.59∗ 0.55∗ −0.04 −0.44 −0.54 −0.34

CF-More 1.20∗∗∗ −1.38 −1.97 −2.33 −0.70 −1.02 −1.37 −1.67

CF-Less 3.04∗∗∗ 0.32∗∗ −1.18 −2.17 −0.52 −1.03 −1.53 −1.95

CF-Non 3.31∗∗∗ 0.34∗∗ −1.19 −2.16 −0.22 −0.87 −1.59 −2.14

LNHB-Linear −4.84 −3.30 −2.54 −1.89 0.01 0.01 −0.06 −0.24

LNHB-More 2.77∗∗ 0.82 0.14 0.16 0.01 −0.04 −0.21 −0.26

LNHB-Less 2.65∗∗∗ 0.87 −0.23 −0.30 0.00 0.03 −0.01 −0.07

LNHB-Non 3.55∗∗∗ 0.82 −0.29 −0.65 0.00 0.00 −0.01 −0.09

LNFR-Linear −7.26 −5.02 −4.22 −3.35 0.02 0.01 −0.18 −0.32

LNFR-More 3.11∗∗∗ 0.76 0.50 0.30 −0.01 0.01 −0.05 −0.05

LNFR-Less 2.95∗∗∗ 0.92∗∗ −0.21 −0.37 0.00 0.00 −0.01 −0.01

LNFR-Non 3.10∗∗∗ 0.33 −0.19 0.24 0.00 −0.01 −0.02 −0.10

This table presents R2
OS , and annualized CERs (in percentage) for linear regression models and

predictive systems. For each predictor, “More”, “Less”, and “Non” represent results from the

predictive systems using the more informative, the less informative and the noninformative priors

on ρuw. When computing CERs, the risk aversion is 5 and the portfolio weight is restricted in

between -1 and 2. The statistical significance of R2
OS is measured using the Clark and West

(2007) statistic, and the statistical significance of CER is measured using the one-sided Diebold-

Mariano statistic. * denotes significance at 10% level, ** denotes significance at 5% level, and

*** denotes significance at 1% level. The out-of-sample period is from April 1994 to December

2015.
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Table B.12: Out-of-Sample Correlations with Macroeconomic Variables

CFNAI Macro Uncertainty Fin Uncertainty Inflation Uncertainty

Model 2-Yr 5-Yr 2-Yr 5-Yr 2-Yr 5-Yr 2-Yr 5-Yr

FB-Linear 0.01 −0.22∗∗∗ 0.05 0.25∗∗∗ 0.08 0.26∗∗∗ 0.16 0.37∗∗∗
FB-More 0.13∗∗ 0.16∗ −0.05 −0.11∗ −0.06 −0.17∗∗∗ 0.17 0.10

FB-Less −0.08 −0.03 0.06 −0.01 0.31∗∗∗ 0.09 0.09 0.16

FB-Non −0.30∗∗∗−0.36∗∗∗ 0.21∗∗∗ 0.23∗∗∗ 0.48∗∗∗ 0.42∗∗∗ 0.08 0.20∗
CP-Linear −0.05 −0.05 0.01 0.03 0.02 0.01 0.19∗ 0.23∗∗
CP-More −0.26∗∗∗−0.03 0.29∗∗∗ −0.05 0.11∗ −0.12∗ 0.45∗∗∗ 0.06

CP-Less −0.31∗∗∗−0.20∗∗∗ 0.18∗∗∗ 0.06 0.32∗∗∗ 0.17∗∗∗ 0.22∗∗ 0.19∗
CP-Non −0.45∗∗∗−0.44∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.50∗∗∗ 0.38∗∗∗ 0.27∗∗∗ 0.38∗∗∗
CF-Linear 0.28∗∗∗ 0.28∗∗∗−0.35∗∗∗ −0.35∗∗∗ 0.04 0.03 −0.32∗∗∗ −0.31∗∗∗
CF-More 0.09 0.14∗ −0.26∗∗∗ −0.31∗∗∗ 0.22∗∗∗ 0.16∗∗∗−0.24∗∗ −0.25∗∗
CF-Less −0.13∗∗−0.03 −0.02 −0.14∗∗ 0.41∗∗∗ 0.32∗∗∗−0.08 −0.13

CF-Non −0.23∗∗∗−0.07 0.08 −0.10 0.48∗∗∗ 0.35∗∗∗ 0.00 −0.10

LNHB-Linear −0.55∗∗∗−0.56∗∗∗ 0.59∗∗∗ 0.58∗∗∗ 0.51∗∗∗ 0.49∗∗∗ 0.29∗∗∗ 0.30∗∗∗
LNHB-More 0.46∗∗∗ 0.56∗∗∗−0.64∗∗∗ −0.66∗∗∗ −0.29∗∗∗−0.49∗∗∗−0.53∗∗∗ −0.57∗∗∗
LNHB-Less 0.21∗∗∗ 0.16∗∗∗−0.42∗∗∗ −0.33∗∗∗ 0.01 −0.27∗∗∗−0.37∗∗∗ −0.33∗∗∗
LNHB-Non −0.29∗∗∗−0.33∗∗∗ 0.13∗∗ 0.18∗∗∗ 0.43∗∗∗ 0.25∗∗∗−0.02 0.04

LNFR-Linear −0.58∗∗∗−0.62∗∗∗ 0.65∗∗∗ 0.68∗∗∗ 0.55∗∗∗ 0.55∗∗∗ 0.35∗∗∗ 0.39∗∗∗
LNFR-More 0.47∗∗∗ 0.42∗∗∗−0.63∗∗∗ −0.48∗∗∗ −0.23∗∗∗−0.36∗∗∗−0.46∗∗∗ −0.51∗∗∗
LNFR-Less −0.16∗∗∗−0.19∗∗∗ 0.08 0.19∗∗∗ 0.36∗∗∗ 0.20∗∗∗−0.01 0.03

LNFR-Non −0.42∗∗∗−0.19∗∗∗ 0.34∗∗∗ 0.07 0.55∗∗∗ 0.25∗∗∗ 0.12 −0.10

This table presents the out-of-sample correlations between macroeconomic conditions and ex-

pected bond returns. We report results for 2-year and 5-year maturity returns. CFNAI is the

Chicago Fed National Activity Index. Macro and financial uncertainty are from Jurado, Ludvig-

son, and Ng (2015). Inflation uncertainty is from Survey of Professional Forecasters. * denotes

significance at 10% level, ** denotes significance at 5% level, and *** denotes significance at 1%

level. The out-of-sample period is from April 1994 to December 2015.
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Table B.13: Out-of-Sample Predictability: Model Combinations

2-Yr 3-Yr 4-Yr 5-Yr

Panel A: R2
OS

SBM 5.67∗∗∗ 2.15∗∗∗ 0.65∗∗ 1.55∗∗
BMA 4.53∗∗∗ 1.41∗∗ 0.72∗ 0.90∗
EMA 4.48∗∗∗ 2.29∗∗ 1.39∗∗ 1.37∗∗
UMA 4.53∗∗∗ 2.01∗∗ 1.63∗∗ 1.07∗
Panel B: CER (γ = 5)

SBM 0.22 0.21 −0.21 0.06

BMA −0.05 −0.15 −0.71 −0.99

EMA −0.01 0.01 −0.03 −0.21

UMA −0.68 0.04 −0.47 −0.27

This table presents R2
OS , and annualized CERs (in percentage) for model combinations. In panel

B, the portfolio weight is restricted in between -1 and 2, and we choose risk aversion to be 5.

The statistical significance of R2
OS is measured using the Clark and West (2007) statistic, and

the statistical significance of CERs is measured using the one-sided Diebold-Mariano statistic. *

denotes significance at 10% level, ** denotes significance at 5% level, and *** denotes significance

at 1% level. The out-of-sample period is from April 1994 to December 2015.

128



Table B.14: Full-sample Summary Statistics

Panel A: Excess Bond Returns

2-Year 3-Year 4-Year 5-Year

Mean 0.121 0.150 0.174 0.194

St.dev 0.857 1.201 1.513 1.811

Skew 0.493 0.194 0.040 -0.003

Kurt 14.956 10.613 7.780 6.407

AC(1) 0.167 0.149 0.131 0.115

Panel B: Predictors

FB2 FB3 FB4 FB5 Sentiment

Mean 0.109 0.133 0.153 0.169 0.000

St.dev 0.099 0.115 0.127 0.137 1.000

Skew -0.111 -0.350 -0.385 -0.337 0.398

Kurt 3.802 3.502 3.191 2.897 3.500

AC(1) 0.878 0.897 0.910 0.920 0.986

This table presents the summary statistics of bond excess returns and full-sample predictors.

Panel A reports the mean, standard deviation, skewness, kurtosis, and first-order autocorrela-

tion of annualized monthly excess returns (in percentage). Panel B shows the mean, standard

deviation, skewness, kurtosis, and first-order autocorrelation of the predictors. Full-sample data

is from January 1966 to November 2015.
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Table B.15: In-Sample Predictability: R2

FB 2-Yr 3-Yr 4-Yr 5-Yr

More informative 6.50 6.35 6.26 6.19

Less informative 4.44 4.25 3.73 3.95

Non informative 3.20 3.12 3.22 3.42

Linear model 1.75 1.66 1.88 2.13

ST 2-Yr 3-Yr 4-Yr 5-Yr

More informative 6.49 6.37 6.35 6.32

Less informative 4.07 4.04 3.86 3.90

Non informative 2.86 2.88 2.65 2.70

Linear model 0.49 0.39 0.33 0.29

This table presents the in-sample R-squared, R2 (in percentage) for FB and ST predictors. More,

less, and non informative specifications show results from predictive systems using different priors

on ρuw. The full sample period is from January 1966 to November 2015.
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Table B.16: Out-of-Sample Predictability: R2
OS and CER

Panel A: R2
OS (%)

2-Yr 3-Yr 4-Yr 5-Yr

FB-Linear -0.42 1.28** 0.87* 1.44**

FB-More informative -0.17 0.27 -0.38 -0.23

FB-Less informative -1.44 0.50* -0.11 -0.17

FB-Non informative 0.26 0.27 0.07 -0.22

ST-Linear 0.31 0.59 0.01 0.09

ST-More informative 0.18 0.25 -0.23 0.12

ST-Less informative -0.37 -0.01 -0.10 -0.27

ST-Non informative 0.78 0.62 -0.12 -0.18

Panel B: CER (%)

2-Yr 3-Yr 4-Yr 5-Yr

FB-Linear -0.80 -0.23 0.10 0.65

FB-More informative 0.01 0.05 -0.32 -0.26

FB-Less informative -0.19 0.15 -0.12 -0.19

FB-Non informative 0.03 0.12 -0.02 -0.20

ST-Linear -0.13 0.07 -0.01 0.09

ST-More informative -0.03 0.06 -0.21 -0.03

ST-Less informative 0.05 -0.05 -0.04 -0.26

ST-Non informative 0.06 0.22 -0.16 -0.22

This table presents the out-of-sample R-squared, R2
OS , and annualized CERs (in percentage)

for the predictive models based on FB and ST. The portfolio weight is restricted in between

-1 and 2. Risk aversion is 5. The statistical significance of R2
OS is measured using the Clark

and West (2007) statistic, and the statistical significance of CERs is measured by the one-sided

Diebold-Mariano statistic. * denotes significance at 10% level, ** significance at 5% level, and

*** significance at 1% level. The out-of-sample period is from January 1986 to November 2015.
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Table B.17: Robustness Tests: Different Risk Aversion

Panel A: CER (Risk Aversion=3) (%)

2-Yr 3-Yr 4-Yr 5-Yr

FB-Linear -0.88 -0.79 -0.73 -0.09

FB-More informative -0.01 0.07 -0.31 -0.47

FB-Less informative -0.17 0.30** -0.02 -0.38

FB-Non informative -0.01 0.20 -0.01 -0.28

ST-Linear -0.01 -0.07 -0.21 -0.11

ST-More informative -0.01 0.09 -0.24 -0.16

ST-Less informative -0.01 0.09 0.16 -0.44

ST-Non informative -0.02 0.17 -0.15 -0.40

Panel B: CER (Risk Aversion=10) (%)

2-Yr 3-Yr 4-Yr 5-Yr

FB-Linear -0.10 0.60 0.70 0.94

FB-More 0.02 0.06 -0.16 -0.13

FB-Less -0.22 0.10 -0.06 -0.09

FB-Non 0.04 0.04 -0.01 -0.11

ST-Linear 0.02 0.16 0.03 0.04

ST-More 0.08 0.06 -0.11 -0.02

ST-Less 0.00 0.00 -0.02 -0.13

ST-Non 0.17 0.12 -0.09 -0.11

This table presents the out-of-sample CERs (in percentage) for the predictive models based on

FB and ST. The portfolio weight is restricted in between -1 and 2. Risk aversion is 3 or 10.

The statistical significance of CERs is measured by the one-sided Diebold-Mariano statistic. *

denotes significance at 10% level, ** significance at 5% level, and *** significance at 1% level.

The out-of-sample period is from January 1986 to November 2015.
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Figures
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Figure C.1: The Time Series of Excess Bond Returns

This figure plots the time series of 4 excess bond returns (in percentage), from Jan, 1962 to Sep,

2017.
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Figure C.2: Parameter Learning for FB-SV

The figure shows time series parameter estimates of stochastic volatility model with FB predictor

for 3-year bond excess returns. The model form is given in equation (2.5) and (2.6). The last

panel shows the stochastic volatility estimate. The two dashed lines are 5-th and 95-th percentiles

of estimate distribution. The solid line is the mean estimate for each parameter. Sample is from

Jan, 1962 to Sep, 2017.
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Figure C.3: Parameter Learning for FB-CV and Bayes Factor

The figure shows time series parameter estimates of constant volatility model with FB predictor

for 3-year bond excess returns. The linear model form is given in equation (3.2). The two dashed

lines are 5-th and 95-th percentiles of estimate distribution. The solid line is the mean estimate

for each parameter. Last panel shows the bayes factor for all 4 maturities. Sample is from Jan,

1962 to Sep, 2017.
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Figure C.4: The Prior and Posterior Distributions for Correlation Coefficients

This figure plots the prior and posterior distributions for ρuw, ρuv, and ρvw. The solid, dashed,

and dotted distributions represent the distributions associated with the more informative, the

less informative, and the noninformative priors for ρuw.
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Figure C.5: Expected Returns Estimates

This figure plots the full-sample estimates of expected returns (in percentage). The solid, dashed,

and dotted distributions represent results from the more informative, the less informative, and

the noninformative priors on ρuw. In this example, the FB predictor is used to forecast 3-year

excess return. The shaded area represents NBER recession period. Full sample period is from

April 1982 to December 2015.
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Figure C.6: Out-of-Sample Parameter Learning Example: Predictive System

This figure plots the parameter learning results from the predictive system with more informative

priors. In this example, the CP predictor is used to forecast 5-year excess return. The solid line

represents the mean of the distribution. The dashed lines represent the 5th and 95th percentiles.

The shaded area represents NBER recession period. Out-of-sample period is from April 1994 to

December 2015.
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Figure C.7: Out-of-Sample Parameter Learning Example: Predictive System

This figure plots the parameter learning results for ρuw (the correlation between expected and

unexpected returns) from the predictive system with 3 different priors. In this example, the

CP predictor is used to forecast 5-year excess return. The solid line represents the mean of

the distribution. The dashed lines represent the 5th and 95th percentiles. The shaded area

represents NBER recession period. Out-of-sample period is from April 1994 to December 2015.
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Figure C.8: Out-of-Sample Conditional Expected Returns

This figure plots the conditional expected return forecasts (in percentage) for the predictive

models in the out-of-sample period. The CP predictor is used to forecast 5-year excess return.

The shaded area represents NBER recession period. Out-of-sample period is from April 1994 to

December 2015.
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Figure C.9: Full-Sample Sentiment Index: 1966 - 2016

The figure shows full sample sentiment index from 1966 to 2016. The shaded area represents

NBER recession period.
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