Identification de paramètre basée sur l'optimisation de l'intelligence artificielle et le contrôle de suivi distribué des systèmes multi-agents d'ordre fractionnaire

par Wei Hu

Thèse de doctorat en Automatique, génie informatique, traitement du signal et des images

Sous la direction de Ahmed Rahmani.

Soutenue le 10-07-2019

à l'Ecole centrale de Lille , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Centre de recherche en informatique, signal et automatique de Lille (laboratoire) et de Centre de Recherche en Informatique- Signal et Automatique de Lille (CRIStAL) - UMR 9189 / CRIStAL (laboratoire) .

Le président du jury était Nathalie Mitton.

Le jury était composé de Yongguang Yu, Guoguang Wen, Zhaoxia Peng.

Les rapporteurs étaient Pierre Melchior, Yangquan Chen.


  • Résumé

    Cette thèse traite de l'identification des paramètres du point de vue de l'optimisation et du contrôle de suivi distribué des systèmes multi-agents d'ordre fractionnaire (FOMASs) en tenant compte des retards, des perturbations externes, de la non-linéarité inhérente, des incertitudes des paramètres et de l'hétérogénéité dans le cadre d'une topologie de communication fixe non dirigée / dirigée. Plusieurs contrôleurs efficaces sont conçus pour réaliser avec succès le contrôle de suivi distribué des FOMASs dans différentes conditions. Plusieurs types d'algorithmes d'optimisation de l'intelligence artificielle et leurs versions modifiées sont appliquées pour identifier les paramètres inconnus des FOMASs avec une grande précision, une convergence rapide et une grande robustesse. Il est à noter que cette thèse fournit un lien prometteur entre la technique d'intelligence artificielle et le contrôle distribué.

  • Titre traduit

    Parameter identification based on artificial intelligence optimization and distributed tracking control of fractional-order multi-agent systems


  • Résumé

    This thesis deals with the parameter identification from the viewpoint of optimization and distributed tracking control of fractional-order multi-agent systems (FOMASs) considering time delays, external disturbances, inherent nonlinearity, parameters uncertainties, and heterogeneity under fixed undirected/directed communication topology. Several efficient controllers are designed to achieve the distributed tracking control of FOMASs successfully under different conditions. Several kinds of artificial intelligence optimization algorithms andtheir modified versions are applied to identify the unknown parameters of the FOMASs with high accuracy, fast convergence and strong robustness. It should be noted that this thesis provides a promising link between the artificial intelligence technique and distributed control.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole Centrale de Lille (Villeneuve d'Ascq, Nord). Centre de documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.