Model independent searches for New Physics using Machine Learning at the ATLAS experiment

par Fabricio Jimenez

Thèse de doctorat en Particules, Interactions, Univers

Sous la direction de Julien Donini.

Soutenue le 16-09-2019

à Clermont Auvergne , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire de Physique de Clermont (laboratoire) .

Le président du jury était David Rousseau.

Le jury était composé de Giovanna Menardi, Anne-Françoise Yao, Yann Coadou.

Les rapporteurs étaient David Rousseau, Tommaso Dorigo.

  • Titre traduit

    Recherche de Nouvelle Physique indépendante d'un modèle en utilisant l’apprentissage automatique sur l’experience ATLAS


  • Résumé

    Nous abordons le problème de la recherche indépendante du modèle pour la Nouvelle Physique (NP), au Grand Collisionneur de Hadrons (LHC) en utilisant le détecteur ATLAS. Une attention particulière est accordée au développement et à la mise à l'essai de nouvelles techniques d'apprentissage automatique à cette fin. Le présent ouvrage présente trois résultats principaux. Tout d'abord, nous avons mis en place un système de surveillance automatique des signatures génériques au sein de TADA, un outil logiciel d'ATLAS. Nous avons exploré plus de 30 signatures au cours de la période de collecte des données de 2017 et aucune anomalie particulière n'a été observée par rapport aux simulations des processus du modèle standard. Deuxièmement, nous proposons une méthode collective de détection des anomalies pour les recherches de NP indépendantes du modèle au LHC. Nous proposons l'approche paramétrique qui utilise un algorithme d'apprentissage semi-supervisé. Cette approche utilise une probabilité pénalisée et est capable d'effectuer simultanément une sélection appropriée des variables et de détecter un comportement anormal collectif possible dans les données par rapport à un échantillon de fond donné. Troisièmement, nous présentons des études préliminaires sur la modélisation du bruit de fond et la détection de signaux génériques dans des spectres de masse invariants à l'aide de processus gaussiens (GPs) sans information préalable moyenne. Deux méthodes ont été testées dans deux ensembles de données : une procédure en deux étapes dans un ensemble de données tiré des simulations du modèle standard utilisé pour ATLAS General Search, dans le canal contenant deux jets à l'état final, et une procédure en trois étapes dans un ensemble de données simulées pour le signal (Z′) et le fond (modèle standard) dans la recherche de résonances dans le cas du spectre de masse invariant de paire supérieure. Notre étude est une première étape vers une méthode qui utilise les GPs comme outil de modélisation qui peut être appliqué à plusieurs signatures dans une configuration plus indépendante du modèle.


  • Résumé

    We address the problem of model-independent searches for New Physics (NP), at the Large Hadron Collider (LHC) using the ATLAS detector. Particular attention is paid to the development and testing of novel Machine Learning techniques for that purpose. The present work presents three main results. Firstly, we put in place a system for automatic generic signature monitoring within TADA, a software tool from ATLAS. We explored over 30 signatures in the data taking period of 2017 and no particular discrepancy was observed with respect to the Standard Model processes simulations. Secondly, we propose a collective anomaly detection method for model-independent searches for NP at the LHC. We propose the parametric approach that uses a semi-supervised learning algorithm. This approach uses penalized likelihood and is able to simultaneously perform appropriate variable selection and detect possible collective anomalous behavior in data with respect to a given background sample. Thirdly, we present preliminary studies on modeling background and detecting generic signals in invariant mass spectra using Gaussian processes (GPs) with no mean prior information. Two methods were tested in two datasets: a two-step procedure in a dataset taken from Standard Model simulations used for ATLAS General Search, in the channel containing two jets in the final state, and a three-step procedure from a simulated dataset for signal (Z′) and background (Standard Model) in the search for resonances in the top pair invariant mass spectrum case. Our study is a first step towards a method that takes advantage of GPs as a modeling tool that can be applied to several signatures in a more model independent setup.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.