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Abstract

We study the Carleson measures and the Toeplitz operators on the class of the so-

called small weighted Bergman spaces, introduced recently by Seip. A characterization

of Carleson measures is obtained which extends Seip’s results from the unit disk of C

to the unit ball of Cn. We use this characterization to give necessary and sufficient

conditions for the boundedness and compactness of Toeplitz operators. Finally, we

study the Schatten p classes membership of Toeplitz operators for 1 < p <1.

Furthermore, we also consider the Bergman type projection acting on L1 to the

Bloch space B on Bn. A characterization of radial weight so that the projection is

bounded is obtained.

Finally, we investigate the weighted Fock spaces in one and several complex vari-

ables. We evaluate the dimension of these spaces in terms of the weight function ex-

tending and completing earlier results by Rozenblum–Shirokov and Shigekawa.



Chapter 1

Introduction

The thesis covers three groups of results concerning weighted spaces of analytic func-

tions: the weighted Bergman spaces of analytic functions in the unit disc and unit ball

in Cn and the Fock spaces of entire functions in C and Cn. We are interested in geo-

metric properties of these spaces (the dimension question) and the operator theoretic

properties concerning the embedding operator (the Carleson measures), the Bergman

projection operator (to the Bloch space) and the Toeplitz operator.

In Chapter 4 and 5 we deal with weighted Bergman spaces. In Chapter 4 we con-

centrate on the so called small (radial) Bergman spaces introduced by Seip in 2013.

They constitute a class of Begman spaces interpolating, in a sense, between the stan-

dard Bergman space and the classical Hardy space. Extending the results by Seip (for

D), we describe the Carleson measures for the unit ball. Furthermore, we study the

Toeplitz operators T� with measure symbol � and describe when T� is bounded, com-

pact, and is in the Schatten class for some classes of weights, in terms of the symbol �.

These results will be published in [23].

In Chapter 5 we extend the recent results of Peláez and Rättyä (fromD) and obtain a

complete description of radial weights such that the corresponding Bergman projection

operator acts boundedly from L1(Bn) to the Bloch space.

In Chapter 6 we study non-radial weighted (Hilbert) Fock spaces F2
 . The question
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we are interested in here is when dimF2
 = 1 in terms of the weight  . In 2006,

Rozenblum and Shirokov claimed that if  is subharmonic on C and � (C) = 1,

then dimF2
 = 1. In fact, this statement is true only if � has no point masses with

masses larger than or equal to 4�. We correct the statement of Rozenblum and Shirokov,

and obtain a criterion for the space F2
 to be of infinite dimension. Furthermore, we

calculate dimF2
 in terms of � . In the case of the Fock spaces on Cn, we extend

somewhat the theorem of Shigekawa (1991) and give a new sufficient condition for

dimF2
 (C

n) = 1. We also produce several examples that show how complicated is to

produce a criterion for dimF2
 (C

n) =1.

The techniques we use include estimates of logarithmic potentials in the plane, the

Bedford–Taylor solution for the complex Monge–Ampère problem, the Peláez–Rättyä

estimates on the reproducing kernels for the weighted Bergman space, the Lelong num-

ber estimates for plurisubharmonic functions, and the Carleson embedding for the

Hardy space in the polydisk.

1.1 Carleson measures and Toeplitz operators on small

Bergman spaces on the ball

The original notion of Carleson measures was introduced by L. Carleson [6, 7] in

his work on interpolating sequences and the corona problem on the algebra H1 of all

bounded analytic functions on the unit disk. It then plays a crucial role in studying

function spaces and operators acting on them. The Carleson measures on Bergman

spaces were studied by Hastings [16], and later on by Luecking [25], and many others.

For sampling and interpolation in large Bergman spaces, see Seip [38] and Borichev,

Dhuez, Kellay [4]. Recently, Pau and Zhao [27] gave a characterization for Carleson

measures and vanishing Carleson measures on the unit ball by using the products of

Small Fock spaces, small Bergman spaces and their operators



1.1 Carleson measures and Toeplitz operators 9

functions in weighted Bergman spaces. In [29], Peláez and Rättyä gave a description

of Carleson measures for A2
� on unit disk when � satisfies that

1

(1� r)�(r)
R 1
r �(t)dt

is either equivalent to 1 or tends to 1, and in [30] they then got a criterion for A2
�

on unit disk when � 2 bD, which means
R 1
r �(s)ds .

R 1
r+1
2

�(s)ds. In 2018, we have

obtained a criterion for A2
� on the unit ball for � belongs to the class S which was

introduced by Seip in [39] in 2013. A close relationship between the class S and bD
will be presented specifically afterwards. A short time ago, in June 2019, Juntao Du,

Songxiao Li, Xiaosong Liu, Yecheng Shi extended the description of Peláez and Rättyä

offered in [29] to higher dimensions when � 2 bD, see [12].

In [39], Seip gave a characterization of Carleson measures for A2
� with � 2 S in the

case n = 1. One of our main results, Theorem 4.2.1, extends this result to the case

n > 1.

The Toeplitz operators acting on various spaces of holomorphic functions have been

extensively investigated by a lot of authors, and the theory is especially well understood

in the case of Hardy spaces or standard Bergman spaces (see [42], [43] and the references

therein). For the Toeplitz operators on the Fock space see, for example, Fulsche, Hagger

[14] and Schuster, Varolin [37]. In 1987, Luecking [26] was the first one to consider

Toeplitz operators on Bergman spaces with measures as symbols, and some interesting

results about Toeplitz operators acting on large Bergman spaces were obtained by Lin

and Rochberg [24]. In this thesis, we will study the boundedness and compactness of

T� on A2
�, with � 2 S.

We also study when our Toeplitz operators belong to the Schatten class. A descrip-

tion for the classical weighted Bergman spaces on the unit disk is given in [43, Chapter

7], and a description for the case of large Bergman spaces on the disk was obtained in

2015 by H. Arroussi, I. Park, and J. Pau (see [1]). In 2016, Peláez and Rättyä [31] gave

an interesting characterization for the case of small Bergman spaces on unit disk, when

Small Fock spaces, small Bergman spaces and their operators
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the weight � 2 bD.

For weights � in S�, we obtain a characterization of the symbols of the Toeplitz

operators in the Schatten classes Sp. In [34], Peláez, Rättyä and Sierra gave a characteri-

zation for the case of dimension n = 1 when the weight is regular, that is ��(r) � �(r).

As an easy observation, our result is equivalent to their result when n = 1. We point

out that our approach is completely different from that of [34], which does not seem to

work in higher dimensions. On the other hand, for weights � in S n S�, this character-
ization fails. A counterexample was given in [34] and we will show this failure for all �

in S n S�.
In this thesis, we restrict ourselves to the case 1 < p < 1. For the case 0 < p � 1,

the techniques we use should be modified.

1.2 Bergman type projections

Let � be a radial weight and X be a space of measurable functions on Bn. The

Bergman type projection P� acting on X is given by

P�f(z) =
Z
Bn

K�(z;w)f(w)�(w)dv(w); z 2 Bn; f 2 X;

where K�(z;w) is the reproducing kernel of the weighted Bergman space A2
�.

When � is the standard radial weight �(z) = (1� jzj2)�; � > �1, the projection is

denoted by P�.

Projections play an important role in studying operator theory on spaces of analytic

functions. Bounded analytic projections can also be used to establish duality relations

and to obtain useful equivalent norms in spaces of analytic functions. Hence the bound-

edness of projections is an interesting topic which has been examined by many authors

in recent years [8, 10, 11, 32, 33]. In [32], Peláez and Rättyä considered the projection

P�1 acting on Lp�2(D); 1 � p <1when two weights �1; �2 are in the classR of so called

Small Fock spaces, small Bergman spaces and their operators



1.3 Dimension of the Fock type spaces 11

regular weights. A radial weight � is regular if b�(r) � (1� r)�(r); r 2 (0; 1). Recently,

in 2019, they extended these results to the case where �1 2 bD, �2 is radial [33].

Chapter 5 is devoted to studying the projections acting on the space L1. In the case

of standard radial weight, we have the following theorem.

Theorem A. For any� > �1, the Bergman type projectionP� is a bounded linear operator

from L1 onto the Bloch space B.

See [42, Theorem 3.4] for a proof. This theorem is also valid for the case of one

dimension [43, Theorem 5.2].

In [33], Peláez and Rättyä obtain an interesting result for one dimensional case.

Theorem B. Let � be a radial weight. Then the projection P� : L1(D)! B(D) is bounded
if and only if � 2 bD.

In this thesis, we extend this theorem to the case of several variables.

1.3 Dimension of the Fock type spaces

Let  be a plurisubharmonic function on Cn. The weighted Fock space F2
 is the

space of entire functions f such that

kfk2 =
Z
Cn
jf(z)j2e� (z)dV (z) <1

where dV is the volumemeasure onCn. Note thatF2
 is a closed subspace ofL2(Cn; e� dv)

and hence is a Hilbert space endowed with the inner product

hf; gi =
Z
Cn
f(z)g(z)e� (z)dV (z); f; g 2 F2

 :

In Chapter 6 we study when the space F2
 is of finite dimension depending on the

weight  . This problem (at least for the case n = 1) is motivated by some quantum

mechanics questions, especially in the study of zero modes, eigenfunctions with zero

Small Fock spaces, small Bergman spaces and their operators
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eigenvalues. In [36, Theorem 3.2], Rozenblum and Shirokov proposed a sufficient con-

dition for the space F2
 to be of infinite dimension, when  is a subharmonic function.

Theorem C. Let  be a finite subharmonic function on the complex plane such that the

measure � = � is of infinite mass:

�(C) =
Z
C

d�(z) =1: (1.1)

Then the space F2
 has infinite dimension.

We improve and extend somewhat this statement, give a necessary and sufficient

condition on  for the space F2
 to be of finite dimension, and calculate this dimension.

The situation is muchmore complicated inCn; n � 2. Shigekawa established in [40]

(see also [15, Theorem 7.10] in a book by Haslinger), the following interesting result.

Theorem D. Let  : Cn ! R be a C1 function and let �(z) denote the lowest eigenvalue

of the Levi matrix

L (z) = i@ �@ (z) =

 
@2 (z)

@zj@zk

!n
j;k=1

:

Suppose that

lim
jzj!1

jzj2�(z) =1: (1.2)

Then dim(F2
 ) =1:

Note that the condition (1.2) is far from being necessary. A corresponding example

is given in [15, Section 7]. In this thesis, we improve TheoremD by presenting a weaker

condition for the dimension of the Fock space F2
 to be infinite. Furthermore, we give

several examples that show how far our condition is from being necessary.

1.4 Outline of the thesis

We will state our main results in Chapter 2. In Chapter 3, we introduce some no-

tions and notation, recall some basic facts which will be used later on. The Carleson

Small Fock spaces, small Bergman spaces and their operators
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measures and Toeplitz operators on small Bergman spaces on the ball will be examined

in Chapter 4, and the boundedness of Berman type projection acting onL1 is studied in

Chapter 5. Finally, the study on the dimension of the Fock type spaces will be presented

in Chapter 6.

Small Fock spaces, small Bergman spaces and their operators



Chapter 2

Main results

2.1 Chapter 4

Let � be a positive continuous and integrable function on [0; 1). We extend it to Bn

by �(z) = �(jzj), and call such � a radial weight function, or simply radial weight. We

assume that Z 1

0
x2n�1�(x)dx = 1;

and consider the points rk 2 [0; 1) determined by the relation

Z 1

rk
�(x)dx = 2�k:

Denote by S the class of weights � such that

inf
k

1� rk
1� rk+1 > 1: (2.1)

This class of weights was introduced by Seip in [39]. We also introduce a subclass S� of

weights in S determined by the condition that ��(r) . �(r) for r 2 (0; 1), where

��(r) =
1

1� r
Z 1

r
�(t)dt:

Denote byA2
� theweighted Bergman space consisting of all f holomorphic functions

on Bn such that

kfk2� =
Z
Bn

jf(z)j2�(z)dv(z) <1;
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where dv is the normalized volume measure on Bn.

For every nonnegative integer k, set


k = fz 2 Bn : rk � jzj < rk+1g ;

and let �k be the measure defined by �k = �
k�whenever a nonnegative Borel measure

� on Bn is given.

Throughout this text, the notation U(z) . V (z) (or equivalently V (z) & U(z))

means that there is a positive constant C such that U(z) � CV (z) holds for all z in

the set in question, which may be a space of functions or a set of numbers. If both

U(z) . V (z) and V (z) . U(z), then we write U(z) � V (z).

Our results are following:

Theorem 2.1.1. Let � 2 S, and let � be a finite positive Borel measure on Bn. Then

(i) � is a Carleson measure for A2
� if and only if each �k is a Carleson measure for the

Hardy spaceH2 with Carleson constant C�k(H2) . 2�k; k � 0.

(ii) � is a vanishing Carleson measure for A2
� if and only if

lim
k!1

2kC�k(H2) = 0:

Theorem 2.1.2. Let � 2 S, and let � be a finite positive Borel measure on Bn. Then

(i) The Toeplitz operator T� is bounded on A2
� if and only if � is a Carleson measure for

A2
�.

(ii) The Toeplitz operator T� is compact on A2
� if and only if � is a vanishing Carleson

measure for A2
�.

For a measure � on Bn and � > 0, we define the function b�� by

b��(z) = 2k�
�
E(z; �)

�
(1� jzj)n ; z 2 
k:

Small Fock spaces, small Bergman spaces and their operators



16 Chapter 2. Main results

Here, E(z; �) is the Bergman metric ball.

Let fT� be the Berezin transform of T�, defined by

fT�(z) = hT�k�z ; k�zi�; z 2 Bn;

where k�z is the normalized reproducing kernel of A2
�. Set

d��(z) =
2k�(z)dv(z)

(1� jzj)n ; z 2 
k:

Theorem 2.1.3. Let � be in S�, � be a finite positive Borel measure and 1 < p <1. The

following conditions are equivalent:

(a) The Toeplitz operator T� is in the Schatten class Sp.

(b) The function fT� is in Lp(Bn; d��):
(c) The function b�� is in Lp(Bn; d��) for sufficiently small � > 0.

2.2 Chapter 5

In Chapter 5, we obtain a characterization of radial weight such that the Bergman

type projection is bounded from L1 to B.

Theorem 2.2.1. Let � be a radial weight. Then the projection P� : L1 ! B is bounded if

and only if � 2 bD.

2.3 Chapter 6

Let  be a measurable function on Cn. The weighted Fock space F2
 is the space of

entire functions f such that

kfk2 =
Z
Cn
jf(z)j2e� (z)dV (z) <1:

Small Fock spaces, small Bergman spaces and their operators
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If  : C ! [�1;1) is a subharmonic function, denote by � the corresponding

Riezmeasure, � = � . Consider the classMd of the positive �-finite atomic measures

with masses which are integer multiples by 4�. Given a �-finite measure �, consider

the corresponding atomic measure �d,

�d = max
n
�1 2Md : �1 � �

o
:

Denote �c = �� �d.
Our results about dimension of F2

 are follows:

Theorem 2.3.1. Let  be a subharmonic function on the complex plane. Then the Fock

space F2
 is finite-dimensional if and only if

(� )
c(C) <1: (2.2)

If is finite onC, then we can write condition (6.4) as � (C) <1. Finally, if (� )c(C) <

1, then

dimF2
 =

�
(� )

c(C)

4�

�
:

Theorem 2.3.2. Let  : Cn ! R be a C2 smooth function. Given M > 0, consider

 M(z) =M log(jzj2). Suppose that for everyM > 0, the function  � M is plurisubhar-

monic outside a compact subset of Cn. Then dimF2
 =1.

Theorem 2.3.3. Suppose that  (z) =  (jzj2) is a radial plurisubharmonic function of

class C2. Then dimF2
 =1 if and only if

Z
Cn
(ddc )n =1:

Small Fock spaces, small Bergman spaces and their operators



Chapter 3

Preliminaries

3.1 Some basic notation

Let Cn denote the n-dimensional complex Euclidean space. For any two points

z = (z1; : : : ; z2); w = (w1; : : : ; wn) in Cn, we use the well-known notation

hz;wi = z1w1 + � � �+ znwn and jzj =
q
hz; zi:

Let Bn = fz 2 Cn : jzj < 1g be the unit ball and Sn = fz 2 Cn : jzj = 1g be the unit
sphere in Cn. Denote byH(Bn) the space of all holomorphic functions on the unit ball

Bn. Let dV be the volume measure on Cn and dv be the normalized volume measure

on Bn. The normalized surface measure on Sn will be denoted by d�.

Given a 2 Bn n f0g and r > 0, let �(a) =
q
2(1� jaj). Define Q(a; r) � Bn and

O(a; r) � Sn as follows:

Q(a; r) = fz 2 Bn :
q
j1� ha=jaj; zij < rg;

O(a; r) = f� 2 Sn :
q
j1� ha=jaj; �ij < rg:

For simplicity of notation, wewriteQa instead ofQ
�
a; �(a)

�
,Oa instead ofO

�
a; �(a)

�
.

Let 'a denote the Möbius transformation on Bn that interchanges 0 and a, that is

'a(z) =
a� Pa(z)�

q
1� jaj2 P?

a (z)

1� hz; ai ; z 2 Bn;
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where Pa is the orthogonal projection from Cn onto the one dimensional subspace [a]

generated by a, and P?
a is the orthogonal projection from Cn onto Cn 	 [a]. The

Bergman metric ball E(a; r) is defined by

E(a; r) = fz 2 Bn : �(a; z) < rg ;

where �(a; z) is the Bergman metric given by

�(a; z) =
1

2
log

1 + j'a(z)j
1� j'a(z)j ; a; z 2 Bn:

We state here some auxiliary lemmas which can be found in [42].

Lemma 3.1.1. The Bergman metric ball E(0; r) is a Euclidean ball of radius R = tanh r,

centered at the origin, and

E(a; r) = 'a
�
E(0; r)

�
:

Moreover, v
�
E(a; r)

�
� (1� jaj)n+1.

Lemma 3.1.2. Suppose that c is real and t > �1. Then the integral

Ic;t(z) =
Z
Bn

(1� jwj2)tdv(w)
j1� hz;wijn+1+t+c ; z 2 Bn;

has the following asymptotic properties:

(a) If c < 0, then Ic;t is bounded in Bn.

(b) If c = 0, then

Ic;t(z) � log
1

1� jzj2
as jzj ! 1�.

(c) If c > 0, then

Ic;t(z) � (1� jzj2)�c

as jzj ! 1�.
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Lemma 3.1.3. Suppose that N is a natural number, al 2 Bn n f0g ; 1 � l � N ,

E =
N[
l=1

Oal :

There exists a subsequence flig; 1 � i �M , such that

(a) Oali
; 1 � i �M , are disjoint.

(b) O
�
ali; 3�(ali)

�
; 1 � i �M , cover E.

3.2 Bergman spaces

Definition 3.2.1. An integrable function � : Bn ! (0;1) is called aweight function, or

simply a weight. A weight � is called radial if �(z) = �(jzj) for all z 2 Bn. The (radial)
weighted Bergman space A2

� is the space of functions f in H(Bn) such that

kfk2� =
Z
Bn

jf(z)j2�(z)dv(z) <1:

Note that A2
� is a closed subspace of L2(Bn; �dv) and hence is a Hilbert space en-

dowed with the inner product

hf; gi� =
Z
Bn

f(z)g(z)�(z)dv(z); f; g 2 A2
�:

When �(z) = (1�jzj2)�; � > �1, we obtain the standard weighted Bergman spacesA2
�:

For numerous results on the Bergman space A2
�, see [42].

Denote by K�
z the reproducing kernel of A2

�,

hf;K�
z i� = f(z); f 2 A2

�; z 2 Bn;

and the function K�(z;w) will be defined as

K�(z;w) = K�
w(z); z; w 2 Bn:
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The normalized reproducing kernel will be denoted by k�z ,

k�z =
K�
z

kK�
zk� ; z 2 Bn:

If fek(z)g is an orthonormal basis of A2
�, then

K�(z;w) =
1X
k=1

ek(z)ek(w); z; w 2 Bn:

The reproducing kernel of the classical weighted Bergman space A2
� is given by

K�(z;w) =
1

(1� hz;wi)n+1+� ; z; w 2 Bn:

Definition 3.2.2. For 0 < p < 1, the Hardy space Hp is the space consisting of func-

tions f 2 H(Bn) such that

kfkHp = sup
0<r<1

Mp(r; f) <1;

where

Mp(r; f) =
�Z

Sn

jf(r�)jpd�(�)
� 1

p

:

3.3 Carleson measures

Let � be a finite positive Borel measure onBn and letX be aHilbert space of analytic

functions in Bn.

Definition 3.3.1. We say that � is a Carleson measure for X if there exists a positive

constant C such that

Z
Bn

jf(z)j2d�(z) � Ckfk2X ; f 2 X:

It is clear that � is a Carleson measure for X if and only if X � L2(Bn; d�) and the

identity operator Id : X ! L2(Bn; d�) is bounded. The Carleson constant of � for X ,

denoted by C�(X), is the norm of this identity operator Id.
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Definition 3.3.2. Suppose that � is a Carleson measure for X . We say that � is a van-

ishing Carleson measure for X if the identity operator Id is compact. That is,

lim
k!1

Z
Bn

jfk(z)j2d�(z) = 0

whenever ffkg is a bounded sequence inX which converges to 0 uniformly on compact

subsets of Bn.

We state here two results on the characterization of Carleson measures for classical

Bergman spaces A2
� and Hardy spaces H2, which can be found in [42].

Theorem 3.3.3. A positive Borel measure � on Bn is a Carleson measure forA2
� if and only

if �
�
E(a; r)

�
. (1� jaj2)n+1+� for all a 2 Bn.

Theorem 3.3.4. A positive Borel measure � onBn is a Carleson measure forH2 if and only

if �(Qa) . (1� jaj)n for all a 2 Bn n f0g. Furthermore,

C�(H2) � sup
a2Bnnf0g

�(Qa)

(1� jaj)n :

3.4 Schatten classes

Let H be a separable Hilbert space, and 0 < p <1.

Definition 3.4.1. The Schatten class Sp is the space of all compact operators T on H

for which the sequence f�kg of the singular numbers of T belongs to the p�summable

sequence space `p.

We usually call S1 the trace class and S2 the Hilbert–Schmidt class.

For 1 � p <1, the class Sp is a Banach space with the norm

kTkp =
 X

k

j�kjp
! 1

p

:

Lemma 3.4.2 ( [42]). Suppose that T is a positive compact operator onH and 0 < p <1,

then T 2 Sp if and only if T p 2 S1. Moreover, kTkpp = kT pk1:

See [42, Chapter 1] for more results on the Schatten classes.
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3.5 Toeplitz operators

Definition 3.5.1. Given a function ' 2 L1(Bn), the Toeplitz operator T' on A2
� with

symbol ' is defined by

T'f = P ('f); f 2 A2
�;

where P : L2(Bn; �dv)! A2
� is the orthogonal projection onto A2

�.

We can write T' as

T'f(z) =
Z
Bn

K�(z;w)f(w)'(w)�(w)dv(w); z 2 Bn;

where K�(z;w) is the reproducing kernel for A2
�.

The Toeplitz operators can also be defined for unbounded symbols or for finite

measures on Bn. In fact, given a finite positive Borel measure � on Bn, the Toeplitz

operator T� : A2
� ! A2

� is defined as follows

T�f(z) =
Z
Bn

K�(z;w)f(w)d�(w); z 2 Bn:

Note that

hT�f; gi� =
Z
Bn

f(z)g(z)d�(z); f; g 2 A2
�:

3.6 Subharmonic functions and potentials on C

In this section we are going to formulate several definitions and properties of sub-

harmonic functions and potentials on C. These results can be found in many books, we

refer to [35] for more details.

Definition 3.6.1. Let U be an open subset of C. A function u : U ! [�1;1) is called

subharmonic on U if

(i) u is upper semicontinuous, that is, the set fz 2 U : u(z) < �g is open for every

real number �.
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(ii) u satisfies the local submean inequality, i.e. given z 2 U , there exists t > 0 such

that

u(z) � 1

2�

Z 2�

0
u(z + rei�) d�; 0 � r < t:

Proposition 3.6.2. Let u; v be subharmonic functions on an open subset U of C. Then

(i) max(u; v) is subharmonic on U ;

(ii) �u+ �v is subharmonic on U for all �; � � 0;

(iii) eu is subharmonic on U .

Example 3.6.3. If f is holomorphic on an open subsetU ofC, then logjf j and jf j�; � >
0, are subharmonic on U .

Proposition 3.6.4. Let U be an open subset of C, and u 2 C2(U). Then u is subharmonic

on U if and only if the Laplacian�u is positive on U .

Proposition 3.6.5. Let u be a subharmonic function on a domainD in C, with u 6� �1
onD. Then u is locally integrable onD, i.e.

R
K ju(z)j dV (z) <1 for each compact subset

K ofD.

Definition 3.6.6. Let u be a subharmonic function on a domainD in C, with u 6� �1
on D. The generalized Laplacian of u is the Radon measure �u on D such that

Z
D
��u =

Z
D
u�� dV

for all � 2 C1
c , the space of all C1 functions f : D ! R whose support supp f is a

compact subset of D.

Definition 3.6.7. Let � be a finite Borel measure on C with compact support. The

logarithmic potential of � is the function p� : C! [�1;1) defined a.e. by

p�(z) =
1

2�

Z
C

logjz � wj d�(w); z 2 C:
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Proposition 3.6.8. Let � be a finite Borel measure on C with compact support. Then

�p� = �:

Remark 3.6.9. Given R > 0, we consider the function G = GR as follows

G(z) =
1

2�

Z
D(0;R)

logjz � wjd�(w) + 1

2�

Z
CnD(0;R)

log
����z � ww

���� d�(w); z 2 C:

Here and later on, D(z; r) = fw 2 C : jw � zj < rg ; z 2 C; r > 0: We call G the

modified logarithmic potential of the finite measure � (not necessarily with compact

support).

Since G(z) = p�(z)� 1
2�

R
CnD(0;R) logjwj d�(w), then G also satisfies

�G = �p� = �:

Next, we state here a result by Hayman [17, Lemma 4], which will be used later.

Let � be a finite positive measure. Given z 2 C; h > 0, set

n(z; h) = �
�
D(z; h)

�
and N(z; h) =

Z
D(z;h)

log
���� h

w � z
���� d�(w):

Lemma 3.6.10. Let z0 2 C; 0 < d < h=2. There exists a set K of area at most �d2 such

that

N(z; h=2) � n(z0; h) log
16h

d
; z 2 D(z0; h=2) nK:

3.7 Plurisubharmonic functions

Definition 3.7.1. Let 
 be an open subset of Cn. A function u : 
 ! [�1;1) is

called plurisubharmonic on 
 if

(i) u is upper semicontinuous, that is, the set fz 2 
 : u(z) < �g is open for every

real number �.
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(ii) u satisfies the mean-value inequality

u(a) � 1

2�

Z 2�

0
u(a+ ei�b) d�

for all a; b 2 Cn such that the disk fa+ wb : jwj � 1g is contained in 
.

Example 3.7.2. If u is holomorphic on an open subset 
 of Cn, then log jf j is plurisub-
harmonic on U .

Proposition 3.7.3. Let 
 be an open subset of Cn. Then a function u 2 C2(
) is plurisub-

harmonic if and only if its Levi form Lu(z; b) is non-negative, i.e.,

Lu(z; b) =
nX

j;k=1

@2u

@zj@zk
(z)bjbk � 0; z 2 
; b 2 Cn:

We refer to the book of Hörmander [18] for further properties of plurisubharmonic

functions and the survey carried out by Kiselman [22] on the development of the theory

of plurisubharmonic functions.

Let us recall here the Hörmander theorem [18, Theorem 4.4.4].

Theorem 3.7.4. Let ' be a plurisubharmonic function in the pseudoconvex open set 
 �
Cn. If z0 2 
 and e�' is integrable in a neighborhood of z0 one can find an analytic function

f in 
 such that f(z0) = 1 and

Z


jf(z)j2(1 + jzj2)�3ne�'(z) dV (z) <1:

An open set 
 � Cn is called pseudoconvex if there exists a continuous plurisubhar-

monic function u in 
 such that

fz 2 
 : u(z) < cg b 


for every c 2 R. Note that a ball is pseudoconvex.

The following version of this result is given in [3, Section IV].
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Theorem 3.7.5. Let ' be a plurisubharmonic function in Cn. Then there exists an entire

function f 6� 0 such that

Z
Cn
jf(z)j2(1 + jzj2)�3ne�'(z) dV (z) <1:

We denote as usual d = @ + �@ and set dc = i(�@ � @), so that ddc = 2i@ �@.

A complex current of bidegree (p; q) (or bidimension (n� p; n� q)) is a differential
form

T =
X0

jJ j=p
jKj=q

TJKdzJ ^ d�zK ;

where coefficients TJK are distributions, the sum is taken only over increasing multi-

indices J;K. We say that a current T of bidegree (p; p) is positive if

T ^ i�1 ^ ��1 ^ : : : ^ i�n�p ^ ��n�p

is positive for any (1; 0)-forms �1; : : : ; �n�p 2 C(1;0). If dT = 0, then T is said to be

closed.

Definition 3.7.6. Let u be a plurisubharmonic function on 
, an open subset of Cn,

and T a closed positive current of bidimension (p; p). According to Bedford-Taylor [2]

we define

ddcu ^ T = ddc(uT );

where ddc(�) is taken in the sense of distribution theory. Given locally bounded plurisub-

harmonic functions u1; : : : ; uq on 
, we define inductively

ddcu1 ^ ddcu2 ^ : : : ^ ddcuq ^ T = ddc(u1dd
cu2 ^ : : : ^ ddcuq ^ T ):

In particular, when u is a locally bounded plurisubharmonic function, one obtains a

well defined positive measure (ddcu)n. If u 2 C2(
), then

(ddcu)n = n!4n det

 
@2u

@zj@�zk

!
dV:
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Theorem 3.7.7. Let 
 b Cn be a smooth strongly pseudoconvex domain and let f 2
C(@
) be a continuous function on the boundary. Then there exists a function u which is

continuous on 
, plurisubharmonic on 
 and solves the Dirichlet problem

(ddcu)n = 0 on 
; u = f on @
:

This theorem is the fundamental result on the solution of the Dirichlet problem

for complex Monge-Ampère equations, see the papers of Bedford-Taylor [2] and of De-

mailly [9, Theorem 7.5].

3.8 Lelong number

Let u be a plurisubharmonic function on a domain 
 � Cn such that u 6� �1.

Then u is locally integrable with respect to the Lebesgue measure in 
, and �u =

1
2�
�u = 1

2�

Pn
j=1

@2u
@zj@zj

is a positive Borel measure on 
.

Definition 3.8.1. Let a 2 
. The Lelong number �u(a) of u at a is the limit

�u(a) = lim
r!0

�u
�
B(a; r)

�
�2n�2r2n�2

;

where �2n�2 = �n�1=(n � 1)! is the volume of the unit ball in Cn�1, and B(a; r) :=

fz 2 Cn : jz � aj < rg is the Euclidean ball of center a and radius r > 0 in Cn.

Proposition 3.8.2. The Lelong number of u at the point a 2 
 can also be expressed by the

following formulas:

�u(a) = lim
r!0

1

log r

Z
j�j=r

u(a+ r�) d�(�);

�u(a) = lim
r!0

supjzj�r u(a+ z)

log r
:

Example 3.8.3. If u(z) = logjzj; z 2 Cn, then �u(0) = 1.
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See [19, 20, 41] for more details. In particular, if �u(a) < 2, then e�u is locally

integrable with respect to V in a neighborhood of a.

We state here a result of Kiselman [21], which will be used later.

Theorem 3.8.4. Let u be a plurisubharmonic function on an open subset 
 of Cn and K

be a compact set in 
. Then for each 0 < � < 2
supz2K �u(z)

, there exists a positive constant

C� such that

V (fz 2 K : u(z) � tg) � C�e
�t; t 2 R:

Small Fock spaces, small Bergman spaces and their operators



Chapter 4

Carleson measures and Toeplitz

operators on small Bergman spaces

on the ball

In this chapter, we study the Carleson measures and the Toeplitz operators on the

class of the so-called small weighted Bergman spaces, introduced by Seip. A characteri-

zation of Carleson measures is obtained which extends Seip’s results from the unit disk

of C to the unit ball of Cn. We use this characterization to give necessary and suffi-

cient conditions for the boundedness and compactness of Toeplitz operators. Finally,

we study the Schatten p classes membership of Toeplitz operators for 1 < p <1.

4.1 Remark on the classes of weights

We recall that S is the class of radial weights � such that

inf
k

1� rk
1� rk+1 > 1; (4.1)

where rk 2 [0; 1) are determined by the relation
Z 1

rk
�(x)dx = 2�k:

This class was introduced by Seip in [39].
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Lemma 4.1.1. Let � 2 S. Then we have an equivalent norm in the weighted Bergman

space A2
� as follows

kfk2� �
1X
k=1

2�k
Z
Sn

jf(rk�)j2d�(�); f 2 A2
�: (4.2)

Proof. The conclusion follows from the fact that the function �f ,

�f(r) =
Z
Sn

jf(r�)j2d�(�)

is non-decreasing.

We denote by bD the class of doubling weights �, which means

Z 1

r
�(s)ds .

Z 1

r+1
2

�(s)ds

for r 2 (0; 1).

It is easy to see that S � bD.

Example 4.1.2. The functions

�(x) = (1� x)��; 0 < � < 1;

and

�(x) = (1� x)�1
�
log

1

1� x
���

; 1 < � <1;

belong to S and bD.

Lemma 4.1.3. n
A2
� : � 2 S

o
=
n
A2
� : � 2 bDo :

Proof. For � 2 S [ bD, we can find e� 2 S \ bD such that A2
� = A2e�. Indeed, by the

monotonicity of the functions �f , we obtain that if h�1 & h�2 , then A2
�1 � A2

�2 , where

h�(x) =
R 1
1�x �(t) dt. Correspondingly, if h�1 � h�2 , then A2

�1 = A2
�2 . Now, if � 2 S,

then we can interpolate h� linearly between the points 1 � rk, k � 1, to get h~� such
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that A2
� = A2

~� and for some c > 1, h~�(cx) � 2h~�(x). Hence, h~�(2x) � dh~�(x) for some

d > 1, and, thus, e� 2 bD. On the other hand, if � 2 bD, then we can interpolate log h�

linearly between the points 2�k, k � 1, to get h~� such that A2
� = A2

~� and h~�(dx) �
2h~�(x) for some d > 1. Hence, e� 2 S.

We introduce a subclass S� of weights in S determined by the condition that ��(r) .

�(r) for r 2 (0; 1), where

��(r) =
1

1� r
Z 1

r
�(t)dt:

Example 4.1.4. The weights

�(x) = (1� x)��
�
log

1

1� x
��
; 0 < � < 1; � 2 R

belong to S�, but the weights

�(x) = (1� x)�1
�
log

1

1� x
��
; � < �1;

�(x) = (1� x)�1
�
log

1

1� x
��1 �

log log
1

1� x
��
; � < �1;

do not belong to S�.

4.2 Carleson measures

Let � be a finite positive Borel measure onBn. We recall that � is a Carlesonmeasure

for the Bergman space A2
� if

Z
Bn

jf(z)j2d�(z) . kfk2�; f 2 A2
�:

It is clear that � is a Carleson measure for A2
� if and only if A2

� � L2(Bn; d�) and the

identity operator Id : A2
� ! L2(Bn; d�) is bounded. The Carleson constant of � for

A2
�, denoted by C�(A2

�), is the norm of this identity operator Id. Suppose that � is a

Carleson measure for A2
�. We say that � is a vanishing Carleson measure for A2

� if the
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above identity operator Id is compact. That is, limk!1

R
Bn
jfk(z)j2d�(z) = 0whenever

ffkg is a bounded sequence in A2
� which converges to 0 uniformly on compact subsets

of Bn.

In [39], Seip gave a characterization of Carleson measures for A2
� with � 2 S in the

case n = 1. Our following result extends this result to the case n > 1.

We use the following notation. For every nonnegative integer k,


k = fz 2 Bn : rk � jzj < rk+1g ;

and let �k be the measure defined by �k = �
k�whenever a nonnegative Borel measure

� on Bn is given.

Theorem 4.2.1. Let � 2 S, and let � be a finite positive Borel measure on Bn. Then

(i) � is a Carleson measure for A2
� if and only if each �k is a Carleson measure for the

Hardy spaceH2 with Carleson constant C�k(H2) . 2�k; k � 0.

(ii) � is a vanishing Carleson measure for A2
� if and only if

lim
k!1

2kC�k(H2) = 0:

Theorem 4.2.1 (i) for the case n = 1 was obtained by Seip in [39].

4.3 Toeplitz operators

Given a finite positive Borel measure � on Bn, the Toeplitz operator T� : A2
� ! A2

�

is defined as follows:

T�f(z) =
Z
Bn

K�(z;w)f(w)d�(w); z 2 Bn:

The Toeplitz operators acting on various spaces of holomorphic functions have been

extensively studied by many authors, and the theory is especially well understood in
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the case of Hardy spaces or standard Bergman spaces (see [42], [43] and the references

therein). Luecking [26] was the first to study Toeplitz operators on Bergman spaces

with measures as symbols, and some interesting results about Toeplitz acting on large

Bergman spaces were obtained by Lin and Rochberg [24].

First, we are going study the boundedness and compactness of T� onA2
�, with � 2 S.

Theorem 4.3.1. Let � 2 S, and let � be a finite positive Borel measure on Bn. Then

(i) The Toeplitz operator T� is bounded on A2
� if and only if � is a Carleson measure for

A2
�.

(ii) The Toeplitz operator T� is compact on A2
� if and only if � is a vanishing Carleson

measure for A2
�.

Next we study when our Toeplitz operators belong to the Schatten class. We refer to

[43, Chapter 1] for a brief account on the Schatten classes. A description for the standard

Bergman spaces on the unit disk was given (see [43, Chapter 7]), and a description for

the case of large Bergman spaces on the disk was obtained in 2015 by H. Arroussi, I.

Park, and J. Pau [1]. In 2016, Peláez and Rättyä [31] gave an interesting characterization

for the case of small Bergman spaces on unit disk, where the weight � 2 bD.

For weights � in S�, we obtain a characterization of the symbols of the Toeplitz

operators in the Schatten classes Sp. In [34], Peláez, Rättyä and Sierra gave a characteri-

zation for the case of dimension n = 1 when the weight is regular, that is ��(r) � �(r).

As an easy observation, our result is equivalent to their result when n = 1. We point

out that our approach is completely different from that of [34], which does not seem

to work in higher dimensions. On the other hand, for regular weights � in S n S�, this
characterization fails. A counterexample was given in [34].

For a measure � on Bn and � > 0, we define the function b�� by

b��(z) = 2k�
�
E(z; �)

�
(1� jzj)n ; z 2 
k:
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Let fT� be the Berezin transform of T�, defined by

fT�(z) = hT�kz; kzi�; z 2 Bn;

where kz is the normalized reproducing kernels of A2
�. Set

d��(z) =
2k�(z)dv(z)

(1� jzj)n ; z 2 
k:

Theorem 4.3.2. Let � be in S�, � be a finite positive Borel measure and 1 < p <1. The

following conditions are equivalent:

(a) The Toeplitz operator T� is in the Schatten class Sp.

(b) The function fT� is in Lp(Bn; d��):
(c) The function b�� is in Lp(Bn; d��) for sufficiently small � > 0.

4.4 Proof of Theorem 4.2.1

Lemma 4.4.1. Let � be a finite positive measure on Bn. Then �k is a Carleson measure

for H2 if and only if �k(Qa) . (1 � jaj)n for all a 2 
k. Furthermore, C�k(H2) �
supa2
k(1� jaj)�n�k(Qa):

Proof. Let a 2 Bn n f0g. Then a 2 
l for some l � 1. If l > k, then �k(Qa) = 0 and

there is nothing to prove. When a 2 
l; l � k, we can coverQanrkBn by a finite family

fQal : l 2 �g with al 2 
k�1, where � is a finite index set. Applying Lemma 3.1.3 to

the set fOal : l 2 �g, we get a subset �0 of � such that Oal; l 2 �0; are disjoint and

O
�
al; 3�(al)

�
; l 2 �0; cover Oa. Moreover, it is easy to see that

Qa n rkBn �
[
l2�0

Q
�
al; 3�(al)

�
:

Then

�k(Qa) = �k(Qa n rkBn) �
X
l2�0

�k

�
Q
�
al; 3�(al)

��
:
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Since al 2 
k�1, we have �k
�
Q
�
al; 3�(al)

��
. (1� jalj)n � �(Oal). Hence

�k(Qa) .
X
l2�0

�(Oal) = �
� [
l2�0

Oal

�
:

Finally,

�
� [
l2�0

Oal

�
. �(Oa) � (1� jaj)n:

Therefore �k(Qa) . (1� jaj)n: This completes the proof.

4.4.1 Proof of Part (i)

((=) Since �k are Carleson measures for H2 with Carleson constants . 2�k, the

same holds forH2 on the smaller ball rk+2Bn. Indeed, we just use the characterization of

Carleson measures and the fact that ifQ
�
a; �(a)

�
\r�1k+2
k 6= ;, then 1�jaj & 1�rk+2

and, hence, rk+2Q
�
a; �(a)

�
� Q

�
a;M�(a)

�
for someM <1 independent of a and k.

Therefore, Z

k
jf(z)j2d�(z) . 2�k

Z
Sn

jf(rk+2�)j2d�(�)

for an arbitrary function f in A2
� and for all k: Summing this estimate over all k � 1 we

get Z
Bn

jf(z)j2d�(z) .
1X
k=1

2�k
Z
Sn

jf(rk+2�)j2d�(�) � kfk2�:

(=)) We just need to check that �k(Qa) . 2�k(1 � jaj)n when a is in 
k; k � 0.

We use the test function

fa(z) = (1� ha; zi)�
 (4.3)

with large 
. By (4.2), we have

kfak2� �
1X
j=1

2�j
Z
Sn

1

j1� ha; rj�ij2
 d�(�)

�
1X
j=1

2�j

(1� rjjaj)2
�n :
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Since a 2 
k, the relation (4.1) yields that

kfak2� � 2�k(1� jaj)�2
+n: (4.4)

Indeed,

1X
j=1

2�j

(1� rjjaj)2
�n =
X
j�k

2�j

(1� rjjaj)2
�n +
X
j>k

2�j

(1� rjjaj)2
�n

�X
j�k

2�j

(1� rj)2
�n +
X
j>k

2�j

(1� jaj)2
�n

� 2�k

(1� rk)2
�n +
2�k

(1� jaj)2
�n

� 2�k(1� jaj)�2
+n:

On the other hand, for every z in Qa, we have

j1� ha; zij = j(1� jaj) + jaj(1� ha=jaj; zi)j

� (1� jaj) + jajj1� ha=jaj; zij

< (1� jaj) + 2jaj(1� jaj)

� 3(1� jaj):

Hence,

jfa(z)j & (1� jaj)�
; z 2 Qa: (4.5)

Thus, Z
Bn

jfa(z)j2d�(z) & (1� jaj)�2
�(Qa \ 
k):

Since � is a Carleson measure for A2
�, we get

�(Qa \ 
k) . 2�k(1� jaj)n:

This implies that �k is a Carleson measure for Hardy space H2 with Carleson constant

C�k(H2) . 2�k. 2
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4.4.2 Proof of Part (ii)

Suppose that � is a vanishing Carleson measure for A2
�. Given a in 
k, consider the

function fa defined by (4.3). By (4.4), kfak2� � 2�k(1� jaj)�2
+n: Set

ha(z) =
(1� ha; zi)�


2�k=2(1� jaj)�
+n=2 : (4.6)

Then khak2� � 1 and by (4.5),

jha(z)j2 & 2k

(1� jaj)n ; z 2 Qa:

Since � is a vanishing Carleson measure for A2
� and ha tends to 0 uniformly on compact

subsets of the unit ball as jaj ! 1, we have

lim
jaj!1

Z
Bn

jha(z)j2d�(z) = 0:

Thus, sup
a2
k

2k�k(Qa \ 
k)

(1� jaj)n ! 0 as k!1. Hence, lim
k!1

2kC�k(H2) = 0:

Conversely, let �r = �j
BnnrBn

, where rBn = fz 2 Bn : jzj < rg. Then (�r)k � �k,

k � 1 and (�r)k = 0 if rk+1 � r. Therefore, Part (i) of Theorem 4.2.1 implies thatZ
Bn

jh(z)j2d�r(z) � Crkhk2�; h 2 A2
�;

where

Cr = sup
k : rk+1>r

2kC�k(H2); and lim
r!1

Cr = 0: (4.7)

Let ffkg be a bounded sequence in A2
� converging uniformly to 0 on compact subsets

of Bn. Let " > 0. By (4.7), there exists r0 2 (0; 1) such that Cr < " for all r � r0.

Moreover, by the uniform convergence on compact subsets, we may choose k0 2 N
such that jfk(z)j2 < " for all k � k0 and z 2 r0Bn. It follows thatZ

Bn

jfk(z)j2d�(z) =
Z
r0Bn

jfk(z)j2d�(z) +
Z
Bnnr0Bn

jfk(z)j2d�(z)

< "�(r0Bn) +
Z
Bn

jfk(z)j2d�r0(z)

� "�(r0Bn) + Cr0kfkk2�
� "C; k � k0;
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for some positive constant C. Hence, � is a vanishing Carleson measure for A2
�. 2

4.5 Proof of Theorem 4.3.1

4.5.1 Proof of Part (i)

(=)) Given a in 
k, we define ha by (4.6). Then

khak2� � 1 and jha(z)j2 & 2k(1� jaj)�n; z 2 Qa:

Consider the function

T#
� (a) = hT�ha; hai� =

Z
Bn

jhaj2d�(z): (4.8)

Since T� is bounded, A := supa2Bn T
#
� (a) <1: Then

A �
Z
Bn

jha(z)j2d�(z) �
Z
Bn

jha(z)j2d�k(z)

�
Z
Qa
jha(z)j2d�k(z) & 2k(1� jaj)�n�k(Qa): (4.9)

Hence, �k(Qa) . 2�k(1�jaj)n for every a 2 
k. By Theorem 4.2.1 and Lemma 4.4.1,

� is a Carleson measure for A2
�.

((=) For every f; g 2 A2
� we have

hT�f; gi� =
Z
Bn

f(z)g(z)d�(z):

Then by the Cauchy–Schwarz inequality, we get

jhT�f; gi�j �
Z
Bn

jf(z)jjg(z)jd�(z)

�
�Z

Bn

jf(z)j2d�(z)
� 1

2
�Z

Bn

jg(z)j2d�(z)
� 1

2

:

Since � is a Carleson measure for A2
�, there exists a positive constant C such that

Z
Bn

jf(z)j2d�(z) � Ckfk2�;
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and

Z
Bn

jg(z)j2d�(z) � Ckgk2�:

Hence,

jhT�f; gi�j � Ckfk�kgk� for all f; g 2 A2
�:

Thus, T� is bounded on A2
�. 2

4.5.2 Proof of Part (ii)

We need the following auxiliary results.

Proposition 4.5.1. Suppose that f 2 A2
� with � 2 S. Then

jf(z)j2 � C2k

(1� jzj)nkfk
2
�; z 2 
k; k � 0; (4.10)

where C is a positive constant independent of k and z.

Proof. Let z 2 
k. Applying [42, Corollary 4.5] to the function g(z) = f(rk+2z) at

the point z
rk+2

, we obtain

jf(z)j2 �
Z
Sn

jf(rk+2�)j2 (1� jz=rk+2j2)n
j1� hz=rk+2; �ij2nd�(�):

By (4.1), j1� hz=rk+2; �ij � 1� jhz=rk+2; �ij � 1� jzjj�j
rk+2

= 1� jzj=rk+2 & 1� jzj for
z 2 
k; � 2 Sn. Thus,

jf(z)j2 .
Z
Sn

jf(rk+2�)j2 (1� jzj
2)n

(1� jzj)2n d�(�)

� (1 + jzj)n
(1� jzj)n

Z
Sn

jf(rk+2�)j2d�(�)

.
2k

(1� jzj)n2
�k
Z
Sn

jf(rk+2�)j2d�(�)

� 2k

(1� jzj)n
1X
j=1

2�j
Z
Sn

jf(rj+2�)j2d�(�)

.
2k

(1� jzj)nkfk
2
�;

with constants independent of k and z.
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Corollary 4.5.2. A sequence of functions ffkg � A2
� converges to 0 weakly in A2

� if and

only if it is bounded in A2
� and converges to 0 uniformly on each compact subset of Bn.

Proof of Part (ii) of Theorem 4.3.1. Suppose that T� is compact onA2
�. We define ha; a 2

Bn by (4.6), and T#
� by (4.8). Then khak2� � 1 and ha converges uniformly to 0 on

compact subsets of Bn as jaj ! 1. Since T� is compact, T#
� (a)! 0 as jaj ! 1. By (4.9)

this implies that

sup
a2
k

2k�k(Qa)

(1� jaj)n ! 0 as k!1:

Hence,

lim
k!1

2kC�k(H2) = 0:

By Part (ii) of Theorem 4.2.1, � is a vanishing Carleson measure for A2
�.

Conversely, assume that � is a vanishing Carleson measure forA2
�. For every h 2 A2

�

we have

kT�hk� = sup
g2A2�
kgk��1

jhT�h; gi�j:

Furthermore,

jhT�h; gi�j =
����Z
Bn

h(z)g(z)d�(z)
���� � Z

Bn

jh(z)jjg(z)jd�(z)

�
�Z

Bn

jh(z)j2d�(z)
�1=2 �Z

Bn

jg(z)j2d�(z)
�1=2

.
�Z

Bn

jh(z)j2d�(z)
�1=2

kgk�:

The last inequality follows from the fact that � is a Carleson measure forA2
�. Therefore,

kT�hk� .
�Z

Bn

jh(z)j2d�(z)
�1=2

; h 2 A2
�:

Now, let ffkg � A2
� be bounded and converge uniformly to 0 on compact subsets of

Bn. Since � is a vanishing Carleson measure for A2
�,

lim
k!1

Z
Bn

jfk(z)j2d�(z) = 0:

It follows that kT�fkk� ! 0 and hence T� is compact.
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4.6 Proof of Theorem 4.3.2

Proposition 4.6.1. LetK�(z;w) be the reproducing kernel of A2
�.

(a) Let k � 1, z 2 
k. Then

K�(z; z) � 2k

(1� jzj)n : (4.11)

(b) There exists � = �(�) > 0 such that for every z 2 Bn,

jK�(z;w)j2 � K�(z; z)K�(w;w) (4.12)

whenever w 2 E(z; �).

Proof. (a) Fix k � 1. Given z 2 
k, let Lz be the point evaluation at z on A2
�. It is

well-known that

K�(z; z) = kLzk2:

By Proposition 4.5.1,

kLzk2 . 2k

(1� jzj)n :

Furthermore, choosing hz by (4.6), we have khzk� � 1 and

jhz(z)j2 & 2k

(1� jzj)n :

Hence,

kLzk2 & 2k

(1� jzj)n :

Thus

K�(z; z) � 2k

(1� jzj)n ; z 2 
k:

(b) In this proof, we use an argument of Lin and Rochberg in [24]. It is well-known

that

jK�(z;w)j2 � K�(z; z)K�(w;w)

for all z;w 2 Bn:
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For any fixed z0 2 
k, consider the subspace A2
�(z0) defined as

A2
�(z0) =

n
f 2 A2

� : f(z0) = 0
o
:

Denote by Lz0 the one-dimensional subspace spanned by the function

k�;z0(z) =
K�(z; z0)q
K�(z0; z0)

:

Then we have the orthogonal decomposition

A2
� = A2

�(z0)� Lz0:

HenceK�(z;w) = K�;z0(z;w)+k�;z0(w)k�;z0(z), whereK�;z0 is the reproducing kernel

of A2
�(z0). Therefore,

K�(z0; w) = k�;z0(w)k�;z0(z0)

and

K�(w;w) = K�;z0(w;w) + jk�;z0(w)j2: (4.13)

We are going to prove that there exists � > 0 such that

K�;z0(w;w) <
1

2
K�(w;w); w 2 E(z0; �): (4.14)

By (4.1), there exists �1 > 0 such that E(z0; �) � 
k�1 [ 
k [ 
k+1; 0 < � < �1.

Hence, for every f 2 A2
�(z0) such that kfk� = 1, by Proposition 4.5.1 we have

jf(w)j2 . 2k

(1� jwj)n �
2k

(1� jz0j)n (4.15)

whenever w 2 E(z0; �). Since E(z0; �) = 'z0
�
E(0; �)

�
, we can rewrite (4.15) as

jf
�
'z0(�)

�
j2 . 2k

(1� jz0j)n (4.16)

whenever � 2 E(0; �). Note that f(z0) = f
�
'z0(0)

�
= 0. Therefore, by the Schwarz

lemma, we get

jf
�
'z0(�)

�
j2 . j�j2 2k

(1� jz0j)n � j�j2 2k

(1� j'z0(�)j)n
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whenever � 2 E(0; �). This implies that there is a constant C > 0 such that

jf
�
'z0(�)

�
j2 � Cj�j2 2k

(1� j'z0(�)j)n
; � 2 E(0; �):

Thus, we can choose � so small that

jf
�
'z0(�)

�
j2 < 1

2
K�

�
'z0(�); 'z0(�)

�
; � 2 E(0; �):

This proves (4.14).

Now, from (4.13) and (4.14), we obtain that jk�;z0(w)j2 >
1

2
K�(w;w) whenever

w 2 E(z0; �). This means that

jK�(w; z0)j2 > 1

2
K�(z0; z0)K�(w;w)

whenever w 2 E(z0; �), which completes our proof.

Lemma 4.6.2. Let T be a positive operator on A2
�, and let eT be the Berezin transform of T ,

defined by

eT (z) = hTkz; kzi�; z 2 Bn:

(a) Let 0 < p � 1. If eT 2 Lp(Bn; d��), then T is in Sp:

(b) Let p � 1. If T is in Sp, then eT 2 Lp(Bn; d��):
Here, d��(z) =

2k�(z)dv(z)

(1� jzj)n if z 2 
k:

Proof. Note that

d��(z) � K(z; z)�(z)dv(z) = kKzk2�(z)dv(z):

The proof is similar to the proof of [1, Lemma 4.2]. The positive operator T is in

Sp if and only if T p is in the trace class S1. Fix an orthonormal basis fekg of A2
�. Since

T p is positive, it is in S1 if and only if
P
khT pek; eki� <1: Let U =

p
T p. By Fubini’s

theorem, the reproducing property of Kz, and Parseval’s identity, we have

X
k

hT pek; eki� =
X
k

kUekk2� =
X
k

Z
Bn

jUek(z)j2�(z)dv(z)
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=
Z
Bn

 X
k

jUek(z)j2
!
�(z)dv(z) =

Z
Bn

 X
k

jhUek;Kzi�j2
!
�(z)dv(z)

=
Z
Bn

 X
k

jhek; UKzi�j2
!
�(z)dv(z) =

Z
Bn

kUKzk2��(z)dv(z)

=
Z
Bn

hT pKz;Kzi��(z)dv(z) =
Z
Bn

hT pkz; kzi�kKzk2��(z)dv(z)

�
Z
Bn

hT pkz; kzi�d��(z):

Hence, both (a) and (b) are the consequences of the well-known inequalities (see [43,

Proposition 1.31])

hT pkz; kzi� � hTkz; kzip� =
� eT (z)�p; 0 < p � 1;

hT pkz; kzi� � hTkz; kzip� =
� eT (z)�p; p � 1:

Lemma 4.6.3. Let � 2 S� and z 2 
k. Then there exists �0 > 0 such that for every

� 2 (0; �0) we have

jf(z)j2 . 2k

(1� jzj)n
Z
E(z;�)

jf(w)j2�(w)dv(w)

for all f 2 H(Bn).

Proof. Let z 2 
k. For each f 2 H(Bn), by the subharmonicity of the function w 7!
jf(w)j2 and the estimate v

�
E(z; �)

�
� (1� jzj)n+1, we have

jf(z)j2 . 1

(1� jzj)n+1
Z
E(z;�)

jf(w)j2dv(w):

Clearly 1� jzj � 1� jwj for w 2 E(z; �). Hence,

jf(z)j2 . 1

(1� jzj)n
Z
E(z;�)

jf(w)j2 1

1� jwjdv(w)

=
2k

(1� jzj)n
Z
E(z;�)

jf(w)j2 2�k

1� jwjdv(w): (4.17)

By (4.1), for small �0 we have E(z; �0) � 
k�1 [ 
k [ 
k+1. Therefore, for every

� 2 (0; �0), we have rk�1 < jwj < rk+2 for w 2 E(z; �). Since R 1rk+2 �(t)dt = 2�k�2,
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we obtain 2�k .
R 1
jwj �(t)dt for every w 2 E(z; �); � 2 (0; �0). Plugging this into

(4.17) and using that ��(w) . �(w), we get

jf(z)j2 . 2k

(1� jzj)n
Z
E(z;�)

jf(w)j2��(w)dv(w)

.
2k

(1� jzj)n
Z
E(z;�)

jf(w)j2�(w)dv(w):

This completes the proof.

Proof of Theorem 4.3.2. (a)) (b). This follows from Lemma 4.6.2 (b).

(b)) (c). By Proposition 4.6.1 (b), for sufficiently small � > 0, we have

jKz(w)j2 � kKzk2�kKwk2�; w 2 E(z; �); z 2 Bn:

Then by Proposition 4.6.1 (a), we get

fT�(z) = Z
Bn

jkz(w)j2d�(w) = kKzk�2�
Z
Bn

jKz(w)j2d�(w)

� kKzk�2�
Z
E(z;�)

jKz(w)j2d�(w)

�
Z
E(z;�)

kKwk2�d�(w) � b��(z):
Since fT� is in Lp(Bn; d��), b�� is also in Lp(Bn; d��).

(c)) (a). For every orthonormal basis felg of A2
�, we haveX

l

hT�el; elip� =
X
l

�Z
Bn

jel(z)j2d�(z)
�p
: (4.18)

By Lemma 4.6.3,

jel(z)j2 . 2k

(1� jzj)n
Z
E(z;�)

jel(w)j2�(w)dv(w); z 2 
k:

By Fubini’s theorem and Hölder’s inequality, we haveZ
Bn

jel(z)j2d�(z) .
Z
Bn

jel(w)j2 b��(w)�(w)dv(w)
�
�Z

Bn

jel(w)j2 b��(w)p�(w)dv(w)�1=p
�
�Z

Bn

jel(w)j2�(w)dv(w)
�1=q

=
�Z

Bn

jel(w)j2 b��(w)p�(w)dv(w)�1=p ;
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where 1
p
+ 1

q
= 1: Thus, (4.18) implies that

X
l

hT�el; elip� .
Z
Bn

 X
l

jel(w)j2
! b��(w)p�(w)dv(w)

=
Z
Bn

kKwk2� b��(w)p�(w)dv(w)
�
Z
Bn

b��(w)pd��(w) <1:

This proves (a).

Remark 4.6.4. Let 1 < p <1. In the case of large weighted Bergman spaces, Arroussi,

Park and Pau proved in [1, Theorem 4.6] that

T� 2 Sp () e�"(z) = �
�
B(z; "(1� jzj))

�
(1� jzj)2n is in the corresponding weighted Lp;

where B(z; "(1� jzj)) is the Euclidean ball with center z and radius "(1� jzj). When

the dimension n = 1, we can see that e�" is in Lp if and only if b�" is in Lp. However, for

n > 1, this equivalence is not true anymore.

Let us verify this. Choose zk 2 Bn such that jzkj tends to 1 sufficiently rapidly as

k!1. Consider

� =
1X
k=1

ck�B(zk;") and �� =
1X
k=1

ck�B(zk;3");

where ck > 0 will be chosen later. We have

� . e�" . ��

and
1X
k=1

ck
v
�
B(zk; ")

�
v
�
E(zk; ")

��E(zk;") . b�" . 1X
k=1

ck
v
�
B(zk; ")

�
v
�
E(zk; ")

��E(zk;3"):
Hence

e�" 2 Lp () 1X
k=1

cpkv
�
B(zk; ")

�
<1;
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�

and

b�" 2 Lp () 1X
k=1

cpk

�
v
�
B(zk; ")

��p
�
v
�
E(zk; ")

��p�1 <1:

Since

cpk
�
v
�
B(zk; ")

��p�
v
�
E(zk; ")

��1�p
cpkv

�
B(zk; ")

� =

0@v
�
B(zk; ")

�
v
�
E(zk; ")

�
1Ap�1

� (1� jzkj)(n�1)(p�1) �! 0

as k ! 1, we can choose ck such that b�" 2 Lp but e�" =2 Lp. On the other hand, one

can easily see that e�" 2 Lp implies b�" 2 Lp.
Remark 4.6.5. When � 2 S n S�, Theorem 4.3.2 does not remain valid anymore.

Let us denote

'(x) =
Z 1

1�e�x
�(s)ds; 0 < x <1:

Then ' is positive and lim
x!1

'(x) = 0. Moreover,

� 2 S if and only if inf
k

�
'�1(2�k�1)� '�1(2�k)

�
> 0:

In particular, � is in S if j'0j = O(') at1. On the other hand,

� 2 S� if and only if j'0j & ' at1:

Now we consider

�(r) =
1

(1� r)
����'0
 
log

1

1� r
!����; 0 � r < 1;

where ' is a differentiable positive function from [0;1) to [0;1) satisfying the follow-

ing properties: lim
x!1

'(x) = 0, j'0j decreases, j'0j = o(') at1, and j'0(t+1)j � �j'0(t)j
for t > 0, � being a positive constant.

Claim 1: Such � is in S n S�.
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Proof of Claim 1. Since j'0j = o('), j'
0(x)j
'(x)

� 1 for every x � x0. For " 2 (0; log 2) we

have Z x+"

x

j'0(t)j
'(t)

dt � "; x � x0:

It follows that log'(x) � "+ log'(x+ "). Hence

'(x) � 2'(x+ "); x � x0:

Since' is decreasing, '�1 is decreasing. For every 0 < y � '(x0)
2

, set x = '�1(2y) � x0.

Then y = '(x)
2
� '(x+ ") . Thus

'�1(y) � x+ " = '�1(2y) + ":

Therefore, '�1(2�k�1) � "+ '�1(2�k) for k � k0. It gives us that

e'
�1(2�k�1) � (1 + ")e'

�1(2�k); k � k0:

Hence

inf
k

1� rk
1� rk+1 = inf

k

e'
�1(2�k�1)

e'�1(2�k)
> 1;

and � 2 S. Clearly � =2 S�.

Claim 2: We have

Z 1

0
rm�(r) dr � '(logm); m � 2;

and Z
D

jzj2md�k(z) � 1

m
; e'

�1(2�k) < m < e'
�1(2�k�1);

where d�k = �
kdv; k � 0.

Proof of Claim 2. Let us write

Z 1

0
rm�(r) dr =

Z 1� 1

m

0
rm�(r) dr +

Z 1

1� 1

m

rm�(r) dr:
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�

Moreover, Z 1

1� 1

m

rm�(r) dr �
Z 1

1� 1

m

�(r) dr = '(logm):

On the other hand,

Z 1� 1

m

0
rm�(r) dr .

logmX
k=0

Z 1�e�k�1

1�e�k

rm

1� r
���'0�log 1

1� r
���� dr

.
logmX
k=0

exp(�me�k)j'0(k)j:

Let A = logm. Since j'0(t+ 1)j � �j'0(t)j,

j'0(k)j � �k�Aj'0(A)j . ec(A�k)j'0(A)j

for all 0 � k � A, where c is a positive constant.

Hence

Z 1� 1

m

0
rm�(r) dr .

AX
k=0

exp(�eA�k) exp
�
c(A� k)

�
j'0(A)j

= j'0(A)j
AX
j=0

exp(cj � ej) . j'0(A)j

= j'0(logm)j = o
�
'(logm)

�
:

Therefore,
Z 1

0
rm�(r) dr � '(logm).

Making a similar argument as above leads us to the desired result

Z
D

jzj2md�k(z) � 1

m
; e'

�1(2�k) < m < e'
�1(2�k�1):

Nowwe are going to construct a measure � on D such that b�� 2 Lp(D; d��) for any
� > 0, but T� =2 Sp. Note that, for the sake of simplicity, we consider in this Remark

only the case of dimension n = 1.

Consider the orthonormal basis (em)m�0 of A2
�,

em(z) =
zm

kzmk� :
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Setmk = e'
�1(2�k). We obtain that

Z
D

jem(z)j2d�k(z) � 1

m

1

'(logm)
; mk < m < mk+1:

Then,

X
m�0

hT�kem; emip� =
X
m�0

�Z
D

jem(z)j2d�k(z)
�p

&
mk+1X
m=mk

1

mp

1�
'(logm)

�p := Ak:

Furthermore,

d�k;�(z) . 2k(1� jzj)�~
k
(z);

where

e
k = fz 2 D : dist(z;
k) < �g:

This implies that

Z
D

d�k;�p d�� . 2(p+1)k
Z
~
k
(1� jzj)p �(jzj)

1� jzj dv(z)

= 2(p+1)k
Z
~
k
(1� jzj)p�1�(jzj) dv(z)

. 2(p+1)k
Z rk+1

rk
(1� r)p�2

���'0�log 1

1� r
���� dr

� 2(p+1)k
mk+1X
m=mk

Z 1� 1

m+1

1� 1

m

(1� r)p�2
���'0�log 1

1� r
���� dr

� 2(p+1)k
mk+1X
m=mk

j'0(logm)j
Z 1� 1

m+1

1� 1

m

(1� r)p�2 dr

. 2(p+1)k
mk+1X
m=mk

1

mp
j'0(logm)j

�
mk+1X
m=mk

1

mp

1�
'(logm)

�p j'0(logm)j
'(logm)

:= Bk:

The last estimate comes from the fact that 2k = 1
'(logmk)

� 1
'(logm)

for allm between

mk andmk+1.
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�

Since j'0j = o(') at1 andmk !1 as k!1, we have Bk = o(Ak). Hence there

exist ks such that
X
s�0

 
Bks
Aks

! 1

2

<1: Let

d� =
X
s�0

1

(AksBks)
1

2p

d�ks :

Then

X
m�0

hT�em; emip� �
X
m�0

X
s�0

1

(AksBks)
1

2

hT�ksem; emip�

&
X
s�0

1

(AksBks)
1

2

Aks =
X
s�0

 
Aks
Bks

! 1

2

=1;

but

Z
D

c��p d�� �X
k�0

Z
~
k

c��p d�� �X
s�0

1

(AksBks)
1

2

Z
~
ks

[�ks;�
p
d��

.
X
s�0

1

(AksBks)
1

2

Bks =
X
s�0

 
Bks
Aks

! 1

2

<1:
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Chapter 5

Bergman type projections

In this chapter, we study the Bergman type projection acting from L1 to the Bloch

space B of Bn, n > 1, and then provide a characterization of radial weight so that the

projection is bounded.

5.1 Introduction and main result

Definition 5.1.1. Let us recall that the Bloch space of Bn, denoted by B, is the space of
holomorphic functions f in Bn such that

sup
z2Bn

(1� jzj2)jRf(z)j <1;

where

Rf(z) =
nX
j=1

zj
@f

@zj
(z)

is the radial derivative of f at z 2 Bn.

In the one dimensional case, the Bloch space consists of analytic functions f in D

such that

sup
z2D

(1� jzj2)jf 0(z)j <1;

and is denoted by B(D).
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Definition 5.1.2. Let � be a radial weight andX be a space of measurable functions on

Bn. The Bergman type projection P� acting on X is given by

P�f(z) =
Z
Bn

K�(z;w)f(w)�(w)dv(w); z 2 Bn; f 2 X;

where K�(z;w) is the reproducing kernel of the weighted Bergman space A2
�.

When � is the standard radial weight �(z) = (1� jzj2)�; � > �1, the projection is

denoted by P�.

A radial weight � belongs to the class bD if b�(r) . b�(1+r
2
) for all r 2 [0; 1), where

b�(r) = R 1
r �(s)ds.

Projections play a crucial role in studying operator theory on spaces of analytic func-

tions. Bounded analytic projections can also be used to establish duality relations and to

obtain useful equivalent norms in spaces of analytic functions. Hence the boundedness

of projections is an interesting topic which has been studied by many authors in recent

years [8, 10, 11, 32, 33]. In [32], Peláez and Rättyä considered the projection P�1 acting

on Lp�2(D); 1 � p < 1 when two weights �1; �2 are in the class R of so called regular

weights. A radial weight � is regular if b�(r) � (1�r)�(r); r 2 (0; 1). Recently, in 2019,

they extended these results to the case where �1 2 bD, �2 is radial [33].

In this chapter, we are going to study the projections acting on the space L1. In the

case of standard radial weight, we have the following result.

Theorem 5.1.3. For any � > �1, the Bergman type projection P� is a bounded linear

operator from L1 onto the Bloch space B.

See [42, Theorem 3.4] for a proof. This theorem is also valid for the case of one

dimension [43, Theorem 5.2].

In [33], Peláez and Rättyä obtain an interesting result in the one dimensional case.

Theorem 5.1.4. Let � be a radial weight. Then the projection P� : L1(D) ! B(D) is
bounded if and only if � 2 bD.
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We extend this theorem to the case of several variables and obtain the following

result.

Theorem 5.1.5. Let � be a radial weight. Then the projection P� : L1 ! B is bounded if

and only if � 2 bD.

5.2 Some auxiliary lemmas

To prove Theorem 5.1.5 we need several auxiliary lemmas.

Lemma 5.2.1. Let � be a radial weight. Then the following conditions are equivalent:

(i) � 2 bD;

(ii) There exist C = C(�) > 0 and �0 = �0(�) > 0 such that

b�(r) � C
�
1� r
1� t

�� b�(t); 0 � r � t < 1;

for all � � �0;

(iii) The asymptotic equality

Z 1

0
sx�(s)ds � b��1� 1

x

�
; x 2 [1;1);

is valid;

(iv) There exist C0 = C0(�) > 0 and C = C(�) > 0 such that

b�(0) � C0 b�(1
2
)

and �n � C�2n for all n 2 N.

This lemma can be found in [28].
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Lemma 5.2.2. If

f(z) =
1X
n=0

ajz
j 2 Hp; 0 < p � 2;

then
1X
j=0

(j + 1)p�2jajjp . kfkpp:

Lemma 5.2.3. Let fajg be a sequence of complex numbers such that
P
jq�2jajjq <1 for

some q; 2 � q <1. Then the function f(z) =
P1
n=0 ajz

j is inHq, and

kfkqq .
1X
j=0

(j + 1)q�2jajjq:

Two above lemmas are the classical Hardy-Littlewood inequalities, which can be

found, for example, in Duren’s book [13, Theorem 6.2 and 6.3].

Lemma 5.2.4. Let � be a radial weight. Then the reproducing kernelK�(z;w) is given by

K�(z;w) =
1

2

1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hz;wid; z; w 2 Bn;

where

�s =
Z 1

0
ts�(t)dt; s � 1:

Proof. By the multinomial formula (see [42, (1.1)]), we have that

hz;wid = X
�2Nn;j�j=d

d!

�!
z� �w�; z; w 2 Cn:

Hence, for � 2 Nn; j�j = d,

Z
Sn

��hz; �idd�(�) = X
�2Nn;j�j=d

d!z�

�!

Z
Sn

�����d�(�); z 2 Bn:

By Lemma 1.11 in [42],

Z
Sn

�����d�(�) =

8>>>><>>>>:
0 if � 6= �;

�!(n� 1)!

(d+ n� 1)!
if � = �;
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and we obtain Z
Sn

��hz; �idd�(�) = d!

�!
z�
Z
Sn

�����d�(�)

=
d!

�!

�!(n� 1)!

(d+ n� 1)!
z�

=
d!(n� 1)!

(d+ n� 1)!
z�; z 2 Bn:

Therefore, for � 2 Nn; j�j = d we haveZ
Bn

w�hz;wid�(w)dv(w) = 2n
Z 1

0
t2n�1+2d�(t)dt

Z
Sn

��hz; �idd�(�)

= 2
d!n!�2n�1+2d
(d+ n� 1)!

z�; z 2 Bn:

It follows that

z� =
(d+ n� 1)!

2d!n!�2n�1+2d

Z
Bn

w�hz;wid�(w)dv(w); z 2 Bn: (5.1)

Since �(t) > 0; 0 < t < 1, we have �s � C"(1� ")s for every " > 0. Given z 2 Bn,
we haveZ

Bn

����12
1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hz;wid

����2�(w)dv(w)
=

1

4

X
d1;d2�0

(d1 + n� 1)!(d2 + n� 1)!

d1!d2!(n!)2�2n�1+2d1�2n�1+2d2

Z
Bn

hz;wid1hw; zid2�(w)dv(w)

=
1

4

X
d1;d2�0

(d1 + n� 1)!(d2 + n� 1)!

d1!d2!(n!)2�2n�1+2d1�2n�1+2d2

Z
Bn

X
j�j=d2

w��z�
d2!

�!
hz;wid1�(w)dv(w)

=
1

2

X
d�0

 
(d+ n� 1)!

d!n!

!
1

�22n�1+2d

X
j�j=d

(d!)2

�!

n!�2n�1+2d
(d+ n� 1)!

z��z�

=
1

2

X
d�0

(d+ n� 1)!

n!�2n�1+2d

X
j�j=d

z��z�

�!
=

1

2

X
d�0

(d+ n� 1)!

d!n!�2n�1+2d
jzj2d <1:

Thus, the function w 7! 1
2

P1
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hw; zid belongs to A2

�.

By (5.1) and by continuity, for every f 2 A2
�(Bn),

f(z) =
Z
Bn

f(w)

 
1

2

1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hz;wid

!
�(w)dv(w); z 2 Bn;

which implies our conclusion.
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5.3 Proof of Theorem 5.1.5

It suffices to consider only the case n > 1.

Proposition 5.3.1. If � 2 bD, then the projection P� : L1 ! B is bounded, where P� is

defined by

P�'(z) =
Z
Bn

K�(z;w)'(w)�(w)dv(w); ' 2 L1; z 2 Bn:

Proof. We have

K�(z;w) =
1

2

1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hz;wid:

Hence, for a fixed w 2 Bn,

RK�(z;w) =
nX
j=1

zj
@K�(z;w)

@zj

=
nX
j=1

zj
@

@zj

 
1

2

1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
hz;wid

!

=
1

2

nX
j=1

zj
1X
d=0

(d+ n� 1)!

d!n!�2n�1+2d
d �wjhz;wid�1

=
1

2

1X
d=1

(d+ n� 1)!

(d� 1)!n!�2n�1+2d
hz;wid

=
1

2

1X
d=1

�(d+ n)

�(d)�(n+ 1)�2n�1+2d
hz;wid:

Now, given ' 2 L1, let

f(z) := P�'(z) =
Z
Bn

K�(z;w)'(w)�(w)dv(w); z 2 Bn:

For all z 2 Bn we have

jRf(z)j =
����Z
Bn

RK�(z;w)'(w)�(w)dv(w)
����

�
Z
Bn

jRK�(z;w)jj'(w)j�(w)dv(w)

� k'k1
Z
Bn

jRK�(z;w)j�(w)dv(w): (5.2)
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Set

g(�) =
1X
d=1

�(d+ n)

�(d)

�d�1

�2n�1+2d
; � 2 D:

Since �(t) > 0; 0 < t < 1; g is analytic in the unit disc. Then

RK�(z;w) =
hz;wi

2�(n+ 1)
g(hz;wi): (5.3)

Next we consider the reproducing kernel K1
�(z;w) of the Bergman space in the unit

disc with the weight �. We have

K1
�(z;w) =

1

2

1X
d=0

(zw)d

�2d+1
:

Furthermore,

@n

@zn
K1
�(z;w) =

1

2

1X
d=n

�(d+ 1)(zw)d�nwn

�(d� n+ 1)�2d+1

=
1

2

1X
s=1

�(s+ n)

�(s)

(zw)s�1wn

�2s+2n�1

=
1

2
g(zw)wn:

By a result of Peláez and Rättyä ( [32, Theorem 1 (ii)]), we haveZ
D

���� @n@znK1
�(z;w)

����(1� jzj2)n�2dA(z) � Z jwj

0

dtb�(t)(1� t)2 ; 1

2
� jwj < 1;

where b�(t) = R 1
t �(s)ds.

Thus,Z
D

jg(zw)j(1� jzj2)n�2dA(z) �
Z jwj

0

dtb�(t)(1� t)2 ; 1

2
� jwj < 1:

Since g is analytic in the unit disc, we haveZ
D

jg(zw)j(1� jzj2)n�2dA(z) . 1 +
Z jwj

0

dtb�(t)(1� t)2 ; w 2 D: (5.4)

Now, by (5.3), we haveZ
Bn

jRK�(z;w)j�(w)dv(w) .
Z
Bn

jg(hz;wi)j�(w)dv(w)

�
Z 1

0
r2n�1�(r)

�Z
Sn

jg(hrz; �i)jd�(�)
�
dr:
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By [42, Lemma 1.9] and the unitary invariance of d�, we haveZ
Sn

jg(hrz; �i)jd�(�) �
Z
D

jg(rjzj�)j(1� j�j2)n�2dA(�):

Thus, by (5.4) we obtainZ
Bn

jRK�(z;w)j�(w)dv(w) .
Z 1

0
r2n�1�(r)

 
1 +

Z rjzj

0

dtb�(t)(1� t)2
!
dr

. 1 +
Z jzj

0

1b�(t)(1� t)2
 Z 1

t=jzj
r2n�1�(r)dr

!
dt

. 1 +
Z jzj

0

b�(t=jzj)b�(t) dt

(1� t)2 .
1

1� jzj ; z 2 Bn:

By (5.2) we obtain now that

jRf(z)j . k'k1 1

1� jzj2 ; z 2 Bn;

and, hence,

sup
z2Bn

(1� jzj2)jRf(z)j . k'k1:

It is easy to see that

jf(0)j . k'k1:

Therefore, P� is bounded. The Proposition 5.3.1 is proved.

Proposition 5.3.2. Suppose that the projection P� : L1 ! B is bounded. Then � 2 bD.

Proof. Given � 2 Sn and w 2 Bn, let us consider a function g given by

g(�) = RK�(��;w); � 2 D:

Then

g(�) =
1X
d=1

cdh�; wid�d;

where cd =
1

2n

�(d+ n)

�(d)�(n)�2n�1+2d
. By the Hardy–Littlewood inequality (see Lemma

5.2.2) we have
1X
d=1

cdjh�; wijd
d+ 1

.
Z 2�

0
jg(ei�)j d�

2�

=
Z 2�

0
jRK�(e

i��; w)j d�
2�
:
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Integrating both sides of the above inequality over � 2 Sn we obtain

1X
d=1

cd
d+ 1

Z
Sn

jh�; wijd d�(�) .
Z
Sn

Z 2�

0
jRK�(e

i��; w)j d�
2�
d�(�)

=
Z
Sn

jRK�(�; w)j d�(�):

By the unitary invariance of d� and [42, Lemma 1.9], we have

Z
Sn

jh�; wijd d�(�) = jwjd
Z
Sn

j�1jd d�(�)

= (n� 1)jwjd
Z
D

(1� jzj2)n�2jzjd dA(z)

= (n� 1)�jwjd
Z 1

0
(1� t)n�2td=2dt

� �(d
2
+ 1)�(n)

�(d
2
+ n)

jwjd:

Hence,

Z
Sn

jRK�(�; w)j d�(�) &
1X
d=1

cd
d+ 1

�(d
2
+ 1)�(n)

�(d
2
+ n)

jwjd

=
1

2n

1X
d=1

�(d+ n)�(d
2
+ 1)

(d+ 1)�(d)�(d
2
+ n)�2n�1+2d

jwjd:

Since
�(d+ n)�(d

2
+ 1)

(d+ 1)�(d)�(d
2
+ n)

� 1;

we get Z
Sn

jRK�(�; w)j d�(�) & 1

2n

1X
d=1

jwjd
�2n�1+2d

; w 2 Bn:

Therefore, for z 2 Bn, we have
Z
Bn

jRK�(z;w)j�(w)dv(w) = 2n
Z 1

0
r2n�1�(r)

Z
Sn

jRK�(z; r�)j d�(�) dr

= 2n
Z 1

0
r2n�1�(r)

Z
Sn

jRK�(�; rz)j d�(�) dr

&
1X
d=1

jzjd
�2n�1+2d

Z 1

0
r2n�1+d�(r)dr

=
1X
d=1

�2n�1+d
�2n�1+2d

jzjd:
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Thus,

sup
z2Bn

(1� jzj2)
Z
Bn

jRK�(z;w)j�(w)dv(w)

& sup
z2Bn

(1� jzj)
1X
d=1

�d+2n�1
�2d+2n�1

jzjd

� sup
N2N

1

N

NX
d=1

�d+2n�1
�2d+2n�1

�
1� 1

N

�d

& sup
N2N

1

N

NX
d=1

�d+2n�1
�2d+2n�1

:

Since P� is bounded from L1 to B,

sup
z2Bn

(1� jzj2)
Z
Bn

jRK�(z;w)j�(w)dv(w) <1:

Given N � 2n, we obtain that

1 &
1

4N � 2n

4N�2nX
d=3N�n+1

�d+2n�1
�2d+2n�1

� 1

4N
(N � n)�4N

�6N
;

and, hence,

�6N & �4N :

If 8N � k < 8N + 8; N � 2n+ 8, then

�k � �8N . �12N . �18N � �2k;

and by Lemma 5.2.1 we conclude that � 2 bD.

From Propositions 5.3.1 and 5.3.2, we obtain the conclusion of Theorem 5.1.5.
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Chapter 6

Dimension of the Fock type spaces

In this chapter, we study the weighted Fock spaces in one and several complex vari-

ables. We evaluate the dimension of these spaces in terms of the weight function extend-

ing and complete earlier results by Rozenblum–Shirokov and Shigekawa.

6.1 Introduction

Let  be a plurisubharmonic function on Cn, n � 1. The weighted Fock space F2
 

is the space of entire functions f such that

kfk2 =
Z
Cn
jf(z)j2e� (z)dV (z) <1;

where dV is the volume measure on Cn.

Note that F2
 is a closed subspace of L2(Cn; e� dV ) and hence is a Hilbert space

endowed with the inner product

hf; gi =
Z
Cn
f(z)g(z)e� (z)dV (z); f; g 2 F2

 :

For numerous results on the Fock space on C, see the book of Zhu [44].

In this chapter we study when the space F2
 is of finite dimension depending on the

weight  . This problem (at least for the case n = 1) is motivated by some quantum

mechanics questions, especially in the study of zero modes, eigenfunctions with zero
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eigenvalues. In [36, Theorem 3.2], Rozenblum and Shirokov proposed a sufficient con-

dition for the space F2
 to be of infinite dimension, when  is a subharmonic function.

Theorem 6.1.1. Let  be a finite subharmonic function on the complex plane such that the

measure � = � is of infinite mass:

�(C) =
Z
C

d�(z) =1: (6.1)

Then the space F2
 has infinite dimension.

We improve and extend somewhat this statement in this chapter, give a necessary

and sufficient condition on  for the space F2
 to be of finite dimension, and calculate

this dimension.

The situation is muchmore complicated inCn; n � 2. Shigekawa established in [40]

(see also [15, Theorem 7.10] in a book by Haslinger), the following interesting result.

Theorem 6.1.2. Let  : Cn ! R be a C1 smooth function and let �0(z) denote the lowest

eigenvalue of the Levi matrix

L (z) = i@ �@ (z) =

 
@2 (z)

@zj@zk

!n
j;k=1

:

Suppose that

lim
jzj!1

jzj2�0(z) =1: (6.2)

Then dim(F2
 ) =1:

Note that the condition (6.2) is not necessary. A corresponding example is given

in [15, Section 7]. In this chapter, we improve Theorem 6.1.2 by presenting a weaker

condition for the dimension of the Fock space F2
 to be infinite. Furthermore, we give

several examples that show how far our condition is from being necessary.

The rest of this chapter is organized as follows. The case of dimension one is consid-

ered in Section 6.2, and the case of higher dimension is considered in Section Section 6.3.

Small Fock spaces, small Bergman spaces and their operators
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6.2 The case of C

Given a subharmonic function  : C! [�1;1), denote by � the corresponding

Riez measure, � = � . Next, consider the class Md of the positive �-finite atomic

measures with masses which are integer multiples by 4�. Given a �-finite measure �,

consider the corresponding atomic measure �d,

�d = max
n
�1 2Md : �1 � �

o
:

Denote �c = �� �d; �d = P
k 4��xk;� .

Denote byMc the class of the positive �-finite measures � such that �d = 0. Note

that if  is finite on the complex plane, then � has no point masses and � 2 Mc.

Furthermore, if � 2Mc, then e� 2 L1
loc(dV ).

Lemma 6.2.1. Let  ; 1 be two subharmonic functions such that (� )c = (� 1)
c. Then

dimF2
 = dimF2

 1 .

Proof. Let F; F1 be two entire functions with the zero sets, correspondingly,
n
xk;� 

o
and

n
xk;� 1

o
(taking into account the multiplicities). Then

�logjF j2 = (� )
d;�logjF j2 = (� 1)

d;

and the functions h =  � logjF j2 �  c; h1 =  1 � logjF1j2 �  c1 are harmonic. Let

h = ReH;h1 = ReH1 for some entire functions H;H1.

Given an entire function f , we have

f 2 F2
 ()

Z
C

jf(z)j2e� (z) dV (z) <1

()
Z
C

jf(z)j2e� c(z)�h(z)�logjF (z)j2 dV (z) <1

()
Z
C

jf(z)e�H(z)=2=F (z)j2e� c(z) dV (z) <1

()
Z
C

jf(z)e�H(z)=2=F (z)j2e� c1(z) dV (z) <1
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66 Chapter 6. Dimension of the Fock type spaces

()
Z
C

jf(z)e�H(z)=2=F (z)j2e� 1(z)+h1(z)+logjF1(z)j2 dV (z) <1

()
Z
C

jf(z)e�H(z)=2+H1(z)=2F1(z)=F (z)j2e� 1(z) dV (z) <1

() f � F1
F
e�H=2+H1=2 2 F2

 1 :

Thus, dimF2
 = dimF2

 1 .

Lemma 6.2.2. Let  be a subharmonic function such that � 2 Mc. If dimF2
 < 1,

then � (C) <1.

For a proof, see the proof of [36, Theorem 3.2].

Lemma 6.2.3. Let  be a subharmonic function. Then

dimF2
 �

�
� (C)

4�

�
:

Here and later on, given a real number x; dxe is the maximal integer smaller than x.

Proof. Set � = � and consider a modified logarithmic potential G of the measure �:

G(z) =
1

2�

Z
D(0;2)

logjz � wjd�(w) + 1

2�

Z
CnD(0;2)

log
����z � ww

����d�(w)
= G1(z) +G2(z):

Fromnowon,D(z; r) = fw 2 C : jw � zj < rg. Since�G = � = � , by Lemma 6.2.1

we have dimF2
 = dimF2

G.

Next,

����G1(z)�
�
�
D(0; 2)

�
2�

logjzj
���� � 1

2�

Z
D(0;2)

log
����1� w

z

���� d�(w)
� C

jzj ; jzj � 4; (6.3)

and

G2(z)�
�
�
C nD(0; 2)

�
2�

logjzj

=
1

2�

Z
CnD(0;2)

log
����1z � 1

w

���� d�(w) � 0; jzj � 4:
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Thus,

G(z) � �(C)

2�
log(1 + jzj) + C

1 + jzj ; z 2 C:

Now, given an entire function f , we have

f 2 F2
 =)

Z
C

jf(z)j2(1 + jzj)��(C)=(2�) dV (z) <1:

By a Liouville type theorem, f is a polynomial of degree N such that

Z 1

1
r2Nr��(C)=(2�)rdr <1:

Therefore, N < �1 + �(C)=(4�). Thus dimF2
 �

�
�(C)
4�

�
:

Lemma 6.2.4. Let  be a subharmonic function and suppose that � 2Mc. Then

dimF2
 �

�
� (C)

4�

�
:

Proof. Set � = � and choose " > 0; R > 1 such that

�
�
D(0; R)

�
4�

>
�
�(C)

4�

�
+
"

2
:

Next, increasing R, we can guarantee that

�
�
D(0; R)

�
> �(C)� 1

2
:

Consider a modified logarithmic potential U of the measure � :

U(z) =
1

2�

Z
D(0;R)

logjz � wjd�(w) + 1

2�

Z
CnD(0;R)

log
����z � ww

����d�(w)
= U1(z) + U2(z):

Since�U = � = � , by Lemma 6.2.1 we have dimF2
 = dimF2

U . Arguing as in (6.3),

we get

U1(z) �
�
�
D(0; R)

�
2�

logjzj � C

jzj ; jzj � 2R:
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Next, let jzj � 2R. Then

U2(z) =
1

2�

Z
Cn(D(0;R)[D(z;jzj=2))

log
����z � ww

���� d�(w)
+

1

2�

Z
D(z;jzj=2)

log
����z � ww

���� d�(w)
� C � 1

2�

Z
D(z;jzj=2)

log
���� z=2z � w

���� d�(w) = C � U3(z):

Givenm � 1, denote Am = fz 2 C : 2mR � jzj � 2m+1Rg. Fixm � 1 and k � 1

and apply Lemma 3.6.10 with � = 1CnD(0;R)�, 2mR � jz0j < 2m+1R, h = 2m�1R,

n(z0; h) � 1=2, and d = 2m�k�1R to get for some C;C1 > 0, � 2 (0; 1):

m2 fz 2 Am : U3(z) > C1 + �kg � C � 22mR22�2k; k � 1:

Hence,

Z
C

(1 + jzj)�2�"eU3(z) dV (z) � C + C
X
m�1

X
k�1

2�(2+")me�k

�m2 fz 2 Am : C1 + �k � U3(z) < C1 + �(k + 1)g

� C + C
X
m�1

X
k�1

2�(2+")me�k22mR22�2k <1:

Next, for every 0 � N �
�
�(C)
4�

�
� 1 we have

Z
C

jzj2Ne�U(z) dV (z) � C
Z
C

jzj2N(1 + jzj)��(D(0;R))=(2�)eU3(z) dV (z)

� C
Z
C

j(j1 + jzj)�2�"eU3(z) dV (z) <1:

Here we use the fact that � 2Mc, hence e�U is locally integrable.

Finally, we have

dimF2
 �

�
�(C)

4�

�
:

Summing up Lemmata 6.2.1, 6.2.2, 6.2.3 and 6.2.4 we obtain the following result,

extending and slightly correcting Theorem 6.1.1.

Small Fock spaces, small Bergman spaces and their operators



6.3 The case of Cn; n > 1 69

Theorem 6.2.5. Let  be a subharmonic function on the complex plane. Then the Fock

space F2
 is finite-dimensional if and only if

(� )
c(C) <1: (6.4)

If  is finite on C, then we can write the condition (6.4) as � (C) < 1. Finally, if

(� )
c(C) <1, then

dimF2
 =

�
(� )

c(C)

4�

�
:

6.3 The case of Cn; n > 1

Theorem 6.3.1. Let  : Cn ! R be a C2 smooth function. Given M > 0, consider

 M(z) =M log(jzj2). Suppose that for everyM > 0, the function  � M is plurisubhar-

monic outside a compact subset of Cn. Then dimF2
 =1.

Proof. We use the fundamental result of Bedford–Taylor [2] on the solutions of the

Dirichlet problem for the complex Monge–Ampère equation. Given M > 0, choose

rM > 0 such that  � M is plurisubharmonic on Cn nBn(0; rM). Solving the Dirichlet

problem for the complex Monge–Ampère equation on Bn(0; rM) with the boundary

conditions ( �  M)j@Bn(0;rM ), we obtain a function uM . Set

e M(z) =

8>>><>>>:
( �  M)(z); z 2 Cn n Bn(0; rM);

uM(z); z 2 Bn(0; rM):

Then e M is a continuous plurisubharmonic function on Cn (see Theorem 3.7.7).

Now, by Theorem 3.7.5, there exists an entire function f 6� 0 such that

Z
Cn
jf(z)j2(1 + jzj2)�3ne�e M (z) dV (z) <1:

Hence, for every 0 � k �M � 3n

2
we have
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Z
Cn
jf(z)j2jzj2ke� (z) dV (z) � C +

Z
CnnBn(0;rM )

jf(z)j2jzj2ke� (z) dV (z)

= C +
Z
CnnBn(0;rM )

jf(z)j2jzj2ke� M (z)e�( (z)� M (z)) dV (z)

� C +
Z
CnnBn(0;rM )

jf(z)j2jzj�3ne�e M (z) dV (z) <1:

SinceM is arbitrary, we have dimF2
 =1:

Remark 6.3.2. Theorem 6.1.2 is an immediate corollary of Theorem 6.3.1.

Indeed, an easy computation shows that if f(z) = '(jzj2); ' 2 C2
�
(0;+1)

�
then

@2f(z)

@zj@ �zk
= '00(jzj2) �zjzk + '0(jzj2)�jk;

where �jk is the Kronecker delta symbol. This implies that

i@ �@f(z) = '0(jzj2)I + '00(jzj2)z�z;

where z� =

26666664
�z1

� � �
�zn

37777775, z
�z =

�
�zjzk

�n
j;k=1

. Note also that the spectrum of the matrix

i@ �@f(z) is

�
�
i@ �@f(z)

�
=
n
'0(jzj2); '0(jzj2) + jzj2'00(jzj2)

o
: (6.5)

The first eigenvalue has multiplicity n� 1 and the second one has multiplicity 1.

Furthermore,

L (z) = i@ �@ (z) = i@ �@( �  M)(z) +
M

jzj2 I �
M

jzj4z
�z

= L � M (z) +
M

jzj2 I �
M

jzj4z
�z:

Let z 2 Cn and let V =

26666664
V1

: : :

Vn

37777775 be a normalized eigenvector corresponding to an eigen-

value � of L � M (z). By the hypothesis of Theorem 6.1.2, for jzj > rM we have
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�0jzj2 �M , where �0 is the smallest eigenvalue of L (z). Thus,

� = hL � M (z)V; V i = hL (z)V; V i � M

jzj2 +
M

jzj4 hz
�zV; V i

� �0 � M

jzj2 +
M

jzj4 jzV j
2 � 0:

Therefore,  � M is plurisubharmonic onCnnBn(0; rM), and we are in the conditions

of Theorem 6.3.1. �

Now we give an easy example when Theorem 6.3.1 applies while Theorem 6.1.2

does not work.

Example 6.3.3. Set

 (z) = '(jzj2) =
�
log(1 + jzj2)

� 3

2 ; z 2 Cn:

Then '(t) =
�
log(1 + t)

� 3

2 ; t > 0:

Evidently, dimF2
 =1. We will show that the condition (6.2) fails for  while the

conditions of Theorem 6.3.1 are satisfied.

We have

'0(t) =
3

2

1

1 + t

�
log(1 + t)

� 1

2 ;

and

'00(t) = �3

2

�
log(1 + t)

� 1

2

(1 + t)2
+

3

4(1 + t)2
�
log(1 + t)

� 1

2

:

By (6.5), the eigenvalues of the matrix L (z) are

�1(z) =
3
�
log(1 + jzj2)

� 1

2

2(1 + jzj2) ;

and

�2(z) =
3
�
log(1 + jzj2)

� 1

2

2(1 + jzj2)2 +
3jzj2

4(1 + jzj2)2
�
log(1 + jzj2)

� 1

2

=
3

4

2 log(1 + jzj2) + jzj2

(1 + jzj2)2
�
log(1 + jzj2)

� 1

2

:
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For jzj � 2, the smallest eigenvalue of matrix L (z) is �2(z) and

lim
jzj!1

jzj2�2(z) = 0:

Hence the condition (6.2) does not hold.

On the other hand, forM > 0, the eigenvalues of matrix L � M (z) are

�1(z) = �1(z)� M

jzj2 ;

and

�2(z) = �2(z):

Since lim
jzj!1

jzj2�1(z) = 1 and �2(z) > 0; z 6= 0, the conditions of Theorem 6.3.1 are

satisfied. �

In the rest of this chapter we show that in different situations the sufficient condition

of Theorem 6.3.1 is not necessary for dimF2
 =1.

Example 6.3.4. Set

 (z;w) = jzj2 + 2 log(1 + jwj2); w; z 2 C:

It is clear that dimF2
 = 1. Let us verify that forM > 2 the function  �  M is not

plurisubharmonic at the points (1; w), w 2 C.
We start with some easy computations:

@ 

@z
= z;

@2 

@z@z
= 1;

@2 

@z@w
= 0;

@ 

@w
=

2 

1 + jwj2 ;
@2 

@w@z
= 0;

@2 

@w@w
=

2

(1 + jwj2)2 :

Now, givenM > 0 we have

L � M (z;w) =

26641 0

0 2
(1+jwj2)2

3775+ M

(jzj2 + jwj2)2

2664jzj2 zw

zw jwj2

3775� M

jzj2 + jwj2 I

=

26641�
M jwj2

(jzj2+jwj2)2
Mzw

(jzj2+jwj2)2

Mzw
(jzj2+jwj2)2

2
(1+jwj2)2

� M jzj2

(jzj2+jwj2)2

3775 ;
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and, hence,

det
�
L � M (z;w)

�
=

2

(1 + jwj2)2 �
M jzj2

(jzj2 + jwj2)2 �
2M jwj2

(1 + jwj2)2(jzj2 + jwj2)2

=
2(jzj2 + jwj2)2 �M

�
jzj2(1 + jwj2)2 + 2jwj2

�
(1 + jwj2)2(jzj2 + jwj2)2 < 0

forM > 2; z = 1 and arbitrary w. Therefore, the conditions of Theorem 6.3.1 do not

hold. �

In the following examples we evaluate the dimension of F2
 and the applicability of

our criterion in Theorem 6.3.1, for some concrete weight functions  and for  in some

special classes.

Example 6.3.5. Let k � 3. Set  (z) = jzk1 + zk2 j2; z = (z1; z2) 2 C2. Given M > 0,

we have

L � M (z) =

2664k2jz1j2(k�1) � M
jzj4
jz2j2 k2(z1z2)

k�1 + M
jzj4
z1z2

k2(z1z2)
k�1 + M

jzj4
z1z2 k2jz2j2(k�1) � M

jzj4
jz1j2

3775 ;
and, hence,

det
�
L � M (z)

�
=

 
k2jz1j2(k�1) � M

jzj4 jz2j
2

! 
k2jz2j2(k�1) � M

jzj4 jz1j
2

!

�
 
k2(z1z2)

k�1 +
M

jzj4z1z2
! 

k2(z1z2)
k�1 +

M

jzj4z1z2
!

= �k
2M

jzj4
�
jz1j2k + jz2j2k + (z1z2)

k + (z1z2)
k
�

= �k
2M

jzj4 jzk1 + zk2 j2 < 0

when zk1 + zk2 6= 0. Thus, for M > 0, the function  �  M is not plurisubharmonic

outside a compact subset of C2.
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Next we are going to verify that dimF2
 =1.

We have

X :=
Z
C2
e�jz

k
1
+zk

2
j2dV (z1; z2) � 4

Z 1

0

Z
S2

r3e�r
2kj�k

1
+�k

2
j2d�(�1; �2) dr

�
Z
S2

j�k1 + �k2 j�4=kd�(�1; �2):

Given " > 0, we consider the set

T" =
n
(�1; �2) 2 S2 : j�k1 + �k2 j < "

o
:

Given (�1; �2) 2 S2 such that j�j1 � j�j2, set �1 =
q

1
2
+ r � ei� and �2 =

q
1
2
� r � ei',

r � 0. If (�1; �2) 2 T", then j�1j2 � j�2j2 < C" for some constant C = C(k) > 0.

Hence, r . ". Next, since j�k1 +�k2 j . ", we obtain j��'j < C". As a result, we obtain

that

�(T") . "2:

Set

Us =
n
(�1; �2) 2 S2 : 2�s < j�k1 + �k2 j � 2�s+1

o
:

Then

X �
1X
s=0

Z
Us
j�k1 + �k2 j�4=kd�(�1; �2) .

1X
s=0

2�2s 24s=k =
1X
s=0

2�2s(1�(2=k)) <1

since k � 3. Thus 1 2 F2
 .

In the same way, for every � > 0 we get
Z
C2
e��jz

k
1
+zk

2
j2 dV (z) <1:

Consider the entire function f(z) = e�(z
k
1
+zk

2
)2 , 0 < � < 1

2
. Since

Z
C2
je�(zk1+zk2 )2j2e�jzk1+zk2 j2 dV (z) =

Z
C2
e2�Re((z

k
1
+zk

2
)2)e�jz

k
1
+zk

2
j2 dV (z)

�
Z
C2
e�(1�2�)jz

k
1
+zk

2
j2 dV (z) <1;

we conclude that dimF2
 =1. �
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Remark 6.3.6. Interestingly, F2
 = 0 if k = 2. Indeed, let  (z1; z2) = jz21 + z22 j2,

f 2 F2
 , f(z1; z2) = (z21 + z22)

sg(z1; z2) for some s � 0, where g(z1; z2) is not a

multiple of z21 + z22 . By the mean value property, for every z1 2 C nD(0; 10) we have

jg(z1; iz1)j2

. (1 + jz1j)2
Z
D(iz1;2=(1+jz1j))nD(iz1;1=(1+jz1j))

jg(z1; z2)j2e�jz21+z22 j2 dv(z2)

. (1 + jz1j)2
Z
D(iz1;2=(1+jz1j))nD(iz1;1=(1+jz1j))

jf(z1; z2)j2e�jz21+z22 j2 dv(z2):

Hence, Z
C

jg(z1; iz1)j2(1 + jz1j)�2 dv(z1) . kfk2 ;

and by a Liouville type theorem, g(z; iz) � 0. Analogously, g(z;�iz) � 0. Set

h(z;w) = g(z � iw; iz �w). Then h is an entire function and h(0; w) = h(w; 0) � 0.

Hence, h(z;w) = zwh1(z;w) for another entire function h1 and g(z1; z2) = (z21 +

z22)g1(z1; z2) for some entire function g1. This contradiction shows that F2
 = 0.

Extending the previous example to Cn with n � 3 requires a bit more work.

Example 6.3.7. Let n � 3; k � n+ 1. Set

 (z) = jzk1 + � � �+ zknj2; z = (z1; : : : ; zn) 2 Cn:

Let us verify that forM > 0, the function  � M is not plurisubharmonic outside

a compact subset of Cn.

Set

A(z) =
M

jzj4

266666666664

z1

z2
...

zn

377777777775
�
z1 z2 � � � zn

�
:
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We have

L (z) = k2

266666666664

jz1j2(k�1) (z1z2)
k�1 � � � (z1zn)

k�1

(z1z2)
k�1 jz2j2(k�1) � � � (z2zn)

k�1

...
... � � � ...

(z1zn)
k�1 (z2zn)

k�1 � � � jznj2(k�1)

377777777775

= k2

266666666664

zk�11

zk�12

...

zk�1n

377777777775
�
z1
k�1 z2

k�1 � � � zn
k�1

�
:

Then

L � M (z) = L (z) + A(z)� M

jzj2 I:

The spectra of the matrices L (z) and A(z) are

�L (z) =
n
k2
�
jz1j2(k�1) + jz2j2(k�1) + � � �+ jznj2(k�1)

�
; 0
o
;

�A(z) =

(
M

jzj2 ; 0
)
:

Let V be a unit vector in Cn orthogonal to

266666666664

zk�11

zk�12

...

zk�1n

377777777775
and to

266666666664

z1

z2
...

zn

377777777775
. Then

hL � M (z)V; V i = hL (z)V + A(z)V � M

jzj2V; V i = � M

jzj2 < 0:

Thus, forM > 0, the function  �  M is plurisubharmonic at no points of Cn n f0g :
Finally, let us verify that dimF2

 =1. Set

X :=
Z
Cn
e�jz

k
1
+���+zknj

2

dV (z)

�
Z 1

0

Z
Sn

r2n�1e�r
2kj�k

1
+���+�knj

2

d�(�1; � � � ; �n) dr

�
Z
Sn

j�k1 + � � �+ �knj�2n=kd�(�1; � � � ; �n):
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Given " > 0, we consider the set

T" =
n
(�1; � � � ; �n) 2 Sn : j�k1 + � � �+ �knj < "

o
:

Set

P (z) =
nX
j=1

zkj ; z = (z1; : : : ; zn) 2 Cn:

Then the function f = logjP j is plurisubharmonic. We calculate the Lelong number

of f at a 2 Cn;

�f(a) = lim
r!0

supjzj�r f(a+ z)

log r
2 [0;1]:

If f(a) 6= 0, then �f(a) = 0. Otherwise, let a = (a1; : : : ; an) 6= 0 and f(a) = 0.

Without loss of generality, we can assume a1 6= 0. If 0 < r < ja1j
2
, then

f
�
a+ (r; 0; : : : ; 0)

�
= logj(a1 + r)k � ak1j = logjkak�11 r +O(r2)j; r ! 0;

and hence, �f(a) = 1. By Theorem 3.8.4, applied to 
 = 2Bn, K = Bn n 1
2
Bn,

1 < � < 2, we obtain

v
�
fz 2 K : jP (z)j � e�ug

�
= v

�
fz 2 K : f(z) � �ug

�
� C�e

��u; u � 0:

By homogeneity of P ,

�(T") � C"�; ' > 0;

for some constant C > 0.

Arguing as in Example 6.3.5, we obtain first that 1 2 F2
 and then that dimF2

 =1
for k � n+ 1. �

At the end of this chapter, we consider two special classes of weight functions  :

radial weight functions and the functions of the form  (z1; : : : ; zn) =
Pn
j=1  j(zj).

Small Fock spaces, small Bergman spaces and their operators



78 Chapter 6. Dimension of the Fock type spaces

Suppose that  (z) = '(jzj2) is a radial plurisubharmonic function of class C2. By

the computations in Remark 6.3.2,

@2 

@zj@zk
(z) = '00(jzj2)zjzk + '0(jzj2)�jk: (6.6)

The action of the Monge–Ampère operator on  is

(ddc )n = 4n! det
�

@2 

@zj@zk

�
dV

= 4n!('0(jzj2))n�1('0(jzj2) + jzj2'00(jzj2)) dV:

Proposition 6.3.8. Suppose that  (z) = '(jzj2) is a radial plurisubharmonic function of

class C2. Then dimF2
 =1 if and only if

Z
Cn
(ddc )n =1: (6.7)

Proof. Since the spectrum of the matrix (6.6) consists of the eigenvalues '0(jzj2) and
'0(jzj2) + jzj2'00(jzj2), the first eigenvalue has multiplicity n � 1 and the second one

has multiplicity 1, we have '0 � 0,
�
r'0(r)

�0 � 0 on R+. Furthermore, we have

Z
Cn
(ddc )n = C

Z 1

0

�
'0(r2)

�n�1�
'0(r2) + r2'00(r2)

�
dr2n

= C
Z 1

0
d
�
(r'0(r))n

�
:

Thus, (6.7) is equivalent to the relation limr!1 r'
0(r) =1. Now, if r'0(r) is bounded

on R+, then  (z) = O(log jzj), jzj ! 1, and a version of the Liouville theorem shows

that dimF2
 <1. On the other hand, if limr!1 r'

0(r) =1, then log jzj = o
�
 (z)

�
,

jzj ! 1, and the polynomials belong to F2
 . Hence, dimF2

 =1.

For general C2 plurisubharmonic functions, the radial case suggests the following

question. Is it true that dimF2
 =1 if and only if (6.7) holds? Our last example gives

a negative answer to this question.
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Example 6.3.9. Given subharmonic functions  j on the complex plane, 1 � j � n, set

 (z1; : : : ; zn) =
nX
j=1

 j(zj): (6.8)

Claim: dimF2
 <1 if and only if eithermaxj dimF2

 j
<1 orminj dimF2

 j
= 0.

In one direction, by the Fubini theorem, if dimF2
 <1, then maxj dimF2

 j
<1

or minj dimF2
 j

= 0. In the opposite direction, it is clear that if minj dimF2
 j

= 0,

then F2
 = 0. It remains to verify that if maxj dimF2

 j
<1, then dimF2

 <1.

First, suppose that n = 2, dimF2
 1 < 1, N = dimF2

 2 < 1. Fix a basis (gk),

1 � k � N , in the space F2
 2 and choose a family of points (wm), 1 � m � N , such

that detQ 6= 0, where Q =
�
gk(wm)

�N
k;m=1

.

Next, choose f 2 F2
 . By the mean value property,

jf(z;w)j2 � 1

�

Z
D(z;1)

jf(�; w)j2 dV (�); z; w 2 C:

Therefore, for every z 2 C, the function f(z; �) belongs to F2
 2 , and, hence, we have

f(z; �) =
NX
k=1

ak(z)gk:

In the same way, the functions f(�; wj), 1 � j � N , belong to F2
 1 .

Next,

Q�1

26666664
F (z;w1)

...

F (z;wN)

37777775 =

26666664
a1(z)

...

aN(z)

37777775 :

Hence, every aj belongs to F2
 1 . Since dimF2

 1 < 1, we conclude that the space F2
 

has finite dimension. For n � 2 we can just use an inductive argument. This completes

the proof of Claim.

Let us return to general  satisfying (6.8). Then

Z
Cn
(ddc )n = C

Z
Cn

nY
j=1

� j(zj) dV (z) = C
nY
j=1

Z
C

� j(zj) dV (zj):
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Now, if n = 2,  1(z) = jzj2, � 2(z) = max(1� jzj; 0), then
Z
Cn
(ddc )n =1;

but F2
 = 0. Thus, Proposition 6.3.8 does not extend to general C2-smooth plurisub-

harmonic functions.
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Résumé: Nous étudions les mesures de Carleson et les opérateurs de Toeplitz sur

la classe des espaces de Bergman dite de petite taille, introduits récemment par Seip.

On obtient une caractérisation des mesures de Carleson qui étend les résultats de Seip à

partir du disque unité deC à la boule unitéBn deCn. Nous utilisons cette caractérisation

pour donner les conditions nécessaires et suffisantes à la continuité et à la compacité des

opérateurs de Toeplitz. Enfin, nous étudions l’appartenance des opérateurs Toeplitz aux

classes de Schatten d’ordre p pour 1 < p <1.

De plus, nous considérons également la projection de type Bergman agissant sur L1

à valeurs dans l’espace de Bloch B de la boule Bn. Une caractérisation du poids radial

pour que la projection soit continue est obtenue.

Enfin, nous examinons les espaces de Fock pondérés en une et plusieurs variables

complexes. Nous évaluons la dimension de ces espaces en étendant et en complétant des

résultats antérieurs obtenus par Rozenblum–Shirokov et Shigekawa.

Abstract: We study the Carleson measures and the Toeplitz operators on the class

of the so-called small weighted Bergman spaces, introduced recently by Seip. A charac-

terization of Carleson measures is obtained which extends Seip’s results from the unit

disk ofC to the unit ballBn ofCn. We use this characterization to give necessary and suf-

ficient conditions for the boundedness and compactness of Toeplitz operators. Finally,

we study the Schatten p classes membership of Toeplitz operators for 1 < p <1.

Furthermore, we also consider the Bergman type projection acting on L1 to the

Bloch space B on Bn. A characterization of radial weight so that the projection is

bounded is obtained.

Finally, we investigate the weighted Fock spaces in one and several complex vari-

ables. We evaluate the dimension of these spaces in terms of the weight function ex-

tending and completing earlier results by Rozenblum–Shirokov and Shigekawa.
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