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Abstract

We study the Carleson measures and the Toeplitz operators on the class of the so-
called small weighted Bergman spaces, introduced recently by Seip. A characterization
of Carleson measures is obtained which extends Seip’s results from the unit disk of C
to the unit ball of C*. We use this characterization to give necessary and sufhcient
conditions for the boundedness and compactness of Toeplitz operators. Finally, we
study the Schatten p classes membership of Toeplitz operators for 1 < p < 0.

Furthermore, we also consider the Bergman type projection acting on L* to the
Bloch space B on B,. A characterization of radial weight so that the projection is
bounded is obtained.

Finally, we investigate the weighted Fock spaces in one and several complex vari-
ables. We evaluate the dimension of these spaces in terms of the weight function ex-

tending and completing earlier results by Rozenblum-Shirokov and Shigekawa.



CHAPTER 1

INTRODUCTION

The thesis covers three groups of results concerning weighted spaces of analytic func-
tions: the weighted Bergman spaces of analytic functions in the unit disc and unit ball
in C* and the Fock spaces of entire functions in C and C*. We are interested in geo-
metric properties of these spaces (the dimension question) and the operator theoretic
properties concerning the embedding operator (the Carleson measures), the Bergman

projection operator (to the Bloch space) and the Toeplitz operator.

In and 5 we deal with weighted Bergman spaces. In we con-

centrate on the so called small (radial) Bergman spaces introduced by Seip in 2013.
They constitute a class of Begman spaces interpolating, in a sense, between the stan-
dard Bergman space and the classical Hardy space. Extending the results by Seip (for
D), we describe the Carleson measures for the unit ball. Furthermore, we study the
Toeplitz operators T, with measure symbol p and describe when T), is bounded, com-

pact, and is in the Schatten class for some classes of weights, in terms of the symbol u.

These results will be published in [23]].

In[Chapter 5|we extend the recent results of Peldez and Rittyi (from D) and obtain a
complete description of radial weights such that the corresponding Bergman projection

operator acts boundedly from L*°(B,,) to the Bloch space.

In|Chapter 6/we study non-radial weighted (Hilbert) Fock spaces 7. The question
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we are interested in here is when dim 7} = oo in terms of the weight %. In 2006,
Rozenblum and Shirokov claimed that if 9 is subharmonic on € and A9(C) = oo,
then dim 7 = oo. In fact, this statement is true only if A4 has no point masses with
masses larger than or equal to 4. We correct the statement of Rozenblum and Shirokov,
and obtain a criterion for the space F to be of infinite dimension. Furthermore, we
calculate dim F7 in terms of A%. In the case of the Fock spaces on C*, we extend
somewhat the theorem of Shigekawa (1991) and give a new sufficient condition for
dim F(C") = oo. We also produce several examples that show how complicated is to
produce a criterion for dim F3(C") = oo.

The techniques we use include estimates of logarithmic potentials in the plane, the
Bedford-Taylor solution for the complex Monge-Ampére problem, the Pelaez-Rittyid
estimates on the reproducing kernels for the weighted Bergman space, the Lelong num-
ber estimates for plurisubharmonic functions, and the Carleson embedding for the

Hardy space in the polydisk.

1.1 Carleson measures and Toeplitz operators on small

Bergman spaces on the ball

The original notion of Carleson measures was introduced by L. Carleson [6,7] in
his work on interpolating sequences and the corona problem on the algebra H* of all
bounded analytic functions on the unit disk. It then plays a crucial role in studying
function spaces and operators acting on them. The Carleson measures on Bergman
spaces were studied by Hastings [|16]], and later on by Luecking [25]], and many others.
For sampling and interpolation in large Bergman spaces, see Seip [38] and Borichev,
Dhuez, Kellay [4]. Recently, Pau and Zhao [27] gave a characterization for Carleson

measures and vanishing Carleson measures on the unit ball by using the products of

Small Fock spaces, small Bergman spaces and their operators



1.1 Carleson measures and Toeplitz operators 9

functions in weighted Bergman spaces. In [29], Peldez and Rittyid gave a description

T . 1
of Carleson measures for A2 on unit disk when p satisfies that ————— Ihp(t)dt

1—r)p(r
is either equivalent to 1 or tends to 0o, and in [30] they then gE)t a cgiliiri)on for A2
on unit disk when p € D, which means [} p(s)ds < frl% p(s)ds. In 2018, we have
obtained a criterion for A2 on the unit ball for p belongs to the class S which was
introduced by Seip in [39]] in 2013. A close relationship between the class S and D
will be presented specifically afterwards. A short time ago, in June 2019, Juntao Du,

Songxiao Li, Xiaosong Liu, Yecheng Shi extended the description of Pelaez and Rittyi

offered in [29] to higher dimensions when p € D, see [[12]].

In [39]], Seip gave a characterization of Carleson measures for A% with p € S in the

case n = 1. One of our main results, [Theorem 4.2.1) extends this result to the case

n>1.

The Toeplitz operators acting on various spaces of holomorphic functions have been
extensively investigated by a lot of authors, and the theory is especially well understood
in the case of Hardy spaces or standard Bergman spaces (see [42]], [43]] and the references
therein). For the Toeplitz operators on the Fock space see, for example, Fulsche, Hagger
[[14] and Schuster, Varolin [37]. In 1987, Luecking [26] was the first one to consider
Toeplitz operators on Bergman spaces with measures as symbols, and some interesting
results about Toeplitz operators acting on large Bergman spaces were obtained by Lin
and Rochberg [24]. In this thesis, we will study the boundedness and compactness of

T, on Af,, with p € S.

We also study when our Toeplitz operators belong to the Schatten class. A descrip-
tion for the classical weighted Bergman spaces on the unit disk is given in [43, Chapter
7], and a description for the case of large Bergman spaces on the disk was obtained in
2015 by H. Arroussi, L. Park, and J. Pau (see [1]]). In 2016, Pelaez and Rittyi [31] gave

an interesting characterization for the case of small Bergman spaces on unit disk, when

Small Fock spaces, small Bergman spaces and their operators



10 Chapter 1. Introduction

the weight p € D.

For weights p in S*, we obtain a characterization of the symbols of the Toeplitz
operators in the Schatten classes S,. In [[34], Pelaez, Rittyd and Sierra gave a characteri-
zation for the case of dimension n = 1 when the weight is regular, that is p*(r) < p(r).
As an easy observation, our result is equivalent to their result when n = 1. We point
out that our approach is completely different from that of [34]], which does not seem to
work in higher dimensions. On the other hand, for weights p in S\ S*, this character-
ization fails. A counterexample was given in [34]] and we will show this failure for all p
in S\ 5.

In this thesis, we restrict ourselves to the case 1 < p < 00. For the case 0 < p < 1,

the techniques we use should be modified.

1.2 Bergman type projections

Let p be a radial weight and X be a space of measurable functions on B,. The
Bergman type projection P, acting on X is given by

P.f(2) :/B K,(z,w)f(w)p(w)dv(w),  z € By, f € X,

n

where K,(z,w) is the reproducing kernel of the weighted Bergman space A2.

When p is the standard radial weight p(z) = (1 — |2]?)*, & > —1, the projection is
denoted by P,.

Projections play an important role in studying operator theory on spaces of analytic
functions. Bounded analytic projections can also be used to establish duality relations
and to obtain useful equivalent norms in spaces of analytic functions. Hence the bound-
edness of projections is an interesting topic which has been examined by many authors
in recent years [|8,/10,/11,32,33]]. In [32], Pelaez and Rittyi considered the projection

p1 acting on LP (D), 1 < p < 0o when two weights p1, p; are in the class R of so called

Small Fock spaces, small Bergman spaces and their operators
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regular weights. A radial weight p is regular if g(r) =< (1 —r)p(r),r € (0, 1). Recently,
in 2019, they extended these results to the case where p; € D, p, is radial [33]].

is devoted to studying the projections acting on the space L. In the case

of standard radial weight, we have the following theorem.

Theorem A. Forany o > —1, the Bergman type projection P, is a bounded linear operator

from L™ onto the Bloch space B.

See [[42, Theorem 3.4] for a proof. This theorem is also valid for the case of one
dimension [43, Theorem 5.2].

In [33]], Pelaez and Rittyd obtain an interesting result for one dimensional case.

Theorem B. Let p be a radial weight. Then the projection P, : L*(D) — B(D) is bounded
if and only if p € D.

In this thesis, we extend this theorem to the case of several variables.

1.3 Dimension of the Fock type spaces

Let 9 be a plurisubharmonic function on C". The weighted Fock space F7 is the

space of entire functions f such that

1£15 = [ 1f(2)PedV (2) < oo

where dV is the volume measure on C*. Note that 77 is a closed subspace of L*(C", e ¥dv)

and hence is a Hilbert space endowed with the inner product

(f.9)s = [ f(29@e ¥V (z),  f9€F.

In |Chapter 6 we study when the space F7 is of finite dimension depending on the
weight 9. This problem (at least for the case n = 1) is motivated by some quantum

mechanics questions, especially in the study of zero modes, eigenfunctions with zero

Small Fock spaces, small Bergman spaces and their operators
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eigenvalues. In [[36, Theorem 3.2], Rozenblum and Shirokov proposed a sufficient con-

dition for the space F to be of infinite dimension, when 4 is a subharmonic function.

Theorem C. Let 9 be a finite subbarmonic function on the complex plane such that the

measure p = AY is of infinite mass:

WC) = [ du(z) = oo. (1.1)
Then the space F7, has infinite dimension.

We improve and extend somewhat this statement, give a necessary and sufficient
condition on % for the space F to be of finite dimension, and calculate this dimension.
The situation is much more complicated in C*, n > 2. Shigekawa established in [[40]]

(see also [15, Theorem 7.10] in a book by Haslinger), the following interesting result.

Theorem D. Let 9 : C* — R be a C* function and let u(z) denote the lowest eigenvalue

of the Levi matrix

Ly(z) = 1089 (z) = (321/’@));1 .

szaﬁ
Suppose that
lim [2°u(z) = oo. (1.2)

|z| =00
Then dim(F}) = oo.
Note that the condition ((1.2)) is far from being necessary. A corresponding example
is given in [[15} Section 7]. In this thesis, we improve Theorem[D|by presenting a weaker
condition for the dimension of the Fock space 77 to be infinite. Furthermore, we give

several examples that show how far our condition is from being necessary.

1.4 Outline of the thesis

We will state our main results in [Chapter 2| In|Chapter 3| we introduce some no-

tions and notation, recall some basic facts which will be used later on. The Carleson

Small Fock spaces, small Bergman spaces and their operators
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measures and Toeplitz operators on small Bergman spaces on the ball will be examined

in[Chapter 4} and the boundedness of Berman type projection acting on L* is studied in

Chapter 5| Finally, the study on the dimension of the Fock type spaces will be presented

in[Chapter

Small Fock spaces, small Bergman spaces and their operators



CHAPTER 2

MAIN RESULTS

2.1 |Chapter 4

Let p be a positive continuous and integrable function on [0, 1). We extend it to B,
by p(z) = p(|2|), and call such p a radial weight function, or simply radial weight. We

assume that
1
/ z?" tpo(z)dz = 1,
0

and consider the points 74, € [0, 1) determined by the relation

/1 p(z)dz = 27",

Tk
Denote by S the class of weights p such that

) 1—17g
inf
kel —7g

> 1. (2.1)

This class of weights was introduced by Seip in [39]. We also introduce a subclass S* of

weights in S determined by the condition that p*(r) < p(r) for r € (0, 1), where

1

) =1—

/r ' o(t)dt.

Denote by A2 the weighted Bergman space consisting of all f holomorphic functions

on B,, such that

1713 = [ 1F@)Fp@)du(z) < oo,
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where dv is the normalized volume measure on B,,.

For every nonnegative integer k, set
Qe =H2€B,: 71 < |2| <7Try1},

and let us be the measure defined by p, = xq, 4 whenever a nonnegative Borel measure
won B, is given.

Throughout this text, the notation U(2) < V(z) (or equivalently V(z) 2 U(z))
means that there is a positive constant C such that U(z) < CV(z) holds for all z in

the set in question, which may be a space of functions or a set of numbers. If both
U(z) SV(z) and V(2) < U(z), then we write U(z) < V(z).

Our results are following:
Theorem 2.1.1. Let p € S, and let p be a finite positive Borel measure on B,,. Then

(i) p is a Carleson measure for A% if and only if each py is a Carleson measure for the

Hardy space H? with Carleson constant C,, (H?) < 27%, k> 0.
(i) p is a vanishing Carleson measure for A2 if and only if
Jim 2kc, (H*) = 0.

Theorem 2.1.2. Let p € S, and let p be a finite positive Borel measure on B,,. Then

(i) The Toeplitz operator T), is bounded on A2 if and only if i is a Carleson measure for
A2,

(i) The Toeplitz operator T, is compact on A2 if and only if p is a vanishing Carleson

2
measure for A2,

For a measure y on B,, and a > 0, we define the function fi, by

R B 2’°p(E(z,a))
Lo(2) = P z € .

Small Fock spaces, small Bergman spaces and their operators



16 Chapter 2. Main results

Here, E(z, ) is the Bergman metric ball.

Let T,, be the Berezin transform of T,, defined by

To(e) = (T, kD), 2 € By,

z1'7z

where k£ is the normalized reproducing kernel of A2. Set

28 p(2)dv(2)

, z e Qk
(1 —lzf)

dA,(z) =

Theorem 2.1.3. Let p be in S*, u be a finite positive Borel measure and 1 < p < oo. The

following conditions are equivalent:
(a) The Toeplitz operator T, is in the Schatten class S,,.
(b) The function T, is in LP(By, dA,).

(c) The function fiy is in LP(B.,,, d),) for sufficiently small o > 0.

2.2 |Chapter 5

In [Chapter 5 we obtain a characterization of radial weight such that the Bergman

type projection is bounded from L* to B.

Theorem 2.2.1. Let p be a radial weight. Then the projection P, : L* — B is bounded if
and only if p € D.

2.3 |Chapter 6

Let 9 be a measurable function on C”. The weighted Fock space F7 is the space of

entire functions f such that

Hf||12/; = /(Cn\f(z)!2€_¢(z)dV(z) < 00.

Small Fock spaces, small Bergman spaces and their operators



2.3|Chapter 6 17

If  : C — [—00,00) is a subharmonic function, denote by p, the corresponding

Riez measure, yy = Atp. Consider the class M? of the positive o-finite atomic measures
with masses which are integer multiples by 47. Given a o-finite measure p, consider

the corresponding atomic measure p*,
d_ d.
7 _max{,ulEM .ulg,u}.

Denote p = u — ud.

Our results about dimension of ]—‘j are follows:

Theorem 2.3.1. Let ¢ be a subbarmonic function on the complex plane. Then the Fock

space JFj is finite-dimensional if and only if
(1)7(C) < o0, (2.2

Ify is finite on C, then we can write condition as by (C) < 00. Finally, if (1y)¢(C) <

00, then

s 73 = [ 5119

Theorem 2.3.2. Let ¢ : C* — R be a C? smooth function. Given M > 0, consider
Yu(z) = Mlog(|z|?). Suppose that for every M > 0, the function 1 — Y is plurisubbar-

monic outside a compact subset of C*. Then dim F = oo.

Theorem 2.3.3. Suppose that ¥(z) = ¥(|2|?) is a radial plurisubbarmonic function of
class C?. Then dim F} = oo if and only if

/ (dd“y)" = oo.

Small Fock spaces, small Bergman spaces and their operators



CHAPTER 3

PRELIMINARIES

3.1 Some basic notation

Let C™ denote the n-dimensional complex Euclidean space. For any two points

z={(21,...,22), w= (wy,...,w,) in C", we use the well-known notation

(zyw) = 2:W1 + -+ + 2, W, and |z| =4/(z,2).

Let B, = {z € C" : |z| < 1} be the unit ball and S,, = {z € C" : |z| = 1} be the unit
sphere in C". Denote by H(IB,,) the space of all holomorphic functions on the unit ball
B,. Let dV be the volume measure on C™ and dv be the normalized volume measure
on B,,. The normalized surface measure on S,, will be denoted by do.

Given a € B, \ {0} and r > 0, let 6(a) = 1/2(1 — |a]). Define Q(a,r) C B, and

O(a,r) C S, as follows:

Qa,r) = {z € B, : /|1 — (a/|al,2)| <},

Ofa,r) ={¢ €Sn: /1 (a/lal,¢)] < 7}
For simplicity of notation, we write @, instead of @ (a, 4 (a)) , O, instead of O (a, 4 (a)) .
Let ¢, denote the Mobius transformation on B, that interchanges 0 and a, that is

a — Py(z) — /1 |a|* P (2)

1—{(z,a) ’

0.(2) = z €B,,
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where P, is the orthogonal projection from C™ onto the one dimensional subspace [a]

generated by a, and P.' is the orthogonal projection from C™ onto C™ © [a]. The

a

Bergman metric ball E(a, ) is defined by

E(a,r)={z € B, : B(a,z) <7},
where B(a, 2) is the Bergman metric given by
a,z €B,.

We state here some auxiliary lemmas which can be found in [42].

Lemma 3.1.1. The Bergman metric ball E(0, 1) is a Euclidean ball of radius R = tanhr,

centered at the origin, and
E(a,r) = pa(E(0,7)).

Moreover, U(E(a,r)) = (1 — |a|])™*™

Lemma 3.1.2. Suppose that c is real and t > —1. Then the integral

B (1 = |w[*)*dv(w)
I.:(2) = /];%n - <z’w>|n+1+t+c’

z € B,

has the following asymptotic properties:
(a) If c <O, then I.; is bounded in B,.

(b) If c = 0, then
1

I.+(2) < log T 2F

as|z| — 1.

(c) If ¢ > 0, then
Ly(z) < (1 - |2")~°

as|z| — 1.

Small Fock spaces, small Bergman spaces and their operators



20 Chapter 3. Preliminaries

Lemma 3.1.3. Suppose that N is a natural number, a; € B, \ {0},1 <I < N,

There exists a subsequence {l;},1 < 1 < M, such that
(@) Oa,,1 <1 < M, are disjoint.

(b) O(ali,ScS(ali)), 1 <1< M, cover E.

3.2 Bergman spaces

Definition 3.2.1. An integrable function p : B,, — (0, 00) is called a weight function, or
simply a weight. A weight p is called radial if p(z) = p(|z|) for all z € B,,. The (radial)

weighted Bergman space A2 is the space of functions f in H(B,) such that

1415 = [ 1(2)Po(z)dn(z) < co.

Note that A2 is a closed subspace of L?(B,, pdv) and hence is a Hilbert space en-

dowed with the inner product

(5,90 = [ $@a@p@)dv(z),  fig € 4

n

When p(2) = (1—|2/|?)*, & > —1, we obtain the standard weighted Bergman spaces A2
For numerous results on the Bergman space A2, see [42]].

Denote by K? the reproducing kernel of A2,
(fLKD)o=f(2), fe€A; zeB,,
and the function K,(z, w) will be defined as

K,(z,w) = Kf(2), z,w € B,.

Small Fock spaces, small Bergman spaces and their operators



3.3 Carleson measures 21

The normalized reproducing kernel will be denoted by &2,

KP
k;g e d , zZ e ]Bn.
[P
If {ex(2)} is an orthonormal basis of A2, then
Ky(z,w) = ex(2)ex(w), z,w € B,.
k=1

The reproducing kernel of the classical weighted Bergman space A2 is given by

1
(= (e )

K%(z,w) = z,w € B,.

Definition 3.2.2. For 0 < p < oo, the Hardy space H? is the space consisting of func-
tions f € H(B,) such that

| fllzze = sup My(r, f) < o0,
o<r<1

where

My, 1) = [ royraste))”

3.3 Carleson measures

Let 4 be a finite positive Borel measure on B,, and let X be a Hilbert space of analytic

functions in B,,.

Definition 3.3.1. We say that p is a Carleson measure for X if there exists a positive

constant C such that

[ 5@ Paue) < Cliflf,  fex.

It is clear that u is a Carleson measure for X if and only if X C L?(B,, du) and the
identity operator Id : X — L?(B,, du) is bounded. The Carleson constant of u for X,

denoted by C,(X), is the norm of this identity operator Id.

Small Fock spaces, small Bergman spaces and their operators
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Definition 3.3.2. Suppose that p is a Carleson measure for X. We say that u is a van-

ishing Carleson measure for X if the identity operator Id is compact. That is,

lim [ |fu(2)Pdu(z) = 0

k—oo
whenever {f} is a bounded sequence in X which converges to 0 uniformly on compact

subsets of B,,.

We state here two results on the characterization of Carleson measures for classical

Bergman spaces A% and Hardy spaces H?, which can be found in [42]].

Theorem 3.3.3. A positive Borel measure p on By, is a Carleson measure for A2 if and only

ifu(B(a,m)) S (1= [a)™* forall a € B,

Theorem 3.3.4. A positive Borel measure p on B, is a Carleson measure for H? if and only

f w(Qa) S (1 — |a|)” forall a € B, \ {0}. Furthermore,

Qo
C#(H2) = Sup %
acB,\{0} (1 — |a])

3.4 Schatten classes

Let H be a separable Hilbert space, and 0 < p < oo0.

Definition 3.4.1. The Schatten class S, is the space of all compact operators T' on H
for which the sequence {A\z} of the singular numbers of T belongs to the p—summable
sequence space £P.

We usually call S; the trace class and S, the Hilbert-Schmidt class.

For 1 < p < 00, the class S, is a Banach space with the norm

1

Il = (S

P
Lemma 3.4.2 ([42]). Suppose that T is a positive compact operator on H and 0 < p < oo,

then T € Sy ifand only if TP € Sy. Moreover, ||T|[5 = ||T?||;.

See [42, Chapter 1] for more results on the Schatten classes.
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3.5 Toeplitz operators

Definition 3.5.1. Given a function ¢ € L*®(B,), the Toeplitz operator T, on A? with

symbol ¢ is defined by
T,f = P(ef), fe A,

where P : L*(B,, pdv) — A2 is the orthogonal projection onto A2

We can write T,, as

T,f(2) = [ Ky(zw)f(w)pw)p(w)dv(w),  z€ By,

n

where K,(z,w) is the reproducing kernel for A2.
The Toeplitz operators can also be defined for unbounded symbols or for finite
measures on B,. In fact, given a finite positive Borel measure 4 on B, the Toeplitz

operator T, : A2 — A2 is defined as follows

T.f(2) = [ Koz, w)f(w)du(w), 2 € B,

n

Note that

(Tuf,0)0 = [ f(@9@du(z),  fi9 € 4,

n

3.6 Subharmonic functions and potentials on C

In this section we are going to formulate several definitions and properties of sub-
harmonic functions and potentials on C. These results can be found in many books, we

refer to [35] for more details.

Definition 3.6.1. Let U be an open subset of C. A functionu : U — [—00, 00) is called

subbarmonic on U if

(1) w is upper semicontinuous, that is, the set {z € U : u(z) < a} is open for every

real number o.
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(i1) u satisfies the local submean inequality, i.e. given 2z € U, there exists t > 0 such
that

1 2T i
u(z) < —/ u(z + re) dd, 0<r<t.
27 Jo
Proposition 3.6.2. Let u, v be subbarmonic functions on an open subset U of C. Then
(1) max(u,v) is subbarmonic on U;
(1) au + Bv is subbarmonic on U for all o, B > O;
(112) e* is subbarmonic on U.

Example 3.6.3. If f is holomorphic on an open subset U of C, then log|f| and | f|*, o >

0, are subharmonic on U.

Proposition 3.6.4. Let U be an open subset of C, and u € C*(U). Then u is subbarmonic

on U if and only if the Laplacian Aw is positive on U.

Proposition 3.6.5. Let u be a subbarmonic function on a domain D in C, withu #Z —00
on D. Then  is locally integrable on D, i.e. [;|u(z)|dV(2) < 0o for each compact subset
K of D.

Definition 3.6.6. Let u be a subharmonic function on a domain D in C, with u Z —o0

on D. The generalized Laplacian of w is the Radon measure Au on D such that

/D¢Au:/DuA¢dV

for all ¢ € C2, the space of all C* functions f : D — R whose support supp f is a

compact subset of D.

Definition 3.6.7. Let u be a finite Borel measure on C with compact support. The

logarithmic potential of w is the function p, : C — [—00, 00) defined a.e. by

1
pu(z) = o /(Clog\z — w|du(w), z e C.
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Proposition 3.6.8. Let p be a finite Borel measure on C with compact support. Then
Ap, = p.

Remark 3.6.9. Given R > 0, we consider the function G = Gp as follows

1 1
G(z) = — / log|z — wld = / 1
(2) 27 JD(0,R) og|z — wldu(w) + 27 JC\D(0,R) °8

Here and later on, D(z,7) = {w e C:|lw—z2| <r},z € C,r > 0. We call G the

z—w‘ du(w), ze€C.
w

modified logarithmic potential of the finite measure p (not necessarily with compact

support).
Since G(2) = pu(2) — 5= Jo\p(o,r loglw| du(w), then G also satisfies

AG = Ap, = p.

Next, we state here a result by Hayman [[17, Lemma 4], which will be used later.
Let u be a finite positive measure. Given z € C, h > 0, set

n(z,h) = M(D(z,h)) and N(z,h) :/

h
log| ——|d .
o %l 2| )

Lemma 3.6.10. Let zg € C,0 < d < h/2. There exists a set K of area at most wd? such
that

16h
N(z,h/2) < n(zo, h)log R 2z € D(20,h/2)\ K.

3.7 Plurisubharmonic functions

Definition 3.7.1. Let © be an open subset of C". A function u : 2 — [—00,00) is

called plurisubbarmonic on Q if

(1) w is upper semicontinuous, that is, the set {z € Q: u(2) < a} is open for every

real number o.

Small Fock spaces, small Bergman spaces and their operators



26 Chapter 3. Preliminaries

(i1) u satisfies the mean-value inequality
m@<1/%um+a%yw
2w Jo
for all @, b € C™ such that the disk {a + wb : |w| < 1} is contained in €.

Example 3.7.2. If u is holomorphic on an open subset € of C*, then log | f| is plurisub-

harmonic on U.

Proposition 3.7.3. Let Q be an open subset of C™. Then a function u € C*(Q2) is plurisub-

harmonic if and only if its Levi form L.,(z; b) is non-negative, i.e.,

b5 > 0, Q.becC.
aa% k ZEDE

n
=2
7,k=

1

We refer to the book of Hérmander [[18]] for further properties of plurisubharmonic
functions and the survey carried out by Kiselman [22]] on the development of the theory
of plurisubharmonic functions.

Let us recall here the Hérmander theorem [|18, Theorem 4.4.4].

Theorem 3.7.4. Let ¢ be a plurisubharmonic function in the pseudoconvex open set Q2 C
C™ Ifzy € Qand e ¥ isintegrable in a neighborhood of zq one can find an analytic function

f in Q such that f(20) = 1 and
LIF@P + 12 re " av(z) < oo
Q

An open set 2 C C” is called psendoconvex if there exists a continuous plurisubhar-

monic function u in €2 such that
{zeQ:u(z)<c} e

for every ¢ € R. Note that a ball is pseudoconvex.

The following version of this result is given in [|3, Section IV].
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Theorem 3.7.5. Let ¢ be a plurisubbarmonic function in C*. Then there exists an entire

function f # 0 such that
/(C £(2)[2(1 + |2]?)"2"e =) 4V (2) < oo.

We denote as usual d = 8 + 8 and set d° = (0 — 8), so that dd® = 210.
A complex current of bidegree (p, ¢) (or bidimension (n — p,n — q)) is a differential

form

T = Z/ TJKdZJ VAN dZK,

|J|=p
|K|=q

where coeflicients Tk are distributions, the sum is taken only over increasing multi-

indices J, K. We say that a current T' of bidegree (p, p) is positive if
T/\ial/\o_zl/\.../\ian,p/\o_zn,p

is positive for any (1,0)-forms a,...,0n_p € C10). If dT = 0, then T is said to be

closed.

Definition 3.7.6. Let u be a plurisubharmonic function on 2, an open subset of C™,
and T a closed positive current of bidimension (p, p). According to Bedford-Taylor [2]

we define

ddu AT = dd°(uT),

where dd°(-) is taken in the sense of distribution theory. Given locally bounded plurisub-

harmonic functions uy, . . ., uq on , we define inductively
ddu; Addus A ... Addug AT = dd°(urddus A ... Addug A T).

In particular, when u is a locally bounded plurisubharmonic function, one obtains a

well defined positive measure (dd“u)™. If u € C?(2), then

0%u
ddeu)" = n!4" det av.
(dd°)" = nia" de <azjazk>
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Theorem 3.7.7. Let Q@ € C" be a smooth strongly psendoconvex domain and let f €
C(0R2) be a continuouns function on the boundary. Then there exists a function u which is

continuons on 2, plurisubbarmonic on Q and solves the Dirichlet problem
(dd°u)” =00nQ, u= fondf.

This theorem is the fundamental result on the solution of the Dirichlet problem
for complex Monge-Ampére equations, see the papers of Bedford-Taylor [2] and of De-
mailly [9, Theorem 7.5].

3.8 Lelong number

Let u be a plurisubharmonic function on a domain @ C C” such that u #Z —oo0.

Then u is locally integrable with respect to the Lebesgue measure in Q, and u, =

L . i n 62u . P
s Au =530 82,0 1S & positive Borel measure on €.

Definition 3.8.1. Let a € Q. The Lelong number v,(a) of u at a is the limit

(@) — tim - B@7)

— )
=0 Ty, _oT2n 2

where 72,5 = 771 /(n — 1)! is the volume of the unit ball in C*™?!, and B(a,r) :=

{z € C" : |z — a| < r} is the Euclidean ball of center a and radius r > 0 in C".

Proposition 3.8.2. The Lelong number of u at the point a € 2 can also be expressed by the

following formulas:
. 1
vu(a) = lim /g:, u(a + r€) do(8),
. Supp, <, u(a + 2)
v(a) = hE% 5 i
r gr

Example 3.8.3. If u(z) = log|z|, z € C", then 1,(0) = 1.
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See [119,20,41]] for more details. In particular, if v,(a) < 2, then e * is locally
integrable with respect to V' in a neighborhood of a.

We state here a result of Kiselman [21]], which will be used later.

Theorem 3.8.4. Let u be a plurisubbarmonic function on an open subset Q of C* and K

2
sup;ek vu(z)’

be a compact set in Q. Then for each 0 < o < there exists a positive constant
C,, such that

V({z € K :u(z) <t}) < Cque™, teR.
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CHAPTER 4

CARLESON MEASURES AND TOEPLITZ
OPERATORS ON SMALL BERGMAN SPACES

ON THE BALL

In this chapter, we study the Carleson measures and the Toeplitz operators on the
class of the so-called small weighted Bergman spaces, introduced by Seip. A characteri-
zation of Carleson measures is obtained which extends Seip’s results from the unit disk
of C to the unit ball of C*. We use this characterization to give necessary and sufh-
cient conditions for the boundedness and compactness of Toeplitz operators. Finally,

we study the Schatten p classes membership of Toeplitz operators for 1 < p < 0.

4.1 Remark on the classes of weights

We recall that S is the class of radial weights p such that
inf =T
ko l—1p

> 1, (4.1)

where 7, € [0, 1) are determined by the relation

/1 p(z)dz = 27",

Tk

This class was introduced by Seip in [39].
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Lemma 4.1.1. Let p € S. Then we have an equivalent norm in the weighted Bergman

space A2 as follows

9= 302 [ re)Paote), £ e 4 (42)

Proof. The conclusion follows from the fact that the function &y,

@(r) = [ 1£(re)do(e)

is non-decreasing. O
We denote by D the class of doubling weights p, which means
1 1
/r p(s)ds < /m p(s)ds

forr € (0,1).

It is easy to see that S C D.

Example 4.1.2. The functions

and

1 4
p(:z:):(l—a:)l(logl_m> : 1< a< oo,

belong to S and D.

Lemma 4.1.3.
{Ai:pES}:{Ai:pEﬁ}.

Proof. For p € SUD, we can find 5 € S N D such that AZ = A%. Indeed, by the

2

2,» Where

monotonicity of the functions &, we obtain that if h,, 2 h,,, then A2 C A
ho(z) = [I, p(t) dt. Correspondingly, if h,, < h,,, then A2 = A2, Now, if p € S,

then we can interpolate h, linearly between the points 1 — 7, & > 1, to get hj; such
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that A2 = A% and for some ¢ > 1, hs(cz) < 2hs(z). Hence, h;(2z) < dh;(z) for some
d > 1, and, thus, 5 € D. On the other hand, if p € D, then we can interpolate log h,,
linearly between the points 2%, k > 1, to get ks such that A2 = A3 and h;(dz) <

2h;(z) for some d > 1. Hence, p € S. O

We introduce a subclass S* of weights in S determined by the condition that p*(r) <

p(r) for r € (0,1), where

Example 4.1.4. The weights

1 o
p(a:):(l—:z:)ﬁ<log1_m> , 0<B<l,aeR

belong to S*, but the weights

p(z) =(1—z)* <log1im>a, a< -1,

1\ ! 1\
p(z)=(1—-2z)* (logl_a;) <10g10g1_$), a< -1,

do not belong to S*.

4.2 Carleson measures

Let 4 be a finite positive Borel measure on B,,. We recall that u is a Carleson measure

for the Bergman space A2 if

[ 1@ S IS5 f e 42

It is clear that u is a Carleson measure for A2 if and only if A2 C L?(B,, du) and the
identity operator Id : A% — L?*(B,,du) is bounded. The Carleson constant of u for
A2, denoted by C,(A2), is the norm of this identity operator Id. Suppose that u is a

Carleson measure for A2. We say that u is a vanishing Carleson measure for A2 if the
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above identity operator Id is compact. That is, limy_,0 f5_|fx(2)[*dp(2) = 0 whenever
{fx} is a bounded sequence in A2 which converges to 0 uniformly on compact subsets
of B,.

In [39], Seip gave a characterization of Carleson measures for A2 with p € S in the
case n = 1. Our following result extends this result to the case n > 1.

We use the following notation. For every nonnegative integer k,
Qk :{Z EIBn T S |Z| < 'f'k_|_1},

and let py be the measure defined by ux = xq, t whenever a nonnegative Borel measure

won B, 1s given.
Theorem 4.2.1. Let p € S, and let p be a finite positive Borel measure on B,,. Then

(i) w is a Carleson measure for A2 if and only if each . is a Carleson measure for the

Hardy space H* with Carleson constant C,,(H?) < 27% k> 0.
(i) p is a vanishing Carleson measure for A2 if and only if

Jlim 2kc, (H*) = 0.

ITheorem 4.2.1|(1) for the case n = 1 was obtained by Seip in [39]].

4.3 Toeplitz operators

Given a finite positive Borel measure u on By, the Toeplitz operator T), : A2 — A2

is defined as follows:

T.f(2) = [ Kolz,w)f(w)du(w), 2 € B,

n

The Toeplitz operators acting on various spaces of holomorphic functions have been

extensively studied by many authors, and the theory is especially well understood in
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the case of Hardy spaces or standard Bergman spaces (see [42]], [43]] and the references
therein). Luecking [26]] was the first to study Toeplitz operators on Bergman spaces
with measures as symbols, and some interesting results about Toeplitz acting on large
Bergman spaces were obtained by Lin and Rochberg [24].

First, we are going study the boundedness and compactness of T, on A2, with p € S.
Theorem 4.3.1. Let p € S, and let u be a finite positive Borel measure on B,,. Then

(i) The Toeplitz operator T, is bounded on A% if and only if i is a Carleson measure for
A2,

i1) The Toeplitz operator T, is compact on A2 if and only if p is a vanishing Carleson
plitz op p P o y g

measure for A2,

Next we study when our Toeplitz operators belong to the Schatten class. We refer to
[43, Chapter 1] for a brief account on the Schatten classes. A description for the standard
Bergman spaces on the unit disk was given (see [43, Chapter 7]), and a description for
the case of large Bergman spaces on the disk was obtained in 2015 by H. Arroussi, I.
Park, and J. Pau [[1]]. In 2016, Peldez and Rittyi [[31] gave an interesting characterization
for the case of small Bergman spaces on unit disk, where the weight p € D.

For weights p in S*, we obtain a characterization of the symbols of the Toeplitz
operators in the Schatten classes S,. In [34], Pelaez, Rittyi and Sierra gave a characteri-
zation for the case of dimension n = 1 when the weight is regular, that is p*(r) =< p(7).
As an easy observation, our result is equivalent to their result when n = 1. We point
out that our approach is completely different from that of [34]], which does not seem
to work in higher dimensions. On the other hand, for regular weights p in S\ S*, this
characterization fails. A counterexample was given in [34]].

For a measure 4 on B,, and & > 0, we define the function fi, by

2’“,u(E(z,a))
(1—lz) ~
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Let T,, be the Berezin transform of T,, defined by

Tu(2) = (Tuk,, k), z € B,

where k, is the normalized reproducing kernels of A2. Set

2k p(2)dv(z)

, z EQk
(1 —lzf)

dA,(2) =

Theorem 4.3.2. Let p be in S*, u be a finite positive Borel measure and 1 < p < oo. The

following conditions are equivalent:
(a) The Toeplitz operator T, is in the Schatten class S,,.
(b) The function T, is in L*(B,,, d,).

(c) The function fig is in LP(B,,, dX,) for sufficiently small o > 0.

4.4 Proof of Theorem 4.2.1

Lemma 4.4.1. Let p be a finite positive measure on B,.. Then uy is a Carleson measure
for H? if and only if p(Qa) < (1 — |a))* for all a € Q. Furthermore, C, (H?) =

SUP,eq, (1 — [a]) " ux(Qa)-

Proof. Leta € B, \ {0}. Then a € Q; for some ! > 1. If I > k, then px(Q,) = 0 and
there is nothing to prove. Whena € €, I < k, we can cover Q, \ 7xB,, by a finite family
{Q., : 1 € A} with a; € Q4_1, where A is a finite index set. Applying[Lemma 3.1.3|to
the set {O,, : I € A}, we get a subset Ag of A such that O,,,1 € Ay, are disjoint and
O(al, 3(5(0,1)), I € Ay, cover O,. Moreover, it is easy to see that

Qa\ 7By C | Q(a1,35(ar)).

lEAo

Then
a(Qa) = 11(Q@a \ TeBn) < Y- i (@(01,35(a) ).

lEAo
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Since a; € 1, we have (Q(al, 35(al))> < (1 —Jai])” < 0(O,,). Hence

1(@2) 5 3 0(0u) = o( U Ou):

leho leho
Finally,
o(U 0u) 5 0(00) = (1 = lal)™
lEAo
Therefore px(Qa) < (1 — |a|)™. This completes the proof. O

4.4.1 Proof of Part (i)

(<) Since p are Carleson measures for H? with Carleson constants < 27, the
same holds for H? on the smaller ball 7, 5B,,. Indeed, we just use the characterization of
Carleson measures and the fact that if Q (a, 5(a)> NTeiaQe # 0, then1—|a| > 1—14.s
and, hence, 7, 2Q (a, (5(0,)) CcQ (a, M6(a)> for some M < oo independent of a and k.

Therefore,

[ 17@)Pau() S 2 [ 150ns)Pdo(e)

for an arbitrary function f in A2 and for all k. Summing this estimate over all £ > 1 we

get
/Bn\f(z)‘2dﬂ(z) 5 kzjlz_k /Sn‘f(rk—l—Q!f)’Qda(f) = Hf”i

(=) We just need to check that px(Q,) < 27%(1 — |a|)™ when a is in Q, k > 0.

We use the test function
fa(2) = (1 —(a,2))”" (4.3)

with large 7. By (4.2), we have

1952 2227 [, o, ®e®
(o] 2—]‘
LG e

J
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Since a € Q, the relation (4.1)) yields that

Vll2 = 27%(1 = Jal) =7+, (4.4
Indeed,

00 2-3 2-3 2-J

= +
DN e Py D Y ) D DY e

27 277
= —_— + PR
LT A (e
2k ok

~

BEEEE N (e

= 27%(1 — |a]) ¥,
On the other hand, for every z in Q,, we have

11— (a,2)| = [(1 = [a]) + [a|(1 — {a/l]al, 2))|
< (1 —lal) +[a[[1 — (a/lal, 2)]
< (1 —laf) + 2[a[(1 - |a])

< 3(1 - [al)
Hence,
fo@ 2 (@~ la) 7 z€Qu (45)
Thus,
[ 1Fe()Pdu(z) 2 (1~ lal) (e N ).

Since  is a Carleson measure for A%, we get

w(Qa M) S 27°(1 — |al)™.

This implies that ug is a Carleson measure for Hardy space H? with Carleson constant

C#k(H2) § 27}0' U
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4.4.2 Proof of Part (ii)
Suppose that y is a vanishing Carleson measure for A2. Given a in Qy, consider the
function f, defined by (#.3). By (#.4), || follZ < 27%(1 — |a]) """ Set

(1—{a,z2))"
ha(z) = 2 F2(1 — |a]) T (4.6)

Then [[h.||? < 1 and by (4.5),
2k
ha(2)* 2

~ (1~ a)

Since p is a vanishing Carleson measure for A2 and h, tends to 0 uniformly on compact

Z2 € Q,.

subsets of the unit ball as |a| — 1, we have

llm/ Iha(2)]?du(z) = 0.

2k Q
Thus, sup .u'k(Qa N k)
ac (1 —la])”
Conversely, let u” = plg, \75,, where B, = {z € B,, : [z| < r}. Then (u")x < s,

— 0as k — oo. Hence, lim 2*C,,, (H?) = 0.
k—o0

k> 1and (u")x = 0if 7,1 < 7. Therefore, Part (z) of [Theorem 4.2.1| implies that

[ IM@)Pdw () < CrlIRIE, ke 4,

where

C,= sup 2°C, (H?), and lim C, = 0. (4.7)

kirgpi>r

Let {fx} be a bounded sequence in A2 converging uniformly to 0 on compact subsets
of B,. Let ¢ > 0. By (4.7), there exists 7y € (0, 1) such that C, < ¢ forall 7 > 7.
Moreover, by the uniform convergence on compact subsets, we may choose kg € N

such that | fi(2)[? < & for all k > ko and z € 7oB,,. It follows that
[ V@)Paute) = [ 15 au) + [

< eu(roBy) + [ 1ful2)Pdu(2)

|fx(2)1*du(z)

77.7'077.

< ep(roBn) + Croll £l

S EC) k Z kOa
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for some positive constant C. Hence,  is a vanishing Carleson measure for A2. O

4.5 Proof of Theorem 4.3.1

4.5.1 Proof of Part (i)

(=) Given a in €, we define h, by (4.6). Then
Ihell; < Land [ha(2)* 2 2°(1 —Jal)™, 2z € Q..
Consider the function
T#(a) = (Tyha, ha) / Iha|2dp(z (4.8)
Since T}, is bounded, A := sup,y, T} (a) < 00. Then

A>/ |ho(2)|?du(z) >/ |ha(2)?dp(2)

> /Q [he(2)Pdus(2) 2, 24(1 — lal) " x(Qa). (4.9)

Hence, ux(Qa) < 27%(1 — |a])™ for every a € Q. By|[Theorem 4.2.1/and [Lemma 4.4.1}

p is a Carleson measure for A2.

(<) Forevery f,g € Ai we have

(Tt 9) = [, F(2)a(z)du(z)

Then by the Cauchy-Schwarz inequality, we get
(Tuf,0)l < [ 1F(@)l9(@)]du(z)

< (Lrare (z)); (/BJg(zWu(z));

Since  is a Carleson measure for A2, there exists a positive constant C such that

[ 1#@Pdu(z) < Clifl,
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and
| l9(2)Pdu(z) < Cllgl 2
Hence,
(Tuf,9)ol <ClIfllllgll,  forall f,g € A2
Thus, T}, is bounded on A2, O

4.5.2 Proof of Part (ii)

We need the following auxiliary results.

Proposition 4.5.1. Suppose that f € A2 with p € S. Then

C2F
S (-2

where C is a positive constant independent of k and z.

f(2)F < I£l2, 2 €Quk >0, (4.10)

Proof. Let z € Q. Applying [42, Corollary 4.5] to the function g(z) = f(rx;22) at

—, we obtain

(- le/real)y
1= (/rea, O 27O

By @1), [1— (2/mei2, O > 1= [(2/7042, Q) 2 1= B =1 — |2]/rp 15 21— |2| for
z € Qi, ¢ €S,. Thus,

F@F < [ 1)l

5P S [ 1= E L ao(c)
< G [ ea0Pas(o
S g O Fas(o
< G a0
S oI
with constants independent of & and z. 0
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Corollary 4.5.2. A sequence of functions { fx} C A2 converges to 0 weakly in A2 if and

only if it is bounded in A2 and converges to O uniformly on each compact subset of B,.

Proof of Part (i) o Suppose that T}, is compact on A2. We define h,, a €
B, by (4.6), and T by (4.8). Then ||[|2 =< 1 and h, converges uniformly to 0 on
compact subsets of B, as [a] — 1. Since T}, is compact, T} (a) — 0 as |a| — 1. By (4.9)

this 1mphes that
2k,u' Q a
sup 2 Bk wa) ( )

— 0ask — o0.
acq, (1 — [a])”

Hence,

Jim 2kc, (H*) = 0.

By Part (44) of Theorem 4.2.1} u is a vanishing Carleson measure for A2.

Conversely, assume that 4 is a vanishing Carleson measure for A2. For every h € A2

we have
||Tuh||p = sup |<Tuh;g>p|-
gEAf,
llgllp<1
Furthermore,

(T, )l =| [ W@ < [ (e)la(2)ldu(z)

< ([ me)Pan=) " ([ lae)ranc))

< ([ inePan=) " gl

The last inequality follows from the fact that 4 is a Carleson measure for A2. Therefore,

mall < ([ @Pan)) ", ne 42

Now, let {fi} C A2 be bounded and converge uniformly to 0 on compact subsets of

B.. Since u is a vanishing Carleson measure for A2,

lim [ [fu(2)Pdu(z) =

It follows that ||T, fx||, — 0 and hence T}, is compact. O
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4.6 Proof of Theorem 4.3.2

Proposition 4.6.1. Let K,(z,w) be the reproducing kernel of A2,

(a) Let k > 1, 2 € Q4. Then

2k
K (z,2)= — . 4.11
(b) There exists o = o(p) > 0 such that for every z € B,
‘KP(z7w)‘2 ~ KP(zaz)KP(w7w) (4-12)

whenever w € E(z, o).

Proof. (a) Fix k > 1. Given z € U, let L, be the point evaluation at z on Af,. It 1s
well-known that

Ky (2,2) = ||L. |-

By [Proposition 4.5.1]

2k
-1z
Furthermore, choosing k, by (4.6), we have ||h,||, < 1 and

1L S

2 2k
h=(2)]° 2
(1—[z])
Hence,
2k
1P 2
(1—1z])
Thus
2k
K = — 2y
P(Z,Z) (1 _ |Z|)n’ FAS k

(b) In this proof, we use an argument of Lin and Rochberg in [24]]. It is well-known
that

|K,(2,w)* < Kp(2,2)K,(w, w)

forall z,w € B,.
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For any fixed 2y € Q, consider the subspace Af, (2o) defined as

Ai(zo) = {f S Af, : f(z0) = 0}-

Denote by L,, the one-dimensional subspace spanned by the function

Kp(zizo)

kozl(2) = ———.
( ) \ KP(ZO)ZO)

Then we have the orthogonal decomposition
Ai = Ai(ZO) © Ezo-

Hence K,(z,w) = K, ,,(2, W) +ks 0 (W)k,s 0 (2), where K, ., is the reproducing kernel
of A%(zo). Therefore,

K (20, w) = Kp,z0(w)kp,z(20)

and

Kp(wa w) = Kp,z'o(w’w) + ‘kuZO(’w)F' (4.13)

We are going to prove that there exists a > 0 such that
1
K, o(w,w) < EKP(w,w), w € E(zy, ). (4.14)

By (4.1), there exists a; > 0 such that E(2¢, ) C Q_1 U Qi U Q11,0 < @ < ay.

Hence, for every f € A2(zo) such that || f||, = 1, by [Proposition 4.5.1| we have

) 26 2k
|fw)P S A= Twl) = 0= )" (4.15)

whenever w € E(zy, a). Since E(2,a) = ¢, (E(O, a)), we can rewrite (4.15]) as

k
|f<<on(77)) S (1—2\z0|)n (4.16)

whenever n € E(0, a). Note that f(2) = f(gon (0)) = 0. Therefore, by the Schwarz
lemma, we get

2o a2 e 2
(0P S WP ey = 0
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whenever 7 € E(0, a). This implies that there is a constant C' > 0 such that
2k
(1 = lpzo(m))™’

£ (p=o(m) > < Clnf” n € B(0,a).

Thus, we can choose a so small that
1
F(0zo (M) < SE,(020(n), 0:0(m), 1€ B(0,0).

This proves (4.14).
. 1
Now, from (#.13) and (#.14)), we obtain that |k, ., (w)|* > §Kp(w’ w) whenever

w € E(zg, a). This means that
5 1
[Kp(w, 20)" > 5 Kp(20, 20) Kp(w, w)
whenever w € E(zq, @), which completes our proof. O

Lemma 4.6.2. Let T be a positive operator on A2, and let T be the Berezin transform of T,
defined by
T(z) = (Tks,ko)py 2 € By

(a) Let0 < p < L. IfT € LP(B,,d\,), then T is in S,.

(b) Letp > 1. If T isin S, then T € LP(B,, d),).

2k p(2)dv(z2)

Here, d)\,(2) = (1— 2]

Proof. Note that
dX,(2) < K (z,2)p(z)dv(z) = ||K|*p(2)dv(2).

The proof is similar to the proof of [[1, Lemma 4.2]. The positive operator T is in
Sy if and only if T is in the trace class S;. Fix an orthonormal basis {ex} of A2. Since
T? is positive, it is in Sy if and only if >3, (TPey, €x), < 00. Let U = +/T?. By Fubini’s

theorem, the reproducing property of K, and Parseval’s identity, we have

S (Ten )y = YllUel; = - [ [Uee(@)p(z)d(z)
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= / <Z|Uek z)|2> p(2)dv(z) = / <Z| Uey, K. >p(z)dv(z)
-/ @@k, UKz)p|2> p()v(z) = [ UK. |Ep(2)dv(2)

= | (TPK, K;),op(2)dv(2) :/Bn<Tpkz,kz>p||Kz||§P(Z)dv(Z)

IB%'n,
= (TPk,, k.) AN (2).

Br

Hence, both (a) and (b) are the consequences of the well-known inequalities (see [43)

Proposition 1.31])

=~ \\P
(TPkz,kz)p < (Tks k2)h = (T(Z)) ’ 0<p<1,

~ p
(T?ks, k), > (Th k)2 = (T(2))",  p>1. O

Lemma 4.6.3. Let p € S* and z € Q. Then there exists ag > 0 such that for every

a € (0, ag) we have

2 L w)|? o(w)dv(w
B ol N E OOl COL ()

z,

forall f € H(B,).

Proof. Let z € Q4. For each f € H(B,), by the subharmonicity of the function w —

|f(w)|? and the estimate v(E(z, a)) = (1 — |z])™*?, we have

1

S S gt o f P (),

Clearly 1 — |z| < 1 — |w| for w € E(z, o). Hence,

FOP S T fop o F P d0)

(1 —[z[) 1— |w|
k —k
B (1—2|z|)/g< HF 1i|'w| dv(w) (4.17)

By (4.1)), for small ag we have E(z,qp) C Q-1 U Qg U Q1. Therefore, for every

a € (0,ap), we have 7,_; < |w| < 742 for w € E(z, o). Since frlk+2 p(t)dt = 27F2
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we obtain 2% < fﬁu\ p(t)dt for every w € E(z,a),a € (0,00). Plugging this into
(4.17) and using that p*(w) < p(w), we get

PR w)|?o*(w)dv(w
By el I DI FgCOL A

2k 5
S A ) o F @I PR (),

This completes the proof. O

Proof of[Theorem 4.3.2 (a) = (b). This follows from[Lemma 4.6.2] (b).

(b) = (c). By[Proposition 4.6.1| (b), for sufficiently small & > 0, we have

K (w)* < | KR Kl w € B(z,a),2 € Ba.

Then by [Proposition 4.6.1|(a), we get
2) = [ [he(w)Pduw) = |K.[;? [ |K.(w)Pdu(w)
> K2 [ 1K (w)Pau(w)

= o EulRan(w) = fa2)

Since T, is in LP(B,,, d),), fiq is also in L?(B,, dA,).

(c) = (a). For every orthonormal basis {e;} of A2, we have

S (Tenes = ([ le@)Pau(a) (+.18)

1 1
By|Lemma 4.6.3),

2k

A=z [E(z,a)|ez(w)l2p(w)dv(w), z € Q.

|el(z)| 5 ( |Z| n

By Fubini’s theorem and Hélder’s inequality, we have
. Je@Fau(z) 5 [ lex(w)a(wiptw)dv(w)
< (/Bn|ez(w)|2ﬁa(w)pp(w)dv(w))1/p
- (/BJel(w)Pp(w)du(w))l/"
= ( /Bnlez(w)lﬁa(w)p,,(w) dv(w))l/p’
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where % + % = 1. Thus, (4.18)) implies that

Stweners s [ (Siatw )ua W) p(w)do(w)
= [ 1K) p(w)dv(w)
= | Ba(wpdr(w) < co.
This proves (a). 0

Remark 4.6.4. Let 1 < p < 00. In the case of large weighted Bergman spaces, Arrousst,

Park and Pau proved in [[1, Theorem 4.6] that

u(Blz,e(1 - 2)))) . .

1=z is in the corresponding weighted L?,

where B(z,e(1 — |z|)) is the Euclidean ball with center z and radius (1 — |z]). When

T, €Sy = [fie(z) =

the dimension n = 1, we can see that [, is in L? if and only if i, is in L. However, for
n > 1, this equivalence is not true anymore.
Let us verify this. Choose 2z € B, such that |2x| tends to 1 sufhciently rapidly as
k — oo. Consider
o oo
= CeXB(ze) and ' =) CkXB(z3¢)
k=1 k=1

where ¢; > 0 will be chosen later. We have

pS e Sut
and ( (
o y(B(2x,¢€) o y(B(2k,¢€)
c XB(zie) S Be S )€ X B(zi,3¢
2 (Bl e) 0 P S L () ¥
Hence

b. € L — icﬁv(B(zk,e» < 00

k=1
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and

S (v(B(zwe)))
k=1 (v(E(zk,e)»

7 < 00.

Since

& (v(Blzr,€))) (v(E(zr,€))) ) ('U(B(zk,e))>p

cﬁv(B(zk, 5)) ’U(E(Zk, 5))

-1

= (1— |zk‘)(nfl)(p71) — 50

as k — 00, we can choose ¢ such that i, € L? but fi, ¢ LP. On the other hand, one

can easily see that fi, € L? implies fi, € LP.

Remark 4.6.5. When p € S\ S*,[Theorem 4.3.2/does not remain valid anymore.

Let us denote
1
o(z) = / p(s)ds, 0<z<o00.
l—e—2

Then ¢ is positive and lim ¢(z) = 0. Moreover,
pe S ifandonly if i%f(¢*1(2*k*1) ~p 2" >0
In particular, pis in S if [¢'| = O(¢) at 0o. On the other hand,
peS* ifandonlyif |¢'| 2 ¢ atoo.

Now we consider

1
p(r) = =7

, 0<r<l1,

1
Il -
(P<0g1_r>

where ¢ is a differentiable positive function from [0, 00) to [0, 00) satisfying the follow-

ing properties: lim ¢(z) = 0, [¢'| decreases, |¢'| = o(p) at 00, and |@'(t+1)| > 8|¢'(2)|
for t > 0, § being a positive constant.

Claim 1: Such pisin S\ S*.
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Proof of Claim 1. Since |¢'| = o(p), |‘;/((f))| < 1forevery £ > z,. Fore € (0,log2) we

have

/HE "pl(t)‘dt <e T > xp.

p@®) — ~ 7
It follows that log ¢(z) < € + log ¢(z + ¢€). Hence

o(z) < 2¢(z +¢), T > zg.

Since ¢ is decreasing, ¢! is decreasing. Forevery 0 < y < @, setz = ¢ (2y) > zo.

Theny = @ < p(z+e¢). Thus
T (y) >z t+e= 97 (2y) te.

Therefore, p 1(27%71) > e + ¢ }(27F) for k > ko. It gives us that

e¥ 127 > (1+ g)ew’l(r’“), k> ko.
Hence
. 1 _ T’k . e¢71(27k—1)
llg.fm = lgfm > 1,
and p € S. Clearly p ¢ S*. O

Claim 2: We have

1
| rme(r)dr < plogm),  m>2,
0

and
/ |z dus(z) =< ;, e? 2 oy e Y
D

where dpy, = xqa,dv, k > 0.

Proof of Claim 2. Let us write

1

1 1-L 1
/ r"o(r)dr = / " r™o(r)dr + / r™p(r)dr.
0 0 1—L
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Moreover,
1 1

/ r"o(r)dr < / p(r)dr = ¢(logm).

1—L 1—L
On the other hand,

1-1 logm j_e~k=1 pm 1
m._m < R P -
/(; T p('f’)d?"m kz::o/l_ek 1—17 (p(]-Og]__'r>‘dlr

logm

S 2 exp(—me )¢ (k).
k=0
Let A =log m. Since |¢'(t + 1)| > d|¢'(2)],
[¢'(k)| < 8" A1¢'(4)] S e ' (4)]

forall 0 < k < A, where ¢ is a positive constant.

Hence

rp(r)dr <3 exp(—e**) exp(c(A — k) |¢'(4)]

k=0

= |¢'(4)] Z:exp(cj —e&’) < |¢'(4)]

= |¢'(logm)| = o(p(log m)).

1
Therefore, / r™o(r)dr < p(logm).
0

Making a similar argument as above leads us to the desired result

1 o ok
/D\zlzmduk(z) = e? B cm<er B,

]

Now we are going to construct a measure 4 on D such that &, € LP(D, d),) for any

a > 0, but T, ¢ S,. Note that, for the sake of simplicity, we consider in this Remark

only the case of dimension n = 1.

Consider the orthonormal basis (e, )m>0 of A?,,
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Set my, = €2 (2™"), We obtain that

1
m d — .
/ lem(2)2dus(z) =< m o(logm)’ me < M < My
Then,
> Tuemen)s = 3 ([ lem(a)Pdun(z))
m>0 m>0
MEe+1 1 1
>y s a4
m—my T ((p(log m))p
Furthermore,
Fea(2) S 251 = |2))xq, (2),
where
Qi = {z € D : dist(z, ) < a}.
This implies that

[ ar, <20 [ el 2D o)

=2 [ (1 |z|)P—1p(|z|>dv<z)

r 1
< 2(”+1)’°/ Hl(l —r)P? (p'(log 1 )‘dr
Tk —-T
Tektl m 1 1
ZAEDY / (1 rp2l 1o )
m=my -
Tkl m+1
2Ptk S 0/ (log m) |/ (1—r)P2dr
m=my
(p+1)k 1 /
< olp —_— lo
N m;% — |¢'(logm)|
ME+41 1 1 ’wl(logm)’ .

Zi

T memy, TP (go(log m))p ¢(logm)

1

ologme) = ,p(lolg -~ for all m between

The last estimate comes from the fact that 2% =

my and Megi1.
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Since |¢'| = o(p) at 0o and my, — 00 as k — 00, we have B, = o(Ag). Hence there

. B 2
exist k, such that Z <Aks> < 00. Let
ks

s>0
du=7" ! ”
- 1 ks
>0 (Ak, By, )2
Then
S (Them em)? > 3 LT emen)
m>0 m>0s>0 (AksBks)z
1 A \?
r% T Ap, = z < s) = 00,
SZO ('A'kls'Bk:s)5 s>0 Bks
but

1
CPdh, =S — [ gT=Pda
/ﬁk ﬂ ’ ; (‘AksBks)E &:st Mks, g

/Dﬁ;pd)\px 3

k>0

1
1 2
5 E 7Bks - § <Ak> < 0.

s>0 (AksBks)% s>0
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CHAPTER 5

BERGMAN TYPE PROJECTIONS

In this chapter, we study the Bergman type projection acting from L* to the Bloch
space B of B,, n > 1, and then provide a characterization of radial weight so that the

projection is bounded.

5.1 Introduction and main result

Definition 5.1.1. Let us recall that the Bloch space of B,,, denoted by B, is the space of

holomorphic functions f in B,, such that

sup (1 — |2*)|Rf (%) < o0,

where
-, 9f
RIE) = 3750 2

is the radial derivative of f at z € B,,.

In the one dimensional case, the Bloch space consists of analytic functions f in D

such that
sup(1 — [2]%)[f'(z)] < oo,
z€eD

and is denoted by B(D).
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Definition 5.1.2. Let p be a radial weight and X be a space of measurable functions on

B,. The Bergman type projection P, acting on X is given by

P,f(2) :/B K,(z,w)f(w)p(w)dv(w),  z€B,, f € X,

n

where K,(z, w) is the reproducing kernel of the weighted Bergman space A2.

When p is the standard radial weight p(z) = (1 — |2]?)*, & > —1, the projection is
denoted by P,.

A radial weight p belongs to the class D if p(r) < p(3”) for all 7 € [0,1), where
p(r) = J; p(s)ds.

Projections play a crucial role in studying operator theory on spaces of analytic func-
tions. Bounded analytic projections can also be used to establish duality relations and to
obtain useful equivalent norms in spaces of analytic functions. Hence the boundedness
of projections is an interesting topic which has been studied by many authors in recent
years [8,/10,11,32,33]. In [32]], Pelaez and Rittyé considered the projection P, acting
on L? (D),1 < p < oo when two weights p1, p2 are in the class R of so called regular
weights. A radial weight p is regular if p(r) < (1—7)p(r),r € (0, 1). Recently, in 2019,
they extended these results to the case where p; € D, ps is radial [33]).

In this chapter, we are going to study the projections acting on the space L*. In the

case of standard radial weight, we have the following result.

Theorem 5.1.3. For any o > —1, the Bergman type projection P, is a bounded linear

operator from L onto the Bloch space B.

See [42, Theorem 3.4] for a proof. This theorem is also valid for the case of one
dimension [43, Theorem 5.2].

In [33]], Peldez and Rittyd obtain an interesting result in the one dimensional case.

Theorem 5.1.4. Let p be a radial weight. Then the projection P, : L*(D) — B(D) is
bounded if and only if p € D.
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We extend this theorem to the case of several variables and obtain the following

result.

Theorem 5.1.5. Let p be a radial weight. Then the projection P, : L — B is bounded if
and only if p € D.

5.2 Some auxiliary lemmas

To prove [Theorem 5.1.5| we need several auxiliary lemmas.

Lemma 5.2.1. Let p be a radial weight. Then the following conditions are equivalent:
(i) p € D;

(1) There exist C = C(p) > 0 and By = Bo(p) > 0 such that

_ 1—r\f_
pry<c(i—3) AW,  o<r<t<y,

forall B > Bo;

(ii1) The asymptotic equality

1 1
/ s%p(s)ds < ,5(1 — > , z € [1,00),
0

z

is valid;

(1v) There exist Co = Co(p) > 0 and C = C(p) > 0 such that

R 1
p(0) < CoA(3)
and p, < Cpay, foralln € N.

This lemma can be found in [28]].
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Lemma 5.2.2. If

f(z) =" a;z’ € HP, 0<p<2,

n=0

then

>+ 1P 2ay P SIFIIE-
3=0

Lemma 5.2.3. Let {a;} be a sequence of complex numbers such that 3~ 79 2|a;|? < oo for

some q,2 < q < 00. Then the function f(z) = X2, a;27 is in HY, and
1£18 < 220 + 1) ?lay).
=0

Two above lemmas are the classical Hardy-Littlewood inequalities, which can be

found, for example, in Duren’s book [[13, Theorem 6.2 and 6.3].
Lemma 5.2.4. Let p be a radial weight. Then the reproducing kernel K ,(z,w) is given by

Kylzw) = 23 (d+n—1)

d
dl | <z7w> ? z7w EB‘H’
d—o &N:Pon_1424

where

1
oy :/ to(t)dt, s> 1.
0

Proof. By the multinomial formula (see [42, (1.1)]), we have that

d!
(zyw)i= S PP, z,w € C".

|
PEN™,|B|=d p!
Hence, for a € N*, |a| = d,

dlzf
| e@ato@©= ¥

]
BeEN™,|B|=d A

/S e Edo(€), z € By
By Lemma 1.11 1n [42],

y 0 if o # B,
/Sng ¢do(¢) = al(n — 1)!

{d+n_1y 1a=ph
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and we obtain

[ eeeiao@) = S [ eEao(e)
d! ol(n—1)!

ald+n-1)"
_dY(n—-1)!
 (d+n—1)

a

z%, z€eB,.
Therefore, for o € N*, |a| = d we have

@zw@mMMwmmw:ﬂnA%““%mwaé;%a@%d@

n

d'n!pon_1424
=2—— 2% cB,.
drn_1)° g

It follows that

(d4+n—1)! / p
2= w*{(z, w)*p(w)dv(w), z €B,. 5.1
2 o 1o0a I (z,w)"p(w)dv(w) (5.1)

Since p(t) > 0,0 < t < 1, we have p; > C.(1 — €)° for every € > 0. Given z € B,

we have

2

@in-1) p(w)dv(w)

d'n'Pzn 14+2d
(dl +n — 1)'(d2 +n— ].)

(z,w)?

Z

d1 do
z, W) (w, z w)dv(w
d1,d2>0 dida!(n!)2pan—112d; Pon—1+24, /n< /™ )/ plw)dv(w)

1

4

_1 (di+7n—1)/(d2 +n —1)! / S wﬁzﬁ@(z, w)® p(w)dv(w)
4d17d S0 dy!dx!(n!)2 021124, P2n—112d, /B \B|=da P!

1

2

1

2

(d+n—1)! 1 d? nlps,_ _
2 ( din! ) ) 5 ( I) > 1+2d|zﬁz/S
d>0 ‘e Pon—142d \ﬁ\ g B! (d+n-1)

(d+n— 1) zﬁzﬁ (d+n— 1)‘ o

2 Z < dln!

(d+n—1)!
d'n!pon 1124
By (5.1) and by continuity, for every f € A%(B,),

1= [ s (33 et

d—0 d!n!pon_1424

d>0 npon-1424 1B]=d p! Pan—1+2d

Thus, the function w — £ 252, (w, 2)? belongs to A2

< V)Mwﬂww% ¢ €B,,

which implies our conclusion. O
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5.3 Proof of Theorem 5.1.5

It suffices to consider only the case n > 1.

Proposition 5.3.1. If p € D, then the projection P, : L® — B is bounded, where P, is
defined by

P,p(z) = /B K,(z,w)p(w)p(w)dv(w), p € L% z€B,.

Proof. We have
1.2 (d+n—1)

KP(Z’ w) = ) Z

o adn!pan 1424

z,w)e.

Hence, for a fixed w € B,,,

0K, (z,w)
% 0z;
)
0 [1& (d+n—1)! d>
zi— | = ~— {2z, w
=1 ? 0z; <2 ZB d!n!p2n—1+2d< )
2 (d+n—1)
2
’ (;] d'nlpon_1:24
(d+mn—1)!
(d—1)nlpon_1424
I'(d+n)
L(d)T'(n + 1)p2n-1424

NE

RK,(z,w) =

Il
L.
I 3
w

3

dw; (z,w)**

<
/|
=

a
Il
—

NI—= NI= N
8 L

]

i
0

Now, given ¢ € L™, let

f(z) .= Pp(z) = /IEB K,(z,w)p(w)p(w)dv(w), z € B,.

n

For all z € B,, we have

Rf(2)| = ‘ /B RE, (2, w)p(w)p(w)dv(w)
< [ 1BE (2, w)lo(w) p(w)de(w)

< gl |, 1RE(z w)lp(w)dv(w). (5.2)
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Set

© I'(d+mn) &t

g =>

= T(d) Pon—1t2d
Since p(t) > 0,0 < t < 1, g is analytic in the unit disc. Then

A€ D.

(2, w)

RE,(2,w) = opim 3 1y

9((z, w)). (5.3)

Next we consider the reproducing kernel K}(z,w) of the Bergman space in the unit

disc with the weight p. We have

1 oo
K'(z,w) = M
2 d—o P2d+1
Furthermore,
or _ 1 & T(d+ Y)(ew) "wn

K'Yz, w)=
oz™ p( ) 2(12:?:1 F(d—n+1)p2d+1

0 F(s + n) (zw)*tw"

Z

-1 P2s+on—1

= Eg(zw)w

By a result of Pelaez and Rittyd ( [32, Theorem 1 (i1)]), we have

o dt 1

|w|
7 1 - 2\n—2 — <
Lo w|a—lefytaae) < [* o, g <<t
where p(t) = [} p(s)ds
Thus,

[lo(zm)(1 ~ 2Py —*dA(z) = [ p(t)(‘ft_t) S <l <L

Since g is analytic in the unit disc, we have
/|g(zw (1 — |2[2)"2dA(2) < 1+/ ﬂ, weD.  (54)
Now, by (53), we have
[ 1RE, (2, w) p(w)dv(w) £ [ lo((z,w)|p(w)dv(w)
= [0 ([ latrz,€)ldo(e)) ar
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By [42, Lemma 1.9] and the unitary invariance of do, we have

| lalrz.©)ldo(€) = [ larlz)|2 — [A?)dA).
Thus, by we obtain

/Bn‘RKP(Z,w)‘p(w)dy(w) < /01 727 o(r) (1 N /Oml ﬁ(t)(clit_t)2> o

s+ s </t/1z| ’2”1"(’”)‘1’"> “

S e e FIIEL
By we obtain now that
RIS Wollog—r 7€ B,
and, hence,
sup(1 - 21)|Rf(2)] < [1elle-
It is easy to see that
IFO) S lllleo-
Therefore, P, is bounded. The [Proposition 5.3.1]is proved. O

Proposition 5.3.2. Suppose that the projection P, : L® — B is bounded. Then p € D.
Proof. Given § € S,, and w € B,,, let us consider a function g given by

g(A) = RK,(A¢,w), A e D.

Then
= ca(€ w)4N
d=1
1 I'(d+n) : : .
where ¢; = — . By the Hardy-Littlewood inequality (see Lemma
¢ T (AT(M)pom 2 y quaity {

5.2.2)) we have

d 1

Cd‘ 57
£ T
do

27 .
= RK (e -
JZC €,w)!2ﬁ
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Integrating both sides of the above inequality over £ € S,, we obtain

2m ; dg
S arg ) Newlan@ s [ [TIRK (% w5 dote)

- /SnyRK,,(g,w)\do(E)-

By the unitary invariance of do and [42, Lemma 1.9], we have

|, Ve w)l*do() = [wl* | |6 do(e)
= (n =Dl [ (1= |27}z dA(2)
= (n — 1)7|w|® /01(1 — )" 2t
- w,w‘d‘

I'(¢+mn)
Hence,
[rsewlante) 2 35 52 TG
1 & I'(d+n)T(2+1) d
~on Z:: (d+ DI(@)T(E + n)p2n- 1424 wl®
Since
Fd+n)(E+1) _
(d+ DI@T(E +n)
we get

[ 1Rk wlaee) 2 5 3

, w e B,.
d=1 P2n—1+2d

Therefore, for z € B,,, we have

/BH|RK,,(z,w)|p(w)dv(w) =2n /01 r2*1p(r) /SR|RKP(Z’T§)| do(€)dr
=2n /0 () /S |RK(&,72)|do(€) dr

¢
/T2n71+dp(,,,)d,,,

di—1 Pon—1+2d4 JO

SR

e

[e.e]
Pan—14d
= et 29
d—1 Pon—1+2d
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Thus,

sup (1 — |2[?) /BH\RKP(z,w)\p(w)dv(w)

zEBy,

o0
> sup(1— [2]) 3 Lol 5
2€B, d—1 P2d+2n—1

1 X paront 1\¢
> sup L (1- 1)
Nen N dZ::l P2d+2n-1 N

N
Pd+2n—1
NeN N i padion—1

Since P, is bounded from L* to B,

sup(1 - |2f%) || |RK,(z,w)|p(w)dv(w) < co.

z€EB,

Given N > 2n, we obtain that

1 AN—2n n_ 1
> Pd+2n—1 2—(N—n)'04N,
AN —2n ;v .1 Praion—1 ~ 4N PsN
and, hence,
PenN Z Pan-

If 8N <k <8N +8,N > 2n + 8, then

Pr < PsN ,S Pi2N § P1eN < P2k,

and by [Lemma 5.2.1| we conclude that p € D. O

From Propositions[5.3.1)and [5.3.2) we obtain the conclusion of [Theorem 5.1.5
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CHAPTER 6

DIMENSION OF THE FOCK TYPE SPACES

In this chapter, we study the weighted Fock spaces in one and several complex vari-
ables. We evaluate the dimension of these spaces in terms of the weight function extend-

ing and complete earlier results by Rozenblum-Shirokov and Shigekawa.

6.1 Introduction

Let 9 be a plurisubharmonic function on C”, n > 1. The weighted Fock space F

is the space of entire functions f such that

115 = [ 1f(2)Pe ¥PaV (z) < oo,

where dV is the volume measure on C™.
Note that F is a closed subspace of L?(C", e ¥dV') and hence is a Hilbert space

endowed with the inner product

(£,9)s = [ f(29@e ¥V (z),  f9€F

For numerous results on the Fock space on C, see the book of Zhu [44].
In this chapter we study when the space F7 is of finite dimension depending on the
weight 9. This problem (at least for the case n = 1) is motivated by some quantum

mechanics questions, especially in the study of zero modes, eigenfunctions with zero
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eigenvalues. In [[36, Theorem 3.2], Rozenblum and Shirokov proposed a sufficient con-

dition for the space F to be of infinite dimension, when 4 is a subharmonic function.

Theorem 6.1.1. Let 9 be a finite subbarmonic function on the complex plane such that the

measure i = A is of infinite mass:

w(©) = [ du(z) = co. (6.1
Then the space F, has infinite dimension.

We improve and extend somewhat this statement in this chapter, give a necessary
and sufficient condition on 9 for the space F7 to be of finite dimension, and calculate
this dimension.

The situation is much more complicated in C*, n > 2. Shigekawa established in [[40]]

(see also [[15, Theorem 7.10] in a book by Haslinger), the following interesting result.

Theorem 6.1.2. Let ¢ : C* — R be a C*™ smooth function and let Xo(2) denote the lowest

eigenvalue of the Levi matrix

Ly(2) = 059 (z) = (az’l’(z));l |

aZj 0z
Suppose that

lim |z|*Ae(2) = 0. (6.2)
|z|—00

Then dim(F3) = oo.

Note that the condition (6.2)) is not necessary. A corresponding example is given

in [[15, Section 7]. In this chapter, we improve [Theorem 6.1.2] by presenting a weaker

condition for the dimension of the Fock space 77 to be infinite. Furthermore, we give
several examples that show how far our condition is from being necessary.

The rest of this chapter is organized as follows. The case of dimension one is consid-

ered inSection 6.2} and the case of higher dimension is considered in Section|Section 6.3
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6.2 The case of C

Given a subharmonic function 9 : C — [—00, 00), denote by iy the corresponding
Riez measure, py = At. Next, consider the class M? of the positive o-finite atomic
measures with masses which are integer multiples by 47. Given a o-finite measure f,

consider the corresponding atomic measure p?,
d_ d.
p? = max {p € M? 1y < .

Denote ¢ = p — p, pu = Y4 476, -
Denote by M€ the class of the positive o-finite measures y such that u¢ = 0. Note
that if 9 is finite on the complex plane, then py has no point masses and py € M°.

Furthermore, if py, € M¢, then e € L}, .(dV).

Lemma 6.2.1. Let 9,41 be two subbarmonic functions such that (py)¢ = (ty, ). Then
dim 73 = dim F} .

Proof. Let F, Fy be two entire functions with the zero sets, correspondingly, {:ck,# ¢}
and {mk,# " } (taking into account the multiplicities). Then

Alog|F? = (uy)?, Alog|F|* = (g, )%

and the functions h = 9 — log|F|? — ¢, hy = 9, — log|F1|*> — ¢¢ are harmonic. Let
h = Re H, h; = Re H; for some entire functions H, H;.

Given an entire function f, we have

fe J-"j S /C|f(z)|2e—¢(z) 4V (z) < oo
= [If(z)Pe ¥ @@ ay(z) < oo

C
— / |f(z)e_H(z)/2/F(z)|Ze_"/"c(l) dV(z) < o

C

— /(C f(2)e HO2 F(2)2e %) qV (2) < oo

Small Fock spaces, small Bergman spaces and their operators
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— /C f(2)e 2 B(z)|2e~ @+ mE@+6RE gy (5) < oo
— /@ f(2)e @@L R (1) /F(2)2e® dV (2) < oo
Fy gy 2+Hq /2 2
= f e P2 e T
Thus, dim F} = dim 73 . O

Lemma 6.2.2. Let ¢ be a subharmonic function such that py € Me. If dim F < oo,

then uy(C) < oo.
For a proof, see the proof of [36, Theorem 3.2].

Lemma 6.2.3. Let 9 be a subbarmonic function. Then

dim ]—"j < [ﬂisr(c)-‘ .

Here and later on, given a real number z, [z] is the maximal integer smaller than z.

Proof. Set u = py and consider a modified logarithmic potential G of the measure p:

1 1 zZ—wW
Glz) = — / log|z — w|d = / 1 ‘d
(2) 27 JD(0,2) oglz — widu(w) + 2m JC\D(0,2) °8 w Hw)

Fromnowon, D(z,7r) ={w € C: |Jw — z| < r}. Since AG = p = Ay, by|[Lemma6.2.1

we have dim F2 = dim F3.

Next,
-5 S toglal| < 5 [ togi - Y]
‘Gl(z) 27 oglzl] < 27 JD(0,2) °8 z dp(w)
<C . Z>a (63)
— |z|7 iy ’ *
and
u(C\ D(0,2))
— |
Go(2) " loga
1 1 1
= — log|— — —|d <0 > 4.
o IR e L7 OO T
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Thus,

6(2) < M 10g(1 4 12)) +

C.
o A

14 [2|’

Now, given an entire function f, we have
fers= /(C|f(z)|2(1 4 [2) O/ gy (2) < oo
By a Liouville type theorem, f is a polynomial of degree N such that
/oo r2Np=#O/Cmpdr < 0o,
1
Therefore, N < —1+ p(C)/(4r). Thus dim F2 < [ﬁfﬂ 0

Lemma 6.2.4. Let v be a subbarmonic function and suppose that ., € M. Then

w(C)]

dim 72 > [ -

Proof. Set u = py and choose € > 0, R > 1 such that

Ao [ g

Next, increasing R, we can guarantee that

4(D(O, R)) > w(C) — .

Consider a modified logarithmic potential U of the measure y :

1 1 zZ—w
U(z) = 7/ log|z — w|d 7/ 1 “d
(2) = o - Do.R) oglz —wldu(w) + oo 8w pu(w)

Since AU = u = Ay, by[Lemma 6.2.1|we have dim 73 = dim FZ. Arguing as in (6.3)),
we get

Ui(z) > 7#(D(O’R)>

C
1 - — > 2R.
> S oglz 21>

|2|”
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Next, let |z| > 2R. Then

U(e) = 5 [
2T on Jeup(o,R)uD =) 2l/2)

+ —/ lo
27 JD(z,/2|/2)

1
>C0— — / log
27 JD(z,/z|/2)

Givenm > 1,denote A4,, ={z € C: 2"R < |z| < 2™"'R}. Fixm > land k > 1

= w‘du(w) — C— Us(2).

and apply [Lemma 3.6.10| with v = 1¢\p(o,p)i4, 2R < |20| < 2™"'R, h = 2™7'R,

n(zg,h) < 1/2,and d = 2™ * 1R to get for some C,C; > 0,6 € (0,1):
my{z € A, : Us(2) > Cy + 6k} < C-2°"R*27%* |k >1.

Hence,
/(1 + ‘z’)*Zfb‘eUs(z) dV(z) <C+C Z Z o—(2+e)m 8k
- m>1k>1

Xmg{ZEAm01+5k§U3(Z)<01+5(k+1)}

S O _|_ O Z Z 27(2+€)m65k22mR2272k < 0.

m>1k>1

Next, for every 0 < N < P‘Ef)-‘ — 1 we have

/|z|2Ne—U(z) dv(z) < C’/ 122V (1 + |Z|)—#(D(0,R))/(2W)6Us(2) dV (z)
C C

<C [0+ J2) e v (z) < oo

Here we use the fact that py € M€, hence eV is locally integrable.

Finally, we have

dim ]—'3, > Pﬂif)-‘ .

O

Summing up Lemmata [6.2.1} [6.2.2} 6.2.3| and [6.2.4 we obtain the following result,

extending and slightly correcting|[Theorem 6.1.1}
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Theorem 6.2.5. Let 9 be a subbarmonic function on the complex plane. Then the Fock

space F is finite-dimensional if and only if

(1y)*(C) < 00. (6.4)

If Y is finite on C, then we can write the condition (6.4) as uy(C) < oo. Finally, if

(14)5(C) < o0, then

sim 73 = [0

6.3 Thecaseof C",n > 1

Theorem 6.3.1. Let ¢ : C* — R be a C? smooth function. Given M > 0, consider
Yu(z) = M log(|z|?). Suppose that for every M > 0, the function 1 — Y is plurisubbar-

monic outside a compact subset of C*. Then dim F = oco.

Proof. We use the fundamental result of Bedford-Taylor [2] on the solutions of the
Dirichlet problem for the complex Monge-Ampeére equation. Given M > 0, choose
7y > 0 such that 9 — 4 is plurisubharmonic on C*\ B, (0, 7). Solving the Dirichlet
problem for the complex Monge-Ampere equation on B,(0, 7y) with the boundary
conditions (9 — Yar)|eB,(0,r1)> We obtain a function . Set

~ (¥ — ¥u)(2), z € C*\ B,(0,7n),
Yu(z) =

up(2), z € B,(0, 7).

Then 9y is a continuous plurisubharmonic function on C” (see(Theorem 3.7.7).

Now, by [Theorem 3.7.5| there exists an entire function f # 0 such that

/(C F @)1+ |22) #me @) 4V (2) < co.

3n
Hence, for every 0 < k < M — - e have
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L@ e * @ av(z) < c + @) 1zfe e av ()

Cn\Bn(O,'I‘M
—C+ ‘f(z)’2’z’2ke*¢M(z)e*("/’(z)*¢M(z)) dV (z)
C™\Br(0,721)
<C+ 2)[?|2| *re M) 4V (2) < oo.
S I (2
Since M is arbitrary, we have dim F3 = oo. O

Remark 6.3.2. [Theorem 6.1.2]is an immediate corollary of [Theorem 6.3.1]

Indeed, an easy computation shows that if f(2) = ¢(|z|?), p € C? ((O, +oo)> then

32f(z) ] 2\ - / 2
o A CRLES oL

where 0 is the Kronecker delta symbol. This implies that

i00f(z) = ¢'(1z]°)I + ¢"(|2")2"2,

where z* = |...|, 2"z = [zjzk} . Note also that the spectrum of the matrix

188f(2) is
(1081 (2)) = {¢'(1z1%), ¢'(|2]%) + |2*¢"(|2]*)} (6.5)
The first eigenvalue has multiplicity n — 1 and the second one has multiplicity 1.

Furthermore,

AE A= M M
Ly(z) = i009(2) = 00(Y —a)(2) + gl — [’
M. M,
= Ly—y,(2) + 2R TRt

i
Let z € C*andlet V = |, | be a normalized eigenvector corresponding to an eigen-

Va
value v of Ly_y,,(2). By the hypothesis of [Theorem 6.1.2} for |z| > 7 we have
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Ao|2|? > M, where Aq is the smallest eigenvalue of Ly(z). Thus,

M M
V= <L¢,¢M(Z)V, V> = <L¢(Z)V, V> — W + W<Z*ZV’ V>
M M

> Ay — —— VIZ>o.
0T o T REEYl 2

Therefore, 1 — 11 is plurisubharmonic on C*\ B, (0, ), and we are in the conditions

of [Theorem 6.3.1l O

Now we give an easy example when [Theorem 6.3.1 applies while [Theorem 6.1.2]

does not work.

Example 6.3.3. Set

3
2

¥(2) = o(|2]°) = (log(1 + |2[))*,  zeC™
Then ¢(t) = (log(1+1))*,¢ > 0.
Evidently, dim F} = oo. We will show that the condition fails for 9 while the

conditions of [Theorem 6.3.1| are satisfied.
We have

NI

o) = > (log(1+1))’,

and .

3 (log(l + t)) ? 3

2 (14t 4(1+t)2(10g(1+t)>%-
By (6.5)), the eigenvalues of the matrix Ly (2) are

3(10g(1 + |z|2))%

o(t) = -

ME) = "
and
()~ LB E )" s ;
2(1 n \z]2)2 4(1 + |z|2)2<10g(1 + |z|2))§

3 2log(1+ |z?) + |22
_3
(14 1222 (1og(1 + |2P2))?
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For |z| > 2, the smallest eigenvalue of matrix Ly(2) is A2(z) and

lim |z[*A2(2) = 0.

|z] =00
Hence the condition (6.2]) does not hold.

On the other hand, for M > 0, the eigenvalues of matrix Ly_,,(2) are

o (2) = M(z) - f‘f

and

as(2) = A2(2).

Since lim [z|*A1(2) = oo and ax(2) > 0, z # 0, the conditions of [Theorem 6.3.1|are

|z]—o0

satisfied. 0

In the rest of this chapter we show that in different situations the sufficient condition

of [Theorem 6.3.1]is not necessary for dim F; = oo.

Example 6.3.4. Set
Y(z,w) = |2 + 21og(1 + |wf*), w,z€C.

It is clear that dim F2 = oo. Let us verify that for M > 2 the function ¥ — 9, is not
plurisubharmonic at the points (1, w), w € C.

We start with some easy computations:

0 82 foa
Wz ¥y TV
0z 020z 0zo0w
o % oy _ Py 2
ow 1+ |wlr’ dwdz ' Owow (1+ |wf?)?
Now, given M > 0 we have
. (2, ) 1 0 M 1z]? Zw M
v—yu (2, W) = T LR e TR we
z2 + |w - z|?2 + |w
0 it PR | | P
1 — M|‘w‘2 Mzw
(Iz[2+|w[?)? (|27 +w[?)?
Mzw 2 _ M‘z‘z
(212 +wl?)? (I+w?)?  (2P4[w[?)?
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and, hence,

det (L¢_¢M(z,w))
B 2 M|z|? 2M |wl?
PR (2P wP)? (L [wP)R(2 + [w]?)?
2|22 + w2 — M (|22(1 + [wf)? + 2|w]?)

(4 [wlP)?(J2? + w[?)?

for M > 2,z = 1 and arbitrary w. Therefore, the conditions of [Theorem 6.3.1|do not

hold. O

In the following examples we evaluate the dimension of F; and the applicability of

our criterion in[Theorem 6.3.1] for some concrete weight functions ¢ and for 9 in some

special classes.

Example 6.3.5. Let £ > 3. Set ¥(2) = |2F + 25|, 2 = (21, 22) € C% Given M > 0,

we have

k2|z1|2(k*1) |z‘4|z2|2 k2 (2122)k 14 M |Z‘42122
L¢*¢M(z) = ?

k2(z—1z2)k—1+wzlz—2 k2’z2|2(k—1) ‘z|4|z1’2

and, hence,

det (Ly 4,,(2))
M M
— <k2‘21’2(k1) | |4‘22’2> <k2| ’ (k—1) | |4| 1,2)

M M
— <k2(2122) + ||42122> <k2(2122) + ||425122>

k2 M
= ——7 (| + |2/ + (212)* + (7122)")

|2*

KM )
= T lz2F+ 257 <0

when z§ + 25 # 0. Thus, for M > 0, the function ¥ — 9y, is not plurisubharmonic

outside a compact subset of C2.
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Next we are going to verify that dim 72 = oco.

We have
X = [ e =Py (2, 2,) < 4/ / rie~ G 4o (8, &) dr
Cc2 0 So
X/S ICE + G5 ¥ *do (G, ).
Given € > 0, we consider the set
To={(,¢) €S ICF+ ¢l <&}

Given ((1,(2) € Sy such that [C]; > [Cla, set G = /3 + 7€ and ( =4/ — 7 - €%,
r > 0. If ((1,¢) € T, then |¢1]* — (2> < Ce for some constant C = C(k) > 0.

Hence, 7 < €. Next, since |(f +¢¥| < €, we obtain |6 — ¢| < Ce. Asa result, we obtain

that
o(T.) < &
Set
Us={(G.G) €S2:27° <|¢F + 5| <277}
Then

X = Z%/U ¢+ G do(Gl é) S ;2*23 gts/k — ;2725(17(2/@) < o

since k > 3. Thus 1 € .7-3,.

In the same way, for every a > 0 we get
/ e~ gV (2) < 0.
2
Consider the entire function f(z) = ef:1122)° 0 < 8 < <. Since
B |12 2o ls 42317 gy (2) = /@2 2P Re((z1+25)) oIzt +251° g7 (2)
< 5 e~ (1=20):1+551 gy (2) < oo,

we conclude that dim .7-"1/2, = 00. O
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Remark 6.3.6. Interestingly, 7 = 0if k& = 2. Indeed, let ¥(z1,2,) = |27 + 23|,
f e F, flzr,22) = (21 + 23)°9(21, 22) for some s > 0, where g(z1,2;) is not a

multiple of 22 + z2. By the mean value property, for every z; € C\ D(0, 10) we have

’g(zlyizl)‘z

S@+lal? [

19(21, 22)[Pe™ 45 du(z,)
D(iz1,2/(14]z1]))\D(¢21,1/(1+]|21]))

< (14 |z)? 21, 20)[2e FETER dy(2,).
S A lal) Dliz1,2/(14+ |z )\ D(iz1,1 /(14 ]z1])) f (@, 22)l (z2)

Hence,

/Clg(zl,izlﬂz(l +z1)) 7 dv(z1) SIS,

and by a Liouville type theorem, g(z,72) = 0. Analogously, g(z,—%z) = 0. Set
h(z,w) = g(z — tw, 1z — w). Then A is an entire function and h(0, w) = h(w, 0) = 0.
Hence, h(z,w) = zwh,(z,w) for another entire function h; and g(z1, 22) = (27 +

22)91(21, 22) for some entire function g;. This contradiction shows that }"j = 0.
Extending the previous example to C* with n > 3 requires a bit more work.
Example 6.3.7. Letn > 3,k > n + 1. Set
Y(2) = |28+ + 257 z=(21,...,2,) € C".

Let us verify that for M > 0, the function 9 — 9 is not plurisubharmonic outside

a compact subset of C".

Set o
Z
M |z
A(Z) jum— W . zl z2 PP zn .
Zn
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We have

’zlyz(k—l) (zlz—2)k—1 (zlﬁ)k—l

)l 2PN L (z)R
S (C (%)

— k2 k-1 k-1 k-1
=k . Z1 2 cee Zn .

Then

Ly g(2) = Ly(2) + A(z) f‘fr

The spectra of the matrices Ly(2) and A(z) are

Try(z) = {k2(|z1|2(k:—1) + |Z2|2(k:—1) 4ot |Zn|2(k:—1))’0}’

UA(Z) — W; .

k—1 —
21 Z1
-1 %
: : 2
Let V' be a unit vector in C™ orthogonal to and to . Then
k—1 >
zy Zn

(L (2)V, V) = (Ly(2)V + A(2)V — ’z]‘/‘gv, V) = —‘z]‘/"g <.

Thus, for M > 0, the function ¥ — 93 is plurisubharmonic at no points of C* \ {0} .

Finally, let us verify that dim F2 = co. Set
Xom [ e He ay(s)
C’VL
_ /oo / Tzn—le—r2k|d€+...—|—ﬁﬁ\2do_(cl, A ,Cn) dr
0 n

= /; |Cf R C:|_2n/kd0—(gl) te )Cn)
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Given € > 0, we consider the set

To={(¢,-+ 1 Gn) €Snt[¢E+ - +¢E <}

Set

P(z) =)z, z={(21,...,2,) € C".
1=1

Then the function f = log|P]| is plurisubharmonic. We calculate the Lelong number

of fata € C",

. Sup|z\§‘r f(a+Z)
vi(a) = }E}% logr

€ [0, o0].

If f(a) # O, then v¢(a) = 0. Otherwise, let a = (a1,...,a,) # 0and f(a) = 0.

Without loss of generality, we can assume a; # 0. If 0 < r < ‘a—zll, then

f(a + (r,0,..., O)) — log|(ay + ) — a¥| = log|ka®'r + O(r?)|, r —0,

and hence, v¢(a) = 1. By [Theorem 3.8.4, applied to 2 = 2B,, K = B, \ iB,,

1 < a < 2, we obtain

v({z € K:|P(z) < e’“}) = v({z €EK:f(z)< —u})

By homogeneity of P,

o(T,) < Ce*, © >0,

for some constant C > 0.
Arguing as in Example|6.3.5, we obtain first that 1 € 7 and then that dim F} = oo

fork >mn + 1. O

At the end of this chapter, we consider two special classes of weight functions %:

radial weight functions and the functions of the form ¥(z1,...,2.) = X7_; ¥;(2;).
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Suppose that ¥(z) = ¢(]z|?) is a radial plurisubharmonic function of class C2. By

the computations in[Remark 6.3.2]

8%
52,05 )

= ¢"(|21")zjzi + ¢'(12]*)055- (6.6)

The action of the Monge-Ampere operator on 9 is

524
62_7'3@

= 4nl(¢'(21")" "¢ (12I*) + |2I*¢"(|2]*)) aV.

(dd°g)™ = 4n! det( ) av

Proposition 6.3.8. Suppose that Y(z) = ¢(|z|?) is a radial plurisubbarmonic function of
class C2. Then dim F2 = oo if and only if

/ (ddy)" = oo. (6.7)

Proof. Since the spectrum of the matrix consists of the eigenvalues ¢'(|z]?) and
o'(1z|%) + |z2¢"(|z|?), the first eigenvalue has multiplicity n — 1 and the second one

has multiplicity 1, we have ¢’ > 0, ('f‘(p’ ('r))/ > 0 on R,.. Furthermore, we have

— C’/ (7’<P (r)"

Thus, (6.7) is equivalent to the relation lim, o, 7¢'() = 00. Now, if r¢’(r) is bounded
on R, then ¥(z) = O(log |z|), |2| — 00, and a version of the Liouville theorem shows
that dim 77 < co. On the other hand, if lim,_,, 7¢'(r) = 00, then log |z| = 0(1/J(z)),

2| — 00, and the polynomials belong to 7. Hence, dim F = oo. O

For general C? plurisubharmonic functions, the radial case suggests the following
question. Is it true that dim 7 = oo if and only if (6.7) holds? Our last example gives

a negative answer to this question.
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Example 6.3.9. Given subharmonic functions ; on the complex plane, 1 < 5 < n, set
j=1

Claim: dim 3 < oo if and only if either max; dim 7 < co or min; dim 73 = 0.

In one direction, by the Fubini theorem, if dim 7 < oo, then max; dim ]-"jj < 00
or min; dim 3 = 0. In the opposite direction, it is clear that if min; dim 73 = 0,
then 77 = 0. It remains to verify that if max; dim 73 < oo, then dim 7 < oo.

First, suppose that n = 2, dim 7 < oo, N = dim F}, < oo. Fix a basis (gx),
1 < k < N, in the space ]-1/2;2 and choose a family of points (w,,), 1 < m < N, such
that det @ # 0, where Q = (gk (wm))

Next, choose f € F2. By the mean value property,
v DY property.

N
k,m:l.

1

F(z,w)]? < 7T/D(z,1) |£(¢,w)|?dvV(¢), z,w € C.

Therefore, for every z € C, the function f(z, -) belongs to F3,, and, hence, we have
N
f(z,2) = > ar(z)gx-
k=1
In the same way, the functions f(-,w;), 1 < 7 < N, belong to ]—‘3,1.
Next,
F(z,w;) ai(z)
Qil . e
F(z,wy) an(z)
Hence, every a; belongs to 7 . Since dim F7 < oo, we conclude that the space F
has finite dimension. For n > 2 we can just use an inductive argument. This completes

the proof of Claim.
Let us return to general 9 satisfying (6.8). Then

/(Cn(ddcw)” = C/@n i[lAz/zj(zj) dv(z) = Ci[l/CAzpj(zj) dV(z;).
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Now, if n = 2, ¥,(2) = |2|?, A(2) = max(1 — |z|,0), then

[ (ddp) = o,

but 77 = 0. Thus, [Proposition 6.3.8/ does not extend to general C*-smooth plurisub-

harmonic functions.
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Résumé: Nous étudions les mesures de Carleson et les opérateurs de Toeplitz sur
la classe des espaces de Bergman dite de petite taille, introduits récemment par Seip.
On obtient une caractérisation des mesures de Carleson qui étend les résultats de Seip a
partir du disque unité de C a la boule unité B,, de C*. Nous utilisons cette caractérisation
pour donner les conditions nécessaires et suflisantes a la continuité et a la compacité des
opérateurs de Toeplitz. Enfin, nous étudions ’appartenance des opérateurs Toeplitz aux
classes de Schatten d’ordre p pour 1 < p < o0.

De plus, nous considérons également la projection de type Bergman agissant sur L
a valeurs dans I’espace de Bloch B de la boule B,,. Une caractérisation du poids radial
pour que la projection soit continue est obtenue.

Enfin, nous examinons les espaces de Fock pondérés en une et plusieurs variables
complexes. Nous évaluons la dimension de ces espaces en étendant et en complétant des

résultats antérieurs obtenus par Rozenblum-Shirokov et Shigekawa.

Abstract: We study the Carleson measures and the Toeplitz operators on the class
of the so-called small weighted Bergman spaces, introduced recently by Seip. A charac-
terization of Carleson measures is obtained which extends Seip’s results from the unit
disk of C to the unit ball B,, of C*. We use this characterization to give necessary and suf-
ficient conditions for the boundedness and compactness of Toeplitz operators. Finally,
we study the Schatten p classes membership of Toeplitz operators for 1 < p < oo.

Furthermore, we also consider the Bergman type projection acting on L* to the
Bloch space B on B,. A characterization of radial weight so that the projection is
bounded is obtained.

Finally, we investigate the weighted Fock spaces in one and several complex vari-
ables. We evaluate the dimension of these spaces in terms of the weight function ex-

tending and completing earlier results by Rozenblum-Shirokov and Shigekawa.
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