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Résumé
La nature de la gravite quantique est une question ouverte importante en phy-

sique fondamentale dont la résolution nous permettrait de comprendre la struc-
ture la plus profonde de l’espace-temps et de la matière.

Cependant, jusqu’a’ présent, il n’y a pas de solution complète a’ la question
de la gravité quantique, malgré de nombreux efforts et tentatives. La gravitation
quantique en boucle est une approche particulière de la gravitation quantique
indépendante du fond, inspirée par une formulation de la relativité générale en
tant que théorie dynamique des connexions. La théorie contient deux branches,
l’approche canonique et l’approche de mousses de spin. La manière canonique
est basée sur la formulation hamiltonienne de l’action de premier ordre de la
relativité générale suivant une quantification à la Dirac sur des algèbres de flux,
tandis que les modelés de mousses de spin se présentent comme une formulation
covariante de la gravite quantique, définie comme un modelé de somme d’état
sur graphiques.

Cette thèse concerne principalement, sans toutefois s’y limiter, le problème
de la gravite quantique dans le contexte de la gravite quantique en boucle. Les
deux aspects fondamentaux et les conséquences physiques de la gravite à boucles
sont étudies dans ce travail. La description de la gravite en termes de groupe de
jauge non compacte su(1, 1) est étudiée a’ la fois de manière canonique et sous
forme de mousse de spin. Nous étudions l’invariance de Lorentz de la gravite
quantique de la boucle, a’ la fois dans l’approche canonique et dans le modelé de
mousse de spin. Nous présentons une description de jauge su(1, 1) de la théorie
de la gravite en quatre dimensions, au lieu de la description habituelle su(2).
Nous étudions la quantification de boucle au niveau cinématique, ou’ nous avons
constate que les aires de type espace ont des spectres discrets, tandis que les aires
de type temps ont des spectres continus. Pour les aires de type espace, il n’y a
pas d’anomalie entre la description su(1, 1) et la description su(2). Dans le même
temps, nous effectuons l’analyse semi-classique (asymptotique pour grand j ) du
modelé de mousse de spin de Conrady-Hnybida dans une situation très générale
dans laquelle des tétraèdres de type temps avec des triangles de type temps sont
pris en compte. Nous identifions la contribution dominante avec des géométries
simplicales discrètes et nous retrouvons l’action de gravite de Regge.

Dans une seconde partie de cette thèse, je me suis penche sur le problème de
la dynamique effective de la gravitation à boucle a’ haute énergie en cosmologie
et dans le contexte de la physique de trous noirs. Nous étudions le lien entre
la gravite mimétique étendue, une classe de théories scalaires-tenseurs, et la dy-
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namique effective de la cosmologie quantique à boucles ainsi que les modèles
de trous noirs polymères sphériques inspirés de la gravite quantique à boucles.
La comparaison entre les formulations mimétiques et hamiltoniennes de poly-
mère nous fournit un guide pour comprendre l’absence de covariance dans les
modèles de polymères non homogènes. En attendant, nous résolvons explicite-
ment les équations d’Einstein modifiées dans le cadre de modèles de polymères
effectifs a’ symétrie sphérique. La métrique effective pour une géométrie de trou
noir intérieure statique décrivant la région piégée est donnée. Les résultats obte-
nus dans cette partie ont des implications intéressantes pour la cosmologie sans
singularité et les trous noirs qui méritent d’être approfondies.

Mots-clés : gravité quantique, gravité quantique en boucle, modèles de mousse
de spin, limite semi-classique, dynamique effective, trous noirs, cosmologie quan-
tique en boucle, gravité mimétique, théories scalaires-tenseurs
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Abstract
The nature of quantum gravity is an important open question in fundamental

physics whose resolution would allow us to understand the deepest structure of
space-time and matter. However, up to now there is no complete solution to
the question of quantum gravity, despite many efforts and attempts. Loop quan-
tum gravity is a tentative background independent approach to quantum gravity
inspired by a formulation of general relativity as a dynamical theory of connec-
tions. The theory contains two approaches, the canonical approach and the spin
foam approach. The canonical way is based on the Hamiltonian formulation of
the first order action of pure gravity following a dirac quantization of holonomy-
flux algebras, whereas the spin foam model arises as a covariant formulation of
quantum gravity, which is defined as a state sum model over certain graphs.

This thesis mostly involves, but not restricts to, the problem of quantum grav-
ity in the context of loop quantum gravity. Both fundamental aspects and the
physical consequences of loop gravity are investigated in this work. The descrip-
tion of gravity in terms of a non-compact gauge group su(1, 1) is studied in both
the canonically as well as in the spin foam approach. We study the Lorentzian
invariance of loop quantum gravity, in both the canonical approach and the spin
foam model approach. We introduce an su(1, 1) gauge description of gravity the-
ory in four dimensions, instead of the usual su(2) description. We investigate the
loop quantization at the kinematical level, where we find that space-like areas
have discrete spectra, whereas time-like areas have continuous spectra. And we
show that there is no anomaly between the su(1, 1) description and the su(2)
description of space-like areas. Meanwhile, we perform the semi-classical (large-
j asymptotic) analysis of the spin foam model (Conrady-Hnybida extension) in
the most general situation, in which timelike tetrahedra with timelike triangles
are taken into account. We identify the dominant contribution to the discrete
simplicial geometries and recover the Regge action of gravity.

On a second part of this thesis we focus on the problem of the high energy
effective dynamics of loop gravity in cosmology and black holes through simpli-
fied models. We investigate the link between the family of extended Mimetic
gravity, a class of scalar-tensor theories, and the effective dynamics of loop quan-
tum cosmology as well as the spherical polymer black hole models inspired from
loop quantum gravity. This comparison provides us with a guide to understand
the absence of covariance in inhomogeneous polymer models. Futhermore, we
solve the modified Einstein’s equations explicitly in the framework of effective
spherically symmetric polymer models. The effective metric for a static interior
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Black Hole geometry describing the trapped region is given. The results obtained
in this part lead to some interesting implications for singularity free cosmology
and black holes which are worth pursuing further.

Keywords: quantum gravity, loop quantum gravity, spin foam models, semi-
classical limit, effective dynamics, black holes, loop quantum cosmology, mimetic
gravity, scalar-tensor theories
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Introduction
The problem of quantum gravity

Nowadays physics is mainly based on two different fundamental theories: Gen-
eral relativity (GR), and quantum physics (QP). Up to now, both theories are
examined in their own way, by various experiments. On one hand, the Standard
Model [1], which is a quantum field theory based on the general framework of
quantum physics, successfully describes all particles and interactions we have so
far directly observed (except gravity) [2]. On the other hand, general relativ-
ity, representing the gravitational laws as curved spacetime geometry, fulfills our
observations on the large scale structure, for example, the precession of the per-
ihelion of Mercury, the gravitational waves, and the gravitational lensing effect,
etc. For a review of tests of GR we refer to [3].

Both theories have their own schemes: the quantum theories, related to the
Planck constant ~, describe the quantum behavior at very small scales, where
the ~ → 0 limit going to it’s classical limit. On the contrary, GR describes the
large scale spacetime dynamics, specified by the gravitational constant G, where
G→ 0 is the asymptotic flat limit. The regime, where both gravity and quantum
effects become strong, is called the "quantum gravity" scale. The scale related to
such regime is usually referred to the Planck length

lp =
√
~G (0.1)

which contains both coupling constant ~ and G. Note that here we take the light
speed c = 1. The energy scale corresponding to such regime, is the Planck energy

Ep =
√

~
G
∼ 1019Gev (0.2)

A natural question one may ask is that whether these two theories are com-
patible with each other on such "quantum gravity" scale. Actually such idea was
born just after the built of GR and QP when we want to unify these two theo-
ries in an elegant way. Recently, there are growing number of experimental and
theoretical reasons for a quantum gravity theory. Even through the planck en-
ergy is far beyond the energy scale we can produce, quantum gravity effect can
appear at cosmological level, where we are collecting more and more observa-
tional data. For example, the very first moment of the Universe is expected to
be understood with such a theory [4]. The dark energy [5] and inflation of the
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universe [6] are also closely related issues. Moreover, general relativity suffers
from the presence of a singularity in which the theory ceases to be predictive, for
example, inside the black hole, implying that Einstein’s gravity is not a complete
theory [7]. It is then expected a quantum gravity theory will allow us to resolve
these singularities and explain observations.

However, up to date there is no complete answer to the question of quantum
gravity, despite many efforts and attempts. Conceptually, GR describes the dy-
namics of the spacetime geometry itself, while quantum field theory assumes a
fixed non-dynamical background theory, ignoring the back reaction between ge-
ometry and energy. For a consistent theory, the spacetime geometry should also
inherit a quantum behavior. This implies a new understanding of the geometry
and field theory. A common argument indicated by many theoretical hints is
that, the continuous classical geometry is not fundamental, but actually emerges
from quantum fundamental entitles obeying quantum dynamics, in an appropri-
ate continuum limit, e.g. [8]. Thus, along this line, the main research scheme of
quantum gravity can be summarized as the following

— Derive the fundamental theory: Identify the fundamental entitles and sym-
metries and define their quantum dynamics.

— Find the continuum limit (Renormalization of the theory). Describe the
emergence of continuous geometry and fields from fundamental entitles.

— Extract possible predictions from the theory and check their consistency
with known observations.

However, each step remains tough and open problems with a lot of technical dif-
ficulties due to the non-linear and the non Lie algebraic nature of the constraint
system of GR, which is far different from QP.

There has been tremendous progress with various methods trying to attempt
the quantization of gravity. They can be divided into two strategies: perturbative
approach or non-perturbative approach. The perturbative approach assumes a
background metric which is the classical solution of Einstein equation, and quan-
tizes, by the standard methods, the perturbation modes which is the spin two
particle called the graviton, as in e.g. asymptotic safety [9] and string theory.
However, such approach suffers from the renomalizablity problems which re-
quires a modification to the original gravity theory, e.g. to introduce extra sym-
metries such as supersymmetry [10]. The non-perturbative approach, instead,
tries to give a background independent theory by keeping the general covari-
ance of general relativity and quantize the whole spacetime. Examples include
the causal dynamical triangulation [11, 12], quantum regge calculus [13, 14],
causal sets [15], group field theory [16] and loop quantum gravity. However, it
is difficult to choose an appropriate continuum limit in this approach such that
classical GR emerges as its effective dynamics. For a general review of all these
approaches, we refer to [17–19].

Over the last thirty years, two theories have distinguished themselves in this
quest: string theory [20–23] and loop quantum gravity (LQG) [24–28]. They
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have each, in their own way, allowed us to describe the intimate nature of space-
time and to resolve the singularities. And they already lead to valuable results
which change our usual notion of the spacetime. However, they are very differ-
ent in how to approach the issue. For string theory, gravity is an effective theory
that needs to be modified in order to bring it into the paradigm of quantum
field theory. Conversely, for LQG, gravity is a fundamental theory and it is nec-
essary to modify the quantification rules in order to adapt to GR. Both of them
are based on solid and consistent mathematics. Thus, without experiments or
observations, it is very difficult to refute one or the other of the approaches. It is
hoped, however, to find methods to verify or refute them.

Loop quantum gravity and spin foam models
The thesis topic revolves, but not restricts to, the problem of quantum gravity

in the context of the LQG. LQG is a background independent approach to the
quantum gravity problem inspired by GR as a dynamical theory of connections.
Its canonical approach is based on the Hamiltonian formulation of the first order
gravity action b [24–26], where the quantization is performed on holonomy-flux
algebras. A well-defined and consistent way to represent the constraints as oper-
ators on kinematical Hilbert space Hkin was developed, which leads to quantum
constraint equations (quantum Einstein equation) and finally the physical Hilbert
space Hphy.

The spin foam model (SFM) arises as a covariant approach to quantum gravity,
for a review, see [27, 29]. It is defined as a state sum model over some certain
graphs, where a spin foam can be regarded as a Feynmann diagram with 5-valent
vertices, corresponding to the quantum 4-simplices, as building blocks of the
discrete quantum spacetime. SFM is proved to be closely related to topological
quantum field theories (TQFT) and tensor networks (TN) .

Inspired by the LQG, similar loop quantization methods has been employed
in symmetry reduced models, such as loop quantum cosmology (LQC) [30–33]
and spherical polymer black hole models [34–37]. These symmetry reduced the-
ories serve as a beautiful laboratory for testing the quantization procedure used
in full theory. Meanwhile, they build the link to observations, for example, they
bring in very interesting results with bouncing cosmology and singularity resolu-
tion of black holes. Moreover, there are other possible observational effects and
predictions of the theory. Example include the Bekenstein-Hawking black hole
entropy [38–41], the possible existence of Planck star [42–44], and quantum su-
perpositions of spacetime as well as discrete time which may be detectable at a
laboratory [45, 46]. However, generally speaking, the renormalization and con-
tinuum limit of the theory are still open questions, both for canonical approach
and spin foam models, despite many recent investigations, e.g. [8, 47–53].

b. The theory can also be build from an extension of the ADM phase space which derived
form the second order action of gravity
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Summary of the thesis
The thesis is based on different works by me and my collaborators [54–59]. It

is divided into two parts covering the canonical approach, the spinfoam models
and the semi-classical symmetry reduced models for cosmology and black holes.
Each part will begin with a short review chapter, followed by the related works.
Here we give a brief summary of the contents in each part.

In part I, we concentrate on the covariant SL(2,C) description of the loop quan-
tum gravity and its semi-classical analysis. This part enrolls both the canonical
approach and the spin foam model approach. There are two chapters after a very
brief review to the canonical loop quantum gravity and the spin foam models. As
a summary,

— In chapter 2 we present an su(1, 1) gauge description of gravity theory in
four dimensions. A partial gauge-fixing is made to the Hamiltonian formu-
lation of the first order action of pure gravity [60] which reduces sl(2,C)
to its sub-algebra su(1, 1). This case corresponds to a splitting of the space-
time M = Σ × R where Σ inherits an arbitrary Lorentzian metric. As a
result, a parametrization of the phase space in terms of an su(1, 1) commu-
tative connection and its associated conjugate electric field is found. A loop
quantization is then discussed where the kinematical Hilbert space is on a
given fixed graph Γ whose edges are colored with unitary representations
of su(1, 1). It turns out that space-like areas have discrete spectra, whereas
time-like areas have continuous spectra.

— In chapter 3, the semi-classical behavior of 4-dimensional spin foam ampli-
tude is investigated for the extended spin foam model (Conrady-Hnybida
extension) [61, 62] on a simplicial complex. The most general situation is
under consideration, in which timelike tetrahedra with timelike triangles
are taken into account. It turns out that the large j asymptotic behavior
of such SFM is determined by critical configurations of the amplitude. The
critical configurations that correspond to the Lorentzian simplicial geome-
tries with timelike tetrahedra and triangles are identified. Their contribu-
tions to the amplitude are phases asymptotically, whose exponents equal
to Regge action of gravity. It turns out that, if each 4-simplex contains
both timelike and spacelike tetrahedra, the critical configurations will corre-
spond to non-degenerate Lorentzian Regge geometries only, which excluds
non-Regge like geometries appearing in EPRL/FK models [63, 64].

In Part II we concentrate on the effective dynamics of the symmetry reduced
models in LQG. It contains three chapters after a brief review to scalar tensor
theories and symmetry reduced models (loop quantum cosmology and spherical
symmetric polymer models) inspired from LQG.

— In chapter 5, we reproduce the loop quantum cosmology (LQC) [65] ef-
fective dynamics with a recently introduced higher-derivative scalar-tensor
theory (Mimetic gravity introduced by Chamseddine and Mukhanov). The
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theory leads to a modified Friedmann equation allowing for bouncing so-
lutions [66]. As we note in the present work, this Friedmann equation
turns out to reproduce exactly the loop quantum cosmology effective dy-
namics for a flat isotropic and homogeneous space-time. Here this result is
generalized to a class of scalar-tensor theories, belonging to the family of
mimetic gravity, which all reproduce the loop quantum cosmology (LQC)
[65] effective dynamics for flat, closed and open isotropic and homoge-
neous space-times

— The non-singular black hole solutions in (extended) mimetic gravity with a
limiting curvature are also revisited from a Hamiltonian point of view. The
result is given in chapter 6. It turns out that the black hole has no singular-
ity, due to the limiting curvature mechanism. Again a class of scalar-tensor
theories, belonging to the family of extended mimetic gravity whose dy-
namics reproduces the general shape of the effective corrections of spher-
ically symmetric polymer models in the context of LQG [67] is exhibited,
but in an undeformed covariant manner. In that respect, extended mimetic
gravity can be viewed as an effective covariant theory which naturally im-
plements a covariant notion of point wise holonomy-like corrections similar
in spirit to the ones used in polymer models. The difference between the
mimetic and polymer Hamiltonian formulations provides us with a guide to
understand the absence of covariance in inhomogeneous polymer models.

— In addition, in chapter 7 an effective metric is found for a static interior
BH geometry describing the trapped region, in the framework of effec-
tive spherically symmetric polymer models (or equivalently, the (extended)
mimetic gravity with a limiting curvature) with arbitrary anomaly free
point-wise holonomy quantum correction function. For the simple case
when the holonomy correction is the usual sine function used in the poly-
mer literature, the interior metric describes a regular trapped region and
presents strong similarities with the Reissner-Nordström metric, with a new
inner horizon generated by quantum effects.
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Part I.

Towards Lorentzian Invariance in
Loop Quantum Gravity
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1. Introduction and Overview

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Brief review on canoncial loop quantum gravity . . . . . . . . . . . 23

1.2.1 Hamiltonian formulism of first order Lorentz-covariant gravity 23
1.2.1.1 Action and constraints analysis . . . . . . . . . . . 23
1.2.1.2 Parametrization of the phase space . . . . . . . . . 25
1.2.1.3 First class constraints . . . . . . . . . . . . . . . . 26
1.2.1.4 The time gauge and Ashtekar-Barbero variables . . 27

1.2.2 Loop quantization . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2.1 Quantum Kinematics . . . . . . . . . . . . . . . . . 29
1.2.2.2 Spin network states . . . . . . . . . . . . . . . . . . 31
1.2.2.3 Geometric operators . . . . . . . . . . . . . . . . . 32
1.2.2.4 Gaussian constraint . . . . . . . . . . . . . . . . . 33
1.2.2.5 Diffeomorphsim Constraint . . . . . . . . . . . . . 34
1.2.2.6 Scalar constraint . . . . . . . . . . . . . . . . . . . 35

1.3 Brief review on spin foam models . . . . . . . . . . . . . . . . . . . 37
1.3.1 Spin foam quantization . . . . . . . . . . . . . . . . . . . . . 38
1.3.2 Simplicity constraint and EPRL/FK-CH Models . . . . . . . 41
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1.1. Introduction
Loop quantum gravity was founded on the observation by Ashtekar [68] that

working only with the self-dual part (or equivalently the anti-self-dual part) of
the Hilbert-Palatini action leads to a simplified parametrization of the phase
space of pure gravity. Indeed, the canonical variables are very similar to those
of the Yang-Mills gauge theory, there is no second class constraints, and the first
class constraints associated to the local symmetries are polynomial functionals
of the the canonical variables. However, the drawback of the Ashtekar’s original
approach is that the phase space becomes complex which forces one to impose
reality conditions in order to recover the phase space of real general relativity.
Of course the imposition of the reality conditions on the classical level, rather
than the imposition on the quantum level, looses the beauty of the Ashtekar
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formulation, and recovers the standard Palatini formulation of general relativ-
ity, which we do not know how to quantize. Unfortunatelly, up to now no one
knows how to go the other way around, by implementing the reality conditions
after quantization of the Ashtekar theory. This difficulty motivated the work of
Barbero [69] and, later on, Immirzi [70], who introduced a family of canoni-
cal transformations, parametrized by the so-called Barbero-Immirzi parameter γ,
and leading to a canonical theory in terms of a real su(2) connection kown as the
Ashtekar-Barbero connection. The action that leads to this canonical formulation
was finally found by Holst [71].

In fact, the Holst action is a first order formulation of gravity with a full sl(2,C)
internal symmetry and an explicit dependency on the parameter γ which appears
as a coupling constant for a topological term. One uses a partial gauge fixing in
this action in order to derive a canonical theory in terms of the Ashtekar-Barbero.
The gauge choice is referring as the time gauge, and, by doing so, the Lorentz
gauge algebra in the internal space is reduced to its rotational su(2) subalgebra.
Finally, Loop Quantum Gravity is a canonical quantization of this gauge fixed
first order formulation of gravity which lead to a beautiful construction of the
space of quantum geometry states on the kinematical level. At this stage, one
may naturally ask the question whether the construction of Loop Quantum Grav-
ity deeply relies on the time gauge or not. A more concrete question would be
whether the physical predictions of Loop Quantum Gravity will be changed or
not when one makes another partial gauge fixing or no gauge fixing at all in the
Holst action prior to quantization. Indeed, the discreteness of the quantum ge-
ometry at the Planck scale predicted in Loop Quantum Gravity can be interpreted
as a direct consequence of the compactness (via Harmonic analysis) of the resid-
ual symmetry group SU(2) in the time gauge. These important problems have
been studied quite a lot the last twenty years, but so far it is fair to say that no
definitive conclusion have closed the debates.

Meanwhile, spin foam model arises as a covariant formulation of Loop Quan-
tum Gravity (LQG), for a review, see [25, 27–29, 72]. A spin foam can be
regraded as a Feynmann diagram with 5-valent vertices, corresponding to the
quantum 4-simplices, as the building blocks of discrete quantum spacetime. The
boundary of a 4-simplex contains 5 tetrahedra. The spin foam model is un-
derstood as a path integral formulation of the topological BF model with holst
terms, where the gravity is recovered after imposing the so-called simplicity con-
straint at the quantum level. However, the solution space of the simplicity con-
straint is only accessible after a gauge fixing, similar to the difficulty in canon-
ical approach. As one of the popular spin foam models, the Lorentzian Engle-
Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model comes with a gauge-
fixing within each tetrahedron such that in the local frame the timelike normal
vector of the tetrahedron reads u = (1, 0, 0, 0) in a 4D Minkowski spacetime with
signature (−1, 1, 1, 1), known as the "time-gauge". As a result, this model subju-
gates to the restriction that tetrahedra and triangles are all spacelike [63], in an-
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other words, the tetrahedra are all living in the Euclidean subspace. As a result,
such spin foam models only correspond to a special class of 4D Lorentzian trian-
gulations. However, in the extended spin foam model by Conrady and Hnybida,
some tetrahedron normal vectors are chosen to be spacelike u = (0, 0, 0, 1). Thus,
the model contains timelike tetrahedra and triangles which live in 3D Minkowski
subspaces [61, 73, 74]. Even though we do not know how to solve the simplicity
constraint without any gauge fixing, but it looks that we have a consistent model
with all possible Lorentzian triangulations. However, the issue of Lorentzian
invariance is not fully addressed at the semi-classical level, thus whether the
emergent gravity theory maintains the Lorentzian invariance is still in a doubt.

The semiclassical behavior of the spin foam model is determined by its large-j
asymptotics. Recently there have been many investigations of large-j spin foams,
in particular to the asymptotics of EPRL/FK model [50, 75–82], and the models
with cosmological constant [83, 84]. It has been shown that, in large-j asymp-
totics, the spin foam amplitude is dominated by the contributions from critical
configurations, which give the simplicial geometries and the discrete Regge ac-
tion on a simplicial complex. The resulting geometries from the above analysis
only contain spacelike tetrahedra and spacelike triangles. Recently, the asymp-
totics of the Hnybida-Conrady extended model with timelike tetrahedron was
investigated [85]. The critical configurations of the extended model lead to sim-
plicial geometries containing timelike tetrahedra. But the limitation is that all
the triangles are still spacelike within each timelike tetrahedron. In all the exam-
ples of geometries in classical Lorentzian Regge calculus, and their convergence
to smooth geometries [86–88], the Regge geometries contain timelike triangles.
In order to have the Regge geometries emerge as the critical configurations from
the spin foam model, we have to extend the semiclassical analysis to contain
timelike triangles. Moreover, the amplitude may also contains critical configura-
tions corresponding to nondegenerate split signature 4-simplices (e.g., Euclidean
4-simplices in Lorentzian EPRL model) and degenerate vector geometries, which
breaks the Lorentzian invariance.

In this part, we investigate such Lorentzian invariance issue in both the canon-
ical approach and the spin foam model. This part is organized as follows. We
begin with a very brief review of the canonical loop quantum gravity based on
the Hamiltonian formulation of the Holst action, and the spin foam model as
well as its semi-classical limit. Then in chapter 2 we present a su(1, 1) gauge
description of the gravity theory in four dimensions. We investigate the loop
quantization at the kinematical level, where we found no anomaly between the
su(1, 1) description and su(2) time-gauge description of the space-like areas. Fi-
nally in chapter 3 we extend the semiclassical analysis of extended model to
general situations, in which both timelike tetrahedra and timelike triangles are
taken into account. We identify the dominate contribution with discrete simpli-
cial geometries and Regge action of gravity. We find that for a vertex amplitude
containing at least one timelike and one spacelike tetrahedron, critical configura-
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tions only give Lorentzian 4-simplices, while the split signature and degenerate
4-simplex do not appear.

1.2. Brief review on canoncial loop quantum gravity
This section is a brief review of the canonical approach of the loop quantum

gravity which is based on the Hamiltonian formulation of the first order action
of gravity, and the Dirac quantization is performed on "holonomy-flux algebras"
We will focus on the canonical analysis of Holst action which we investigate in
detail in chapter 2, following a very brief introduction to the loop quantization
procedure. The detailed review of LQG is referring to [24–27, 89, 90].

1.2.1. Hamiltonian formulism of first order Lorentz-covariant
gravity

In below we summarize the main results of the Hamiltonian analysis of the
fully Lorentz invariant Holst action [71]. We start with recalling the main steps of
the constraints analysis and present the solutions of the second class constraints
proposed by Barros e Sa [91]. Then, we describe the parametrization of the
Lorentz covariant phase space that gives the commonly used su(2) Ashtekar-
Barbero connection. The same parametrization will serve in chapter 2 to build
the su(1, 1) connection.

1.2.1.1. Action and constraints analysis

The Holst action [71] is a generalization of the Hilbert-Palatini first order ac-
tion with a Barbero-Immirzi parameter γ. In terms of the co-tetrad eIα(x) and the
Lorentz connection one-form ωIJα (x), the corresponding Lagrangian density is

L[e, ω] = 1
2εIJKL e

I ∧ eJ ∧ FKL + 1
γ
eI ∧ eJ ∧ FIJ ,

where F [ω] = dω+ω∧ω is the curvature two-form of the connection ω, εIJKL the
fully antisymmetric symbol which defines an invariant non-degenerate bilinear
form on sl(2,C), and internal indices are lowered and raised with the flat metric
ηIJ and its inverse ηIJ . The Holst action is equivalent to the Hilbert-Palatini
action. Indeed, if the co-tetrad is not degenerated (i.e. if its determinant is not
vanishing), the variation respect to ω is given as

Dµe
I
ν = 0 (1.1)
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where Dµ is the covariant derivative

Dµe
I
ν = ∂µe

I
ν + ωIJµ eνJ (1.2)

This equation is nothing else but the torsion free condition with which one can
uniquely solve ω in terms of e and find that ωIJµ are nothing but the components
of the Levi-Civita connection. Plugging back this solution into the action elim-
inates the Barbero-Immirzi parameter γ by virtue of the Bianchi identities and
leads to the second order Einstein-Hilbert action.

Now, we recall basic results on the canonical analysis of the Holst Lagrangian.
For this purpose, it is convenient to introduce the notation

γξIJ = ξIJ −
1

2γ εIJKL ξ
KL , (1.3)

for any element ξ ∈ sl(2,C), with the useful relation

γξIJθ
IJ = ξIJγθIJ (1.4)

After performing a 3+1 decomposition (based on a splittingM = Σ×R of the
space-time) in order to distinguish between temporal and spatial coordinates
(0 is the time label and small latin letters from the beginning of the alphabet
a, b, c, · · · hold for spacial indices), a straightforward calculation leads to the
following canonical expression of the Lagrangian density

L[e, ω] = γπaIJ ω̇
IJ
a − gIJGIJ −NH−NaHa, (1.5)

where we have introduced the notations ω̇ = ∂0ω for the time derivative of
ω, gIJ for −ωIJ0 , N for the lapse function N , and Na for the shift vector. All
these functions are Lagrange multipliers which enforce respectively the Gauss,
Hamiltonian, and diffeomorphism constraints

GIJ = Da
γπaIJ , H = πaIKπ

bK
J

γF IJ
ab , Ha = πbIJ

γF IJ
ab . (1.6)

These constraints are expressed in terms of the spatial connection components
ωIJa , and the canonical momenta defined by

πaIJ ≡ εIJKL ε
abc eKb e

L
c . (1.7)

Since πaIJ = −πaJI contains 18 components, and the co-tetrad has only 12 inde-
pendent components, we need to impose 6 primary constraints often called the
simplicity constraints

Cab = εIJKLπaIJπ
b
KL ≈ 0, (1.8)
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in order to parametrize the space of momenta in terms of the π variables in-
stead of the co-tetrad variables. Classically, it is equivalent to work with the 12
components eIa or with the 18 components πaIJ constrained to satisfy the 6 rela-
tions Cab ≈ 0. Hence, at this stage, the non-physical Hamiltonian phase space is
parametrized by the 18 pairs of canonically conjugated variables (ωIJa , πaIJ), with
the set of 10 constraints (1.6) to which we add the 6 constraints Cab ≈ 0.

Studying the stability under time evolution of these “primary" constraints is
rather standard and has been performed first for the Hilbert-Palatini action in
[92] and for the Holst action in [91]. Here we will not reproduce all the steps
of this analysis, but only focus on the structure of the second class constraints
and their resolution. Details with our notations can be found in [93]. Notice
first that in order to recover the 4 phase space degrees of freedom (per space-
time points) of gravity, the theory needs to have secondary constraints, which
in addition have to be second class. This is indeed the case. Technically, this
comes from the fact that the algebra of constraints fails to close because the
scalar constraint H does not commute weakly with the simplicity constraint Cab.
Hence, requiring their stability under time evolution generates the following 6
additional secondary constraints

Dab = εIJMN π
cMN

(
πaIKDcπ

bJ
K + πbIKDcπ

aJ
K

)
≈ 0. (1.9)

The Dirac algorithm closes here with 18× 2 phase space variables (parametrized
by the components of π and ω), and 22 constraints H, Ha, GIJ , Cab and Dab.
Among these constraints, the first 10 are first class (up to adding second class
constraints) as expected, and the remaining 12 are second class. One can check
explicitly that Cab ≈ 0 and Dab ≈ 0 form a set of second class constraints (their
associated Dirac matrix is invertible), and that the first class constraints generate
the symmetries of the theory, namely the space-time diffeomorphisms and the
Lorentz gauge symmetry. Finally, we are left with the expected 4 phase space
degrees of freedom per spatial point:

18× 2(dynamical variables)− 10(first class constraints)× 2− 12(second class constraints).

We recover the two gravitational modes.

1.2.1.2. Parametrization of the phase space

Now since we have clarified the Hamiltonian structure of the theory, we are
going to show how to solve the second class constraints following [91]. First,
one writes the 18 components of πIJa as

πa0i = 2Ea
i , πaij = 2(Ea

i χj − Ea
j χi) , (1.10)
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where χi = eai e
0
a (which encodes the deviation of the normal to the hypersur-

faces from the time direction) and Ea
i (which corresponds to the usual densi-

tized triad of loop gravity) are now twelve independent variables. Note that eai
is the inverse of eia viewed as a 3 × 3 matrix. This is trivially a solution of the
simplicity constraints (1.8) because somehow we have returned to the co-tetrad
parametrization (1.7). Note that in such parameterization, the induced metric
on the hypersurface Σ is given by

det(q)qab = Ea
i

(
(1− χkχk)δij + χiχj

)
Eb
j (1.11)

Then, we plug the solution (1.10) into the canonical term of the Lagrangian
(1.5) which gives

γπaIJ ω̇
IJ
a = Ea

i Ȧ
i
a + ζiχ̇

i where Aia = γω0i
a + γωija χj and ζ i = γωija E

a
j .(1.12)

This result strongly suggests that the 18 components of the connection could be
expressed in terms of the 12 independent variables (Aia, χi) when one solves the
6 secondary second class constraints. This is indeed the case and it can be seen
by inverting the relation (1.12) as follows

γω0i
a = Aia − γωija χj,

γωija = 1
2
(
Qij
a − Ei

aζ
j − Ej

aζ
i
)
, (1.13)

where Ei
a is the inverse of Ea

i , and Qij
a = Qji

a has a vanishing action on Ea
i . The

explicit form of Qij
a can be obtained fromDab ≈ 0 as shown in [91]. Furthermore,

when γ2 6= 1, one can uniquely express ω in terms of γω using the inverse of the
map (1.3).

As a consequence, the phase space can be parametrized by the twelve pairs of
canonical variables (Aia, Ea

i ) and (χi, ζ i) with the (non-trivial) Poisson brackets
given by{

Aia(x), Eb
j (y)

}
= δijδ

b
a δ

3(x− y) and
{
χi(x), ζj(y)

}
= δji δ

3(x− y). (1.14)

Remark that if we work in the time gauge (i.e. χ = 0), the variable Aia coincides
exactly with the usual Ashtekar-Barbero connection.

1.2.1.3. First class constraints

It remains to express the first class constraints (1.6) in terms of the new phase
space variables (7.3). This is an easy task using the defining relations (1.10) and
(1.13). This was done by Barros e Sa. The constraints have quite a simple form
except the Hamiltonian constraint whose expression is more involved: it can
be found in [91] and we will only consider this constraint after partial gauging
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fixing. The vector constraint Ha takes the form

Ha = Eb · (∂aAb − ∂bAa) + ζ · ∂aχ+ γ2

1 + γ2

[
(Eb · Ab)(Aa · χ)− (Eb · Aa)(Ab · χ)

+(Aa · χ)(ζ · χ)− (Aa · ζ) + 1
γ

(
Eb · (Ab × Aa) + ζ · (χ× Aa)

) ]
, (1.15)

where · denotes the scalar product λ · µ = λiµ
i and × denotes the cross product

(λ × µ)i = εijkλjµk for any two pairs of vectors λ and µ in R3. Concerning, the
Lorentz constraints GIJ , they can be split into its boost part Bi ≡ G0i, and its
rotational part Ri ≡ (1/2)ε jki Gjk whose expressions are

B = ∂a

(
Ea − 1

γ
χ× Ea

)
− (χ× Ea)×Aa + ζ − (ζ · χ)χ , (1.16a)

R = −∂a
(
χ× Ea + 1

γ
Ea

)
+ Aa × Ea − ζ × χ . (1.16b)

One can check that these constraints satisfy indeed the Lorentz algebra

{B · u,B · v} = −R · u× v, {R · u,R · v} = R · u× v, {B · u,R · v} = B · u× v ,(1.17)

where u and v are arbitrary vectors.

1.2.1.4. The time gauge and Ashtekar-Barbero variables

The very well-known “time" gauge refers to the condition eµanµ = 0 where nµ
is a given as a time like vector nµ = δ0

mu. It is directly to check that, in such case,
corresponding to e0

a ≈ 0, or equivalently χ ≈ 0. The condition χ ≈ 0 drastically
simplifies the boost constraints which become equivalent to ζ − ∂aEa ≈ 0. The
conditions χ ≈ 0 and ζ−∂aEa ≈ 0 form a set of second class constraints that can
be solved explicitly for χ and ζ. By doing so, the variables (χ, ζ) are eliminated
from the theory, which breaks sl(2,C) into su(2). It corresponds to taking a
slicing Σ×R of the space-time where the hypersurfaces Σ are space-like, as one
can see from the induced metric (1.11)

det(q)qab = Ea
i δ

ijEb
j (1.18)

In such gauge, the canonical pairs can be given as [60]

Aia = −γAia = −γγω0i
a = βKi + Γi, Eai = Ea

i (1.19)

where β = −γ with non-trivial bracket

{Aia(x), Eai (y)} = βδijδ
a
b δ

3(x− y) (1.20)
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Note that these fields take values on a spatial slice Σ, whereK refers to the extrin-
sic curvature and Γ = 1

2εijkω
jk
a . One can check that, in such gauge, the Gaussian

constraint together with the second class constraint D given in (1.9) Γ is the
spin connection compatible with E . (A, E) are the well-known Ashetkar-Barbaro
connection and the densitized triad of loop gravity [68–70]. The corresponding
first class constraints (1.6) are now given by

Gi = DaEai
Ha = Eb

iF
i
ab

H = 1
2 det(E)

(
εijkEai EbjF k

ab − (1 + γ2)Eai EbjKi
[aK

j
b]

)
= HE + HL

(1.21)

where Da is now the covariant derivative induced by su(2) connection A, F i
ab is

now the su(2) curvature two form F = DA = dA+A ∧A of connection A, and
we rescale the originalH defined in (1.6), to have a density one scalar constraint.
Note that the Hamiltonian constraint can be separated into two parts where we
refer to the Euclidean part HE and the Lorentzian part HL. One can check that,
the constraints satisfies the following Dirac’s hypersurface deformation algebra

{CV [Na], CH [N ]} = −CH [LNaN ]
{CV [Na

1 ], CV [N b
2 ]} = CV [LN1N

a
2 ]

{CH [N1], CH [N2]} = CV [qab (N1∂bN2 −N2∂bN1)]
(1.22)

where LN is the lie derivative along vector N , and C denotes the smeared con-
straints defined as

CG[Λ] =
∫
d3xΛiGi, CV [Na] =

∫
d3xNaHa, CH [N ] =

∫
d3xNH (1.23)

with Gi, Ha and H refers to gauss, vector and scalar constraint respectively as
given in (1.21).

1.2.2. Loop quantization
In order to quantize the classical theories with complicated constraint algebras

(GR for example), the quantization procedure will follows the Dirac canonical
quantization programme [94] instead of the usual Fork space canonical quanti-
zation. The quantization procedure can be generally summarized as the follow-
ing:

— Identify a set of (redundant) functions which fully parameterize the phase
space. These functions is not necessarily to be gauge invariant. However,
in order to perform the usual quantization we would like them to have
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simple algebras, e.g. the cotangent space to a group, which is the case for
holonomy-flux algebra as we will show later.

— Find the kinematical Hilbert space as representations of the quantum alge-
bra, by asking that the constraints can be represented as closed and densely
defined operators on it.

— Induce the physical Hilbert space from kinematical Hilbert space, which
corresponds to solve the constraint operators and find the generalized joint
kernel.

— Identify the complete (gauge-invariant) observables which commute with
all quantum constraints.

In the following we will summarize the dirac quantization procedure used in
Loop Quantum Gravity based on holonomies-flux Algebras. We will focus on
the construction of the kinematical Hilbert spaces and the spin network states
in such space. We refer to [24–26, 89] for the detailed review, and [90, 95] for
some brief reviews. Note that the construction here is based on the time gauge
with su(2) gauge group. The full Lorentzian or other non-compact construction
is still an open question despite many attempts, e.g. [96–99]

1.2.2.1. Quantum Kinematics

As we shown in previous section, under time gauge, the phase space of Holst
action is an cotangent bundle M = (A, E) = T ∗(A) over the space of su(2)
connections. Inspired from the lattice gauge theory, instead of working with A
and E , we can choose to work with SU(2) holonomies

Ue := P exp
∫
e
A ∈ SU(2) (1.24)

along some path e, and electric fluxes

ES(f) :=
∫
S
∗Eif i (1.25)

across a two surface S with some su(2)∗ valued smearing function f . Here P
denotes path ordering. According to the bracket (7.3), Ue and ES satisfy

{Ue, U ′e} = 0, {ES,f , Ue} = βUe1f(S ∩ e)Ue2 (1.26)

where we assume e and S intersect transversely with each other at S ∩ e thus
separate the path as e = e1 ◦ e2.

In order to construct the kinematic Hilbert space, we take the Schrödinger type
representation where states are functionals ψ(U) over configuration space. Here
U is regraded as a distributional connections as the generalization of U , which
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is defined by the map from a path e to SU(2) holonomies

Ū : e→ Ūe ∈ SU(2) (1.27)

The functions on Ū can be described by cylinder functions of a finite number
of holonomies on some oriented graph Γ, where a cylindrical function is repre-
sented as ψ(U(A)) = ψΓ({Ue(A)}e∈Γ) [100]. Here e represent paths on the graph,
called edges which intersect with each other in the endpoint only. The definition
is generalized to different graphs where

Cyl : ∪ΓCylΓ/ ∼ (1.28)

where two cylindrical functions ψΓ′ ∼ ψ′Γ′′ iff there exists a larger graph Γ ⊃
Γ′′,Γ′ such that ψΓ = ψ′Γ. The electric flux E acts as a smooth vector field on
the space of cylindrical functions, which appears as the conjugate variables as-
sociated to cylindrical functions. This forms the classical holonomy-flux algebra
which is the ∗-subalgebra of T ∗(Cyl).

As a nature representation of the above algebra, the holonomy operator will
act multiplicatively and the flux vector fields act as derivation operators, more
specific,

(ψ1ψ2)[U ] = ψ1(U)ψ2(U), (ES,fψ)[U ] = (XS,f [ψ])[U ] (1.29)

The nature measure associated with such space is the Haar mearsure on SU(2).
Hence, the Hilbert space related to the graph Γ is defined as

HΓ = L2[SU(2)]⊗L ∼ (Fun[SU(2)⊗L]; dµ⊗L) (1.30)

where L denotes the number of edges in Γ and dµ the Haar measure on SU(2).
This concept can be extended to a collection of different graphs, where the mea-
sure is now Ashtekar-Lewandowski measure dµAL. The idea is to find the new
graph Γ contains both graphs and extend the dependence of cylindrical functions
trivially to all edges in Γ. The measure is then the product of Haar measures on
Γ. It is clear such kinematical Hilbert space is given as

Hkin = L2[Ū , dµAL] (1.31)

by completing Cyl w.r.t. the inner product. Note that, the kinematical Hilbert
space here contains a diffeomorphism invariant cyclic states, namely the state
is invariant under the action of diffeomorphism and any states can be approx-
imated by linear combination of products of operators act on this state. It has
been proved that, theHkin that contains a diffeomorphism invariant cyclic vector
is uniquely defined [101, 102].
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1.2.2.2. Spin network states

By applying the Peter-Weyl theorem to each edges of a a given graph Γ, cylin-
drical functions ψΓ[A] over the graph can be formally decomposed as

ψΓ[U ] =
∑

j1,··· ,jE
tr
(
f̃(je)

E⊗
e=1

πse(Ue)
)
, (1.32)

where

πs : SU(2)→ End(Vj) and f̃ ∈
N⊗
e=1

V ∗je . (1.33)

The summation runs over unitary irreducible representations of SU(2) labelled
by spin je. Vje refers to the modulus of the representation, V ∗je for its dual, and
tr denotes the pairing between ⊗eVse and its dual ⊗eV ∗se. For a given graph Γ,
clearly f̃ can be regraded as a function living on the vertices where the edges
intersect with each other via their end points. With such decomposition, we
can introduce a particular label on the graph Γ, where each edge carries a spin
label of unitary representations je, and each vertex carries a tensor label refers
to ⊗eV ∗je. This forms a labelled graph which is called generalized spin networks.
The associated states is called the (generalzied) spin network states. Figure
1.1 shows an example of the generalized spin network graph. Note that any
two spin network states are orthogonal unless their spin network graph and
corresponding labels are identical to each other up to trivial j = 0 extensions.
The generalization of the decomposition to the wholeHkin can be constructed as
patching together the fixed graph spin network basis which gives an orthonormal
basis of Hkin.
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Figure 1.1. – A generalzied spin network graph, where j1 − j10 are the spin colors
on edges and A−F refer to the tensor at each vertex with a suitable
dimension

1.2.2.3. Geometric operators

The spin network have a natural geometrical interpretation, where each edge
is normal to a spacelike surface and each vertex related to a sub-region in Σ.
It is possible to get the area and volume spectrum by acting area and volume
operators on it. However, since we have not taken account the constraints, the
physical meaning only valid in the case when they forms gauge invariant observ-
ables [103, 104].

We start with the area operator [100]. From (1.18) of the inverse metric qab

that we contract twice with the normal na to a given surface S. This leads to the
formula

det(q)n2 = (naEai) δij (Ebjnb) , (1.34)

where n2 = nanbg
ab. Hence, the determinant of the induced metric h on the

surface S is given by

det(h) = (naEai) δij (Ebjnb) . (1.35)

As a consequence, the action of the area operator Ŝ, punctured by an edge e
of the graph Γ colored by a representation se, on Hkin(Σ) is diagonal and its
eigenvalue S(s) is given by the equation

S(e) =
∫
S

√
| det(h)| = γ`2

p

√
πe(J2

1 + J2
2 + J2

0 ) = γ`2
p

√
πe(C) (1.36)

where πe(C) is identified with the unique eigenvalue of the Casimir tensor C ≡
J2

0 + J2
1 + J2

2 in the representation je. Obviously, the evaluation πe(C) gives
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discrete values according to

πje(C) = je(je + 1) (1.37)

We deduce immediately that S(e)2 is positive and discrete. As a consequence,
the area operator of any space-like surface has a discrete spectrum.

The volume operator follows the same procedure as area operator, however,
its form is more complicated. There is no explicit result of volume spectrums
due to the complicated and non-diagonalized volume operator acting on each
vertex of generalized spin network graph. However, there are plenty of studies,
both analytical and numerical, shows that it has a discrete spectrum [105–110].
We shall see later the volume operator has an important role in the imposition
of Hamiltonian constraint.

1.2.2.4. Gaussian constraint

Now following the Dirac quantization scheme, after the building of kinematic
Hilbert space, we will impose the constraints to extract the physical Hilbert space.
According to the canoncial analysis, the physical Hilbert space is restrict to the
annihilation states of the quantum gaussian, vector and scalar constraints equa-
tions, namely

ĈG(~Λ)ψ = ĈV ( ~N)ψ = ĈH(N)ψ = 0 (1.38)
where CG,CV and CH correspond to smeared Gauss, diffeomorphism and Hamil-
tonian constraints given in (1.23)

Here clearly the Gauss constraint generate the SU(2) gauge transformations
on generalized holonomies

Ū → ŪΛ, ŪΛ
e = geb(Λ)Ūegef (Λ) (1.39)

where eb and ef correspond to the beginning and end point of the edge e. Such
gauge transformation naturally induce an action on cylindrical functions ψ, namely,

ψ → ψΛ, ψΛ(Ū) = ψ(ŪΛ−1) (1.40)

In spin network basis, such gauge transformation only acts on the vertices, which
corresponding to a transformation on Tv ∈ ⊗e:v⊂∂eV ∗je in the representation je
respectively, namely,

T → TΛ ∈ ⊗e:v⊂∂eV ∗je , TΛ
v = (⊗e:v⊂∂eπje) (Λv) ◦ Tv (1.41)

The solution of the Gauss constraint is then the gauge invariant spin-network
states which carries the SU(2) invariant tensor

Iv ∈ InvSU(2)(⊗e:v⊂∂eV ∗je) (1.42)
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at each vertex. This leads to the gauge-invariant Hilbert space H0 which span by
gauge invariant spin networks.

1.2.2.5. Diffeomorphsim Constraint

The action of diffeomorphism constraint on generalized holonomies can be
expressed as:

Ū → ŪV , ŪV
e = ŪV ◦e (1.43)

where V ∈ diff(M) : M → M is a diffeomorphism. As a result, the cylindrical
functions transforms as ψV (Ū) = ψ(ŪV −1). Note that, this transformation induce
a deformation on spin networks, produces linear combination of orthogonal spin
network states thus is not continuous. As a consequence, there is no generators
for these unitary diffeomorphism operators. To get exactly the state annihilated
by the diffeomorphism constraint, we need to solving (1.38). However, unlike
the gauss constraint, we can not directly impose the constraint on spin-network
states, since they are not continuous. Instead, we consider the solution on the
algebraic dual of the spin network states, which are simply linear functionals on
spin networks. For a state Φ ∈ Cyl∗, we can decompose it as

Φ =
∑
S

ΦSψS∗ =
∑
S

ΦS〈ψS, ·〉 (1.44)

where ψ∗S ∈ Cyl∗ denotes the dual of spin network ψ. The constraint equation is
then

Φ(ψV ) = Φ(ψ) (1.45)
The elementary solution is given by the group averaging technique, which is
given by

ΦS =
∑

V1∈diff/diffS

1
|GSS|

∑
V2∈GSS

〈V1 ◦ V2 ◦ ψS, ·〉 (1.46)

where GSS = diffΓ/TdiffS donates gauge symmetries with TdiffS ⊂ diff the iden-
tity on S and diffS ⊂ diff the diffeomorphisms mapping S to itself. Intuitively,
these diff-invariant states can be regarded as states labelled by diff-equivalence
class of spin net work states

Φ[S] =
∑
S∈[S]
〈ψS, ·〉 (1.47)

where [S] = V ◦ S;V ∈ diff(M) denotes the diff-equivalence class of S a, which
is know as generalized knot classes. Any solution is the linear combination of
such elementary solution.

a. Note that, this is only a intuitive picture and one has to be careful since (1.45) admits a
large kernel with "hourglass" spin-networks [26, 90]
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The diff-invariant Hilbert space Hdiff is then given as the span of Φ[S], with the
inner product defined as〈

Φ[S],Φ[S′]
〉

= Φ[S](ψS′) =
∑
S∈[S]
〈ψS, ψS′〉 , S ′ ∈ [S ′] (1.48)

Noted that, Hdiff is not separable because the set of singular knot classes has
uncountably infinite cardinality [25].

1.2.2.6. Scalar constraint

Following the dirac procedure, the final step is to impose and solve the scalar
constraint CH in (1.23). However, the scalar constraint is much more difficult
than the gauss and diffeomorphism constraint. One technical reason is that
the constraint is highly non-polynomial (due to the inverse volume element
1/√q = 1/ detE). A possible solution is to define a rescaled constraint

√
qCH

and make use of the spatial diffeomorphsim invariance to construct a UV finite
background independent operator. However, the Hamiltonian constraint do not
commute with the diffeomorphism as we see in the constraint algebra (1.22).
And as showing before, it is impossible to implement the infinitesimal diffeo-
morphsim constraint directly due to the non-continuity of the diffeomorphism
action. Moreover, the constraint algebra (1.22) is not a Lie algebra. Thus it is
difficult to find a well-defined anomaly free Hamiltonian operator on Hkin. The
problem was originally studied in [111], where a family of quantum hamiltonian
constraints are proposed. However, the anomaly freeness of these operators re-
mains an open question. Later on, a new technical is proposed in [112] which
is called the Master Constraint Programme (MCP) . We shall not reproduce the
steps in details but only sketch the main ideas.

In [111], Thiemann proposed a family of well defined Hamiltonian constraints.
The quantization is based on the following ideas: The inverse volume element
can be absorbed into brackets between connection A and volumes VΣ of the
spatial slice

εijkεabc
Ea
i E

b
j

detE = 1
4γ {A

k
c (x), VΣ} (1.49)

The constraint operator is well defined via a bi-linear form on Hdiff ∈ Cyl∗ . The
curvature is given as the limit of holonomy around loops shrinking with regulator
ε which denotes to coordinate length of a refined triangulation. When ε is small
enough, the regulated definition of HE will be independent of the regulator on
Hdiff. In this process, the bracket enrolls the volume and the curvature can be
approximated as

εe{A(x), VΣ} ≈ −U−1
e {Ue, VΣ}, ε2F ≈ U∂S − I (1.50)
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where e denote the path emanating in x, and S is a surface in Σ. The Lorentzian
part which enrolls the extrinsic curvature can be expressed out once we have the
form of Euclidean constraint via the relation

Ki
aE

a
i = {HE, VΣ} (1.51)

There are plenty of studies for calculating the matrix elements of the Hamilto-
nian operator defined above, for example, [113–116]. The action of Hamilto-
nian constraint on ψΓ ∈ Cyl, roughly speaking is creating new edges between
edges incident in a common vertex v, thus it is local around the vertices. The
Hamiltonian constraint defined in such way is proved to be self-adjoint [117],
and does admit a non-trivial kernel. However, there are several ambiguities in
the definition of the constraints, for example, the ambiguity of different repre-
sentation used to regularize the constraint [118]. Most importantly, whether
such constraints are anomaly free is not being settled. The anomaly freeness
and quantum deformation of the classical algebra (1.22) has been studied a lot
in symmetry reduced models inspired by canonical loop quantum gravity [119–
126], which we will mention in detail in part II.

In order to overcome the anomaly free problem, instead considering the infi-
nite many Hamiltonian constraints, we can construct a single Master constraint
[112] as

M = 1
2

∫
M

C2
H√
q

(1.52)

which is a positive definite integral of density weight one integrand with Hamil-
tonian constraints. Thus M = 0 defines actually the same constraint surface as
the hamiltonian constraint CH(N). Moreover one check the algebra becomes

{~CV ( ~N),M} = {M ,M} = 0 (1.53)

thus we can implement and solve M directly on Hdiff, and define the inner prod-
uct which finally gives us the physical Hilbert space Hphy. The Master constraint
can be regarded as a Riemann sum over a triangulation ∆ of M :

M = lim
ε→0

∑
∆∈K

 H(∆)√
V (∆)

2

= lim
ε→0

∑
∆∈K

C̄(∆)C(∆) (1.54)

where V∆ =
∫

∆
√
q is the volume of tetrahedra. The implementation of M̂ on

Hdiff is defined via a bi-linear form on Hdiff ∈ Cyl∗

QM (Ψ,Ψ′) =
∑
[S]

∑
v∈V (ΓS)

Ψ(Ĉ†vψS)Ψ′(Ĉ†vψS) (1.55)

Here Ψ,Ψ′ ∈ Hdiff , V (Γ) refers to all vertices in a spin network states Γ and S is a
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representative of [S]. The constriant Cv here takes the same form as Thiemann’s
constraint operator H as introduced before but replace V to

√
V . One can prove

that (Theorem 10.6.1 in [25]), such positive defined bi-linear form is closeable
and induces a unique, positive self-adjoint operator M̂ on Hdiff . Moreover, the
point zero is contained in the point spectrum of M̂ , namely, M̂Ψ = 0 implies
QM (Ψ,Ψ) = 0, which implies Ψ(Ĉ†vψS) = 0 for all [S] and v ∈ V (ΓS).

The final step of the quantization is supplying a physical inner product and a
separable physical Hilbert space. With the fact that Hdiff can be decomposed
as an uncountablely infinite, almost direct, sum of separable, invariant Hilbert
spaces, we can directly apply the direct integral decomposition to define the
physical Hilbert space, as mentioned in [25].

The Master Constraint procedure can be further generalized, such that one
can add the diffeomorphism and even Gauss constraint inside to form a single
constraint. Such consideration opens the possibility of a non-graph-changing
Hamiltonian constraint defined on Hkin and leads to the semi-classical analysis
of the model [127–129].

1.3. Brief review on spin foam models
The first order gravity we described before can be expressed as a constrained

BF theory with gauge group G to be Sl(2,C) for Lorentzian or Spin(4) for Eu-
clidean in 4d. This is known as the Plebanski formulation of general relativity
described by the action

S =
∫
M
〈B ∧ F [A])〉+ Φ (1.56)

where B is an g valued two form (bivector) and F [A] = dA + A ∧ A is the
curvature of connection A of g. 〈·, ·〉 denote the G invariant inner product. Here
the constraint Φ is imposed to make the two form B simple, and is called the
simplicity constraint, which is given by

Φ = φIJKLB
IJ ∧BKL (1.57)

One can immediately check that, the solution of the constraint Φ on the BIJ

leads to
BIJ = ±eI ∧ eJ , andBIJ = ± ∗ (eI ∧ eJ) (1.58)

which recovers the Holst action.
The covariant quantization of such constraint BF theory leads to spin foam

models. We will briefly review the ideas here. Generally speaking, the spin foam
model is a state sum model defined on some simplicial complex K. It is proved
that, the semi-classical limit of the spin foam model is given by a simplicial man-
ifold, which is a triangulation of the spacetime manifold, with the action relates
to Regge action [130–132] which is a discrete version of General Relativity. We
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will summarize the spin foam quantization procedure and introduce the com-
monly used Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model and
Conrady-Hnybida Extension . We suggest [27, 29] for a detailed review of spin
foam model.

1.3.1. Spin foam quantization
The path integral formula of the BF theory reads∫

DBDA exp[−iSBF ] =
∫
DAδ(F [A]) (1.59)

After we integrate out the bivector B the theory can be regarded as a second
order theory.

The detailed meaning of the formal path integral expression above is achieved
by replace the manifold M by an simplicial decomposition (triangulation) K of
M b. We denote the dual complex associated to K as K∗. A simple example
is the 4-dimesional simplicial manifold K consisting simplices σv, tetrahedra τe,
triangles f , edges and vertices. Respectively v,e and f are labels for vertices,
edges and faces on the dual graph K∗. A triangulation K and its dual complex
K∗ can be obtained by gluing the basic building blocks, d dimensional simplices
σ, with identifying pairs of their boundaries (d − 1 dimensional simplices τ), as
shown in Figure 1.2.

b. In general, one can take arbitrary cellular decomposition of the manifold, e.g. the decom-
position using polyhedrons has been studies in [133, 134]

38



(a) (b)

Figure 1.2. – (a): A dual graph of a 4 simplex as the building blocks of the 4
diemensional trianglation, where black point reperents the vertex v;
black lines refer to edges e which is dual to boundary tetrahedra τe
reprsented by orange lines; and bule line represent faces f . (b) A
glued graph contains two 4 simplcies sharing a common tetrahedron
τe. The dual graph (black color) connected to each other along edge
e.

With such triangulation, we can formally express the smearing of B field as a
lie algebra g element on each face f

Bf :=
∫
f∗
B (1.60)

The connection A is also discretized as holonomies along edges e

ge := P exp
∫
e
A (1.61)

Now the phase space associated with manifold K becomes

PK = T ∗SL(2,C)E, (BIJ
f , hf ) ∈ T ∗G (1.62)

where E is the number of the dual faces f in K, hf = ∏
e∈∂f gf ∈ G is the

holonomy around the face f and BIJ
f ∈ g is the conjugate momenta. Then the

path integral 1.59 reduces to

Z(K) =
∫ ∏

e∈K∗
dge

∏
f∈K∗

δ(hf ) (1.63)
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The integration measure for the group variable is the invariant measure on G.
By using Peter-Weyl’s theorem, the Dirac delta function δ(hf) can be expressed
as

δ(hf ) =
∑
π

dπTr[π(hf )] (1.64)

where π denotes the unitary irreps of G. Thus (1.63) can be reformulated as

Z(K) =
∑
{πf}

∏
f∈K∗

dπf
∏
e∈K∗

Ie(πf ) (1.65)

where Ie =
∫
dge ⊗f :e⊂∂f πf(ge) stands for the group average for the states on

faces f bounded by e.
When the manifold comes with a boundary ∂M , the triangulation K on M

naturally induces a triangulation and a dual complex on ∂M , which we denote
as ∂K and ∂K∗ respectively. The boundary state is then a function depends on
the holonomies Ue(A∂) which is the restriction of Ue(A) on K∗. This boundary
state can be described via spin network graph Γ with gauge group G, namely, it
is a spin network state with gauge group G:

ψ(A∂) = ψΓ(Ue(A∂)) ∈ L2[G⊗L/G⊗N ] (1.66)

where L refers to the number of links and N is the number of nodes on the
boundary of ∂K∗. With the boundary state ψΓ(Ue(A∂)), one can now get the
amplitude of BF theory associated to such state

ZBF =
∫
DAδ(F [A])ψΓ(Ue(A∂)) (1.67)

which is nothing else but the evaluation of the spin network states over flat con-
nections. A general boundary state for a 4-simplex, which is the building block
of 4d simplicial manifold K, is the spin network graph contains 5 nodes and 10
links, denoted as Γ5. By decomposing K into 4-simplices with identified pairing
intermediate boundaries, the partition function can be written as a product of
4-simplex amplitudes with a summation over intermediate boundary states.

Z(K) =
∑
{πf ,ie}

∏
f∈K∗

dπf
∏
v

Av(πf , ie) (1.68)

This formally gives a tensor network description where those intermediate bound-
aries are maximally entangled states as pointed in [51].

Instead of working with the original BF theory, we would like to start with the
BF theory with the Holst term, which is

S =
∫
M
〈γB ∧ F [A]〉+ Φ (1.69)

40



The phase space associated with manifold K are

PK = T ∗SL(2,C)L, (ΣIJ
f , hf ) ∈ T ∗SL(2,C) (1.70)

for a Lorentzian model, where L is the number of triangles, hf ∈ SL(2,C) is the
holonomy along the edges and ΣIJ

f ∈ sl(2,C) is its conjugate momenta. ΣIJ and
BIJ are related to each other by

Σ = (∗+ γ−1)B, B = γ

1 + γ2 (1− γ∗)Σ (1.71)

for γ 6= ±i.

1.3.2. Simplicity constraint and EPRL/FK-CH Models
Since ZBF is nothing else but the integration over space of flat connections,

clearly there is no local degree of freedom in the BF theory. The local degree of
freedom will appear after we impose the simplicity constraint which yielding the
general relativity.

With the simplicial decomposition K of M , it has been proven that, a linear
version of simplicity constraint can be employed

(ue)IBIJ = γ

1 + γ2 (ue)I((1− γ∗)Σf IJ) = 0 (1.72)

where ue is a 4 normal vector associated to each tetrahedron te. Geometrically,
the simplicity constraint implies that, each triangle f in tetrahedron te is associ-
ated with a simple bivector Bf .

The constraint operators is weakly imposed on the states, since the simplicity
constraint do not commute among themselves

〈ψ| (ue)IBIJ |ψ〉 = 0 (1.73)

Such imposition of the simplicity constraint leads to the EPRL-CH model.
Usually a partial gauge fixing is taken to the above constraints, which corre-

sponding to pick a special normal u for all of the tetrahedra ∀e, ue = u . As
a result, the intertwiner associated with each tetrahedron defined above is re-
placed by the intertwiner of the stabilizer group H ∈ G. In a Euclidean model,
one can fix the normal to be u = (1, 0, 0, 0) without losing genetic, while in a
Lorentzian model, there are different choices with different normal subgroups:

— u = (1, 0, 0, 0), H = SU(2), G = Spin(4), Euclidean EPRL/FK models
— u = (1, 0, 0, 0), H = SU(2) , G = SL(2,C), Lorentzian EPRL/FK models
— u = (0, 0, 0, 1), H = SU(1, 1), G = SL(2,C), Conrady-Hnybida Extension
Such implementation corresponding to reduces the possible unitary irreps ap-

pears in the model. We will not going to details the calculation but summarize
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the result of restriction condition after imposing weakly the quantum simplicity
constraint (3.9) [61, 63, 64] :

— u = (1, 0, 0, 0), spacelike triangles

ρ = γn, n = j (1.74)

— u = (0, 0, 0, 1), spacelike triangles

ρ = γn, n = j (1.75)

— u = (0, 0, 0, 1), timelike triangles

ρ = −n/γ, s = 1
2
√
n2/γ2 − 1 (1.76)

Here (ρ ∈ R, n ∈ Z/2) are labels of SL(2,C) irreps, j ∈ N/2 is the label of SU(2)
irreps or SU(1, 1) discrete series and s ∈ R is the label of SU(1, 1) continous series,
we will give a brief introduction of SU(1, 1) and SL(2,C) representation theory
in chapter 3 later. As a result, the area spectrum is given by

Af = l2p

{
nf
2 timelike triangle
γjf spacelike triangle (1.77)

which is discretized and coincide with the result from canonical approach.
The spin foam amplitude can be expressed in the coherent state representa-

tion:

Av(K) =
∑
jf

∏
f

µ(jf )
∫

SL(2,C)

∏
e

dgνe
∏

(e,f)

∫
S2
dNef

〈
Ψρfnf (Nef )

∣∣∣D(ρf ,nf )(gevgve′)
∣∣∣Ψρfnf (Ne′f )

〉
(1.78)

where |Ψρ(N)〉 refers to the peremlomov coherent states [135, 136] for subgroup
H in ρ representation with N a unit normal on a sphere or a hyperboloid for
spacelike or timelike surface respectively. The SFM on K then can be written in
the integral representation

]Z(K) =
∑
~J

∏
f

dJf

∫
[dX] e

∑
f
JfFf [X], (1.79)

where f are 2-faces in K colorred by half-integer spins Jf . Eq.(1.79) can be
regarded as a universal integral expression of spin foam models, while different
models have different variables X, functions Ff [X] and measure [dX]. dJ is a
face amplitude related to the dimension of the representation Jf . For EPRL/FK
model and the Conrady-Hnybida extension, X and Ff [X] are given by,

— Euclidean EPRL/FK model:

X ≡
(
g±ve, ξef

)
(1.80)
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including (g+
ve, g

−
ve) ∈ Spin(4) at each pair of 4-simplex v and 3d boundary

tetrahedron e ⊂ ∂v, and ξef ∈ C2 at each pair of e and f ⊂ ∂e. ξef is
normalized by the SU(2) Hermitian inner product 〈 · | · 〉 on C2. Ff [X] in
the exponent is a function of g±ve, ξef and independent of Jf :

Ff [X] =
∑
v,f⊂v

[
(1−γ) ln〈ξef

∣∣∣(g−ve)−1g−ve′
∣∣∣ξe′f〉+(1+γ) ln〈ξef

∣∣∣(g+
ve)−1g+

ve′

∣∣∣ξe′f〉].
(1.81)

— Lorentzian EPRL model
X ≡ (gve, zvf , ξef ) (1.82)

including now gve ∈ SL(2,C), zvf ∈ CP1 at each vertex v ⊂ ∂f on dual face
f . The normalized spinors ξef ∈ C2 is normalized by the SU(2) Hermitian
inner product 〈 · , · 〉 and defined as

ξα = v−1†ξα0 , withξ0 = (1, 0)T , v ∈ SU(2) (1.83)

Defining Zvef = g†vezvf , Ff [X] is written as

Ff [X] =
∑
v,f⊂v

(
ln 〈ξef , Zvef〉

2 〈Zve′f , ξe′f〉2

〈Zvef , Zvef〉 〈Zve′f , Zve′f〉
+ iγ ln 〈Zve

′f , Zve′f〉
〈Zvef , Zvef〉

)
(1.84)

— Hnybida-Conrady extension - spacelike triangles f in timelike tetrahedra

X ≡ (gve, zvf , ξef ) (1.85)

Here again gve ∈ SL(2,C), zvf ∈ CP1 ., and ξ are spinors defined as

ξα = v−1†ξα0 , with
{
ξ+

0 = (1, 0)T
ξ−0 = (0, 1)T , v ∈ SU(1, 1) (1.86)

which is normalized by SU(1, 1) invaraint inner product 〈·, ·〉. Function
F (X) is given by

F±f [X] =
∑
v,f⊂v

iγ ln 〈Zvef , Zvef〉
〈Zve′f , Zve′f〉

− ln
〈ξ±e′f , Zve′f〉

2〈Zvef , ξ±ef〉
2

〈Zvef , Zvef〉〈Zve′f , Zve′f〉

 (1.87)

where Zvef = g†vezvf .
— Hnybida-Conrady extension - timelike triangles f in timelike tetrahedra

We will going to study it in chapter 3
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1.3.3. Semi-classical analysis of the model
The semi-classical regime of the model is defined through the limit ~ → 0

while keeping the area fixed. By the area spectrum, it is immediately to see
this procedure amount to take all the spins Jf = Λjf scale uniformly to the
limit Λ → ∞, which is refer to a large spin (large-j) limit. With the integral
formulation of spin foam model using the coherent states (1.79), since all the
action is proportional to the spin, the semi-classical analysis turns out to the
usual asympotics analysis of the integral.

Here we will show the example with Hnybida-Conrady extension where all
triangles f are spacelike. Such limit is investigated in [85]. These result will
be used in our later derivation in chapter 3 for the semi-classical analysis of a
mixed timelike tetrahedron, namely, the tetrahedron contains both timelike and
spacelike triangles as its boundary. The analysis for the other models will follow
the exactly same procedure and can be found on [77–80, 85, 137]

As in the usual asymptotic analysis, the critical points are determined by the
equation of motion

δzvfF (X) = δvefF (X) = δgveF (x) = 0 (1.88)

while the dominate part are given in the case

Re(F (X)) = 0 (1.89)

Solutions of above equation specify the critical configuration X0 ⊂ X where the
amplitude is given as

I ∼
∑
X0

1√
H(X0)

eλ
∑

f
AfFf (X0) (1.90)

One can prove that, the critical configurations X0 of spin foam models are
determined by the following equations

Bf (v) := GveBefgev = Gve′Be′fge′v, (1.91)
∀f :e∈∂f Ne(v) ·Bf (v) = 0, (1.92)∑
f :e∈∂f

εef (v)AfBf (v) = 0 (1.93)

where Bef is a bivector specified by ξef and Ne(v) = gveu is a normalized vector.
Here G = Ψ(g) ∈ SO(1, 3) is the defined via the map Ψ : SL(2,C) → SO(1, 3).
These equations have a direct geometrical meaning: they implies 10 triangles
at vertex v specified by the bivector Bf(v) in M , which can form 5 tetrahedra.
One can immediately check that, when arbitrarily 4 Ne(v) out of 5 are indepen-
dent, which we denotes the non-degenerate case, these equations is exactly the
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equations determines a 4-simplex up to an orientation. Thus the critical configu-
rations of the spin foam model corresponding to a simplicial geometry. Further-
more, one can prove that, the action evaluated at the critical configuration leads
to a phase, which is the Regge action on given simplicial geometry up to a sign

F (X0) = ir
∑
f

Afεf + 2πk, r = ±1, k ∈ N (1.94)

However, in EPRL models, the critical configurations also possibly contain the
degenerate contributions, where all Ne(v) at a vertex v are parallel to each
other. Such contribution corresponds to a degenerate vector geometry or non-
degenerate flipped signature 4 simplex, which can only be removed after fixing
the boundary data.
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2. Gravity as an su(1, 1) Gauge
Theory in Four Dimensions
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2.1. Introduction
We would like address in this chapter the question we mentioned at the be-

ginning of the part: whether the construction and physical predictions of Loop
Quantum Gravity are changed or not when one makes another partial gauge
fixing or no gauge fixing at all. Most of the approaches to address this issue
are based on attempts to quantize the Holst action without any partial gauge
fixing, and then keeping the full Lorentz internal invariance of the theory. Now
if one performs the canonical analysis of the sl(2,C) Holst action, second class
constraints appear simply because the connection has more components than
the tetrad field. The appearance of second class constraints makes the classi-
cal analysis and then the quantization of the theory much more involved. In
the analysis of constrained systems, there are two ways of dealing with second
class constraints: one can either solve them explicitly, or implement them in
the symplectic structure by working with the Dirac bracket. These two methods
are totally equivalent. Using the Dirac bracket, Alexandrov and collaborators
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[138–141] were able to construct a two-parameters family of Lorentz-covariant
connections (which are diagonal under the action of the area operator, and trans-
form properly under the action of spatial diffeomorphisms). Generically, these
connections are non-commutative and therefore the theory becomes very diffi-
cult to quantize. The alternative route to deal with covariant connections was
initiated by Barros e Sa in [91] who solved explicitly the second class constraints.
In this approach, the phase space is parametrized by two pairs of canonical vari-
ables: the generalization (A,E) of the usual Ashtekar-Barbero connection and
its conjugate densitized triad E; and a new pair of canonically conjugated fields
(χ, ζ), where χ and ζ both take values in R3. Then, Barros e Sa expressed the
remaining boost, rotation, diffeomorphism and scalar constraints in terms of
these variables. The elegance of this approach is that it enables one to have a
simple symplectic structure with commutative variables, and a tractable expres-
sion for the boost, rotation and diffeomorphism generators. Although the scalar
constraint becomes more complicated, this structure is enough to study the kine-
matical structure of loop quantum gravity with a fully Lorentz invariance. This
has precisely been done in [93, 142] where one constructed the unique spatial
connection which is not only commutative but also transforms covariantly un-
der the action of boosts and rotations. In fact, this connection coincides with
the commutative Lorentz connection studied earlier in [141] and the one found
in [143]. Furthermore, it has been shown to be gauge related to the Ashtekar-
Barbero connection via a pure boost parametrized by the vector χ viewed as a
velocity. Hence, the construction proposed in [93, 142] works only when χ2 < 1.
Thus, the pairs of canonical variables formed with the sl(2,C) connection and its
conjugate electric field parametrize only a part of the fully covariant phase space
of the Holst action.

This chapter enables us to explore the sector χ2 > 1 while studying a partial
gauge fixing of the Holst action that reduces sl(2,C) to su(1, 1). Hence, we
start with the Lorentz covariant parametrization of the Holst action found by
Barros e Sa [91]. We find a partial gauge fixing which breaks the sl(2,C) internal
symmetry into su(1, 1) and this is possible if and only if χ2 > 1. Such a partial
gauge fixing corresponds to a canonical splitting of the space-timeM = Σ × R
where Σ is no more space-like (as it is the case in the usual Ashtekar-Barbero
parametrization) but inherits a Lorentzian metric of signature is (−,+,+). As a
consequence, only three out of the initial six first class constraints remain after
the partial gauge fixing, and they generate as expected the local su(1, 1) gauge
transformations. The other three constraints form with the three gauge fixing
conditions a set of second class constraints that we solve explicitly. Then, we
construct an su(1, 1) connection which appears to be commutative in the sense
of the Poisson bracket. This remarkable construction allows us to investigate the
loop quantization of the theory and to build the kinematical Hilbert space on
a given graph Γ whose edges are associated to SU(1, 1) holonomies. It is well-
known that [144] the non-compactness of the gauge group prevents us from
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defining the projective limit of spin-networks and then the sum over all graphs of
kinematical Hilbert space is ill-defined. Nonetheless, if one restricts the study to
one given graph Γ, it is possible to define the action of the area operator and one
easily finds that a space-like area has a discrete spectrum whereas the spectrum
of a time-like area is continuous. In other words, if one considers a spin-network
defined on a graph Γ dual to a discretization ∆ = Γ∗ of a (2 + 1)-dimensional
manifold, edges e of Γ are colored with representations in the discrete series
(resp. in the continuous series) if the dual face f = e∗ of ∆ is space-like (resp.
time-like). The spectrum of space-like areas is in total agreement with the one
obtained in the usual Ashtekar-Barbero formalism for space-like surfaces. Note
that there is a close relationship between our work here and the results obtained
in [73, 97] in the framework of spin-foam models.

This chapter is organized as follows. In Section II, we present the partial gauge
fixing that breaks sl(2,C) into su(1, 1) before constructing the su(1, 1) connection
and its associated electric field. In Section III we explore the kinematical quan-
tization of the theory on a given graph and we compute the spectra of area
operators which act unitarily in the kinematical Hilbert space. We conclude in
Section IV with a brief summary of the most important results and a discussion
on the consequences of this new parametrization for the description of black
holes in Loop Quantum Gravity.

2.2. Gravity as an SU(1,1) gauge theory
In this section, we first show how to make a partial gauge fixing of the full

Lorentz invariant Holst action which reduces the internal sl(2,C) gauge symme-
try to su(1, 1). At the same time, we keep the invariance under diffeomorphisms
on Σ. In that case, we will see that the splitting of the space-timeM = Σ× R is
such that Σ is no more a space-like hypersurface as it is the case in the time gauge
but inherits instead a Lorentzian structure. Then, we construct a parametrization
of the phase space in terms of an su(1, 1) connection and its conjugate electric
field which transforms in the adjoint representation of su(1, 1). Furthermore, we
show that these variables are Darboux coordinates for the phase space, which
paves the way towards a quantization of the theory explored in the following
Section.

2.2.1. Breaking the internal symmetry: from sl(2,C) to su(1, 1)
As we have already underlined in section ??, imposing the time gauge χ ≈

0 in the fully covariant Holst action breaks the boost invariance and only the
rotational parts of the constraints remain first class among the original 6 internal
symmetries. Hence, we get an su(2) invariant theory of gravity. In fact, we
proceed in a very similar way to construct an su(1, 1) invariant theory from the
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Holst action: we find a partial gauge fixing such that two components of the
boosts constraints and one of the rotational constraints remain first class whereas
the three others form with the gauge fixing conditions a second class system.
Naturally, we consider a gauge fixing condition of the form

X ≡ χ− χ0 ≈ 0 (2.1)

where χ0 is a fixed non-dynamical vector. Inspiring ourselves with what happens
in the time gauge, we expect (2.1) to form a second class system with three out
of the six constraints (1.16). These three second class components of the Lorentz
generators are supposed to be

R · u ≈ 0 , R · v ≈ 0 , B · n ≈ 0 , (2.2)

where u and v are two given normalized orthogonal vectors and n = v × u. The
reason is that we are left with two boosts and one rotations which are expected
to reproduce (up to the addition of second class constraints) an su(1, 1) Poisson
algebra. To derive the conditions for this to happen, we start rewriting (2.2) as a
linear system of equations for ζ:

Mζ =

 ζ · Uζ · V
ζ ·W

 ≈
R · u|ζ=0
R · v|ζ=0
B · n|ζ=0

 with M ≡


tU
tV
tW

 and


U ≡ χ× u
V ≡ χ× v
W ≡ −n+ (χ · n)χ

(2.3)

The system admits an unique solution for ζ if and only if

detM = U × V ·W = (1− χ2)(χ · n)2 6= 0 , (2.4)

which implies that χ2 6= 1 and χ · n 6= 0. When we assume this is the case, the
solution ζ0 can be easily expressed in terms of the components of χ0, E and A
inverting (2.3) as follows

ζ0 = M−1

R · u|ζ=0
R · v|ζ=0
B · n|ζ=0

 = (B · n+R · χ× n)χ− (1− χ2)R× n
(1− χ2)n · χ |ζ=0 , (2.5)

where we used the expression

M−1 = 1
U × V ·W

(
V ×W , W × U , U × V

)
. (2.6)

Hence, the three constraints (2.2) are equivalent to the three conditions

Z ≡ ζ − ζ0(χ0, E,A) ≈ 0 . (2.7)
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Now, it becomes clear that the gauge fixing conditions X ≈ 0 (2.1) and the three
constraints Z ≈ 0 form a second class system because their associated 6×6 Dirac
matrix ∆

∆(x, y) ≡
(
X(x, y) Y (x, y)
−tY (x, y) Z(x, y)

)
with


X i
j(x, y) ≡ {χi(x), χj(y)} = 0

Y i
j (x, y) ≡ {X i(x),Zj(y)} = δji δ

3(x− y)
Zi
j(x, y) ≡ {Z i(x),Zj(y)}

(2.8)

is invertible whatever Z is. These two constraints allow to eliminate the variables
χ and ζ from the phase space provided that one introduces the external non
dynamical field χ0.

We are left with three constraints from (1.16) which are required to satisfy an
su(1, 1) Poisson algebra once one replaces χ by χ0 and ζ by ζ0. These constraints
are denoted

Ju ≡ B · u|χ0,ζ0 , Jv ≡ B · v|χ0,ζ0 , Jn ≡ R · n|χ0,ζ0 . (2.9)

From now on, we will omit to mention the index 0 for χ to lighten the notations.
However, χ has to be understood as an external non dynamical field, and not as
the initial dynamical variable in the fully Lorentz invariant Holst action.

A long but standard calculation shows that the three constraints (2.9) form a
closed Poisson algebra only when

u · χ = v · χ = 0 . (2.10)

This is equivalent to the condition that χ = ±|χ|n where |χ| ≡ √χ · χ is the
norm of χ. Without loss of generality, we choose χ = |χ|n. As a consequence,
the partial gauge fixing (2.1) leaves the remaining three constraints (2.9) first
class only when (2.10) is satisfied. In that case, the expressions of (2.9) simplify
a lot and they can be written as

J0 ≡ Jn = n · J̃ , J1 ≡ CJv = Cu · J̃ , J2 ≡ CJu = −Cv · J̃ , (2.11)

where C = 1/
√
|χ2 − 1| is a normalization function and we introduced the vector

field

J̃ ≡ −1
γ

(
∂aE

a + ∂a(Ea × χ)× χ
)

+ Ãa × Ea (2.12)

given in terms of the su(2)-valued one form Ã defined by

Ãa = Aa − (Aa · χ)χ− ∂aχ . (2.13)

50



Finally, one shows that the constraints algebra reduces to the simple form

{J0,J1} = J2 , {J0,J2} = −J1 , {J1,J2} = σJ0 , (2.14)

where

σ ≡ 1− χ2

|1− χ2|
= sg(1− χ2). (2.15)

The function sg(x) denotes the sign of x 6= 0. As a consequence, the remaining
three constraints form an su(2) Poisson algebra when χ2 < 1 and an su(1, 1)
Poisson algebra when χ2 > 1 (the case χ2 = 1 is excluded from the scope of our
method and should be studied in a different way a). We can write the constraints
algebra in the more compact form

{Jα,Jβ} = εαβ
τ Jτ (2.16)

where α, β, τ ∈ (0, 1, 2) and εαβτ is the totally antisymmetric symbol with ε012 =
+1. Furthermore, the indices are lowered and raised with the flat metric and
its inverse diag(σ,+1,+1): it is the flat Euclidean metric δαβ when σ = +1 and
the flat Minkowski metric ηαβ ≡ diag(−1,+1,+1) when σ = −1. Hence, as
announced above, one recognizes respectively the su(2) and the su(1, 1) Lie alge-
bras.

Let us close this analysis with one remark. The gauge fixing condition (2.1)
makes the three constraints (2.2) (which are first class in the full Lorentz invari-
ant Holst action) second class. Hence, we have left two boosts and one rotation
first class in order to get an su(1, 1) gauge symmetry at the end of the process.
This is what we arrive at when χ2 > 1 but we obtain an su(2) gauge symmetry
when χ2 < 1 even though we kept two boosts among the remaining first class
constraints. The reason is that, at the end of the gauge fixing process, the remain-
ing first class constraints are non-trivial linear combinations of the six initial first
class constraints and the gauge fixing conditions. Hence, they could form either
an su(1, 1) or an su(2) algebra. The two most important ingredients in our con-
struction is that, first, we replace three out of the initial six first class constraints
by constraints of the type (2.7) which fix ζ, and second we impose that the re-
maining constraints (when ζ and χ are replaced from X ≈ 0 and Z ≈ 0) form
a closed Poisson algebra. In that respect, we could have considered the condi-
tions B.u ≈ B.v ≈ B.n ≈ 0 instead of (2.2): we would have obtained another
set of conditions fixing ζ and then, following the same strategy, we would have
shown that the remaining three constraints are generators of a closed algebra

a. This case corresponds to a slicing of the space-time in a light like direction. Our analysis
based on a partial gauge fixing can be adapted to that situation. Such a Hamiltonian description
could provide us with a new formulation (eventually simpler) of gravity in the light front related
to [145].
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provided that (2.10) is satisfied. The remaining symmetry would have been su(2)
or su(1, 1) depending on the sign of σ exactly as in the previous analysis.

2.2.2. On the space-time foliation
Let us discuss the reason why the sign σ of (χ2 − 1) determines the signature

of the symmetry algebra su(2) or su(1, 1). For that purpose, it is very instructive
to study the properties of the metric gab induced on the hypersurface Σ whose
expression is

gab ≡ eIaηIJe
J
b = eiaγije

j
b with γij ≡ δij − χiχj (2.17)

where we inverted the defining relation χi = eai e
0
a to replace e0

a by eiaχi. It is
immediate to notice that this formula is compatible with the expression of the
inverse metric given in [91, 142]

det(g) gab = (1− χ2)Ea
i γ

ijEb
j , γij ≡ δij −

χiχj
1− χ2 , (2.18)

due to the properties

Ea
i = det(e)eai , det(g) = (1− χ2)det(e)2 , γijγjk = δik . (2.19)

Thus, the identity (2.17) implies immediately that the metric induced on Σ has
the same signature as γij. This latter metric can be easily diagonalized and its
eigenvalues/eigenvectors are easily obtained from

γiju
j = ui when u · χ = 0 , and γijχ

j = (1− χ2)χi . (2.20)

Therefore, the signature of the metric depends on the sign of (χ2 − 1): Σ is
spacelike when χ2 < 1 whereas it inherits a Lorentzian metric when χ2 > 1. This
clearly explains the presence of σ in the constraints algebra (2.15) and the nature
of the gauge symmetry. When the symmetry algebra is su(2), the space-time is
foliated as usual into hypersurfaces orthogonal to a timelike vector whereas it
is foliated in a space-like direction when the symmetry algebra is su(1, 1). This
latest case is not conventional but it is the one we are interested in.

2.2.3. Phase space parametrization
From now on, we will mainly focus on the case χ2 > 1 which has never been

studied so far (we will shortly discuss the case χ2 < 1 at the end of this Sec-
tion). As the theory admits su(1, 1) as a gauge symmetry algebra, it is natural to
look for a parametrization of the phase space adapted to this symmetry. More
precisely, we look for conjugate variables which transform in a covariant way
under the Poisson action of the su(1, 1) generators. In a first part, we exhibit
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an unique su(1, 1)-valued connection which is commutative in the sense of the
Poisson bracket. This connection is the su(1, 1) analogous of the generalized
Ashtekar-Barbero connection defined for χ 6= 0 in [93, 142] for instance. In a
second part, we show that it is canonically conjugate to an electric field which
transforms as a vector under the action of the first class constraints. Hence, the
su(1, 1)-connection together with its conjugate electric field provide us with a
very useful and natural parametrization of the phase space. We finish with com-
puting the action of the vectorial constraints on these variables which transform
as expected under the action of the generators of diffeomorphisms.

2.2.3.1. The connection

Now, we address the problem of finding an su(1, 1) connection defined by

A = A0 J0 +A1 J1 +A2 J2 with [Jα, Jβ] = εαβ
τJτ (2.21)

which satisfies the following requirements. First, is constructed from the compo-
nents of A (such that it is commutative in the sense of the Poisson bracket) and
the non-dynamical vectors (χ, u and v) only. Second it transforms as

δεA = dε+ [A, ε] , (2.22)

under the action of the gauge transformations where ε = εα(x)Jα is an arbitrary
su(1, 1)-valued function on Σ. For this relation to make sense, we have to precise
the definition of δε in terms of the gauge generators. In particular, we have
to establish the link between the parameter % ∈ R3 entering in the smeared
constraint J̃ (%) and the parameter ε defining the su(1, 1) infinitesimal gauge
transformations of A. From (2.11), it is natural to expect that

δεA = {J̃ (%),A} with ε0 = % · n, ε1 = c1% · u, ε2 = c2% · v , (2.23)

where c1 and c2 are functions of χ. Now, the problem consists in finding the
components ofA and the functions c1 and c2 such thatA transforms as an su(1, 1)
connection under the action of the first class constraints.

We are going to propose an ansatz for A. As the expressions of the gauge
generators are simpler with Ã instead of A itself, we also look for an su(1, 1)
connection A written in terms of Ã. This is possible because, when χ2 6= 1, Ã
can be uniquely expressed in terms of A and χ inverting the relation (2.13) as
follows:

Aa = Ãa + ∂aχ+ χ · (Ãa + ∂aχ) χ

1− χ2 . (2.24)

Inspiring ourselves from the decomposition (2.11) of the first class constraints
into su(1, 1) gauge generators, we propose the following form for the compo-
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nents of A:

A0 = p0 (Ã · n) + q0 , A1 = p1 (Ã · u) + q1 , A2 = p2 (Ã · v) + q2 , (2.25)

where (p0, p1, p2) are functions of χwhereas (q0, q1, q2) are one-forms constructed
from dχ, du and dv only.

Hence, the problem reduces now in finding the functions (c1, c2) and (p0, p1, p2)
together with the one-forms (q0, q1, q2) which solve the equations (2.23). These
equations can be more explicitly written as

p0{J̃ (%), (Ã · n)} = d(% · n) + c1(p2 (Ã · v) + q2)% · u− c2(p1 (Ã · u) + q1)% · v ,(2.26)
p1{J̃ (%), (Ã · u)} = d(c1% · u) + (p2 (Ã · v) + q2)% · n− c2(p0 (Ã · n) + q0)% · v ,(2.27)
p2{J̃ (%), (Ã · v)} = d(c2% · v)− (p1 (Ã · u) + q1)% · n+ c1(p0 (Ã · n) + q0)% · u ,(2.28)

where each Poisson brackets on the l.h.s. are easily deduced from

{J̃ (%), Ã} = −1
γ

(1− χ2)d%+ Ã× %− 1
γ
χ× (dχ× %) + (Ã · χ× %)χ . (2.29)

A straightforward calculations show that the previous system reduces to the fol-
lowing three sets of equations:

p0(1− χ2) = c1p2 = c2p1 = −γ , dn+ c1q2u− c2q1v = 0 ,
p1 = −p2 = −c2p0 = γc1/(χ2 − 1) , d(c1u) + q2n− c2q0v + p1[(u · dχ)χ− (χ · dχ)u]/γ = 0 ,
p1 = −p2 = c1p0 = −γc2/(χ2 − 1) , d(c2v)− q1n+ c1q0u+ p2[(v · dχ)χ− (χ · dχ)v]/γ = 0 .

This is clearly an overcomplete set of conditions for the unkowns of the problem.
However, an immediate analysis shows that (up to a simple sign ambiguity), the
system admits an unique solution given by

p0 = γ

χ2 − 1 , p1 = γ√
χ2 − 1

, p2 = − γ√
χ2 − 1

, (2.30)

q0 = dv · u , q1 = − 1√
χ2 − 1

v · dn , q2 = − 1√
χ2 − 1

u · dn , (2.31)

with c1 = −c2 =
√
χ2 − 1.

As a conclusion, let us summarize the main results of this part. The theory
admits an su(1, 1) gauge connection A = A0J0 +A1J1 +A2J2 whose components

54



are

A0 = γ

χ2 − 1Ã · n+ u · dv , (2.32)

A1 = 1√
χ2 − 1

(
γÃ · u− v · dn

)
, (2.33)

A2 = − 1√
χ2 − 1

(
γÃ · v + u · dn

)
. (2.34)

We have just proved that it transforms as follows

δεA = {J̃ (%),A} = dε+ [A, ε] with % = ε0n+ ε1u− ε2v√
χ2 − 1

(2.35)

under the action of the first class constraints. Note that this transformation law
is totally consistent with the fact that

J̃ (%) = J0(ε0) + J1(ε1) + J2(ε2) , (2.36)

where the components of J̃ are the smeared su(1, 1) generators introduced in
(2.11).
Let us close this analysis with two remarks.
First, one can reproduce exactly the same analysis when χ2 < 1. In that case,
one obtains an su(2) connection whose expression is very similar to the previous
one obtained for su(1, 1): everything happens as if one makes the replacement√
χ2 − 1 7→ −

√
1− χ2 in the components of the connection. The su(2)-valued

connection is certainly related to the generalized Ashtekar-Barbero connection
obtained in different ways [141–143]. In the limit χ → 0 with n constant, one
recovers the usual Ashtekar-Barbero connection in the time-gauge written in the
orthonormal basis (n,−u, v):

A = A0 n−A1 u+A2 v = γA . (2.37)

Second, by construction, the limit χ → 0 does not exist for the su(1, 1)-valued
connection. The analogous of the time gauge is defined by the limit |χ| → ∞
where the direction n tends to a constant. Let us study this limit, and for simplic-
ity, we assume that the direction n is constant. Starting from the relation

Ãia = γωija χj + γω0i
a − γω0i

a χjχ
i , (2.38)

we obtain the following limits for the components of A

A0
a → −γ γω0i

a ni , A1
a → γ γωija njui , A2

a → −γ γωija njvi . (2.39)

One recognizes the components of the spin-connection in what we could call the
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“space-gauge" which would be defined by the choice eai n
i = 0 (instead of ea0 = 0

for the usual time gauge). As a consequence, the limit |χ| → ∞ with n constant
is well-defined and consists in a foliation of the space-time M = Σ × R where
the slices Σ are orthogonal to the space-like vector (0, n).

2.2.3.2. The electric field

We follow the same strategy to construct an electric field E which transforms
as an su(1, 1) under the gauge transformations. More precisely, we are looking
for E = E0J0 + E1J1 + E2J2 which satisfies two conditions. First we require
its components to be constructed from E, χ, u and v only and we consider the
natural ansatz

E0 = r0(E · n) , E1 = r1(E · u) , E2 = r2(E · v) , (2.40)

where (r0, r1, r2) are functions of χ only. Second we require E to transform as a
vector

δεE ≡ {J̃ (%), E} = [E , ε] with % = ε0n+ ε1u− ε2v√
χ2 − 1

, (2.41)

in adequacy with what has been done in the previous part for the connection. A
simple calculation shows that these conditions implies necessarily

r1 =
√
χ2 − 1 r0 , r2 = −

√
χ2 − 1 r0 , (2.42)

where, at this point, r0 is free because equations (2.41) form a linear system for
the unknowns (r0, r1, r2).
Let us close this analysis with three remarks.
First, the free parameter r0 can be fixed requiring in addition that E is canonically
conjugate to A according to

{A1, E1} = {A2, E2} = 1 and {A0, E0} = −1, (2.43)

which easily leads to r0 = 1/γ.

Second, it will be useful to express the (inverse of the) induced metric qab on Σ
in terms of the su(1, 1)-covariant electric field. A direct calculation shows that

det(g) gab = −γ2 Eαa ηαβ Eβb . (2.44)

Note that this formula makes very clear that the metric gab is Lorentzian and its
signature is (−1,+1,+1) as we have already seen in a previous analysis (2.20).
The final remark concerns the su(1, 1) gauge generators Jα. It is immediate to
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see that one can express them in terms of A and E only as follows

Jα(x) Jα = ∂aEa(x) + [Aa(x) , Ea(x)] . (2.45)

We recover the usual Gauss-like form of the constraints, and this expression
makes very clear that A and E transforms respectively as a connection and a
vector under the action of the gauge generators.

2.2.3.3. Transformations under diffeomophisms

As for the Ashtekar-Barbero connection (or its generalization), we do not ex-
pect A to be a fully space-time connection on M. However, it must transform
correctly under diffeomorphisms induced on the hypersurface Σ. To see this is
indeed the case, we first need to identify the generators of diffeomorphisms on
Σ. A direct calculation shows that they are given by the following linear combi-
nation of the su(1, 1) gauge generators and the vectorial constraints:

H̃(Na) ≡ H(Na)− γ

(1 + γ2)χ2 J̃ (NaΩa) with Ωa ≡ γχ× Aa − (Aa · χ)χ ,(2.46)

which, after some calculations, reduces to

H̃(Na) =
∫
d3xNa

(
Eb · (∂aAb − ∂bAa)− Aa · ∂bEb + ζ0 · ∂aχ

)
=

∫
d3xNaηαβ

(
Eαb · (∂aAαb − ∂bAαa )−Aαa · ∂bEαb

)
. (2.47)

Hence, it is immediate to see from this last expression that the constraints H̃(Na)
form the algebra of diffeomorphisms. Furthermore, their actions on A and E is
exactly the lie derivative along the vector field Na:

{H̃(Na),Ab} = −LNaAb , {H̃(Na), Eb} = −LNaEb . (2.48)

Thus, as announced above, A is an su(1, 1)-valued connection on Σ.

2.3. On the quantization
We have now all the ingredients to start the quantization of gravity formulated

in terms of the su(1, 1) gauge connection. Following the standard construction of
Loop Quantum Gravity, we assume that quantum states are polymer states, and
then we build the kinematical Hilbert space from holonomies of the connection
along edges on Σ.
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2.3.1. Quantum states on a fixed graph
As usual, to any closed graph Γ ⊂ Σ with N nodes and E edges, one associates

a kinematical Hilbert space Hkin(Γ) which is isomorphic to

Hkin(Γ) '
(
Fun[SU(1, 1)⊗E]/SU(1, 1)⊗N ; dµ⊗E

)
, (2.49)

where dµ is the Haar measure on SU(1, 1). Due to the non-compactness of the
gauge group, such a Hilbert space needs a regularization to be well-defined
(which consists basically in “dividing” by the infinite volume of the group). The
details of the regularization of non-compact spin-networks has been well studied
in [144]. However, it is well-known that the “projective sum" ⊕ΓHkin(Γ) on the
space of all graphs on Σ is ill-defined and, up to our knowledge, no one knows
how to construct a non-compact Ashtekar-Lewandowski measure. Thus, only
the kinematical Hilbert space on a fixed graph Γ is mathematically well-defined
and we limit the study of quantum states as elements of Hkin(Γ) only. Hence, a
quantum state is a function ψΓ[A] ≡ f(U1, · · · , UE) of the holonomies

Ue ≡ P exp
∫
e
A ∈ SU(1, 1) (2.50)

along the edges e of Γ. The electric field E is promoted as an operator whose
action on ψΓ is formally given by

Êai (x)ψΓ[A] = i`2
p

δ

δAia(x)ψΓ[A] , (2.51)

where `p is the Planck length. Note that the flux of E across a surface is a well-
defined operator on Hkin(Γ): it acts as a vector field on the space of SU(1, 1)
functions.

The Peter-Weyl theorem implies that ψΓ can be formally decomposed as follows

ψΓ[A] =
∑

s1,··· ,sE
tr
(
f̃(se)

E⊗
e=1

πse(Ue)
)

(2.52)

where

πs : SU(1, 1)→ End(Vs) and f̃ ∈
N⊗
e=1

V ∗se . (2.53)

The sum runs over unitary irreducible representations of SU(1, 1) labelled gener-
ically by se. We used the notation Vse for the modulus of the representation,
V ∗se for its dual, and tr denotes the pairing between ⊗eVse and its dual ⊗eV ∗se.
Due to the gauge invariance of ψΓ, the Fourier modes f̃ are in fact SU(1, 1) in-
tertwiners and the expression of ψ[A] needs a regularization to be well-defined

58



[144]. Furthermore, unitary irreducible representations of SU(1, 1), which are
classified into the two discrete series (both labelled with integers) and the con-
tinuous series (labelled with real numbers), are infinite dimensional (see [146]
for a review on representations theory of su(1, 1)).

2.3.2. Area operators
Thus, edges of SU(1, 1) spin-networks can be colored with discrete or real

numbers. The geometrical interpretation is clear: these two different types of
colors label edges which are normal to either time-like or space-like surfaces. To
see how to link the representations to the time-like or space-like natures of the
surfaces, we have to compute the spectrum of the area operators in terms of
the quadratic Casimir of su(1, 1). For that purpose, we start with the expression
(2.44) of the inverse metric gab that we contract twice with the normal na to a
given surface S. This leads to the formula

det(g)n2 = −γ2 (naEaα) ηαβ (Ebβnb) , (2.54)

where n2 = nanbg
ab. Hence, the determinant of the induced metric h on the

surface S is given by

det(h) = −γ2(naEaα) ηαβ (Ebβnb) . (2.55)

As a consequence, the action of the area operator Ŝ, punctured by an edge e
of the graph Γ colored by a representation se, on Hkin(Σ) is diagonal and its
eigenvalue S(s) is given by the equation

S(e)2 = −i2γ2`4
p πe(J2

1 + J2
2 − J2

0 ) = γ2`4
p πe(C) (2.56)

where πe(C) is identified with the unique eigenvalue of the Casimir tensor C ≡
−J2

0 + J2
1 + J2

2 in the representation se. Obviously, the evaluation πe(C) depends
on the nature discrete (se = je ∈ N) or continuous (se ∈ R) of the representation
according to

πje(C) = je(je + 1) and πse(C) = −(s2
e + 1

4) . (2.57)

We deduce immediately that S(e)2 is positive when e is colored with a discrete
representation whereas S(e)2 is negative when e is colored with a representation
in the continuous series. As a consequence, the area operator of any space-like
surface has a discrete spectrum and the area operator of any time-like surface
has a continuous spectrum. Furthermore, the spectrum of space-like areas is in
total agreement of the usual spectrum in Loop Quantum Gravity. Note that a
very similar result has been recently derived in the context of twisted geometries
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[74].

2.4. Discussion
In this chapter, we have formulated gravity as an SU(1, 1) gauge theory. We

have started with the Hamiltonian formulation of the fully Lorentz invariant
Holst action on a space-time manifold of the form M = Σ × R. Then we have
considered a partial gauge fixing which reduces the internal sl(2,C) gauge sym-
metry to su(1, 1). The 3-dimensional slice Σ inherits a Lorentzian metric of signa-
ture (−,+,+). The partial gauge fixing relies on the introduction on an external
non-dynamical vector field χ which measures the normal of the hypersurface Σ
but it plays in fact no physical role at the end of the process.

Next we found that the phase space of the partially gauge fixed theory is well-
parametrized by a pair (A, E) formed with an su(1, 1)-valued connection on Σ
and its canonically conjugate electric field whose components can be identified
to vectors in the flat (2+1) Minkowski space-time. The phase space comes with
first class constraints: the Gauss constraints which generate su(1, 1) gauge trans-
formations, the vectorial constraints which have been shown to generate diffeo-
morphisms on Σ and the usual scalar constraint that we have not studied in this
work.

Finally, we have explored the quantization of the theory studying some aspects
of the kinematical Hilbert space Hkin(Γ) on a fixed given graph Γ which lies on
Σ. Due to the non-compactness of the gauge group SU(1, 1), Hkin(Γ) needs a
regularization to be well-defined and the projective sum over all possible graphs
is not under control. This is why we restrict our study to the quantization on
a fixed graph only. We compute the spectrum of the area operators acting on
Hkin(Γ) and found that the spectrum is discrete for space-like surfaces and con-
tinuous for time-like surfaces. Furthermore, the usual quantization of the Holst
action in the time-gauge (χ = 0) and the new quantization presented here and
based to another totally inequivalent partial gauge fixing (χ2 > 1) lead to exactly
the same spectrum of the area operator (on space-like surfaces) at the kinemat-
ical level. This strongly suggests that the time gauge introduces no anomaly in
the quantization of gravity, at least at the kinematical level, as it was already
underlined in [142] in a different situation.

This formulation of gravity seems very interesting because it offers another
point of view on the quantization of gravity in four dimensions. Now, we have
a description of the kinematical quantum states of gravity not only on space-like
surfaces Σ but also on time-like surfaces (only remains the description of the
quantum states on null-surfaces, what we hope to study in the future). Hence,
with those space-like and time-like kinematical quantum states, we are closer to
have a fully covariant description of quantum gravity. In that respect, it would
be very instructive to make a contact between these two canonical quantizations

60



and spin-foam models for covariant quantum gravity. Furthermore, if we un-
derstand how to “connect" the time-like and the space-like kinematical quantum
states, we could open a new and promising way towards a better understanding
of the dynamics in Loop Quantum Gravity.

i0

I+

I-

i+

i0

I+

I-

i+

Figure 2.1. – Different Hamiltonian slicings of a spherical black hole space-time.
The picture (b) represents the usual slicing in terms of space-like
hypersurfaces which leads to the effective SU(2) Chern-Simons de-
scription of the black hole: In that case, the horizon appears as a
boundary of Σ. In the picture (a), we have represented two slicings
of the black hole space-time where Σ are Lorentzian hypersurfaces:
these gauge choices would lead to new descriptions of black holes in
Loop Quantum Gravity. In particular, the slicing which does not
cross the horizon is interesting in view of a holographic description
of black holes in the frame of Loop Quantum Gravity.

It is also interesting to notice that the Hamiltonian constraint in the formalism
where Σ is space-like becomes a component of the vectorial constraints in the
formalism where Σ is time-like. The reverse is also true. As we know very
well how to quantize the vectorial constraints on the kinematical Hilbert space,
we think again that understanding the relation between these two Hamiltonian
quantizations could lead us to a solution of the Hamiltonian constraint. We hope
to study these questions related to the quantum dynamics in the future.

Beside, we deeply think that this new formulation will allow us to understand
better the physics of quantum black holes in Loop Quantum Gravity. In the usual
treatment [38–41, 147–150], black holes are considered as isolated horizons and
they appear as boundary of a 3 dimensional space-like hypersurface Σ. Their
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effective dynamics has been shown to be governed by an SU(2) Chern-Simons
theory whose quantization leads to the construction and the counting of the
quantum microstates for the black holes. With the su(1, 1) formulation of gravity,
it is now possible to start a Hamiltonian quantization of gravity where Σ is time-
like. Naturally, one would expect that quantizing black holes with space-like
or time-like slices would lead to two equivalent descriptions of the black hole
microstates. At first sight, we would say that, starting with a time-like slicing,
one would get an SU(1, 1) Chern-Simons theory as an effective dynamics for the
spherical black hole for instance. Thus, we can ask the question how an SU(1, 1)
and an SU(2) Chern-Simons theories could provide two equivalent Hilbert spaces
when they are quantized. This may be possible when γ becomes complex and
equal to ±i because, in that case, we expect the two gauge group of the Chern-
Simons theories to become the same Lorentz group. This would give one more
argument in favor of the analytic continuation procedure introduced and studied
in [151–155]. However, this idea might be too naive because, on a time-like
slicing, the black hole does not appear as a boundary anymore and a particle
leaving on the slice Σ now cross the horizon and does not see any border. To
finish, this new formulation of Loop Quantum Gravity opens the possibility to
define a kind of “holographic" description for black holes in the framework of
Loop Quantum Gravity as shown in the picture Fig. 2.1 above. We hope to study
all these very intriguing aspects related to black holes in a future work

Appendix

2.A. “Time” vs. “Space" gauge in the Holst action
The very well-known “time" gauge refers to the condition e0

a which breaks
sl(2,C) into su(2) in the Holst action. It corresponds to taking a slicing Σ× R of
the space-time where the hypersurfaces Σ are space-like. In fact, one can easily
generalize the time gauge by considering instead the condition eµanµ = 0 where
nµ is a given fixed vector. When nµ is time-like, the slices Σ are space-like (as
for the time gauge where nµ = δ0

µ) whereas the slices are time-like when nµ is
space-like. We want to study thus latter case in this appendix. To simplify the
analysis, we assume (without loss of generality) that nµ = δ3

µ.
We are going to show that the Hamiltonian analysis of the Holst action such a

gauge leads to a phase space which corresponds to the limit |χ| → ∞ and ni → δ3
i .

First, we notice that the only non vanishing components of πaIJ are Ea
α ≡ πaα3 with

α ∈ (0, 1, 2). It is immediate to check that the simplicity constraints Cab ≈ 0 are
satisfied. In this gauge, it is “natural" to choose the third direction to be the
“time" parameter because of the slicing. Hence, the “symplectic" term (in the
third direction) in the Holst action involves only the component γωα3

a of the spin-
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connection (with α ∈ (0, 1, 2) and a ∈ (0, 1, 2) also) according to the formula

γπaIJ ∂3ω
IJ
a = Ea

α∂3A
α
a , where Aαa ≡ γωα3

a . (2.58)

Hence, the connection A is clearly the variable canonically conjugate to E. Fi-
nally, one shows that the resolution of the second class constrains Dab ≈ 0 leads
to the following expression for the gauge generators

J0 = −1
γ
∂aE

a0 − A1
aE

a2 + A2
aE

a1 , (2.59)

J1 = −1
γ
∂aE

a2 + A0E1 − A1E0 , (2.60)

J2 = 1
γ
∂aE

a1− A0E2 + A2E0 . (2.61)

They satisfy the constraints algebra

{J0,J1} = J2 , {J0,J2} = −J1 , {J1,J2} = −J0 , (2.62)

which is nothing by the su(1, 1) algebra. At this point, it is not difficult to see that
the associated covariant connection has the following components

A0
a = −γ γω03

a , A1
a = γ γω23

a , A2
a = −γ γω13

a . (2.63)

We recover as announced the same expression of the su(1, 1)-valued connection
in the limit |χ| → ∞ (2.39) a part that we have interchanged the components 0
and 3 of space-time indices.
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3.1. Introduction
In this cahpter we extend the semiclassical analysis of extended model to gen-

eral situations, in which we take into account both timelike tetrahedra and time-
like triangles. Our work is motivated by the examples of geometries in classical
Lorentzian Regge calculus, and their convergence to smooth geometries [86–88].
In all examples the Regge geometries contain timelike triangles. In order to have
the Regge geometries emerge as critical configurations from spin foam model,
we have to extend the semiclassical analysis to contain timelike triangles.

In our analysis, we first derive the large-j integral form of the extended spin
foam model with coherent states for timelike triangles. The large-j asymptotic
analysis is based on the stationary phase approximation of the integral. The
asymptotics of the integral is a sum of contributions from critical configurations.

Before coming to our main result, we would like to mention some key as-
sumptions for the validity of the result: The following results are valid when
we assume every timelike tetrahedron containing at least one spacelike and one
timelike triangle. It is the case in all Regge geometry examples mentioned above.
Our results also apply to some special cases when all triangles in a tetrahedron
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are timelike. Moreover all tetrahedra in our discussion are assumed to be non-
degenerate. Here we don’t consider the critical configurations with a degenerate
tetrahedron. Finally, the Hessian evaluated at every critical configuration is as-
sumed to be a non-degenerate matrix.

The main result is summarized as follows: Firstly for a single 4-simplex and
its vertex amplitude, it is important to have boundary data satisfy the length
matching condition and orientation matching condition. Namely, (1) among the
5 tetrahedra reconstructed by the boundary data (by Minkowski Theorem), each
pair of them are glued with their common triangles matching in shape (match
their 3 edge lengths), and (2) all tetrahedra have the same orientation. The
amplitude has critical configurations only if these 2 conditions are satisfied, oth-
erwise the amplitude is suppressed asymptotically, The critical configurations
have geometrical interpretations as geometrical 4-simplices, which may gener-
ally have one of three possible signatures: Lorentzian, split, or degenerate.

— When the 4-simplex has Lorentzian signatures: The contribution at the crit-
ical configuration is given by a phase, whose exponent is Regge action with
a sign related to orientations, i.e. the vertex amplitude gives asymptotically

Av ∼ N+eiS∆ +N−e−iS∆ (3.1)

up to an overall phase depending on the boundary coherent state. The
Regge action in the 4-simplex reads S∆ = ∑

f Afθf with Af the area of
triangle f . θf relates to the dihedral angle Θf by θf = π − Θf . The area
spectrum is different between timelike and spacelike triangles in a timelike
tetrahedron.

Af =
{

nf
2 timelike triangle
γjf spacelike triangle (3.2)

nf ∈ Z+ satisfies the simplicity constraint nf = γsf where sf ∈ R+ labels
the continuous series irreps of SU(1, 1). jf ∈ Z+/2 labels the discrete series
irreps of SU(1, 1). N± are geometric factors depend on the lengths and
orientations of the reconstructed 4 simplex.

— The reconstructed 4-simplices have split signatures: The vertex amplitude
gives asymptotically

Av ∼ N+eiγ−1S∆ +N−e−iγ−1S∆ (3.3)

up an overall phase. Here S∆ = ∑
f Afθf where θf is a boost dihedral angle.

— The reconstructed 4-simplices are degenerate (vector geometry) and there
is a single critical point. The asymptotical vertex amplitude is given by a
phase depending on the boundary coherent states.

It is important to remark that for a vertex amplitude containing at least one
timelike and one spacelike tetrahedron, critical configurations only give Lorentzian
4-simplices, while the split signature and degenerate 4-simplex do not appear.
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The last 2 cases only appear when all tetrahedra are timelike in a vertex ampli-
tude. The situation is similar to Lorentzian EPRL/FK model, where the Euclidean
signature and degenerate 4-simplex appear because all tetrahedra are spacelike.

Our analysis is generalized to the spin foam amplitude on a simplicial complex
K with many 4-simplices. We identify the critical configurations corresponding to
simplicial geometries with all 4-simplices being Lorentzian and globally oriented.
The configurations come in pairs, corresponding to opposite global orientations.
Each pair gives the following asymptotic contribution to the spin foam amplitude
(up to an overall phase)

N+eiSK +N−e−iSK (3.4)
where

SK =
∑
f bulk

Afεf +
∑

f boundary

Af (θf + pfπ) (3.5)

is the Regge action on the simplicial complex, up to a boundary term with pf ∈ Z
(pf is the number of 4-simplices sharing f minus 1). The additional boundary
term pfAfπ doesn’t affect the Regge equation of motion. Here the simplicial
geometries and Regge action generally contain timelike tetrahedra and timelike
triangles. εf is the deficit angle. εf and θf at timelike triangles are given by

εf = 2π −
∑
f

Θf (v), θf = π −
∑
f

Θf (v) (3.6)

Θf(v) is the dihedral angle within the 4-simplex at v. It is a rotation angle be-
tween spacelike normals of tetrahedra, because the tetrahedra sharing a timelike
triangle are all timelike.

To obtain (3.4), we have assumed each bulk triangle is shared by an even
number of 4-simplices. This assumption is true in many important examples of
classical Regge calculus.

This chapter is organized as follows. In section 3.2, we write the coherent
states for timelike triangles in large j approximation and express the spin foam
amplitude in terms of the coherent states. In section 3.3, we derive and analyze
the critical equations. The critical equations are reformulated in geometrical
form for a timelike tetrahedron containing both spacelike and timelike triangles.
Then in section 3.4, we reconstruct nondegenerate simplicial geometries from
critical configurations. In section 3.5, the critical configurations for degenerate
geometries are analyzed. Finally in section 3.7, we derive the difference between
phases evaluated at pairs of critical configurations corresponding to opposite
orientated simplicial geometries.
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3.2. Spinfoam amplitude in terms of SU(1,1)
continuous coherent states

The spin foam models are defined as a state sum model over simplicial man-
ifold K and it’s dual, which consists of simplices σv, tetrahedra τe, triangles f ,
edges and vertices (v,e and f are labels for vertices, edges and faces on the dual
graph respectively). A triangulation is obtained by gluing simplices σ with pairs
of their boundaries (tetrahedrons τ). The phase space associated with manifold
K are

PK = T ∗SL(2,C)L, (ΣIJ
f , hf ) ∈ T ∗SL(2,C) (3.7)

for a Lorentzian model, where L is the number of triangles, hf ∈ SL(2,C) is the
holonomy along the edges and ΣIJ

f ∈ sl(2,C) is its conjugate momenta. hf can
be decomposed as

hf =
∏
v⊂∂f

gevgve′ (3.8)

where gve ∈ SL(2,C) and gev = gve
−1. ΣIJ

f is subject to the simplicity constraint

γ

1 + γ2 (ue)I((1− γ∗)Σf IJ) = 0 (3.9)

where ue is a 4 normal vector associated to each tetrahedron te, γ is a real number
known as the Immirizi parameter, and ∗ is the Hodge dual operator. Geometri-
cally, the simplicity constraint implies that, each triangle f in tetrahedron te is
associated with a simple bivector

Bf = γ

1 + γ2 (1− γ∗)Σf (3.10)

The state sum is defined over all quantum states of the physical Hilbert space
on a given K, given as

Z(K) =
∑
J

∏
f

µf (Jf )
∏
v

Av(Jf , ie) (3.11)

Here J = ~jf represents the combination of labels of the SL(2,C) irreps associated
to each triangle. ie is the intertwiner associated with each tetrahedron

ie ∈ InvG[VJ1 ⊗ · · · ⊗ VJ4 ] (3.12)

which impose the gauge invariance. The vertex amplitude Av(Jf , ie) associated
with each 4 simplex σv captures the dynamics of the model, while the face am-
plitude µf (Jf ) is a weight for the J sum.

Usually a partial gauge fixing is taken to the above models, which correspond-
ing to pick a special normal u for all of the tetrahedra ∀e, ue = u . As a result, the
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intertwiners associated with each tetrahedron defined above is replaced by the
intertwiners of the the stabilizer group H ∈ G. There are two different gauge
fixing:

— u = (1, 0, 0, 0), H = SU(2) , EPRL/FK models
— u = (0, 0, 0, 1), H = SU(1, 1), Conrady-Hnybida Extension

which, after impose the quantum simplicity constraint (3.9) lead to the following
conditions [61, 63, 64]

— u = (1, 0, 0, 0), spacelike triangles

ρ = γn, n = j (3.13)

— u = (0, 0, 0, 1), spacelike triangles

ρ = γn, n = j (3.14)

— u = (0, 0, 0, 1), timelike triangles

ρ = −n/γ, s = 1
2
√
n2/γ2 − 1 (3.15)

Here (ρ ∈ R, n ∈ Z/2) are labels of SL(2,C) irreps, j ∈ N/2 is the label of SU(2)
irreps or SU(1, 1) discrete series and s ∈ R is the label of SU(1, 1) continous series,
we will give a brief introduction of SU(1, 1) and SL(2,C) representation theory
later. As a result, the area spectrum is given by

Af =
{

nf
2 timelike triangle
γjf spacelike triangle (3.16)

The spin foam vertex amplitude can be expressed in the coherent state repre-
sentation:

Av(K) =
∑
jf

∏
f

µ(jf )
∫

SL(2,C)

∏
e

dgνe
∏

(e,f)

∫
S2
dNef

〈
Ψρfnf (Nef )

∣∣∣D(ρf ,nf )(gevgve′)
∣∣∣Ψρfnf (Ne′f )

〉
(3.17)

Here N is the unit vector in a sphere or hyperbolid which labels the coherent
states |Ψρn〉 of SL(2,C) in the unitary irrep H(ρ,n). By SU(1, 1) decomposition
of SL(2,C) unitary irrep, SL(2,C) irrep is isomorphic to a direct sum of irreps
of SU(1, 1). The area of timelike triangles is related to SU(1, 1) spin s and the
Immirzi parameter γ by Af = γ

√
s2 + 1/4 which is consistent with the spectrum

from canonical approach [61, 156]. However, the solution of quantum simplicity
constraint (3.9 on timelike triangles induced a Y -map where the physical Hilbert
space H ∈ H(ρ,n) is isomorphic to continuous series of SU(1, 1) with spin s fixed
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by (3.15). As a result, the area spectrum is now given by

Af = γ
√
s2 + 1/4 = nf

2 (3.18)

which is quantized.
In the following, we first give a brief introduction of the SU(1, 1) and SL(2,C)

representation theory. Then we write the SL(2,C) states explicitly using con-
tinuous SU(1, 1) coherent states in terms of spinor variables. Finally we derive
the integral from of spin foam amplitude on timelike triangles with a spin foam
action.

3.2.1. Representation theory of SL(2,C) and SU(1, 1) group
SL(2,C) group has 6 generators J i and Ki with commutation relation

[J i, J i] = εijk J
k, [J i, Kj] = εijkK

k,

[Ki, Kj] = −εijk Jk
(3.19)

The unitary representations of the group are labelled by pairs of numbers (ρ ∈
R, n ∈ Z+) from the two Casimirs

C1 = 2( ~J2 − ~K2) = 1
2(n2 − ρ2 − 4)

C2 = −4 ~J · ~K = nρ
(3.20)

The Hilbert spaceH(ρ,n) of unitary irrep of SL(2,C) can be represented as a space
of homogeneous functions F : C2\{0} → C with the homogeneity property

F (βz1, βz2) = βiρ/2+n/2−1β∗iρ/2−n/2−1F (z1, z2) (3.21)

The inner product in H(ρ,n) is given by

〈F1|F2〉 =
∫
CP1

π((F1)∗F2ω) (3.22)

where π : C2 \ {0} → CP1. ω is the SL(2,C) invariant 2-form defined by

ω = i
2(z2dz1 − z1dz2) ∧ (z̄2dz̄1 − z̄1dz̄2) (3.23)

SU(1, 1) group is a subgroup of SL(2,C) with generators ~F = (J3, K1, K2). ~F
and ~G = i~F = (K3,−J1,−J2) transform as Minkowski vectors under SU(1, 1).
The Casimir reads Q = (J3)2 − (K1)2 − (K2)2. The unitary representation of
SU(1, 1) group is usually built from the eigenstates of J3 which is labelled by
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j,m:
〈jm|jm′〉 = δmm′ (3.24)

where m is the eigenvalue of J3 and j related to the eigenvalues of the Casimir
Q.

The unitary irrep of SU(1,1) contains two series: the discrete series and con-
tinuous series. For the discrete series, one has

Q |jm〉 = j(j + 1) |jm〉 , with j = −1
2 ,−1,−3

2 , ... (3.25)

The eigenvalue m of J3 takes the values

m = −j,−j + 1,−j + 2.... or m = j, j − 1, j − 2.... (3.26)

The Hilbert spaces of spin j are denoted by D±j with m>
<0. For the continuous

series, Q takes continuous value

Q |jm〉 = j(j + 1) |jm〉 (3.27)

where j = −1/2 + is and s is a real number s ∈ R+. Thus in continuous case, we
can use s instead of j to represent the spin. The eigenvalues m takes the values

m = 0,±1,±2, ... or m = ±1
2 ,±

3
2 , ... (3.28)

The irreps of this series are denoted by Cε
s where ε = 0, 1/2 corresponding to the

integer m and half-integer m respectively.
Instead of |jm〉, one may also choose the generalized continuous eigenstates
|jλσ〉 of K1 as the basis of the irrep Hilbert space [157]:

〈jλ′σ′|jλσ〉 = δ(λ− λ′)δσσ′ (3.29)

where σ = 0, 1 distinguish the two-fold degeneracy of the spectrum and λ here
is a real number. For continuous series irreps, Casimir Q takes

Q |jλσ〉 = j(j + 1) |jλσ〉 = −
(
s2 + 1

4

)
|jλσ〉 . (3.30)

3.2.2. Unitary irreps of SL(2,C) and the decomposition into
SU(1, 1) continuous state

The Hilbert spaceH(ρ,n) can be decomposed as a direct sum of irreps of SU(1, 1).
The decomposition can be derived from the homogeneity property and the Plancherel
decomposition of SU(1, 1). As shown in [62], the functions F in the SL(2,C)
Hilbert space satisfying (3.21) can be described by pairs of functions fα : SU(1, 1)→
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C, α = ±1 via
F (z1, z2) =

√
π(α〈z, z〉)iρ/2−1fα(vα(z1, z2)), (3.31)

where vα is the induced SU(1, 1) matrix

vα =


1√
〈z,z〉

(
z1 z2
z̄2 z̄1

)
, α = 1

1√
−〈z,z〉

(
z̄2 z̄1
z1 z2

)
, α = −1

(3.32)

with 〈z, z〉 = z†σ3z = z̄1z1 − z̄2z2 being SU(1, 1) invariant inner product. Here α
is a signature

α =
{

1, |z1| > |z2|
−1, |z1| < |z2|

(3.33)

Then H(ρ,n) is isomorphic to the Hilbert space L2(SU(1, 1)) ⊕ L2(SU(1, 1)) with
inner product 〈

(f+
1 , f

−
1 )
∣∣∣(f+

2 , f
−
2 )
〉

=
∑
α

∫
dv(fα1 (v))∗fα2 (v) (3.34)

where dv is the SU(1,1) measure.
The function f in SU(1, 1) continuous series representations with continuous

basis reads

fαjλ(z) =
{ √

2j + 1(Dj
n/2,λ(v(z)), 0), α = 1√

2j + 1(0, Dj
−n/2,λ(v(z))), α = −1 (3.35)

Noticed that here we assume s 6= 0. Dj
mλ is the Wigner matrix with mixed basis

(3.24) and (3.29)

Dj
mλσ(v) = 〈j,m| v(z) |j, λ, σ〉 (3.36)

Recall the quantum simplicity constraint (3.15),

ρ = −n/γ, s = 1
2
√
n2/γ2 − 1 (3.37)

Asymptotically, when s� 1, we have

ρ ∼ −2s ∼ −n
γ

(3.38)

Since n is discrete, s and ρ are also discrete.
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3.2.3. Derivation of representation matrix
Now we will derive the wigner matrix of continuous series in unitary irreps

of SU(1,1) group in the large s approximation. We begin with the introduction
of the wigner matrix of continuous series given in [158]. Then by transforma-
tions of hypergeometric functions and saddle point approximation we obtain the
representation matrix in large s limit.

3.2.3.1. Wigner matrix

First let us introduce the parametrization of the SU(1, 1) group element v:

v(z) =eiφJ3eitK2eiuK1 =
(
v1 v2
v̄2 v̄1

)
(3.39)

where

v1 = e
iφ
2

(
cosh

(
t

2

)
cosh

(
u

2

)
− i sinh

(
t

2

)
sinh

(
u

2

))
(3.40)

v2 = e
iφ
2

(
i cosh

(
u

2

)
sinh

(
t

2

)
− cosh

(
t

2

)
sinh

(
u

2

))
(3.41)

Note that the generators defined here is complex version of what we used in the
main part. In this parametrization, the wigner matrix which defined as

Dj
mλσ(v) = 〈j,m| v |jλσ〉 (3.42)

can be expressed by [158]

Dj
mλσ = eimφdjmλσeiλu = eimφSjmλσ

(
T jmλF

j
m,iλ(β)−(−1)σT j−mλF

j
−m,iλ(β̄)

)
eiλu (3.43)

where

F j
m,iλ(β) = (1− β)(m−iλ)/2β(m+iλ)/2

2F1 (−j +m, j +m+ 1;m+ iλ+ 1; β) (3.44)

T jmλ = 1
Γ(−m− j)Γ(m+ 1 + iλ) (3.45)

Here 2F1(a, b, c, z) refers to Gaussian hypergeometric function, and Γ(z) is the
Gamma function. Normalization factor Sjmλσ reads

Sjmλσ =

√√√√ Γ(m− j)
Γ(m+ j + 1)

2j−1Γ(−j + iλ)
iσ sin(π/2(−j − iλ+ σ)))

(3.46)

with β = (1− i sinh(t))/2.
Above equation (3.43) can be written in terms of normalized spinors v =
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(v1, v2) in SU(1, 1) inner product 〈v, v〉 = 1. According to the parametrization, we
have

v1 + v2 = e−u2 + iφ
2

(
cosh

(
t

2

)
+ i sinh

(
t

2

))
, v1 − v2 = eu2 + iφ

2

(
cosh

(
t

2

)
− i sinh

(
t

2

))
(3.47)

Wigner matrix D can be written in terms of v and v̄

Dj
mλσ = Sjmλσ

(
T jmλF

j
m,iλ(v)− (−1)σT j−mλF

j
−m,iλ(v̄)

)
(3.48)

with

F j
m,iλ(v) =2−m(v1 + v2)(m−iλ)(v1 − v2)(m+iλ)×

2F1 (−j +m, j +m+ 1;m+ iλ+ 1; (v̄1 + v̄2)(v1 − v2)/2)
(3.49)

3.2.3.2. Asymptotics of Gauss hypergeometric function

According to (3.43), we need to evaluate the hypergeometric function

2F1 (−j +m, j +m+ 1;m+ iλ+ 1; β) ,
2F1 (−j −m, j −m+ 1;−m+ iλ+ 1; 1− β)

(3.50)

The function itself is complicated. However, we only need the asymptotics behav-
ior with j ∼ m ∼ λ � 1 in our case. According to (3.35), m is chosen to be n/2
which related to j = −1/2 + is by simplicity constraint (3.15). Correspondingly,
λ is also chosen to be related to s.

First we would like to transform the original function to a more convenient
form. According to the transformation properties of hypergeometric function,
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we have

2F1 (−j +m, j +m+ 1;m+ iλ+ 1; β) = (1− β)−m+iλ
2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β)

(3.51)
2F1 (−j −m, j −m+ 1;−m+ iλ+ 1; 1− β)

= (β)m+iλ
2F1 (j + iλ+ 1,−j + iλ;−m+ iλ+ 1; 1− β) (3.52)

sin(π(−m+ iλ))
πΓ(m+ iλ+ 1) 2F1 (−j +m, j +m+ 1;m+ iλ+ 1; β)

=β−m−iλ 2F1 (j − iλ+ 1,−j − iλ;m− iλ+ 1; 1− β)
Γ(m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j) (3.53)

− (1− β)−m+iλ 2F1 (j + iλ+ 1,−j + iλ;−m+ iλ+ 1; 1− β)
Γ(−m+ iλ+ 1)Γ(−j +m)Γ(j +m+ 1)

sin(π(m+ iλ))
πΓ(−m+ iλ+ 1)2F1 (−j −m, j −m+ 1;−m+ iλ+ 1; 1− β)

=(1− β)m−iλ 2F1 (j − iλ+ 1,−j − iλ;−m− iλ+ 1; β)
Γ(−m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j) (3.54)

− (β)m+iλ 2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β)
Γ(m+ iλ+ 1)Γ(−j −m)Γ(j −m+ 1)

From (3.52) and (3.53), we have

2F1 (−j −m, j −m+ 1;−m+ iλ+ 1; 1− β) = Γ(−m+ iλ+ 1)Γ(−j +m)Γ(j +m+ 1)×(
−(β)m+iλ sin(π(−m+ iλ))

πΓ(m+ iλ+ 1) 2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β)

+ (1− β)m−iλ

Γ(m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j)2F1 (j − iλ+ 1,−j − iλ;m− iλ+ 1; 1− β)
)

(3.55)

Similarly, from (3.51) and (3.54), we have

2F1 (−j +m, j +m+ 1;m+ iλ+ 1; β) = Γ(m+ iλ+ 1)Γ(−j −m)Γ(j −m+ 1)×(
−(1− β)−m+iλ sin(π(m+ iλ))

πΓ(−m+ iλ+ 1) 2F1 (j + iλ+ 1,−j + iλ;−m+ iλ+ 1; 1− β)

+ β−m−iλ

Γ(−m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j)2F1 (j − iλ+ 1,−j − iλ;−m− iλ+ 1; β)
)

(3.56)
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Then in terms of (3.51) and (3.55), the function djmλσ can be written as

djmλσ(β) =Sjmλσ
[

(1 + (−1)σ tan(π(−m+ iλ)))

× (1− β)(−m+iλ)/2β(m+iλ)/2
2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β)

Γ(−m− j)Γ(m+ iλ+ 1)

− (−1)σβ
(−m−iλ)/2(1− β)(m−iλ)/2

2F1 (j − iλ+ 1,−j − iλ;m− iλ+ 1; 1− β)
Γ(m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j)Γ−1(j +m+ 1)

]
(3.57)

Now we only need to evaluate the hypergeometric function
2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β), since 2F1 (j − iλ+ 1,−j − iλ;m− iλ+ 1; 1− β)
is nothing else but the complex conjugation of the previous one. Similar, start
from (3.52) and (3.56), we have

djmλσ(β) =Sjmλσ
[

(− tan(π(m+ iλ))− (−1)σ)

× (1− β)(−m+iλ)/2β(m+iλ)/2
2F1 (j + iλ+ 1,−j + iλ;−m+ iλ+ 1; 1− β)

Γ(m− j)Γ(−m+ iλ+ 1)

+ β(−m−iλ)/2(1− β)(m−iλ)/2
2F1 (j − iλ+ 1,−j − iλ;−m− iλ+ 1; β)

Γ(−m− iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j)Γ−1(j −m+ 1)

]
(3.58)

Clearly the two expression obey the relation djmλσ(β) = −(−1)σdj−mλσ(β̄)
From (3.57), we need the large s approximation of the hypergeometric func-

tion 2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β). Here we will only concentrate on the
the parameters such that m = n/2 = γs and λ ∼ s are satisfied. In this choice,
all the parameters will scale together with s. A choice of λ is λ = −s. The gen-
eralization to parameters where m and λ scales with Λ but takes different value
is straight forward. Noted the smearing of λ requires to calculate λ = −s0 + ε
where ε� λ.

For simplicity, we will transform the original function as

2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β)

=(1− β)−1/2
2F1

(
j + iλ+ 1, j +m+ 1;m+ iλ+ 1; β

β − 1

)
with λ = −s,m = γs, γ > 0

=(1− β)−1/2
2F1

(
1
2 ,

1
2 + (γ + i)s; (γ − i)s+ 1; β

β − 1

)
(3.59)
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We will use the integral representation for Hypergeometric functions [159]:

2F1(a, b; c; z) = Γ(1 + b− c)Γ(c)
2πiΓ(b)

∫ 1+

0

tb−1(t− 1)c−b−1

(1− zt)a dt, if c− b /∈ N & Re(b) > 0

(3.60)

The validity region for these equations is | arg(1− z)| < π. In (3.60), the integra-
tion path is the anti-clockwise loop that starts and ends at t = 0, encircles the
point t = 1, and excludes the point t = 1/z. In our case, we have Re(c− b) = 1/2
and Re(b) = 1/2 +m = 1/2 + γs which satisfy the requirement. Thus with (3.60)
we rewrite the original hypergeometric function as

2F1

(
1
2 ,

1
2 + (γ + i)s; (γ − i)s+ 1; β

β − 1

)
= G(s)

2πi

∫ 1+

0
dtf(t, β)esΨ(t) (3.61)

where Ψ(t) and f(t, β) are

Ψ(t) = (γ + i) ln t− 2i ln(t− 1), f(t, β) =
(
t(t− 1)(1− βt

β − 1)
)− 1

2

(3.62)

and G(s) is

G(s) =
Γ(1

2 + 2is)Γ((γ − i)s+ 1)
Γ(1

2 + (γ + i)s) ∼

√
2π(γ − i)s((γ − i))(γ−i)s(2i)2is

((γ + i))(γ+i)s
(3.63)

Here we use the asymptotic formula of Γ functions

Γ(z) ∼
√

2πzz−1/2e−z (3.64)

Note that |G(s)| ∼
√
s exp(−πs). We will see later the contribution form exp(−πs)

will cancel the contribution form | exp(sΨ(t))| at the saddle point t0.
Clearly when β/(β − 1) 6= 1, we have three branch points t = 0, t = 1 and

t = (β − 1)/β for f(t, z) and two branch points t = 0 and t = 1 for Ψ(t). The
branch cuts for Ψ(t) on the real axis are given by (−∞, 0] and (0, 1], which can
be seen in Fig. 1. We need to exclude the point tβ = (β − 1)/β from the path.
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Figure 1. – The value of Re(Φ(t)) (dash line) and the steepest decent and ascend
path (black line) over the t-complex plane for γ = 0.1. The blue line
shows the position of possible poles tβ of f

There is one saddle point t0 given by the solution of the equation Ψ′(t) = 0

t0 = γ + i
γ − i (3.65)

consequently, at the saddle point Re(Ψ(t0)) = π. The steepest decent and ascend
curves are shown in Fig. 1. The original integration path then can be deformed
as the steepest decent curve and two equal real part curve of Ψ(t).

The corresponding value at the saddle point t0 reads

esΨ(t0) =
(
γ + i
γ − i

)(γ+i)s ( 2i
i + γ

)−2is

, f(t0, β) = (2i)iε
√

2i

(
γ − i(1− 2β)

1− β

)− 1
2−iε (

γ + i
(γ − i)3

)− 1
2

(3.66)

and

Φ′′(t0) = −i(γ − i)3

2(γ + i) , α = arg(nΨ′′(t0)) = π

2 − arg
(

sgn(γ + i)
sgn(γ − i)3

)
, θ = π − α

2
(3.67)

Then by the saddle point approximation we have

I = G(n)
2πi

∫
C
dtf(t)esΨ(t) ∼ esΨ(t0)+iθ

√
n

(
f(t0)

√
2π

|Φ′′(t0)| +O(s−1)
)
, as s→∞

∼
√
γ − i

(
γ − i(1− 2β)

1− β

)−1/2

+O(s−1/2)

(3.68)
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Note that the generalization to λ = −s0 +δ or s = s0 +δ leads to a modification
with

(
γ−i(1−2β)

1−β

)−iδ
.

We also need to consider the branch point tβ = (β−1)/β. When it lives outside
the contour C, the integration over contour C is exactly the path required by
(3.60). Thus in this case we get the asymptotics of the hypergeometric function
with usual saddle point method as (3.68). However, when (β − 1)/β inside
the contour, we need to deform the contour to exclude the branch point and the
branch cut due to (β−1)/β. A possible way is we choose the branch cut along one
of the steepest decent path start at (1− β)/β, and deform the contour C exclude
the branch point and branch cut, which may gives a non-trivial contribution to
the asymptotic expansion. Since tβ = (β − 1)/β is a 1/2 order branch point,
according to [160], in this case, the contribution comes from branch point is
given by

I1 ∼ 2
√
π
G(n)
2πi esΨ(tβ)f(tβ, β)

(
tβ −

β − 1
β

) 1
2
(

1
s|Ψ′(tβ)|

) 1
2

+O(s−1/2)

∼ (1− β)(γ+i)s β(−γ+i)s

√
2(γ − i)(−1)γs22is((γ − i))(γ−i)s

((γ + i))(γ+i)s

√
1− β

| − i(1− 2β) + γ|
+O(s−1/2)

(3.69)

Since the asymptotics contribution contains power of s in terms of esΨ(t), the full
asymptotics of the function will comes from the largest Re(Ψ(t)) of t0 and tβ. In
our case, tβ is in the negative imaginary half plane

tβ = β − 1
β

= β̄

β
(3.70)

And it is easy to show

Re(Ψ(tβ)) =
{
−π, t < 0
π t > 0 (3.71)

When t > 0, the contribution from tβ is lower than t0 in arbitrary order after
multiply by power s, and the final result is given by (3.68). The contribution
form the branch point only exist when sinh(t) + γ < ε0 < 0 and the contribution
reads

I = I0 − I1 (3.72)
And in this case the final asymptotics is given by the sum of (3.68) and (3.69). A
special case is when the branch point locates near the critical point |t0 − tβ| ≤ ε0
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, where the result is

I ∼ G(n)
2πi

πeiπ(−1/4+θ/2)

Γ(1/4) f(t0)
(
t0 −

β − 1
β

) 1
2
(

2
s|Ψ′′(t0)

)− 1
4

esΨ(t0) +O(s−3/4)


∼ 2
√
πs1/4

Γ(1/4) (−i(γ − i)(γ + i))1/4 +O(s−1/4)

(3.73)

Note that, for the continuos of the approximation on β, we have ε0 ∼ s−1/2. Fig
(2) shows the error level of above asymptotics result when s = 100.

Figure 2. – The function 2F1 (j + iλ+ 1,−j + iλ;m+ iλ+ 1; β) as shown in (3.59
) and it’s asymptotics result I given as (3.68), (3.72) and (3.73) respec-
tively, with t ∈ [−3, 3], s = 100, γ = 1. The absolute error is defined
as ε = |(|I| − |2F1|)|/|2F1|.

Now we can write out the final result, according to (3.59), we have

2F1 (j − is+ 1,−j − is;n/2− is+ 1; β(t)) ∼
√
γ − i(1 + i)√

2(iγ + (1− 2β))
+O(s−1/2)

(3.74)
From (3.57), for sinh(t) > −γ we have

d0
j
n/2,−iλ,σ ∼S

j
mλσ

 1√
s(γ − i(1− 2β))

+O(s−1)
((1− (−1)σi) (1− β)(−n2 +iλ)/2β(n2 +iλ)/2

Γ(−n
2 − j)Γ(n2 + iλ+ 1/2)

−(−1)σβ
(−n2−iλ)/2(1− β)(n2−iλ)/2

Γ(j + iλ+ 1)Γ(iλ− j)

)
(3.75)
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where we use the approximation

Γ(−n2 − j)Γ(n2 + iλ+ 1) ∼ 2π
√

(γ − i)s(−(γ+ i)s)−(γ+i)s((γ− i)s)(γ−i)se2is (3.76)

Γ(n2 − iλ+ 1)Γ(j + iλ+ 1)Γ(iλ− j)Γ−1(j +m+ 1) ∼
√

2π
√

(γ + i)s(−2is)−2ise2is

(3.77)
for sinh(t) < −γ, the contribution from the extra branch point reads

d1
j
n/2,−is,σ ∼S

j
mλσ

 √
2√

s|γ − i(1− 2β)|
+O(s−1)

((1− (−1)σi) (1− β)(n2−iλ)/2β(−n2−iλ)/2
√

2Γ(j + iλ+ 1)Γ(iλ− j)

−(−1)σ
√

2β(n2 +iλ)/2(1− β)(−n2 +iλ)/2

Γ(−n
2 − j)Γ(n2 + iλ+ 1/2)

)
(3.78)

One check the final result is approximately

djn/2,−is,σ = d0
j
n/2,−is,σ − d1

j
n/2,−is,σ ∼ Sjmλσ

 1√
s|γ − i(1− 2β)|

+ +O(s−1)
×

(
(1− (−1)σi) (1− β)(−n2 +iλ)/2β(n2 +iλ)/2

Γ(−n
2 − j)Γ(n2 + iλ+ 1/2) − (−1)σβ

(−n2−iλ)/2(1− β)(n2−iλ)/2

Γ(j + iλ+ 1)Γ(iλ− j)

)
(3.79)

When |γ − i(1 − 2β)| < ε, which means the branch point near the saddle point,
we have

djn/2,−is,σ ∼S
j
mλσ

(
2
√
π(−i(1 + γ2))1/4s1/4

Γ(1/4)
√
s

+O(s−3/4)
)(

(1− (−1)σi) (1− β)(−n2 +iλ)/2β(n2 +iλ)/2

Γ(−n
2 − j)Γ(n2 + iλ+ 1/2)

−(−1)σβ
(−n2−iλ)/2(1− β)(n2−iλ)/2

Γ(j + iλ+ 1)Γ(iλ− j)

)
(3.80)
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3.2.3.3. full representation matrix

According to (3.48), now we can write out D matrix in terms of group ele-
ments v:

Dm,λ(z) =
Sjm,λ,σ√
s0

H(|γ + Im(v̄1v2))| − ε)√
|γ + Im(v̄1v2))|

+H(ε− |γ + Im(v̄1v2))|)2
√
π(1 + γ2)1/4s

1/4
0√

πΓ(1/4)


(
T j+σ

(
v1 − v2√

2

)m+iλ(v1 − v2√
2

)−m+iλ
− T j−σ

(
v1 + v2√

2

)m−iλ(v1 + v2√
2

)−m−iλ
)

+O(s−3/4)

(3.81)

where H is the Heaviside step function

H(x)
{

0 x ≤ 0
1 x > 0 (3.82)

ε is defined as

ε = Γ(1/4)2

4π
√

(1 + γ2)s
(3.83)

such thatD is continuous for v. Note that the contribution from |γ + Im(v̄1v2))| <
ε is actually a regulator of the 1/2 order singular points because of |γ + Im(v̄1v2))|.
In the inner product this regulator naturally arises as the asymptotics with 1/2
order singular points. In this sense, we can ignore the regulator since we are
only interested in the inner product in the amplitude. The constant is given by

T j+σ = 1− (−1)σi
Γ(−m− j)Γ(m− j) (3.84)

T j−σ = (−1)σ
Γ(j + iλ+ 1)Γ(iλ− j) (3.85)

with S given in (3.46). In the asymptotics limit, we have

SjmλσS
j
mλσ ∼

π

2 cosh(2πs) , (3.86)

T j1T
j
1 ∼

2 cos(π(−m− is)) cos(π(m− is))
π2 ∼ cosh(2πs)

π2 , when s� 1 (3.87)

T j2T
j
2 ∼

cosh(2πs)
π2 . (3.88)

where we use the asymptotic approximation of Gamma function

lim
z→∞

Γ(z + ε)
Γ(z)zε = 1 (3.89)
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Form the parity property of representation matrix, we have

Dσj
−m,λ(v) = −(−1)σe−iπmDσj

m,λ(v̄) (3.90)

3.2.4. Representation of decomposed SL(2,C) continuous state
One see that, with the representation matrix of continuous series of SU(1, 1),

and some transformations of hypergeometric function and asymptotic analysis,
we prove that when n� 1 and λ = −s,

Dj
n
2 ,−s

(v) = 1√
s|γ + Im(v̄1v2)|

×

(
T̃ j+σ

(
v1 − v2√

2

)n
2−is(v1 − v2√

2

)−n2−is

−T̃ j−σ
(
v1 + v2√

2

)n
2 +is(v1 + v2√

2

)−n2 +is
) (3.91)

where
√

2T̃ j±σ =
√

2Sjn/2,−s,σ/T
j
±σ are some phases: T̃±T̃± = 1/2 a. The detailed

definition of Sjn/2,−s,σ and T j±σ are given in (3.46) and (3.84).
The m = −n/2 case in (3.35) can be obtained by the relation

Dσj
−m,λ(v) = −(−1)σe−iπmDσj

m,λ(v̄) (3.92)

When α = 1, we would like to write elements of vα ∈ SU(1, 1) introduced in
(3.32) as

v1 − v2√
2

= 〈z̄, l+0 〉√
〈z, z〉

,
v1 + v2√

2
= 〈z̄, l−0 〉√
〈z, z〉

. (3.93)

where

l±0 = 1√
2

(n1 ± n2) = 1√
2

(
1
±1

)
(3.94)

Notice that, 〈l+0 , l+0 〉 = 〈l−0 , l−0 〉 = 0, 〈l−0 , l+0 〉 = 1, thus they form a null basis in C2.
Similarly, for α = −1, we have

v1 − v2√
2

= − 〈l
+
0 , z̄〉√
−〈z, z〉

,
v1 + v2√

2
= 〈l−0 , z̄〉√
−〈z, z〉

(3.95)

With this notation, we finally obtain

a. Here we ignore the regulator in (3.81) for the zero points of |γ + Im(v̄1v2)| since it will
appear naturally as the integration contribution from this 1/2 singularity in the inner product.
One can check Appendix 3.2.3 for details.
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F
(ρ,n)
−s,σ,α(z) =

√
παn/2+σ+1

√
s
√
α〈z, z〉

√
|α(γ − i)〈z, z〉+ 2iα〈z̄, l−0 〉〈l+0 , z̄〉|

×

T̃ j+σ(α〈z, z〉)iρ/2+is(〈l+0 , z̄〉〈z̄, l+0 〉)
−is
(
〈z̄, l+0 〉
〈l+0 , z̄〉

)n
2

−T̃ j−σ(α〈z, z〉)iρ/2−is(〈l−0 , z̄〉〈z̄, l−0 〉)
is
(
〈z̄, l−0 〉
〈l−0 , z̄〉

)n
2


(3.96)

One can check the homogeneity property (3.21):

F (λz) = λm+iρ/2−1λ̄−m+iρ/2−1F (z) (3.97)

The coherent state is built from the reference state λ = −s, and we choose
σ = 1, according to [73],

Ψ(ρ,n)
g̃,α (z) = D(ρ,n)(g̃)F (ρ,n)

−s,1,α(z) =
√

iπS̃jm,−s,σα−2is+m√
|〈z, z〉|

√
|(γ − i)〈z, z〉+ 2i〈z̄, l−〉〈l+, z̄〉|

×

T̃ j+1〈z, z〉
iρ/2+is(〈l+, z̄〉〈z̄, l+〉)−is

(
〈z̄, l+〉
〈l+, z̄〉

)n
2

− T̃ j−1〈z, z〉
iρ/2−is(〈l−, z̄〉〈z̄, l−〉)is

(
〈z̄, l−〉
〈l−, z̄〉

)n
2


(3.98)

where g̃ ∈ SU(1, 1), and l± = g̃−1†l±0 is defined though

〈l±0 , g̃tz〉 = 〈g̃−1†l±0 , z̄〉 = 〈l±, z̄〉 (3.99)

3.2.5. Spinform amplitude
Now we can write down explicitly the inner product between the coherent

states appearing in the amplitude (3.17) by inserting (3.98) and using (3.22):

〈
Ψ(ρf ,nf )
g̃e′f δ

∣∣∣D(ρf ,nf )(gve′gev)
∣∣∣Ψ(ρf ,nf )

g̃ef δ

〉
=
∑
α

∫
CP1

ωzvfΨ
(ρf ,nf )
g̃e′f δα

(
gtve′zvf

)
Ψ(ρf ,nf )
g̃ef δα

(
gtevzvf

)
=
∫
CP1/〈Z,Z〉=0

ωzvf
hvefhve′f

(
Nf+eSvf+ +Nf−eSvf− +Nfx+eSvfx+ +Nfx−eSvfx−

)
(3.100)

84



where N are some normalization factors, ω is the SL(2,C) invariant measure
defined in (3.23). The exponents read

Svf± = Sve′f± − Svef±, Svfx± = Sve′f± − Svef∓ (3.101)

with

Svef± = sf

[
γ ln
〈Zvef , l±ef〉
〈l±ef , Zvef〉

∓ i ln 〈Zvef , l±ef〉〈l±ef , Zvef〉+ i(−1± 1) ln 〈Zvef , Zvef〉
]

(3.102)

where Zvef = g†vez̄vf . l
±
ef here is defined as l± = v(Nef)−1†l±0 with l±0 defined

in (3.94), and v(Nef) ∈ SU(1, 1) which encoding the unit normal. 〈Zve′f , Zve′f〉
has the same sign as 〈Zvef , Zvef〉. The integrand is invariant under the following
gauge transformations:

gve → gvgve, zvf → λvf (gTv )−1zvf (3.103)
gve → svegve, sve = ±1 (3.104)
gve → gveve, l±ef → vel

±
ef , (3.105)

where gv ∈ SL(2,C), ve ∈ SU(1, 1), and λvf ∈ C \ {0}.
It’s worth to point out that both Svf± and Svfx± are purely imaginary, and

they are all proportional to sf which will be uniform scaled later to derive the
asymptotics. The real valued function h is given by

hvef = |〈Zvef , Zvef〉|

√√√√∣∣∣∣∣γ − i +
2〈l−ef , Zvef〉〈Zvef , l+ef〉
〈Zvef , Zvef〉

∣∣∣∣∣ (3.106)

hvef can be 0 when we integrate over z on CP1 and SL(2,C) group elements g in
(3.17), and the zeros of h are exactly the points where we define the principle
value, i.e. at 〈Z,Z〉 = 0. However, as shown later in 3.3.1later , the singularities
due to h are of half order thus the final integral is remain finite at these points.

3.3. Analysis of critical points
As we shown above, the actions Svf± and Svfx± are pure imaginary, and they

are proportional to sf . Thus we can use stationary phase approximation to eval-
uate the amplitude in the semi-classical limit where s is uniformly scaled by a
factor Λ → ∞. Note that the denominator h defined by (3.106) in (3.100) con-
tains 1/2 order singular point at 〈Z,Z〉 = 0, as shown in following sections. Then
the integral is of the following type

I =
∫

dx 1√
x− x0

g(x)eΛS(x) (3.107)
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Here g is an analytic function which does not scale with Λ. There are two dif-
ferent asymptotic equations for such type integral according to the critical point
xc located exactly at the branch point x0 or away from it. According to [161], if
xc located exactly at x0, the leading order contribution will locate at the critical
points (which is also the branch points), and the asymptotic expansion is given
by

I ∼ g(xc)
πeiπ(µ−2)/8

Γ(3/4)

(
2

Λ| detH(xc)|

)1/4

eΛS(xc) (3.108)

where H(xc) is the Hessian matrix at xc, and µ = sgn detH(xc).
As we explain in the following sections, the critical points of Eq.(3.100) are

always located at the branch points, when every tetrahedron containing the time-
like triangle f also contain at least one spacelike triangle. It is quite generic to
have every tetrahedron contain both timelike and spacelike triangles in a simpli-
cial geometry. In addition, in case that we consider tetrahedra with all triangles
timelike, for a single vertex amplitude, the critical point is again located at the
branch points, when the boundary data give the closed geometrical boundary of
a 4-simplex (i.e. the tetrahedra at the boundary are glued with shape matching).
We don’t consider the possibility other than (3.108).

3.3.1. Analysis of singularities and corresponding stationary
phase approximation

In this appendix we concentrate on the analysis of singularities appears in the
denominator of the integrand of vertex amplitude.

3.3.1.1. Analysis of singularities

For simplicity, we consider one vertex case for some v mainly. As we show, the
amplitude enrolls the integration in the form

I =
∫ ∏

e

dgve

∫ ∏
f

Ωvf

∏
f

1
hvefhve′f

eSvf (3.109)

where h is a real valued function

hvef = |〈Zvef , Zvef〉|

√√√√∣∣∣∣∣γ − i(1−
2〈l−ef , Zvef〉〈Zvef , l+ef〉
〈Zvef , Zvef〉

)
∣∣∣∣∣ (3.110)

Here each dual face is determined by two edges f = (e, e′). Note that the square
root part inside hvef is the spinor representation for the square root term inside
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the wigner d matrix:∣∣∣∣∣γ − i(1−
2〈lef , Zvef〉〈Zvef , l+ef〉
〈Zvef , Zvef〉

)
∣∣∣∣∣ = |γ + Im(v1v̄2)| (3.111)

The zero sets of h is given by 〈Zvef , Zvef〉 = 0 or |γ + Im(v1v̄2)| = 0.
We can rewrite the original 〈Zvef , Zvef〉 as

〈Zvef , Zvef〉 = 2 Re(〈l−ef , Zvef〉〈Zvef , l+ef〉) = Re(f) (3.112)

where we define f as
f := 2〈l−ef , Zvef〉〈Zvef , l+ef〉 (3.113)

In this notation hvef becomes

hvef = |Re(f)|

√√√√|γ + Im(f)
Re(f) | = |f || cos(φf )|

√
|γ + tan(φf )| (3.114)

Suppose the function f are linearly independent to each other. This require-
ment is the same as require the boundary tetrahedron l±ef is non degenerate. In
this case, we can define a coordinate transformation among the set of the orig-
inal coordinates (z, g) → (Re(f), Im(f), z′, g′). The coordinate transformation
only transfer among the number of f variables and leaves the left invariant, e.g.
we only transfer 40 variables in one vertex case and leave the other 4 invariant.
The elements of Jacobian matrix of the transformation J(f) is given by

∂(Re(fvef ))
∂z

= ∂(Re(fvef ))
∂z̄

= δz〈Zvef , Zvef〉 = (gveηZvef )T (3.115)

∂(Im(fvef ))
∂z

= i(δz〈Zvef , Zvef〉 − 2δz〈l−ef , Zvef〉〈Zvef , l+ef〉 = i((gveηZvef − 2gηl+ef〈l−ef , Zvef〉)T

(3.116)
∂(Re(fvef ))

∂g
= δg〈Zvef , Zvef〉 = 〈L†Zvef , Zvef〉+ 〈Zvef , L†Zvef〉 (3.117)

∂(Im(fvef ))
∂g

= i(〈L†Zvef , Zvef〉+ 〈Zvef , L†Zvef〉 (3.118)

− 2〈l−ef , Zvef〉〈L†Zvef , l+ef〉 − 2〈l−ef , L†Zvef〉〈Zvef , l+ef〉)

where L represents generators of SL(2,C). Note that δg〈Zvef , Zvef〉 is zero when
L are SU(1, 1) generators. However, the Jacobian is non zero in general, e.g. in
one vertex case of vertex v, we have the non-trivial contribution from terms like

∂g1(13, 14, 15), ∂g2(21, 24, 25), ∂g3(31, 32, 35), ∂g4(42, 43, 45),
∂z(12, 23, 34, 41, 51, 52, 53, 54)

(3.119)
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where 12 is the representation of ef label in terms of numbers labelling edges
and corresponding faces (e1, e2). Apart from those 0 in (3.117), other zeros of
matrix elements only possible when Z = ζl±. The Jacobian matrix in this case is
given by (Z = ζl+ as an example),

∂(Re(fvef ))
∂z

= ∂(Re(fvef ))
∂z̄

= (gveηZvef )T (3.120)

∂(Im(fvef ))
∂z

= ∂(Im(fvef ))
∂z̄

= −i(gveηZvef )T (3.121)

∂(Re(fvef ))
∂g

= 〈L†Zvef , Zvef〉+ 〈Zvef , L†Zvef〉 =
{

0, L = F
2〈Zvef , L†Zvef〉, L = iF

(3.122)
∂(Im(fvef ))

∂g
= i(〈Zvef , L†Zvef〉 − 〈L†Zvef , Zvef〉) =

{
2i〈Zvef , L†Zvef〉, L = F
0, L = iF

(3.123)

Clearly the Jacobian matrix is still well defined and leads to non zero Jacobian.
After this coordinate transformation, the original integration becomes

I =
∏
v

∫ Ω′
J(f)

∏
e,f

d Re(fvef )d Im(fvef )
∏
f

eSvf

|Re(fvef )||Re(fve′f )|
√
|γ + Im(fvef )

Re(fvef ) |
√
|γ + Im(fve′f )

Re(fve′f ) |
(3.124)

With a further polar coordinate transformation

ρvef =
√

Re(fvef )2 + Im(fvef )2, φvef = arg(fvef ) ∈ [0, π/2) (3.125)

whose Jacobian is given by

J1
vef = 1

ρvef
(3.126)

The Jacobian is well defined except on the points where |f | = 0. After the
coordinates transformation, we have

I =
∫

Ω′
∏
e,f

∫
dρvef

∫ π/2

0
dφvef

1
J(ρ, φ)

∏
f

eSvf

| cos(φvef )|| cos(φve′f )|
√
|γ + tan(φvef )||γ + tan(φve′f )|

(3.127)
Clearly all possible singular points are 1/2 order. The singular points due to
|γ + tan(φve′f )| and due to | cos(φve′f )| are separated. The integration respects to
ρ does not have singularities.
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3.3.1.2. Multidimensional Stationary phase approximation

In appendix 3.2.3, we already use the saddle point approximation when there
is a branch point appearing in the non-scaled function g(x). When adapting
to the stationary phase approximation, for the 1/2 order singular point locates
exactly at the critical point, the result is the following:

I =
∫ g(x)√

x
eΛS(x) ∼ g(xc)

πeiπ(µ−2)/8

Γ(3/4)

(
2

Λ|S ′′(xc)|

)1/4

eΛS(xc) (3.128)

where Λ ∼ ∞ and S is pure imaginary. Note that the dominate part here is given
by the −1/4 order of Λ instead of −1/2 as in the asymptotic formula without
singularities. The regulator appears in (3.81) is exactly this 1/4 order difference.

However, this asymptotic formula only hold for single variable integral. We
will generalize this single variable approximation to multi variables case. Recall
Fubini’s theorem:

Theorem 3.3.1. Let w = f(x1, x2, . . . , xn) be a n variable valued complex function.
If the integral of f on the domain B = ∏n

i In where In are intervals in R is absolutely
convergent: ∫

B
|f(x1, x2, . . . , xn)|d(x1, x2, · · · , x2) <∞, (3.129)

then the multiple integral will give the same result as the iterated integral,∫
A×B
|f(x, y)|d(x, y) =

∫
A

(
∫
B
f(x, y)dy)dx =

∫
B

(
∫
A
f(x, y)dx)dy (3.130)

The result is independent of the iterate order.

Here from (3.127) we have the integral in the form

I =
∫
dnx

j∏
i=1

(xi)−1/2g(x)eiS(x) (3.131)

where S(x) ∈ R, x ∈ Rn, j < n and g(x) is analytic. j < n illustrates the fact that
only in a subspace of the total variables space will have singularities. Then in a
closed region M where the stationary phase points (solutions of δS = 0) exists,
we have∫

M
dnx|

∏
i

(xi)−1/2g(x)eiS(x)| ∼
∫
M
dnx|

∏
i

(xi)−1/2g̃(x)| <∞ (3.132)

From Fubini’s theorem, we then can write the multi-dimensional integral as it-
erated integral. For the original variables, since the singularities exist only in a
subspace of the total variables space, we can always perform a coordinate trans-
formation, such that variables with singularities are separated from those do not
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have, as we show in (3.127). Then the final result is given by performing the
stationary phase approximation iteratively. Each step one may use the usual
stationary phase approximation or the one with singularities. The lowest order
of the total integration is given by picking lowest order approximation of each
single integration.

However, due to technical reason, we would like to derive the saddle point
equations directly from S(x) instead of evaluate it iteratively. According to
the approximation, each single valued integral is dominated by the phase S(x0)
where x0 is the solution of saddle point equation δxS(x) = 0. Then iteratively,
the saddle points are given by

δx1S(x1, x2, . . . , xn) = 0,

δx2S(x0
1, x2, . . . , xn) =

(
δx1S(x)∂x

0
1

∂x2
+ δx2S(x)

) ∣∣∣∣
x1=x0

1

= δx2S(x)|x1=x0
1

= 0,

...
δxnS(x0

1, x
0
2, . . . , xn) = δxnS(x)|x1=x0

1,x2=x0
2,...,xn−1=x0

n−1
= 0

(3.133)

where x0
i (xi+1, . . . , xn) is the solution of the corresponding equation of motion

δxi(x0
1, . . . , x

0
i−1, xi, xi+1, . . . , xn) respect to xi. As one can see from (3.133), the

above equation of motion is nothing else but we solve the original equation of
motion {En = δS(x)} iteratively. Thus they have the same solutions. The saddle
points given by the two method will coincide with each other. Note that, for
variables whose saddle points near the singularities, the induced measure which
contains second derivatives of the action will given in the order 1/4 instead of
1/2 for those do not have singularities. As a result, there is no general Hessian
term as in the previous EPRL approximation, and the measure is more involved
as some special functions of second derivatives of the action. As a result finally
we have order I ∼ g(Λ)Λ−a/2−b/4 for b variables have singular points.

3.3.2. Equation of Motion
Since both Svf± and Svfx± are purely imaginary, their critical points, or namely

critical configurations, are solutions of equations of motion. The equations of mo-
tion are given by variations of S’s respects to spinors z, SU(1, 1) group elements
v and SL(2,C) group elements g.

Before calculating the variation, we would like to introduce a decomposition
of spinor Z. We first introduce following lemmas:

Lemma 3.3.2. Given a specific l+ satisfying 〈l+, l+〉 = 0, there exist l̃−, s.t.
〈l+, l̃−〉 = 1, 〈l̃−, l̃−〉 = 0. For two elements l̃−1 and l̃−2 satisfying the condition, they
are related by

l̃−1 = l̃−2 + iηl+, η ∈ R (3.134)
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This is easy to proof since 〈l̃−+iηl+, l̃−+iηl+〉 = η2〈l+, l+〉+〈l̃−2 , l̃−2 〉−iη〈l+, l̃−〉+
iη〈l̃−, l+〉 and 〈l+, l̃− + iηl+〉 = 〈l+, l̃−〉+ iη〈l+, l+〉.
Lemma 3.3.3. For a given l+ and l̃− defined by Lemma 3.3.2, l+ and l̃− form a
null basis in two dimensional spinors space.

This lemma is proved by using the fact that given l+ and l̃−, there exists a
SU(1, 1) element g̃, such that l+ = g̃l+0 and l̃− = g̃l−0 , and the fact that l+0 and l−0
forms a null basis.

With Lemma 3.3.3, for a given l+ or l−, we have

Theorem 3.3.4. For given l+ and l̃− defined by Lemma 3.3.2, spinor Zvef always
can be decomposed as

Zvef = ζvef (l̃∓ef + αvef l
±
ef ) (3.135)

where ζvef ∈ C and αvef ∈ C.
At the vertex v, from the action Svef+ (Svef−), we only have l+ (l−) enters the

action, thus we can choose arbitrarily l̃∓vef to form a basis. By Lemma 3.3.2, we
can always write l̃′∓vef = l̃′∓vef + i Im(αvef )l±ef s.t.,

Zvef = ζvef (l̃∓vef + Re(αvef )l±ef ). (3.136)

Im(α) is basis dependent. It is easy to check that if we replace Z inside the action
(3.101) by the decomposition (3.135), the action is independent of Im(α), which
means that Im(α) is a gauge freedom.

We will drop the tilde on l̃ in the following. One should keep in mind that we
have the freedom to choose the l− (l+) such that for some vertices v, Im(αvef ) =
0.

From the decomposition of Zvef , there is naturally a constraint. By the fact
Zvef = g†vez̄vf , we have

z̄vf = g−1†
ve Zvef = g−1†

ve′ Zve′f . (3.137)

In terms of decomposition of Zvef

g−1†
ve (l±ef + αvef l

∓
ef ) = ζve′f

ζvef
g−1†
ve′ (l±e′f + αve′f l

∓
vef ) (3.138)

This can be written as

gve J (l±ef + αvef l
∓
ef ) = ζ̄ve′f

ζ̄vef
gve′ J (l±e′f + αve′f l

∓
ef ) (3.139)

where we used the anti-linear map J:

J(a, b)T = (−b̄, ā), JgJ−1 = −JgJ = g−1† (3.140)
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3.3.2.1. variation respect to z

From the definition of SU(1, 1) inner product, for arbitrary spinor u we have

δz̄〈u, Z〉 = δz̄(u†ηg†z̄) = (gηu)†δz̄,
δz〈Z, u〉 = δz((g†z̄)†ηu) = (δz)T (gηu)

(3.141)

Then it is straight forward to see the variation of Svef leading to

δz̄Svef± =(nf2 ± isf )
(gveηl±ef )†

〈l±ef , Zvef〉
− i(ρf ± sf )

(gveηZvef )†
〈Zvef , Zvef〉

(3.142)

and
δzS = −δz̄S (3.143)

which comes from the fact that S is pure imaginary. With the definition of Svf in
(3.101), after inserting the decomposition, we obtain the following equations

δSvf+ = (γ − i)sf (
gveηl

+
ef

ζ̄vef
−
gve′ηl

+
e′f

ζ̄ve′f
) = 0 with Z = ζ(l− + αl+) (3.144)

δSvf− = −isf (
gveηnvef

Re(αvef )ζ̄vef
− gve′ηnve′f

Re(αve′f )ζ̄ve′f
) = 0 with Z = ζ(l+ + αl−)

(3.145)

δSvfx+ = −(γ − i)sf
gve′ηl

+
e′f

ζ̄ve′f
− isf

gveηnvef

Re(αvef )ζ̄vef
= 0 with Ze′ = ζ(l− + αl+) & Ze = ζ(l+ + αl−)

(3.146)

δSvfx− = (γ − i)sf
gveηl

+
vef

ζ̄vef
+ isf

gve′ηnve′f

Re(αve′f )ζ̄ve′f
= 0 with Ze = ζ(l− + αl+) & Ze′ = ζ(l+ + αl−)

(3.147)

where

nvef := l+ef + i (γ Re(αvef ) + Im(αvef )) l−ef (3.148)

Note that nvef here satisfies Lemma. 3.3.3 and can form a basis with l−ef given in
Svef−.

3.3.2.2. variation respect to SU(1, 1) group elements vef

Since l± = v−1†l±0 with v ∈ SU(1, 1), the variation respect to l± is the variation
respect to the SU(1, 1) group element v. If we considering a small perturbation
of v which is given by v′ = ve−εiF i, where F i are generators of SU(1, 1) group,
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we have v′−1 = eεiF iv−1. The variation is then given by

δv−1 = εiF
iv−1, δv−1† = εiv

−1†(F i)† (3.149)

Thus for arbitrary spinor u, we have

δ〈u,m〉 = δ〈u, v−1†m0〉 = εi〈u, v−1†F †im0〉
δ〈m,u〉 = δ〈v−1†m0, u〉 = εi〈v−1†F †im0, u〉

(3.150)

When Sef = Svef± − Sv′ef±, the variation reads

δS =εi(nf2 ∓ isf )
〈Zv′ef , v−1†

ef F †i l
±
0 〉

〈Zv′ef , l±ef〉
−
〈Zvef , v−1†

ef F †i l
±
0 〉

〈Zvef , l±ef〉


+ εi(nf2 ± isf )

〈v−1†
ef F †i l

±
0 , Zvef〉

〈l±ef , Zvef〉
−
〈v−1†
ef F †i l

±
0 , Zv′ef〉

〈l±ef , Zv′ef〉

 (3.151)

While Sef = Svef± − Sv′ef∓, we have

δS =εi(nf2 )
〈Zvef , v−1†

ef F †i l
±
0 〉

〈Zvef , l±ef〉
−
〈Zv′ef , v−1†

ef F †i l
∓
0 〉

〈Zv′ef , l∓ef〉
+
〈v−1†
ef F †i l

±
0 , Zvef〉

〈l±ef , Zvef〉
−
〈v−1†
ef F †i l

∓
0 , Zv′ef〉

〈l∓ef , Zv′ef〉


+ εisf

〈v−1†
ef F †i l

±
0 , Zvef〉

〈l±ef , Zvef〉
+
〈v−1†
ef F †i l

±
0 , Zv′ef〉

〈l±ef , Zv′ef〉
+
〈Zv′ef , v−1†

ef F †i l
∓
0 〉

〈Zv′ef , l∓ef〉
+
〈Zvef , v−1†

ef F †i l
±
0 〉

〈Zvef , l±ef〉


(3.152)

Since F i = 1/2(iσ3, σ1, σ2, ) is SU(1, 1) generators, we have

(F 0)†l±0 = i
2
√

2

(
1 0
0 −1

)(
1
±1

)
= i

2 l
∓
0 (3.153)

(F 1)†l±0 = 1
2
√

2

(
0 1
1 0

)(
1
±1

)
= ±1

2 l
±
0 (3.154)

(F 2)†l±0 = 1
2
√

2

(
0 −i
i 0

)(
1
±1

)
= ∓1

2 l
∓
0 (3.155)

Then in the first case we only left with one equation, which reads

0 = (nf2 ∓isf )
(
〈Zv′ef , il∓ef〉
〈Zv′ef , l±ef〉

−
〈Zvef , il∓ef〉
〈Zvef , l±ef〉

)
+(nf2 ±isf )

(
〈il∓ef , Zvef〉
〈l±ef , Zvef〉

−
〈il∓ef , Zv′ef〉
〈l±ef , Zv′ef〉

)
(3.156)
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After inserting the decomposition Z = ζ(l∓ + αl±) correspondingly, we get

0 =(nf2 ∓ isf ) (ᾱv′ef − ᾱvef ) + (nf2 ± isf ) (αv′ef − αvef )

=2isfγ Re(αv′ef − αvef )± 2isf Im(αvef − αv′ef )
(3.157)

The solution reads

γ Re(αvef )∓ Im(αvef ) = γ Re(αv′ef )∓ Im(αv′ef ) (3.158)

Here Im(α) is the decomposition of Z respect to l∓ef specified by vef . Note that
in this case, we only have l+ef(l−ef) in the action, thus there is an ambiguity of vef .
However, changing vef corresponds to adding the same constant to both Im(αv)
and Im(α′v), thus the relation is kept unchange. After absorbing Im(α) into l̃ by
a redefinition, the equation actually tells us that,

l̃∓vef − l̃∓v′ef = ±γ(Re(αvef )− Re(αv′ef ))l±ef (3.159)

which fixes the transformation of l̃vef between vertices and removes the ambigu-
ity between different vertices v in the bulk. With this redefinition, it is easy to see
that nvef defined in (3.148) satisfies nvef = nve′f , thus we ignore the v variable
and define

nef := nvef = nv′ef (3.160)

In the mixing case there will be two different equations for F2 and F3, which
leads to

0 =nf2

(
Re 〈Zv

′ef , l
±〉

〈Zv′ef , l∓ef〉
− Re 〈Zvef , l

∓〉
〈Zvef , l±ef〉

)
± isf

(
i Im 〈Zv

′ef , l
±〉

〈Zv′ef , l∓ef〉
+ i Im 〈Zvef , l

∓〉
〈Zvef , l±ef〉

)
(3.161)

0 =nf2

(
Re 〈Zv

′ef , l
±〉

〈Zv′ef , l∓ef〉
+ Re 〈Zvef , l

∓〉
〈Zvef , l±ef〉

)
± isf

(
i Im 〈Zv

′ef , l
±〉

〈Zv′ef , l∓ef〉
− i Im 〈Zvef , l

∓〉
〈Zvef , l±ef〉

)
(3.162)

The equations give the solution

γ Re(αv′ef )± Im(αv′ef ) = 0, with Zv′ef = ζv′ef (l±ef + αv′ef l
∓
ef )

γ Re(αvef )∓ Im(αvef ) = 0, with Zvef = ζvef (l∓ef + αvef l
±
ef )

Here l+ and l− completely fix the group element v. α corresponds to the
decomposition of Z with these l+ and l−. The nvef in this case is simply nvef = l+ef .
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3.3.2.3. variation respect to SL(2,C) elements g

With the small perturbation of g which is given by g′ = geL, the variation of
SL(2,C) group element g is given by

δg = gL, δg† = −L†g† (3.163)

where L is a linear combination of SL(2,C) generators, L = εiF
i + ε̃iG

i = (εi +
iε̃i)F i. Here F s are SU(1, 1) lie algebra generators defined as above, and we use
the fact that in spin 1/2 representation G = iF . 1 Then for arbitrary u, we have

δ〈u, Z〉 = δ〈u, g†z̄〉 = 〈u, L†g†z̄〉 = 〈u, L†Z〉
δ〈Z, u〉 = δ〈g†z̄, u〉 = (L†g†z̄)†ηu = 〈L†Z, u〉.

(3.164)

The variation leads to

δS =
∑
f

εef (v)
(
−(nf2 ∓ isf )

(
〈L†Zvef , l±ef〉
〈Zvef , l±ef〉

)
+ (nf2 ± isf )

(
〈l±ef , L†Zvef〉
〈l±ef , Zvef〉

)

−i(ρf ± sf )
(
〈L†Zvef , Zvef〉+ 〈Zvef , L†Zvef〉

〈Zvef , Zvef〉

))
(3.165)

where εef (v) = ±1 is determined according to the face orientation is consistent
to the edge e or opposite (up to a global sign). We have

εef (v) = −εe′f (v), εef (v) = −εef (v′). (3.166)

We write εef (v) = +1 in the following for simplicity, and recover general ε at the
end of the derivation.

From the property of SU(1, 1) generator,

ηFη = −F † (3.167)

we have

〈F †Z, u〉 = −Z†Fηu = −Z†ηF †u = −〈Z, F †u〉 (3.168)

Then (3.165) can be written as

∑
f

(nf2 ∓ isf )
(
〈Zvef , F †l±ef〉
〈Zvef , l±ef〉

)

+ (nf2 ± isf )
(
〈l±ef , F †Zvef〉
〈l±ef , Zvef〉

)
= 0

(3.169)
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and

∑
f

−(nf2 ∓ isf )
〈Zvef , F †l±ef〉
〈Zvef , l±ef〉

+ (nf2 ± isf )
〈l±ef , F †Zvef〉
〈l±ef , Zvef〉

− 2i(ρf ± sf )
〈Zvef , F †Zvef〉
〈Zvef , Zvef〉

= 0
(3.170)

After inserting the decomposition of Z and solution of simplicity constraint, we
have the following equations: For both S±, (3.169) becomes

0 = δFS±

= ∓2i
∑
f

sf〈l∓ef ∓ i(γRe(αvef )∓ Im(αvef ))l±ef , F †l±ef〉 (3.171)

(3.170) will leads to different equations for different actions S± due to the ap-
pearance of 〈Zvef , F †Zvef〉 term. The variation of S+ reads

0 = δGS+

=−2γ
∑
f

sf〈l−ef − i( 1
γ

Re(αvef )− Im(αvef ))l+ef , F †l+ef〉,
(3.172)

while the variation of S− reads

δGS− = 2i
∑
f

sf
〈nvef , F †nvef〉
Re(αvef )

+ 2γ
∑
f

sf〈nvef , F †l−ef〉. (3.173)

3.3.2.4. summary

As a summary, after we introduce the decomposition of Z as (3.135):

Zvef = ζvef (l̃∓ef + αvef l
±
ef ) (3.174)

and a spinor n as (3.148)

nvef := l+ef + i (γ Re(αvef ) + Im(αvef )) l−ef (3.175)

the equation of motion is given by the following equations
— parallel transport equations
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Svf+ :
gveηl

+
ef

ζ̄vef
=
gve′ηl

+
e′f

ζ̄ve′f
, g−1†

ve (l−ef + αvef l
+
ef ) = ζve′f

ζvef
g−1†
ve′ (l−e′f + αve′f l

+
vef )

(3.176)

Svf− : gveηnvef

Re(αvef )ζ̄vef
= gve′ηnve′f

Re(αve′f )ζ̄ve′f
, g−1†

ve (l+ef + αvef l
−
ef ) = ζve′f

ζvef
g−1†
ve′ (l+e′f + αve′f l

−
vef )

(3.177)

Svfx+ : gveηnvef

Re(αvef )ζ̄vef
= −(1 + iγ)

gve′ηl
+
e′f

ζ̄ve′f
, g−1†

ve (l+ef + αvef l
−
ef ) = ζve′f

ζvef
g−1†
ve′ (l−e′f + αve′f l

+
vef )

(3.178)

Svfx− : −(1 + iγ)
gveηl

+
vef

ζ̄vef
= gve′ηnve′f

Re(αve′f )ζ̄ve′f
g−1†
ve (l−ef + αvef l

+
ef ) = ζve′f

ζvef
g−1†
ve′ (l+e′f + αve′f l

−
vef )

(3.179)

Here Svf± = Sve′f± − Svef±, Svfx± = Sve′f± − Svef∓ with Svef± is the action
given in (3.102), the same for Sef± and Sefx±.

— vertcies relations

Sef± : γ Re(αvef )∓ Im(αvef ) = γ Re(αv′ef )∓ Im(αv′ef ) (3.180)
Sef±x : γ Re(αvef )∓ Im(αvef ) = γ Re(αv′ef )± Im(αv′ef ) = 0 (3.181)

— closure constraints

0 = −2i
∑

f /w S+(x)

sf〈l−ef − i(γ Re(αvef )− Im(αvef ))l+ef , F †l+ef〉+ 2i
∑

f /w S−(x)

sf〈nef , F †l−ef〉

(3.182)

0 = −2γ
∑

f /w S+(x)

sf〈l−ef − i( 1
γ

Re(αvef )− Im(αvef ))l+ef , F †l+ef〉

+ 2
∑

f /w S−(x)

isf
〈nef , F †nef〉

Re(αvef )
+ γsf〈nvef , F †l−ef〉 (3.183)

3.3.3. Analysis of critical equations in bivector representation
3.3.3.1. Bivector representation

For given spinors l− and l+, there is a 3-vector vi associated to them

vi = 2〈l+, F il−〉 (3.184)

From which we can define a SU(1, 1) valued bivector in spin-1
2 representation

97



V = 2〈l+, F il−〉F i = −2(l+)†(F i)†ηl−F i = −1
2(l+)†σiηl−σi = −ηl− ⊗ (l+)† + 1

2〈l
+, l−〉I2

(3.185)

where we use the fact ηFη = −F † and the completeness of pauli matrix. Since
〈l−, F l+〉 = −〈l+, F l−〉,

V = −2〈l−, F il+〉Fi = ηl+ ⊗ (l−)† − 1
2〈l

+, l−〉I2 (3.186)

From the fact
Ki = −Ki = J0i, J i = Ji = 1

2ε
0i
jkJ

jk (3.187)

where J i = ∗Ki. We have in spin 1/2 representation ∗ → i and J i = iKi. The
bivector can be encoded into SL(2,C) bivector that in spin-1 representation reads

V IJ =


0 −v1 −v2 0
v1 0 v0 0
v2 −v0 0 0
0 0 0 0

 , (3.188)

Then (∗V )IJ reads

(∗V )IJ =


0 0 0 v0

0 0 0 −v2

0 0 0 v1

−v0 v2 −v1 0

 = (vIef ∧ uJ) (3.189)

where the encoded 4-vector vIef := (v0,−v2, v1, 0), uI = (0, 0, 0, 1). Clearly one
can see that

vI = i(
〈
l−
∣∣∣ σ̂I ∣∣∣l+〉+ uI) (3.190)

where σ̂ = (σ0,−σ1,−σ2,−σ3).
Since 〈l+, F il−〉 = 〈l+0 , v†F iv−1†l−0 〉, in this sense, vi is nothing else but the

SO(1, 2) rotation of 3 vector v0 = (0, 0, 1) with group element v−1†.
Similarly, we can define

W± = 2i〈l±, F il±〉F i = −iηl± ⊗ (l±)† (3.191)

with
W±IJ = w±Ief ∧ uJ , w±I :=

〈
l±
∣∣∣ σ̂I ∣∣∣l±〉 (3.192)

Here w±Ief is a null vector w±Ief w
±
ef I

= 0.
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We introduce SO(1, 3) group elements G given by

Gve = π(gve) (3.193)

where π : SL(2,C) → SO(1, 3). Since the action (3.101) is invariant under
the transformation gve → ±gve, two group elements related to gve are gauge
equivalent if they satisfy

G̃ve = GveI
sve , sve = {0, 1} (3.194)

where I is the inversion operator. With this gauge transformation, we can always
assume Gve ∈ SO+(1, 3).

Now we will analysis and reformulate the critical point equations we get in
Sec. 3.3 in bivector representation. The analysis is done for all possible actions
appearing in the amplitude (3.100).

3.3.3.2. Svf+ case

From (3.139) and (3.144) in Svf+ case,

gveηl
+
ef = ζ̄vef

ζ̄ve′f
gve′ηl

+
e′f gve J Z̃vef = ζ̄ve′f

ζ̄vef
gve′ J Z̃vef (3.195)

we have

gveηl
+
ef ⊗ (l−ef + αvef l

+
ef )†gev = gve′ηl

+
ef ⊗ (l−e′f + αve′f l

+
e′f )†ge′v (3.196)

with the fact that 〈l+, l+〉 = 0 and 〈l−, l+〉 = 1. With (3.185), the above equation
can be written as

gve(Vef + iᾱvefW+
ef )gev = gve′(Ve′f + iᾱve′fW+

e′f )ge′v (3.197)

In spin-1 representation, this equation reads

gve(Vef+(Im(αvef )+Re(αvef )∗)W+
ef )gev = gve′(Ve′f+(Im(αve′f )+Re(αve′f )∗)W+

e′f )ge′v
(3.198)

We can define a bivector Xvef

Xvef = Vef + (Im(αvef ) + Re(αvef )∗)W+
ef (3.199)

Easy to check X is a simple bivector which can be expressed as

X = ∗(v + Im(α)w+) ∧ (u− Re(α)w+) = ∗(ṽ ∧ ũ) (3.200)
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Here by the definition of v and w, we have

ṽI = (ṽ0,−ṽ2, ṽ1, 0) , w̃I = (w+0
,−w+2

, w+1
, 0) , (3.201)

where
ṽi = −2〈l− + i Im(α)l+, F il+〉, w+i = 2i〈l+, F il+〉 (3.202)

One can check ṽI ṽI = ũI ũI = 1, thus X is timelike. (3.198) implies

(Gveṽvef ) ∧ (Gveũvef ) = (Gve′ ṽve′f ) ∧ (Gve′ũve′f ). (3.203)

which reminds us define

Xf (v) := GveXvefGev = Gve′Xve′fGe′v (3.204)

Noted that, from this equation, we have

(Gveu)IXIJ
f (v) = −Re(αvef )(Gvew

+
ef )J (3.205)

which is 0 only when Re(αvef ) = 0.
Go back to equations we get from the variation respecting to g, clearly (3.171)

and (3.172) can be written as∑
f

εef (v)〈l− + i Im(α)l+, F il+〉 = 0 (3.206)
∑
f

εef (v) Re(α)〈l+, F il+〉 = 0 (3.207)

In terms of 4 vectors ṽ and w, these equation reads∑
f

εef (v)Gveṽvef = 0
∑
f

εef (v) Re(αvef )Gvew
+
ef = 0 (3.208)

where ṽ is defined by (3.201). Then we can write (3.208) as∑
f

εef (v)Xf (v) = 0 (3.209)

which is a closure condition to bivectors.
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3.3.3.3. Svf− case

In this case, from (3.139) and (3.145) we have

gve ηnvef = ζ̄vef Re(αvef )
ζ̄ve′f Re(αve′f )

gve′ ηnve′f (3.210)

gve J Z̃vef = ζ̄ve′f

ζ̄vef
gve′ J Z̃vef (3.211)

where nef := l+ef +i(γ Re(αvef )+Im(αvef ))l−ef . Note with equation (3.163), we see
n does not change for different vertex v: nef (v) = nef (v′). n defined here satisfies
the relation in Lemma 3.3.2, thus according to Lemma 3.3.3, {n, l−} forms a null
basis. With n and l−, Z̃ can be rewritten as

Z = l+ + αl− = n+ (1− iγ) Re(α)l− (3.212)

This leads to the tensor product equation

gve
ηnef

Re(αef )
⊗ (nef + (1− iγ) Re(αvef )l−ef )†gev = (e→ e′) (3.213)

The right part of above equation means exchange all the e in left part to e′.
In terms of bivector variables, according to (3.185), we have

gve(Vef +
(i− γ)W+

ef

(1 + γ2) Re(αvef )
)gev = (e→ e′) (3.214)

Noted now V is the space-like bivector generated by n with l− and W+ is null
bivector generated by n with itself. Again bivector Xvef := Vef − (γ−∗)Wef/((1 +
γ2) Re(α)) is a simple bivector. Xvef can be written as

Xvef = ∗((vef−
γ

(1 + γ2) Re(αvef )
w+
ef )∧(u− γ

(1 + γ2) Re(αvef )
w+
ef )) = ∗(ṽvef∧ũvef )

(3.215)
where

ṽI = (ṽ0,−ṽ2, ṽ1, 0), w+i = 2i〈n, F in〉 (3.216)
Here

ṽi = 2〈n, F i(l− − iγn
(1 + γ2) Re(α))〉, w+i = 2i〈n, F in〉 (3.217)

ṽI ṽI = ũI ũI = 1 implies X is timelike.
Then (3.213) leads to

Xf (v) := GveXvefGev = Gve′Xve′fGe′v (3.218)

which is the parallel transport of X between edge e and e′. With (3.215), we can

101



write Xf (v) as
Xf (v) = Gveṽvef ) ∧ (Gveũvef (3.219)

Note here again we have

(Gveu)IXIJ
vf = − 1

(1 + γ2) Re(α)(Gvew
+
ef )J (3.220)

which is some null vector and can not be 0.
Form (3.171) and (3.173), we have the following equations of motion from

variation respecting to g

∑
f

εef (v)〈n, F †(l− − iγn
(1 + γ2) Re(α))〉 = 0

∑
f

εef (v)〈n, F
†n〉

Re(α) = 0 (3.221)

In terms of 4-vectors,

∑
f

εef (v)Gvevef = 0
∑
f

εef (v)
Gvew

+
ef

Re(α) = 0 (3.222)

which leads to ∑
f

εef (v)Xf (v) = 0 (3.223)

3.3.3.4. Svfx case

We will use Svfx− as an example, the Svfx+ will be exactly the same but switch
e and e′ here. From the critical point equations (3.139) and (3.146),

(γ − i)sf
gveηl

+
vef

ζ̄vef
= −isf

gve′ηnve′f

ζ̄ve′f Re(αve′f )
,

gveζ̄vefJ (l−ef + αvef l
+
ef ) = gve′ ζ̄ve′fJ (l+e′f + αve′f l

−
e′f )

(3.224)

With the equation (3.163) from the variation respecting to SU(1, 1) group ele-
ments vef , in this case n = l+, and Z̃ve′f can be written as Z̃ve′f = l+e′f + (1 −
iγ) Re(αve′f )l−e′f .

The tensor product between the two equations leads to

(iγ + 1)gve(ηl+ef ⊗ (l−ef )† + ᾱvefηl
+
ef ⊗ (l+ef )†)gev = gve′ ηnve′f ⊗ ( nve′f

Re(αve′f )
+ (1− iγ)l−e′f )† ge′v

= gve′ (ηnve
′f ⊗ nve′f

Re(αve′f )
+ (1 + iγ)ηnve′f ⊗ (l−e′f )†) ge′v

(3.225)
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In bivector representation

gve(Vef + iᾱvefW+
ef )gev = gve′ (Ve′f +

(i− γ)W+
ve′f

Re(αe′f )(1 + γ2)) ge′v (3.226)

Easily to see one recovers the corresponding bivectors in Svf± case respectively.
Thus the equation implies

Xf (v) := gveXvefgev = gve′Xve′fge′v (3.227)

with Xvef defined by (3.200) and Xve′f defined by (3.215). The closure con-
straint, in these case, are the combination of corresponding equation in (3.208)
or (3.222) according to their representations in S+ or S−. Then we still have∑

f

εef (v)Xf (v) = 0 (3.228)

3.3.3.5. Summary

As a summary, given any solution to the critical equations, we can define a
bivector

Xvef = −2i〈l−, F il+〉Fi − iᾱvef〈l+, F il+〉Fi
= Vef − (Im(αvef ) + Re(αvef )∗)W+

ef

(3.229)

or

Xvef = −2i〈n, F †il−〉Fi −
i + γ

(1 + γ2) Re(αvef )
〈n, F †in〉Fi

= −Vef −
1− γ∗

(1 + γ2) Re(αvef )
W+
ef

(3.230)

corresponding to their action is composited by Svef+ or Svef−. Here Vef is a
spacelike bivector and Wef is a null bivector. In spin-1 representation, we can
express the above bivector as

XIJ
ef = (∗)(ṽIvef ∧ ũJvef ) (3.231)

where

ṽvef =
{
vef − Im(αvef )w+

ef , Svef+
vef − γ

(1+γ2) Re(αvef )w
+
ef , Svef−

(3.232)

ũvef =
{
u+ Re(αvef )w+

ef , Svef+
u+ 1

(1+γ2) Re(αvef )w
+
ef , Svef−

(3.233)
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with

vef =
{
−2i〈l−ef , F il+ef〉, Svef+
−2i〈nef , F il−ef〉 Svef−

, (3.234)

w+
ef =

{
2〈l+ef , F il+ef〉, Svef+
2〈nef , F inef〉 Svef−

(3.235)

The bivector Xvef satisfies the parallel transport equation:

gveXvefg
−1
ve = gve′Xve′fg

−1
ve′ (3.236)

This corresponds to

Xf (v) := gveXvefgev = vIef (v) ∧N I
e (v) (3.237)

where
vIef (v) := Gveṽvef , N I

e (v) = Gveũvef (3.238)
The closure constraint in terms of the bivector variable then reads

2
∑
f

γεef (v)sfXf (v) =
∑
f

εef (v)Bf (v) = 0 (3.239)

where Bf = 2γsfXf = nfXf with B2
f = −n2

f . Note that the closure constraint is
composed by two independent equations enrolling ṽ and w+

∑
f

εef (v)ṽvef = 0,
{ ∑

f εef (v) Re(αvef )w+
ef = 0, Svef+∑

f εef (v)(Re(αvef )−1w+
ef = 0, Svef−

(3.240)

3.3.4. Timelike tetrahedron containing both spacelike and
timelike triangles

The timelike tetrahedron in a generic simplicial geometry contains both space-
like and timelike triangles. For spacelike triangles, the irreps of SU(1, 1) are in
the discrete series, in contrast to the continuous series used in timelike triangles.
The simplicity constraint is also different from (3.15). This leads to different face
actions on triangles with different signature, and the total action is expressed by
the sum of these actions. The action on spacelike triangle and corresponding crit-
ical point equations have already been derived in [85]. The results are reviewed
in Appendix ??.

The variations with respect to zvf and vef give equations of motions (3.236)
for timelike triangles and (??) for spacelike triangles respectively. In addition,
for timelike triangles, solutions should satisfy (3.158), (3.163) or (3.163).
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The variation respect to SL(2,C) group element gve involves all faces connected
to e, which may include both spacelike and timelike triangles. In general, from
(3.171 - 3.173) and (??-??), the action including different types of triangles
gives

− 2i
∑

f /w S+(x)

sf〈l−ef − i(γ Re(αvef )− Im(αvef ))l+ef , F †l+ef〉

+ 2i
∑

f /w S−(x)

sf〈nef , F †l−ef〉 − 2
∑

f /w Ssp

jf〈ξ±ef , F †ξ±ef〉 = 0
(3.241)

−2γ
∑

f /w S+(x)

sf〈l−ef − i( 1
γ

Re(αvef )− Im(αvef ))l+ef , F †l+ef〉

+ 2
∑

f /w S−(x)

isf
〈nef , F †nef〉

Re(αvef )
+ γsf〈nvef , F †l−ef〉+ 2iγ

∑
f /w Ssp

jf〈ξ±ef , F †ξ±ef〉 = 0

(3.242)
Summation of the two equations leads to

(1 + γ2)
∑

f /w S+(x)

sf Re(αvef )〈l+ef , F il+ef〉+
∑

f /w S−(x)

sf
〈nef , F inef〉

Re(αvef )
= 0 (3.243)

This equation only involves timelike triangles. Since w+i
ef = 〈l+ef , F il+ef〉 (or

w+i
ef = 〈nef , F inef〉 in S−(x) case) are null vectors, the above equation implies

summing over null vectors equal to 0. In a tetrahedron contains both timelike
and spacelike triangles, the number of timelike triangles, which is also the num-
ber of null vectors here, is less than 4. If one has less than 4 null vectors sum to
0 in 4-dimensional Minkowski space, then they are either trivial or colinear. The
only possibility to have a nondegenerate tetrahdron from (3.243) is that all the
timelike faces are in the action S+ and set Re(α) = 0. The solution reads

Re(αvef ) = 0 & ∀f∈te , Sf = S+(x) (3.244)

which means in order to have critical point, the action associated to each tri-
angle f of the tetrahedron te must be S+ or S+x, the other actions do not have
stationary point. The closure constraint is now given by (3.241) minus (3.242)

−2i
∑

f /w S+(x)

sf〈l−ef + i Im(αvef )l+ef , F il+ef〉 = 0

− 2
∑

f /w Ssp

jf〈ξ±ef , F iξ±ef〉 = 0
(3.245)

1 The parallel transport equations for timelike triangles still keep the same form
as (3.144-3.146). After we impose condition (3.244), the parallel transport equa-
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tion becomes

gvel
+
ef ⊗ (l−ef + i Im(αvef )l+ef )†gev

= gve′l
+
e′f ⊗ (l−e′f + i Im(αve′f )l+e′f )†ge′v

(3.246)

One recognize the same composition of spinors l−ef + i Im(αvef )l+ef in (3.245) and
(3.246). This is exactly the spinor satisfying Lemma (3.3.2). Recall (3.158),
coming from the variation respect to SU(1, 1) group elements vef , we have

Im(αvef ) = Im(αv′ef ) (3.247)

in S+ case or Im(αvef) = 0 in Sx+ case respectively. However, recall for S+ case,
there is an ambiguity in defining l̃− and Im(α) from lemma 3.3.2. This ambiguity
does not change the action, and gives the same vector vi = 〈l̃−ef , F il+ef〉. Thus we
can always remove the Im(αvef) by a redefinition of l−ef , which does not change
the geometric form of the critical equations. With (3.247), this redefinition will
extended to both end points of the edge e. Thus we always make the choice that
Im(αvef ) = 0 and drop all Im(αvef ) terms in (3.245) and (3.246)

In bivector representation, we can build bivectors for timelike triangles,

Xef = ∗(vef ∧ u), (3.248)

with vef a normalized vector defined by vIef = i(
〈
l+ef

∣∣∣ σ̂I ∣∣∣l−ef〉 − uI). The parallel
transportation equation implies we can define a bivector Xf (v) independent of e

Xf (v) = GveXefGev (3.249)

Clearly in this case we have

Ne ·Xf (v) = 0, with Ne = Gveu (3.250)

For spacelike triangles, the bivector is defined in (??). One see they have exactly
the same form as in the timelike case and follow the same condition, except now
vIef =

〈
ξ±ef

∣∣∣ σ̂I ∣∣∣ξ±ef〉 − 〈ξ±ef ∣∣∣ξ±ef〉uI instead. With bivectors Xef and Xf , (3.245)
becomes (after recover the sign factor εef (v))∑

f /w S+(x)

εef (v)sfXf (v)−
∑

f /w Ssp

εef (v)jfXf (v) = 0 (3.251)

In summary, the critical equations for a timelike tetrahedron with both timelike
and spacelike triangles imply a nondegenerate tetrahedron geometry only when
timelike triangles have action S+(x). Suppose we have a solution (jf , gve, zvf),
one can define bivectors

Bef = 2AfXef = 2Af ∗ (vef ∧ u) (3.252)
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where

vIef =
 −i(

〈
l+ef

∣∣∣σI ∣∣∣l−ef〉− uI) for timelike triangle〈
ξ±ef

∣∣∣σI ∣∣∣ξ±ef〉− 〈ξ±, ξ±〉uI for spacelike case
, (3.253)

and

Af =
{
γsf = nf/2 for timelike triangle
γjf = γnf/2 for spacelike triangle (3.254)

We define Bef (v) as
Bf (v) := GveBefGev (3.255)

The critical point equations imply

Bef (v) = Be′f (v) = Bf (v) (3.256)
Ne ·Bf (v) = 0 (3.257)∑
f∈te

εef (v)Bf (v) = 0 (3.258)

where N I
e = Gveu

I , εef(v) = ±1 and changes it’s sign when exchanging vertex
and edge variables.

3.3.5. Tetrahedron containing only timelike triangles
Starting from the critical equations derived above, we can see what happens

when all faces appear inside the closure constrain is timelike. For simplicity, we
will use S+ action as an example, the other cases will follow similar properties
as they can be written in similar forms as S+.

Suppose we have a solution to critical equations with all the face actions being
S+. As we have shown above, the solution satisfies two closure constraints,∑

f

sf (vef + Im(αvef )w+
ef ) = 0, (3.259)

∑
f

sf Re(αvef )w+
ef = 0 (3.260)

Clearly here we have family of solutions generated by the continuous transfor-
mations

Re(αvef )→ C̃ve Re(αvef ),
Im(αvef )→ Im(αvef ) + Cve Re(αvef )

(3.261)

In other words, the closure constraint only fixes α up to Cve and C̃ve.
Back to the bivectors inside the parallel transportation equation, it is easy to

see, the bivector can be rewritten as
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X = V + (Im(α) + Re(α)∗)W+ = X0 + Re(α)(C + C̃∗)W+ (3.262)
where X0 = V + Im(α0

vef) for some given Im(α0
vef). Suppose we have a solution

to some fixed C and C̃, the parallel transported bivector then reads

GveXefGev = GveX
0
efGev + Re(α)(C + C̃∗)GveW

+
efGev = ∗((Gveṽvef ) ∧ (Gveũvef ))

(3.263)
From the fact that in spin-1/2 representation ∗ → i, we define c := C + iC̃.
From the parallel transported vector ṽf := Gveṽvef and ũf := Gveũvef , one can

determine a null vector w̃f related to face f = (e, e′) uniquely up to a scale by

w̃f .ṽf = w̃f .ũf = 0 (3.264)

From the definition of ṽ and ũ, we see that wef .ũvef = wef .ṽvef = 0 and the same
relation for e′. Since G ∈ SO+(1, 3) which preserves the inner product, we then
have

w̃f ∝ Gvewef ∝ Gve′we′f (3.265)
Suppose a solution to critical equations determines a geometrical 4-simplex

up to scaling and reflection with normals Ne(v) = Gveu (Appendix 3.A for the
geometrical interpretation of the critical solution. We suppose the solution is non-
degenerate here. The degenerate case will be discussed in Sec. 3.5). From this 4-
simplex, we can get its boundary tetrahedron with faces normals vgef (v) = Gvev

s
ef .

For two edges e and e′ belong to the same face f , Ne and Ne′ determine uniquely
a null vector (up to scaling), which is perpendicular to Ne and Ne′. Then from
(3.264) and (3.265), the vector is proportional to w̃f . Then it implies that,

vsef = ṽef + defwef (3.266)

The tetrahedra determined by vsef (by Minkowski Theorem) satisfy the length
matching condition, which further constrain def . 10 def ’s are over-constrained
by 20 length matching conditions. def = 0 corresponds to a solution if the
boundary data (relating to ṽef) also satisfy the length matching condition. We
have the parallel transportation equation:

gveX
0
efgev + defgveW

+
efgev = gve′X

0
e′fge′v + de′fgve′W

+
e′fge′v (3.267)

However, from (3.263) we know that

gveX
0
efgev + Re(αef )cvegveW+

efgev = gve′X
0
e′fge′v + Re(αe′f )cve′gve′W+

e′fge′v (3.268)

which means

(Re(αvef )cve − def )gveW+
efgev = (Re(αve′f )cve′ − de′f )gve′W+

e′fge′v (3.269)
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They are 10 complex equations, with 5 complex cve, thus again give an over-
constrained system.

A special case is that the boundary data itself satisfy the length matching con-
dition. In this case, def = 0 correspond to a critical solution. It can be further
proved that (3.269) with def = 0 implies

∀e cve = 0 (3.270)

The condition is nothing else but (3.244), and it is easy to see that in this case
the critical equations reduce to (3.252 - 3.256).

3.4. Geometric interpetation and reconstruction
The critical solutions of spinfoam action are shown to satisfy certain geometri-

cal bivector equations, we would like to compare them with a discrete Lorentzian
geometry. The general construction of a discrete Lorentzian geometry and the
relation with critical solutions for spacelike triangles were discussed in detail in
[79] and [85]. We will see that our solutions, which include timelike triangles,
can be applied to a similar reconstruction procedure. We demonstrate the de-
tailed analysis in Appendix 3.A. The main result is summarized here. The result
is valid when every timelike tetrahedron contains both spacelike and timelike
triangles. It is also valid for tetrahedra containing only timelike triangles in the
special case with Eq.(3.270).

The following condition at a vertex v implies the nondegenerate 4-simplex
geometry:

5∏
e1,e2,e3,e4=1

det(Ne1, Ne2, Ne3, Ne4) 6= 0 (3.271)

which means any 4 out of 5 normals are linearly independent. Since Ne = Gveu,
the above non-degeneracy condition is a constraint on Gve. Here u = (0, 0, 0, 1)
or u = (1, 0, 0, 0) for a timelike or spacelike tetrahedron.

Then we can prove that satisfying the nondegeneracy condition, each solution
Bef (v) at a vertex v determines a geometrical 4-simplex uniquely up to shift and
inversion. The bivectors B∆

ef (v) of the reconstructed 4-simplex satisfy

B∆
ef (v) = r(v)Bef (v) (3.272)

where r(v) = ±1 relates to the 4-simplex (topological) orientation defined by an
ordering of tetrahedra. The reconstructed normals are determined up to a sign

N∆
ve = (−1)sveNve (3.273)

We can prove that for a vertex amplitude, the solution exists only when the
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boundary data determines tetrahedra that are glued with length-matching (the
pair of glued triangles have their edge-lengths matched).

Given the boundary data, we can determines geometric group elements G∆ ∈
O(1, 3) from reconstructed normals N∆. Then it can be shown that, after one
choose sv and sve, such that

∀e det G∆
ve = (−1)sv = r(v). (3.274)

G∆
ve relates to Gve by

Gve = G∆
veI

sve(IRu)sv (3.275)
where RN is the reflection respecting to normalized vector N defined as

(RN)IJ = IIJ −
2N INJ

N ·N
(3.276)

The choice of sve = ±1 corresponds to a gauge freedom and is arbitrary here.
Condition 3.274 is called the orientation matching condition, which essentially
means that the orientations of 5 boundary tetrahedra determined by the bound-
ary condition are required to be the same.

For a vertex amplitude, the non-degenerate geometric critical solutions exist
if and only if the length matching condition and orientation matching condition
are satisfied. Up to gauge transformations, there are two gauge inequivalent so-
lutions which are related to each other by a reflection respect to any normalized
4 vector eα (this reflection is referred to as the parity transformation in e.g. [77–
80])

B̃ef (v) = Reα(Bef (v)), s̃v = sv + 1 (3.277)
which means

G̃ve = ReαGve(IRN) (3.278)
Geometrically the second one corresponds to the reflected simplex. These two

critical solutions correspond to the same 4-simplex geometry, but associates to
different sign of the oriented 4-simplex volume V (v). sgn(V (v)) is referred to
as the (geometrical) orientation of the 4-simplex b, which shouldn’t be confused
with r(v). This result generalizes [85] to the spin foam vertex amplitude contain-
ing timelike triangles.

The reconstruction can be extended to simplicial complex K with many 4-
simplices, in which some critical solutions of the full amplitude correspond to
nondegenerate Lorentzian simplicial geometries on K (see Appendix 3.A). But
similar to the situation in [79, 80], 4-simplices inKmay have different sgn(V (v)).
We may divide the complex K into sub-complexes, such that each sub-complex
is globally orientated, i.e. the sign of the orientated volume sgn(V ) is a constant.

b. sgn(V (v)) is a discrete analog of the volume element compatible to the metric in smooth
pseudo-Riemannian geometry.
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Then we have the following result:
For critical solutions corresponding to simplicial geometries with all 4-simplices

globally oriented, picking up a pair of them corresponding to opposite global ori-
entations, they satisfy

G̃f =
{
RueGf (e)Rue internal faces
Ire1+re0Rue1Gf (e1, e0)Rue0 boundary faces (3.279)

where Gf = ∏
v⊂∂f Ge′vGve is the face holonomy. We will use this result to derive

the phase difference of their asymptotical contributions to the spin foam ampli-
tude. Note that, the asymptotic formula of the spinfoam amplitude is given by
summing over all possible configuration of orientations.

3.5. Split signature and degenerate 4 simplex
This section discusses the critical solutions that violate the non-degeneracy

condition (3.271). We refer to these solutions as degenerate solutions. If the
non-degeneracy condition is violated, then in each 4-simplex, all five normals Ne

of tetrahedra te are parallel, since we only consider nondegenerate tetrahedra
[85]. When it happens with all te timelike (or spacelike), with the help of gauge
transformation Gve → GGve, we can write Ne(v) = Gveu, u = (0, 0, 0, 1), where
all the group variables Gve ∈ SO+(1, 2). However, when the vertex amplitude
contains at least one timelike and one spacelike tetrahedron, the non-degeneracy
condition (3.271) cannot be violated since timelike and spacelike normals cer-
tainly cannot be parallel. Therefore the solutions discussed in this section only
appear in the vertex amplitude with all tetrahedra timelike. Moreover, these de-
generate solutions appears when the boundary data are special, i.e. correspond
to the boundary of a split signature 4-simplex or a degenerate 4-simplex, as we
see in a moment.

When the tetrahedron contains both timelike and spacelike triangles, the clo-
sure constraint (3.243) concerning w involves at most 3 null vectors, which di-
rectly leads to Re(αvef) = 0 as the only solution. For degenerate solutions, the
bivector Xf (v) = gveXefgev in (3.249) becomes

Xf (v) = ∗Gve(vef ∧ u)Gev = Gvevef ∧ u = vgvef ∧ u (3.280)

The parallel transportation equation (3.256) becomes

vgf (v) = vgve = vgve′ = 2AfGvevef . (3.281)

Thus, the degenerate critical solutions satisfy

vgf (v) = vgve = vgve′ ,
∑
f

εef (v)vgf (v) = 0 (3.282)
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and the collection of vectors vgf (v) is referred to as a vector geometry in [77].
In the case that all triangles in a tetrahedron are timelike, we use Svf+ as an

example. The degeneracy implies Gveu = Gve′u = u,. The parallel transportation
equation (3.263) becomes

(Gveṽvef −Gve′ ṽve′f ) ∧ u = cve Re(αvef )Gvew
+
ef ∧ u− cve′ Re(αve′f )Gve′w

+
e′f ∧ u.
(3.283)

cve = Cve + iC̃ve is the factor which solves the closure constrain with a given
normalization of Re(αvef), e.g.

∑
f Re(αvef) = 1 as shown in (3.261). (3.283)

directly leads to

Gve(ṽvef + Cve Re(αvef )wef ) = Gve′(ṽve′f + Cve Re(αvef )wef ) (3.284)
C̃ve Re(αvef )Gvewef = C̃ve′ Re(αve′f )Gve′we′f (3.285)

Notice that from (3.284), since wef is null and wef · vef = 0, we have

Gvewef ∝ Gve′we′f . (3.286)

It implies that (3.285) is only a function of C̃. However, at a vertex v, there
are only 5 independent C̃ variables out of 10 equations. Thus (3.285) are over
constrained equations and give 5 consistency condition for Gve unless C̃ = 0.

Actually one can show that, there is no solution when C̃ 6= 0. We give the
proof here. For simplicity, we only focus on a single 4-simplex.

Suppose we have solutions to above equations with C̃ 6= 0, then the following
equations hold according to (3.284), (3.285) and the closure constraint (3.208)

vgf (v) = vgef (v) = vge′f (v),
∑
f⊂te

εef (v)vgef (v) = 0 ,

wgf (v) = wgef (v) = wge′f (v),
∑
f⊂te

εef (v)wgef (v) = 0,
(3.287)

where

vgef (v) = Gveṽef + Ci Re(αvef )Gvewef

wgef (v) = C̃i Re(αvef )Gvewef
(3.288)

Suppose vg satisfy the length matching condition. From above equations, ṽgef =
vgef + awgef with arbitrary real number a are also solutions. This means ṽg should
also satisfy the length matching condition. However the transformation from v
to v + aw changes the edge lengths of the tetrahedron, and the length matching
condition gives constraint to a. This conflict with the fact that a is arbitrary to
form the solution. It means that we can not have a solution with C̃ 6= 0 and
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length matching condition satisfied.
Thus, when boundary data satisfies the length matching condition, the only

possible solution of (3.285) is C̃ve = 0. This corresponds to Re(α) = 0 thus only
possible with action S+. One recognizes that this is the same condition as in the
case of tetrahedron with both timelike and spacelike triangles, e.g. (3.244). In
this case Cve thus Im(α) can be uniquely determined by the closure and length
matching condition. The critical point equations again becomes (3.281) and
(3.282)

In the end of this section, we introduce some relations between the vector
geometry and non-degenerate split signature 4-simplex. As shown in Appendix
3.A.6, the vector geometries in 3 dimensional subspace V can be map to the
split signature space M ′ with signature (−,+,+,−) (flip the signature of u =
(0, 0, 0, 1)), with the map Φ± : ∧2M4′ → V for bivectors B,

Φ±(B) = (∓B − ∗′B) ·′ u. (3.289)

Φ± naturally induced a map from g ∈ SO(2, 2) to the subgroup h ∈ SO(1, 2),
defined by

Φ±(gBg−1) = Φ±(g)Φ±(B) (3.290)
If the vertex amplitude has the critical solutions being a pair of non-gauge-
equivalent vector geometries {G±ve}, they are equivalent to a pair of non-gauge-
equivalent {Gve ∈ SO(M ′)} satisfying the nondegenerate condition. One of the
non-degenerate {Gve} satisfies G±ve = Φ±(Gve), while the other {G̃ve} satisfies

Φ±(G̃) = Φ±(RuGRu) = Φ∓(G) (3.291)

When the vector geometries are gauge equivalent, the corresponding geomet-
ric SO(M ′) solution is degenerate. In this case the reconstructed 4 simplex is
degenerate and the 4 volume is 0.

3.6. Summary of geometries
We summarize all possible reconstructed geometries corresponding to critical

configurations of Conrady-Hnybida extended spin foam model (include EPRL
model) here. We first introduce the length matching condition and orientation
matching condition for the boundary data. Namely, (1) among the 5 tetrahedra
reconstructed by the boundary data (by Minkowski Theorem), each pair of them
are glued with their common triangles matching in shape (match their 3 edge
lengths), and (2) all tetrahedra have the same orientation. The amplitude will
be suppressed asymptotically if orientation matching condition is not satisfied.

For given boundary data satisfies length matching condition and orientation
matching condition, we may have the following reconstructed 4 simplex geome-
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tries corresponding to critical configurations of Conrady-Hynbida model:
— Lorentzian (−+ ++) 4 simplex geometry: reconstructed by boundary data

which may contains
— both timelike and spacelike tetrahedra,
— all tetrahedra being timelike.
— all tetrahedra being spacelike.

— Split signature (− + +−) 4 simplex geometry: This case is only possible
when every boundary tetrahedron are timelike.

— Euclidean signature (++++) 4 simplex geometry: This case is only possible
when every boundary tetrahedron are spacelike.

— Degenerate 4 simplex geometry: This case is only possible when all bound-
ary tetrahedron are timelike or all of them are spacelike.

When length matching condition is not satisfied, we might still have one gauge
equivalence class of solutions which determines a single vector geometry. This
solution exists again only when all boundary tetrahedron are timelike or all of
them are spacelike.

Our analysis is generalized to a simplicial complex K with many 4-simplices.
A most general critical configuration of Conrady-Hnybida model may mix all the
types of geometries on the entire K. One can always make a partition of K into
sub-regions such that in each region we have a single type of reconstructed geom-
etry with boundary. However, this may introduce nontrivial transitions between
different types of geometries through boundary shared by them as suggested in
[79]. It is important to remark that, if we take the boundary data of each 4
simplex to contain at least one timelike and one spacelike tetrahedron, critical
configurations will only give Lorentzian 4-simplices.

3.7. Phase difference
In this section, we compare the difference of the phases given by a pair of crit-

ical solutions with opposite (global) sgn(V ) orientations on a simplical complex
K. Recall that the amplitude is defined with SU(1,1) and SU(2) coherent states
at the timelike and spacelike boundary. When we define the coherent state, we
have a phase ambiguity from K1 direction in SU(1,1) (or J3 direction in SU(2)),
thus the action is determined up to this phase. Thus the phase difference ∆S
is the essential result in the asymptotic analysis of spin foam vertex amplitude.
The phase difference at a spacelike triangle has already been discussed in [85],
we only focus on timelike triangles here.

Given a timelike triangle f , in Lorentzian signature, the normalsNe andNe′ are
spacelike and span a spacelike plane, while in split signature they form a time-
like surface. The dihedral angles Θf at f are defined as follows: In Lorentzian
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signature, the dihedral angle is Θf = π − θf where

cos θf = N∆
e ·N∆

e′ , θf ∈ (0, π) (3.292)

While in split signature, the boost dihedral angle θf is defined by

cosh θf = |N∆
e ·′ N∆

e′ |, θf ≷ 0 while N∆
e ·′N∆

e′ ≷ 0; (3.293)

3.7.1. Lorentzian signature solutions
As we shown before, when every tetrahedron has both timelike and spacelike

triangles, the critical solutions only comes from S+. So we focus on S+ action.
From the action (3.101), after inserting the decomposition (3.135), we find

Svf+ =nf2 ln ζvef ζ̄ve
′f

ζ̄vefζve′f
− isf ln ζve

′f ζ̄ve′f

ζ̄vefζvef
= −2iγsf (arg(ζve′f )− arg(ζvef )− 2is ln |ζve

′f |
|ζvef |

=− 2isf (θe′vef + γφe′vef )
(3.294)

where θ and φ are defined by

θe′vef := ln |ζve
′f |

|ζvef |
,

φe′vef := arg(ζve′f )− arg(ζvef )
(3.295)

The face action at a triangle dual to a face f then reads

Sf =
∑
v∈∂f

Svf = −2isf

∑
v∈∂f

θe′vef + γ
∑
v∈∂f

φe′vef

 (3.296)

We start the analysis from faces dual to boundary triangles (boundary faces) and
then going to internal faces.

3.7.1.1. Boundary faces

For critical configurations solving critical equations (we keep Im(α) = 0 by
redefinition of l−ef), they satisfy

gveηl
+
ef = ζ̄vef

ζ̄ve′f
gve′ηl

+
e′f (3.297)

gveJl
−
ef = ζ̄ve′f

ζ̄vef
g−1†
ve′ Jl

−
e′f . (3.298)
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We then have

Gf (e1, e0) ηl+e0f (3.299)

= e−
∑

v∈pe1e0
θe′vef+i

∑
v∈pe1e0

φe′vef ηl+e1f

Gf (e1, e0) Jl−e0f (3.300)

= e
∑

v∈pe1e0
θe′vef−i

∑
v∈pe1e0

φe′vef Jl−e1f

where Gf (e1, e0) is the product of edge holonomy along the path pe0e1

Gf (e1, e0) := ge1v1 ...ge′v0gv0e0 (3.301)

Suppose we have holonomies G and G̃ from the pair of critical solutions with
global sgn(V ) orientation, then one can see

G̃−1G ηl+e0f (3.302)

= e−
∑

v∈pe1e0
∆θe′vef+i

∑
v∈pe1e0

∆φe′vef ηl+e0f

G̃−1G Jl−e0f (3.303)

= e
∑

v∈pe1e0
∆θe′vef−i

∑
v∈pe1e0

∆φe′vef Jl−e0f

For a single 4-simplex, the above equations read

(g̃e′vg̃ve)−1(ge′vgve) ηl+e0f =
ζ̄ ′vef

ζ̄ ′ve′f

ζ̄vef

ζ̄ve′f
ηl+ef (3.304)

= e−∆θe′vef+i∆φe′vef ηl+ef

(g̃e′vg̃ve)−1(ge′vgve) Jl−e0f =
ζ̄ ′ve′f

ζ̄ ′vef

ζ̄ve′f

ζ̄vef
Jl−e0f (3.305)

= e∆θe′vef−i∆φe′vef Jl−e0f

which lead to

gve(g̃e′vg̃ve)−1ge′v gve ηl
+
e0f (3.306)

= e−∆θe′vef+i∆φe′vef gve ηl
+
e0f

gve(g̃e′vg̃ve)−1ge′v gve Jle0f (3.307)
= e∆θe′vef−i∆φe′vef gve Jl

−
e0f

We can define an operator Tef by

Tef := ηl+ef ⊗ (l−ef )† =
∣∣∣ηl+ef〉 〈l−ef ∣∣∣ (3.308)
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From the facts
〈
l−ef

∣∣∣ηl+ef〉 = 〈l−ef , l+ef〉 = 1,
〈
l−ef

∣∣∣Jl−ef〉 = 0, the action of this operator
leads to

Tef
∣∣∣ηl+ef〉 =

∣∣∣ηl+ef〉 〈l−ef ∣∣∣ηl+ef〉 =
∣∣∣ηl+ef〉

Tef
∣∣∣Jl−ef〉 = 0

(3.309)

From the definition of (3.229) (with α = 0), by using (3.186) and (3.191), one
then see

Xef

∣∣∣ηl+ef〉 = 1
2
∣∣∣ηl+ef〉 , Xef

∣∣∣Jl−ef〉 = −1
2
∣∣∣Jl−ef〉 (3.310)

Then we have

2Xf gve
∣∣∣ηl+ef〉 = 2gveXefgevgve

∣∣∣ηl+ef〉 = gve2Xef

∣∣∣ηl+ef〉 = gve
∣∣∣ηl+ef〉 (3.311)

2Xf gve
∣∣∣Jl−ef〉 = 2gveXefgevgve

∣∣∣Jl−ef〉 = gve2Xef

∣∣∣Jl−ef〉 = −gve
∣∣∣Jl−ef〉 . (3.312)

From (3.306) and (3.307), it is easy to see

gve(g̃e′vg̃ve)−1ge′v = e−2∆θe′vefXf+2i∆φe′vefXf (3.313)

For a general simplicial complex with boundary, given a boundary face f with
two edges e0 and e1 connecting to the boundary, and v is the bulk end-point of
e0 if we define

Gf (e1, e0) = Gf (v, e1)−1gve0 (3.314)
It can be proved that

Gf (v, e1)Xe1fGf (v, e1)−1 = gve0Xe0fge0v (3.315)

which is the generalization of the parallel transportation equation within a single
4-simplex. Then we can apply the same derivation as the single-simplex case by
replacing gve′ → G(v, e1), which leads to

gveG̃f (e1, e0)−1Gf (e1, e0)gev = e−2
∑

v∈∂f ∆θe′vefXf+2i
∑

v∈∂f ∆φe′vefXf . (3.316)

3.7.1.2. Internal faces

The discussion of internal face f is similar to the boundary case, we have

Gf ηl
+
ef = e−

∑
v∈∂f θe′vef+i

∑
v∈∂f φe′vef ηl+ef (3.317)

Gf Jl
−
ef = e

∑
v∈∂f θe′vef−i

∑
v∈∂f φe′vef Jl−ef (3.318)

117



where Gf is the face holonomy

Gf :=
←∏

v∈∂f
ge′vgve. (3.319)

By the action of bivector Xef in (3.310),

e−
∑

v∈∂f θe′vef2Xef+i
∑

v∈∂f φe′vef2Xef
∣∣∣ηl+ef〉 (3.320)

= e−
∑

v∈∂f θe′vef+i
∑

v∈∂f φe′vef
∣∣∣ηl+ef〉

e−
∑

v∈∂f θe′vef2Xef+i
∑

v∈∂f φe′vef2Xef
∣∣∣J l−ef〉 (3.321)

= e
∑

v∈∂f θe′vef−i
∑

v∈∂f φe′vef
∣∣∣J l−ef〉

Compare to (3.317) and (3.318), we see that

Gf = e−
∑

v∈∂f θe′vef2Xef+i
∑

v∈∂f φe′vef2Xef (3.322)

Given Gf and G̃f from a pair of critical solutions with opposite sgn(V ) orienta-
tion, we find

gveG̃
−1
f Gfgev = e−2

∑
v∈∂f ∆θe′vefXf+2i

∑
v∈∂f ∆φe′vefXf (3.323)

3.7.1.3. Phase difference

For a pair of globally orientated (constant sgn(V )) critical solutions with oppo-
site orientation, from (3.296) we have

∆Sf = −2isf

∑
v∈∂f

∆θe′vef + γ
∑
v∈∂f

∆φe′vef

 (3.324)

where ∆θ and ∆φ are determined by

gveG̃
−1
f Gfgev = e−2

∑
v∈∂f ∆θe′vefXf+2i

∑
v∈∂f ∆φe′vefXf (3.325)

Gf ≡ Gf (e1, e0) if f is a boundary face. Since γsf = nf/2 ∈ Z/2, we may restrict∑
v∈∂f

∆φe′vef ∈ [−π, π]. (3.326)

because ∆Sf is an exponent.
After projecting to SO+(1, 3),

gveG̃
−1
f Gfgev → GveG̃

−1
f GfGev, i→ ∗ (3.327)
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For spacelike normal vector u = (0, 0, 0, 1), from it is easy to see G and G̃ are
related by

G̃ = Re0GRuI ∈ SO+(1, 3) (3.328)
and

G̃f = RueGfRue (3.329)
for both internal and boundary triangles f . The equation then leads to

GveG̃
−1
f GfGev = GveRuG

−1
f RuGfGev = RNeRNe′

(3.330)
for both internal and boundary triangles f . Ne and Ne′ here are given by

Ne = Gveu, Ne′ = Gve(G−1
f u), (3.331)

thus Ne′ is the parallel transported vector along the face.
Therefore in both internal case and boundary case, we have

RNeRNe′
= e−2

∑
v∈∂f ∆θe′vefXf+2∗

∑
v∈∂f ∆φe′vefXf (3.332)

On the other hand, from the fact that, RN = GRuG, and the fact that G∆
ve =

GIsve(IRu)sv, we have
RNeRN ′e = RN∆

e
RN∆

e′
(3.333)

Since RN∆ is a reflection respect to spacelike normal N∆, we have (see Appendix
3.B)

RN∆
e
RN∆

e′
= e

2θf
N∆
e ∧N

∆
e′

|N∆
e ∧N

∆
e′
| (3.334)

where f is the triangle dual to the face determined by edges e and e′. θf ∈ [0, π]
satisfies N∆

e ·N∆
e′ = cos(θf ). From the geometric reconstruction,

Bf = nfXf = − 1
V ol∆

rW∆
e W

∆
e′ ∗ (N∆

e′ ∧N∆
e ), (3.335)

Since |Bf |2 = −n2
f , we have∣∣∣∣ 1

V ol∆
rW∆

e W
∆
e′

∣∣∣∣ |N∆
e′ ∧N∆

e | = nf (3.336)

Thus

Xf = Bf

nf
= σf

∗(N∆
e′ ∧N∆

e )
|(N∆

e′ ∧N∆
e )| (3.337)

where σf = −rsign(W∆
e′W

∆
e ). Since Ne and Ne′ are both spacelike, we have

σf = −r. Keep in mind that r is the orientation and is a constant sign on the
(sub-)triangulation. Therefore
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e
2r
∑

v∈∂f ∆θe′vef
∗(N∆

e′
∧N∆

e )

|N∆
e′
∧N∆

e |
+2r

∑
v∈∂f ∆φe′vef

N∆
e′
∧N∆

e

|N∆
e′
∧N∆

e | = e
2θf

N∆
e ∧N

∆
e′

|N∆
e ∧N

∆
e′
| (3.338)

which implies ∑
v∈∂f

∆θe′vef = 0,

− r
∑
v∈∂f

∆φe′vef = θf mod π
(3.339)

The phase difference is then

∆Sf = 2irAfθf mod iπ (3.340)

where Af = γsf = nf/2 ∈ Z/2 is the area spectrum of the timelike triangle.
The iπ ambiguity relates to the lift ambiguity from Gf ∈ SO+(1, 3) to SL(2,C).

Some ambiguities may be absorbed into gauge transformations gve → −gve.
Firstly we consider a single 4-simplex, (3.339) reduces to ∆θe′vef = 0 and
∆φe′vef = −θf mod π ( Here we use the notation that we move the orienta-
tion r from ∆φ in (3.339) to the definition of ∆S. Keep in mind ∆S always
depends on the orientation r). However it is shown in Appendix 3.C that this
ambiguity can indeed be absorbed into the gauge transformation of gve, i.e. if
we fix the gauge,

∆φe′vef = −θf (v) mod 2π, (3.341)
where θf(v) is the angle between tetrahedron normals in the 4-simplex at v.
Although this fixing of lift ambiguity only applies to a single 4-simplex, it is
sufficient for us to obtain ∆S∆

f unambiguously. Applying (3.341) to the case
with many 4-simplices∑

v∈∂f
∆φe′vef = −

∑
v∈∂f

θf (v) mod 2π (3.342)

Since θf(v) relates to the dihedral angle Θf(v) by θf(v) = π − Θf(v), for an
internal f ,

∑
v∈∂f ∆φe′vef relates to the deficit angle εf = 2π −∑v∈∂f Θf (v) by∑

v∈∂f
∆φe′vef = (2−mf )π − εf mod 2π (3.343)

where mf is the number of v ∈ ∂f . Similarly, for a boundary f ,
∑
v∈∂f ∆φe′vef

relates to the deficit angle θf = π −∑v∈∂f Θf (v) by∑
v∈∂f

∆φe′vef = (1−mf )π − θf mod 2π (3.344)
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As a result, the total phase difference is

exp(∆Sf ) = exp
{

2ir∑f bulk Af [(2−mf )π − εf ]

+2ir∑f boundary Af [(1−mf )π − θf ]
}

(3.345)

The exponent is a Regge action when all bulk mf are even, i.e. every internal
f has even number of vertices. Obtaining Regge calculus only requires all bulk
mf ’s to be even, while boundary mf ’s can be arbitrary, since the boundary terms
Af (1−mf )π doesn’t affect the Regge equation of motion.

The above phase difference is for a general simplicial complex, the result for
a single 4-simplex is simply given by removing the bulk terms and letting all
boundary mf = 1.

3.7.1.4. Determine the phase for bulk triangles

For the internal faces in the bulk, we can determine the phase at critical point
uniquely.

Recall (3.322, the holonomy Gf (v) = gveGf (e)gev at vertex v reads

Gf (v) = e−
∑

v∈∂f θe′vef2Xf (v)+i
∑

v∈∂f φe′vef2Xf (v) (3.346)

Recall (3.441) as we shown in Appendix 3.A, for edges El1(v) and El1(v) of the
triangle f in the frame of vertex v,

Gf (v)El1(v) = µEl1(v),
Gf (v)El2(v) = µEl2(v)

(3.347)

where µ = (−1)
∑

e⊂∂f se = ±1. Here se is defined as se = sve + sv′e + 1 for edge
e = (v, v′) with sve ∈ {0, 1}. With edges El1(v) and El1(v), the bivector Xf(v) at
vertex v can be expressed as

Xf (v) = ∗(Ne′(v) ∧Ne(v))
|Ne′(v) ∧Ne(v)| = El1(v) ∧ El2(v)

|El1(v) ∧ El2(v)| (3.348)

From (3.347) and (3.348), with the fact that eXf (v) is a boost, one immediately
see µe = 1 and

Gf (v) = ei
∑

v∈∂f φe′vef2Xf (v) = e
2r
∑

v∈∂f φe′vef
N∆
e′
∧N∆

e

|N∆
e′
∧N∆

e | (3.349)

where we use (3.337). As we proved in Appendix 3.B, there exists spacelike
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normalized vector Ñ in the plane span by Ne and Ne′ such that

Gf (v) = RNRÑ (3.350)

From (3.329),

GveG̃f (e)Gf (e)Gev = GveRuGf (e)RuGf (e)Gev

= RNGf (v)RNGf (v)
(3.351)

Then it is straightforward to show

GveG̃f (e)Gf (e)Gev = RNGf (v)RNGf (v)
=RNRNRÑRNRNRÑ = RÑRÑ = 1

(3.352)

Thus
e2
∑

v∈∂f (φ̃e′vef+φe′vef )∗Xf = 1 (3.353)
which leads to ∑

v∈∂f
(φ̃e′vef + φe′vef ) = 0 mod π (3.354)

The π ambiguity here relates to the lift ambiguity again. Note that, fixing of
lift ambiguity to these 4-simplices sharing the triangle f as in the Appendix 3.C
leads to gveG̃f (e)Gf (e)gev = 1. Then we have∑

v∈∂f
(φ̃e′vef + φe′vef ) = 0 mod 2π (3.355)

where the π ambiguity is fixed. Combine with (3.343), we have∑
v∈∂f

φe′vef = −
∑
v∈∂f

φ̃e′vef

= (2−mf )π − εf
2 mod π

(3.356)

As a result, the total phase for bulk triangles is

exp(Sf ) = exp
{

ir
∑
f bulk

Af [(2−mf )π − εf ]
}

(3.357)

Again, the exponent is a Regge action when all bulk mf are even, i.e. every
internal f has even number of vertices.

Note that, the above derivation assumes a uniform orientation sgn(V ), but
the asymptotic formula of the spinfoam amplitude is given by summing over
all possible configurations of orientations. As suggested by [79], at a critical
solution, one can make a partition of K into sub-regions such that each region
has a uniform orientation, so that the above derivation can be applied.

122



3.7.2. split signature solutions
In this subsection, we focus on a single 4-simplex. We consider a pair of the

degenerate solutions g±ve which can be reformulated as non-degenerate solutions
in the flipped signature space (− + +−) here. When degenerate solutions are
gauge equivalent, there exists only a single critical point, then there is a single
phase depending on boundary coherent states.

Since (3.316) and (3.323) hold for all SL(2,C) elements which solve critical
equations, they also hold for degenerate solutions g±ve. Thus from (3.313), we
have

g±evg
∓
evg
∓
ve′g

±
e′v = e∓2∆θe′vefX

±
f
±2i∆φe′vefX

±
f

= e∓2∆θe′vefX
±
f

(3.358)

Notice that since all g±ve ∈ SU(1, 1) ⊂ SL(2,C), we have 2∆φe′vef = 0 mod 2π
(∗X±f generates rotations in vg-u plane).

From (3.455), we have

Φ±(gevg̃evg̃ve′ge′v) = Φ±(gev)Φ±(g̃ev)Φ±(g̃ve′)Φ±(ge′v) = g±evg
∓
evg
∓
ve′g

±
e′v (3.359)

Since G̃ve = RuGveRu, we have

Φ±(RNeRNe′
) = G±evG

∓
evG

∓
ve′G

±
e′v (3.360)

For Xf in flipped signature space M ′, from the definition of Φ± in (3.289), we
have

Φ±(∗′Xf ) = ±Φ±(Xf ) = ±vg±ef = ±Φ±(X±f ) (3.361)

where we know X±f = vg±ef ∧ u in degenerate case, and X±f can be regarded as
bivectors in so(V ) ∼ ∧2V . Then we have

Φ±(e2∆θe′vef∗′Xf ) = e∓2∆θe′vefX
±
f (3.362)

where we identify the SO(1, 2) acting on V to the one acting on M ′.
Therefore, ∆θ contribution to the phase difference in degenerate solutions
{g±} is identified to the ∆θ written in flipped signature solutions {g} satisfying
Φ±(g) = g±. ∆θ is given by

RNeRNe′
= e2∆θe′vef∗′Xf (3.363)

where Xf is the bivector from flipped signature solutions

Xf = Bf

nf
= −r ∗

′(N∆
e′ ∧N∆

e )
| ∗ ‘(N∆

e′ ∧N∆
e )| (3.364)
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From the fact that geometrically,

RNeRNe′
= RN∆

e
RN∆

e′
= e

2θf
N∆
e ∧N

∆
e′

|N∆
e ∧N

∆
e′
| , (3.365)

where θf ∈ R is a boost dihedral angle. We have

− r∆θe′vef = θf , 2∆φe′vef = 0 mod 2π (3.366)

the phase difference is

∆S∆
f = 2irsfθf = 2ir 1

γ
Afθf mod πi (3.367)

We can again fix the πi ambiguity by using the method in Appendix 3.C. There
is no ambiguity in θf since it is a boost angle. As a result,

exp(∆Sf ) = exp
(

2ir 1
γ
Afθf

)
(3.368)

The generalization to simplicial complex is similar to the non-degenerate case,
by substituting every g and g̃ there with g±.

3.8. Discussion
The present work studies the large-j asymptotics limit of spin foam amplitude

with timelike triangles in a most general configuration on a 4d simplicial mani-
fold with many 4-simplices. It turns out the asymptotics of spin foam amplitude
is determined by critical configurations of the corresponding spinfoam action
on the simplicial manifold. The critical configurations have geometrical inter-
pretations as different types of geometries in separated subregions: Lorentzian
(−+++) 4-simplices, split (−−++) 4-simplices or degenerate vector geometries.
The configurations come in pairs which corresponding to opposite global orienta-
tions in each subregion. In each sub-complex with globally oriented 4-simplices
coming with the same signature, the asymptotic contribution to the spinfoam
amplitude is an exponential of Regge action, up to a boundary term which does
not affect the Regge equation of motion.

An important remark is that, for a vertex amplitude containing at least one
timelike and one spacelike tetrahedron, critical configurations only give Lorentzian
4-simplices, while Euclidean and degenerate vector geometries do not appear. In
all known examples of Lorentzian Regge calculus, the geometries are correspond-
ing to such configuration, for example, the Sorkin triangulation [162] where
each 4-simplex containing 4 timelike tetrahedra and 1 spacelike tetrahedron.
Since such configuration only gives Regge-like critical configurations which is
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supposed to be the result of simplicity constraint in spin foam models [29], the
result could open a new and promising way towards a better understanding of
the imposition of simplicity constraint. Furthermore, Such configuration also
naturally inherits the causal structure to spin foam models, which may open the
possibility to build the connection between spin foam models and causal sets
theory [15] or causal dynamical triangulation theories [11, 12].

With this work, the asymptotics of Conrady-Hnybida spin foam model, with
arbitrary timelike or spacelike non-degenerate boundaries, is now complete. In
the present work we mainly concentrate on the case where each tetrahedron
contains both timelike and spacelike triangles, which is the case in all Regge
calculus geometry examples. The geometrical interpretation of the case where
tetrahedron containing only timelike triangles is much more complicated and we
only identify its critical configurations on special cases with the boundary data
satisfies length matching condition and orientation matching condition. Further
investigation is needed for all possible critical configurations in such case.

Moreover, in the present analysis we do not give the explicit form of measure
factors of the asymptotics formula, which is important for the evaluation of the
spin foam propagator and amplitude. The measure factor in EPRL model is re-
lated to the Hessian matrix at the critical configuration [163, 164]. However,
the measure factor for the triangulation with timelike triangles is a much more
complicated function of second derivatives of the action, due to the appearance
of singularities. A further study of such kind multidimensional stationary phase
approximation, in particular, the derivation of the measure factor would be in-
teresting.

The present work opens the possibility to have Regge geometries in Lorentzian
Regge calculus emerges as critical configurations from spin foam model, which
may leads to a semi-classical effective description of spin foam model. Especially,
this may lead to a effective equation of motion for symmetry reduced models,
e.g., FLRW cosmology or black holes, from the semi-classical limit of spin foam
models.

Appendix

3.A. Geometric interpretation and reconstruction
In this appendix we summarize the geometric reconstruction theorems for

tetrahedron with spacelike triangles only in [77–80, 85], and extend them to
general tetrahedron may contains also timelike triangles. We start with a single
simplex σv corresponding to a vertex v, and then generalize the result to general
simplicial manifold with many simplices. For simplicity, we introduce a short
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hand notation for a single simplex σv:

Ni := Nei(v) BG
ij = −BG

ji = εeiej(v)Beiej(v) BG
ij = ∗(vGij ∧Ni) (3.369)

where eiej represents the face determined by the dual edge ei and ej, and i =
0, 1, ..., 4, and vij here is the trianlges normal scaled with the area : v2

ij = ±4A2
ij.

Note that here we will assume our boundary data to be a geometric boundary
data, which means they satisfy length matching condition and orientation match-
ing condition. The detailed meaning of these conditions will become clear later.
The geometric boundary data is necessary to get a Regge like geometric solution.
For non-geometric boundary data, there will be at most one solution up to gauge
equivalence, which is an analogy to the result in EPRL model [77, 78].

3.A.1. Non-degenerate condtion and classification of the
solution

To begin with, we would like to introduce the non-degenerate condition. We
will first consider non-degenerate simplices and then move to degenerate case.
For the boundary data, non-degenerate means for a boundary tetrahedron any 3
out of 4 face normal vectors nef span a 3-dimensional space. With non-degenerate
boundary data, for any 3 different edges i, j, k in a 4 simplex one of the following
holds

— Nei = ±Nej and Nej = ±Nek ,
— Nei 6= Nej

The first case can be further proved that leads to all Ni are parallel by using the
closure constraint of Bij. This result was first proved in [77] and later by [85].

The only non-degenerate case is then specify by the following non-degeneracy
condition

5∏
e1,e2,e3,e4=0

det(Ne1, Ne2, Ne3, Ne4) 6= 0 (3.370)

which means any 4 out of 5 normals are linear independent and span a 4 di-
mensional Minkowski space. Since Ne(v) = gveN

0, it is easy to see the non-
degenerate condition is actually a constraint on {gve}.

3.A.2. Nondegenerate geometry on a 4-simplex
For simplicity, we start with one 4-simplex σv in 4 dimensional Minkowski

space M = R4 here. For each 4-simplex σv dual to the vertex v, we associate it
with a reference frame. In this reference frame, the 5 vertices of the 4-simplex
[p0, p1, p2, p3, p4] have the coordinates pi : (xIi ) = (x0

i , x
1
i , x

2
i , x

3
i ). Based on these

coordinates, we introduce vectors yi, a as well as covector A in an auxiliary space
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R5,
yi = (xIi , 1)T , and a = (0, ..., 0, 1)T , A = aT (3.371)

We define the k + 1 vector in R5

Ṽα0,...,αk = yα0 ∧ ... ∧ yαk (3.372)

where αi ∈ {0, · · · , 5}. With covector A, for k-vectors Ω in R5 satisfying AxΩ = 0,
we can identify it with a k-vector in M . For example, since AxAxṼα0,...,α5 = 0, we
then induce a 4-vector in M from Ṽα0,...,α5,

Vα0,...,α5 = AxṼα0,...,αk = (yα1 − yα0) ∧ ... ∧ (yα5 − yα0) (3.373)

This vector is actually 4! times the volume 4-vector of 4-simplex:

Vα0,...,α4 = (xα1 − xα0) ∧ ... ∧ (xα4 − xα0) = Eα1α0 ∧ ... ∧ Eα5α0 (3.374)

EI
αiα0 = xIαi − x

I
α0 is the edge vector related to the oriented edge lαiα0 = [pαi , pα0 ].

Notice that the volume 4-vector comes with a sign respecting to the order of
points.

We further define 3-vector and bivector by skipping some points

Vi = (−1)iV0...̂i...4 (3.375)

Bij = AxṼ0...̂i...n =
{

(−1)i+j+1V0...̂i...ĵ...4 i < j
(−1)i+jV0...ĵ...̂i...4 i > j

(3.376)

where î means omitting ith elements. We have the following properties for Vi
and Bij ∑

i

Vi = 0, (3.377)

Bij = −Bijm ∀i
∑
j 6=i

Bij = 0, (3.378)

One can further check that Bij can be written as

Bij = 1
2(−1)sgn(σ)εijkmnEmk ∧ Enk (3.379)

And one has B2
ij = ±4A2

ij with Aij is the area of the corresponding spacelike or
timelike triangles in non-degenerate case.

Suppose the volume 4-vector of 4-simplex V0,...,4 is non-degenerate. In this case
any 4 out of 5 yi are linearly independent. One can introduce a dual basis ŷi and
ỹi defined by

ŷiyyj = δij, ŷi = ỹi + µiA, ỹiya = 0 (3.380)
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with properties ∑
i

ŷi = A,
∑
i

ỹi = 0 (3.381)

ỹi here can be regarded as covectors belong to M . With ỹi, we have

Vi = −ỹiyV0...4, Bij = ỹjyỹiyV0...4 (3.382)

Thus covectors ỹi are conormal to subsimplices Vi. And by using Hodge star, we
have

Vi = −V ol ∗ ỹi, Bij = −V ol ∗ (ỹj ∧ ỹi) (3.383)
where the volume V ol > 0 is the absolute value of the oriented 4-volume

V4 := det(V0,...,4) = sgn(V4)V ol (3.384)

It can be shown that
1
V4

= εijkl det(ỹi, ỹj, ỹk, ỹl) (3.385)

and the co-frame vector Eij is given by

Eij = V4εijklm(v) ∗ (ỹk ∧ ỹl ∧ ỹm) (3.386)

If the subsimplices Vi are non-degenerate, by introducing normalized vectors
Ni, we can write ỹi as

ỹi = 1
V ol

WiNi, Ni ·Ni = ti, Wi > 0 (3.387)

where ti = ±1 distinguish spacelike or timelike normals respectively. This leads
to

Bij = − 1
V ol

WiWj ∗ (Nj ∧Ni),
∑
i

WiNi = 0 (3.388)

In order to make the normal out-pointing, we redefine the normalized normal
vectors Ni by

N∆
i = −tiNi, W∆

i = −tiWi

∑
i

W∆
i N

∆
i = 0 (3.389)

such that N∆
i are out-pointing.
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3.A.3. Reconstruct geometry from non-degenerate critical
points

We begin with the reconstruction of normals. Recall in critical point equations
(3.256), normals Ne satisfying

∀f∈teηIJNe
IBf (v)JK = 0 (3.390)

If there is another normal vector N satisfy the same condition for some edge e,
easy to see we have

∀f∈te Bf (v) ∼ ∗(N ∧Ne) (3.391)
which means for an edge e, Bef are proportional to each other. This clearly
contrary to the fact that we have a non degenerate solution. Thus, for given
bivectors which are the solution of the critical point equation, if we require a
vector N satisfies

∀f∈teηIJN IBf (v)JK = 0 (3.392)
for a edge tetrahedron te, we then have N = ±Ne after normalization. The
condition (3.392) is sufficient and necessary.

Considering a 4-simplex σv at some vertex v, the critical point equation (3.256)
can be written in short hand notation we introducing in (3.369) as

Bf (v) = B
{G}
ij = −BG

ji, NixB
{G}
ij = 0,

∑
j

B
{G}
ij = 0 (3.393)

Now we give normalized vectors Ni satisfying non-degenerate condition. If we
require the bivectors satisfy (3.393), they are uniquely determined up to a con-
stant λ ∈ R

B′ij = λWiWj ∗ (Nj ∧Ni) (3.394)

Here Wi ∈ R are non zero and determined by∑
i

WiNi = 0 (3.395)

The proof is stated first in [79] and later [85]. Note that the bivector Bij is inde-
pendent of the choice of signature of normal vectors N since the sign of W and
N will change simultaneously. λ can be fixed up to a sign by the normalization
of B′ij

|Bf |2 = −4γ2s2
f = −4A2

f (3.396)
Then it can be proved that non-degenerate geometric solution determines 4

simplex specified by bivectors B∆ uniquely up to shift and inversion such that

B∆
ij = rB

{G}
ij (3.397)
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where r = ±1 is the geometric Plebanski orientation. The construction can be
done as follows. With given 5 normals Ni, we take any 5 planes orthogonal to
Ni. With the non-degeneracy condition, they cut out a 4 simplex ∆′ which is
uniquely determined up to shifts and scaling. According to (3.388) and (3.394),
bivectors of the reconstructed 4 simplex B∆′

ij related to Bij as

B∆′
ij = λB

{G}
ij (3.398)

Then the identity of the normalization will determines the scaling up to a sign

B
{G}
ij = rB∆′

ij = − 1
V ol

rW∆
i W

∆
j ∗ (N∆

j ∧N∆
i ) (3.399)

where V ol is the 4! volume of the 4-simplex.
Let us move to the boundary tetrahedron. Since Ge is a SO(1, 3) rotation, it

action then keeps the shape of tetrahedrons. Thus the tetrahedron with bivectors
Bij = ∗(vij ∧ ui) has the same shape with the tetrahedron with face bivectors
B
{G}
ij = Gi∗(vij∧ui). For given vij, when the boundary data is non-degenerate, we

can cut out a tetrahedron with planes perpendicular to vij in the 3 dimensional
Minkowski space orthogonal to u. Clearly, the face bivectors of this tetrahedron
satisfy

Bij = λ′ij ∗ (vij ∧ u) (3.400)
with λ′ij arbitrary real number. However, from the closure constraint, we have∑

j:j 6=i
B′ij = ∗(

∑
j:j 6=i

λ′ijvij) ∧ u = 0 (3.401)

Since ∀j vij.u = 0, the above closure equation implies∑
j:j 6=i

λ′ijvij = 0 (3.402)

which according closure with vij leads to

∃λ : λ′ij = λ (3.403)

Thus, for every edge ei, there exists a tetrahedron determined uniquely up to
inversion and translation with face bivectors

Bij = ri(vij ∧ u) (3.404)

in the subspace perpendicular to Ni with ri = ±1.
The edge lengths of the tetrahedron is then determined uniquely by vij. We

denote lijk
2 the signed square lengths of the edge between faces ij and ik. The
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length matching condition can be expressed as

l2(ijk) := lijk
2 = ljik

2 = lkij
2 (3.405)

The non-degenerate solution exists if and only if the lengths satisfy length match-
ing condition. In case when length matching condition is satisfied, we can write
l2(ijk) using the missing indices different from i, j, k as l2(ml), with this notation,
one introduce lengths Gram matrix of the 4 simplex

Gl =



0 1 1 · · · 1
1 0 l201 · · · l204
1 l210 0 · · · l224
...

...
... . . . ...

1 l240 l241 · · · 0

 (3.406)

The signature of Gl corresponds to the signature of reconstructed 4 simplex. We
denote the signature as (p, q). Based on Gl is degenerate or not, we have

— If Gl is non degenerate, then there exist a unique up to rotation, shift and
reflection non degenerate 4 simplex with signature (p, q). There are two
non-equivalent 4 simplex up to rotations and shift. The normals of two
reconstructed 4 simplices {Ni} and {N ′i} are related by

N ′i = (−1)siGNi = GIsiNi (3.407)

— If Gl is degenerate, then there exist a unique up to rotation and shift de-
generate 4 simplex with signature (p, q). The 4 volume in this case is 0.

The signature here is related to the signature of boundary tetrahedron. For all
boundary tetrahedra being timelike, the possible signatures are Lorentzian (−+
++), split (−+ +−) or degenerate (−+ +0). For all boundary tetrahedra being
spacelike, the possible signatures are Lorentzian (−+ ++), Euclidean (+ + ++)
or degenerate (0 + ++). For boundary data contains both spacelike and timelike
tetrahedra, the only possible reconstructed 4 simplex is in Lorentzian signature
(−+ ++).

3.A.4. Gauge equivalent class of solutions
Suppose we have a non-degenerate geometric boundary data and the 4 volume

is non-degenerate, then we can reconstruct geometric non-degenerate 4-simplex
up to orthogonal transformations. Suppose we have this reconstructed 4-simplex
with geometric bivectors B∆

ij with normals N∆
i . From these normals, we can

introduce

v∆
ij = − 1

V ol

(
W∆
i W

∆
j N

∆
j −

W∆
i W

∆
j N

∆
i ·N∆

j

(N∆
i )2 N∆

i

)
(3.408)
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Easy to check that v∆
ij ·N∆

i = 0 and B∆
ij = ∗(v∆

ij ∧N∆
i ). Thus these are nothing else

but normals of faces of the ith tetrahedron recovered from bivectors B∆
ij . Easy to

check that we have
v∆
ij · v∆

ik = vij · vik (3.409)

by the fact that B∆
ij · B∆

ik = Bij · Bik. We can introduce group elements G∆
i ∈ O

for each i satisfy
G∆
i u = N∆

i , ∀j:j 6=i G∆
i vij = v∆

ij (3.410)
Note that there are only 4 independent conditions out of 5.

We would like compare these group elements G∆
i obtained from B∆

ij with Gi

from critical point solution. From reconstruction of bivectors and normals, we
know that

B∆
ij = (−1)sB{G}ij , Ni = (−1)siN∆

i (3.411)
where (−1)s with s ∈ {0, 1} and si ∈ {0, 1}. The condition leads to

∗ (Givij ∧Ni) = B
{G}
ij = (−1)sB∆

ij

= (−1)s ∗ (v∆
ij ∧N∆

i ) = ∗((−1)s+siv∆
ij ∧Ni)

(3.412)

Since Ni · v∆
ij = Ni ·Givij = 0, we have

Givij = (−1)s+siv∆
ij , GiN = (−1)siN∆

i (3.413)

which implies
Gi = G∆

i I
si(IRN)s (3.414)

For Gi ∈ SO, we have detGi = 1, then from (3.414)

detG∆
i = (−1)s (3.415)

Since there is only one reconstructed 4 simplex up to rotations from O, thus two
G∆ solutions are related by

G∆′
i = GG∆

i , G ∈ O (3.416)

which means

∀i
detG∆′

i

detG∆
i

= detG (3.417)

This condition reminds us to introduce an orientation matching condition for
boundary data where the reconstructed 4 simplex have

∀i detG∆
i = r r ∈ {−1, 1} (3.418)

We call the boundary data as the geometric boundary data if it satisfy the length
matching condition and orientation matching condition.
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After we choose reconstructed 4 simplex, we have fixed the value of s by

r = (−1)s (3.419)

and it is Plebanski orientation. However si is still arbitrary.
With (3.414) and (3.415), we can identify the geometric solution and recon-

structed 4-simplices. Up to SO rotations, there are two reconstructed 4 simplices.
The two classes of simplices solutions are related by reflection respect to any nor-
malization 4 vector eα

BG̃
ij = Reα(B{G}ij ), s′ = s+ 1 (3.420)

which means
G̃i = ReαGi(IRu) ∈ SO(1, 3) (3.421)

With the gauge choice that Gi ∈ SO+(1, 3), we can rewrite (3.421) as

G̃i = Re0I
riGiRu (3.422)

such that G̃i ∈ SO+(1, 3). It is direct to see ri = 0 for u timelike and ri = 1 for u
spacelike.

3.A.5. Simplicial manifold with many simplices
The above interpretation and reconstruction are with in single 4-simplex case.

Now we will generalize the result to simplicial manifold with many simplices.
We will consider two neighboring 4 simplices where there corresponding center
v and v′ are connected by a dual edge e = (v, v′). For a short hand notation, we
will use prime to represent the parallel transported bivector and normals from
simplex with center v′ to v, e.g. N ′i = Gvv′Ni(v′). We denote the edge e = (v, v′)
as e0.

Since Ne(v) = Gveu and Ne(v′) = Gv′eu, we have Ne(v) = Gvv′Ne(v′) for
G = (v, v′). From the reconstruction theorem, with (3.411), we have

N∆
0 = (−1)s0+s′0N ′

∆
0 (3.423)

From the parallel transport equationXf (v) = gvv′Xf (v′)gv′v, with the fact εef (v) =
−εef (v′), we have

B
{G}
0i = −r(v) 1

V ol
W∆
i W

∆
0 ∗(N∆

i ∧N∆
0 ) = r(v′) 1

V ol′
W ′∆

i W
′∆
0 ∗(N ′

∆
i ∧N ′

∆
0 ) (3.424)

where B∆
0i is the geometric bivector corresponding to the triangle f dual to face
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determined by e, ei, e′i. Now similar to (3.408), we can define

v∆
0i(v) = − 1

V ol

(
W∆

0 (v)W∆
i (v)N∆

i (v)− W∆
0 (v)W∆

i (v)N∆
0 (v) ·N∆

i (v)
(N∆

0 (v))2 N∆
0 (v)

)
(3.425)

which satisfies v∆
0i(v) ·N∆

0 (v) = 0. The geometrical group elements Ω∆
vv′ ∈ O(1, 3)

is defined from

v∆
0i(v) = Ω∆

vv′v
∆
0i(v′), N∆

0 (v) = Ω∆
vv′N

∆
0 (v′) (3.426)

(3.424) now reads

B
{G}
0i = r(v) ∗ (v∆

0i(v) ∧N∆
0 (v)) = −r(v′) ∗ (Gvv′v

∆
0i(v′) ∧Gvv′N

∆
0 (v′)) (3.427)

From (3.423) and (3.427), with the fact that, v∆
0i(v) · N∆

0 (v) = Gvv′v
∆
0i(v′) ·

Gvv′N
∆
0 (v′) = 0, we have

v∆
0i(v) = −(−1)s0+s′0r(v)r(v′)Gvv′v

∆
0i(v′), N∆

0 (v) = (−1)s0+s′0Gvv′N
∆
0 (v′)

(3.428)
Compare with (3.426),

Ω∆
vv′ = Gvv′II

s0+s′0(IRN0(v′))s+s
′
, det Ω∆

vv′ = (−1)s+s′ (3.429)

where s and s′ is determined by (−1)s = r(v) and (−1)s′ = r(v′). Note that, from
the fact N0(v′) = G0(v′)u = Is

′
0N∆

0 (v′), and RN = GRuG
−1, we have RN∆

0
= RN0.

One can check that the (3.429) can be written as

Ω∆
vv′ = IIs0+s′0Is+s

′
GveR

s+s′
u Gev′ = IG∆

veG
∆
ev′ (3.430)

which coincide with the geometric solution for single simplex. Note that, after
fixing a pair of compatible values of s and s′, another pair of compatible values
are given by s + 1 and s′ + 1 due to the common tetrahedron te shared by two
4 simplices. This is nothing else but reflecting simtounesly every 4 simplex con-
nects with each other. Then according to (3.421), these two possible non gauge
equivalent solutions are related by

G̃f =
{
RueGf (e)Rue internal faces
Ire1+re0Rue1Gf (e1, e0)Rue0 boundary faces (3.431)

where Gf = ∏
v⊂∂f Ge′vGve is the face holonomy.

For a simplicial manifold, we will introduce the consistent orientation. For two
4 simplex σv and σv′ share a same tetrahedron te, we say they are consistently ori-
ented if their orientation satisfies [p0, p1, p2, p3, p4] and −[p0, p1, p2, p3, p4]. There-
fore we have ε01234(v) = −ε01234(v′) for the orientation in (3.379). The orientated
volume then contains a minus sign in V ′.
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From (3.423) and (3.424), we have

N ′
∆
i = −(−1)s0+s′0r(v)r(v′)W

∆
i W

∆
0 V ol

′

W ′∆
i W

′∆
0 V ol

N∆
i + aiN

∆
0 (3.432)

where ai are some coefficients s.t.
∑
iW

′∆
i N

′∆
i = −W ′∆

0 N
′∆
0 . We introduce ỹ

where ỹi = 1
V ol
W∆
i N

∆
i , then

BG
0i = −r(v)V ol ∗ (ỹi ∧ ỹ0), ỹ′i = −(−1)s0+s′0r(v)r(v′)W

∆
0

W ′∆
0
ỹi + ãiỹ0 (3.433)

where ãi are coefficients s.t.
∑
i ỹi = −ỹ0. We then have

− 1
V ′

= det
(
ỹ′0, ỹ

′
1, ỹ
′
2, ỹ
′
3

)
= (−r(v)r(v′))3

(
W∆

0

W ′∆
0

)2
V ol

V ol′
det(ỹ0, ỹ1, ỹ2, ỹ3) = −r̃(v)r̃(v′)

(
W∆

0

W ′∆
0

)2 1
V ′

(3.434)
where we define r̃(v) = r(v)sgn(V (v)). The equation results in r̃(v) = r̃(v′) = r̃.
Therefore r̃ = sgn(V (v))r(v) is a global sign on the entire triangulation after
we choose compatible orientation. The equation also implies |W∆

0 | = |W ′∆
0 |.

With the fact that normal vector N∆
0 and N ′∆0 are in the same type (spacelike or

timelike), we have W∆
0 = W ′∆

0 . Thus (3.432) leads to

N ′
∆
i = −(−1)s0+s′0sgn(V V ′)W

∆
i W

∆
0 V ol

′

W ′∆
i W

′∆
0 V ol

N∆
i + aiN

∆
0 = µeN

∆
i + aiN

∆
0 (3.435)

where we define a sign factor µe := −(−1)s0+s′0sgn(V V ′). One can see that, for
a edge Elm in the tetrahedron te shared by σv and σv′, we have

E ′lm = V ′εlmjk(v′) ∗ (ỹ′j ∧ ỹ′k ∧ ỹ′0) = µeV εlmjk(v) ∗ (ỹj ∧ ỹk ∧ ỹ0) = µeElm (3.436)

The equation thus implies the co-frame vectors on all edges of tetrahedron te at
neighboring vertices v and v′ are related by

El(v) = µeGvv′El(v′) (3.437)

Since El(v′) ⊥ N0(v′), the relation is a direct consequence of (3.429) with the
fact r̃(v) = r̃(v′) = r̃. This relation shows that, the vectors E in a tetrahedron
shared by two 4 simplices σv and σv′ satisfies

gl1l2 := ηIJE
I
l1(v)EJ

l2(v) = ηIJE
I
l1(v′)EJ

l2(v′) (3.438)

where gl1l2 is the induced metric on the tetrahedron and it is independent of v.
If the oriented volume of these two neighboring 4-simplices are come with the
same signature, i.e. sgn(V (v)) = sgn(V (v′)), We can associated a reference frame
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in each 4 simplex σv and the frame transformation is given by Ωvv′ = µeGvv′ ∈
SO(1, 3). The matrix Ωe=(v,v′) is a discrete spin connection compatible with the
co-frame then. Note that, since r̃(v) = r(v)sgn(V (v)) is a global sign, globally
orienting sgn(V (v)) will make r = r(v) a global orientation on the dual face.

Let us go back to the original geometric rotation Ω∆
vv′. Suppose we orient

consistently all pairs of 4 simplices on the simplicial complex K. We then choose
a sub-complex with boundary such that, with in it the oriented volume sgn(V ) is
a constant. Then for the holonomy along edges of an internal face, we have

Ω∆
f (v) = Ω∆

v0vnΩ∆
vnvn−1 · · ·Ω

∆
v1v0 = InIs0n+sn,n−1+···+s10Gv0vnGvnvn−1 · · ·Gv1v0 = µeGf (v)

(3.439)
while for a boundary face,

Ω∆
f (vn, v0) = Ωvnvn−1 · · ·Ωv1v0 = InIsn,n−1+···+s10Gv0vnGvnvn−1 · · ·Gv1v0 = µeGf (vn, v0)

(3.440)
where n is the number of internal edges belong to the face f . Here µe =
In
∏
e∈f I

se = ±1, se=(v,v′) = sve + sve′ is independent from orientation.
Suppose the edges of the triangle due to face f is given by El1(v) and El2(v),

then from (3.437) and (3.439-3.440), we have

Gf (v)El(v) = µeEl(v), or Gf (vn, v0)El(v0) = µeEl(vn) (3.441)

For the normals N0(v) and N1(v) which othrognal to the triangle due to f , from
(3.435) and (3.439-3.440), we have

Gf (v)N1(v)∆ = aN0(v)∆ + bN1(v)∆, GfN1(v) · El1(v) = GfN1(v) · El2(v) = 0,
(3.442)

For boundary faces with boundary tetrahedron ten and te0, similarly, we have

Gf (vn, v0)Ne0(v0) · El1(vn) = Gf (vn, v0)Ne0(v0) · El2(vn) = 0 (3.443)

3.A.6. Flipped signature solution and vector geometry
Now let us consider degenerate case, where the 4 volume is 0 and Gi can be

gauge fixed to its subgroup Gi ∈ SO(1, 2) for timelike tetrahedron. In this case,
the 4-normals of boundary tetrahedra are then gauge fix to be ∀i Ni = u. We can
introduce a auxiliary space M4′ with metric g′µν from M4 by flipping the norm of
u

g′µν = gµν − 2uµuν (3.444)

where gµν is the metric in M4. We will use prime to all the operations in M4′. For
the norm of u, we have

t = u · u, t′ = −t = u ·′ u (3.445)
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Notice that for the subspace V orthogonal to u, the restriction of both scalar
product coincide. Thus for vectors in V we can use both scalar product. The
Hodge dual operation satisfies ∗′2 = −∗2 = t = −t′.

For the subspace V , we can introduce maps Φ±

Φ± : Λ2M4′ → V, Φ±(B) = t′(±B − t′ ∗′ B) ·′ u = (∓B + ∗′B) ·′ u (3.446)

where B is a bivector in M4′. Clear for a vector v ∈ V , we have

Φ±(∗′(v ∧ u)) = v (3.447)

The map Φ± naturally induce a map from G ∈ SO(2, 2) to the subgroup h ∈
SO(1, 2), which defined by

Φ±(GBG−1) = Φ±(G)Φ±(B) (3.448)

where
Φ±(G) ∈ O(V ) (3.449)

Easy to see when G = h ∈ SO(1, 2), we have Φ±(h) = h. And one can further
prove that the condition is sufficient and necessary as shown in [85].

Clearly for given bivectors B{G}ij = Gi ∗ (vij ∧ u) in M ′, if B{G}ij = −B{G}ji , we
have

v
{G}±
ij = −v{G}±ji , v

{G}±
ij = Φ±(G)vij = Φ±(B{G}ij ) (3.450)

and the closure
∑
iB

g
ij = 0 leads to

∑
i

v
{G}±
ij = 0 (3.451)

One can prove the condition is necessary. In other words, if we have g±i such that
v
{G}±
ij = −v{G}±ji , we can always build unique Gi ∈ SO(M ′) (up to Isi ) which

constitute a SO(M ′) solution.
In summary we see that there is an 1-1 correspondence between
— pair of two non-gauge equivalent vector geometries,
— geometric SO(M ′) non-degenerate solution.

The two vector geometries are obtained from SO(M ′) solutions {gve} as g±ve =
Φ±(gve). This is the flipped signature case for a Gram matrix with given geo-
metric boundary data. For example, with all boundary tetrahedra timelike, the
signature of reconstructed non-degenerate 4 simplex is split (−+ +−).

From the reconstruction for non-degenerate solutions, we have the orientation
matching condition for the geometric group elements G∆± ∈ O(V ) where

G∆±
i vij = v∆±

ij , v∆±
ij = Φ±(B∆

ij ) (3.452)
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One can show that, in flipped signature case, this condition becomes

detG∆
ve = detG∆±

ve (3.453)

Since the critical point solutions are in 1-1 correspondence with reconstructed
4 simplices up to reflection and shift. As a direct result from (3.421), for non-
degenerate boundary data satisfying length matching condition and orientation
matching condition, there are two gauge inequivalent solutions corresponding
to reflected 4 simplices which are related by

G̃ = RuGRu (3.454)

where G̃ and G represent two gauge equivalent series. Two non-equivalent geo-
metric SO(M ′) non-degenerate solutions then satisfy

Φ±(G̃) = Φ±(RuGRu) = Φ∓(g) (3.455)

Finally, when the SO(M ′) solution is degenerate, we can assume Ni = u by
gauge transformations. In this case, we see Φ+(G) = Φ−(G) = h. Thus the
vector geometries are gauge equivalent. The inverse is also true. When the
vector geometries are gauge equivalent, we have Φ+(G) = Φ−(G), which means
there exists Gi (uniquely up to gauge transformations) such that after gauge
transformationsNi = Giu = u. This corresponds to the degenerate reconstructed
4 simplex with zero 4-volume.

3.B. Derivation of rotation with dihedral angles
In this appendix, we prove the following equation

RNiRNj = Ωij = e2θij
Ni∧Nj
|Ni∧Nj | (3.456)

which is used in Sec. 3.7. For two normalized spacelike vector Ni, Nj, N I
i NiI =

NJ
j NjJ = 1, compatible with (3.292) and (3.293), we have

N I
i NjI = cos θij, (3.457)
|Nj ∧Ni|2 = −| ∗Nj ∧Ni|2 = sin2(θij) (3.458)

For Ni, Nj are timelike and the signature of plane span by Ni ∧ Nj is mixed in
flipped signature case, we have

N I
i NjI = cosh θij, (3.459)
|Nj ∧Ni|2 = | ∗′ Nj ∧Ni|2 = − sinh2(θij) (3.460)
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Now from

(RN)IJ = I − 2N INJ

N ·N
= I − 2tN INJ (3.461)

where we define t := N INI . Easy to see for a vector v in Ni ∧Nj plane,

RNiRNjv = (I − 2tNK
i NiI)(I − 2tN I

jNjJ)vJ

= v − 2t(Ni · v)Ni − 2t(Nj · v)Nj + 4(Ni ·Nj)(Nj · v)Ni

(3.462)

which leads to

RNiRNj −RNjRNi = 4(Ni ·Nj)Ni ∧Nj (3.463)
Tr(RNiRNj) = 4(Ni ·Nj)2 − 2 (3.464)

Let us introduce spacetime rotations Ω ∈ SO±(1, 3). For connected components
in Lorentzian group, two group elements Ω and Ω′ are equal is they satisfy

Ω− Ω−1 = Ω′ − Ω′−1
, Tr(Ω) = Tr(Ω′) (3.465)

The space rotation can be written using bivectors as

Ωij = e2θij
Ni∧Nj
|Ni∧Nj | = cos(2θij) + sin(2θij)

Ni ∧Nj

|Ni ∧Nj|
(3.466)

and for spacelike normal vectors we have

Ωij − Ωji = 2 sin(2θij)
Ni ∧Nj

|Ni ∧Nj|
= 4(Ni ·Nj)(Ni ∧Nj) (3.467)

Tr(Ωij) = 2 cos(2θij) = 2(2 cos2(θij)− 1) = 4(Ni ·Nj)2 − 2 (3.468)

while for timelike normal vectors span a mixed signature plane, Ω is a boost,

Ωij = e2θij
Ni∧Nj
|Ni∧Nj | = cosh(2θij) + sinh(2θij)

Ni ∧Nj

|Ni ∧Nj|
(3.469)

with

Ωij − Ωji = 2 sinh(2θij)
Ni ∧Nj

|Ni ∧Nj|
= 4(Ni ·Nj)(Ni ∧Nj) (3.470)

Tr(Ωij) = 2 cosh(2θij) = 2(2 cosh2(θij)− 1) = 4(Ni ·Nj)2 − 2 (3.471)

Notice that here |Ni ∧Nj| is defined as

|Ni ∧Nj| =
√
||Ni ∧Nj|2|, (3.472)
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Thus in both case we have

RNiRNj = Ωij = e2θij
Ni∧Nj
|Ni∧Nj | (3.473)

where θij is angle between normals and related to the dihedral angle by (3.292)
and (3.293).

3.C. Fix the ambiguity in the action
In this appendix we show how to choose the SL(2,C) lift to fix the ambiguity in

the action. Note that here we only fix the ambiguity for single 4-simplex σv with
boundary data, where the deficit angle Θf = θf is the angle between normals.
The ambiguity (in one 4 simplex σv with boundary) which due to odd nf can be
expressed as

∆S −∆S∆ = ir
∑

f :nf odd

∆φ−Θf non degenerate case
∆φ split signature case (3.474)

The procedure we use here is an extension of the one used for spacelike triangles
in [85].

3.C.0.1. non-degenerate case

Suppose we have a non-degenerate solutions {G0
ve ∈ SO(1, 3)} with normals

v0
ef of triangles of non-degenerate boundary tetrahedra. The area of these trian-

gles is given by spins γs0
f = n0

f

2 . Define the following continuos path

Gve(t), vef (t), u(t) = u = (0, 0, 0, 1)T , (3.475)

where ∀eG0
ve = Gve(0), v0

ef = vef (0). Such that
— ∀t ∈ [0, 1], {Gve(t)} is a solution of critical point equations with boundary

data where the normals of triangles of boundary tetrahedra are vef (t),
— ∀t 6= 1 boundary data is non-degenerate, and vef (1) 6= 0,
— ∀t 6= 1 solution {Gve(t)} is non-degenerate,
— for t = 1, pair of solutions {Gve(t)} and {g̃ve(t) = Reαgve(t)Ru} are gauge

equivalent.
In this path, the function

f(t) =
∑

f :nf odd
∆φeve′f (t)− rΘf (t) mod 2π (3.476)

takes values in {0, π} and changing continuously with the phase the difference
from stationary points determined by {Gve(t)} and {G̃ve(t) = ReαGve(t)Ru}.
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Thus f(t) is a constant. Since at t = 1, we have two geometric solutions are
gauge equivalent to each other, which means the lifts gve, g̃ve of solutions satisfy

∀e g̃ve = (−1)rveggve, rve = {0, 1} (3.477)

From (3.313),

(−1)rve+rve′ = gve(g̃e′vg̃ve)−1ge′v = e−2∆θe′vefXf+2i∆φe′vefXf (3.478)

which leads to ∆φeve′f(1) = (rve + rve′)π mod 2π since we have (2Xf)2 = 1.
We shall consider a subgraph of spin network which contains those odd n links.
The subgraph has even valence nodes. Thus we can decompose into Euler cycles.
In those cycles every link of odd n will appears exactly once. For a Euler cycle
consisting edges with odd n, every edge will be counted twice, thus we have∑

e∈cycle
∆φeve′f (1) =

∑
e∈cycle

2rveπ = 0 mod 2π (3.479)

Also, from the fact that two geometrical solution is gauge equivalent ∀e G̃ve =
GGve, we have RNeRNe′

= Gve(G̃e′vG̃ve)−1Ge′v = 1, thus

Θf (1) = r̃fπ mod 2π, r̃f = r̃ve + r̃ve′ ∈ {0, 1} . (3.480)

which can be fixed again using Euler cycles as for ∆φ.
The path can be achieved by deforming solutions in the following way: First

choose a timelike plane with simple normalized bivector V at some vertex v
satisfies

∀fV ∧ ∗Bf 6= 0 . (3.481)
The path is made by contracting the two directions in ∗V , and we donate the
t = 1 as the limit for contracting directions to 0. From above condition we have
limt→1Bf exist and keep nonzero. The dual action of the shrinking on geometric
normal vectors N∆ also have a limit which is their normalized components lying
in ∗V plane (after normalization). By suitable definition of boundary data, we
can assumeGve(1) = lim→1Gve(t) exist. Now we end up with a highly degenerate
4-simplex which contained in a 2d plane and all bivectors are proportional to V .

3.C.0.2. split signature case

The treatment concerning degenerate solutions following the similar method.
Start form the non-degenerate boundary data, where normals of triangles of
boundary tetrahedra are given by v0

ef and area of these triangles are related
to spins nf/2. Suppose from these boundary data, we can reconstruct a non-
degenerate 4-simplex in flipped signature space M ′. In this case, we have two
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non-gauge equivalent solutions {g±ve}. We define the following path

g±ve(t), vef (t), u(t) = u = (0, 0, 0, 1)T , (3.482)

where ∀eg0±
ve = g±ve(0), v0

ef = vef (0). The path satisfies
— ∀t ∈ [0, 1], {g±ve(t)} are solutions of critical point equation with boundary

data given by vef (t),
— ∀t ∈ [0, 1] boundary data is non-degenerate, e.g. the boundary tetrahedron

is non-degenerate,
— ∀t 6= 1 solutions {g±ve} are non-gauge equivalent thus we have a non-

degenerate reconstructed 4-simplex in M ′

— for t = 1, the reconstructed 4-simplex is degenerate in M ′.
Now the constant function f(t) ∈ {0, π} reads

f(t) =
∑

f :nf odd
∆φeve′f (t) mod 2π (3.483)

Following the same argument in non-degenerate case, we have for the lifts

g+
ve(1) = (−1)rveg−ve(1) (3.484)

Based on the same consideration using Euler cycles, we have

f(1) =
∑

f :nf odd
∆φeve′f (t) = 0 mod 2π (3.485)

Thus we have
∆S0 −∆S∆0 = 0 mod 2π (3.486)

The path is built by the following way: We choose a spacelike normal such
that, in flipped signature space

∀fN ∧Bf 6= 0. (3.487)

The path is then made by contracting in the direction of N in the flipped space
M ′. The contraction leads to a continuos path of non-degenerate solutions in M ′

until t = 1 where the 4-simplex is degenerate.
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Part II.

Effective Dynamics of Cosmology
and Black Hole Models in Loop

Quantum Gravity
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4. Introduction and Overview
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4.1. Introduction
Understanding the very early universe and the centre of black holes remains

a fascinating open question in cosmology. In the context of general relativity, an
expanding universe containing “standard” matter fields (which satisfy the null
energy condition) is generically associated with an initial singularity, where the
space-time curvature becomes infinite. Similar singularities also present inside
the black holes. In this sense, classical general relativity is a incomplete the-
ory and fails to explain these phenomenal. When the value of the curvature
approaches the Planck scale, quantum gravity effects are expected to become
physically important and could prevent the formation of space-time singularities.
This is exactly what happens in the context of loop quantum cosmology (LQC)
[30–33] where quantum gravity effects are repulsive, in opposition to attractive
classical gravity, and lead to a bouncing universe.

However, quantizing gravity might not be necessary to resolve the initial cos-
mological singularity and one could envisage modifications of gravity at high
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curvature so that the singularity in general relativity is replaced by a bounce in
a modified gravity theory (see [4, 165] for recent reviews). Of course, these
two approaches to avoid the singularity could be two sides of the same coin if
the classical equations derived from modified gravity can be interpreted as an
effective description of the quantum behaviour.

Scalar-tensor theories provide a very large class of models for modified gravity
theories. Among these, higher-order scalar-tensor theories, whose Lagrangians
contain not only first order but also second order derivatives of the scalar field,
have attracted a lot of attention lately. Allowing for higher-order time deriva-
tives in the Lagrangian is potentially dangerous as this could lead to higher-
order equations of motion which may require extra initial conditions and thus
introduce an additional degree of freedom, known as the Ostrogradsky ghost,
because it leads to an Ostrogradsky instability [166, 167]. It is however possible
to find higher-order scalar-tensor theories that contain a single scalar degree of
freedom (in addition to the usual tensorial modes associated with gravity) by
imposing some restrictions on the initial Lagrangian. Initially, it was believed
that a theory of this type was necessarily characterized by second order Euler-
Lagrange equations, thus pointing to Horndeski theories [168] (see also [169]).
In fact, requiring second order equations of motion turns out to be restrictive and
a much larger class of theories, dubbed Degenerate Higher-Order Scalar-Tensor
(DHOST) theories, has been recently identified, showing that the absence of an
extra unstable scalar mode is compatible with higher order Euler-Lagrange equa-
tions [170–177]. These theories could provide an interesting arena to construct
models for the early universe, as well as late-time cosmology. Depending on
whether corrections to general relativity appear at high-curvature scales and/or
at large scales and low curvatures, the second order derivatives of the scalar
field then correspond to ultraviolet and/or infrared corrections, and in particu-
lar high-curvature corrections can in some cases act as an ultraviolet cutoff like
those that arise in a number of approaches to quantum gravity.

Among DHOST theories, one can distinguish a special family of scalar-tensor
theories that share properties similar to those of mimetic gravity. Mimetic grav-
ity is a higher order scalar-tensor theory which admits, in addition to the usual
invariance under diffeomorphisms, a conformal invariance (which can be gener-
alized to a conformal-disformal invariance). Mimetic gravity was introduced in
[178] as a model for dark matter (see also [179]). More recently, this model has
been shown to admit (as a number of other scalar-tensor theories) non-singular
bouncing cosmologies [66, 180–183].

In the present work, we concentrate on the general mimetic gravity theories.
We note that the special Lagrangian proposed in [66] corresponding classical
equations of motion for a cosmological background are exactly the same as the
so-called effective equations of loop quantum cosmology. This result suggests
that it may be possible to describe loop quantum gravity at an effective level in
some appropriate regimes as a higher-derivative scalar-tensor theory. The main
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purpose of this section is to highlight this relation between mimetic gravity and
loop quantum cosmology and generalize the result also to loop quantum black
holes. The relation nonetheless provides a proposal for an effective description
of loop quantum gravity in terms of higher-order scalar-tensor theories. Such
an effective description is potentially very interesting, especially as it may give
important insights into the relation between the quantization of gravity à la loop
and the usual perturbative quantization techniques. Moreover, since the effective
quantum corrections from Mimetic theory always appears in a covariant manner,
while polymer loop quantum black hole is difficult to keep the spatial covariance
(in a non-homogeneous model). The difference between the mimetic effective
corrections and the polymer loop quantum black hole ones provides an interest-
ing guide to understand the lack of covariance of polymer black hole models.

This part is organized as follows. In the following chapter, we give a short
presentation of (degenerate) higher-order scalar-tensor theories and we present
some basic properties of mimetic gravity, which can be seen as a particular exam-
ple of these theories. we also provide a brief review of loop quantum cosmology
and polymer black holes in Sec. 4.3. We then show in chapter 5 that there ex-
ists a family of DHOST mimetic actions S[gµν , φ] which all reduce to S[a,N ] for
homogeneous and isotropic space-time. These actions generalize the model pro-
posed recently by Chamseddine and Mukhanov in [66] and can be viewed as a
proposal for an effective description of loop quantum gravity. The result is then
generalized to polymer black hole cases in chapter 6, where a class of scalar-
tensor theories, belonging to the family of extended mimetic gravity whose dy-
namics reproduces the general shape of the effective corrections of spherically
symmetric polymer models in the context of LQG [184] is exhibited, but in an
undeformed covariant manner. Finally in chapter 7, an effective metric is found
for a static interior BH geometry describing the trapped region, in the framework
of effective spherically symmetric polymer models.

4.2. Brief Review on Higher-Order Scalar-Tensor
Theories

In this section, we briefly review the main aspects of degenerate higher-order
scalar-tensor (DHOST) theories . Their Lagrangian depends on a metric gµν and
on a scalar field φ, including its first and second derivatives, ∇µφ ≡ φµ and
∇µ∇νφ ≡ φµν:

S[gµν , φ] =
∫
d4x
√
−gL(φ, φµ, φµν ; gµν) . (4.1)

In general, such theories propagate an extra degree of freedom in addition to
the usual scalar mode and the two tensor modes of the metric (assuming a linear
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dependence on the Riemann tensor a), see 4.5 below for an explicit example of
such an action. This additional degree of freedom leads to instabilities (at least
at the quantum level) and is known as an Ostrogradsky ghost [166, 167].

However, it is possible to find higher-order scalar-tensor theories that do not
contain any Ostrogradsky ghost by imposing appropriate degeneracy conditions
on the Lagrangian, thus defining DHOST theories. DHOST theories whose La-
grangian is at most cubic in φµν have already been classified [177]. In principle,
this classification could be generalized to higher powers of φµν .

Below, we first recall the main properties of DHOST theories and then concen-
trate on mimetic theories, which form a special family within DHOST theories.

4.2.1. Evading the Ostrogradsky Instability
Starting with a Lagrangian with second derivatives of φ is unusual in physics.

Generically, the corresponding equation of motion for φ is fourth order in time
derivatives, which means that more than two initial conditions (per space point)
are required to fully specify the evolution. This signals the presence of an extra
degree of freedom in the theory.

However, there exist special Lagrangians with higher-order derivative terms
for which the Euler-Lagrange equations remain second order. This is precisely
the property verified by Horndeski theories in the context of scalar-tensor theo-
ries. It is even possible to find Lagrangians leading to third or fourth order Euler-
Lagrange equations but without the dangerous extra scalar mode. Examples of
scalar-tensor theories of this type are the so-called beyond Horndeski theories,
later encompassed in the DHOST theories. All these models are degenerate, a
property which can also be seen in other contexts [185–188].

By construction, DHOST theories satisfy some degeneracy conditions so that
they contain at most one scalar degree of freedom. To implement this degeneracy,
it is useful to work with a Hamiltonian formulation, based on the usual (3+1)
ADM-decomposition of the metric on a space-time of the form Σ× R

gµν =
(
−N2 + qabN

aN b qabN
b

qabN
a qab

)
, (4.2)

where qab is the induced metric on the space slice Σ, N is the lapse function
and Na the shift vector. In this framework, the action 4.1 explicitly depends on
second time derivatives of the scalar field and takes the general form b (up to

a. If the Lagrangian is not linear in the Riemann tensor, then the theory can admit up to 8
degrees of freedom, most of them being unstable.

b. We do not consider theories which involve, after a (3+1)-decomposition, second time
derivatives of the metric components which are not total derivatives. Such theories are expected
to propagate Ostrograsky ghosts that cannot be removed.
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boundary terms that we neglect)

S[gµν , φ] =
∫
d4xN

√
qL(qab, Kab, N,N

a;φ,A∗, Ȧ∗) , (4.3)

with

Kab ≡
1

2N (q̇ab −DaNb −DbNa) , A∗ ≡
φ̇−Na∂aφ

N
, (4.4)

where Da is the covariant derivative compatible with qab. For simplicity, we use
the same notation for the Lagrangian densities L in the covariant 4.1 and the non-
covariant 4.3 versions of the action, even though they are not strictly speaking
the same function.

To perform the Hamiltonian analysis [173], it is convenient to use the auxil-
iary variable A∗ as an independent variable, so that all second time derivatives
of φ are absorbed in Ȧ∗. This procedure thus introduces a new pair of variables,
A∗ and its conjugate momentum, which a priori describes an extra scalar degree
of freedom. However, it is still possible that the theory propagates no more than
one scalar degree of freedom if there exist constraints (in addition to the usual
four constraints associated with space-time diffeomorphism invariance) so that
the effective number of physical degrees of freedom is reduced. The existence of
a primary constraint is equivalent to the requirement that the Hessian matrix of
4.3 (whose coefficients are the second derivatives of the action with respect to
velocities of the fields) is degenerate. This property of degeneracy of the Hessian
matrix has been used systematically to construct DHOST Lagrangians, initially
with a quadratic dependence on φµν [172] and, more recently, with a cubic de-
pendence [177]. Note that the primary constraint is usually of the second-class
type and imposing its time conservation leads to a secondary constraint, which is
also second-class. Both constraints thus eliminate the dangerous extra degree of
freedom [173]. The special case where the primary constraint is first-class, sig-
nalling an additional local symmetry of the action, is seen in the mimetic models,
which will be discussed in the next subsection.

All the DHOST theories that have been identified can be written in the form

S[g, φ] =
∫
d4x
√
−g

[
f2(X,φ)R + Cµνρσ

(2) φµν φρσ

+f3(X,φ)Gµνφ
µν + Cµνρσαβ

(3) φµν φρσ φαβ
]
, (4.5)

where the functions f2 and f3 depend only on the scalars φ and X ≡ φµφ
µ; R

and Gµν denote, respectively, the usual Ricci scalar and Einstein tensor associ-
ated with the metric gµν . The tensors C(2) and C(3) are the most general tensors
constructed from the metric gµν and the first derivative of the scalar field φµ. It

148



is easy to see that the quadratic terms can be rewritten as

Cµνρσ
(2) φµν φρσ =

5∑
A=1

aA(X,φ)L(2)
A , (4.6)

with the elementary quadratic Lagrangians (i.e., terms quadratic in φµν or 2φ;
since φµ terms only contain one derivative, they do not contribute to the order
of DHOST terms) given by

L
(2)
1 = φµνφ

µν , L
(2)
2 = (2φ)2 , L

(2)
3 = (2φ)φµφµνφν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφν)2 .

(4.7)

In a similar fashion, the cubic terms can be written as

Cµνρσαβ
(3) φµν φρσ φαβ =

10∑
A=1

bA(X,φ)L(3)
A , (4.8)

with the elementary cubic Lagrangians being

L
(3)
1 = (2φ)3 , L

(3)
2 = (2φ)φµνφµν , L

(3)
3 = φµνφ

νρφµρ ,

L
(3)
4 = (2φ)2 φµφ

µνφν , L
(3)
5 = 2φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ ,

L
(3)
7 = φµφ

µνφνρφ
ρσφσ , L

(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ ,

L
(3)
9 = 2φ (φµφµνφν)2 , L

(3)
10 = (φµφµνφν)3 .

(4.9)

In general, as explained above, theories with an action of the form 4.1 contain
two tensor modes and two scalar modes, one of which leads to an Ostrogradsky
instability. DHOST theories correspond to specific restrictions of the functions aA
and bA, so that the Hessian matrix is degenerate. One finds that these theories
contain at most one propagating scalar mode. DHOST theories include Horn-
deski and beyond-Horndeski theories but many other higher-order scalar-tensor
theories as well.

4.2.2. Mimetic theories
Originally, mimetic gravity was introduced by Chamseddine and Mukhanov as

a scalar-tensor theory defined by the usual Einstein-Hilbert action [178]

SCM [g̃µν , φ] = SEH [gµν ] ≡
1

16πG

∫
d4x
√
−g R[gµν ] (4.10)
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where the metric gµν is related to g̃µν and φ by the non-invertible conformal
transformation

gµν ≡ −X̃ g̃µν with X̃ ≡ g̃µνφµφν . (4.11)

It is immediate to see that the metric gµν is invariant under a local conformal
transformation of the metric g̃µν while φ is left unchanged

g̃µν 7−→ Ω(x) g̃µν , φ 7−→ φ . (4.12)

Here Ω is an arbitrary function on the space-time. Hence, the action 4.10 is
invariant under this same local transformation provided that the coupling to
matter (if there is any) is defined with respect to gµν .

There exist two different equivalent reformulations of the mimetic action 4.10
as it was emphasized in [189]. The observation that

X ≡ gµνφµφν = − 1
X̃
g̃µνφµφν = −1 , (4.13)

enables us to replace the action 4.10 by the following one

S
(1)
CM [gµν , φ;λ] ≡ SEH [gµν ] +

∫
d4x
√
−g λ(X + 1) , (4.14)

where the equation of motion for λ reproduces exactly the condition 4.13. It
follows that the actions 4.10 and 4.14 are classically equivalent.

In the second reformulation of mimetic gravity, one considers the action writ-
ten in terms of the metric g̃µν and φ. Using the transformation law of the Ricci
tensor under a conformal transformation of the metric, the action 4.10 can be
rewritten as the following higher-derivative scalar-tensor theory

S
(2)
CM [g̃µν , φ] ≡ 1

16πG

∫
d4x
√
−g̃

(
X̃R[g̃µν ] + 6

X̃
φ̃ ν
µ φ̃

µρφνφρ

)
, (4.15)

where φ̃µν = ∇̃µφν with ∇̃ being the covariant derivative compatible with g̃µν ,
and indices are lowered and raised with g̃µν and its inverse. The action 4.15 is
clearly of the form 4.6, where the only non-trivial coefficients are

f2 = X̃

16πG and a4 = 3
8πGX̃

. (4.16)

As expected, this theory is degenerate and can be shown to belong to the class Ia
(according to the classification given in [176]) which corresponds to Lagrangians
which are obtained from a conformal-disformal transformation of the quadratic
Horndeski action. This is in total agreement with the fact that the mimetic grav-
ity action has been obtained from a (non-invertible) conformal transformation
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of the Einstein-Hilbert action (which can be viewed as a particular case of Horn-
deski theory). A Hamiltonian analysis of the mimetic action 4.14 (and general-
izations thereof) can be found in [190].

We close this short review with a remark concerning generalizations of mimetic
gravity. First of all, one can generalize the action 4.10 assuming that gµν is now
a general non-invertible conformal-disformal transformation of g̃µν [191], i.e.,

gµν ≡ A(X̃, φ)g̃µν +B(X̃, φ)φµφν with
∂

∂X̃
(A+ X̃B) = 0 . (4.17)

In that case, it is easy to see that the local conformal invariance of g̃µν has been
generalized to invariance under the local symmetry

δg̃µν = α(x)g̃µν + β(x)φµφν with (A− X̃AX̃)α(x) = X̃2AX̃β(x) , (4.18)

where α(x) and β(x) are functions on the space-time and AX̃ ≡ ∂X̃A. Hence,
we obtain in this way an action S[g̃µν , φ] that is invariant under the symmetry
4.18, and therefore the theory is degenerate. In fact, given any higher-order
scalar-tensor action S[gµν , φ], the action defined by

S̃[g̃µν , φ] ≡ S[gµν , φ] (4.19)

where gµν is defined by 4.17 is necessarily degenerate. This family of actions
provides a large generalization of mimetic gravity theories.

4.2.2.1. Limiting curvature hypothesis

The initial physical motivation for considering the theory (??) has been to pro-
pose an alternative to cold dark matter in the universe. Actually, it reproduces
exactly the results of a model introduced earlier by Mukohyama in [192]. Later
on, the original proposal of [178] has been extended, in adding a potential V (φ)
for the scalar field in (??) and has been shown to provide potentially interesting
models for both the early universe and the late time cosmology [179]. Finally,
more recently, mimetic gravity has been applied to construct non-singular cos-
mologies and non-singular black holes in [66, 193]. Physically, the idea is very
simple and consists in finding higher-order scalar-tensor Lagrangians (in the fam-
ily of generalized mimetic gravity) in such a way that their Euler-Lagrange equa-
tions impose an upper limit on the Ricci scalar R: this is called the limiting
curvature hypothesis. If this is the case, R never diverges and one could ex-
pect to resolve in that way some divergences which appear in classical general
relativity.

Such a hypothesis can be implemented concretely and, in some situations, it is
sufficient to transform the original cosmological singularity into a non-singular
bounce in the context of homogeneous and isotropic space-times [66], and also
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to remove the black-hole singularity in the context of spherically symmetric
space-times. The limiting curvature hypothesis was extended very recently in
[194] to construct theories whose equations of motion impose upper limits not
only on the Ricci scalar but also on any invariant constructed from the Riemann
tensor Rµνρσ such as the Ricci tensor squared RµνRµν , the Weyl tensor squared
C2 = CµνρσC

µνρσ, or invariants involving derivatives of the Riemann. However,
as the authors pointed out in [194], these extended Lagrangians contain higher-
order derivatives of the metric (which is not the case for the original mimetic
gravity) and presumably suffer from Ostrogradski instabilities generically [195].
As a result, one should consider these theories of gravity with a limiting curva-
ture as effective descriptions which are physically valuable up to some energy
scale only.

4.3. Brief review on symmetry reduced models in
loop quantum gravity

In this section, we brief review the symmetry reduced models inspired by loop
quantum gravity. These models are based on the Ashetekar-Barbero connection
variables and adapt a loop (flux-holonomy) quantization. The effective dynamics
are obtained by expressing the classical field in terms of holonomies, which leads
to bouncing solutions in cosmology and black holes. We will mainly concentrate
on the loop quantum cosmology, which is the homogeneous symmetry reduce
models for cosmological case. The spherical case follows the same idea, and
leads to several polymer models. For dedicated reviews of LQC and black hole
models, see, e.g., [30–33, 35].

4.3.1. Loop quantum cosmology and its effective dynamics
LQC is a proposal for quantizing cosmological space-times using the variables

and the non-perturbative techniques of LQG. More specifically, as in the full the-
ory, LQC is based on the Ashtekar-Barbero connection variables, and the elemen-
tary variables to be promoted to fundamental operators in the quantum theory
are holonomies along edges and fluxes across surfaces.

4.3.1.1. Hamiltonian framework with Ashtekar-Barbero variables

The Ashtekar-Barbero variables are related to the metric and extrinsic curva-
ture as follows. We first introduce the densitized triads Ea

i = √qeai (where q
is the determinant of the spatial metric and the triads eai are related to the in-
verse of the spatial metric by qab = eai e

b
jδ
ij). The conjugate variable to Ea

i is the
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su(2)-valued Ashtekar-Barbero connection

Aia = Γia + γKi
a , (4.20)

where Ki
a = Kabe

b
i encodes the extrinsic curvature, Γia is the spin-connection such

that

Dae
b
i ≡ ∂ae

b
i − Γbaceci + εij

kΓjaebk = 0 , (4.21)

with Γbac being the usual Christoffel symbols on the spatial slice, and γ is the
real-valued Barbero-Immirzi parameter. The symplectic structure of gravity in
the Ashtekar-Barbero variables is given by the Poisson bracket

{Aia(x) , Eb
j (y)} = 8πGγ δba δij δ(3)(x− y). (4.22)

For simplicity, the matter field is often assumed to be a scalar ψ, with a La-
grangian

Lψ =
∫

d4x
√
−g

[
−1

2(∂ψ)2 − V (ψ)
]
. (4.23)

In the Hamiltonian framework, ψ comes with a conjugate momentum πψ such
that

{ψ, πψ} = 1 and πψ ≡
∂Lψ

∂ψ̇
=
√
q

N
ψ̇ . (4.24)

The lapse function N in the metric is not a dynamical variable and, in the Hamil-
tonian formulation, plays the role of a Lagrange multiplier that enforces that the
scalar constraint H vanish, with H given by [25, 69, 196]

H = −
Ea
i E

b
j

16πGγ2√q
εijk

(
Fab

k − (1 + γ2)Ωab
k
)

+
π2
ψ

2√q +√q V (ψ), (4.25)

where Fabk = 2∂[aA
k
b] + εij

kAiaA
j
b is the field strength of the Ashtekar-Barbero con-

nection, while the tensor Ωab
k = 2∂[aΓkb] +εijkΓiaΓ

j
b measures the spatial curvature.

In the particular case of a spatially flat FLRW space-time, with metric

ds2 = −N2dt2 + a(t)2d~x2 , (4.26)

the densitized triads Ea
i are given by

Ea
i = p

(
∂

∂xi

)a
with p = a2 , (4.27)
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and the Ashtekar-Barbero connection can be written as

Aia = c (dxi)a with c = γ ȧ

N
, (4.28)

since Γia = 0 because of the space-time symmetries. Therefore, the gravitational
sector of the phase space is two-dimensional, and the symplectic structure, in-
herited from 4.22, reduces to c

{c, p} = 8πGγ
3 . (4.29)

Moreover, the scalar constraint (4.25) becomes

H = − 3
8πGγ2p

1/2 c2 +
π2
ψ

2p3/2 + p3/2V (ψ). (4.30)

Note that Ωab
k = 0 for the spatially flat FLRW space-time. The dynamical evo-

lution of any observable O is then given by the smeared Hamiltonian constraint
according to

dO
dt = {O, CH} with CH =

∫
d3~xNH . (4.31)

Note that the spatial diffeomorphism and Gauss constraints cannot contribute to
the smeared Hamiltonian constraint since they identically vanish for the choice
of variables 4.27 and 4.28. Also, the spatial integral of NH is trivial in FLRW
space-times since every term is independent of position due to homogeneity. One
can use the relation 4.31 with O = p to recover the usual Friedmann equation.

4.3.1.2. Quantum theory

The quantization of such a theory (assuming now for simplicity that V (ψ) = 0)
following the standard Wheeler-de Witt procedure will give a quantum cosmol-
ogy where the classical big-bang singularity is not resolved in any meaningful
sense. Indeed, sharply-peaked wave packets closely follow the classical (singu-
lar) solutions, and the expectation value of, e.g., the energy density of ψ can
become arbitrarily large [30].

The situation is markedly different in LQC for the reason that the fundamental
operators of the theory are holonomies and areas, not operators corresponding
to the connection Aia itself. For this reason, in LQC it is not possible to directly

c. As a technical remark, note that for the symplectic structure to be well-defined in such
a space-time, it is necessary to restrict integrals to some finite region, called the fiducial cell.
This restriction on the integrals acts as an infrared regulator which should be removed once
the dynamics are determined by taking the limit of the fiducial cell going to the entire spatial
manifold. For simplicity, here we choose the fiducial cell such that its volume with respect to the
metric d̊s2 = d~x2 is 1.
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promote the symmetry-reduced scalar constraint 4.30 to an operator in the quan-
tum theory since there is no operator corresponding to ĉ. Instead, it is necessary
to go back one step and construct an operator corresponding to 4.25.

This can be done in two parts. First, since the p contained in the Ea
i corre-

sponds to an area, it can directly be promoted to be an operator. Second, the
su(2)-valued field strength can be expressed in terms of holonomies in the same
fashion as in lattice gauge theories,

Fab '
h2ab − I
Ar2

, (4.32)

where h2ab is the holonomy of the connection Aa around a loop in the a–b plane,
I is the identity and Ar2 is the area of that loop. In a lattice gauge theory, one
would be interested in the limit of the right-handside of 4.32 when Ar2 → 0, in
which case the relation 4.32 becomes exact. However, this is not natural in LQC,
since the spectrum of the area operator in LQG is discrete and has a minimum
non-zero eigenvalue

∆ = 4
√

3πγ`2
Pl (4.33)

where `Pl is the Planck length. Therefore, what is done in LQC is to express Fab
in terms of the holonomy of Aa around a loop with this minimal area ∆.

More specifically, given the symmetries of the FLRW space-time, the loop 2ab

is assumed to be a square loop in the a–b plane. The holonomy of Aa along
edges parallel transported by the vectors (∂/∂xi)a is easily evaluated. Since the
Ashtekar-Barbero connectionAa = Aiaτi is su(2)-valued d, it is necessary to choose
a representation in which to calculate the holonomy. This is usually chosen to
be the j = 1/2 representation. This is not only the simplest non-trivial represen-
tation, but also corresponds to the smallest excitation ∆ of area possible in LQG,
which is precisely the area that has been chosen for the loop 2ab to have from
physical grounds, as argued in the previous paragraph.

In the j = 1/2 representation, the τi can be chosen to be the Pauli matrices (up
to a factor of i/2 in order to have the correct normalization as shown in footnote
d). Hence, the holonomy of Aa along a path parallel to (∂/∂xi)a and of length `

d. The elements τi form a basis of the su(2) Lie algebra satisfying

[τi, τj ] = 2εijkτk and tr(τiτj) = −2δij .

We used the notation εijk for the totally antisymmetric symbol with ε123 = +1, indices are raised
and lowered with δij , and Tr denotes the trace in the 2-dimensional fundamental representation
(known as the Killing form). In the spin-1/2 representation, the elements τi are represented by
the 2-dimensional matrices

τ1 =
(

0 −i
−i 0

)
, τ2 =

(
0 −1
1 0

)
, τ3 =

(
−i 0
0 i

)
.
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with respect to the fiducial metric d̊s2 = d~x2, is (no sum over i)

hi(`) = exp
(∫ `

0
dxiAa

(
∂

∂xi

)a)
= cos `c2 I + 2 sin `c2 τi . (4.34)

Note that the fiducial metric allows to identify internal (Lie algebra) indices
i, j, k, · · · with space indices a, b, c, · · · so that, from now on, we will use the
same notation i, j, k, · · · to label indifferently internal and space directions. An
important point here is that the length ` is measured with respect to the fiducial
metric, and the physical length of the edge along which hi is evaluated is given
by a ` where a is the scale factor. Therefore, requiring that the physical length
of hi be

√
∆ corresponds to setting

√
p ` =

√
∆ ⇒ ` =

√
∆/p where we used

a = √p. Then, the holonomy h2ij around a square loop in the xi–xj plane with
a physical area equal to ∆ 4.33 is

h2ij = hj(µ̄)−1hi(µ̄)−1hj(µ̄)hi(µ̄), (4.35)

where µ̄ =
√

∆/p, and Ar2 = µ̄2.
Now, the holonomy 4.35 can be defined in the quantum theory, and therefore

can be used as the operator corresponding to F̂ab. Then, given the field strength
operator, it is now easy to define operators corresponding to the scalar constraint,
and this completes the quantum theory. For the precise details concerning the
Hilbert space and the Hamiltonian constraint operator (which are not necessary
here for our purposes), see, e.g., [30, 32].

The resulting quantum theory resolves the big-bang singularity in a precise
sense: first, there is an upper bound on the operator corresponding to the mat-
ter energy density, and second, the states corresponding to singular space-times
(i.e., p = a2 = 0) decouple from non-singular states under the action of the
Hamiltonian constraint operator and thus an initial state which is non-singular
will always remain non-singular. These important differences from the Wheeler-
de Witt theory arise from expressing the field strength operator in terms of the
holonomy of the connection around a loop of area ∆ rather than directly pro-
moting c to be an operator.

Furthermore, for the case that the scalar field ψ is massless, it provides a good
relational clock and it is possible to speak of the relational evolution of the wave
function Ψ(p, ψ) with respect to ψ. In particular, it is possible to construct an
"initial" state Ψ(p, ψo) at some "initial" relational time ψo and to evolve it using
the Hamiltonian constraint operator. One especially interesting possibility is to
construct a wave packet sharply peaked around a classical configuration at a
low curvature scale when general relativity can be trusted, and then evolve the
wave packet towards the high-curvature regime. An important result in this case
is that the wave packet remains sharply peaked throughout its entire evolution,
assuming (i) it is initially sharply peaked and (ii) that the expectation value of p
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always remains large compared to l2p. For such states, the full quantum dynamics
are extremely well approximated by an effective theory.

4.3.1.3. Effective dynamics

The effective dynamics of LQC are obtained by expressing the classical field
strength Fab in terms of the holonomy around a square loop of area ∆ as we did
in the previous section, and then treating the resulting H classically. It is easy to
verify that the LQC effective scalar constraint is

Heff = − 3 p3/2

8πG∆γ2 sin2 µ̄c+
π2
ψ

2p3/2 + p3/2V (ψ). (4.36)

In this way, the effective theory captures the physics corresponding to the dis-
crete nature of geometry in LQC (specifically, the existence of the area gap ∆),
but ignores the effect of quantum fluctuations since Heff is treated classically e.

Using 4.31 with 4.36, it is easy to derive the time derivative of p:

ṗ = 2N p

γ
√

∆
sin µ̄c cos µ̄c . (4.37)

Moreover, the constraint 4.36 implies

sin2 µ̄c = ρ

ρc
, (4.38)

where ρ is the matter energy density,

ρ =
π2
ψ

2p3 + V (ψ) , (4.39)

and ρc is a constant defined by

ρc = 3
8πGγ2∆ =

√
3

32π2γ3ρPl , (4.40)

with ρPl being the Planck density. Combining the above relations yields the effec-
tive Friedmann equation

H2 =
(

ṗ

2Np

)2

= 8πG
3 ρ

(
1− ρ

ρc

)
, (4.41)

e. This is a good approximation for states that are initially sharply peaked (i.e., all expectation
values satisfy 〈Ô2〉 ≈ 〈Ô〉2 which means that quantum fluctuations are negligeable) so long as
the spatial volume of the space-time is much larger than the Planck volume since for these states
quantum fluctuations do not grow significantly and hence always remain negligeable [197].
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where H = ȧ/(Na) is the Hubble parameter. It can also be checked that the
continuity equation in effective LQC is the same as in classical general relativity.

As can easily be seen from the LQC effective Friedmann equation, the big-
bang singularity of general relativity is replaced by a bounce that occurs when
the energy density of ψ reaches the critical energy density ρc ∝ ρPl 4.40. This
bounce clearly originates from the quantum geometry of LQG, and in the limit of
∆→ 0, the classical Friedmann equation is recovered. Numerical simulations of
the dynamics generated by the LQC Hamiltonian constraint operator for sharply-
peaked wave functions have explicitly shown that the effective equations do in-
deed provide an excellent approximation to the full quantum dynamics, even
around and at the bounce point . Thus, it is clear that the bounce occurs due to
the discrete geometry of LQG, irrespective of quantum fluctuations.

Note that the bounce occurs when the energy density is of the order of the
Planck scale but the volume of the spatial slice at the bounce time can be much
larger than the Planck volume. Consequently, as long as the bounce occurs at a
spatial volume much larger than l3p, the effective theory can be trusted at all times
for sharply-peaked states. Note that this condition is automatically satisfied for
non-compact FLRW space-times since their spatial volume is always infinite (so
long as the scale factor remains non-vanishing, which is always true in LQC).

In conclusion, the LQC effective dynamics is a powerful tool which significantly
simplifies calculations of quantum gravity effects in semi-classical cosmological
states. Clearly, it would be very helpful if it were possible to develop an effec-
tive theory that would hold more generally, for instance for all states in LQG
that have nice semi-classical properties and whose geometric observables of in-
terest concern (spatial) regions that are much larger than l3p. For this reason,
we explore scalar-tensor theories that are able to reproduce the LQC effective
dynamics for cosmological geometries.

4.3.2. Effective description of quantum black holes in loop
quantum gravity

The first descriptions of quantum black holes in LQG were introduced in [198,
199]. They allowed to obtain a complete description of the black hole microstates
whose counting is very well-known to reproduce the Bekenstein-Hawking for-
mula at the semi-classical limit. Even though important issues concerning the
role of the Barbero-Immirzi parameter in the counting procedure remain un-
solved, (see [200–204] for some proposals to overcome them), this result has
been an important success for LQG. Unfortunately, these studies do not say much
about the dynamical “geometry" of the quantum black holes in the context of
LQG: microstates are described in terms of algebraic structures (intertwiners be-
tween representations) and recovering the geometrical content of the quantum
black holes at the semi-classical limit is a very complicated task which required
coarse-graining schemes still under development. One way to attack the prob-
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lem would be to find, exactly as it was done in LQC, an effective description of
spherically symmetric solutions and see how quantum gravity effects modifies
Einstein equations in this sector.

Such a program, which relies on a polymer quantization of spherically sym-
metric geometries, was initiated in [34] and further developed in [205–208].
The effective dynamics of the interior black hole was explored in [209, 210] and
its construction follows very closely what is done in LQC, the black hole interior
geometry being a homogenous anisotropic cosmology. However, the treatment
of the whole space-time and its inhomogenous exterior geometry remains more
challenging. While the loop quantization of the inhomogeneous vacuum exterior
geometry was worked out in details in [35, 184], an effective theory of this quan-
tum geometry is not yet available (see [35] for a review on the quantization of
the full spherically symmetric geometry). Moreover, going beyond the vacuum
case and including matter has also proved to be very challenging, mainly be-
cause the standard holonomy corrections spoil generally the covariance of such
models [211, 212]. For this reason, studying an effective inhomogenous gravi-
tational collapse including the quantum corrections from loop quantum gravity
is up to now out of reach with the standard techniques. Another way to under-
stand the geometry of quantum black holes (at the semi-classical limit) would
be to “guess" the modifications induced by quantum gravity effects in mimicking
LQC as it was done in [42] where the notion of “Planck stars" has been intro-
duced. Some phenomenological aspects of these potentially new astrophysical
objects have been studied in [42, 44, 213]. While the heuristic idea of the Planck
stars is fascinating, a quantum theory of spherically symmetric geometry coupled
to matter from which such effective description emerged still has to be built.

In this section, we give a brief review on the formulation of the classical
spherically symmetric Ashtekar-Barbero phase space and then we describe the so-
called holonomy corrected phase space for inhomogenous models. As explained,
this leads to an effective polymer model which has been the starting point for
a quantization of spherically symmetric geometries using the LQG techniques
[184]. This phase space, which describes vacuum spherically symmetric grav-
ity, has only global degrees of freedom. The quantum effective corrections are
introduced via holonomy corrections which ensure the existence of an anomaly-
free (albeit deformed) Dirac’s hypersurface deformation algebra [211, 214]. In
that sense, the resulting polymer phase space describes a vacuum geometry with
somehow a deformed notion of covariance. We refer to [34, 37, 205–210, 215]
for the construction and effective dynamics of homogenous anisotropic black
hole models which will not be directly addressed in this thesis.
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4.3.2.1. The classical vacuum spherically symmetric Ashtekar-Barbero
phase space

Starting from the full Ashtekar-Barbero phase space, one can impose spherical
symmetry to reduce it. This symmetry reduction has been presented in [216]
and we shall not reproduce the different steps in details but only sketch the
main lines.

The spherically symmetric Ashtekar-Barbero phase space is parametrized by
two pairs of canonical conjugate variables (after having gauge fixed the Gauss
constraint) given by

{Kx(u), Ex(v)} = 2κ
β
δ(u− v) , {Kφ(u), Eφ(v)} = κ

β
δ(u− v) , (4.42)

where 1/β is the Barbero-Immirzi parameter and κ = 8πG with G the newton
constant. Note the u and v are radial coordinates and δ(u− v) denotes the usual
one-dimensional delta distribution.

The first pair corresponds to the inhomogenous component of the connection
with its associated electric field, while the second one is the angular contribution
built from the angular components of the connection. As usual in the LQG litter-
ature, x denotes the radial direction as shown in the expression of the induced
metric

ds2 ≡ γrrdr
2 + γθθdΩ2 ≡ (Eφ)2

|Ex|
dx2 + |Ex|dΩ2 . (4.43)

The first class constraints generating the gauge symmetries (i.e. spatial diffeo-
morphisms and time reparametrization) are

D[Nx] = 1
2κ

∫
Σ
dx Nx

[
2EφK ′φ −Kx(Ex)′

]
, (4.44)

H[N ] = − 1
2κ

∫
Σ
dx N |Ex|−1/2

[
EφK2

φ + 2KφKxE
x + (1− Γ2

φ)Eφ + 2Γ′φEx
]
,

(4.45)

where the spin-connection component which shows up in the expression ofH[N]
is given by Γφ ≡ −(Ex)′/(2Eφ). The two constraints satisfy obviously the hyper-
surface deformation algebra of general relativity (after reduction to the spheri-
cally symmetric geometries)

{D[Nx], D[Mx]} = D[LNM ] , (4.46)
{D[Nx],H[M ]} = −H[LNM ] , (4.47)
{H[N ],H[M ]} = D[γxx(N∂xM −M∂xN)] , (4.48)

where we used the same notations as in the equations (6.1) and (6.2) in the
introduction.
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4.3.2.2. The holonomy corrected polymer phase space

Following the strategy used to study polymer models at the effective level,
one introduces holonomy corrections (called loop corrections) to work with
holonomies instead of the connection itself. These effective corrections originate
from a general regularization procedure borrowed from Loop Quantum Gravity f.
However, several new difficulties show up when considering an inhomogenous
background such as vacuum spherically symmetric gravity compared to homoge-
nous cosmological backgrounds. In particular, one has to ensure that the loop
regularization does not generate anomalies in the first class constraints algebra.

The usual regularization consists in making the replacement

Kφ −→ f(Kφ) , (4.49)

directly in the expression of the Hamiltonian constraint, where the function f
encodes quantum gravity effects at the effective level. Such a procedure is ob-
viously not unique and suffers from ambiguities. Furthermore, there could be
as many different functions f as many Kφ that appear in the Hamiltonian con-
straint. Yet, a standard choice (in the LQG litterature) is

f(Kφ) = sin (ρKφ)
ρ

, (4.50)

where ρ is a new fundamental (quantum gravity) scale such that the limit ρ→ 0
reproduces the classical phase space. Notice that this choice is motivated by the
polymerization obtained in LQC, from the computation of the non local curva-
ture operator using SU(2) holonomies (one can refer to [30] for more details).
Moreover, the scale ρ is a constant which corresponds in the terminology of LQC
to taking the µ0-scheme which has been debated a lot and has been replaced by
the so-called µ̄-scheme. A first attempt to introduce a µ̄-scheme in spherically
symmetric loop models has been presented in [217]. In that case, f is now a
function f(Kφ, E

x) of Kφ and Ex. It was shown that the resulting quantum cor-
rections are not periodic anymore if one requires anomaly-freeness of the first
class constraints algebra, challenging the possibility to interpret such corrections
as resulting fundamentally from SU(2) holonomy corrections.

With this standard regularization (4.49), the holonomy corrected first class

f. Note that the full regularization implies additional corrections: the triad corrections
associated to the regularization of the inverse volume term. Yet, most of the investigations only
implement one type of corrections while ignoring the second type for practical reasons. Even
more, among the holonomy corrections, only the point wise quantum corrections are taken into
account. Beyond the technical aspect, the motivation for focusing on the holonomy corrections
only comes from the observation that in the cosmological sector, such corrections are enough to
obtain a singularity resolution mechanism.
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constraints take the form

D[Nx] = 1
2κ

∫
Σ
dx Nx

[
2EφK ′φ −Kx(Ex)′

]
, (4.51)

H[N ] = − 1
2κ

∫
Σ
dx N |Ex|−1/2

[
Eφf1(Kφ) + 2f2(Kφ)KxE

x + (1− Γ2
φ)Eφ + 2Γ′φEx

]
,

(4.52)

where the two functions f1 and f2 regularize the twoKφ arguments which appear
in the expression of the classical Hamiltonian constraint. The corresponding
Poisson algebra is

{D[Nx], D[Mx]} = D[LNM ] , (4.53)
{D[Nx],H[M ]} = −H[LNM ] , (4.54)
{H[N ],H[M ]} = D[β(Kφ)γxx(N∂xM −M∂xN)] , (4.55)

provided that the two corrections functions satisfy the differential equation

f2 = 1
2
df1

dKφ

. (4.56)

This implies in turn that the deformation of the Dirac’s algebra is given by

β(Kφ) = df2

dKφ

. (4.57)

Interestingly, at the bounce, the sign of the function β(Kφ) changes (when one
takes the usual sin polymerization function (4.50)) and the constraints algebra
becomes effectively euclidean. This observation has suggested a possible signa-
ture change of the space-time in the very quantum region. This point is still
debated and has received more attention in the context of the deformed algebra
approach to the cosmological perturbations in LQC [119, 120]. See [121–125]
for a general discussion on the conceptual and technical consequences of this
deformation in early cosmology, and [126] in the context of black hole. Finally,
note that the above deformation disappears when working with the self-dual
Ashtekar variables. Indeed, thanks to the the self-dual formulation, one can in-
troduce point wise holonomy corrections with a µ̄-scheme without affecting the
Dirac’s algebra which keeps its classical form. This was shown both for spheri-
cally symmetric gravity coupled to a scalar field and for the unpolarized Gowdy
model, which both exhibit local degrees of freedom [218, 219].

In the case of a real Ashtekar-Barbero spherically symmetric polymer phase
space, the usual choice for an effective description of spherically symmetric ge-

162



ometries in LQG corresponds to taking

f1(Kφ) = sin2 (ρKφ)
ρ2 , f2(Kφ) = sin (2ρKφ)

2ρ , (4.58)

which obviously satisfies (4.56).

163



5. Effective loop Quantum
Cosmology as a Higher-derivative
scalar-tensor Theory

Sommaire
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2 Loop quantum cosmology from mimetic gravity . . . . . . . . . . . 165

5.2.1 Spatial curvature . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.1.1 Curved Cosmology in Mimetic Gravity . . . . . . . 167
5.2.1.2 Curved Cosmology in Effective LQC and Quantiza-

tion Ambiguities . . . . . . . . . . . . . . . . . . . 168
5.3 Effective loop quantum gravity and mimetic gravity . . . . . . . . . 171
5.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.1. Introduction
In this chapter, we concentrate on the specific mimetic gravity Lagrangian pro-

posed in [66]. We note that the corresponding classical equations of motion for
a cosmological background are exactly the same as the so-called effective equa-
tions of loop quantum cosmology. This result suggests that it may be possible to
describe loop quantum gravity at an effective level in some appropriate regimes
as a higher-derivative scalar-tensor theory. The main purpose of this chapter is
to highlight this relation between mimetic gravity and loop quantum cosmology.
While this relation has only been established at the cosmological level, it nonethe-
less provides a proposal for an effective description of loop quantum gravity in
terms of higher-order scalar-tensor theories. Such an effective description is po-
tentially very interesting, especially as it may give important insights into the
relation between the quantization of gravity à la loop and the usual perturbative
quantization techniques.

The chapter is organized as follows. In the following section, we show how
the loop quantum cosmology effective dynamics can be derived from an action
principle S[a,N ] with a Lagrangian (invariant under time reparametrizations)
that depends on the scale factor a and on the lapse function N , for all isotropic
cosmologies. (This calculation is already known for the spatially flat case [220,
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221].) In Sec. 5.3 we show that there exists a family of DHOST mimetic ac-
tions S[gµν , φ] which all reduce to S[a,N ] for homogeneous and isotropic space-
time. These actions generalize the model proposed recently by Chamseddine and
Mukhanov in [66] and can be viewed as a proposal for an effective description
of loop quantum gravity. We conclude in Sec. 5.4 with a discussion.

5.2. Loop quantum cosmology from mimetic gravity
The goal now is to find a family of modified gravity theories that, when re-

stricted to the spatially flat FLRW space-time, reproduce precisely the LQC effec-
tive Friedmann equation 4.41. In fact, one such modified gravity theory with
precisely this property has already been found [220, 221] (see also [222] for
an f(R) modified gravity theory whose dynamics are a good approximation to
the LQC Friedmann equation). Here, we will generalize these earlier results to
a whole class of scalar-tensor theories, and in Sec. 5.2.1 we extend these results
to the case of non-vanishing spatial curvature.

To begin, we look for an action S[a,N, ψ] where the dynamical variables are
the scale factor a(t), the lapse function N(t) and a field ψ(t) that represents the
matter content of the universe. The action is of course invariant under time
reparametrizations. Afterwards, we will construct a class of covariant actions of
modified gravity which reduce to S[a,N, ψ] when the metric is fixed by the flat
FLRW metric 4.26. We assume that the field ψ is a massless scalar field minimally
coupled to gravity. Hence, the modified action of gravity we are looking for takes
the form ∫

d4x
√
|g|

( 1
16πGR−

1
2g

µνψµψν + · · ·
)
, (5.1)

where the remaining (so far unknown) part does not involve the matter content
represented here by ψ. As a consequence, on an FLRW space-time, the previous
action reduces to

S[a,N, ψ] =
∫
dt

(
− 3aȧ2

8πGN + a3 ψ̇
2

2N +Na3L
(
a,
ȧ

N

))
(5.2)

where the unknown function L has to be fixed in such a way that S[a,N, ψ] re-
produces the LQC effective dynamics. The fact that L depends on ȧ/N (rather
than on ȧ and N separately) is a consequence of requiring invariance under time
reparametrization. Furthermore, the Lagrangian does not involve non-trivial
higher derivatives (which cannot be eliminated from the action with integra-
tions by parts) of the scale factor, otherwise the associated classical equations of
motion would (necessarily) be higher order, hence they would not reproduce the
LQC effective dynamics.
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As can be seen from 4.36, up to an overall prefactor the effective Hamiltonian
constraint of loop quantum cosmology is expressed only in terms of the combi-
nation c/

√
p, which classically corresponds to the Hubble rate H = ȧ/(Na) (up

to the prefactor γ
√

∆), as can be seen from the definitions 4.27 and 4.28. This
suggests restricting the function L to be to the form

L
(
a,
ȧ

N

)
= F (H) . (5.3)

A Hamiltonian analysis of the action 5.2 with L = F(H) clarifies the link with
LQC. Due to the invariance under time reparametrization, the lapse N is still a
Lagrange multiplier and the only non-trivial pairs of canonically conjugate pairs
of variables are

{a, πa} = 1 = {ψ, πψ} . (5.4)

The Lagrangian is clearly not degenerate and the momenta are given in terms of
the velocities by

πa = a2
[
− 3H

4πG + a2F ′(H)
]
, πψ = a3

N
ψ̇ , (5.5)

where F ′ is the derivative of the function F . The shape of the LQC effective
Hamiltonian suggests the ansatz

πa = α an arcsin
(
β

ȧ

Na

)
, (5.6)

where n, α and β are constants to be fixed. The condition that the momentum
πa should be approximately given by the classical result πa = −3aȧ/4πGN at
low curvatures (or small H) sets n = 2 and further requires that αβ = −3/4πG.
Then, for this ansatz 5.6 for πa, F must be

F(H) = αH arcsin(βH) + α

β

√
1− β2H2 + 3H2

8πG −
α

β
, (5.7)

where the integration constant has been fixed so that F(0) = 0, which means that
one recovers the standard general relativity action in the low curvature regime.

Given this explicit form for the Lagrangian, one finds for the Hamiltonian
density

H = a3
(
π2
ψ

2a6 −
8πG

3 α2 sin2
(
πa

2αa2

))
. (5.8)

Using the same procedure as in the previous subsection, one easily finds that
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the modified Friedman equation is given by

H2 = 8πG
3 ρ

(
1− ρ

ρc

)
with ρ =

π2
ψ

2a6 and ρc = 8πG
3 α2 . (5.9)

This coincides with the LQC effective dynamics provided

α = 3
8πGγ

√
∆
. (5.10)

Hence, α is determined by Newton’s constant and the Barbero-Immirzi parame-
ter. We recover the result of Chamseddine and Mukhanov from a Hamiltonian
point of view. Let us emphasize that exactly the same function has been found
in a rather different context much earlier in [220, 221] from a Lagrangian point
of view.

Before showing the large class of scalar-tensor theories whose Hamiltonian
constraint reduces to 5.8 for spatially flat FLRW space-times, we will show that
this result can be extended to allow for non-vanishing spatial curvature.

5.2.1. Spatial curvature
It is possible to generalize the previous procedure to the case of a spatially

curved FLRW space-time. In classical general relativity, one gets an additional
contribution from the Einstein-Hilbert term coming due to the 3-dimensional cur-
vature 3R evaluated in a non-flat homogeneous and isotropic space-time. Hence,
we start with the action

Sk[a,N, ψ] =
∫
dt

(
− 3aȧ2

8πGN + a3 ψ̇
2

N
+ 3Nka

8πG +Na3Lk
(
a,
ȧ

N

))
, (5.11)

where k denotes the usual spatial curvature parameter. As in previous subsection,
the extra term Lk (such that L0 = L) contains the (yet unknown) additional
terms that are necessary to obtain the LQC effective dynamics in place of the
classical general relativity ones.

5.2.1.1. Curved Cosmology in Mimetic Gravity

We now assume that the curvature dependence can be taken into account by
simply adding to L obtained in the flat case a new term that depends on the scale
factor but not on its derivatives:

Lk
(
a,
ȧ

N

)
= F (H) − 3

8πG Vk(a) . (5.12)
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The potential-like term Vk must vanish for k = 0, in order to recover the results
of the flat case. The overall normalization is chosen for later convenience.

Since the two new terms in the action 5.11 depend only on a (and not on ȧ),
it is straightforward to generalize the Hamiltonian analysis of the flat case. The
new Hamiltonian constraint is given by

H = a3
(
ρ− ρc sin2

(
πa

2αa2

)
− 3k

8πGa2 + 3Vk(a)
8πG

)
, ρ =

π2
ψ

2a6 , (5.13)

and then the modified Friedmann equation becomes

H2 =
(

8πG
3 ρ− k

a2 + Vk(a)
)(

1− 1
ρc

[
ρ− 3k

8πGa2 + 3Vk(a)
8πG

])
. (5.14)

One can now compare this modified Friedmann equation, based on the very sim-
ple ansatz 5.12, with the LQC effective Friedmann equation obtained for spatially
curved FLRW space-times.

5.2.1.2. Curved Cosmology in Effective LQC and Quantization Ambiguities

Before making this comparison, it is important to review a quantization am-
biguity which arises when performing the loop quantization of a homogeneous
space-time with non-vanishing spatial curvature: this quantization ambiguity
concerns the precise quantity that is to be expressed in terms of Planck-length
holonomies. Due to this quantization ambiguity, there exist three quantization
prescriptions that give slightly different effective theories, which can each be
compared to 5.14.

To be more specific concerning this quantization ambiguity, for closed FLRW
space-times there exists a direct generalization of the procedure followed for the
spatially flat space-time reviewed above in Sec. 4.3.1.2, i.e., to express the field
strength in terms of the holonomy of the Ashtekar-Barbero connection around
a closed loop [223, 224]. This is known as the ‘F’ loop quantization. The ‘F’
loop quantization is not possible for the open FLRW space-time, nor for spa-
tially curved Bianchi space-times (the problem is that, when expressing the field
strength in this fashion, the resulting function is not almost-periodic in the con-
nection, and so cannot be promoted to be an operator in the quantum theory, see
[225–227] for details). For the Bianchi space-times, an alternative way forward
is to express the connection itself (rather than the field strength) in terms of a
Planck-length holonomy, as proposed in [226, 227]; this alternative quantization
is known as the ‘A’ loop quantization. However, for the open FLRW space-time,
neither the ‘F’ nor the ‘A’ loop quantizations are viable. Instead, it has been
proposed that the ‘K’ quantization, where one considers ‘holonomies’ of the ex-
trinsic curvature rather than of the Ashtekar-Barbero connection, may provide a
reasonable approximation to a proper loop quantization [225]. Interestingly, the
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‘F’, ‘A’, and ‘K’ loop quantizations are all possible in the closed FLRW model, and
it is possible to compare the resulting effective theories that result from each
of these quantization prescriptions [228, 229], with the surprising result that
the ‘K’ quantization in fact appears to provide a better approximation to the ‘F’
loop quantization than the ‘A’ loop quantization does. (All three quantizations
are also possible for the spatially flat FLRW space-time and also Bianchi type I
models, but in both cases all three quantizations turn out to be exactly equiva-
lent.) Therefore, for the closed FLRW space-time it is possible to compare the
effective theories resulting from the ‘F’, ‘A’ and ‘K’ quantization prescriptions to
5.14, while for the open space-time only the effective theory resulting from the
‘K’ quantization is known.

Let us start with the ‘F’ loop quantization. In this case, the LQC effective
Friedmann equation is [223, 228]

H2 =
(

8πG
3 ρ− k

a2 −
k

γ2a2 + 1
∆γ2 sin2

√
k∆
a

)

×
(

1− 1
ρc

[
ρ− 3k

8πGa2 −
3k

8πGγ2a2 + 3
8πG∆γ2 sin2

√
k∆
a

])
, (5.15)

which is precisely of the form of 5.14 with

Vk(a) = − k

γ2a2 + k

∆γ2 sin2
√
k∆
a

. (5.16)

Note that it is not guaranteed that the effective Friedmann equation has the
general form of 5.14 for some Vk(a), and therefore this result is encouraging
because it indicates that the same modified gravity theory can be used to describe
the LQC effective dynamics of both spatially flat and closed FLRW space-times
(assuming the ‘F’ quantization for the closed FLRW space-time).

Now, while it is not known how to perform a proper loop quantization for
the open FLRW space-time, it appears reasonable to assume that the effective
dynamics for such a loop quantization would also have the form 5.14 where
Vk(a) is 5.16 with the only difference that now k is negative. If this is indeed the
case, then the resulting LQC effective Friedmann equation for the open FLRW
space-time would be

H2 =
8πG

3 ρ+ |k|
a2 + |k|

γ2a2 −
1

∆γ2 sinh2

√
|k|∆
a


×

1− 1
ρc

ρ+ 3|k|
8πGa2 + 3|k|

8πGγ2a2 −
3

8πG∆γ2 sinh2

√
|k|∆
a

 . (5.17)

Moving on to the ‘A’ loop quantization, the effective equation for the closed
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FLRW space-time turns out to have a form which is different than 5.14 [228].
This provides an explicit example that shows that, in general, generic modifica-
tions to the Friedmann equations cannot be written in the form 5.14. It is only
in some special cases that it will be possible to describe quantum gravity effects
via a mimetic scalar-tensor theory, as is the case for the ‘F’ loop quantization.

Finally, for the ‘K’ loop quantization the effective Friedmann equation for the
closed and open FLRW space-times is [225, 229]

H2 =
(

8πG
3 ρ+ k

a2

)
×
(

1− 1
ρc

[
ρ+ 3k

8πGa2

])
, (5.18)

where k > 0 for a closed universe and k < 0 for an open universe. Interestingly,
in this case we find that the effective Friedmann equation is again of the form
5.14, this time with Vk(a) = 0. There are three important points here. First, for
the ‘K’ quantization, which can be performed for both open and closed FLRW
space-times, the effective theory can be understood to come from a scalar-tensor
theory, and the same theory describes equally well space-times with positive
or negative spatial curvature. Second, in agreement with earlier results [228,
229], we find that the ‘K’ quantization is more similar to the ‘F’ quantization
than the ‘A’ quantization is, in that its resulting effective Friedmann equations
can be described by a scalar-tensor theory. And third, the ‘K’ quantization does
not require a Vk(a) term in the action 5.11. Since a non-vanishing Vk(a) term
breaks Lorentz invariance (as we shall discuss in more detail in the following
section), it is quite interesting that the effective theory of the ‘K’ quantization in
fact corresponds to a modified gravity theory which is Lorentz invariant.

To summarize, there is a quantization ambiguity that arises in LQC when con-
sidering spatially curved homogeneous space-times. There exist ‘F’, ‘A’ and ‘K’
quantizations for the closed FLRW space-time, while only the ‘K’ quantization is
known for the open topology. For closed FLRW space-time, the effective equa-
tions resulting from the ‘F’ quantization prescription (but not the ‘A’ quantization)
can be understood to come from a mimetic gravity theory with the action 5.11,
for a particular choice of Vk(a). This mimetic gravity theory in fact provides a
candidate effective theory for a proper loop quantization of the open FLRW space-
time. Finally, the effective equations for the ‘K’ quantization of FLRW space-times
(for all k) can also be understood to follow from a mimetic gravity action of the
form 5.11, in this case with Vk(a) = 0.

In short, these results show that the LQC effective equations (with the ex-
ception of the ‘A’ quantization) for homogeneous and isotropic cosmologies are
identical to the Friedmann equations of a particular mimetic gravity theory.
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5.3. Effective loop quantum gravity and mimetic
gravity

In this section, we address the question of finding a covariant action of modi-
fied gravity that reduces to

S[a,N, ψ] =
∫
dtNa3

(
ψ̇2

2N2 −
ρc
2

[
βH arcsin(βH) +

√
1− β2H2 − 1

])
, β2 = 3

2πGρc
,(5.19)

in a spatially flat homogeneous and isotropic space-time (the non-flat case will be
discussed below), as found in the previous section. Of course, such a condition
is not very restrictive and one can expect that many different covariant actions
could yield the same cosmological action.

Because of the non-linearity of the Lagrangian in the Hubble parameter H,
it is not possible to find an f(R) theory which exactly reproduces 5.19 in the
cosmological sector, although an approximate construction has been found in
[222] (where one considers f(R) theories à la Palatini). The reason is that the
Ricci scalar, given by

R = 6
(

1
a

1
N

d

dt

(
ȧ

N

)
+
(
ȧ

Na

)2)
, (5.20)

involves second derivatives of the scale factor and this prevents us from recover-
ing a Lagrangian f(R) that depends only on a and ȧ in the cosmological sector.

Another possibility would be to consider an action involving nonlinear com-
binations of the Riemann tensor. It was shown in [221] that a Lagrangian con-
taining contractions of the Ricci tensor of the form Rµ1

µ2Rµ2
µ3 · · ·Rµn

µ1 indeed
reduces to 5.19 for spatially flat FLRW space-times. However, the explicit expres-
sion of this Lagrangian is very cumbersome and it does not appear to be suited
for calculations away from the homogeneous and isotropic sector. Furthermore,
as the Lagrangian involves higher powers of the Ricci tensor, the theory will
propagate more degrees of freedom than the usual two tensor modes, and these
additional degrees of freedom will lead to Ostrogradsky instabilities.

Following [66], we will try to explore scalar-tensor actions, in particular mimetic
theories. Following the results recalled in the previous sections, we look for a
covariant action of the form

S[gµν , φ] =
∫
d4x
√
−g

(
fR

16πG + Lφ(φ, φµ, φµν) + λ(X + 1)− 1
2g

µνψµψν

)
(5.21)

where f is a function of φ only and Lφ is a scalar function which depends on φ
and its first and second derivatives φµ and φµν only.

As we said above, the solution of our problem is far from being unique and one
can find an infinite class of solutions with few restrictions on the Lagrangian Lφ.
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Here, we want to propose the simplest class of solutions which generalize the
Chamseddine-Mukhanov model, and we restrict ourselves to higher-derivative
Lagrangians for the scalar field of the form

Lφ = Lφ
(
φ, L

(2)
1 , L

(2)
2 , L

(2)
3 , L

(2)
4 , L

(2)
5

)
(5.22)

where the L(2)
A are the five elementary quadratic Lagrangians introduced in 4.7.

Of course, one could also consider further generalizations including the cubic
elementary Lagrangians.

Now, we find the conditions that f and Lφ must satisfy for the action 5.21 to
reduce to 5.2 when the metric gµν is 4.26 and the fields φ and ψ depend on time
only. In this case,

L
(2)
1 =

(
D2
tφ
)2

+ 3
(
Dtφ
Dta
a

)2
, L

(2)
2 =

[ 1
a3Dt

(
a3Dtφ

)]2
, (5.23)

L
(2)
3 = − 1

a3 (Dtφ)2D2
tφ Dt(a3Dtφ) , (5.24)

L
(2)
4 = −

(
DtφD2

tφ
)2
, L

(2)
5 =

[
(Dtφ)2D2

tφ
]2
, (5.25)

where we have introduced the notation

Dtϕ ≡
ϕ̇

N
(5.26)

for any time-dependent function ϕ(t).
The advantage to consider mimetic theories is that the time derivative of the

scalar field is automatically normalized since we have, in the cosmological back-
ground,

X = −
(
φ̇

N

)2

= −1 . (5.27)

As consequence, in the cosmological context, the elementary quadratic Lagrangians
simplify drastically:

L
(2)
1 = 3

(
ȧ

Na

)2
, L

(2)
2 = 9

(
ȧ

Na

)2
, L

(2)
3 = L

(2)
4 = L

(2)
5 = 0 . (5.28)

Due to the form of 5.2, the functions f and Lφ are necessarily independent of
φ. All these ingredients allow us to conclude immediately that the action 5.21
reproduces the LQC effective dynamics when the Lagrangian Lφ takes the form

Lφ(L(2)
1 , L

(2)
2 , L

(2)
3 , L

(2)
4 , L

(2)
5 ) =

( 5∑
i=1

αiL
(2)
i

)
+ U(L(2)

1 , L
(2)
2 , L

(2)
3 , L

(2)
4 , L

(2)
5 )(5.29)
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with the conditions

α1 + 3α2 = f

8πG , U(3H2, 9H2, 0, 0, 0) = ρc
2

(
1−

√
1− β2H2 − βH arcsin(βH)

)
,(5.30)

for any value of H. The mimetic gravity model proposed by Chamseddine and
Mukhanov clearly belongs to this class and consists in taking f = 24πGα2 =
1, with all other αA = 0, and U is assumed to be a function of L(2)

2 = (2φ)2

only. However, this result shows that there exist different possibilities to get the
LQC effective dynamics. Nonetheless, in a theory of mimetic gravity with the
condition X + 1 = 0, the Lagrangians L(2)

3 , L(2)
4 and L

(2)
5 are always vanishing,

not only in the cosmological sector. This is an immediate consequence of the fact
that φµνφµ = 0. Thus, one can restrict the function Lφ to depend only on the first
two arguments without loss of generality.

Let us close this section with a discussion on the case of a non-flat cosmology.
The only difference with what has been done so far is that the scalar-tensor
action, when evaluated for a spatially curved FLRW space-time, must include the
additional Vk(a) term that arises in 5.12 (at least for the ‘F’ loop quantization,
but not for the ‘K’ quantization, as explained in 5.2.1.2). Such a term can be
obtained by adding to the effective covariant action 5.21 with Lφ given by 5.29
a new potential term

−
∫
d4x

√
|g| V(gµν , φ) (5.31)

which reproduces exactly −Vk(a) when evaluated on a curved FLRW space-time.
As in the previous situation, we obviously do not expect the solution for V to be
unique. However, we can exhibit some properties V must have. The fact that
Vk(a) is a highly non-linear function (even non-polynomial) of the scale factor
a which does not depend on its time derivatives implies that V cannot be con-
structed from the full space-time components of the Riemann tensor only (with
no contractions with derivatives of φ) nor from the elementary scalar-tensor La-
grangians L(2)

A . The reason is that, when evaluated on a curved FLRW space-time,
such terms necessarily produce derivatives of the scale factor which cannot be re-
moved by integration by parts. Cubic (or even higher-order) scalar-tensor terms
as L(3)

A produce the same problem. Only the components of the 3-dimensional
Riemann tensor are functions of a only when evaluated on a curved FLRW solu-
tion. This can be easily illustrated with the 3-dimensional Ricci scalar 3R which
reduces to

3R = −6k
a2 . (5.32)

From this point of view, the potential V(gµν , φ) can be constructed from the 3-
dimensional Riemann tensor, in which case it breaks the Lorentz invariance. Fur-
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thermore, as Vk can be expanded as the following series

Vk(a) =
∑
n>0

vn

(
6k
a2

)n
≡ Ṽ (−6k

a2 ) , (5.33)

one can choose for the potential Vk a function which depends only on 3R accord-
ing to

V(gµν , φ) = Ṽ (3R) . (5.34)

Interestingly, similar potential are considered in Hořava-Lifshitz-type models of
gravity to construct renormalizable theories of gravity. Note that, using the Stück-
elberg method, it is nonetheless possible to render V fully covariant using the
scalar field φ as a covariant clock. The price to pay is that the covariant version
of V would involve terms like Rµνρσφ

µφνφρφσ in the action which would most
probably introduce many unhealthy degrees of freedom in the theory.

5.4. Perspectives
In this chapter, we have constructed a family of higher-derivative scalar-tensor

theories that possess the property to reproduce exactly the effective dynamics of
loop quantum cosmology for flat, closed and open homogeneous and isotropic
space-times, leading to bouncing solutions. This family thus generalizes the par-
ticular model considered by Chamseddine and Mukhanov for the spatially flat
case [66].

An important question is whether this family, identified only at the level of
the homogeneous and isotropic dynamics, contains a theory that could fully rep-
resent an effective description of the full loop quantum gravity (LQG). Indeed,
a study limited to homogeneous cosmologies is too restrictive to be conclusive
and one should go beyond homogenous and isotropic solutions to test further
the interest of the theories we have identified. In particular, it would interesting
to investigate whether some of them can adequately describe anisotropic space-
times, cosmological perturbations, black holes, and more.

Concerning anisotropic space-times, it should be stressed that the equations
of motion for the Bianchi I space-time derived in the specific mimetic theory
of [66] do not coincide with the LQC effective equations given in [230, 231],
even if their qualitative dynamics are quite similar (see, e.g., [232]). It would
thus be worth studying whether another theory among the family identified in
the present work is able to reproduce these Bianchi I equations. We leave this
question for future work.

It would also be interesting to extend our study to include linear cosmological
perturbations around the FLRW background. Indeed, in the presence of perturba-
tive inhomogeneities a number of important qualitative similarities have already

174



been noticed between some modified gravity theories and the LQC effective dy-
namics [233]. One might hope that there is in fact an exact correspondence
for at least one mimetic theory of gravity. Another point is that, as shown in
[183], ghost and gradient instabilities arise when considering cosmological per-
turbations for the action of the mimetic theory proposed in [66] (note that these
instabilities are different from the higher derivative ghosts which mimetic grav-
ity is safe from as a DHOST theory); it would be interesting to see if this is the
case for all actions in the mimetic family, or if there exist some mimetic actions
without ghost or gradient instabilities for cosmological perturbations.

Beyond the natural extensions discussed above, it should also be mentioned
that an alternative description of the LQC effective dynamics offers a comple-
mentary framework that could provide new insights. One such example is the
question of a possible signature change in LQC: due to a modification in the
Dirac algebra of the (effective) constraints of LQC, it has been suggested that
the signature of the metric may change from Lorentzian to Euclidean around the
bounce point, see [234] for details. While this question is difficult to address in
LQC due to the gauge-fixings that are necessary before quantization, the metric
clearly remains Lorentzian at all times in the mimetic theories considered here
and this could suggest that there is no signature change in LQC.

Finally, this result suggests some new links between LQG, Hořava-Lifshitz grav-
ity, and non-commutative geometry. As seen in Sec. 5.2.1.2, for some (but not
all) versions of LQC it is necessary to add a Lorentz-violating term in order to
recover the correct effective Friedmann equations in the presence of scalar curva-
ture, along the lines of what is done in Hořava-Lifshitz gravity. As Hořava-Lifshitz
gravity is known to be perturbatively renormalizable, it is possible that this ef-
fective theory may be renormalizable as well. In addition, the mimetic condition
4.13 has been argued to arise naturally in non-commutative geometry when re-
quiring the quantization of the three-dimensional volume [235]. It is intriguing
that it is precisely modified gravity theories that satisfy this condition which give
the LQC effective dynamics for isotropic cosmologies. An exploration in greater
depth of the links between these different approaches to the problem of quantum
gravity may provide important new insights.
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6. Non-singular Black Holes and the
Limiting Curvature Mechanism:
A Hamiltonian Perspective
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6.1. Introduction
It was realized in [55, 236] that the original theory of mimetic gravity with

a limiting curvature introduced in [66] reproduces exactly the effective Loop
Quantum Cosmology bounce (LQC) [30] as a homogeneous and isotropic solu-
tion a. Naturally, such an observation raises the question of whether one could
consider mimetic gravity with a limiting curvature as an effective description (up
to some energy scale) of the full theory of Loop Quantum Gravity (LQG), even
out of the cosmological sector.

Nonetheless, there are at least two obstacles for such a scenario to be possible.
On the one hand, LQC is not a subsector of the full theory of LQG but rather
a homogenous symmetry reduced model which is quantized importing the tech-
nics of the full LQG theory. Despite some preliminary results concerning the
embedding of LQC into LQG [237–241], this aspect remains up to now poorly
understood. Therefore the relation established between LQC and mimetic grav-
ity does not say much a priori about an eventual link between LQG and mimetic
gravity. On the other hand, even without considering the embedding of LQC into
LQG, one could wonder whether the result obtained in [55, 236] can be general-
ized to less symmetric situations, such as spherically symmetric [184] or Gowdy
loop models [242]. Such symmetry reduced models exhibit non perturbative
inhomogeneities, and as such, are highly non trivial to quantize using the LQG
technics. The reason is that, contrary to the homogenous cosmological sector,
the invariance under spatial diffeomorphisms survives the symmetry reduction.
Therefore, the loop quantization of such inhomogenous models faces the addi-
tional difficulty of keeping the spatial covariance (in the sense of the symmetry
reduced model) in the quantization. More precisely, the issue of the covariance
takes the form of requiring (at the quantum level) an anomaly free Dirac’s hy-
persurface deformation algebra (DHDA), which is the algebra of the first class
constraints generating the invariance under diffeomorphisms. Classically, this
algebra is generated by the Hamiltonian constraint H, the vectorial constraints
Da satisfying

{D[Ua], D[V b]} = D[LUV a] , {D[Ua],H[N ]} = −H[LUN ] , (6.1)
{H[N ],H[M ]} = D[γab

(
N∂bM −M∂bN

)
] , (6.2)

where we have used the following standard notations: U = Ua∂a and V = V a∂a
are spatial vectors, N and M are scalars, D[Ua] and H[N ] are the smeared vec-
torial and Hamiltonian constraints respectively, γab is the inverse spatial metric
and LU denotes the usual Lie derivative along the vector U . In the quantum
theory, this algebra is modified. Indeed, introducing point-wise holonomy correc-
tions to regularize the first class constraints, as required by the loop quantization

a. Notice that a very similar construction has been considered much earlier in [221] in an
attempt to reproduce the effective dynamics of LQC from an f(R) theory.
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procedure, has very important consequences. The fate of the DHDA under the
introduction of the holonomy corrections has been studied recently in a series
of papers [211, 212, 243–245]. A generic result is that for system having no
local degrees of freedom, such as vacuum spherically symmetric gravity [211],
or Gowdy model with local rotational symmetry [243], the DHDA exhibits a
deformed notion of covariance in the sense that (6.2) is replaced by

{H[N ],H[M ]} = β(K̃)D[γab
(
N∂bM −M∂bN

)
] , (6.3)

where β(K̃) is a “deformation", called sometimes the “sign change deformation",
which depends generically on the homogeneous component of the extrinsic cur-
vature K̃. For systems having local degrees of freedom, the situation is even
worse since the DHDA has been shown not to be a close algebra anymore.

All this seems to lead us to the conclusion that it is not possible to provide
an effective description of such loop quantized phase space using a covariant
scalar tensor theory such as [66, 194], since these theories share the same (un-
deformed) DHDA as classical General Relativity (augmented with a scalar degree
of freedom). A first notorious complication in such model is that the quantum
corrections are implemented at the Hamiltonian level and going back to a La-
grangian formulation is often very complicated (see [246] for earlier investiga-
tions on this aspect). Nonetheless, the situation is not totally hopeless. There
are at least two reasons to think that one can circumvent these apparent obsta-
cles we have discussed above. The first one relies on the observation that the
difficulties related to the deformation of the DHDA seems to be inherent to the
fact of working with the real Ashtekar-Barbero variables. Recent results have
shown that such difficulties disappear when working with the initial self-dual
variables, at least in the case of spherical symmetry gravity coupled to matter
and unpolarized Gowdy models [218, 219]. In this situation, the DHDA keeps
indeed its classical form without any deformation even if some holonomy correc-
tions, including a µ̄-scheme, have been taken into account. Therefore, this opens
the possibility of describing these self-dual loop symmetry reduced models using
a covariant scalar-tensor theory. The second one relies on the fact that up to
now, the polymer construction of black hole models (as well as inhomogeneous
cosmology and Gowdy system) has focused only on the minimal loop regulariza-
tion, namely the point-wise holonomy corrections. Yet, only few investigations
have considered together the additional corrections inherent to LQG: the triad
corrections related to the inverse volume regularization, as well as the holonomy
of the inhomogeneous component of the connection. Therefore, it is not clear
if the deformation (6.3) will not be removed when one takes into account these
additional corrections.

Facing the problem of the deformed notion of covariance in polymer models
inspired from LQG, we adopt the following strategy. As shown in [55, 236],
mimetic gravity with a limiting curvature is a covariant scalar-tensor theory
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which reproduces in the cosmolgical sector the effective dynamics of LQC. Thus,
we consider this theory as a potential guide to obtain an effective Lagrangian
description of point wise holonomy-like corrections which maintain the covari-
ance beyond the cosmological sector. As a first study, we focus our attention on
the spherically symmetric sector and derive its Hamiltonian formulation. As ex-
pected, it leads to effective quantum corrections similar to the ones introduced
in the polymer framework, but in a covariant manner. The difference between
the mimetic effective corrections and the polymer ones provides an interesting
guide to understand the lack of covariance of polymer black hole models.

The chapter is organized as follows. In section II, we recall some important
aspects of the extended theories of mimetic gravity and we illustrate the limiting
curvature mechanism in the context of black holes. In section III, we revisit the
non-singular black hole solution described in [66] from a Hamiltonian point of
view. In particular, we find a parametrization of the phase space which makes
the resolution of the equations of motion simpler than in the Lagrangian formu-
lation. Furthermore, we exhibit the explicit form of the Hamiltonian constraint
for mimetic gravity with a limiting curvature in the case of a spherically symmet-
ric space-time. In section IV, we compare the Hamiltonian formulation of this
theory of mimetic gravity with those obtained in LQG from a “loop" regulariza-
tion of the usual Hamiltonian constraint of gravity. Contrary to what happens
in the cosmological sector, the theory of mimetic gravity proposed in [66] does
not reproduce the effective dynamics of spherically symmetric LQG. However,
we exhibit a theory in the class of extended mimetic gravity whose dynamics
reproduces the general shape of the effective corrections of spherically symmet-
ric polymer models, but in an undeformed covariant manner. In that respect,
extended mimetic gravity can be viewed as an effective covariant theory which
naturally implements a covariant notion of point wise holonomy-like corrections
similar in spirit to the ones used in polymer models. The difference between
the mimetic and polymer Hamiltonian formulations provides us with a guide to
understand the lack of covariance in inhomogeneous polymer models.

6.2. Mimetic gravity and the limiting curvature
hypothesis

In this section, we review some aspects of extended theories of mimetic gravity
[247, 248]. Extended mimetic gravity generalizes the original proposal of [178]:
it is still conformally invariant and propagates generically only one scalar in
addition to the usual two tensorial modes. Then, we recall how to implement
the limiting curvature hypothesis in this context and how the proposal of [66]
leads indeed to a non-singular black hole solution.
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6.2.1. Extended mimetic gravity
Let us start by discussing the original theory of mimetic gravity defined by the

action (4.14)

S[gµν , φ, λ] ≡
∫
d4x
√
−g

[1
2R+ λ(gµνφµφν ± 1)

]
, (6.4)

where the sign (±1) is for the moment arbitrary and will be fixed hereafter:
the + (resp. −) sign implies that φµ are the components of a timelike (resp.
spacelike) vector. The dynamical variables are the metric gµν with signature
(−1,+1,+1,+1), the scalar field φ and the extra variable λ.

6.2.1.1. Equations of motion

The equations of motion are easily computed, and the Euler-Lagrange equa-
tions for λ, φ and gµν are respectively given by

X ± 1 = 0 , ∇µ(λφµ) = 0 , Gµν = Tµν , (6.5)

where the stress-energy tensor for the “mimetic" matter field is

Tµν = −2λφµφν + λ(X ± 1)gµν . (6.6)

Let us recall that we used the same notations as in the introduction for the gra-
dient φµ ≡ ∇µφ and the kinetic energy X ≡ φµφµ. The trace of the last equation
in (6.5) allows us to express the variable λ in terms of the Ricci scalar according
to

λ = ±1
2R . (6.7)

Substituting this expression for λ into the first two equations in (6.5) leads to the
following system of equations for the scalar field and the metric

∇µ(Rφµ) = 0 , Gµν ±Rφµφν = 0 . (6.8)

Notice that the first equation (for the scalar field) is not independent from Ein-
stein equations. Indeed, the conservation of the Einstein tensor ∇µGµν together
with the mimetic condition necessarily imply that

0 = ∇µGµν = ∇µ(Rφµφν) = ∇µ(Rφµ)φν +Rφµφµν = ∇µ(Rφµ)φν =⇒ ∇µ(Rφµ) = 0 .(6.9)

Hence, the equations of motion (6.5) are equivalent to

Gµν ±Rφµφν = 0 , X ± 1 = 0 , λ = ±1
2R . (6.10)
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These equations have been solved for cosmological space-times in [178].

6.2.1.2. Generalization: extended mimetic gravity

The mimetic action (6.4) can be generalized to the form [248]

S[gµν , φ, λ] ≡
∫
d4x
√
−g

[
f(φ)

2 R+ Lφ(φ, χ1, · · · , χp) + λ(X ± 1)
]
, (6.11)

where f is an arbitrary function of φ, Lφ depends on φ and χn which are variables
constructed with second derivatives of the scalar field according to

χn ≡ Tr([φ]n) ≡
∑

µ1,··· ,µn
φµ2
µ1 φ

µ3
µ2 · · ·φ

µn
µn−1 φ

µ1
µn . (6.12)

Here, we have used the notation [φ] for the matrix whose coefficients are [φ]µν ≡
φµν . Indices are lowered and raised by the metric and its inverse. One can show
that this extended action defines the most general mimetic gravity like theory
[247, 248] which propagates at most three degrees of freedom (one scalar in
addition to the usual two tensorial modes). Notice that mimetic gravity has re-
cently been generalized in [249] to actions with higher derivatives of the metric
(which propagate more than three degrees of freedom out of the unitary gauge).
Due to the mimetic condition X ± 1 = 0, any X dependency in f or Lφ can be
removed. More precisely, as it was shown in [248], if one starts with an action
(6.11) where f and Lφ depend also on X (and eventually its derivatives ∂µX),
the associated equations of motion are equivalent to the equations of motion
obtained from the same action where f and Lφ are evaluated to X = ∓1 (and
eventually ∂µX = 0).

The Euler-Lagrange equations for (6.11) can be easily obtained in full general-
ity. But, for simplicity, we assume that f is a constant (and thus independent of
φ) which can be fixed to f = 1. Deriving the action with respect to φ and gµν
respectively leads to the equations

∂Lφ
∂φ
− 2∇µ(λφµ) +

p∑
n=1

n∇µν

(
[φ]n−1

µν

∂Lφ
∂χn

)
= 0 and Gµν = Tµν , (6.13)

where [φ]n is the power n of the matrix [φ] with the convention [φ]0µν ≡ gµν , and
now the stress-energy tensor reads

Tµν = −2λφµφν + λ(X ± 1)gµν + T (φ)
µν with (6.14)

T (φ)
µν ≡ Lφ gµν +

p∑
n=1

n

{
−2∂Lφ

∂χn
[φ]nµν +∇α

[
∂Lφ
∂χn

(
[φ]n−1

αµ φν + [φ]n−1
αν φµ − [φ]n−1

µν φα
)]}

.(6.15)

To get rid of λ in the Einstein equation, we proceed as in the previous case. First,
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we take the trace of the second equation in (6.13) to express λ in terms of φ and
gµν

λ = ∓1
2(R+ T (φ)) , T (φ) = 4Lφ −

p∑
n=1

n

{
2∂Lφ
∂χn

χn +∇α

[
φα
∂Lφ
∂χn

χn−1

]}
.(6.16)

Then we substitute this expression in the two equations above (6.13). Further-
more, the equation for the scalar field can be obtained from the conservation of
the stress-energy tensor, and thus is not independent from Einstein equations.

Hence, as the trace of Einstein equations is trivially satisfied (the trace has
been used to determine λ), the equations of motion are equivalent to the mimetic
condition and (the traceless part of) Einstein equations only:

X ± 1 = 0 , Gµν = ±(R+ T (φ))φµφν + T (φ)
µν . (6.17)

Solutions to these equations have been studied in the context of cosmology [66]
and black holes [193] with a particular choice for Lφ which makes the solutions
nonsingular. Here, we focus on black hole solutions and we are going to see how
one can choose Lφ to resolve the black hole singularity.

6.2.2. Black hole with a limiting curvature
The non-singular black hole introduced by Chamseddine and Mukhanov in

[193] is a “static" spherically symmetric solution of the general mimetic action
(6.11) where Lφ is a function of χ1 only defined by

Lφ(χ1) = 2
3ρm f(x) , x = χ1√

ρm
, f(x) ≡ 1 + 1

2x
2 −
√

1− x2 − x arcsin x ,(6.18)

where ρm defines a new energy scale in the theory. This expression of Lφ seems
to be an ad hoc choice a priori, but it leads to very appealing nonsingular cos-
mological and black hole solutions. Notice that, in the cosmological sector, the
equation of motion of the scale factor reproduces exactly the effective dynamics
of LQC as it was pointed out in [55, 236].

Let us now consider a spherically symmetric space-time only, and let us ex-
plain physically why (6.18) produces non-singular black hole solutions. For that
purpose, we start writing the metric in Schwarzschild coordinates

ds2 = −F (R) dT 2 + 1
F (R) dR

2 +R2 (dθ2 + sin2 θ dϕ2) , (6.19)

where F is a function of R only. In usual general relativity (with no modifi-
cations), Einstein equations lead to the Schwarzschild solution where F (R) =
1 − 2m/R, m being the mass of the black hole. Thus, there is an event horizon
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at R = 2m and one can distinguish between the outside (F > 0 or R > 2m) and
the inside of the black hole (F < 0 or R < 2m). The singularity occurs inside the
black hole where the curvature becomes arbitrary large (in the limit R→ 0).

It was shown in the original paper [193] that the action (6.11) with the field
Lagrangian (6.18) reproduces correctly the Schwarzschild metric far from the
high curvature regions (compared with the scale ρm). In particular, spheri-
cally symmetric solution (6.19) possesses an event horizon, very similar to the
Schwarzschild horizon. Thus one can still define a region inside (or behind) the
horizon (F < 0) and a region outside the horizon (F > 0).

Concerning the scalar field, let us start assuming that it depends on R and T
for purposes of generality. We will shortly reduce ourselves to the case of a static
scalar field φ(R). The scalar field satisfies the mimetic condition which reads

− 1
F (R)

(
∂φ

∂T

)2

+ F (R)
(
∂φ

∂R

)2

± 1 = 0 . (6.20)

This equation allows to resolve the scalar field φ in terms of the geometry F (R).
A simple class of solutions of this partial differential equation can be obtained
from the ansatz

φ(R, T ) = qT + ψ(R) , (6.21)

where q is a constant and ψ satisfies(
dψ

dR

)2

= q2 ∓ F
F 2 . (6.22)

Notice that similar ansatz were considered in [250, 251] to find black holes and
stars solutions in the context of Horndeski (or beyond Horndeski) theories.

It is clear that the equation (6.22) admits a solution only if the condition
q2 ∓ F ≥ 0 is fulfilled. As a result, in the static case (where q = 0), one can-
not find any global spherically symmetric solution for the space-time. Indeed,
the condition ±F ≤ 0 implies that only the action with a + (resp. −) sign could
lead to a description of the region inside (resp. outside) the black hole. Only a
non-static solution for the scalar field (q 6= 0) could enable us to describe a fully
static spherically symmetric space-time. However, we will proceed as in [193]:
we will restrict ourselves to the region inside the black hole (we expect the lim-
iting curvature hypothesis to affect mainly the regions inside the black hole), we
choose a mimetic action with a + sign, and we will argue how this is enough
to resolve indeed the singularity. From a phenomenological point of view, we
could interpret the action (6.11) with (6.18) as an effective description of general
relativity in a region (inside the black hole) where the curvature becomes high
(with respect to the scale ρm). Such a modification could result from quantum
gravity effects for instance [55].
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When the scalar field is static, the mimetic condition reduces to a simple dif-
ferential equation (

dφ

dR

)2

= − 1
F
, (6.23)

in the region (behind the horizon) where F ≤ 0 (with appropriate boundary
conditions). The form of Lφ (the presence of arcsin(x) or

√
1− x2 with x =

χ1/
√
ρm for instance) imposes that the scalar field φ must satisfy the condition

|χ1| ≤
√
ρm =⇒ | d

dR

(
R2√−F

)
| ≤ √ρmR2 . (6.24)

If one naively substitutes the Schwarzschild solution in this inequality, one gets
the condition that

ρ ≡ m

R3 ≤
2
9 ρm , (6.25)

which can be interpreted by the fact that the density inside the black hole is
bounded from above. Hence, one would expect the singularity to be resolved.
This has been shown to be indeed the case in [193] from a resolution of the
equations of motion. We are going to reproduce this result in the next section
from a Hamiltonian point of view.

6.3. Hamiltonian description
In this section, we perform the Hamiltonian analysis of the mimetic action with

a limiting curvature. We first introduce the ADM parametrization for the metric
and we solve the mimetic condition to integrate out the scalar field φ. Then, we
start the Hamiltonian analysis and we find a nice parametrization of the phase
space such that the Hamiltonian and vectorial constraints take a rather simple
form. Finally, we resolve the Hamilton equations far behind the horizon, and
we recover that the solution is indeed non-singular. As we are going to see, the
Hamiltonian point of view leads to a simpler analysis of the equations of motion
than the Lagrangian point of view, as it was done in [193].

6.3.1. 3+1 decomposition: metric and scalar field
In this subsection, we start introducing the tools which are necessary to per-

form the Hamiltonian analysis of the theory restricted to spherically symmetric
geometries. Notice that the “radial" and “time" coordinates (in the Schwarzschild
parametrization) exchange their roles when one crosses the horizon. In partic-
ular, the time coordinate behind the horizon would correspond to the radial
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coordinate in the Schwarzschild parametrization.

6.3.1.1. ADM decomposition for spherical space-time

We start with the usual ADM decomposition of the (non-static) spherically
symmetric metric inside the black hole:

ds2 = −N2dt2 + γrr(dr +N rdt)2 + γθθdΩ2 , dΩ2 ≡ dθ2 + sin2 θdϕ2 , (6.26)

where N(r, t) is the lapse function, N r(r, t) is the radial component of the shift
vector and

γ ≡ diag
[
γrr(r, t), γθθ(r, t), γθθ(r, t) sin2 θ

]
(6.27)

are the non-vanishing components of the (spherically symmetric) induced metric
on the three dimensional space-like hypersurface. In the following, we will use
the standard notations γrr ≡ γ−1

rr and γθθ ≡ γ−1
θθ for the components of the inverse

metric γ−1.

6.3.1.2. Resolution of the mimetic condition to integrate out the scalar field

Concerning the scalar field, we assume that it depends on time t only (which
corresponds to a “static" solution from the point of view of an observer outside
the horizon). The mimetic condition X + 1 = 0 implies that the lapse function
necessarily depends on t according to

φ̇(t)2 = N(t)2 . (6.28)

Without loss of generality, we take the solution φ̇ = +N that we substitute in
the action in order to integrate out the scalar field φ. To do so, we also need to
compute χ1 = 2φ in terms of the metric variables.

Thus, we start by computing second derivatives of the scalar field φµν , and an
easy calculation shows that the only non-vansihing components of φµν are

φtt = −(N r)2Krr , φrt = −N rKrr , φii = −Kii , (6.29)

where i ∈ {r, θ, ϕ} labels spatial coordinates, and Kij are the components of the
extrinsic curvature

Kij ≡
1

2N (γ̇ij −DiNj −DjNi) , (6.30)

with Di being the covariant derivative compatible with the spatial metric γij
(6.27). To go further, one has to compute explicitly the components of the extrin-
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sic curvature. Only the diagonal components are non-trivial with

Krr = 1
2N (γ̇rr − γ′rrN r − 2γrr(N r)′) , Kθθ = Kϕϕ

sin2 θ
= 1

2N ( ˙γθθ − γ′θθN r) .(6.31)

As usual, dot and prime denote respectively time and radial derivatives. We have
now all the ingredients to start the Hamiltonian analysis of the theory.

6.3.2. Hamiltonian analysis
Using the Gauss-Codazzi relation, the action (6.4) with f(φ) = 1 and Lφ given

by (6.18) reduces to the form

S =
∫
dt d3xN

√
γ
[1
2(KijK

ij −K2 +R) + Lφ(K)
]
, (6.32)

where we have substituted the solution of the mimetic constraint for the scalar
field (6.29), and R is the three-curvature whose expression in terms of the metric
components is

R = 2
γθθ

1−
(

γ′θθ√
γθθγrr

)2

+ 2
γrr

(
γ′θθ√
γθθγrr

)′ . (6.33)

To simplify the Hamiltonian analysis, it is more convenient to introduce a new
parametrization of the metric in terms of the variables α and γ defined by{

γ ≡ γrrγ
2
θθ , α ≡ γrr

γθθ

}
⇐⇒

{
γrr = (γα2)1/3 , γθθ =

(
γ

α

)1/3
}
. (6.34)

With these new variables, the action simplifies and becomes

S =
∫
dt d3x

√
γ
[ 1
12N

(
A2 −B2

)
+NLφ

(
B

2N

)]
(6.35)

where A and B depend respectively on the variables (α,N r) and (γ,N r) accord-
ing to

A ≡ α̇

α
− α′

α
N r − 2(N r)′ , B ≡ γ̇

γ
− γ′

γ
N r − 2(N r)′ . (6.36)

Notice that R can be expressed explicitly in terms of α and γ, what we will not
do here because its explicit form is not needed for our purposes.

It is clear from this expression of the Lagrangian (6.35) that N and N r are
Lagrange multipliers, and there are only two pairs of conjugate variables defined
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by the Poisson brackets

{α(u), πα(v)} = δ(u− v) = {γ(u), πγ(v)} . (6.37)

Momenta are easily computed and are given in terms of the velocities by

πα = 1
3

√
γ

Nα
A , πγ = −1

3

√
ρm
γ

arcsin
(

B

2N√ρm

)
. (6.38)

Inverting these relations to obtain velocities in terms of momenta is immediate

α̇

α
= 3Nα√

γ
πα + α′

α
N r + 2(N r)′ , (6.39)

γ̇

γ
= −2N√ρm sin

(
3
√
ρm
γ
πγ

)
+ γ′

γ
N r + 2(N r)′ . (6.40)

From these expressions, one easily deduces the expression of the Hamiltonian

H =
∫
dr (NH +N rDr) (6.41)

with the Hamiltonian and vectorial constraints respectively given by

H ≡ 3
√
γ
α2π2

α −
√
γ

[
4
3ρm sin2

(
3
2

√
γ

ρm
πγ

)
+ 1

2R
]
, (6.42)

Dr ≡ −
(
γ′πγ + 2γπ′γ + α′πα + 2απ′α

)
. (6.43)

Hence, time derivative of any functionnal O of the phase space variables is com-
puted from the Poisson bracket

Ȯ(t, r) = {O;H} , (6.44)

from which one easily deduces the equations of motion. To these equations, one
adds the two constraints H ≈ 0 and Dr ≈ 0 to integrate completely the system.
Notice that ≈ denotes the weak equality in the phase space.

Notice that the Hamiltonian constraint can be written as

ρ ≡ 9α2

4γ π
2
α −

3
8 R ≈ ρm sin2

(
3
2

√
γ

ρm
πγ

)
, (6.45)

where ρ will be interpreted as the energy density of the mimetic scalar field, as
we are going to argue later. The density ρ is necessarily bounded by ρm.
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6.3.3. Spherically “static" solutions deeply inside the black hole
To go further, we restrict ourselves to spherically static solutions which corre-

spond, in the black hole interior, to having a time dependency only.

6.3.3.1. Equations of motion

In that case, the vectorial constraint Dr = 0 is strongly satisfied and the ex-
pression of the 3-dimensional Ricci scalar reduces to R = 2(α/γ)1/3. Hence, after
some simple calculations, one shows that the equations of motion for the phase
space variables are

α̇ = 6α2πα√
γ

, π̇α = −6απ2
α√
γ

+ 1
3
γ1/6

α2/3 , γ̇ = −2γ√ρm sin
(

3
√
γ

ρm
πγ

)
,(6.46)

π̇γ = 3
2
α2π2

α

γ2/3 + ρm
3√γ sin2

(
3
2

√
γ

ρm
πγ

)
+ ρm

2 πγ sin
(

3
√
γ

ρm
πγ

)
− α1/3

6γ5/3 ,(6.47)

where we have fixed the lapse to the value N = 1 for simplicity (which cor-
responds to a redefinition of the time variables). These equations are highly
non-linear and very cumbersome to solve. Even though we do not expect to
find explicit solutions, we are going to present some interesting properties they
satisfy.

First of all, the equation for γ (6.46) together with the Hamiltonian constraint
(6.45) leads to the so-called master equation in [193] given by

(
γ̇

4γ

)2

= ρ

(
1− ρ

ρm

)
, with ρ = 1

4

1
4

(
α̇

α

)2
− 3

(
α

γ

)1/3
 . (6.48)

In [193], the same equation has been obtained from the Lagrangian point of view
in terms of the variable ε ≡ (4/3)ρ and the constant εm ≡ (4/3)ρm. We recover
an equation very similar to the one satisfied by the scale factor in the framework
of effective LQC [55], which leads to a non-singular scenario for early universe
cosmology. Here, we have a similar dynamics for γ which is also bounded from
below: this leads to a non-singular black hole solution [193] as it can be easily
seen from the expression of the Kretschmann tensorK = 4(α/γ)1/3: it is bounded
when γ does not vanish, provided that α does not tend to infinity neither.

6.3.3.2. Deep inside the black hole: resolution of the singularity

To understand better the dynamics of the variables α and γ, let us consider the
regime where the 3-dimensional scalar curvature R becomes negligible in the

188



expression of the energy density (6.45). This hypothesis implies the condition

α2π2
α

γ
� R ⇐⇒

(
α̇

α

)2
�
(
α

γ

)1/3

. (6.49)

It has been shown in [193] that this condition is satisfied deeply inside the black
hole (in the region where the quantum effects are supposed to be important). In
this situation, the equations for α and πα become

α̇ = 6α2πα√
γ

, π̇α = −6απ2
α√
γ
, (6.50)

which can be integrated exactly. First, α can be expressed in terms of γ using the
relations:

√
γ
α̇

α
= C ⇐⇒ α(t) = α0 exp

C ∫ t

0

du√
γ(u)

 , (6.51)

where C and α0 are integration constants. Then, the equation for γ (6.48) sim-
plifies and becomes

γ̇2 = C2 (γ − γm) , γm ≡
C2

16ρm
, (6.52)

from which we deduce immediately that γ is bounded from below by γm. Fur-
thermore, one easily integrates this equation and obtains an exact expression for
γ (in the regime where R is negligible in the expression of H0) given by

γ(t) = γm(1 + 4ρmt2) , (6.53)

assuming that γ(0) = γm. This expression coincides completely with Eq.(64) of
[193] when the constant C has been fixed to C = 3rg (rg being the Schwarzchild
radius). Finally, substituting this expression in (6.51), one obtains

α(t) = a exp
[
2 sinh−1 (2√ρmt)

]
, (6.54)

where a is a new constant. Hence, we recover exactly the solution found in [193]
where a has been fixed to

a = 64
9 ρm . (6.55)

As a conclusion, the singularity is clearly avoided and replaced by a bounce very
similar to the LQC bounce.

Let us recall that the analysis of this subsection is valid only when the condition
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(6.49) is fulfilled. Using the relation (6.51), the validity condition can be more
explicitly given by

C6 � α γ2 ⇐⇒ 182r2
gρm � (1 + 4ρmt2)2 exp

[
2 sinh−1 (2√ρmt)

]
. (6.56)

Thus, ρmt2 � 1 is sufficient for this condition to be satisfied provided that

Q ≡ r2
gρm � 1 , (6.57)

which is obviously the case deep inside the black hole. However, this is not
necessary. Indeed, in the regime where ρmt2 � 1, the previous condition gives

ρmt
3 � rg , (6.58)

which is less restrictive than ρmt2 � 1. Hence, the solution (deep inside the black
hole) given by (6.53) and (6.54) is valid when t is sufficiently small according to
(6.58).

6.3.3.3. Comparing with the Schwarzschild solution

To conclude this analysis of the geometry deep inside the black hole, let us
make a comparison with the usual Schwarzschild solution. When expressed in
terms of the parameters α and γ, the Schwarzschild black hole is defined by (see
[193] for instance)

αs = 1− τ 2

r2
gτ

6 , γs = r4
g(1− τ 2)τ 6 with

t

rg
≡ arcsin τ − τ

√
1− τ 2 . (6.59)

In the regime (6.58), we necessarily have t/rg � Q−1/3 � 1, hence τ � 1 and
then

τ 3 ≈ 3t
2rg

. (6.60)

Thus, the Schwarzschild solution, to compare the regularized solution with, re-
duces to

αs(t) ≈
4

9t2 , γs(t) ≈
9
4r

2
gt

2 , (6.61)

in the region where the curvature is high. We see that both α and γ−1 are regular-
ized compared to the classical Schwarzschild solution as shown in Fig. (1): this
is the effect of the limiting curvature. However, close to the horizon (which cor-
responds to τ ≈ 1), one recovers the Schwarzschild solution because the limiting
curvature effect becomes negligible.
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Figure 1. – These two graphs show the solutions α(t) and γ(t) compared to the
Schwarzschild solution αs(t) and γs(t) in the deep quantum regime
(6.58). In particular, we see that the limiting curvature effect makes
the functions α(t) and 1/γ(t) no more divergent when t → 0, which
regularizes the singularity. In these plots, we work in the Planck unit
with rg = 1000`p and ρm = `−2

p , where `p is the Planck length. In that
case, the deep quantum regime condition (6.58) becomes t� 10`p.

6.4. On the relation with effective polymer black
holes

In [55, 236], it was shown that extended mimetic gravity with (6.18) re-
produces the dynamics of effective LQC when restricted to homogenous and
isotropic cosmology. A natural question is whether this relation extends itself to
the spherically symmetric sector. We explore this question in this section where
we compare the Hamiltonian of the non-singular black hole with limiting curva-
ture with the standard polymer model of vacuum spherically symmetric gravity
in terms of Ashtekar-Barbero variables studied in [184]. While the relation be-
tween the Chamseddine-Mukhanov mimetic theory with limiting curvature and
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LQC is shown not to hold beyond homogenous geometries, one can propose new
mimetic theories to describe a generalized regularization for polymer models
which provides us with an undeformed notion of covariance as well as a natural
inbuilt µ̄-scheme.

6.4.1. Comparing mimetic and polymer black holes
In this section, we compare the Hamiltonian structures of LQG and mimetic

gravity with a limiting curvature. Following the introduction section 4.3.2 of
this part, we can write the effective constraints of spherically symmetric LQG as
follows:

H = |Ex|−1/2
[
Eφ sin2 (ρKφ)

ρ2 + 2sin (2ρKφ)
2ρ KxE

x + (1− Γ2
φ)Eφ + 2Γ′φEx

]
,

(6.62)
Dx = 2EφK ′φ −Kx(Ex)′ . (6.63)

To make a comparison with mimetic gravity in the spherical sector, we need
to reformulate the mimetic phase space (6.37) and the mimetic constraints (6.42)
in terms of the LQG variables. Let us start with the phase space variables. First
of all, the coordinates α and γ are easily related to the components Eφ and Ex

of the electric field as follows:

α = γrrγ
−1
θθ = (Eφ)2(Ex)−2 , γ = γrrγ

2
θθ = (Eφ)2Ex . (6.64)

To obtain the relation between the momenta (πα, πγ) and the components (Kφ, Kx)
of the extrinsic curvature, we transform the symplectic potential Θ of the LQG
phase space

Θ ≡ β
[
KφδE

φ + 1
2KxδE

x
]
, (6.65)

as follows

Θ = β
[
Kφδ(α

1
6γ

1
3 ) + 1

2Kxδ(α−
1
3γ

1
3 )
]
, (6.66)

= β

[
Kφ

3EφEx
+ Kx

6(Eφ)2

]
δγ + β

[
Kφ(Ex)2

6Eφ
− Kx(Ex)3

6(Eφ)2

]
δα . (6.67)

Due to the equality Θ = πγδγ+παδα, we deduce immediately the useful relations

πα = β

[
Kφ(Ex)2

6Eφ
− Kx(Ex)3

6(Eφ)2

]
, πγ = β

[
Kφ

3EφEx
+ Kx

6(Eφ)2

]
. (6.68)

Substituting (6.64) and (6.68) in (6.42), one immediately obtains the expressions
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of the mimetic Hamiltonian constraint in terms of the LQG variables

H = β2

12
(KφE

φ −KxE
x)2

Eφ
√
Ex

− 4ρm
3 Eφ

√
Ex sin2

(
β

6
2KφE

φ +KxE
x

√
ρmEφ

√
Ex

)
− 1

2E
φ
√
ExR .

(6.69)

Hence, the Hamiltonian constraints of mimetic gravity and LQG do not not co-
incide. The identification we have noticed for homogeneous and isotropic back-
grounds does not extend to spherically symmetric geometries. While only the
variable Kφ is polymerized in the polymer Hamiltonian (using a constant scale
ρ), it is a rather complicated combination of the different fields that enters in the
sine function in mimetic gravity, namely

A = ρ̃
(
Kφ + Ex

Eφ
Kx

)
with ρ̃ = β

3
√
ρmEx

. (6.70)

Notice that in this last quantity, ρ̃ depends on the phase space field Ex, and
provides a natural µ̄-scheme.

The result obtained in this section is not surprising. Indeed, since the effec-
tive polymer model has a deformed notion of covariance compared with General
Relativity, one does not expect to find a covariant effective action which would re-
produce its Hamiltonian formulation. However, one can use mimetic gravity with
a limiting curvature as a guide to build undeformed covariant notion of point-
wise holonomy like corrections. Therefore, while we do not expect to reproduce
any existing inhomogeneous polymer models from these scalar-tensor theories
(albeit in the cosmological sector where the issue of covariance disappears), we
want to build new extended mimetic Lagrangians which reproduce “as closely as
possible" the Hamiltonian of the current spherically symmetric polymer models.
The difference between the mimetic and polymer Hamiltonian formulations will
then provide an interesting guide to understand the absence of covariance in
inhomogeneous polymer black holes. The next section is devoted to this task.

6.4.2. Polymer Hamiltonians from extended mimetic gravity
In this section, we present a method to reconstruct, from an extended mimetic

gravity Lagrangian, a Hamiltonian constraint supplemented with quantum cor-
rections which has a form very similar to a given polymer effective theory.
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6.4.2.1. General construction

Our starting point is again the most general form for the extended mimetic
action (6.11)

S[gµν , φ, λ] ≡
∫
d4x
√
−g

[
f(φ)

2 R+ Lφ(φ, χ1, · · · , χp) + λ(X ± 1)
]
, (6.71)

where f is an arbitrary function of φ, and Lφ depends on φ and χn defined in
(6.12). For simplicity, we choose f = 1 and we assume that Lφ does not depend
on φ.

Thanks to the mimetic constraint, in the “static" case where the scalar field
depends on time t only, one can relate directly the second order derivative of
the scalar field φµν to the extrinsic curvature of the 3-hypersurface Σ of the ADM
decomposition. Using (6.29), one can rewrite the variable χn as

χn = (−1)n
∑

i1,...,in

Ki2
i1K

i3
i2 ...K

in
in−1K

i1
in . (6.72)

In the spherically symmetric case, Kr
r , K

θ
θ andKϕ

ϕ (∝ Kθ
θ ) are the only non-trivial

components of Kν
µ. In this simplified context, it is more convenient to introduce

the following combinations of these components

X = Kr
r +Kθ

θ = Ėφ − (N rEφ)′
NEφ

, Y = Kθ
θ = Ėx −N rEx′

2NEx
, (6.73)

which involve separately the velocities of Eφ and Ex. This will be very useful for
the Hamiltonian analysis. Their covariant form can be given in terms of χ1 = 2φ
and χ2 = φµνφ

µν only as follows

X = 2
32φ+ 1

6

√
6φµνφµν − 2(2φ)2 , Y = 1

32φ−
1
6

√
6φµνφµν − 2(2φ)2 . (6.74)

Hence, we can view the χi variables as functions of only the two variables X
and Y , and then we can reformulate the general action (6.71) as

S =
∫
dtd3x N Eφ

√
Ex

[
−(2XY − Y 2) + L̃φ(X, Y ) + 1

2R
]
, (6.75)

where L̃φ(X, Y ) = Lφ(χ1, · · · , χp). This expression of the action is much more
suitable for a Hamiltonian analysis. First, we compute the momenta conjugated
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to the variables Ex and Eφ

πx = δY

δĖx

δL

δY
= Eφ

2
√
Ex

(−2(X + Y ) + ∂L̃φ
∂Y

) , (6.76)

πφ = δX

δĖφ

δL

δX
=
√
Ex(−2Y + ∂L̃φ

∂X
) , (6.77)

where L denotes the full Lagrangian of the theory. Notice that in the classical
limit, where L̃φ(X, Y ) → 0, the momenta become “classical" and reduce to the
expected form

πx → πcx = − Eφ

√
Ex

(X + Y ) and πφ → πcφ = −2
√
ExY . (6.78)

To compute the Hamiltonian, one has to invert the relations (6.76) and (6.77)
in order to express the velocities in terms of the momenta. However, it is not
always possible to have an explicit inversion and then to have an explicit form
of the Hamiltonian.

Our goal is to find a function L̃φ(X, Y ) which has the right semi-classical limit
and which reproduces the general shape of the quantum correction appearing
in the polymer model as shown in (4.52). Since such corrections only affect the
angular component of the extrinsic curvature in the polymer model, we focus on
πφ in (6.77), and we require that there exists a function f such that

Y = −f
(

πφ√
Ex

)
. (6.79)

Remark that such a quantum correction has a natural inbuilt µ̄-scheme through
its dependency in Ex to keep the covariance. Since the function f does not
depend on X, we can conclude that the general function L̃φ(X, Y ) which repro-
duces the polymer Hamiltonian takes the form:

L̃φ(X, Y ) = 2XY +Xf−1(−Y ) + g(Y ) , (6.80)

where g(Y ) is a function of Y only which satisfies g(Y )→ 0 in the classical limit.
Indeed, this choice of L̃φ(X, Y ) leads to the action (6.75)

S =
∫
dtd3x N Eφ

√
Ex

[
Y 2 +Xf−1(Y ) + g(Y ) + 1

2R
]
, (6.81)
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whose Hamiltonian (after a few calculations) reads

H = N
[
2 Ex πx Y + Eφ πφ X − Eφ

√
Ex

(
Y 2 +Xf−1(Y ) + g(Y ) + 1

2R
)]

= − N√
Ex

[
2Exπxf

(
πφ√
Ex

)
+ Eφ

(
f 2
(

πφ√
Ex

)
− Exg(Y )

)
+ 1

2E
φExR

]
(6.82)

= −β2 N√
Ex

[
2
β
KxE

xf

(
2βKφ√
Ex

)
+ Eφ

(
1
β2f

2
(

2βKφ√
Ex

)
− Exg(Y )

)
+ 1

2β2E
φExR

]
,

where we have used the relations (6.68). Notice that one can express the three-
curvature R as in (4.52) but this is not needed here. As a conclusion, one can im-
mediately identify this Hamiltonian with the polymer model Hamiltonian (4.52)
with the conditions that

f1(Ex, Kφ) = 1
β2f

2
(

2βKφ√
Ex

)
− Exg(Y ) and f2(Ex, Kφ) = 1

β
f

(
2βKφ√
Ex

)
.

(6.83)
In that way, one obtains an extended theory of mimetic gravity which reproduces
the general shape of the holonomy corrections considered in the polymer model,
with an additional natural µ̄-scheme.

Let us now quickly look at the cosmological limit of the previous action. In
that case, all the χi variables can be expressed in terms of 2φ only, and we have

X = 2Y = 2
32φ . (6.84)

As a consequence, the mimetic potential takes the very simple form

Lφ = 4
9 (2φ)2 + 2

32φ f
−1
(2

32φ
)

+ g
(1

32φ
)
. (6.85)

Having presented the general formulation, we can now present concrete exam-
ple for the corrections functions and look for the action which reproduces the
holonomy corrections of some special case treated in the litterature.

6.4.2.2. A first example: the standard anomaly free sine function
corrections

As a first example, let us consider the standard holonomy corrections given by
sine functions which satisfy the anomaly free constraint (4.56):

f1(Kφ) = sin(ρKφ)
ρ

, f2(Kφ) = 1
2
df1(Kφ)
dKφ

. (6.86)
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Here the scale ρ is a constant. In our case, quantum corrections are derived from
a covariant theory, and we always obtain a dynamical scale (where ρ has been
changed to ρ→ 2ρβ/

√
Ex) leading to

f1(Ex, Kφ) =
√
Ex

2βρ sin
(

2βρ√
Ex

Kφ

)
, f2(Ex, Kφ) = Ex

β2ρ2 sin2
(
βρ√
Ex

Kφ

)
.

(6.87)
Here, the µ̄-scheme has been somehow imposed from the covariance property
the (symmetry reduced) underlying theory.

From the previous construction, we can explicitly derive the mimetic Lagrangian
which reproduces such holonomy-like corrections (6.87). Using (6.83), one can
first write the angular component of the extrinsic curvature Y = −Kθ

θ as follows

Y = −f
(2βKφ√

Ex

)
= −βf2(Ex, Kφ) . (6.88)

Then, one easily obtains the expressions of the functions f and g entering in the
definition of L̃φ

f−1(−Y ) = 1
ρ

arcsin(−2ρY ) , g(Y ) = −Y 2 + 1
2ρ2 (1−

√
1− 4ρ2Y 2) , (6.89)

which finally leads to the Lagrangian

L̃φ = 2XY − Y 2 + X

ρ
arcsin (−2ρY ) + 1

2ρ2

(
1−

√
1− 4ρ2Y 2

)
. (6.90)

The symmetry reduction to the cosmological sector leads

Lφ = 1
32φ

2 − 2
3ρ2φ arcsin

(2
3ρ2φ

)
+ 1

2ρ2

1−
√

1− 4
9ρ

22φ2

 . (6.91)

As expected, (6.91) does not coincide with the extended mimetic Lagrangian
initially proposed by Chamseddine and Mukhanov (6.18) which has been shown
to reproduce the LQC dynamics [55, 236].

6.4.2.3. A second example: the Tibrewala’s effective corrections

Hence, we can ask the question whether one can find a different Lagrangian
which both reproduces the holonomy-like corrections and coincides with the
Chamseddine and Mukhanov Lagrangian in the cosmological sector. For that
purpose, let us consider another example of effective quantum corrections first
derived in [217]. Such corrections were obtained by investigating the possibility
to implement covariantly point wise holonomy-like corrections, depending both
on Ex andKφ, on the Reissner-Norstrom phase space. These effective corrections
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are given by the functions

f2(Kφ) =
√
Ex sin

(
2βρKφ/

√
Ex
)

2βρ , (6.92)

f1(Kφ) = 3Ex sin2(βρKφ/
√
Ex)

β2ρ2 − 2Kφ

√
Ex sin

(
2βρKφ/

√
Ex
)

2βρ . (6.93)

Following exactly the same strategy as in the previous example, we first find the
functions f and g which are given here by

f−1(−Y ) = 1
ρ

arcsin(−2ρY ) , (6.94)

g(Y ) = 3
2ρ2 (1−

√
1− 4ρ2Y 2)− Y 2 − arcsin(2ρY )

ρ
Y . (6.95)

Then, we deduce immediately the mimetic Lagrangian

L̃φ = 2XY − Y 2 + X + Y

ρ
arcsin(−2ρY ) + 3

2ρ2 (1−
√

1− 4ρ2Y 2) . (6.96)

Interestingly, the symmetry reduction to the cosmological sector leads to the
Lagrangian

Lφ = 1
32φ

2 − 1
ρ
2φ arcsin

(2
3ρ2φ

)
+ 3

2ρ2 (1−
√

1− 4
9ρ

22φ2) (6.97)

which coincides exactly with the Chamseddine-Mukhanov Lagrangian, the one
that reproduces the LQC dynamics (6.18).

6.5. Discussion
In this chapter, we start by revisiting the regular black hole interior solution

obtained in the context of mimetic gravity [193] from a Hamiltonian perspective.
We introduced a suitable parametrization of the static spherically symmetric met-
ric which allowed us to perform a complete Hamiltonian analysis of the theory.
We wrote the Hamiltonian equations and we showed that the determinant γ
of the spatial metric admits an evolution equation very similar to the modified
Friedmann equation obtained in effective LQC (6.48). Thus, the black hole has a
bounded energy density which prevents the existence of a singularity. Finally, we
solved the Hamilton equations in the regime deep inside the black hole and we
made a comparison with the standard Schwarzschild solution, showing explicitly
that the limiting curvature mechanism indeed resolves the singularity.

Then, motivated by the recent finding that the initial extended mimetic theory
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reproduces exactly the effective dynamics of LQC, we have investigated whether
this result survives in the spherically symmetric sector. We have argued that this
cannot be “naively" the case for a very general reason: the spherically symmetric
polymer model fails to be covariant, and there is a priori no hope to reproduce
this phase space and its effective quantum corrections from a covariant theory
such as mimetic gravity. From a more general perspective, the polymer treatment
of inhomogeneous backgrounds (cosmological perturbations, spherical symme-
try, Gowdy system) is well known to suffer from a lack of covariance. The holon-
omy corrections usually introduced during the regularization break the Dirac’s
hypersurface deformation algebra, or at best, lead to its deformation.[211, 212,
243–245]. It becomes then crucial to understand either the conceptual and tech-
nical consequences of such deformation, either to understand how to cure it.
In this work we have presented a new strategy towards the second problem
based on mimetic gravity. Since this theory provides a covariant Lagrangian
which reproduces exactly the effective LQC dynamics in the cosmological sector,
it provides an interesting tool to derive covariant polymer-like Hamiltonian mod-
els beyond the cosmological sector to be compared with the existing ones. As
such, we view mimetic theory as a guide to derive covariant notion of point-wise
holonomy-like corrections in polymer models.

With this issue of covariance in mind, we have presented a general proce-
dure to construct mimetic Lagrangians which admit a Hamiltonian formulation
very similar in spirit to existing polymer models of black holes, but which is
fully covariant. Then we have applied our procedure to two examples of poly-
mers black hole models: the standard anomaly-free sine corrections model and
the Tribrewala’s µ̄-scheme corrections model. From the differences between the
mimetic and polymer Hamiltonian formulations, one can extract several insights
which could be useful when trying to build undeformed covariant polymer black
hole models based on the real Ashtekar-Barbero variables. First, the covariant
mimetic formulation always contains a µ̄-scheme, i.e. holonomy-like corrections
which depend both on Kφ and Ex and not only on Kφ. As such, the dynamical
nature of the polymer scale ρ is a necessary ingredient to maintain the covariance
in presence of effective quantum corrections of the polymer type. However, the
µ̄-scheme, while necessary, is not sufficient since previous attempts to include
it in spherically symmetric models still lead to a deformed notion of covariance
[217] (see [252] for a similar conclusion in the context of cosmological perturba-
tions). Therefore additional ingredients are required to maintain the covariance
in such effective polymer models. The second difference between the two ap-
proaches concerns the object which is polymerized. In the standard polymer
approach to the spherically symmetric background, one polymerizes the connec-
tion Kφ while the limiting curvature mechanism of mimetic theory suggests that
the covariance requires to polymerize a more complicated combination of the
canonical variables, given by (6.70). The choice of connection is crucial in this
procedure, and the Ashetkar-Barbero connection Kφ might not be the suitable
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one to consider b.
From a more general point of view, our study suggests that the current proce-

dure developed in spherically symmetric polymer models still lacks some crucial
ingredients to provide a consistent covariant effective framework. However, let
us emphasize again that the polymer models we have considered only involve
the minimal loop corrections, i.e. the so called point-wise holonomy corrections.
Therefore, it is still possible to improve construction of polymer effective actions
by adding the loop corrections. It could well be that the so called triad correc-
tions, associated to the loop regularization of the inverse volume term, conspire
with the holonomy corrections to provide an undeformed algebra of first class
constraints. This remains to be checked. Moreover, the spherically symmetric
sector raises the question of how to concretely deal with the holonomy of the in-
homogeneous component of the connection Kx. Despite some preliminary work
on this question, a consistent and tractable implementation of this extended
holonomy is still to be understood. Therefore, our results might suggest that
polymer models built on solely point-wise holonomy corrections (and with the
real Ashtekar-Barbero variables) could not admit covariant effective action be-
yond the cosmological sector, and motive us to look for a generalization of the
current regularization used in such polymer models to implement consistently
an undeformed notion of covariance (see [253, 254] for some recent proposals
in black hole and cosmology in this direction).

b. It is already known that this connection does not transform as a true space-time connection
under the action of the scalar constraint, and as such, does not provide a good candidate to
ensure a fully covariant quantum description when implementing the dynamics. It might be that
the same problem emerges already at the effective level in these polymer models.
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7. Polymer Schwarzschild Black
Hole: An Effective Metric
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7.1. Introduction
The extraordinary recent detections of gravitational waves (GW) by the LIGO

and the LIGO/Virgo collaborations allowed us to “hear" black holes for the first
time, a century after Schwarzschild predicted their existence from Einstein equa-
tions. These detections have opened a new window on black holes and we hope
to learn much more on these fascinating astrophysical objects in a near future.
So far, the observations of GW emitted by binaries of black holes or neutron stars
are in total agreement with the predictions of general relativity. However, when
the GW detectors become more sensitive and allow probing deeper the “very
strong" gravity regime at the merger, one will possibly measure deviations from
Einstein gravity.

Perhaps, the main reason to expect gravity to be modified is the existence
of singularity theorems in classical gravity. The presence of such singularity is
believed to be pathological and to indicate a breakdown of the classical theory
which should be modified and regularized by quantum gravity effects. How-
ever, how quantum gravity regularizes precisely black holes singularities is still
unknown simply because a complete theory of quantum gravity is still missing.
Faced with such an important difficulty, one has instead proposed candidates for
regular metrics with the requirements that they are non-singular modifications
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of the classical black hole metric and they are physically reasonable. The Hay-
ward [255] or more recently the Planck star metrics [213] are typical examples.
Hence, the regular metrics could be interpreted as effective quantum geome-
tries. From this point of view, it is natural to think that they could be recovered
from a semi-classical limit of a black hole quantum geometry. In practice, this is
an extremely difficult problem since it will require the development of suitable
coarse-graining technics of the underlying quantum geometry, a major challenge
in non-perturbative approach to quantum gravity such as Loop Quantum Gravity.

One way to circumvent this difficulty would be to construct and classify (from
first principles) effective theories of quantum gravity as one does for studying in
a systematic way dark energy for instance. See [244, 256, 257] for efforts along
this line. In that way, one could write a modified gravity action (or modified Ein-
stein equations) which takes into account quantum corrections, and then study
the spherically symmetric sector and look for black hole solutions. Of course,
these solutions are expected to be regular and to predict new physical phenom-
ena which could be in principle observable. In the framework of loop quan-
tum cosmology [30], one knows how to construct and classify effective quan-
tum Friedmann equations (depending on the choice of the spin-j representation
which labels the holonomy corrections, as well as the choice of regularization
scheme). See [241] for details on this classification. It is well-known that they
lead to a regular cosmology with no more initial singularity. However, the ef-
fective description of loop quantum black holes is much less understood, the
challenge being to generalize the technics applied in LQC to the inhomogeneous
black hole background. Indeed, in this inhomogeneous case, one has to make
sure that the effective corrections do no generate anomalies in the algebra of
first class constraints, and thus do not spoil covariance. Taking care of this po-
tential covariance issue, one can obtain modified Einstein’s equation for polymer
black holes [211, 214, 217]. Their resolution for the simple vacuum modified
Schwarzschild interior has not been investigate yet. In this work, we fill this gap.

In the polymer framework, the effective corrections are introduced at the
phase space level, in the hamiltonian constraint. In the treatment of interior
black holes, several regularization schemes have been developed. Models such
as [34, 205] and more recently [209, 210, 258, 259] make use of the homo-
geneity of the interior geometry to introduce a regularization very similar to
cosmological polymer models. Yet, the exterior black hole geometry is inhomo-
geneous, and the modified Einstein’s equations obtained in [34, 205, 209, 210,
258, 259] hold only for the interior geometry. In this chapter, we adopt a differ-
ent strategy. We consider the full inhomogeneous geometry, and introduce the
polymer regularization satisfying the anomaly freedom conditions of [211], pay-
ing thus attention to the underlying covariance of the effective approach. Only
after, we reduce the problem to the interior homogeneous geometry. The advan-
tage is that we obtain one and only one set of modified Einstein’s field equations
valid for the whole black hole geometry (both exterior and interior regions), i.e
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Eq.(7.15)-(7.16). The modified field’s equation for interior region are then sim-
ply obtained by suitable gauge fixing.

Following thus the approach of [211], the quantum corrections of the effec-
tive Hamiltonian constraint, induced by the regularization, are parametrized by
a single real valued function f(x) of one phase space variable x. This is a con-
sequence of the requirement that the deformed symmetry algebra (generated by
the effective Hamiltonian and vectorial constraint) remains closed so that there
is no anomalies. See Eq. (7.9) and discussion below. However, even though
there is a standard choice for f(x) in loop quantum gravity, the precise defini-
tion of the “regularization" function f(x) is in fact ambiguous. For this reason, it
is important to study the effective corrected Einstein equations for an arbitrary
function f(x), as initiated in [211].

In this chapter, we consider the effective theory introduced in [211] and we
solve explicitly the effective Einstein equations for static spherically symmetric
interior space-times. More precisely, we focus on the static region inside the hori-
zon, where quantum gravity effects are supposed to become important, and we
find an explicit form of the effective metric in this region for an arbitrary defor-
mation function f(x). Surprisingly, the effective metric can be simply expressed
in terms of f(x), and then we can easily deduce the conditions for the black hole
to be non-singular as one wishes. We apply our result to the case where f(x) is
the standard deformation function used in loop quantum gravity (7.13), and we
show that the black hole presents strong similarities with the Reissner-Nordström
space-time. The interior effective geometry inherits an inner horizon due to the
non perturbative quantum gravity effects. Equipped with this new interior effec-
tive geometry, we explore then the possibility to extend our black hole solution to
the whole space-time (outside the trapped region) and we discuss the challenge
to perform coordinate transformation in this model with deformed covariance.
Finally, we apply the strategy developed in [260] to obtain a well defined in-
variant line element under the deformed symmetry and we show that the main
novelty is a transition between Lorentzian to Euclidean signature deep inside the
interior region.

7.2. Covariant polymer phase space regularization
Let us first present the effective Einstein equations obtained in loop quantum

gravity for spherically symmetric black holes and justify our choice of regulariza-
tion.

We start with an ADM parametrization of the metric

ds2 = −N2 dt2 + qrr (dr +N rdt)2 + qθθ dΩ2 (7.1)

where each function N , N r, qrr and qθθ depends on the radial and time coordi-
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nates (t, r), and dΩ2 is the metric on the unit two-sphere. Following the Ashtekar-
Barbero construction, it is more convenient to express the metric components qrr
and qθθ in terms of the components of the electric field Er and Eφ as follows

qrr ≡
(Eφ)2

Er
, qθθ ≡ Er . (7.2)

Hence, the phase space is parametrized by two pairs of conjugate fields defined
by the Poisson brackets

{Kφ(r), Eφ(s)} = δ(r − s) , {Kr(r), Er(s)} = 2δ(r − s) (7.3)

where we have fixed for simplicity the Newton constant and the Barbero-Immirzi
parameter to 1. The variables Kφ and Kr are su(2) connections.

As usual, the lapse function N and the shift vector N r are Lagrange multipliers
which enforce respectively the Hamiltonian and vectorial constraints,

H = Eφ

2
√
Er

(1 +K2
φ − Γ2

φ) +
√
Er(KφKr + ∂rΓφ) (7.4)

V = 2Eφ∂rKφ −Kr∂rE
r , (7.5)

where Γφ ≡ −∂rEr/2Eφ is linked to the Levi-Civita connection. These constraints
are first class, they generate diffeomorphisms restricted to spherically symmetric
space-times, and they satisfy the closed Poisson algebra

{H[N ], V [N r
1 ]} = −H[N r

1∂rN ] , (7.6)
{V [N r

1 ], V [N r
2 ]} = V [N r

1∂rN
r
2 −N r

2∂rN
r
1 ] , (7.7)

{H[N1], H[N2]} = V [qrr(N1∂rN2 −N2∂rN1)] , (7.8)

where H[N ] and V [N r
1 ] are the smeared constraints.

In this chapter, we focus on the effective dynamic obtained from the anomaly
free loop regularization which is introduced prior quantization. Concretely, we
keep the phase space parametrization (7.3) unchanged and we modify the ex-
pression of the constraint (7.4). As we consider solely point-wise holonomy cor-
rections of Kφ here, only the dependency of the Hamiltonian constraint on Kφ is
modified according to

H = Eφ

2
√
Er

[1 + f(Kφ)− Γ2
φ] +
√
Er[g(Kφ)Kr + ∂rΓφ] (7.9)

where the functions f and g are not fixed yet. The requirement of anomaly
freedom of the Dirac’s algebra requires then that

g(x) = f ′(x)/2 (7.10)

204



In that case, the Poisson bracket between Hamiltonian constraints (7.8) is de-
formed according to

{H[N1], H[N2]} = V [β(Kφ) qrr(N1N
′
2 −N2N

′
1)] (7.11)

where the deformation function β(Kφ) is given by

β(x) = f ′′(x)/2 (7.12)

as initially derived in [211, 214]. Such a deformation is a generic feature of
holonomy corrected symmetry reduced models of gravity [245]. The other two
brackets (7.6) and (7.7) are unchanged. Moreover, Kr is not modified in our
regularization since it can be completely remove from the scalar constraint by
a simple redefinition of the constraints, as shown in [184]. Consequently, the
regularization of Kr doesn’t play any role in the classical regularization and can
be safely ignored at this step. The holonomies of Kr will nevertheless be cru-
cial in the quantum theory when introducing the one dimensional spin network
defining the kinematical Hilbert space. See [184] for more details.

Finally, our regularization is restricted to the µ0-scheme, as in [184], since
introducing holonomy corrections within the µ̄-scheme, i.e Kφ → f(Kφ, E

x),
and requiring at the same time the anomaly freedom of the effective Dirac’s
algebra generates inconsistencies as shown in [217]. Therefore, the standard
improved dynamics used in polymer cosmological models cannot be generalized
as it stands to such inhomogeneous spherically symmetric polymer models. See
[209, 210, 258, 259] for a recent alternative strategy. This concludes our justifi-
cations for our classical regularization of the phase space.

7.3. Effective Einstein’s equations
Hence, as it was emphasized in the introduction, the regularization induced

by holonomy corrections inspired from loop quantum gravity is parametrized
by the sole function f(x). The explicit expression of this effective correction
remains ambiguous. Nonetheless, as we require naturally that f(x) reproduces
the classical behavior in the low curvature regime, we must have f(x) ≈ x2 when
x� 1. In the literature, the usual choice is

f(x) = sin2(ρx)
ρ2 , (7.13)

where ρ is a deformation real parameter that tends to zero at the classical limit.
The presence of a trigonometric function is reminiscent from the SU(2) gauge
invariance in loop quantum gravity: roughly, one replaces the “connection" vari-
able Kφ by a point-wise “holonomy-like" variable sin(ρKφ)/ρ. Note that (7.13) is
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associated to the computation of the regularization of the connection (or its cur-
vature) in term of holonomies within the j = 1/2 fundamental representation
of SU(2). Yet, one could obtain more complicated trigonometric functions by
evaluating this regularization in another j-representation of SU(2), as done for
polymer cosmological models in [241]. Therefore, keeping f(x) general in our
resolution allows to keep track of this ambiguity of the polymer regularization.

Now, we have all the ingredients to compute the effective Einstein equations
for deformed spherically symmetric space-times. They are given by the Hamilton
equations

Ḟ = {F,H[N ] + V [N r]} , (7.14)

for F being one of the four phase space variables (7.3). The time evolutions of
the electric field components simply read

Ėr = N
√
Erf ′(Kφ) +N r∂rE

r , (7.15)

Ėφ = N

2

[√
ErKrf

′′(Kφ) + Eφ

√
Er
f ′(Kφ)

]
+ ∂r(N rEφ) . (7.16)

The expression of K̇φ is more involved and thus we do not report it here. The
component Kr can be obtained by solving the Hamiltonian constraint (7.9).

7.3.1. Outside the black hole
Note that for N r = 0 and static geometry, and upon using the standard loop

effective corrections (7.13), equation (7.15) implies that the angular extrinsic
curvature is quantized as

Kφ = nπ

2ρ with n ∈ N (7.17)

Hence, for n 6= 0, the resulting geometry has a divergent extrinsic curvature
Kφ in the semi-classical limit, i.e when ρ → 0. It implies that outside the hole,
the only consistent inhomogeneous static solution is the classical Schwarzschild’s
one, i.e

Kφ = 0 (7.18)
corresponding to n = 0. Therefore, the effective loop corrections introduced
above do not allow to have a modified Schwarzschild geometry outside the hole
when looking for a static exterior solution. This shortcoming is intimately related
to the lack of a proper µ̄-scheme in the present regularization. It is expected
that once a fully consistent µ̄-scheme will be implemented, i.e with a polymer
scale ρ(Ex) running with the geometry, potential modifications of the exterior
geometry could show up.
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7.3.2. Inside the black hole: static ansatz
We turn now to the interior problem. We are interested in solving these equa-

tions inside a “static" black hole. As the role of the variables r and t changes
when one crosses the horizon, this corresponds to considering time-dependent
fields only. In that case, the effective Einstein equations dramatically simplify
and read

Ėr = N
√
Erf ′(Kφ) , (7.19)

Ėφ = N

2

[√
ErKrf

′′(Kφ) + Eφ

√
Er
f ′(Kφ)

]
, (7.20)

K̇φ = − N

2
√
Er

[1 + f(Kφ)] , (7.21)

together with the Hamiltonian constraint

f ′(Kφ)ErKr + [1 + f(Kφ)]Eφ = 0 , (7.22)

from where we easily get the dynamics of Kr.

7.3.2.1. General algorithm

Now, we are going to solve these equations explicitly for any function f . As
we are going to show, it is very convenient to fix the lapse function N(t) (by a
gauge fixing) such that

N f ′(Kφ) = 2 . (7.23)

In that case, the equation (7.19) for Er decouples completely from the other
variables and can be easily integrated to

Er(t) = t2 + a , (7.24)

where a is an integration constant that we fix to a = 0 (in order to recover the
Schwarzschild solution at the classical limit). Another important consequence
of the gauge choice (7.23) is that the equation (7.21) for Kφ also decouples and
takes the very simple form

f ′(Kφ)
1 + f(Kφ) K̇φ = −1

t
. (7.25)

It can be immediately integrated to the form

f(Kφ) = rs
t
− 1 , (7.26)
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where rs is an integration constant with the dimension of a length. As we are
going to see later on, t = rs corresponds to the location of the black hole (outer)
horizon. Hence, Kφ is easily obtained by inverting the function f(x). Indeed,
when f is monotonous, it admits a global reciprocal function f−1, otherwise
the reciprocal function is defined locally. Then, the expression of Eφ follows
immediately. Indeed, if one substitutes Kr from (7.22) into (7.20), one obtains
the following equation for Eφ

Ėφ

Eφ
= 1
t

(
1− [1 + f(Kφ)]f ′′(Kφ)

[f ′(Kφ)]2

)
, (7.27)

which can be easily integrated to

Eφ = b
f ′(Kφ)

1 + f(Kφ) , (7.28)

where b is a new integration constant that will be fixed later. The remaining
variable Kr is given immediately from the Hamiltonian constraint (7.22) together
with (7.24) and (7.28). Hence, we have integrated explicitly and completely the
modified Einstein equations in the region inside a “static" spherically symmetric
black hole where the effective metric is

ds2 = − 1
F (t)dt

2 +
(

2b
rs

)2

F (t)dr2 + t2dΩ2 , (7.29)

with F (t) related to f(x) by

F (t) = 1
4

[
f ′ ◦ f−1(rs

t
− 1)

]2
=
[
2df

−1

dx
(rs
t
− 1)

]−2

. (7.30)

In the region where t ≈ rs, quantum gravity effects are negligible and the metric
should reproduce the Schwarzschild metric. We see immediately in (7.29) that a
necessary condition for this to be the case is that

2b = rs (7.31)

This fixes the constant b. Furthermore, in such a regime, we know that f(x) ≈ x2,
then f−1(x) ≈

√
x, hence

F (t) ≈ |rs/t− 1| (7.32)
As a consequence, we recover the expected classical metric with rs being the
Schwarzschild radius. However, while the metric smoothly matches the Schwarzschild
metric at the outer horizon, the extrinsic curvature does not, leaving a gluing
which is not C1.
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7.3.2.2. Inverse problem

Before studying concrete examples, let us consider a converse situation where
a deformed metric gµν of the form (7.29) is given. Then, one asks the question
whether one can find a deformation function f(x) such that the deformed metric
gµν is a solution of the effective Einstein equations. The answer is positive and
f(x) can be obtained immediately by inverting the relation (7.30) between F (t)
and f(x) as follows

f−1(x) = 1
2

∫ x

0
du
∣∣∣∣F ( rs

1 + u

)∣∣∣∣−1/2
. (7.33)

As the function f−1(x) is monotonic, one can invert this relation and define the
deformation function f(x) without ambiguity. This can be done for the Hayward
metric for instance, even though in that case f−1(x) is defined as an integral, and
thus f(x) is implicit.

7.3.3. Example: the standard j = 1/2 sine correction
To illustrate this result, let us consider some interesting physical situations.

First, the case where there is no quantum deformation corresponds to f(x) = x2.
As we have just said above, we recover immediately the Schwarzschild metric.

Then, let us study the more interesting case where f(x) is the usual function
considered in polymer black hole models (7.13). In that case, the reciprocal
function is

f−1(x) = arcsin(ρ
√
x)

ρ
, (7.34)

which is defined for x ≤ 1/ρ2 only. As a consequence, the effective metric for a
black hole is of the form (7.29) with

F (t) =
(
rs
t
− 1

)(
1 + ρ2 − ρ2 rs

t

)
, (7.35)

which is defined for t ≤ rs a priori. At this point, we can make several interesting
remarks. First, one recovers the Schwarzschild metric, when t approaches rs.
Then, in addition to the usual outer horizon (located at t = rs), the metric has
an inner horizon located at

t = ρ2rs
1 + ρ2 (7.36)

The computation of the Ricci and Kretschmann scalars shows that there is no
curvature singularity inside the trapped region. One can naturally extend this
solution outside the trapped region by using a generalized advanced time coor-
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dinate v such that
dv = dr + dt/F (t) (7.37)

and
ds2 = F (t)dv2 − 2dvdt+ t2dΩ2 (7.38)

The metric and inverse metric are regular when F (t) = 0. This allows to define
the expansion of null radial outgoing geodesics, leading to

θ+ = F (t)/t (7.39)

Hence the zeros of F correspond to the locus of the horizons (inner and outer),
and the region comprised between them is trapped. The Ricci scalar

R ≈ −2ρ2/t2 (7.40)

diverges at t = 0, which is the locus of a timelike singularity as in Reissner-
Nordström’s (RN) black hole. Our metric is actually very similar to this solution,
and leads to the same Penrose diagram. However, a main difference is that
an outer horizon (at t = rs) is always present in our geometry, while naked
singularities appear for super-extreme RN black holes.

In the end, this naive extension is not satisfactory since it does not allow re-
covering Schwarzschild’s solution in the classical region (r � rs), except if the
parameter ρ becomes r-dependent and tends to zero, which would drastically
modify the equations of motion [217].

7.3.4. Signature change from covariance
Moreover, while the extension of the metric outside the trapped region is

natural for a standard RN solution, it is not clear whether the extension is al-
lowed or not in our context. The reason is that the deformation of the Hamilto-
nian constraint (7.11) modifies the invariance of the effective theory under time
reparametrizations. Then, if we believe that such a deformed symmetry is the
right one and it is no longer given by usual diffeomorphisms (what can be dis-
cussed), we could not perform an arbitrary time redefinition as we did to extend
the metric outside the trapped region. The deformed symmetry has recently been
analyzed in great details in [260]. It was realized that the effective metric which
is invariant under these deformed transformations is slightly different from (7.1)
where N has to be rescaled according to

N2 −→ β(Kφ)N2 , (7.41)
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where β, which has been introduced in (7.11), is explicitly given, in our case, as
a function of time by

β(t) ≡ β(Kφ(t)) = 1− 2ρ2
(
rs
t
− 1

)
. (7.42)

With this new invariant metric, the function gtt(t) acquires a zero in the trapped
region which corresponds to a transition between a lorentzian and an euclidean
signature within the trapped region at

t = 2ρ2rs
1 + 2ρ2 (7.43)

Such a transition was studied in more detail in [260]. Starting from another
gauge choice, namely Kφ = π/(2ρ), and solving the field equations (7.19-7.22)
deep inside the black hole, it was shown that the geometry is regular. Yet, the
lorentzian to euclidean transition rises new difficulties concerning for instance
the fate of matter inside this trapped region, since the standard evolution equa-
tions become elliptic [126]. Similar aspects were encountered in the context of
the perturbations analysis in loop quantum cosmology known as the deformed
algebra approach [261].

7.4. Discussion
In this work, we have solved explicitly a large class of modified Einstein equa-

tions arising in the effective polymer approach to black holes. We have adopted
a different strategy than existing interior Schwarzschild models such as [209,
210, 258, 259]. We first consider the full polymer regularization of the inhomo-
geneous geometry consistent with covariance, and only then reduce the problem
to the interior homogeneous geometry. By doing this, we ensures that the reg-
ularization of the hamiltonian constraint does not generate any anomalies and
thus, that we still have the right number of degrees of freedom at the effective
level. This point is ignored in [209, 210, 258, 259] and the regularization intro-
duced in these models is different, since there are no anomaly freedom condition
to constrain it. Consequently, the effective metric obtained here and the one pre-
sented in [209, 210, 258, 259] are very different.

Focusing on the usual deformation considered in polymer models studied by
Gambini and Pullin, we have found a black hole (interior) solution whose struc-
ture shows strong similarities with the Reissner-Nordström black hole. The main
novelty due to the quantum gravity effect is the appearance of an inner horizon,
while the expected Schwarzschild solution is recovered when one approaches
the outer horizon, albeit not smoothly. This last point is a consequence of the
lack of a proper µ̄-scheme regularization in the Gambini-Pullin model.
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Strictly speaking, we obtained a solution only inside in a trapped region, valid
for t ∈ [t−, t+] and the question of its extension in the whole space-time deserves
to be study carefully. In particular, we see that the naive extension outside the
trapped surface does not allow recovering Schwarzschild’s solution in the classi-
cal region (r � rs), except if the parameter ρ becomes r-dependent and tends
to zero. This underlines the limitation of the current model to have a consistent
semi-classical limit. A generalization of the current regularization is required
to account for a µ-scheme, as already emphasized in [217] and more recently
in [56]. See also [219] for a more recent proposal including such µ-scheme in
polymer black holes using self dual variables.

Our results open interesting theoretical and phenomenological directions to
follow. First, it would be interesting to include additional effective corrections
such as the triad corrections affecting the intrinsic geometry, which are usually
considered separately. An even more challenging step is to go beyond static
geometries and study dynamical black holes, an open issue up to now in the
polymer framework. See [219, 253] for recent proposals in this direction. This
is particularly important for understanding Hawking radiation as well as quan-
tum gravitational collapse and eventually bouncing and black hole to white hole
transitions scenarios. Finally, it would be interesting to use this model to investi-
gate possible quantum gravity modifications of the structure inside astrophysical
objects. We plan to address these important questions in the future.
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Conclusion
Here we give a general conclusion and remarks for the topics described in

the thesis. We will summarize the results obtained in the present work, and
most importantly, we will point out their limitations and possible future research
directions. For a detailed discussion and remarks, we refer to the concluding
sections in each chapter.

In this thesis, we investigate different aspects of quantum gravity, mostly in
the context of loop quantum gravity and spin foam models. Both fundamental
aspects and the physical consequences of loop gravity are investigated, where in
Part I we focus on the Lorentzian invariance of the theory, and in Part II we inves-
tigate the effective dynamics description of the loop gravity in symmetry reduced
models. These two parts are naturally related to each other via a well established
semi-classical and continuum analysis of the theory, which is currently still under
investigation. Our investigation achieves the following results:

— We formulated the gravity as an SU(1, 1) gauge theory, whose phase space
is well-parametrized by a pair (A, E) formed with an su(1, 1)-valued con-
nection and its canonically conjugate electric field. We further explore the
quantization of the SU(1, 1) gauge gravity theory at kinematical level and
compute the area spectrum. It turns out that the spectrum is discrete for
space-like surfaces and continuous for time-like surfaces. The area spec-
trum is exactly the same (on space-like surfaces) at the kinematical level
resulting from usual quantization in time-gauge.

— We derive the integration formulation for the Conrady-Hnybida extended
spin foam amplitude with timelike triangles, based on su(1, 1) coherent
states with continuous series representation. We then perform the semi-
classical analysis to the spin foam partition function on a simplicial com-
plex, with the most general configuration in which timelike tetrahedra with
timelike triangles are taken into account. It turns out that
— The large-j asymptotic behavior is determined by the critical configura-

tions of the amplitude.
— The critical configuration corresponds to simplicial geometry, which

may contains in general nondegenerate Lorentzian 4-simplices, nonde-
generate split signature 4-simplices and degenerate vector geometries.

— The critical contributions to the amplitude are the asymptotic phases,
whose exponents equal to the Regge action of gravity (in nondegenerate
case)
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— Vertex amplitudes containing at least one timelike and one spacelike
tetrahedra only give Lorentzian 4-simplices, while the split signature or
degenerate 4-simplex does not appear.

— Inspired from the mimetic theory first introduced by Chamseddine and
Mukhanov [178, 262–264], we revisit the extended Mimetic gravity, a fam-
ily of higher-derivative scalar-tensor theories, from a Hamiltonian perspec-
tive.
— We show explicitly how limiting curvature mechanism in the context of

extended Mimetic gravity resolves the singularity.
— We found a family of extended Mimetic gravity that possess the property

to reproduce exactly the effective dynamics of loop quantum cosmology
for flat, closed and open homogeneous and isotropic space-times, lead-
ing to bouncing solutions.

— We present a general procedure to construct mimetic Lagrangians which
admit a Hamiltonian formulation very similar in spirit to existing spher-
ically symmetrical polymer models of black holes in the context of LQG,
but in an fully covariant manner. The difference provides us with a
guide to understand the absence of covariance in inhomogeneous poly-
mer models.

— We give an effective metric of black hole interior in the framework of ef-
fective spherically symmetric polymer models inspired by Loop Quantum
Gravity. Starting from the anomaly free polymer regularization of one
phase space variable for inhomogeneous spherically symmetric geometry,
and then reducing to the homogeneous interior problem, we provide an
alternative treatment to existing polymer interior black hole models which
focus directly on the interior geometry, ignoring covariance issue when in-
troducing the polymer regularization. We solve explicitly the modified Ein-
stein equations obtained for a static interior black hole geometry and find
the effective metric describing the trapped region inside the black hole for
any polymer regularization. We investigate the explicit form of the effective
metric in j = 1/2 case, where the regularization function is the usual sine
function used in the polymer literature. For this case, the interior metric
describes a regular trapped region and presents strong similarities with the
Reissner-Nordström metric, with a new inner horizon generated by quan-
tum effects. We discuss the gluing of our interior solution to the exterior
Schwarzschild metric and the challenge to extend the solution outside the
trapped region due to covariance requirement.

These result opens interesting theoretical and phenomenological directions.
Below we list some interesting topics with possible questions to investigate.
Area spectrum for timelike surfaces: Continuous vs. discrete
As we show, the quantization of the SU(1, 1) gauge gravity theory at kinematical
level leads to a continuous spectrum for time-like surfaces. However, such spec-
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trum in the full Lorentzian invariant spin-foam model is discrete for time-like
surfaces, as shown in [61]. This may due to the fact that the space gauge intro-
duces anomaly in the quantization at the kinematical level. Or this may relate
to a possible tension between spin foam models and canonical approach. Such
question is related again to the question whether the construction of LQG deeply
relies on the partial gauge fixing or not. There are naturally several topics one
can investigate, for example,

— Is the area operator in su(1, 1) case a gauge-invariant complete Dirac ob-
servable [103, 104, 265, 266] in some situation, e.g., on black hole hori-
zons? Otherwise we may not be able to take the area spectrum physically.

— Is there a relation between physical Hilbert space and spin foam models
on timelike boundaries? What is the difference between previous studies
[267, 268]?

— What is the the connection between "spacelike" state and "timelike" state at
kinematical level?

— A comparison study for quantum black microstates with space-like slices
[39, 40, 149] and time-like slices.

— Can we study in detail the full dirac quantization procedure of su(1, 1)
model, more importantly, express the scalar constraint or Master constraint
on kinematical Hilbert space?

— Can we study the weak rotation of spin foam models to investigate the
relation between Euclidean and Lorentzian models?

These may help us get a better understanding how the Lorentzian covariance
is manifested with gauge fixing, and finally understand the dynamics of loop
quantum gravity.
Null hypersurface and null boundaries
Now, we have a description of the kinematical quantum states of gravity not
only on space-like surfaces but also on time-like surfaces. The only remaining
description is the quantum states about null-surfaces. The description on null-
surfaces can be constructed in both the canonical and spin foam approach

— In the canonical analysis on a null foliation, e.g. the one given as [145],
is there a gauge fixing procedure exist similar in SU(2) and SU(1, 1) case
but now with a gauge group E2 or E2 ⊗ D, which can produce a simple
coordinate of the phase space such that it is possible to perform the loop
quantization.

— Can we take a null gauge to the quantum simplicity constraint in spin foam
models such that one get the spin foam partition function with null bound-
aries? A preliminary study [269] has been taken on null kinematics.

Such a null description will be interesting since it could lead to a better under-
standing of the Lorentzian invariance, the dynamics of isolated horizon and the
casual structure in the quantum gravity theory.
Flatness problem in Spin foam models
It has been argued that, the classical limit of EPRL/FK SFM only describe flat ge-
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ometries, so-called "flatness" problem [270–272]. The flatness is a consequence
of summing over all spins, and as mentioned in [272], it is tightly related to the
using of SU(2) boundaries. It would be interesting to investigate the following
questions:

— In Conrady-Hnybida extended model we can have both SU(2) and SU(1, 1)
boundaries together, and we proved that such boundaries only lead to
Lorentzian non-degenerate 4 simplices in the semi-classical limit. It is nat-
ural to ask if the "flatness" problem still appear with the configuration con-
tains both timelike and spacelike boundaries for each 4 simplex. If the
answer is no, what does this imply to the graph dependence of the spin
foam models?

— Is there any nature extension of the theory, for example, analytic continua-
tion of parameters, such that the "flatness" problem can be resolved. There
seems to be a strong evidence in the continuum limit approach proposed
by [50, 51, 81].

Renormalization, phase diagram, and continuum limit of spin foam models
Investigation of the renormalizability and continuum limit is a crucial step in
the quantum gravity program. And it is the basis for studying the emergent
physics and the effective dynamics. However, There is still an open question in
spin foam models despite an increasing attentions recently, e.g. [8, 47–53]. The
main questions are the following:

— How can we define and study the renormalization group flow [273] of
spin foam models and their continuum phase diagram? Since spin foam
model can be regarded as special tensor network models, the renormaliza-
tion method used in tensor network models [274, 275] maybe helpful, as
pointed out in [Bahr, 8].

— Can we identify the phases appear in the phase diagram which have possi-
ble geometrical interpretations? Since in the EPRL model both Lorentzian,
Euclidean and degenerate vector geometries appear in the asymptotics con-
figuration, one expect there are phase transitions between these asymp-
totics geometries. It is also interesting to know how different causal config-
uration (timelike or spacelike surfaces for example) influence those geome-
tries. Moreover, there are also possible phase transition between lager-j
and small-j regime, as indicated in [276].

— Can we define a controlled continuum limit (a coarse-grain scheme) of spin
foam model, such that it reproduce the classical continuous geometry? Is
there any nature extension of the theory to make such definition easier, e.g.
the one given by [50, 51, 81] or [134].

Emergent gravity from spin foams and the effective dynamics
With a suitable continuum limit along the semi-classical limit procedure defined
for spin foam model, in principle we can study how gravity emerge from the
quantum geometry and investigate their effective dynamics. There will be sev-
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eral possible topics related. For example,
— With our semi-classical limit for the extended model which now possible

with configuration used in usual Lorentzian Regge calculus model, can we
directly apply the deformed continuum limit taken in [50, 51], to get the
effective dynamics of spin foam model in the symmetry reduced case, for
example, the cosmological case, similar to [277], and black holes?

— Are the effective dynamics from the Lorentzian model coincide with the
wick rotated one from Euclidean model?

— Can we derive the entanglement entropy from full spin foam partition func-
tion? In principle such entropy would contains the dynamical information
thus one may expect we could emerge gravity from it. In this sense one
expect an area law, as indicated in [278, 279]. However, it seems the kine-
matical studies only get the logarithm law e.g. as shown in [280]. Is this
problem related to the "flatness" problem?

Edge holonomies in spherical symmetric polymer models
As we shown in chapter 6, mimetic theory can be taken as a guide to derive a
consistent covariant effective framework for black holes. However, it is hard to
resolve the covariance, or understand consequences of deformation, without an
exact form of edge holonomies appears in the effective Einstein equations. The
black hole dynamics (including matter) of the polymer model, is also closely re-
lated to such problem. However, those edge holonomies, instead of point holon-
omy, are less understood in polymer models. The following investigations may
help us understand

— Can we have a family of covariant scalar-tensor theories such that they
can describe the homogeneous model of BH interior, e.g. [34, 209, 210,
258, 259]? Such a theory may lead us to a possible formulation beyond
homogenous model. It can also help us understand better the possible µ̄-
scheme and the anomaly free condition in homogeneous models.

— Can we get hints for the possible correction for non-homogeneous su(2)
edge holonomies, for examples, those described in [184], from su(1, 1)
theory of homogeneous exterior BH model [37], by compare the vector
constraint in su(2) theory with scalar constraint from homogeneous su(1, 1)
theory?

— Are there possible generalizations of the current regularization used in poly-
mer models to implement consistently , e.g., the ideas given in [254, 281]?

— Can we finally have an effective black hole dynamics from these model,
such that one is possible to study the hawking radiation, gravitational col-
lapse and bouncing scenarios? As an example, [219, 281] provide some
proposals in this direction.

We hope in the near future we can find answers to those questions. This will
definitely lead us to a more complete understanding to the "quantum gravity"
problem.
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