Modélisation de paroi en simulation des grandes échelles dans une turbomachine

par Mathieu Catchirayer

Thèse de doctorat en Sciences pour l'ingénieur. Mécanique des fluides

Sous la direction de Pierre Sagaut et de Jean-François Boussuge.

Le président du jury était Maria Vittoria Salvetti.

Le jury était composé de Sébastien Deck, Franck Nicoud, Dimitrios Papadogiannis.

Les rapporteurs étaient Nicolas Gourdain, Eric Lamballais.


  • Résumé

    Les défis énergétiques rencontrés par les motoristes aéronautiques requiert une compréhension plus fine des écoulements régissant leurs turbomachines. La simulation aux grandes échelles (LES) peut combler ce besoin. Cependant, dans le cas de couches limites à des nombres de Reynolds typiques de ceux rencontrés en aéronautique, son coût de calcul devient prohibitif. Une manière d'éviter cet écueil est de recourir à une approche WMLES (Wall-Modeled LES) : la turbulence en proche paroi est modélisée par un modèle de paroi. Toutefois, l'utilisation d'une WMLES sur des géométries industrielles reste une question ouverte. Ainsi, un modèle de paroi adapté aux écoulements de turbomachines est ici développé : l'iWMLES (integral WMLES). Les profils de vitesse et de température sont paramétrisés et les paramètres inconnus sont déterminés pour respecter des conditions aux limites issues des équations de couche limite intégrales. L'iWMLES peut alors prendre en compte les effets de compressibilité, de gradients de température et de pression à un faible coût de calcul. Sa validation est réalisée sur des écoulements académiques : des cas de canal plan isothermes et adiabatiques à différents nombres de Reynolds et de Mach sont considérés, ainsi qu'une couche limite soumise à un gradient de pression adverse. À chaque fois, les moments statistiques jusqu'à l'ordre un sont en accord avec les données de référence. Ces différentes simulations montrent que l'iWMLES a un domaine de validité plus étendu que les modèles de paroi classiques. Enfin, l'iWMLES est appliqué sur un étage de compresseur axial, démontrant sa robustesse, et les résultats sont comparés avec ceux d'une LES résolue en paroi

  • Titre traduit

    Wall-modeling in large-eddy simulations for turbomachinery flows


  • Résumé

    Due to the energetic challenges faced by aeronautical engine manufacturers, a better understanding of the flows governing their gas turbines is required. Numerical simulations through Large-Eddy Simulation (LES) approach is well suited to this quest for innovation. However, its computational cost is prohibitive in the case of boundary layers at Reynolds numbers encountered in aeronautics. One way to tackle this limitation is to use a WMLES (Wall-Modeled LES) approach: near-wall turbulence is modeled thanks to a wall-model. Nonetheless, this approach is still an open issue for industrials flows. Therefore, a new suited wall-model is developed in this study: the iWMLES (integral WMLES). The velocity and temperature profiles are parameterized, and unknown coefficients are determined by matching boundary conditions obeying the integral boundary layer equations. It allows compressibility, temperature and pressure gradients effects to be taken into account at a low computational cost. The proposed wall-model is then assessed on academic flows. First, adiabatic and isothermal plane channel flows at several friction Reynolds and Mach numbers are simulated. In all cases, mean profiles, wall fluxes, and turbulent fluctuations are in agreement with direct numerical simulation data. Especially, the supersonic flow cases show that the iWMLES has a wider domain of validity than standard wall-models. Second, an experimental boundary layer under adverse pressure gradient is considered. The iWMLES is shown to predict correctly the one-point turbulence statistics. Finally, the iWMLES is applied to an axial compressor stage, proving its robustness, and results are compared with LES data


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.