Développement d'un système d'avertissemment sonore, validé par EEG, basé sur des approches vision et acoustique pour la detection de véhicules approchants des véhicules moteur deux roues

par Muhammad Muzammel

Thèse de doctorat en Instrumentation et informatique de l'image

Sous la direction de Fabrice Mériaudeau.

Le président du jury était Varun Jeoti.

Le jury était composé de Abdelaziz Bensrhair, Majdi Khoudeir.


  • Résumé

    Dans de nombreux pays, le taux de mortalité des motocyclistes est beaucoup plus élevé que celui des autres conducteurs de véhicules. Parmi de nombreux autres facteurs, les collisions arrière des motocyclettes contribuent fortement à ces décès de motards. Les systèmes de détection de collision peuvent être utilisés pour minimiser ces accidents mortels. Cependant, la plupart des systèmes de détection de collision existants n'identifient pas le type de danger potentiel auquel sont exposés les motocyclistes. Chaque système d'alerte de collision utilise une technique de détection de collision distincte, ce qui limite ses performances et rend impératif l'étude de son efficacité. Malheureusement, aucun travail de ce type n'a été signalé dans ce domaine particulier pour les motocyclistes. Par conséquent, il est important d'étudier la réponse physiologique du motocycliste contre ces systèmes d'alerte de collision. Dans cette recherche, une méthode de détection et de classification des véhicules approchant par l'arrière est présentée. Pour la détection de collision, une approche basee vision et la technique basee sur le son ont été utilisées. Pour les techniques visuelles et acoustiques, des caractéristiques d'apparence et de spectre de puissance ont été utilisées, respectivement, pour détecter le véhicule qui s'approche à l'extrémité arrière de la motocyclette. En ce qui concerne la classification des véhicules, seule une technique acoustique est utilisée; un spectre de puissance acoustique et des caractéristiques énergétiques sont utilisés pour classer les véhicules qui approchent. Deux types d'ensembles de données, à savoir des ensembles de données acquises durant ce travail (obtenues en plaçant une caméra à l'arrière d'une motocyclette) et des ensembles de données disponibles telechargeables (pour la détection visuelle et pour la classification audio des véhicules) sont utilisés pour la validation. La méthodologie proposée a permis de détecter et de classer les véhicules pour des ensembles de données acquises durent cette these. De même, pour les ensembles de données disponibles , le taux positif vrai le plus élevé et le taux de détection faux le plus faible ont été atteints par rapport aux méthodes de l etat de l art. En outre, une étude physiologique basée sur le potentiel lié à l'événement (ERP) a été réalisée sur les motocyclistes afin d'étudier leurs réponses vis-à-vis du système d'alerte de collision arrière. Deux types d'avertissements auditifs (c'est-à-dire verbal et buzzer) sont utilisés pour ce système d'avertissement. Pour étudier la réponse des motocyclistes, les composantes N1, N2, P3 et N400 ont été extraits des données d'électroencéphalographie (EEG). Ces systèmes d avertissement ont montré des effets positifs au niveau des neuronal sur les motocyclistes et réduisent leur temps de réaction et les ressources attentionnelles nécessaires pour traiter correctement la cible. En résumé, le système d'avertissement de collision par l'arrière proposé avec des avertissements verbaux auditifs augmente considérablement la vigilance du motocycliste et peut être utile pour éviter les scénarios possibles de collision arrière.

  • Titre traduit

    Visual and acoustic techniques for motorcycle collision warning system with EEG validation


  • Résumé

    In many countries, motorcyclist fatality rate is much higher than that of other vehicle drivers. Among many other factors, motorcycle rear-end collisions are also contributing to these biker fatalities. Collision detection systems can be used to minimize these fatalities. However, most of the existing collision detection systems do not identify the type of potential hazard faced by motorcyclists. Every collision warning system used a distinctive collision detection technique, which limits its performance and makes it imperative to study its effectiveness. Unfortunately, no such work has been reported in that particular domain for motorcyclists. Therefore, it is important to study the physiological response of the motorcyclist against these collision warning systems. In this research, a rear end vehicle detection and classification method is presented for motorcyclists. For collision detection, vision technique and acoustic technique have been used. For visual and acoustic techniques, appearance features and power spectrum have been used, respectively, to detect the approaching vehicle at the rear end of the motorcycle. As for the vehicle classification, only an acoustic technique is utilized; an acoustic power spectrum and energy features are used to classify the approaching vehicles. Two types of datasets which are comprised of self-recorded datasets (obtained by placing a camera at the rear end of a motorcycle) and online datasets (for vision-based vehicle detection and for audio based vehicle classification techniques) are used for validation. Proposed methodology successfully detected and classified the vehicle for self-recorded datasets. Similarly, for online datasets, the higher true positive rate and less false detection rate has been achieved as compared to the existing state of the art methods. Moreover, an event-related potential (ERP) based physiological study has been performed on motorcyclists to investigate their responses towards the rear end collision warning system. Two types of auditory warnings (i.e., verbal and buzzer) are used for this warning system. To study the response of the motorcyclists, the N1, N2, P3, and N400 components have been extracted from the Electroencephalography (EEG) data. These introduced systems have shown positive effects at neural levels on motorcyclists and reduce their reaction time and attentional resources required for processing the target correctly. In summary, the proposed rear-end collision warning system with auditory verbal warnings significantly increases the alertness of the motorcyclist and can be helpful to avoid the possible rear-end collision scenarios.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bourgogne. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.