Sur quelques aspects des extensions à ramification restreinte

par Marine Rougnant

Thèse de doctorat en Mathématiques et applications

Sous la direction de Christian Maire.

Soutenue le 16-04-2018

à Bourgogne Franche-Comté , dans le cadre de École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....) , en partenariat avec Laboratoire de Mathématiques de Besançon (Besançon) (laboratoire) , Laboratoire de Mathématiques de Besançon / LMB (laboratoire) et de Université de Franche-Comté (Etablissement de préparation) .

Le président du jury était Bruno Deschamps.

Le jury était composé de Christian Maire, Bruno Deschamps, Florent Jouve, Bruno Anglès, Cécile Armana, Philippe [Jean-Georges] Lebacque.

Les rapporteurs étaient Florent Jouve, Bruno Anglès.


  • Résumé

    Soit p un nombre premier, soit K/k une extension galoisienne finie de corps de nombres de degré premier à p et soit S un ensemble fini de premiers de k. Le groupe de Galois G(K,S) de la pro-p extension maximale de K non ramifiée en dehors de S est l'objet central de ce mémoire.On se place dans un premier temps dans le cas modéré : on suppose que S ne contient pas les places divisant p. Les travaux combinés de Labute, Minac et Schmidt sur les pro-p groupes mild ont permis d'exhiber les premiers exemples de groupes G(K,S) de dimension cohomologique 2. En implémentant un corollaire de leur critère dans le logiciel PARI/GP, on observe un phénomène de propagation : si k=Q et si le groupe G(Q,S) est mild, un fort pourcentage des groupes G(K,S) l'est également, pour K quadratique imaginaire. En associant au groupe G(K,S) deux graphes orientés dont les arcs sont définis par la ramification dans des extensions p-élémentaires, on démontre un critère théorique pour que ce phénomène de propagation ait lieu.On considère ensuite le cas sauvage : toutes les places au-dessus de p sont contenues dans S. Le groupe de Galois Δ:=Gal(K/k) agit sur G(K,S) ; on note G le plus grand quotient de G(K,S) sur lequel Δ agit trivialement et H le sous-groupe fermé de G(K,S) correspondant. Maire a étudié la liberté du Zp[[G]]-module H^{ab}. Nous poussons plus loin ses résultats en considérant les φ-composantes de H^{ab} sous l'action de Δ. Sous de bonnes hypothèses et sous la conjecture de Leopoldt, on démontre une condition nécessaire et suffisante pour que les φ-composantes soient libres ou non. La théorie du corps de classes permet de ramener cette condition à l'étude du régulateur normalisé, et donc à la p-rationalité du corps K. Les expérimentations faites sur PARI/GP dans des familles d'extensions cubiques cycliques, diédrales et cycliques de degré 4 du corps des rationnels corroborent une conjecture de Gras selon laquelle tout corps de nombres est p-rationnel pour p suffisant grand.

  • Titre traduit

    On some aspects of extensions with restricted ramification


  • Résumé

    Let p be a prime number, let K/k be a Galois extension of number fields and let S be a finite set of primes of K. We suppose that the degree of K/k is finite and coprime to p. We denote by G(K,S) the Galois group of the pro-p maximal extension of K unramified outside S. We focus on this thesis on two differents aspects of this pro-p group.We are first interested in the tame case : we suppose that S does not contain any place above p. The works of Labute, Minac and Schmidt about mild pro-p groups brought the first examples of groups G(K,S) of cohomological dimension two. Using a corollary of their criterium, we compute some examples with PARI/GP and we observe a propagation phenomenum : if we take K=Q and if we suppose that G(Q,S) is mild, a large part of the pro-p groups G(K,S) with K imaginary quadratic are mild too. We then associate two oriented graphs to G(K,S) and we show a theoretical criterium proving mildness of some imaginary quadratic fields.We then consider the wild case where all the places dividing p belong to S. The Galois group Δ:=Gal(K/k) acts on G(K,S). The action of Δ is trivial on some quotients of G(K,S) ; we denote by G the maximal one and by H the corresponding closed subgroup of G(K,S). Maire has studied the Zp[[G]]-freeness of the module H^{ab}. We extend his results considering the φ-component of H^{ab} under the action of Δ. In a favourable context and under Leopoldt's conjecture, we show a necessary and sufficient condition for the freeness of the φ-components. This condition is connected to p-rational fields by class field theory. We present experiments with PARI/GP in some families of cubic cyclic, dihedral and quartic cyclic extensions of Q which support the following conjecture from Gras : every number field is p-rational for sufficiently large p.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Sur quelques aspects des extensions à ramification restreinte


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque universitaire électronique, Besançon.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Sur quelques aspects des extensions à ramification restreinte
  • Détails : 1vol. (75p.)
  • Annexes : Bibliogr.p.73-75
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.