Cardiac motion estimation in ultrasound images using a sparse representation and dictionary learning

par Nora Ouzir

Thèse de doctorat en Signal, Image, Acoustique et Optimisation

Sous la direction de Adrian Basarab et de Jean-Yves Tourneret.

  • Titre traduit

    Estimation du mouvement cardiaque en imagerie ultrasonore par représentation parcimonieuse et apprentissage de dictionnaire


  • Résumé

    Les maladies cardiovasculaires sont de nos jours un problème de santé majeur. L'amélioration des méthodes liées au diagnostic de ces maladies représente donc un réel enjeu en cardiologie. Le coeur étant un organe en perpétuel mouvement, l'analyse du mouvement cardiaque est un élément clé pour le diagnostic. Par conséquent, les méthodes dédiées à l'estimation du mouvement cardiaque à partir d'images médicales, plus particulièrement en échocardiographie, font l'objet de nombreux travaux de recherches. Cependant, plusieurs difficultés liées à la complexité du mouvement du coeur ainsi qu'à la qualité des images échographiques restent à surmonter afin d'améliorer la qualité et la précision des estimations. Dans le domaine du traitement d'images, les méthodes basées sur l'apprentissage suscitent de plus en plus d'intérêt. Plus particulièrement, les représentations parcimonieuses et l'apprentissage de dictionnaires ont démontré leur efficacité pour la régularisation de divers problèmes inverses. Cette thèse a ainsi pour but d'explorer l'apport de ces méthodes, qui allient parcimonie et apprentissage, pour l'estimation du mouvement cardiaque. Trois principales contributions sont présentées, chacune traitant différents aspects et problématiques rencontrées dans le cadre de l'estimation du mouvement en échocardiographie. Dans un premier temps, une méthode d'estimation du mouvement cardiaque se basant sur une régularisation parcimonieuse est proposée. Le problème d'estimation du mouvement est formulé dans le cadre d'une minimisation d'énergie, dont le terme d'attache aux données est construit avec l'hypothèse d'un bruit de Rayleigh multiplicatif. Une étape d'apprentissage de dictionnaire permet une régularisation exploitant les propriétés parcimonieuses du mouvement cardiaque, combinée à un terme classique de lissage spatial. Dans un second temps, une méthode robuste de flux optique est présentée. L'objectif de cette approche est de robustifier la méthode d'estimation développée au premier chapitre de manière à la rendre moins sensible aux éléments aberrants. Deux régularisations sont mises en oeuvre, imposant d'une part un lissage spatial et de l'autre la parcimonie des champs de mouvements dans un dictionnaire approprié. Afin d'assurer la robustesse de la méthode vis-à-vis des anomalies, une stratégie de minimisation récursivement pondérée est proposée. Plus précisément, les fonctions employées pour cette pondération sont basées sur la théorie des M-estimateurs. Le dernier travail présenté dans cette thèse, explore une méthode d'estimation du mouvement cardiaque exploitant une régularisation parcimonieuse combinée à un lissage à la fois dans les domaines spatial et temporel. Le problème est formulé dans un cadre général d'estimation de flux optique. La régularisation temporelle proposée impose des trajectoires de mouvement lisses entre images consécutives. De plus, une méthode itérative d'estimation permet d'incorporer les trois termes de régularisations, tout en rendant possible le traitement simultané d'un ensemble d'images. Dans cette thèse, les contributions proposées sont validées en employant des images synthétiques et des simulations réalistes d'images ultrasonores. Ces données avec vérité terrain permettent d'évaluer la précision des approches considérées, et de souligner leur compétitivité par rapport à des méthodes de l'état-del'art. Pour démontrer la faisabilité clinique, des images in vivo de patients sains ou atteints de pathologies sont également considérées pour les deux premières méthodes. Pour la dernière contribution de cette thèse, i.e., exploitant un lissage temporel, une étude préliminaire est menée en utilisant des données de simulation.


  • Résumé

    Cardiovascular diseases have become a major healthcare issue. Improving the diagnosis and analysis of these diseases have thus become a primary concern in cardiology. The heart is a moving organ that undergoes complex deformations. Therefore, the quantification of cardiac motion from medical images, particularly ultrasound, is a key part of the techniques used for diagnosis in clinical practice. Thus, significant research efforts have been directed toward developing new cardiac motion estimation methods. These methods aim at improving the quality and accuracy of the estimated motions. However, they are still facing many challenges due to the complexity of cardiac motion and the quality of ultrasound images. Recently, learning-based techniques have received a growing interest in the field of image processing. More specifically, sparse representations and dictionary learning strategies have shown their efficiency in regularizing different ill-posed inverse problems. This thesis investigates the benefits that such sparsity and learning-based techniques can bring to cardiac motion estimation. Three main contributions are presented, investigating different aspects and challenges that arise in echocardiography. Firstly, a method for cardiac motion estimation using a sparsity-based regularization is introduced. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. Secondly, a fully robust optical flow method is proposed. The aim of this work is to take into account the limitations of ultrasound imaging and the violations of the regularization constraints. In this work, two regularization terms imposing spatial smoothness and sparsity of the motion field in an appropriate cardiac motion dictionary are also exploited. In order to ensure robustness to outliers, an iteratively re-weighted minimization strategy is proposed using weighting functions based on M-estimators. As a last contribution, we investigate a cardiac motion estimation method using a combination of sparse, spatial and temporal regularizations. The problem is formulated within a general optical flow framework. The proposed temporal regularization enforces smoothness of the motion trajectories between consecutive images. Furthermore, an iterative groupewise motion estimation allows us to incorporate the three regularization terms, while enabling the processing of the image sequence as a whole. Throughout this thesis, the proposed contributions are validated using synthetic and realistic simulated cardiac ultrasound images. These datasets with available groundtruth are used to evaluate the accuracy of the proposed approaches and show their competitiveness with state-of-the-art algorithms. In order to demonstrate clinical feasibility, in vivo sequences of healthy and pathological subjects are considered for the first two methods. A preliminary investigation is conducted for the last contribution, i.e., exploiting temporal smoothness, using simulated data.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.