Marches quantiques ouvertes

par Hugo Bringuier

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Patrick Cattiaux et de Clément Pellegrini.


  • Résumé

    Cette thèse est consacrée à l'étude de modèles stochastiques associés aux systèmes quantiques ouverts. Plus particulièrement, nous étudions les marches quantiques ouvertes qui sont les analogues quantiques des marches aléatoires classiques. La première partie consiste en une présentation générale des marches quantiques ouvertes. Nous présentons les outils mathématiques nécessaires afin d'étudier les systèmes quantiques ouverts, puis nous exposons les modèles discrets et continus des marches quantiques ouvertes. Ces marches sont respectivement régies par des canaux quantiques et des opérateurs de Lindblad. Les trajectoires quantiques associées sont quant à elles données par des chaînes de Markov et des équations différentielles stochastiques avec sauts. La première partie s'achève avec la présentation de quelques pistes de recherche qui sont le problème de Dirichlet pour les marches quantiques ouvertes et les théorèmes asymptotiques pour les mesures quantiques non destructives. La seconde partie rassemble les articles rédigés durant cette thèse. Ces articles traîtent les sujets associés à l'irréductibilité, à la dualité récurrence-transience, au théorème central limite et au principe de grandes déviations pour les marches quantiques ouvertes à temps continu.

  • Titre traduit

    Open quantum walks


  • Résumé

    This thesis is devoted to the study of stochastic models derived from open quantum systems. In particular, this work deals with open quantum walks that are the quantum analogues of classical random walks. The first part consists in giving a general presentation of open quantum walks. The mathematical tools necessary to study open quan- tum systems are presented, then the discrete and continuous time models of open quantum walks are exposed. These walks are respectively governed by quantum channels and Lindblad operators. The associated quantum trajectories are given by Markov chains and stochastic differential equations with jumps. The first part concludes with discussions over some of the research topics such as the Dirichlet problem for open quantum walks and the asymptotic theorems for quantum non demolition measurements. The second part collects the articles written within the framework of this thesis. These papers deal with the topics associated to the irreducibility, the recurrence-transience duality, the central limit theorem and the large deviations principle for continuous time open quantum walks.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.