Modélisation de la propagation atmosphérique d'ondes électromagnétiques en 2D et 3D à partir de transformées de Fourier et en ondelettes

par Hang Zhou

Thèse de doctorat en Eléctromagnétisme

Sous la direction de Rémi Douvenot et de Alexandre Chabory.


  • Résumé

    La propagation à longue distance est un problème majeur dans les télécommunications, la navigation et la surveillance. L'objectif de cette thèse est de développer une méthode rapide pour simuler la propagation des ondes dans une atmosphère en 2D et 3D. Dans ce travail, deux contributions principales vers cet objectif sont obtenues. Tout d'abord, des méthodes auto-cohérentes,c'est-à-dire basées sur une théorie discrète de l'électromagnétisme, sont développées en 2D et 3D. Ensuite, une méthode rapide 2D basée sur les ondelettes est proposée. Pour simuler la propagation d'ondes électromagnétiques dans une atmosphère 2D, la méthode split-step Fourier (SSF) est largement utilisée. Le calcul est effectué itérativement en distances en tenant compte d'une réfractivité variable, du relief et des caractéristiques du sol. À chaque pas, le signal est transformé du domaine spatial au domaine spectral. La méthode des écrans de phase est appliquée pour modéliser les effets de réfraction. D'autre part, pour modéliser un sol impédant, la transformée mixte de Fourier discrète (SSF-DMFT) est utilisée. Le concept de la théorie électromagnétique auto-cohérente implique que l'utilisation d'équations de Maxwell discrètes pour la simulation numérique évite les solutions parasites. Dans la méthode couramment utilisée SSF-DMFT, la transformée spectrale est basée sur la condition aux limites d'impédance discrète, alors que le propagateur provient de l'équation continue. Pour pallier cette incohérence, une méthode auto-cohérente est proposée, notée la DSSF-DMFT. La formulation est dérivée des équations discrètes pour obtenir l'auto-cohérence. Des tests numériques montrent que SSF-DMFT présente des oscillations parasites dans certaines conditions de simulation, tandis que DSSF-DMFT reste précis. En effet, l'auto-cohérence empêche certaines instabilités numériques. Pour simuler la propagation dans des environnements en 3D, les méthodes précédentes doivent être étendues en 3D. Tout d'abord, la 3D-SSF est présentée comme une extension naturelle de la SSF. Ensuite, la 3D-DSSF est dérivée d'équations discrètes. Pour considérer un sol impédant, la 3D-DSSF-DMFT est développée conduisant à de nouvelles expressions pour les propagateurs. Ces méthodes sont testées dans plusieurs configurations incluant un profil de réfractivité extrait de mesures. Les résultats montrent une grande précision et une capacité à prendre en compte les effets latéraux. Cependant, pour la propagation dans de grand domaines, les ressources nécessaires en temps et en mémoire deviennent la préoccupation principale. Pour alléger la charge de calcul, une méthode split-step en ondelettes (SSW) est proposée en 2D comme une méthode alternative à SSF. Elle est basée sur la transformée rapide en ondelettes dont la complexité est faible et qui permet de compresser les champs. La propagation est réalisée à partir d'une combinaison linéaire d'ondelettes propagées individuellement. La compression est appliquée pour augmenter l'efficacité. Afin de considérer la réflexion sur le sol, une nouvelle méthode de source image locale dédiée à la propagation des ondelettes est proposée. Les tests numériques montrent que la SSW a une efficacité de calcul plus élevée que la SSF tout en gardant une bonne précision.

  • Titre traduit

    Modeling the atmospheric propagation of electromagnetic waves in 2D and 3D using fourier and wavelet transforms


  • Résumé

    The long-range propagation of electromagnetic waves is a major issue in telecommunication, navigation, and surveillance. The objective of this Ph.D. thesis is to develop fast and accurate modeling methods for the tropospheric propagation in 2D and 3D. In this work, two main contributions towards this objective are achieved. Firstly, self-consistent methods, i.e. based on the discrete electromagnetic theory, are developed in 2D and 3D. Secondly, a fast wavelet-based 2D method is proposed. For simulating the electromagnetic wave propagation in a 2D atmosphere, the split-step Fourier method (SSF) is widely used. The computation is performed marching on in distances taking into account a variable refractivity, an irregular relief, and the electric characteristics of the ground. At each step, the signal is transformed from the spatial to the spectral domains. The phase screens method is applied to model refraction. Besides, to model an impedance ground, the discrete mixed Fourier transform (SSF-DMFT) is used. The concept of the self-consistent electromagnetic theory implies that the use of discrete Maxwell equations for numerical simulations does not lead to spurious solutions. In the widely used SSF-DMFT, the spectral transform is based on the discrete impedance boundary condition, while the propagator is derived from the continuous equation. To overcome this inconsistency, a discrete formulation of SSF-DMFT is proposed, denoted as DSSF-DMFT. The spectral transform and propagator are both derived from the discrete equations to achieve self-consistency. Numerical tests show that SSF-DMFT has spurious oscillations in certain simulation conditions, whereas DSSF-DMFT remains accurate. Indeed, the self-consistency prevents from numerical instabilities. To simulate the propagation in 3D environments, the previous methods are extended to 3D. First, 3D-SSF is presented as a natural extension of SSF. Then, 3D-DSSF is derived from discrete equations. To consider an impedance ground, 3D-DSSF-DMFT is developed leading to new expressions for the propagators. These methods are tested for several configurations, including a refractivity profile extracted from measurements. Results show that they have a high accuracy. They notably consider lateral effects. However, for the propagation in a large computation domain, time and memory occupations become the main concern. To improve the computation burden, a split-step wavelet method (SSW) is proposed in 2D as an alternative to SSF. It is based on the fast wavelet transform, which complexity is weak and which allows for data compression. The propagation is performed by means of a linear combination of wavelets that are individually propagated. Data compression is applied to increase the efficiency. A new local image source method dedicated to wavelet propagation is proposed to consider the ground reflection. Numerical tests show that this method has a higher computational efficiency than SSF while keeping a good accuracy.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.