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General introduction

1.  The Fungi kingdom 

The  Fungi  kingdom  is  the  largest  and  oldest  group  of  living  organisms.  While 

approximately  100,000  fungal  species  have  been  identified  so  far,  recent  studies 

estimate the existence of  5.1 million different  species (Blackwell  2011).  Fungi are 

mostly  multicellular  eukaryotes  with  a  characteristic  wall  composed  of  chitin  or 

chitosan. Their reproductive mode can be sexual or asexual. They are heterotrophic for 

carbon, absotrophic and their mode of nutrition is mostly saprophyte. Fungi interact 

with  species  from  all  known  groups  of  organisms,  through  mutualist  or  parasitic 

relationships.  The  classification  of  fungi  was  originally  based  on  their  observable 

morphology. 

The first publication describing the fungi systematics was published in 1729 by 

the  Italian  botanist  Pier  Antonio  Micheli  in  the  Nova  Planetarium  Genera. 

Technological  advances  allowing  the  study  of  new  features  of  fungi  enabled  to 

progressively refine their classification. Mycologists were then able to classify fungi 

according  to  their  reproductive  mode,  growth  temperature,  nutrient  use,  secondary 

metabolite  production and cell  composition.  Analysis  of  these new data  led to  the 

publication of the first phylogeny of fungi  in 1962 (Alexopoulos 1962). According to 

this study, fungi formed the Mycota division within the reign of the Plantae. Mycota 

were separated into two subdivisions : Myxomycotina and Eumycotina (introducing the 

term "True  Fungi"),  containing  10  different  classes.  In  the  late  1990s,  sequencing 

techniques  and  their  application  to  phylogeny  led  to  significant  changes  in  the 

understanding of fungi. DNA sequence analysis of the small ribosomal subunit gene 

initially  showed  that  fungi  were  phylogenetically  closer  to  animals  than  plants 

(Wainright  et  al.  1993),  thereby  transforming  fungi  into  a  kingdom  per  se.  The 

sequence analysis was then extended to a larger number of genes. 
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First, housekeeping genes found in single copies such as actin (ACT) (Helgason et al. 

2003)  or  elongation  factor  1  translation  (TEF1)  (Rehner  and  Buckley  2005)  were 

compared.  The  subsequent  analysis  suggested  that  the  kingdom  of  Fungi  was  a 

monophyletic group. The emergence of next-generation sequencing (NGS) promoted 

the  publication  of  good  quality  fungal  genomes,  reaching  today  more  than  1000 

sequenced genomes (Aylward et al. 2017). The accessibility of these sequencing data 

allowed  the  emergence  of  phylogenomics,  a  new field  based  on  the  analysis  and 

comparison of these entire genomes (Delsuc et al. 2005). 

The fungal consensus system in 2018 is based on this methodology and presents 

the Fungi  kingdom as a  non-monophyletic  group subdivided into 9 distinct  phyla: 

Ascomycota,  Basidiomycota,  Mucormycota,  Zoopagomycota,  Blastocladiomycota, 

Chytridiomycota,  Cryptomycota,  Neocallimastigomycota,  and  Microsporidia. 

Basidomycota and Ascomycota form together a « sister taxa »  called Dikaryomycota  

which comprises more than 98% of the identified species (Shaffer 1975). 

The species that will be covered in this thesis belong to the Saccharomycotina 

subphylum of Ascomycota. Ascomycota is the largest clade of the Fungi kingdom with 

more than 65 000 estimated species (Kirk et al. 2008). Ascomycota are divided into 3 

distinct  groups:  Pezizomycotina  (filamentous  species  like  Neurospora  crassa), 

Taphrinomycotina  (Schizosaccharomyces  pombe)  and  the  subphylum  of 

Saccharomycotina comprising Saccharomyces cerevisiae, the yeast model (Schoch et 

al.  2009).  Saccharomycotina  includes the Saccharomycetales  group associated with 

the species Yarrowia lipolytica. Saccharomycetales are subdivided into two clades: the 

CTG clade, encompassing the species translating the CTG codons into serine rather 

than  leucine;  and  the  Saccharomycetacea  clade  (Figure  1).  Finally  the 

Saccharomycetaceae  are  subdivided  into  two  clusters:  the  species  whose  common 

ancestor underwent a complete duplication of the genome (post-WGD species) and the 

species which diverged before this event (Gabaldón et al. 2013). 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In many languages the term "yeast" is derived from the use of these species in 

the fermentation of sugar into carbon dioxide for baking and into alcohol for brewing 

(Kurtzman  et  al.  2011).  Across  literature,  the  term  "yeast"  is  often  used  as  a 

synonymous  for  Saccharomyces  cerevisiae  and  yeasts  have  long  been  referred  to 

mostly unicellular  species in the Saccharomycotina  subphylum. This  definition has 

changed since the discovery of yeast  belonging to the Basidiomycota phylum. The 

consensus definition of yeast is then: "yeasts, whether ascomycetes or basidiomycetes, 

are generally characterized by budding or  fission as the primary means of asexual 

reproduction,  and  have  sexual  states  that  are  not  enclosed  in  fruiting 

bodies" (Kurtzman et al. 2011). Yeasts are found in all ecosystems, and some species 

have been beneficial to humans by direct interaction as part of the normal microbiota 

(Sam et al. 2017). Humans have also isolated and domesticated numerous strains. For 

example, Saccharomyces cerevisiae and yeasts like Hanseniaspora spp., Pychia spp., 

Debaryomyces spp., and Candida spp. are still used extensively for the production of 

fermented food and beverages (Hittinger et al. 2018). The domestication of yeasts has 

made possible to set up the necessary conditions for their culture in the laboratory. 

Yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe have thus 

become eukaryotic models of choice in molecular and cellular biology (Botstein et al. 

1997, Yanagida 2002).  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2. Human fungal infection.  

The number of deaths caused by fungal infections is  as high as for malaria 

(Brown, Denning et al. 2012). Recent studies estimate that approximately 1.7 billion 

people worldwide are affected by fungal infections (Brown, Denning et al. 2012). 

2.1. Fungal infection of healthy humans. 

Healthy  people  are  mostly  affected  by  superficial  fungal  infections.  These 

infections represent  the fourth most  common cause of  human disease (Hay 2017). 

They preferentially affect skin and keratinized structures and are generally caused by 

two  large  groups  of  fungi:  Dermatophytes,  with  species  of  the  Trichophyton, 

Microsporum  and  Epidermophyton  genus,  and  Malassezia  species  (Weitzman  and 

Summerbell 1995, Gupta et al. 2004). Superficial infections also occur in the oral and 

vaginal mucosa and are mainly caused by the yeast Candida albicans. These infections 

are usually non life-threatening and well restrained. Nevertheless, healthy humans are 

also plagued by invasive infections, i.e. infections that contaminate deep tissues, much 

more  threatening  for  the  patients  health.  These  species  causing  invasive  fungal 

infections are  contracted by ingestion,  inhalation or  contact  with  cutaneous lesion. 

They are represented by three distinct  groups:  i)  Entomophthoromycota,  fungi  first 

described as infectious agents for insects, often restricted to tropical regions. These 

fungi  develop  in  the  facial  or  intestinal  mucosa  depending  on  the  mode  of 

contamination. They induce respiratory, digestive and disfigurement issues (Isa-Isa et 

al. 2012); ii) Onygenales, fungi belonging to the Ascomycota phylum. They are found 

worldwide  but  each  pathogenic  species  in  this  group  is  geographically  restricted. 

Depending on the species involved, these fungi develop in the mucous membranes of 

the  respiratory  system,  inducing  severe  pneumonia,  but  also  in  the  bones, 

subcutaneous tissues and in the digestive tract (Bradsher et al. 2003, Marques 2012); 

iii)  Cryptococci,  fungi  belonging  to  the  Basidiomycota  phylum,  represented  by 

Cryptococcus  neoformans  and  Cryptococcus  gattii.  They  contaminate  humans  by 
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inhalation or contact with a cutaneous lesion and can be spread from person to person. 

Cryptococcus species usually develops in the lungs inducing pneumonia but can also 

reach  the  central  nervous  system  and  cause  meningitis  (Byrnes  Iii  et  al.  2010). 

Although  the  consequences  of  invasive  fungal  infections  are  often  dramatic,  their 

occurrence remains rare in healthy individuals. The human immune system provides 

an  effective  response  to  invasive  infections,  which  are  generally  controlled  before 

developing into systemic infections.

2.2.Immune response to fungal infection. 

The surface epithelium, including the skin and mucous membranes of the oral 

cavity, gastrointestinal, pulmonary and genito-urinary tracts, are the first barrier faced 

by pathogenic fungi (Moens and Veldhoen 2012). These epitheliums consist of a 

combination of: i) a mechanical barrier due to mucus secretion and tight-junctions 

between cells (France and Turner 2017); ii) a chemical barrier resulting from the 

secretion of antimicrobial peptide (AMP) by epithelial cells (Abiko et al. 2002); and 

iii) a microbial barrier set up by microbiota species, inducing strong competition for 

access to nutrients and adhesion sites (Dollive et al. 2013). If a pathogenic fungus 

crosses the epithelial barrier, innate immune cells (dendritic cells, natural killer cells, 

neutrophils, monocyte and macrophages) activate inflammatory responses and 

phagocytosis (Drummond et al. 2014). These cells recognize specific molecules 

presented at the surface of the pathogen fungi cell-wall, called the pathogen associated 

molecular patterns (PAMPs) (Sorrell and Chen 2009). PAMPs are detected by the 

pattern recognition receptors (PRR), involving the Toll-like receptors (TLRs) and C-

type lectin-like receptors (CLRs) in the case of fungi (Netea et al. 2007, Netea et al. 

2008). Adaptive immunity also plays a role in the response to fungal infections. 

Dendritic cells form the major link between innate immunity and adaptive immunity 

cells (Ramirez-Ortiz and Means 2012). Dendritic cells present fungal antigens to naive 

T cells which will then differentiate into memory and cytotoxic cells to specifically 

respond to the pathogen. 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Understanding these defense mechanisms through the characterization of immune 

cells, the PAMPs and their recognition by PRR, paves the way to use a vaccination 

strategy to prevent fungal infection. Phase 2 clinical trials are already carried out for 

Candida albicans (Sui et al. 2017). However, the vaccination strategy faces two major 

problems: i) Vaccine development requires many efforts and substantial financial 

resources, which are unfortunately poorly invested in mycology (Spellberg 2011, 

Brown et al. 2012); ii) Vaccination is ineffective for immunocompromised patients, the 

most risky population for life-threating fungal infections and who show a dramatically 

high mortality rate after infection: up to 95% for Aspergillus fumigatus, 70% for 

Cryptococcus and 75% for Candida albicans (Brown et al. 2012). 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2.3.Fungal infection of immunocompromised humans. 

Since three decades, the increase in the frequency of invasive fungal infections is in 

correlation with the number of immunocompromised individuals. Paradoxically, this 

increase is linked to major medical advances, namely:  i) Better care for people 

infected with HIV, allowing a longer lifespan and thus increasing the probability of 

invasive fungal infection (Samji et al. 2013); ii) Treatment of cancer patients by 

radiotherapy and chemotherapy, which considerably reduces their immunity (Galluzzi 

et al. 2015); iii) Organ transplants which effectiveness is increased by anti-rejection 

treatments (Fishman 2017); iv) Transplantation of stem cells for the regeneration of the 

immune system which is followed by compromised immune defenses (Kontoyiannis et 

al. 2010); v) Treatment of chronic diseases, such as asthma, and autoimmune diseases 

like inflammatory bowel disease by immunosuppressors (Kennedy et al. 2000);  and 

vi) General medical advances leading to a significant increase in life expectancy and a 

subsequent increase in the number of elderly persons (Kauffman and Yoshikawa 

2001). In parallel to these situations leading to immunodeficiency, the extensive use of 

catheters and invasive surgical procedures correlates significantly with the increased 

incidence of invasive fungal infections (Zilberberg and Shorr 2009). Individuals with 

weakened immunity are then susceptible to infections by species usually controlled in 

healthy individuals and are frequently associated to the human microbiota. These 

species are called opportunistic pathogens and the vast majority of invasive 

opportunistic fungal infections are linked to: Cryptococcus sp., Aspergillus sp. and 

Candida sp. (Brown et al. 2012). 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2.4. The Candida genus. 

The name « Candida » does not refer to a monophyletic group but rather to the 

definition of an asexual yeast, related to ascomycetes or basidiomycetes, that divide by 

multilateral budding (Kurtzman et al. 2011). Infections due to these species are called 

"candidiasis" and the term "candidemia" refers to systemic candidiasis. About 200 

species form this group, of which 32 species are human pathogens (Pfaller et al. 2010). 

Candida species are most frequently isolated fungal species in  the case of nosocomial 

infections (Pelroth 2007). Their incidence seems more related to the use of invasive 

medical procedures (venous or urinary catheter and invasive surgery) than to the 

immunodeficiency level of patients (McKinnon et al. 2001, Charles et al. 2003). In 

France, 35 876 cases of invasive fungal infections were reported between 2001 and 

2010, among which 43.4% were due to Candida species (Bitar et al. 2014). Candida 

albicans is the most frequently isolated species worldwide for candidemia (more than 

50%) (Pfaller et al. 2010). Nevertheless the frequency of candidemia due to « non-

Candida albicans" species (NAC species) shifted from 10-40% from 1970 to 1990, to 

35-65% in the 2000s (Krcmery and Barnes 2002). Today the most globally isolated 

NAC species causing candidemia are : Candida glabrata (13%), Candida tropicalis 

(7%), Candida parapsilosis (6%) and Candida krusei (2%) (Pfaller et al. 2010). The 

extensive use of azole compounds for the treatment of candidemia appears to have 

contributed to the emergence of naturally resistant species such as Candida tropicalis 

and Candida glabrata. Nevertheless, this shift is multifactorial and significant 

variations in the distribution of NAC species have been identified (Pfaller et al. 2010). 

For example Candida tropicalis is more frequently isolated in the southern 

hemisphere, and Candida glabrata and Candida parapsilosis in North America and 

Europe. Moreover, Candida glabrata is more frequently isolated in elderly people 

while Candida parapsilosis is more common in young children (Yapar 2014). 
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3.  Candida glabrata, an opportunistic pathogen 

3.1.Taxonomy and morphological features 

The yeast C. glabrata was first described in 1917 as part of the normal human 

intestinal flora (Anderson 1917). Spread on Sabouraud Dextrose Agar medium (SDA), 

the colonies appear round, smooth and creamy in colour. Based on this morphology, 

the name Cryptococcus glabratus has been assigned. This yeast was described as not 

forming hyphae and was therefore classified as Torulopsis, to become Torulopsis 

glabrata (Lodder and De Vries 1938). The present name was given when the definition 

of the « Candida » genus has been changed to « strains of species or varieties with 

pseudohyphae absent, rudimentary or well developed » (Yarrow and Meyer 1978). The 

absence of sexual reproduction and its inability to change mate reinforces Candida 

genus affiliation. C. glabrata is an haploid yeast of 1-4 µM, not capable of 

metabolizing galactose but only trehalose and glucose, and is naturally auxotrophic for 

nicotinic acid, pyridoxine and thiamine  (Rodrigues et al. 2014). Analysis of ribosomal 

DNA sequences placed C. glabrata in the phylum of ascomycetes, and were the first 

evidence that C. glabrata is phylogenitically closer to S. cerevisiae than other species 

of the Candida genus (Kurtzman and Robnett 1998). C. glabrata is now included in 

the Nakaseomyces clade (Kurtzman 2003). This clade comprises 6 species, including 3 

environmental species: Candida castelli, Nakaseomyces delphensis and Nakaseomyces 

bacillisporus; and 3 species pathogenic to humans: Candida bracariensis, Candida 

nivariensis and Candida glabrata (Alcoba-Florez et al. 2005, Correia et al. 2006). The 

reservoir of C. glabrata is almost exclusively human. Its circulation occurs directly 

from individual to individual, or indirectly after contamination of an abiotic surface. 

However, recent studies suggest that domestic or closely related birds possess strains 

of C. glabrata of human origin in their microbiota gut and participate in their 

circulation (Al-Yasiri et al. 2016). 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Table 1. Characteristics of Candida glabrata (adapted from Rodrigues et al. 2014) 

SDA = Sabouraud Dextrose Agar  

Feature Candida glabrata characteristics

Ploidy Haploid

Hyphae/Pseudohyphae Absent

Colonies on SDA Small and cream-color

Cell size 1-4 µM

Biochemical reactions Ferments and assimilates glucose and trehalose

Pathogenicity Opportunistic pathogen

Mating genes Present

Sexual cycle Unknown

Auxotrophy Niacin, thiamine, pyridoxine
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3.2. Clinical relevance 

C. glabrata was considered to be a saprophyte fungi commensal for humans until 

the late 1980s, when it was first identified as directly involved in candidemia of 

immunocompromised patients (Just et al. 1989). C. glabrata was then rapidly 

considered as an emerging pathogen (Hazen 1995). Today C. glabrata is the second 

cause of candidemia in Europe and North America (Guinea 2014). The mortality rate 

linked to candidemia by C. glabrata is one of the highest among Candida species and 

appears in 40% of the cases (Tortorano et al. 2006). The major risk factors to contract 

an infection by  C. glabrata are associated with hospitalization in intensive care units, 

which are exacerbated by : i) Previous treatment with fluconazole (Colombo et al. 

2013); ii) Installation of mechanical ventilation and central venous catheter, allowing 

C. glabrata, already present in patients or from exogenous origin (tools or hands of 

contaminated practitioners), to access to deep tissues (Gupta et al. 2015); ii) Advanced 

age of the hospitalized patient (Sampaio and Pais 2014). The combination of these 

factors accounts for C. glabrata being the most frequently isolated species in 

hospitalized elderly people. 
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4. Pathogenicity of Candida glabrata 

Pathogenicity can be difficult to define and its meaning varies between authors. In 

this thesis, the choice was made to define pathogenicity as the capacity of an organism 

to cause disease in a host. According to this definition, pathogenicity is based on two 

factors: i) infectivity, which can be defined as the ability to infect and colonize host 

tissues; and ii) virulence, which is the capacity to cause damages to the host. 

 A commensal yeast has a high probability of leading to invasive infection if it 

exhibits the following characteristics: i) a high dependence to the human body for 

growth; ii) an ability to survive in the host despite stress caused by lack of nutrients 

and the immune system ; iii) an ability to reach the blood system and to adhere to deep 

tissues. 

Concerning the opportunistic pathogen C. glabrata, pathogenicity is largely due to 

its infectivity and results more from an accident than from an active trait as for 

specialist pathogens. The pathogenic potential of C. glabrata is only expressed when 

the cell reaches the wrong tissue in the wrong host (Gabaldon and Carrete 2016). The 

pathogenic trait of C. glabrata has been traditionally interpreted by comparison with S. 

cerevisiae, whose genome appeared very similar (Dujon et al. 2004). Differences 

between S. cerevisiae and C. glabrata were interpreted as an adaptation to humans 

(Roetzer et al. 2010) but the sequencing of new non-pathogenic species close to C. 

glabrata (Gabaldón et al. 2013) have changed this paradigm.  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4.1. Dependence on the human body for the growth of C. 

glabrata 

Unlike S. cerevisiae, C. glabrata is intrinsically auxotrophic for pyridoxine, 

thiamine and nicotinic acid. These auxotrophies, and notably the inability to synthesize 

nicotinic acid, an essential precursor of NAD+ for cell viability, have been described 

as formal evidence for high host dependence (Domerge 2015). These hypotheses were 

refuted after the sequencing and phylogenetic analysis of the 5 other species of the 

Nakaseomyces clade (Gabaldón et al. 2013). Indeed, auxotrophy for nicotinic acid was 

found to be present in all species of the clade, especially in strictly environmental 

species (C. castelli, N. delphensis and N. bacillisporus) non-comensal for humans. 

4.2. Stress resistance : starvation and host immune system 

When growing on mucosal surfaces, C. glabrata has to undergo the intrinsic 

rarefaction of nutrients (Hood and Skaar 2012) that can also result from the 

competition with other micro-organisms (Wargo and Hogan 2006). Unlike C. albicans, 

C. glabrata does not destroy tissues to sustain its nutritional needs : it does not form 

hyphae and does not secrete proteases. However, C. glabrata is able to use alternative 

and non-fermentable carbon sources such as lactate (Ueno et al. 2011) and pexophagy, 

mechanism allowing the recycling of peroxysomes (Roetzer et al. 2010). Mucosal 

surfaces and other human tissues are generally poor in free iron, which is sequestered 

intracellularly in associations with proteins. C. glabrata promotes mitophagy to 

survive in iron-poor environment (Nagi et al. 2016). Concerning host iron acquisition, 

the strategy is not yet well described. C. albicans destroys erythrocytes and obtains 

iron by secreting haemolysins (Almeida et al. 2009). Recent studies have shown that 

C. glabrata expressed a hemolysin, but the conditions of its expression are elusive 

(Luo et al. 2004). Nevertheless C. glabrata appears to differ drastically from all 

pathogenic fungal organisms in its exclusive use of non-protein bound iron, producing 

an extracellularly non-protein ferric reductant (Gerwien et al. 2017). Note that these 

analyses have not yet been performed on other species of the Nakaseomyces clade. 
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These features also confer resistance to phagocytosis. C. glabrata was early 

described as capable of surviving these anti-microbial mechanisms and is able to 

replicate within phagocytic cells (Otto and Howard 1976). Once engulfed by a 

phagocytic cell, C. glabrata is restricted in a compartment called the phagosome, 

where nutrients are extremely limited (Flannagan et al. 2009). Within phagocytic cells 

this compartment is matured by fusing to the endosomal vesicles thereby forming a 

phagolysosome,  characterized by a high acidity and  large number of reactive oxygen 

species (ROS), reactive nitrogen species (RNS) and hydrolitic enzymes (Kinchen and 

Ravichandran 2008). C. glabrata is resistant to ROS by detoxifying the phagosome via 

the Ca1p catalase (Cuéllar-Cruz et al. 2008). However, this characteristic seems to be 

shared by all pathogenic fungals and is even found in S. cerevisiae, which is 

nevertheless not able to multiply in phagocytes (Seider et al. 2011). C. glabrata 

inhibits phagolysosome maturation by preventing acidification and phagosome fusion 

with the lysosome (Seider et al. 2011). These mechanisms seem to be an active 

strategy involving chromatin remodeling (Rai et al. 2012). C. glabrata persists in 

phagocytes and does not actively escape from them, meaning that it does not induce 

apoptosis or breaches in their membranes. Instead, yeast cells are released when the 

phagocyte ruptures and the event correlates with a high concentration of intracellular 

C. glabrata (Seider et al. 2011). Again, the majority of genes possibly involved in 

starvation resistance and phagocytic stress are shared by all Nakaseomyces (Gabaldon 

and Carrete 2016). 

4.3.Penetration and adhesion to deep tissues 

The ability to form hyphae is a major advantage for the protrusion of a fungi into 

deep tissues. This is particularly the case for C. albicans, which hyphae formation is 

necessary for its escape from phagocytes and for the passage through epithelia (Phan 

et al. 2000). The inability to form hyphae of C. glabrata suggests a passive invasion. 

This mechanism does not damage tissues and therefore induces a very weak 

inflammatory response (Jayatilake et al. 2006, Li and Dongari-Bagtzoglou 2007). 

However C. glabrata is still able to cross the epitheliums in-vitro (Perez-Torrado et al. 
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2012) and in-vivo (Jacobsen et al. 2011). Invasion of deep tissues could be due to 

epithelial endocytosis ( Li and Dagari 2007) as well as co-infection with other species 

as C. albicans ( Soll 2002; Coco et al 2008) (Alves et al. 2014). Most of the time, 

access to deep tissue is possible via medical-induced breaches in epithelia (Pelroth 

2007). 

C. glabrata has the ability to adhere to epithelia but also to an  abiotic surface 

(Izumida et al. 2014). It is therefore frequently found on medical devices such as 

catheters or dental prostheses for example (Ramage et al. 2005, Tay et al. 2014). C. 

glabrata contaminates these different surfaces by forming a biofilm, which is defined 

as « a microbially derived sessile community characterized by cells that are 

irreversibly attached to a substratum or interface or to each other, are embedded in a 

matrix of extracellular polymeric substances that they have produced, and exhibit an 

altered phenotype with respect to growth rate and gene transcription » (Donlan and 

Costerton 2002). The composition of the matrix of biofilms formed by C. glabrata is 

currently elusive, and has only been described as rich in protein and carbohydrates 

such as ß-(1,3)-D-glucan (Silva et al. 2009). The formation of a biofilm considerably 

increases the resistance to antifungal cells within (Taff et al. 2013) and is considered to 

be a major risk of candidemia (Filler and Kullberg 2002). Therefore, catheter patients 

with fungal infections must absolutely have their implants removed for effective 

treatment (Ramage et al. 2005). 

The adhesion of C. glabrata to a surface is made possible by the presentation of 

proteins on the cell-wall surface, called adhesins (Cormack et al. 1999). The genome 

of C. glabrata contains 67 genes coding for predicted adhesin-like proteins (de Groot 

et al. 2008). Adhesins are divided into 7 different subgroups among which the EPA (for 

Epithelial Adhesins) subgroup is most represented with 18 to 23 genes depending on 

the isolate (de Groot et al. 2008). The expression of EPA gene is very low in in-vitro 

culture under standard conditions (Timmermans et al. 2018). Most of these genes are 

found in the subtelomeric regions and their expression is regulated by telomeric 

silencing (Castaño et al. 2005). This chromosomal localization predisposes EPA genes 
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to undergo chromosomal rearrangements, which can be the source of their expansion 

and the variability in their number depending on the strain studied. 

The number of copies of EPA genes is suggested to correlate with the pathogenicity 

of a strain. This has been demonstrated by the sequencing of the genome of a clinical 

isolate presenting a large number of EPA gene duplicates (Vale-Silva et al. 2017). The 

variation in the number of EPA genes is also in correlation with the degree of 

infectivity of the species within the Nakaseomyces. Indeed C. glabrata, which is 

considered to be the most pathogenic species of the clade contains 17 to 23 EPA genes 

and is followed by C. bracariensis, with 12 EPA genes, C. nivariensis with 9 EPA 

genes and only a single copy in the genome of the environmental species N. delphensis 

(Gabaldón et al. 2013). The adherence of C. glabrata, via EPA gene expression,  is 

likely to represent  the major  reason for of  its infectivity. 

As  mentioned earlier, C. glabrata exhibits features that are more referring to an 

opportunistic colonizer than to a highly virulent pathogen. Unlike C. albicans, also 

considered an opportunistic pathogen, C. glabrata induces very little damage to the 

colonized tissues. Instead, its infection strategy resides more in stealth and passive 

evasion. C. glabrata does not appear to show clear features resulting from adaptation 

to humans and the comparative genomics of the Nakaseomyces clade supports this idea 

(Gabaldon and Carrete 2016). Moreover, the recent analysis of 33 different isolates of 

C. glabrata would even suggest that human are only a secondary niche (Carreté et al. 

2018).  

Although the virulence level of C. glabrata can be considered as low, the high 

mortality rate associated with its infections is a real concern. As we will discuss  

bellow, the threat represented by C. glabrata is based on the combination of strong 

adhesion capacity and an increased resistance to antifungal agents. 
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5. Antifungals and resistance 

Microorganism-related infections are considered as a major public health issue 

when the medical arsenal available is not sufficient to cope with its pathogenicity. 

Fungal infections caused by Candida species have historically been treated by two 

major classes of antifungals : polyenes and azole compounds (Sheehan et al. 1999). 

These two families of molecules act on ergosterol, a sterol specific to fungi, which 

constitutes the plasma membrane. Additionally, echinochandins, a new class of 

antifungals molecules targeting the cell wall, is commonly used since their approval in 

2003.  

All these molecules have proven their efficacy in the treatment of fungal infections, 

but seems no longer efficient regarding the increased frequency of resistance events in 

C. glabrata. 

5.1. Polyenes 

Polyenes molecules, represented by amphotericin B and nystatin, bind directly to 

the membrane ergosterols. The binding  induces the depolarization of the sterol and 

thus the formation of pores (Lemke et al. 2005). As a result, the cells die by emptying 

themselves of their contents via the formed pores. Polyenes present the inconvenient 

of being non-specific and strongly inducing nephrotoxicity (Pound et al. 2011). Given 

the consequences, these antifungals are used only as a last resort for the treatment of 

invasive fungal infection. C. glabrata appears sensitive to the action of polyenes, 

however several cases of amphotericin B resistance have been studied (Vandeputte et 

al. 2007). This resistance has been described as concomitant with low ergosterol levels 

in the plasma membrane linked to a mutation in the ERG6 gene involved in ergosterol 

biosynthesis (Vandeputte et al. 2008). 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5.2. Azole compounds 

The mechanism of action of azole compounds, including fluconazole (the most 

commonly used), ketoconazole (the first to have been marketed) and itraconazole, is 

based on inhibition of ergosterol synthesis (Ghannoum and Rice 1999). Azoles block 

the P-450 lanosterol demethylase enzyme, encoded by the ERG11 gene in C. glabrata, 

thereby preventing the conversion of lanosterol to ergosterol. As previously 

mentioned, C. glabrata exhibits an intrinsic low susceptibility to azoles. This 

resistance is due to modifications of the P-450 lanosterol demethylase enzyme leading 

to a loss of affinity for azoles (Silva et al. 2016). In addition, C. glabrata actively 

resists via an energy-dependent efflux pump mechanism that exports the molecule out 

of the cell. These efflux pumps are composed of membrane transport proteins 

belonging to the ATP binding cassette transporters family (Sanglard et al. 1999). In C. 

glabrata these proteins are encoded by the genes CDR1 and CDR2 which expression is 

controlled by the transcription factor Pdr1p (Vermitsky and Edlind 2004). 

Overexpression of CDR genes increases tolerance of C. glabrata to azoles (Ferrari et 

al. 2011). The resistance of C. glabrata clinical isolates to azoles is amplified by the 

acquisition of several mutations in the PDR1 gene leading to its hyperactivity (Ferrari 

et al. 2009). The acquisition of this resistance is very quick and has been described as 

appearing after only 4 days of azole treatment of naïve strains (Borst et al. 2005). 

Azoles have been the most widely used molecules in the treatment of candidiasis and 

candemia. As previously mentioned, this extensive use seems to have prompted the 

emergence NAC species by : i) the selection of intrinsically azole tolerant species such 

as C. glabrata; and ii) the selection of strains that rapidly acquired mutations involving 

higher tolerance. As a result of the increased resistance events frequency, azoles are no 

longer considered as first-line agents for the treatment of C. glabrata infections 

(Pappas et al. 2015).  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5.3. Echinochandins 

Echinochandins,  including  caspofungin  and  micofungin,  constitute  a  new  class  of 

antifungals approved since 2003 for the treatment of Candida spp. related infections 

(Johnson and Perfect 2003). The efficiency of echinochandins coupled with the low 

associated side effects have made this class the first-line agent for the treatment of 

candidemia,  according to  European and American guidelines  (Cornely et  al.  2012, 

Pappas et al. 2015). These molecules block ß-(1,3)-D-glucan synthase, preventing the 

synthesis of essential glucan for the fungi cell wall (Douglas et al. 1997). The ß-(1,3)-

D-glucan enzyme complex in Candida glabrata consists of a protein complex which 

subunits  are  encoded  by  the  FSK1,  FSK2  and  FSK3  genes  (Katiyar  et  al.  2012). 

Clinical isolates with acquired resistance to echinochandins have rapidly emerged and 

are linked to the acquisition of mutations in FKS genes (Shields et al. 2012, Alexander 

et  al.  2013).  In  addition,  several  isolates  already described as  azole  resistant  have 

shown combined resistance to echinochandins (Pfaller et al. 2012).

Combination of strong adhesion capacity and rapid acquisition of resistance has 

contributed to make C. glabrata a major health concern, especially alarming for 

hospital care (Schelenz 2008, Savastano et al. 2016). Regarding the mechanisms 

involved in this combination, we can find a common denominator : the dynamics of 

the genome of C. glabrata.  

Features including its plasticity (duplication of EPA genes) and its mutable potential 

(ERG, FKS genes) indicate that the role of the genomic structure of C. glabrata is 

prominent in its biology. 
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6. The genome of Candida glabrata 

Genome sequencing of C. glabrata was first performed in 2004 with the CBS138 

strain (Dujon et al. 2004). Phylogenetic analysis confirmed previous studies indicating 

that C. glabrata is closer to S. cerevisiae than to C. albicans (Kurtzman and Robnett 

1998). The sequenced genome size is 12.3 Mb, formed by 13 chromosomes. The 

genome was annotated by homology with S. cerevisiae, and completed by 

transcriptomics data (Linde et al. 2015). C. glabrata contains 5293 protein coding 

genes; 6 ribosomal RNA genes, 68 non-coding RNA genes and 230 tRNA genes. A 

large number of genes of S. cerevisiae, 4372, present an ortholog in C. glabrata. 

Protein alignment of orthologous protein-coding genes between S. cerevisiae and C. 

glabrata indicates an amino acid identity of 54%. Although C. glabrata is considered 

phylogenetically close to S. cerevisiae, it should be noted that this similarity is 

equivalent to the one between humans and zebrafish (Gabaldón et al. 2013). As all 

Nakaseomycetes, the genome of C. glabrata is relatively small compared to S. 

cerevisiae with a size difference of 11.7%, it contains almost twice as less introns (129 

instead of 287 in S. cerevisiae), and no transposons. Compared to S. cerevisiae, C. 

glabrata appears to have lost a significant number of genes after the WGD event. The 

majority of these genes are also absent in Nakaseomyces. and are as follows: BNA 

genes, involved in de novo biosynthesis of nicotinic acid; PHO family of acid 

phosphatase genes; PAU genes family coding for mannoprotein cell-wall, involved in 

anaerobiosis; DAL genes involved in alantoin degradation; the CRF1 gene, repressor 

of the ribosomal proteins expression regulation; the GAL genes, involved in the 

pathway of galactose, the JEN1 gene, coding for a lactate permease, copies of the COX 

(A and B) gene pairs, coding for cytochrome oxidase and the CYC1/CYC7 pair coding 

for cytochrome C1 and its isoform. 

The loss of these genes does not seem to be a characteristic of C. glabrata. 

Nevertheless, C. glabrata is the species among Nakaseomyces that presents the largest 

tandem arrays. These structures are genomic rearrangements resulting from the tandem 
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duplication of a locus, leading to the formation of a gene family. The genome of C. 

glabrata contains five arrays: an array of eight MNT3 genes, coding for alpha-1,3-

mannosyltransferase; an array of eight YPS genes, coding for a protease required for 

cell wall remodeling and for survival in macrophages (Bairwa et al. 2014); an array of 

five unknown genes probably involved in carbohydrate metabolism; an array of three 

PMU genes coding for phosphomutase, involved in phosphate activity induced during 

phosphate-starvation (Orkwis et al. 2010); and an array of three genes coding for an 

aryl-alcohol deshydrogenase. The majority of these genes code for proteins that seem 

to confer an advantage to starvation and survival in macrophages, and hence could 

most likely play a role in the pathogenicity of C. glabrata. 

C. glabrata is strictly haploid and asexual,  even though  it possesses all the genes 

necessary for meiosis, mating and mating-type switching (Gabaldón et al. 2013). Like 

all Nakaseomyces species, C. glabrata possesses the HO gene and the HMR and HML 

cassettes allowing mating-type switching. The HO gene is weakly expressed under in 

laboratory condition, but its overexpression in the type strain CBS138 allowed the 

switch from mating-type alpha to mating-type a (Edskes and Wickner 2013). Moreover 

the sequencing of 33 different isolates of C. glabrata provided evidence that genetic 

material exchange has recently occurred between different isolate,  thereby validating 

the existence of an active sexual mechanism (Carreté et al. 2018). 

The different isolates of C. glabrata show a high genomic diversity. This variability 

is reflected first of all by the karyotype which differs even within isolates from the 

same patient (Shin et al. 2007). Chromosomal changes are generally associated with 

polymorphism in their size (Muller et al. 2009) following reciprocal or non-reciprocal 

translocations of chromosomal arms, or inversions. Karyotype diversity is associated 

with aneuploidy. These modification of the chromosome number implies the 

generation of new small chromosomes containing a centromere and telomeres 

(Poláková et al. 2009), or the complete duplication of a chromosome (Carreté et al. 

2018).  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The karyotype variability was until then often associated with a response to 

antifungal agents, but spontaneous events of complete chromosome duplication have 

been observed in rich medium culture without any selection pressure  (Carreté et al. 

2018). C. glabrata isolates also exhibit high diversity in DNA content. Comparison of 

33 isolates of C. glabrata with the reference strain CBS138 showed that 580 genes are 

unique to the type strain. The greatest genetic variations affect the genes encoding the 

proteins involved in adhesion, and phenotypically corroborate with the adhesion 

capacity of the isolates studied. Most of these genes are located in subtelomeric 

regions which plasticity seems to be linked to a protein involved in telomeric 

silencing, ESC1, and its sequence mutations (Carreté et al. 2018). 

C. glabrata, as well as the other Nakaseomyces, have however a genomic 

characteristic that is invariable within isolates. Indeed, the non-coding RNAs 

composing the ribonucleoprotein complex of the spliceosome (U1 RNA); the 

maturation complex of the 18S-rRNA (U3 RNA); the telomerase (TLC1 RNA) and the 

RNase P (RPR1 RNA) contains large insertions increasing remarkably the size of their 

transcripts. 
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A. Material

I. Primers and DNA fragments 

Primers or DNA fragments (gene blocks) were purchased lyophilized, from Integrated 

DNA Technologies (IDT®), then were resuspended in H2O mQ to a final 

concentration of 100 µM.  Primers and DNA fragments that have been used are listed 

in the following table. 



Material and Methods

Primers (1/2).

Purpose Fragment Orientation Sequence (5’-3’)
Tm 

(°C)

Upstream 
homology

Forward
TGACTTGGGTGTCTCTTTATTTGTATTGC  

68,4

Reverse AGCATCTCTGCCCATATCATAGGA 68,3

Sh ble

Forward
ATCCCTTCCTATGATATGGGCAGAGATGCTC 

CCACACACCATAGCTTCAAAATG 66,9

Reverse
AGTTCTCAATTCTTCCAGCGTAGACCTCCAGC 

TTGCAAATTAAAGCCTTCGAGC 69,5

Downstream 
homology

Forward
TGGAGGTCTACGCTGGAAGAA  

66,3

Reverse
CGCAACGCCAATACGATATCATTAACG  

72,3

Upstream 
homology - 
Synthetic 

Terminator

Forward ACTCACCAGTCTCTTTTGAAACTGC 66

Reverse
TTGAAGCTATGGTGTGTGGGTTTGAAAGATGATA

CTCTTTATTTCTAGACAGTTATATATTA 
AGCGTAATCTGGAACGTCATATGG 

64

Sh Ble

Forward
CCCACACACCATAGCTTCAAAATG  68,3

Reverse
CTGAGATGCTTGAACCAATGGGTGCTTGCAA 

ATTAAAGCCTTCGAGC 69,5

Downstream 
homology

Forward ACCCATTGGTTCAAGCATCTCAG 68,5

Reverse TTTCCGTAATGAAGCTGTCGATGC 70

Upstream 
homology- 

Synthetic promoter

Forward CACACACAAGCATACTGACCC 63,6

Reverse

CACCACCCCGGTGAACAGCTCCTCGCCCTTGCTC

ACCATCCGGCGCCTCCACTCACGCCAACAGTGCT

CTTTTATAAGC 

65,8

GFP
Forward ATGGTGAGCAAGGGCGAG 66,9

Reverse TTAGGATCTCTTGTACAGCTCG 60,6

Synthetic 
Terminator - Sh Ble

Forward

ACGAGCTGTACAAGAGATCCTAATATATAACTGTC

TAGAAATAAAGAGTATCATCTTTCAAACCCACAC

ACCATAGCTTCAAAT 

66,1

Reverse GCTTGCAAATTAAAGCCTTCGA 66,4

Downstream 
homology

Forward
GGGACGCTCGAAGGCTTTAATTTGCAAGCGAAAG

CTCGATAATTCGAGGCAGTTCCAG
66,4

Reverse GCACCAAAGATATTATGTGTAGGTGT 64,6

GFP-RT-qPCR
Forward AGGACGACGGCAACTACAAG 64,6

Reverse AAGTCGATGCCCTTCAGCTC 66,1
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Primers (2/2). 
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Purpose Fragment Orientation Sequence (5’-3’)
Tm 

(°C)

Upstream 
homology

Forward GCCATCTTAAAAAGTCCCTACGATGC 58

Reverse AAGAGTCAGAACTCTCAAGAGTACCCA 58

Sh ble

Forward
ACTCTTGAGAGTTCTTCCCACACACCATAGC

TTCAAAAT 
58

Reverse
ACCACATGTAACCAACCGCGTCTTGCAAATT

AAAGCCTTCGAG 
58

Downstream 
homology

Forward ACGCGGTTGGTTACATGTGGT 58

Reverse CATGACAGTCACATCCCTAGACAGG 58

Insertion site
Forward CTGGACAGCAACCGGGATC 58

Reverse CATGACAGTCACATCCCTAGACAGG 58

Sh Ble Forward
CCCACACACCATAGCTTCAAAATG  

58
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DNA fragments.

Purpose Fragment Sequence (5’-3’)

Ty Terminator TTTTTTTCTTATTTTTTTGT

CgRPR1 promoter

CATTAGATAGATATTGGGGCCATCTTAAAAAGTCCCTA
CGATGCTCTGTTAGGACCCTCAGTGGTTCAGTGGTTTT
TGAAGCTTCCCCTTCCATAGGGGCGACTTCCAGGGCC
ATTGTACGAATGGAAGTGTTAACTTTTTGAAGCCACTA
TTTAAAGAGGGAACGATCCAGAGTTCGAAAC 

Neutral linker GGTTCTGGTGGTGGTTCTGGTGGTGGTTCT

3X-HA 
TACCCATACGATGTTCCTGACTATGCGGGCTATCCCTAT
GACGTCCCGGACTATGCAGGATCCTATCCATATGACGT

TCCAGATTACGCT

Sh ble  promoter

CCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTT
TTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCG
TACCACTTCAAAACACCCAAGCACAGCATACTAAATT
TTCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGT
ACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCG
TTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTT
ATCACGTTTCTTTTTCTTGAAATTTTTTTTTTTAGTTTT
TTTCTCTTTCAGTGACCTCCATTGATATTTAAGTTAATA
AACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTC
TTGTTCTATTACAACTTTTTTTACTTCTTGTTCATTAGA
AAGAAAGCATAGCAATCTAATCTAAGGGGCGGTGTTG
ACAATTAATCATCGGCATAGTATATCGGCATAGTATAAT

ACGACAAGGTGAGGAACTAAACC

CYC1 terminator

CACGTCCGACGGCGGCCCACGGGTCCCAGGCCTCGG
AGATCCGTCCCCCTTTTCCTTTGTCGATATCATGTAATT
AGTTATGTCACGCTTACATTCACGCCCTCCCCCCACAT
CCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTG
AAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGT
ATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTT
CTGTACAGACGCGTGTACGCATGTAACATTATACTGAA
AACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCT

TTAATTTGCAAGGTTGTAATCGAGCTCGAATT

Synthetic terminator TATATAACTGTCTAGAAATAAAGAGTATCATCTTTCAA

UAS C TAGCATGTGA

UAS E TAGCATGTGA

UAS F GGCGCGCCCCTCCTTGAA

Spacer 1 TTAATTAACTTGTAATATTCTAATCAAGCT

Spacer 2 TAAGTT

TATA-box TATAAAAG

Core promoter GCACTGTTGGGCGTGAGTGGAGGCGCCGG
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CRISPR-Cas9 single guide RNA. 
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Coordinates Fragment Sequence (5’-3’) PAM

Chromosome L : 
880147-880167 sgRPR2 TAGAGTGCCAGTGCCACCAG TGG

Chromosome L: 
879849-879823 sgRPR1 TGAGAGTTCTGACTCTTACG CGG

Chromosome B:
89861-89889 sgChrB1 CGAATTATCGAGCTTTCGTA CGG
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II.  Microscope 

All pictures of GFP-transformed yeasts were taken with the LSM700 confocal 

microscope from Zeiss. Images were analyzed with the ImageJ software. 

III. Strains 

E.coli 

For cloning experiments, DH5α E. coli strains (F- Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rK-, mK+) phoA supE44 λ- thi-1 gyrA96 relA1) were 

successively washed in a cold calcium chloride (CaCl2) solution to induce chemo-

competence. 

S. cerevisiae 

The S.cerevisiae S154 and S2 strains of S. cerevisiae were used for complementation 

experiments. These strains are diploid and isogenic to the reference strain S288C 

(Mortimer RK and Johnston JR, 1986). The S154 strain (BY 4719 x BY 4738) with the 

genotype ura3∆0/ura3∆0, trp1∆63/trp1∆63 is auxotrophic for uracil (U) and 

tryptophan (T). The S2 strain was generated from the S154 strain, in which one the 

two allele of the RPR1 gene was replaced by an URA3 wild type copy. This strain, 

with the ura3∆0/ura3∆0, trp1∆63/trp1∆63, RPR1/rpr1∆::URA3 genotype is thus 

prototrophic for uracil and auxotrophic for tryptophan. The deletion in the RPR1 locus 

includes the promoter and terminator sequences of the gene (positions -141 to +1550) 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C. glabrata  

C. glabrata strains used for experiments are the following : the CBS138 wild type 

strain, the auxotrophic strains ΔTL and ΔHTL (his3Δ::FRT leu2Δ::FRT trp1Δ::FRT) 

( Schwarzmüller et al. 2014) and the ΔHTL GFP and ΔTL ∆caglk07678g::HIS3 strains 

generated in the laboratory. Cells were rendered chemo-competent by treatment with 

lithium acetate (LiAc) as described in (Istel et al. 2015). 

Flies  

 Drosophila melanogaster white A5001 (wA5001) strain was used as a wild type 

control and was compared to the MyD88 (Tauszig-Delamasure et al., 2002) immuno-

compromised strain, which is deficient for the activation of the Toll pathway. Flies 

were generously provided by Dr. Dominique Ferrandon 

IV.  Culture media 

Bacteria 

Bacteria were grown at 37°C with agitation in Luria Bertani (LB) medium, composed 

of 1% (w/v) peptone, 0,5% (w/v) yeast extract, 1% (w/v) sodium chloride (NaCl) (plus 

1,4% (w/v) agar for plates). When needed, 100 µg/mL ampicillin were added to the 

medium. 
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Yeasts  

Yeasts were cultured at 30°C with agitation in complete, poor, or selective medium. 

YPD rich medium is composed of 2% (w/v) peptone, 1% (w/v) yeast extract, 2% (w/v) 

glucose (plus 1,4% (w/v) agar for plates). When needed, 400 µg/mL to 1 mg/mL 

Zeocin™ (Invivogen) was added. Nitrogen starvation medium was composed of 

0,017% (w/v) yeast nitrogen base (YNB) without ammonium sulfate ((NH4)2SO4) or 

amino acids, 2% (w/v) glucose and 0.025 % (w/v) (NH4)2SO4. The selective medium 

Sc-His is composed of 0.067 % (w/v) YNB with (NH4)2SO4 without amino acids, 2 

% glucose, 0.0078 % (w/v) CSM -His (Complete Supplement Mixture – His) (plus 1.4 

% (w/v) agar for plates) 

Flies 

Drosophila fly strains were raised at 25°C, under 14h of daylight and 60% humidity. 

They are fed a medium composed of 6.4 % (w/v) organic cornmeal (Priméal), 4.8 % 

(w/v) crystallized sugar (Tereos Syral), 1.2 % (w/v) yeast (Bio Springer), 0.48 % (w/v) 

agar (Sobigel), 0.42 % (w/v) nipagin (VWR Chemicals). Fly food was renewed every 

8 days.  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V. Plasmids 

Yeast plasmids were generated from the vector plasmids pRS313, and pRS314. These 

plasmids include : an origin of replication from E.coli, the centromeric sequence 

CEN6_ARS4 designed to keep a low plasmid copy number in the yeast, and the LEU2  

(pRS313) or TRP1 (pRS314) gene for the selection of transformed yeasts. The 

plasmids derived from the pRS314 vector are described hereafter :  

- pRS-CgRPR1 : plasmid including the wild type locus RPR1 from C. glabrata 

(RPR1Cg). The cloned region comprises the sequence for the RPR1 RNA and the 

promoter and terminator sequences. 

- pRS-promSc-CgRPR1 : plasmid including the CgRPR1 locus under the S. 

cerevisiae promoter sequence. 

- pRS-ScRPR1 : plasmid including the wild type locus RPR1 from S. cerevisiae 

(ScRPR1), with promotor and terminator sequences. 

The pRS315-Zeo (ZeoR/AmpR/CEN) centromeric plasmid was used to amplify the Sh 

ble gene for zeocin resistance. The pRS313-GFP (LEU/AmpR/CEN) centromeric 

plasmid was used to test the efficiency of synthetic promoters. 

VI. Antibodies 

For western blots, mouse primary antibody anti-HA-HRP (Roche), anti-GFP (Abcam) 

and anti-mouse-HRP (GE Healthcare) were diluted in a solution containing 1X PBS, 

0,1 (v/v) Tween20 and 5% dry milk. 
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B. Methods

I. Yeast transformation  

1 to 3 µg of DNA was transformed in the CBS138 C. glabrata strain with 

electroporation, as described in (Istel et al. 2015). Generation time for zeocin-selected 

cells was extended to 6h, according to . Transformed cell were plated on selective 

media YPD supplemented with 400 µg/mL (Alderton et al. 2006) to 1 mg/mL 

Zeocin™ or Sc -His. 

II. Drosophila infection 

5 to 7-day old female flies were selected and transferred to a yeast-free medium 48h 

prior to the infection, at 29°C. C. glabrata in stationary phase were diluted in 250 µL 

of fresh medium at an OD600nm of 15. Flies were anesthetized with CO2 and pricked 

under the wing with a needle soaked with C. glabrata. Infected flies were placed at 

29°C and their survival was monitored every 24h. Survival curves were analyzed with 

the software Prism 6 (GraphPad). 

III.Sporulation and dissection of tetrads 

A drop of diploid cells harvested in exponential phase of growth was placed on AcK 

agar medium and incubated 4 days at 30°C. The formed cells and asci were 

resuspended in 200 µL sterile water and the digestion of the asci wall was induced by 

the addition of 75µL of Arthobacter luteus lyticase (20 mg/mL Sigma-Aldrich®). 

After 15 min incubation at 25°C, 100 µL of the suspension were deposited on agar 

medium. The spores released from the asci but still grouped into tetrads were then 

collected and isolated using a micromanipulator (Singer ®). 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IV. Plasmids amplification 

5 µL of ligation reagent was added to 50 µL of DH5α chemo-competent bacteria. Cells 

are incubated on ice for 30 minutes then heat shocked at 42°C for 45 secondes, 

followed by 2 minutes on ice. 500 µL of LB medium were added to the transformed 

cells, which were then incubated with agitation at 37°C for 1h. Bacteria were plated on 

LB medium containing 100 µg/mL ampicillin. Plasmid DNA was extracted with the « 

GeneJET Plasmid Miniprep » kit from Thermo Scientific 

V. Genomic DNA extraction 

Yeasts were cultured overnight in the appropriate medium at 30°C and genomic DNA 

was extracted as described in (Harju et al. 2004) For optimal extraction, DNA was 

precipitated with isopropanol for 30 minutes at -80°C. 

VI. RNA extraction 

A single colony of C. glabrata was cultured in 45 mL of liquid medium with agitation, 

at 30°C, until it reaches exponential growth phase (OD600nm = 3). Cells were 

centrifuged at 9000 g for 5 minutes and the pellet was re-suspended in 1 mL of « TRI 

Reagent® » (Sigma-Aldrich). The solution was transferred to a « Lysing Matrix Y 

» (MP Biomedicals) tube and vortexed for 5 minutes. The lysed cells were transferred 

in a fresh tube containing 200 µL of cold chloroform. After homogenization and 

incubation at room temperature for 15 minutes, tubes were centrifuged at 12 000 g for 

15 minutes, at 4°C. RNAs were isolated following the manufacturer’s instruction. 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VII. Protein extraction 

A single colony of C. glabrata was cultured in 45 mL of liquid medium with agitation, 

at 30°C, until it reaches exponential growth phase (OD600nm = 3). Yeasts were 

centrifuged at 4200 g for 5 minutes and the pellet was re-suspended in 900 µL of lysis 

buffer (20 mM Tris-HCl [pH 7.2], 50 mM NaCl, 0.1 mM EDTA, 5 mM β- 

mercaptoethanol, 0.5 % (v/v) NP40, 1 tablet « PierceTM Protease Inhibitor Tablets, 

EDTA- Free » (Thermo Scientific). The solution was transferred to a « Lysing Matrix 

Y » (MP Biomedicals) tube and the lysis was realized with the « FastPrep-24TM 5G » 

kit from MP Biomedicals. Two lysis cycles of 40 seconds followed by 5 minutes on ice 

were performed. Cells were then incubated on ice for 30 minutes and centrifuged at 99 

000 g for 30 minutes. Supernatant was harvested and the concentration was 

determined with a Bradford assay. 

VIII. PCR amplification 

PCR amplification were performed from a plasmid (10 ng/µL), from genomic DNA 

(50 ng/µL) or from 1 µL of a re-suspended colony of C. glabrata diluted in 20 µL of 

sterile water with 0,5 µM of forward and reverse primers, 200 µM dNTPs, the Phusion 

High-Fidelity 1X buffer and 0.4 U of PhusionTM High-Fidelity DNA polymerase 

(Thermo Scientific). Amplification was performed according to the manufacturer’s 

instruction, and hybridation temperatures were adapted to the primers used. In 

addition, a 3 minute-denaturation step was realized for colony PCRs. Amplification 

products were separated on an agarose gel (1,5% (w/v) agarose) by electrophoresis, in 

1X TBE buffer. The gel was incubated in ethidium bromide and analyzed under UV 

light. PCR products were purified with the « Wizard® SV Gel and PCR Clean-Up 

System » kit (Promega). 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IX. DNA fragment assembly by « Gibson Assembly® » 

PCR fragments were assembled together or cloned in a plasmid with the « Gibson 

Assembly® Master Mix » kit (New England Biolabs®). Assembled fragments were 

amplified by PCR, and transformed into the CBS138 C. glabrata strain. Assembled 

plasmids were transformed in the DH5α chemo-competent bacteria. 

X. Reverse transcription 

1 µg of total RNA was retro-transcribed with the « Maxima First Strand cDNA 

Synthesis Kit for RT-qPCR with dsDNase » kit (Thermo Scientific). For each sample, 

a control condition without retro-transcriptase (RT-) and a control without RNA (No 

Template Control, NTC) were added. 

XI. Quantitative PCR (qPCR) 

RT-qPCR reaction mix was prepared in a total volume of 10 µL, from 12,5 ng cDNA 

and with the primers described in (mettre le numéro du tableau). The « Maxima SYBR 

Green/ROX qPCR Master Mix » kit (Thermo Scientific) was used following the 

manufacturer’s instructions. An additional step was performed in order to calculate the 

melting temperature, by increasing the temperature by 0,5°C every 5 seconds, from 55 

to 95°C. Measurements were automatically executed by the thermocycler « CFX96 

TouchTM Real- Time PCR Detection System » (BioRad Laboratories) and analyzed 

with the CFX Manager (BioRad Laboratories) et Prism 6 (GraphPad) softwares. 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XII. Western blot analysis 

Protein extracts were boiled at 95°C for 5 minutes in loading buffer (0.015 % (w/v) 

bromophenol blue, 5 % (v/v) glycerol, 1 % SDS). 30 µg of proteins were loaded on a « 

NovexTM WedgeWellTM 10% Tris-Glycine » gel (Invitrogen) in a 1X TGS buffer 

and electrophoresis was run at 110V for 15 minutes, then 170V for 1h. Proteins were 

transferred on a nitrocellulose membrane with transfert buffer (1X TGS, 20% (v/v) 

EtOH) at 90V for 45 minutes. The membrane was incubated with agitation in milk for 

20 minutes at room temperature, then for 2h in primary antibodies (anti-HA-HRP ; 1:5 

000) or overnight, at 4 °C (anti-GFP ; 1:1 500). The membrane was washed 3 times 

with PBS-T (1X PBS, 0.1 % (v/v) Tween-20) for 10 minutes prior to the incubation 

with the secondary antibody anti-mouse-HRP (1:10 000 ; for GFP detection) for 4h. 

The membrane was washed 5 minutes in PBS-T and proteins were revealed by 

chemoluminescence with the « ECLTM Prime Western Blotting System » kit (GE 

Healthcare). 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Chapter I

Context

  

Studies conducted on Candida glabrata were mainly driven by a need to understand 

its pathogenicity and to subsequently find adequate tools in order to fight this threat.  

The constant search for particularities within C. glabrata and related species, finally 

shed light on unexpected features reconsidering theories hitherto admitted. On a 

broader scale these findings have provided new keys to understand the biology of 

opportunistic pathogens, the evolution of fungi and even the molecular biology of 

eukaryotes. 

 In this context, I have attempted throughout my thesis to characterize one of the 

peculiarities of C. glabrata : its remarkably large nuclear Ribonuclease P. First 

identified in 2005, the RNA moiety of this Ribonuclease P (RNase P) contains three 

major insertions, conferring a total length about 3 times larger than the average 

eukaryotic RNase P RNA (Kachouri et al. 2005). This finding is in contradiction with 

the evolution of eukaryotic RNase P, which tend to restrict their RNA moiety and 

increase their protein complexity. This chapter reports my investigation of the role of 

these insertions in the biology of C. glabrata and is organized as follows: 

i) An overview of the Ribonuclease P complex and its role within the three domains 

of life, which will focus mainly on eukaryotic RNase P. 

ii) The results section, intentionally merged with the discussion to provide a better 

insight of the methodological choices made during this study. 

iii) A conclusion summarizing each results and placing them in a broad scope 

!40



Chapter I

Overview

I. The Ribonuclease P 

Ribonuclease P ( RNase P) is an endonuclease enzyme whose main activity resides 

in the processing of the 5′-end of the precursor transfert RNA (pre-tRNA). This 

enzyme is widespread in the 3 domains of life (Archea, Bacteria and Eukarya), in the 

form of a ribonucleoprotein complex, consisting of an RNA component associated 

with one or more proteins depending on the organism (Evans et al. 2006). The 

catalytic activity is provided by the non-coding RNA subunit of the complex, which is 

by definition a ribozyme (ribonucleotide enzyme). Although group I intron derived 

from Tetrahymena was the first RNA described as possessing catalytic activity (Kruger 

et al. 1982), the RNA subunit of the RNase P is in fact the first described ribozyme 

acting in trans (Guerrier-Takada et al. 1983). To date, RNase P RNA, and ribosomal 

RNA are the only RNAs described as universal true enzymes capable of performing 

multiple catalytic cycles in vivo. The strong structural homology of the RNase P RNA 

subunit across all domains of life suggests its presence within a universal common 

ancestor (Chen and Pace 1997). RNase P is even considered today as a remanence of 

the pre-biotic era, the « RNA world », in which chemical reactions were only catalyzed 

by RNA molecules (Altman and Kirsebom 1999). 
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I.2. Substrate recognition. 

 Studies on the recognition of the RNA substrate by RNase P have focused 

mainly on the main RNA substrate, the premature tRNA (Figure 3.2). In the 3 

domains of life, the tRNA is transcribed as a precursor with a 5' leader sequence 

processed by the RNase P and a 3' trailer sequence processed by the RNase E. In 

bacteria, both the RNA and protein subunits of RNase P contribute to the tRNA 

recognition, but the sole RNA subunit has been shown to be sufficient to induce a 

specific cleavage in vitro (Guerrier-Takada et al. 1983). The protein subunit interacts 

specifically with the 5' sequence leader (Zahler et al. 2003). The RNA of the RNase P 

directly recognizes the RCCA pattern; the nucleotides of the TΨC loop and the D loop; 

and finally the acceptor-stem (Kirsebom 2007). Concerning the eukaryotic RNase P, 

the precise mechanism of substrate recognition is less described  compared to bacteria. 

However it was suggested that rather than specifically recognizing elements of the 

tRNA, recognition of the tRNA is based on a « measuring mechanism » of the size 

resulting from the stack of the T-domain and the acceptor-stem (Marquez et al. 2006). 

This mechanism therefore suggests a high potential to recognize other substrates than 

tRNA precursor. 
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I.3. Substrate diversity 

 Beyond tRNA substrate, RNase P is also involved in the recognition and 

cleavage of many other RNAs. Bacterial RNase P is involved in the cleavage of RNA 

substrate adopting tRNA-like structure as : transfert-messenger RNA (tmRNA) 

precursors; Turnip Yellow Mosaic Virus (TYMV) viral RNA, RNA from ColE1 

plasmid; and long-nuclear retained RNA  (Giegé et al. 1993, KoMine et al. 1994, Jung 

and Lee 1995, Wilusz et al. 2008). These data therefore indicate that the tertiary 

structure seems more important than the sequence itself. However, bacterial RNase P 

can also target substrates that do not exhibit a pre tRNA-like form such as the 4.5S 

RNA and bacteriophage Φ80-induced RNA (Bothwell et al. 1976, Peck-Miller and 

Altman 1991). Their recognition involve the protein subunit of the complex. Finally, 

bacterial RNase P is also involved in the maturation of polycistronic mRNA and 

bacteriophage RNA (Alifano et al. 1994, Hartmann et al. 1995). Concerning 

eukaryotes, temperature sensitive RNase P mutants in S. cerevisiae have revealed a 

panel of non-tRNA substrate cleaved by RNase P including: mRNAs encoding 

subunits of the three polymerase RNAs, C/D box snoRNA and intergenic regions 

transcripts (Marvin et al. 2011). 
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II.1. Bacterial RNase P.  

 Bacterial RNase P is composed of an RNA subunit of about 400 nt , associated 

with a small 14 kDa protein, named C5 protein (Brown 1998). 

A. RNA subunit 

 The secondary structure of bacterial RNase P RNA is highly conserved among 

species and can be divided into two  categories (Figure 3.4) : Ancestor type (A-type) 

such as Escherichia coli RNase P RNA, and Bacillus type (B-type) such as Bacillus 

subtilis RNase P RNA. These two structures are very similar and have been described 

as exchangeable in vivo (Wegscheid et al. 2006). The type-A RNase P RNAs are the 

most common in bacteria. These RNAs have specific domains not found in the other 

organisms: domains P6, P13, P14, P16 and P17 (Haas and Brown 1998). These 

domains are crucial for RNase P since they create long-range interactions stabilizing 

the tertiary structure of the RNA. The P16 and P17 domains interact with the bulge 

between P7 and P5 forming the P6 helix. The P13 domain interacts tertiary with P12 

and P14 interacts with P8 domain. B-type RNase P RNAs do not have P16/P17/P6 and 

P13/P14 domains but instead exhibit P5.1/P15.1 and P10.1 structures that seem to 

have the same structural stabilization role (Haas and Brown 1998). 

B. Role of the bacterial RNase P protein subunit. 

 The C5 protein is highly conserved among bacterial species but does not appear 

to play the same roles within the holoenzyme. Although in both cases C5 protein is 

involved in the recognition of the 5’ leader sequence of a pre-tRNA, in E. coli the 

protein stabilizes the secondary structure of the RNA subunit (Westhof et al. 1996) 

while in B. subtilis the protein increases the substrate specificity of the RNase P (Crary 

et al. 1998). 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II.2. Archaeal RNase P.  

 Archaea have an intermediate place in the evolution of life. Neither bacterial, 

nor eukaryotic, archaea still present similar characteristics with these two types of 

organisms. The archaeal RNase P is consistent with the intermediate nature of the 

organisms since protein subunits are close to the eukaryotic RNase P, and RNA moiety 

presents similar features to bacteria, with two main classes of RNase P RNA : 

Ancestral type (A-type) similar to the bacterial A-type; and the type-M RNase P RNA 

(figure 3.5) (Jarrous and Gopalan 2010). The M-type of archaea is closely similar to A-

type but lacks the P8 and P16/P17/P6 domains. Compared to bacterial RNase P, most 

archaeal RNase P RNAs have lost complexity but have acquired a increased number of 

associated proteins. These proteins, which number varies between 2 and 5, have a 

strong homology with eukaryotic RNase P proteins (Jarrous and Gopalan 2010). The 

role of these proteins seems to be linked to the stabilization of the three-dimensional 

structure of the RNA subunit, in response to the absence of domains present in 

bacteria, and might be involved in substrate recognition. 
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II.3. Eukaryotic RNase P. 

 The RNase P activity was divided and localized according to the sub-cellular 

compartments within the eukaryotes. This partitioning gave rise to the  emergence of 

various forms of RNase P which are specialized according to their localization. 

Eukaryotic cells present a nuclear RNase P and organellar RNase P. Moreover the 

nuclear RNase P shares 80% to 90% of its protein components with the nuclear Rnase 

MRP (historically named Mitochondrial RNase P) which is widespread in eukaryotes 

(Marquez et al. 2006). The RNase MRP RNA has a similar structure to RNase P, and 

sequence conservation indicates that it has evolved from RNase P. Nevertheless, 

RNase MRP has a different role from RNase P since it matures ribosomal RNAs but 

does not overlap with the specific substrate of the RNase P (Esakova and Krasilnikov 

2010). 

A.  Nuclear RNase P. 

 Since this thesis  focuses on yeasts, the RNase P of the yeast model S. cerevisiae 

will be mainly described here. The RNA component of S. cerevisiae RNase P (named 

RPR1 for RNase P RNA) has a size of 369 nt. and contains all the domains 

universally found in the consensus structure (Figure 3.6) (Marquez et al. 2006). The 

domains for tertiary interaction stabilization commonly found in bacteria or archaea 

are absent in eukaryotic RNase P RNA. Some domains are located at the same position 

but they share no similarity of sequence, structure or function with bacterial 

counterparts. The nomenclature of these domains is often modified to avoid confusion 

and are called "eukaryal pair region", abbreviated as "Ep". The RNA component of the 

eukaryotic RNase P contains the eP8, eP9, eP15 and eP19 domains. The RNA 

component of S. cerevisiae RNase P, as well as all eukaryotic RNA of RNase P, has the 

particularity of presenting the P3 domain, essential for the docking of protein subunits 

(Perederina et al. 2007). 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Figure 3.6 Secondary structure of the RNase P RNA and the RNase MRP RNA 

of S. cerevisiae . Adapted from (Ellis and Brown 2010) 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B. Protein subunits of the nuclear RNase P. 

The nuclear RNase P of S. cerevisiae is composed of nine proteins: Pop1, Pop3, 

Pop4, Pop5, Pop6, Pop7, Pop8, Rpp1 and Rpr2 (Table 2). Each of these proteins is 

essential for cell survival and were thus hypothesized as involved in essential 

maturation processes (Chamberlain et al. 1998). Only Pop1, Pop4, Pop6 and Pop7 

proteins are directly bound to the RNase P RNA (Houser-Scott et al. 2002). Although 

the components of the nuclear RNase P of S. cerevisiae have been described almost 

two decades ago, the first in vitro reconstitution of the full holoenzyme was performed 

in 2018 (Perederina et al. 2018). This study showed that proteins form two sub-

complexes: the Pop6/Pop7 complex and the Rpp1/Pop5/Pop8 complex. Moreover, 

only Pop1 and Pop6/Pop7 proteins are able to bind directly to RNA without the need 

of any other proteins. Concerning Pop4, it is  actually not able to bind to RPR1 RNA 

without the presence of the Rpp1/Pop5/Pop8 sub-complex. 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Table 2.  RNA and protein moieties of the RNase P complex . Homologous 

protein genes are on the same line. Data taken from (Walker and Engelke 2006) 

 

Yeast  

S. cerevisiae

Mammalian 

H. sapiens

Archaeal 

P. horokoshii

Bacterial 

E. coli

RNA gene

RPR1 H1 PH rnpB M1

Number of proteins

9 10 4 or 5 1

           Protein genes

C5 (rnpA)

POP1 hPOP1

POP3 RPP38

POP4 RPP29 PH1771

POP5 hPOP5 PH1581

POP6

POP7 RPP20

POP8

RPP1 RPP30 PH1877

RPR2 RPP21 PH1601

RPP40

RPP25

RPP14
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C. Role of the protein subunits. 

Pop1 protein is required for the catalytic activity by contributing to the folding of 

RPR1 RNA and the substrate binding. The Pop6/Pop7 sub-complex has a purely 

structural role: the heterodimer binds to the strictly eukaryotic P3 domain and provides 

an interface to the Pop1 protein. The Pop8 protein allows the interaction between Pop1 

and Rpp1/Pop5. The Rpp1/Pop5 sub-complex is required for catalysis and is bind to 

the vicinity of the catalytic core of the RPR1 RNA. In addition Rpp1/Pop5 allows 

Pop4 binding on RNA. Pop4 is bound to the substrate recognition domains but its 

presence is not essential to the precise cleavage of the pre-tRNA. 

D. Functions of the eukaryotic nuclear RNase P. 

As previously described, the nuclear RNase P is involved in cleavage of various 

substrates. Recent studies on human cells showed that RNase P directly interacts with 

various cellular mechanisms such as replication, DNA repair, and chromatin 

remodeling (Jarrous 2017). RNase P has been described as directly interacting with 

RNA transcription by RNA polymerase I and III (Reiner et al. 2008, Serruya et al. 

2015). Concerning chromatin remodeling, protein subunits of the human RNase P 

(Rpr2, Pop4 and Pop1 homologous proteins) induce transcriptional silencing by 

repressing histone H3.3 recruitment (Newhart et al. 2016). These studies show 

evidence of the versatile function of RNase P, and its potential entanglement in all 

major intracellular mechanisms. 
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II.4.The diversity of eukaryotic RNase P. 

The form of a ribonucleoprotein complex, which RNA subunit contains the catalytic 

activity, is universally conserved. However several exceptions have appeared through 

the evolution of eukaryotes, in the form of strictly proteinaceous RNase P, named 

PRORPs for PROteinaceous RNase P (Gobert et al. 2010). These proteinaceous 

RNase P were first discovered in human mitochondria (Holzmann et al. 2008) and 

plant organelles (Gobert et al. 2010). Furthermore, the RNase P activity of the PRORP 

has been described as substituting ribonucleoprotein complex in the nucleus of 

Arabidopsis thaliana and Trypanosoma (Gutmann et al. 2012, Taschner et al. 2012). 

The emergence of these protein forms seems logical according to the evolution of 

RNase P through the 3 domains of life. Indeed, as discussed above, the complexity of 

the RNA component has decreased in favor of an increasing protein complexity. 

Nevertheless, the conservation of RNase P as a large ribonucleoprotein complex in the 

vast majority of eukaryotes is currently enigmatic. The maintenance and biosynthesis 

of this large complex appears to be  disproportionate to perform a simple hydrolysis of 

a phosphodiester bond; whereas a single protein as PRORP is able to do so. A study 

conducted in 2014 reinforced this reconsideration (Weber et al. 2014). This work 

reported a successful rescue of the RNase P RNA component deletion of S. cerevisiae 

by the PRORP3 protein from A. thaliana. This exchange showed no effect on the 

fitness of S. cerevisiae and surprisingly, it did not prevent the cleavage of alternative 

substrates by the nuclear RNase P. The substitution of RNase P even appeared to have 

a positive impact on yeast fitness under saline stress conditions. 
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Why RNase P is conserved as a ribonucleoprotein 

complex  ? 

This question does not have a clear answer yet. However some elements can be 

brought by changing the scope of the question as follows: What is the driving force 

behind the emergence of proteinaceous RNase P ? The major hypothesis involves the 

organelles and the high efficiency of the ribonucleoprotein version of the RNase P . 

Indeed RNase P in the form of a ribonucleoprotein complex are much more effective 

than PRORPs and recognize a very large number of substrates (Howard et al. 2013). 

The recognition of substrates alternative to tRNA seems to involve the protein subunits 

of the RNase P, via protein-protein interactions close to the substrate or by driving the 

subcellular localization of the complex. The majority of cellular RNAs are bound to 

proteins, which may be eventually discriminants to induce or prevent cleavage by 

RNase P. Compared to the nucleus, organelles express less RNA binding proteins and 

the high catalytic efficiency of the ribonucleoprotein version of RNase P could be a 

danger for organellar RNAs. An appropriate solution to this vulnerability would be an 

evolutive driving force for the emergence of PRORPs, but also for the maintenance of 

nuclear RNase P in ribonucleoprotein form. Indeed, unlike proteins, large nuclear 

RNAs are not imported into organelles (which could explains why mitochondria 

transcribe their own ribosomal RNA). Maintaining RNase P in the form of a large 

ribonucleoprotein complex could represent a way  to  contain the RNase P and its high 

catalytic efficiency outside the organelles. In conclusion, the maintenance of a 

ribonucleoprotein complex through the three domains of life and the emergence of 

PRORP in eukaryotes would be two sides of the same coin. 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III. The nuclear RNase P of C. glabrata 

 The opportunistic pathogen C. glabrata has several genomic features, which 

have been described in the general introduction. Among these peculiarities, C. 

glabrata presents large insertions within several non-coding RNA genes, conferring 

unprecedented sizes to the transcripts. The first RNA identified with this characteristic 

in C. glabrata was RPR1, the RNA component of RNase P (Kachouri et al. 2005). 

This RNA acquired three new domains: p7a (230 nt.), p7.1 (31nt.) and eP8.1 (485 nt.) 

conferring to the RPR1 RNA a surprising length of 1149 nt. (Figure 3.7). Compared to 

S. cerevisiae and its 369 nt. RPR1 RNA, the counterpart of C. glabrata is almost three 

times larger. Initially considered as potentially intronic sequences, the experiments 

performed on RPR1 showed that these additional domains remain present in the active 

form of the RNase P holoenzyme (Kachouri et al. 2005). The RPR1 RNA of C. 

glabrata exhibits all the conserved domains found in eukaryotes and the additional 

domains are all inserted within the Specificity Domain (S-Domain). The presence of 

these insertions therefore does not seem to substitute essential domains of the RNase P 

RNA. Moreover, their location within the specificity domain seems to indicate a 

potential role in the recognition of RNA substrates. 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Figure 3.7 Schematic secondary structure of the RNase P RNA of C. glabrata. 

The structure is based on the secondary structure of S. cerevisiae and data from 

(Kachouri et al. 2005). Additional domains (P7a, P7.1 and eP8.1) are highlighted with 

specific color. For convenience this schematic view does not represent the accurate 

size of the additional domains. Domain P7a : 230 nt./ P7.1 : 30 nt. / eP8.1: 485 nt.
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 Candida glabrata was the only known species with such a large RNase P RNA 

moiety, and the emergence of additional domains was hypothesized to confer 

somehow an advantage to the pathogenicity of the yeast. However, the genome 

sequencing of all species within the Nakaseomyces clade in 2013 (Gabaldón et al. 

2013) has once again changed the situation: every Nakaseomyces species present a 

large RNA RPR1 (Table 3). The potential benefit of additional domains for the 

pathogenicity of C. glabrata was therefore excluded since even species described as 

"environmental" have the same particularity. Moreover, the largest RNase P RNA 

identified is found in N. delphensis (1368 nt.), species described as non-pathogenic. 


The emergence of additional domains in the RNase P RNA moiety occurred 

therefore within the common ancestor of all Nakaseomyces species. This observation 

goes against the evolution of the eukaryotic RNase P which dynamics tend towards a 

shortening of the RNA moiety in favor of an increase complexity of the protein 

subunits. A simple question therefore emerges from this observation: Why such a large 

RNA moiety of RNase P has been conserved within the Nakaseomyces? 

I have therefore attempted to provide some elements of an answer by focusing on the 

nuclear RNase P of C. glabrata. 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Table 3.  RNA moiety of the nuclear RNase P of  S. cerevisiae and the   

  Nakaseomyces clade. 

Genes IDs and RNA length were extracted from the GRYC database (gryc.inra.fr) 

Species Gene ID
RPR1 

length (nt)

Human 

pathogen

Saccharomyces cerevisiae RPR1 369 No

Candida castelli CACA0s21e03949r 607 No

Nakaseomyces 

bacillisporus
NABA0s02e00803r 936 No

Candida nivariensis CANI0s02e03047r 1057 Yes

Candida bracarensis CABR0s26e00792r 1068 Yes

Candida glabrata CAGL0L08044r 1149 Yes

Nakaseomyces delphensis NADE0s06e00726r 1368 No
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Aim of the study 

Throughout my thesis work, I have attempted to characterize the role of the additional 

domains within the RNA moiety of C. glabrata RNase P by answering two major 

questions: 

1) Are these domains essential to the catalytic activity of the RNase P of C. glabrata ? 

The additional domains could simply   be implicated in structural stabilization, such 

as the peripheral helices of the bacterial RNase P. Their presence would therefore be 

essential for  the catalytic activity of the RNase P holoenzyme. In contrast, if these 

domains provide only new non-canonic functions to the RNase P, the deletion of the 

additional domains will not prevent the holoenzyme from   achieving  the essential 

pre-tRNA maturation activity. 

2) Does the presence of these domains modify the composition of the protein moiety 

RNase P ?  

If the additional domains have a role in structural stabilization, then some of the 

holoenzyme proteins described in eukaryotes may be superfluous. On the other hand, 

if the emergence of additional domains is a constraint, the RNase P complex of C. 

glabrata could display new proteins which might either be involved in: i) maintaining 

a functional structure of the RNA despite the constraints induced by the presence of 

large insertions; or ii) providing new functions to the RNase P which could involve the 

holoenzyme in new non-canonical processes. 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Results and discussion 

A.  Swapping the RNAse P RNA moiety between C. glabrata 

and S. cerevisiae.

In order to assess the biological role of a gene or a feature, the historical method used 

in molecular biology relies on a shutdown of its expression. However, in the case of 

the RPR1 RNA, its  characterization/analysis faces two major challenges: 

- i) RPR1 is an essential gene, C. glabrata being strictly haploid the direct deletion is 

therefore not possible. In the case of an essential gene encoding a protein, indications 

concerning its function can be provided by inducing its overexpression under the 

dependence of a strong constitutive promoter. The non-coding RNA RPR1 is under the 

dependence of an RNA polymerase III promoter. Because the efficiencies of these 

promoters are not documented, the modulation of its expression is currently a difficult 

task.  

- ii) The precise deletion of a domain is only possible if the structure of the given RNA 

has been resolved. Indeed, the function of an RNA depending strongly on its structure, 

its modification is thus risky and is very likely to generate artifactual results. The 

slightest deletion or unexpected insertion of a ribonucleotide could weaken, or create, 

a stem-loop and dramatically modify the overall structure and the RNA activity. The 

available structural data for C. glabrata RPR1 are solely based on structural 

alignments. Note that the positioning of additional domains may differ by several 

nucleotides depending on the alignment method and the investigator. These data 

therefore do not allow to have a precise structure of RPR1. 
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To identify the role of the additional domains of RNase P RNA, the method I used 

consisted of a swap of the RPR1 gene of C. glabrata with a functional gene lacking 

additional domains. For this purpose we choose the RPR1 gene of the model yeast S. 

cerevisiae. The swap was made in both ways: i) a substitution of the  S. cerevisiae o 

RPR1 with the version of C. glabrata; ii) a substitution of the C. glabrata RPR1 gene 

with the version of S. cerevisiae. 

The following hypotheses have been tested throughout these experiments : 

1) If the additional domains of RPR1 are involved in the conservation of the essential 

activity of the RNase P, then the RPR1 gene of C. glabrata could replace a version 

without additional domains. Consequently, S. cerevisiae would be able to survive by 

expressing the RPR1 gene of C. glabrata. The opposite case would suggest that RPR1 

needs C. glabrata specific cofactors to ensure the holoenzyme activity. 

2) If the additional domains of RPR1 are only intended to provide additional functions 

to the RNase P, then C. glabrata is able to survive without their presence. 

Consequently, C. glabrata would be able to survive by expressing the RPR1 gene of S. 

cerevisiae. The opposite case would suggest that the additional domains of RPR1 are 

essential for a functional activity of the RNase P. 

The anticipated results and their implication to the characterization of the role of the 

additional domains are summarized in the following table. 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Table 4.  Anticipated results and conclusion of the swap experiments of RPR1  

  gene in S. cerevisiae and C. glabrata. 

Species
 Survives with 

additional domains  
in RPR1

Survives without 
additional domains in 

RPR1 

Potential role of the 
additional domains

C. glabrata / Yes
Provide new non-essential 
functions to the RNase P

S. cerevisiae Yes / 

C. glabrata / No
Involved in the conservation 

of essential activity 
S. cerevisiae Yes / 

C. glabrata / Yes
Provide new non-essential 
functions to the RNase P  

and 

need specific cofactors to 
form an active structure S. cerevisiae No / 

C. glabrata / No Specific cofactors are 
essential for the  
RNase P activity

S. cerevisiae No / 
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I.  Replacement of the S. cerevisiae RPR1 gene with the 

RPR1 gene from C. glabrata. 

The diploidy of S. cerevisiae is a major advantage for the investigation of essential 

processes. It enables notably the deletion of one of the two copies of an essential gene, 

without compromising the cell survival. For this purpose, the RPR1 gene of S. 

cerevisiae (referred from now to ScRPR1 gene) was disrupted within a diploid strain of 

S. cerevisiae named S2 strain (derived from the crossing of BY4719 and BY4738 

strains), by the insertion of the genetic marker URA3 within the RPR1 locus. To 

determine if the RPR1 gene of S. cerevisiae can possibly be exchanged by the C. 

glabrata version (referred from now to CgRPR1), complementation tests were 

performed (Figure 4.1). The S2 strain of S. cerevisiae has only one copy of the 

ScRPR1 gene (RPR1/rpr1∆::URA3), it was first transformed with the pRS-CgRPR1 

plasmid containing the RPR1 gene of C. glabrata, under its own promoter. In order to 

select the transformed cells, the plasmid contains the genetic marker TRP1, which 

confers to the S2 strain a prototrophy to tryptophan. The transformed strain S2 thus 

expresses both versions of the RPR1 gene. To generate cells containing only one copy 

of the RPR1 gene, i.e. to form haploid cells, the meiosis of the S2 diploid strain was 

triggered on AcK medium (Figure 4.1). This meiosis event, called sporulation, led to 

the formation of 4 haploid cells contained in an ascus. Therefore, for each haploid cell 

two different cases can occur: i) the haploid cell includes the wild-type endogenous 

ScRPR1 gene or ii) the haploid cell includes the ScRPR1 gene disrupted by the URA3 

marker. Concerning the segregation of the plasmid pRS-CgRPR1, it comprises the 

centromeric sequence CEN-ARS enabling in most cases, the vector to be present in all 

haploid cells generated after meiosis. The tetrads obtained were dissected by micro-

manipulation after digestion of the ascus wall by zymolyase and then placed on YPD 

medium.  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Concerning the complementation by the pRS-cgRPR1 plasmid, no tetrads resulting 

from a diploid transformed by the vector pRS-cgRPR1 were totally viable and only 2 

out 4 spores within each tetrad were viable on rich medium (Figure 4.2). To determine 

their genotype, all the 256 spores obtained were streaked onto synthetic medium 

without uracil (SC-U). None of the 256 spores growing on YPD rich medium was able 

to grow on SC-U medium. These 256 spores revealed a Ura- phenotype, and 

consequently expressed the scRPR1 wild-type gene.  

In conclusion, the pRS-cgRPR1 construction was not sufficient to complement the 

loss of the endogenous S. cerevisiae locus.  

Within the plasmid pRS-cgRPR1, the CgRPR1 gene was placed under the 

dependence of its own promoter. In order to avoid the possible bias associated with the 

use of an exogenous promoter in S. cerevisiae, a new plasmid called pRS-promSc-

CgRPR1 was designed. As indicated by its name, the CgRPR1 gene has been placed 

downstream the endogenous RPR1 promoter of S. cerevisiae. This plasmid was 

transformed within the S2 strain and the same complementation experiments described 

above were performed. Again, all tetrads obtained after meiosis comprised only 2 

viable haploid cells out of 4. The phenotype of 256 viable spores was tested by 

transplanting on SC-U medium and as previously all spores showed a Ura- phenotype. 

Like the plasmid pRS-RPR1, these data indicate that the pRS-promSc-CgRPR1 

plasmid is not likely to rescue the loss of the endogenous locus in S. cerevisiae.  

The RPR1 gene of Candida glabrata is then not able to substitute functionally its 

ortholog in S. cerevisiae. 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Figure 4.2. Viability test of meiosis products. After sporulation of the S2 strain 

transformed by vectors pRS-scRPR1, pRS-CgRPR1 and pRS-promSc-CgRPR1, the 

tetrads were dissected and separated on YPD. Through meiosis, the transformed 

vectors passed to the progeny by Mendelian segregation. For each S2 strain 

transformed, 128 tetrads were dissected and observed, and the number of complete 

tetrads was assessed. The presence of full viable tetrad indicates that the construction 

is able to complement the deletion of the endogenous RPR1 locus. The pRS-CgRPR1 

and pRS-promSc-CgRPR1 were not able complement the deletion of the ScRPR1 

gene. 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II.  Replacement of the C. glabrata RPR1 gene with the 

RPR1 gene from S. cerevisiae. 

In order to confirm the inability of exchanging the RPR1 gene, the same experiment 

was performed in the genome of C. glabrata. As C. glabrata does not present a diploid 

form, the exchange of the essential gene RPR1 was carried out in two distinct stages, 

namely: i) the integration of the ScRPR1 gene into the genome of C. glabrata followed 

by ii) the disruption of the endogenous locus by a selection marker. 

a. Integration of ScRPR1 into the genome of C. glabrata. 

The integration site selected for the ScRPR1 gene is located in a gene desert within 

the B chromosome (the detection of this site and its advantages are discussed in 

Chapter 2). The integration cassette contains the ScRPR1 gene under the endogenous 

promoter of CgRPR1 to avoid a possible transcription issue. In addition, the 

terminating sequence of the S. cerevisiae tRNATyr2 terminator (tTY2), described as a 

functional terminator in C. glabrata, has been placed downstream of the ScRPR1 

sequence. To ensure the integration of the cassette by homologous recombination into 

the B chromosome, 210 bp homology arms were fused upstream and downstream of 

the ScRPR1 gene (Figure 4.3.A).  

The integrative cassette does not have a marker to positively select a recombination 

event. It was therefore essential to increase the efficacy of homologous recombination, 

known to be low in C. glabrata. The choice was therefore to use the CRISPR-Cas9 

tool developed in the laboratory (Enkler et al 2016).  

The CRISPR system consists of two components: a single guide RNA (sgRNA) and 

a CRISPR-associated endonuclease (Cas protein). The sgRNA is a synthetic RNA 

composed of : a scaffold for the binding to Cas protein and a 20 nucleotide spacer that 

defines the genomic site to be cleave. The appearance of a double-strand break induces 

the recruitment of DNA repair system components that will significantly increase the 

probability of an homologous recombination (Doudna and Charpentier 2014). 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The guide RNA used for this purpose, sgChrB1, has been designed using the online 

CASTING tools (http://charn-ibmc.u-strasbg.fr:8080/casting.html) and cloned into the 

pRS315-sgChrB1 plasmid, containing the selectable marker LEU2 . The Cas9 protein 

was provided by the plasmid pRS314-Cas9 containing the selectable marker TRP1.  

The integration of ScRPR1 into the genome of C. glabrata was performed in the 

triple auxotrophic strain ∆HTL by co-transformation of the plasmid pRS315-sgChrB1, 

pRS314-Cas9 and the ScRPR1 cassette (Figure 4.3.B). After transformation the cells 

were streaked on SC-TL selective medium. The integration of the ScRPR1 cassette has 

been assayed by PCR amplification directly on the colonies. A total of 48 colonies 

were verified by PCR and only one showed successful integration (Figure 4.3.C). The 

PCR fragment obtained was sequenced and confirmed the integration of the ScRPR1 

cassette into the chromosome B of C. glabrata. 

The expression of the ScRPR1 gene was checked by RT-PCR on the total RNA 

extracted from the obtained strain ∆HTL ScRPR1 (Figure 4.4). As a control, the RT-

PCR experiment was performed on the endogenous locus CgRPR1. These experiments 

validated the co-expression of the two versions of the RPR1 RNA within C. glabrata.  

b. Disruption of the endogenous locus. 

The second step was the disruption of the endogenous locus cgRPR1 by an 

integrative cassette. For this purpose the CRISPR-Cas9 tools were used again. As 

previously, the single guide RNA was designed using the CASTING tool, synthesized 

and cloned within the plasmid pRS315-sgRPR1. The HIS3 gene was the first choice as 

a CgRPR1 disruption cassette. Indeed the integration of the HIS3 marker in the 

autotrophic strain ∆HTL can easily be selected by streaking on a medium without 

histidine. Like all cassettes designed to be integrated into a genome by homologous 

recombination, homologous sequences in the vicinity of the insertion site must be 

fused upstream and downstream of the marker sequence. Unfortunately, the 

homologous sequences at the insertion site in the RPR1 gene could never be fused to 

the HIS3 cassette. 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This problem seemed to be due to the primers used for the fusion of the multiple 

fragments composing the cassette. These primers which size varies from 30 bp to 50 

bp contains overhang sequences at the 5’ ends, allowing the fusion with adjacent 

fragment. The primers probably formed a strong secondary structure preventing the 

optimal conduct of the PCR. To overcome this problem, the disruption cassette has 

been changed to the Sh Ble marker, a gene conferring resistance to the Zeocin 

antibiotic (Alderton et al. 2006). The Sh ble cassette was amplified from pRS315-

Zeocin plasmid and flanked by homology sequences of 360 nt. upstream and 

downstream the insertion site (Figure 4.5). The disruption of the locus CgRPR1 was 

performed in the strain ∆HTL ScRPR1 previously generated, by co-transformation 

with the pRS315-sgRPR1 plasmid, pRS314-Cas9 plasmid and Sh ble cassette. 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After transformation, cells were streaked on SC-TL selective medium supplemented 

by Zeocin. The correct integration of the Sh Ble marker has been assayed by PCR 

amplification directly on the colonies, using the same primers as for the amplification 

of the complete Sh Ble cassette. A total of 112 colonies were tested by PCR (Figure 

4.6) and only two different cases occurred: i) a profile similar to the wild-type, 

meaning that integration did not happen (Clone 2 Figure 4.6); and ii) a surprising 

profile, combining a band size assuming insertion of the Sh Ble cassette 

« simultaneously » with a profile equivalent to the wild-type (Clone 1 and 3 Figure 

4.6). The DNA fragments obtained were purified and sequenced. The sequence 

analysis showed that the fragments present the complete sequence, namely the Sh Ble 

gene flanked by homology arms. It was then hypothesized that the presence of these 

two profiles was due to contamination. According to this hypothesis, colonies tested by 

PCR might not have been monoclonal but resulted from a mix of wild-type cells, 

taking advantage of the zeocin resistance of the intended mutant. In order to test this 

hypothesis, the cells were successively re-streaked on YPD medium supplemented by 

increasing concentrations of zeocin. Following these re-streaking, all colonies were 

tested again by PCR. The results were exactly the same as previously, namely the 

presence of the two profiles, disruption and non-disruption of the CgRPR1 gene, 

within the same cell.   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Note that the primers used for these PCR experiments were the same as previously, 

namely those used to amplify the insertion cassette before transformation. Based on 

this observation, a second hypothesis was put forward to try to explain the 

combination of insertion profiles: the disruption cassette may have been randomly 

integrated into a locus that is not the location of CgRPR1. This hypothesis made sense 

since the primers used to verify the insertion of the Sh ble disruption cassette did not 

take into account the genomic context outside the homology arms.  

New PCR experiments were therefore performed on the 112 original colonies, using 

primers binding outside the homology arms of the disruption cassette. For all the tested 

clones, profiles obtained were similar to the wild-type meaning that the integration of 

the Sh Ble cassette did not occur. These results therefore confirm that the disruption 

cassette was not specifically integrated in the CgRPR1 locus but in an other location in 

the genome.  

We suggested that if this complete 1888 nt. cassette was able to be inserted non-

specifically, the homology arms flanking the ends of the Sh ble gene might be 

involved. The specificity of the homology arms of the disruption cassette within the 

genome of C. glabrata was tested using the BLAST-N tool available on the GRYC 

database (http://gryc.inra.fr/index.php?page=blast). Surprisingly no homology other 

than the CgRPR1 locus was detected, even with the most permissive BLAST-N 

parameters. 
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How the cassette can be randomly inserted into the genome of C. glabrata ?  

The use of the CRISPR-Cas9 tool has been suspected as being potentially involved 

in this event. Indeed, the major limitation of the CRISPR-Cas9 system lies in its 

propensity to induce non-specific double-strand breaks in the genome, called off-

targets (Fu, Foden et al. 2013). An off-target could therefore have possibly allowed the 

integration of the Sh Ble disruption cassette. 

 In order to test this hypothesis, a new CgRPR1 disruption experiment was 

performed without the use of the CRISPR-Cas9 tool. The strain ∆HTL ScRPR1 was 

therefore transformed only with the Sh Ble disruption cassette and the transformants 

were spread on YPD zeocin supplemented medium. The insertion of the cassette was 

again tested by PCR using the original primers annealed to the ends of the homology 

arms (Figure 4.6). The results of this analysis were the same as previously : both 

profiles were simultaneously present. The Sh Ble disruption cassette has been non-

specifically integrated. According to these results, Cas9 is not involved in the random 

integration. The origin of this phenomenon has not yet been elucidated. Nevertheless, 

taken together, these experiments never showed a disruption of the CgRPR1 gene. 

Analysis of more than 200 clones with no disruption event therefore suggests that the 

ScRPR1 gene is not able to substitute C. glabrata version of RPR1. 
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Why can the ScRPR1 and CgRPR1 genes not be substituted ?  

Previous experiments have not resulted in any RPR1 gene substitution event 

between C. glabrata and S. cerevisiae. In conclusion, the CgRPR1 and ScRPR1 genes 

are described as non-interchangeable. These results do not provide significant clues 

about the role of additional domains of RPR1. Nevertheless, these experiments have 

validated the hypothesis that specific C. glabrata cofactors are essential for the RNase 

P activity.  These results then support two assumptions: 

Postulate A)  CgRPR1 RNA needs cofactors only found in C. glabrata. 

Postulate B) CgRPR1 RNA cofactors are not able to recognize ScRPR1. 

B.  Characterization of the protein moiety of the RNase P 

complex of C. glabrata

As described previously in the introduction, the nuclear RNase P is a 

ribonucleoprotein complex composed of an RNA associated with nine proteins. Each 

protein of the complex is essential to the activity of the RNAse P (Chamberlain et al. 

1998). Therefore the hypothetical cofactors of CgRPR1 could refer to its protein 

partners. To understand postulates A and B, two situations are conceivable: 

1) The nine RNase P proteins co-evolved with C. glabrata RPR1 RNA and are 

strictly specific to it. This hypothesis was tested in silico by an analysis of the protein 

sequences. 

2) C. glabrata RPR1 RNA is associated with one or more additional proteins, i.e. 

other than the nine proteins described in yeasts. In S. cerevisiae these additional 

proteins may either be absent from the genome or be present but unable to bind to the 

RNase P complex. This hypothesis was tested experimentally by purification and 

characterization of the C. glabrata RNase P complex. 
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Similarity between S. cerevisiae and C. glabrata RNase P protein 

moieties. 

Each RNase P protein sequence from S. cerevisiae and their counterparts in C. 

glabrata were extracted from the GRYC database. The sequences were first retrieved 

via their annotation, using the protein names in S. cerevisiae as query. First point, all 

RNase P proteins described in S. cerevisiae have an homolog in C. glabrata. It 

indicates that the sequences divergence is restricted, since it did not prevent their 

annotations. The protein sequences obtained were then aligned pairwise via the T-

COFFEE software (Notredame et al. 2000). Sequence identity and their similarity ,via 

the BLOSUM62 substitution matrix, were calculated and reported in the following 

table (Table 5). 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Table 5.  RNase P protein sequences identity and similarity between C. glabrata  

  and S. cerevisiae. 

In S. cerevisiae, protein marked with an asterisk (*) are described as interacting 

directly with the RNase P RNA moiety (Perederina et al. 2018). Pairwise alignments 

were performed with T-COFFEE software (Notredame et al. 2000). 

Compared to S. cerevisiae

Protein Gene ID Identity (%) Similarity (%)

Pop1* CAGL0K05049g 48,5 67,7

Pop3 CAGL0I03014g 21,3 41,1

Pop4* CAGL0I09152g 51,6 72,1

Pop5 CAGL0M11836g 46,4 69,4

Pop6* CAGL0K03993g 35,8 57

Pop7* CAGL0M06039g 45,4 65,2

Pop8 CAGL0J04334g 45,1 69,2

Rpp1 CAGL0D03740g 64 77,4

Rpr2 CAGL0K08712g 24,6 38
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In comparison with S. cerevisiae, all proteins except Rpp1 and Pop4 have a protein 

sequence identity below 50%. This value is lower than the mean identity value (54%) 

between all orthologous protein-coding genes of S. cerevisiae and C. glabrata 

(Gabaldón et al. 2013). It is important to note that while sequence identity is a 

substantial consideration, sequence similarity is a more significant signal of 

conservation of protein function (Pearson 2013). The most divergent proteins are Pop3 

(41.1% of similarity with S. cerevisiae) and Rpr2 (38% of similarity with S. 

cerevisiae). Very little information is available in the literature about the role of these 

proteins and their interaction within the RNase P holoenzyme. However the case of 

Rpr2 is interesting since it is the only protein not shared with the MRP RNase. The 

divergence of RPR2 may therefore be due to the fact that RNA moiety of RNase MRP 

does not force its conservation, unlike other proteins. Proteins showing the highest 

percentage similarity with S. cerevisiae are Rpp1 (77.41%) and Pop4 (72.1%). The 

Rpp1 protein has been described in S. cerevisiae as located in the vicinity of the 

catalytic center of RPR1 (Perederina et al. 2018). This domain is highly conserved 

between S. cerevisiae and C. glabrata (Kachouri et al. 2005), strong similarity 

between the orthologs is therefore consistent. This theory also applies to the Pop4 

protein since it interacts directly with the conserved CR-III region of RPR1 RNA, 

which secondary structure and sequence is strictly conserved between C. glabrata and 

S. cerevisiae (Kachouri et al. 2005). Concerning other proteins in direct interaction 

with the RNA moiety, namely Pop1, Pop6 and Pop7, their similarity with their 

orthologs in S. cerevisiae does not indicate a convincing signal of co-evolution with 

additional domains. All these proteins showed a sequence similarity greater than 65%, 

except for Pop6 which has 57% similarity with its ortholog in S. cerevisiae.  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Similarity between Nakaseomyces species and C. glabrata  

RNase P protein moieties. 

To confirm the absence of co-evolution signals of RNase P protein partners in C. 

glabrata, the protein sequences were aligned in pairwise with all orthologs present in 

the Nakaseomyces clade. All RNase P of this clade have a large RNA moiety ranging 

from 607 nt. for N. castelli, to 1368 nt. for N. delphensis. The protein sequences were 

retrieved from the GRYC database, using the annotation of the protein as query, 

otherwise via the BLASTp program. Pairwise alignments were performed via the T-

COFFEE program and their similarity with the C. glabrata sequences were calculated 

via the BLOSUM62 substitution matrix (Figure 4.7). For all proteins, the percentage 

of similarity with C. glabrata was the highest in the species from the « glabrata 

group », which contains C. bracariensis, C. nivariensis and N. delphensis (Gabaldón 

et al. 2013). These species also have the largest RNase P RNA moiety of the clade: 

1149 nt. in C. glabrata, 1057 nt. in C. nivariensis, 1068 nt. in C. bracariensis and 

1268 nt. in N. delphensis. Such as the previous comparison with S. cerevisiae, proteins 

with the lowest percentage of similarity in this group are Pop3 and Rpr2. Overall, the 

strong similarity between the protein subunits within the « glabrata group » is 

consistent with the phylogenetic proximity of these species (Gabaldón et al. 2013). 

Analysis of the RNase P protein sequences from other species of the Nakaseomyces 

clade also points in this direction, since the percentages of similaritiy between N. 

bacilisporus, C. castelli and C. glabrata are lower than within the « glabrata group ». 

Despite the sharing of a characteristic large RNA moiety of RNase P within 

Nakaseomyces, mismatch between the sequences of the RNase P protein subunits are 

eventually consistent with their phylogenetic distance. These data confirmed the 

absence of a strong protein conservation signal in relation to the emergence of 

additional domains. Note that these results are only preliminary, since the search for a 

co-evolution signal between the emergence of additional domains and protein subunits 

sequences can be performed more finely. 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Figure 4.7. RNase P protein sequences similarity between C. glabrata and 

Nakaseomyces species. Pairwise alignments of each RNase P protein between each 

Nakaseomyces species and C. glabrata were performed (40 pairwise alignments) with 

T-COFFEE software (Notredame et al. 2000). Similarity rates were extracted from the 

40 pairwise alignments and represented as bar charts. In comparison, data from 

pairwise alignments between S. cerevisiae and C. glabrata were also reported on each 

graph. 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The most accurate method would be to analyze the precise interactions between the 

subunits of S. cerevisiae RNase P holoenzyme and to compare them with C. glabrata  

and other Nakaseomyces species. Unfortunately, no complete 3D structure of the 

nuclear fungal RNase P complex has been described yet. Nevertheless, structural data 

from isolated domains are available as is the case for the P3 domain associated with 

the Pop6/Pop7 protein of S. cerevisiae RNase P (Perederina et al. 2010). 

Analysis of the P3 domain of RPR1 in C. glabrata. 

As mentioned in the introduction, the P3 domain of RPR1 is a strictly eukaryotic 

domain. This domain has a helix-loop-helix structure and consists of a platform on 

which the proteins Pop1, Pop6 and Pop7 are bound. The P3 domain has a major 

stabilizing role for RNA, replacing specific peripheral domains of the bacterial RNase 

P RNA moiety. The P3 domain appears to be a key element in the shortening of RNA 

moiety eukaryotic in favor to an increased protein complexity (Perederina et al. 2010). 

The analysis of this domain is interesting for the case of the RNase P of C. glabrata, 

since its RNA moiety goes in the opposite direction of the eukaryotic RNase P 

evolution.  

Secondary structure of the RPR1 P3 domain in C. glabrata. 

The P3 domain sequence was extracted from the structural alignment data of the 

original publication describing the additional domains of C. glabrata RPR1 RNA 

(Kachouri et al. 2005). The secondary structure was predicted using RNAfold software 

(Lorenz et al. 2011). The predicted structure was compared to the S. cerevisiae 

counterpart, and the strictly conserved nucleotides were mapped on both structures 

(Figure 4.8). Comparison of the two P3 domains secondary structures showed a global 

similarity but presented nevertheless several notable differences. The proximal helix 

(first stem on the right) of the P3 domain of C. glabrata contains the eukaryotic 

consensus sequence of the P3 domain (5’ ACCUG-CAGGU 3’, highlighted in pink) 

but this helix is longer than the S. cerevisiae helix. Consequently, P3 domain inner 

loop of C. glabrata is smaller than S. cerevisiae (12 nt. vs 19 nt.). 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P3 domain interaction with Pop6/Pop7 proteins. 

Direct interactions between Pop6/Pop7 amino acids and the S. cerevisiae P3 domain 

nucleotides were mapped on the secondary structures (Figure 4.8). In comparison to S. 

cerevisiae, all nucleotides interacting with Pop6/Pop7 proteins have a conserved nature 

and position in C. glabrata. One exception is the nucleotide U49 from the P3 domain 

of S. cerevisiae, interacting with the Pop7 residues Asn49 and Lys86, which is absent 

from the P3 domain inner loop of C. glabrata. The protein sequence alignments of 

Pop6 and Pop7 between S. cerevisiae and C. glabrata were analyzed with respect to 

these interactions (Figure 4.9). Concerning Pop6, the residues Val59 and Ile97 

interacting directly with the P3 domain of S. cerevisiae are strictly identical in C. 

glabrata and the residue Asn60, a polar amino acid, is substituted in C. glabrata by a 

serine, also a polar amino acid. Concerning Pop7, residues interacting directly with the 

P3 domain nucleotides are conserved in C. glabrata, except for the His18 residue of S. 

cerevisiae which has been substituted by a leucine. These data confirmed that the C. 

glabrata P3 domain and its interaction with Pop6/Pop7 proteins is similar to S. 

cerevisiae. Such similarity validates the hypothesis that the additional domains of 

RPR1 are not maintained to compensate the absence or the non-functionality of the P3 

domain. Therefore, the roles of the additional domains of RPR1 are probably not 

strictly structural. To conclude, these analyses support the hypothesis that the 

additional RNA RPR1 domains of C. glabrata induce the presence of new protein 

partners within the RNase P holoenzyme. 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II. Purification of the RNase P complex of C. glabrata.

As previously discussed, the presence of additional domains within the RPR1 RNA 

could influence the proteins of the RNase P complex. This impact could result in a 

modification of the nature and the number of proteins associated to the RPR1 RNA, in 

respect to the yeast complexes already described (Chamberlain et al. 1998). Thus the 

RNase P complex of C. glabrata could display new proteins which might either be 

involved in :  

- i) Maintaining a functional structure of the RPR1 RNA despite the constraints 

induced by the presence of large insertions.  

- ii) Bringing new functions to the RNase P which may allow the cleavage of new 

types of RNA. 

These hypotheses were tested by a purification of C. glabrata RNase P holoenzyme 

and a subsequent analysis of the protein moiety by mass spectrometry. 
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Purification of the RNase P complex of C. glabrata 

The complex has been purified by affinity chromatography. Regarding the bait choice, 

two alternatives were suggested: i) using RPR1 RNA as bait by inserting an aptamer  

within its structure; or ii) using a protein belonging to the complex as a bait. As 

mentioned above, modifying a non-coding RNA with un-resolved structure is risky. 

The choice was therefore made to use a protein as bait for affinity chromatography.  

Rpr2 protein as bait for affinity chromatography  

of the RNase P complex 

The Rpr2 protein is the only protein in the complex described as exclusive to the 

RNase P (Chamberlain et al. 1998). Indeed, the eight remaining proteins are shared 

with the RNase MRP complex (Salinas et al. 2005). To date, there are no available 

antibodies specific to the Rpr2 protein of C. glabrata. It was therefore necessary to 

insert an epitope into the protein to perform an affinity chromatography. The protein 

was tagged by three repeats of the HA epitope (3XHA), derived from human influenza 

virus hemagglutinin . The HA epitope has the advantage of being small (1.1 kDa) and 

is known to have no or very little influence on the folding of the labelled protein 

(Kimple et al 2013). Regarding the position of the 3XHA-tag, the choice was made to 

locate the insertion at the C-terminal end of the Rpr2 protein. In order to determine if 

the C-terminal region was not folded inside the overall structure of the protein, the 

structure of the Rpr2 protein was predicted in silico. The prediction was performed 

using the Phyre2 tool, which method is based on multiple structural alignments 

(Kelley et al. 2015). The predicted structure seemed to indicate that the C-terminal end 

was not folded inside the protein. Nevertheless, a linker sequence with a neutral charge 

(composed of a succession of glycine and serine amino acids) was placed upstream of 

the 3XHA-tag. Using a protein linker is known for increasing the accessibility of the 

tag and reduces a possible impact on the structure of the given protein (Sabourin et al. 

2007). 
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Integration of the 3XHA-tag in the coding sequence of Rpr2 

 The insertion of the 3XHA-tag into the genome was performed by homologous 

recombination, enhanced by a double-strand break produced by the CRISPR-Cas9 

system, at the insertion site. Since the insertion locate at the C-terminal end of the 

protein, the sequence recognized by the RNA guide had to be as close as possible to 

the stop codon. Using the CASTING tool, a potential cutting site was detected 78 nt. 

upstream of the stop codon. The RNA guide appropriate to this site, named sgRPR2, 

was synthesized and then cloned within the plasmid pRS315-sgRPR2 to ensure its 

expression. The insertion site of the cassette containing the 3x-HA tag is located 26 

codons upstream of the stop codon. It was then necessary for the integration cassette to 

re-provide this sequence, located after the cutting site, to allow an expression of the 

full-length Rpr2 protein. The incorporation of this sequence of 26 codons in the 

integration cassette had to fulfill three criteria: i) removing the endogenous stop codon 

to relocate it downstream of the HA tag sequence, in order to allow the expression of a 

chimeric protein; ii) preserving the protein sequence while clearing any homology 

with the endogenous genomic sequence, which could lead to homologous 

recombination; iii) clearing any homology with the genomic sequence recognized by 

the sgRPR2 guide RNA, in order to avoid a subsequent cut by Cas9, which repair 

would induce a mutation. The DNA sequence of the 26 codons to be re-provided has 

been entirely modified by silent mutation, to maintain the protein sequence unchanged. 

The 3X-HA tag integration cassette within the Rpr2 sequence consisted of: i) 200 bp 

homology arms that start at the Cas9-induced double-strand break; ii) the sequence 

modified by silent mutation of the 26 last codons of Rpr2; ii) the 3X-HA tag associated 

with the neutral linker. (Figure 4.10 A and B)  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Tagging of the Rpr2 protein was performed in a ∆HTL strain, by co-transformation 

with the pRS315-sgRPR2 plasmid, pRS314-Cas9 plasmid and the integration cassette. 

The transformed cells were streaked on SC-TL selective medium. The correct 

integration of the Rpr2-HA cassette has been assayed by PCR amplification directly on 

the colonies. A total of 56 colonies were tested by PCR and 3 colonies showed 

successful integration (Figure 4.11 A). The PCR fragments obtained were sequenced 

and confirmed the integration of the 3X-HA cassette into the Rpr2 protein. 

Subsequently, the expression of the Rpr2-HA protein in the three generated strains was 

confirmed by western-blot, using an antibody directed against the HA epitope (Figure 

4.11B). 
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Co-immunoprecipitation experiments of the Rpr2-HA protein and its partners were 

performed on the total protein extracts of the three generated strains ∆HTL rpr2-HA, 

which are considered as biological replicates. These experiments were performed 

using the commercial "Myltenyi µMACS HA isolation kit", which includes anti HA 

antibodies coupled to magnetic beads. After passing the protein extracts through the 

purification columns, the eluates obtained were analyzed by nanoscale liquid 

chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS). These mass 

spectrometry experiments were performed in collaboration with the proteomic 

platform of IBMC, Strasbourg, FRANCE. As a control, all co-immunoprecipitation 

experiments followed by mass spectrometry were performed with the parental ∆HTL 

strain. A total of 5 independent experiments were conducted on the three biological 

replicates. Only 3 out of 5 experiments were successful, meaning that the bait Rpr2-

HA was detected in mass spectrometry analysis. Criteria used to consider an identified 

protein as "validated" are the following: i) the protein should not be detected in the 

control sample; ii) the protein should be present in all biological replicates; iii) the 

protein should be present in all independent experiments. The results of the three 

independent experiments were reported in Table 6. 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Table 6.   Validated proteins co-precipitating with rpr2-HA, identified by nano  

  LC-MS/MS 

* Proteins marked with an asterisk, are not part of the RNase P complex described 

in S. cerevisiae 

Validated protein Gene ID
Number of spectra assigned 

(mean)

Pop1 CAGL0K05049g 85,67

Rpp1 CAGL0D03740g 57,67

Pop4 CAGL0I09152g 16,33

Rpr2 CAGL0K08712g 14,33

Pop6 CAGL0K03993g 14

Pop5 CAGL0M11836g 12,33

Pop7 CAGL0M06039g 11,0

Pop3 CAGL0I03014g 7,67

Pop8 CAGL0J04334g 6,00

Rcl1* CAGL0L12078g 5
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First observation, all eight putative RNase P proteins subunits have been co-purified 

with Rpr2. These data validate the annotation of the nine C. glabrata RNase P protein-

coding genes. Moreover, no specific proteins of the RNase MRP, namely Snm1 and 

Rmp1, have been purified which indicates that the proteins co-purified with Rpr2 are 

well associated with RNase P. This result is fundamental since it confirms in silico 

analyses: the presence of additional domains within RPR1 does not replace the loss of 

protein partners. On the contrary, a new protein has been detected within the complex: 

the Rcl1 protein. In S. cerevisiae this protein has been described as involved in 

ribosomal RNA maturation (Horn et al. 2011). More specifically, the Rcl1 protein is 

responsible for the co-transcriptional cleavage of the 35S precursor RNA at the A2 

site, thus releasing the 18S ribosomal RNA, component of the small ribosomal subunit 

(Horn et al. 2011). Co-purification of the Rcl1 protein with Rpr2 is so far unpublished 

and no interactome data in S. cerevisiae has reported their interaction yet. The function 

of this protein is similar to RNase MRP, although no protein from this complex has 

been found after purification. 

Is Rcl1 an additional protein of C. glabrata RNase P ? 

This is the first time that Rcl1 protein has been co-purified with Rpr2 protein. But is its 

presence linked to the additional domains of the RPR1 RNA ? This hypothesis was 

tested by analyzing the sequence of this protein in S. cerevisiae and in all 

Nakaseomyces (Figure 4.12). Interestingly this protein is strongly conserved among 

all these species, with for example a sequence identity of 84% between S. cerevisiae 

and C. glabrata. No discrepancies correlate with the presence of additional domains in 

the RPR1 RNA. Based on these data, Rcl1 does not appear to be a constitutive part of 

the RNase P holoenzyme. This hypothesis is consistent since the Rcl1 protein is self-

sufficient to carry out its catalytic activity (Horn et al. 2011).This interaction would 

therefore appear to be specific to Rpr2 and does not involve the additional domains of 

RPR1.  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Figure 4.12. Rcl1 protein sequence identity between C. glabrata, Nakaseomyces 

species and S. cerevisiae. Pairwise alignments of Rcl1 protein sequence between S. 

cerevisiae, Nakaseomyces species and C. glabrata were performed with T-COFFEE 

software (Notredame et al. 2000). Identity rates were extracted from the 6 pairwise 

alignments and represented as bar charts. 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 This result is nevertheless very interesting because the interaction with Rcl1 

could allow Rpr2 to locate the RNase P holoenzyme at ribosomal RNA transcript sites. 

This theory is consistent with publications that have described the location of RNase P 

at transcription sites by RNA polymerase I and III (Reiner et al. 2008, Serruya et al. 

2015). Interaction between Rpr2 and Rcl1 would therefore be the missing link between 

RNase P and its participation in transcriptional processes. 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Conclusion and perspectives 

The work performed during my thesis on the characterization of the nuclear RNase P 

of Candida glabrata brought new findings about the RNA moitety and its interractions 

with protein partners. Moreover this study provided new insight about the evolution of 

the non-coding RNA RPR1. 

RPR1 genes are not exchangeable between S. cerevisiae and C. glabrata. 

The different experiments I have performed provided evidence that RPR1 genes are 

not exchangeable between S. cerevisiae and C. glabrata. The RNase P protein subunits 

of C. glabrata were supposed to be strictly specific to the endogenous RPR1 RNA. 

Bioinformatic analyses eventually demonstrated the opposite, that is, that there were 

no major differences between the protein subunits of C. glabrata and S. cerevisiae. We 

should note that these analyses only provided a global insight on the possible co-

evolution of C. glabrata proteins with the RPR1 RNA. Moreover, even if the structural 

data analysis of the P3 domain did not show major differences between C. glabrata and 

S. cerevisiae, these results do not exclude a divergence of RPR1 protein partners. 

Indeed, protein-protein interactions are also important for holoenzyme assembly. The 

unsuccessful exchange of RNase P RNA moiety is probably due to defective 

interactions between protein subunits. Testing this hypothesis is for the moment a 

difficult task, since the available structural data are not yet sufficient to analyze 

protein-protein interactions within the RNase P. The analysis of protein-protein 

interactions between S. cerevisiae and C. glabrata RNase P sub-protein units could 

nevertheless be performed by electrophoretic mobility shift assay (EMSA) or Yeast-

Two-Hybrid experiments for example. Each protein of S. cerevisiae and C. glabrata 

would therefore have to be expressed, purified, and brought into contact with each 

other. The effort required for such experiments would be disproportionate to the 

biological question that will be answered. The RNase P RNA moiety exchange 
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experiments were conducted to answer an overarching question: "What role does the 

additional domains of RPR1 play in C. glabrata biology? "» . Unfortunately, the 

strategy used was inconclusive, most likely because of the large number of RPR1 RNA 

co-factors within eukaryotic cells. A new strategy is under consideration and will be 

based on a more straightforward method: the substitution of the C. glabrata RNase P 

RNA moiety by a single proteinaceous RNase P protein (PRORP). This experiment 

has already been performed in S. cerevisiae (Weber et al. 2014) and could most 

probably give new indications regarding the role of additional domains in C. glabrata. 

The most direct technique would obviously consist in the deletion of the additional 

domains within the RPR1 gene of C. glabrata. This method would nonetheless require 

the establishment of a precise secondary structure of the RPR1 RNA, and no 

exploitable structural data is available yet. Chemical probing and SHAPE (Selective 

2'-hydroxyl acylation analyzed by primer extension) experiments were performed 

before my arrival at the laboratory, unfortunately without success. The presence of 

large additional domains within this RNA might thus prevent the resolution of its 

structure. 

The link between additional domains of RPR1 and the appearance of new 

proteins within the holoenzyme in C. glabrata. 

Purification experiments of the RNase P protein subunits of C. glabrata revealed the 

presence of a new protein: Rcl1. Even so, it is difficult to state whether the presence of 

Rcl1 is linked to the emergence of RPR1 RNA additional domains. The strong 

sequence conservation rate of this protein between S. cerevisiae and C. glabrata 

suggests that the additional domains of RPR1 have no influence on this interaction. Is 

this interaction specific to C. glabrata ? Considering several studies describing the 

implication of nuclear RNase P in transcription processes, this interaction is likely to 

be preserved in eukaryotes. The late discovery of this interaction between Rpr2 and 

Rcl1 is probably due to improved mass spectrometry techniques. Indeed, a large 

number of publications on nuclear RNase P indicates that the low abundance of this 
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enzyme is a major obstacle to its study. I encountered the same problem throughout 

my thesis, especially during the Rpr2 labelling experiments. The first strategy adopted, 

which was not presented in this manuscript, was to express the chimeric protein Rpr2-

HA on a plasmid. However, the amount of purified protein was too low to be analyzed 

by mass spectrometry, presumably because of a competitive effect between the 

endogenous Rpr2 protein and the HA tagged version. The insertion of the HA epitope 

directly into the genomic Rpr2 locus solved this problem. Given the emergence of new 

analytical technology such as nanoLC-MS/MS (used in this study), it would be wise to 

perform new purification experiments of S. cerevisiae RNase P protein subunits. 

The co-immunoprecipitation experiments performed during this thesis were carried out 

under native conditions. Repeating these experiments after chemical or UV cross-

linking could allow the detection of new proteins interacting only transiently with the 

RNase P. Given the large size of the additional domains, it is very likely that proteins 

are directly associated with them, but my thesis work has not been able to demonstrate 

it. Again, the precise description of the RPR1 RNA structure will allow us to integrate 

an aptamer, thereby directly allowing the purification and analysis of the holoenzyme. 

The purified holoenzyme would also enable the identification of alternative RNase P 

substrates, by sequencing co-purified RNAs. 

Emergence and conservation of large RNase P RNA moieties within the 

Nakaseomyces. 

As previously mentioned, the emergence of additional domains within the RPR1 RNA 

goes against the evolution of eukaryotic RNase P. These insertions appeared suddenly 

in the last common ancestor of Nakaseomyces species and were more or less 

maintained during the evolution of this clade. Preliminary bioinformatics comparison 

of the RPR1 sequences among Nakaseomyces indicated a great diversity in the nature 

and position of additional domains (not shown in this manuscript). This divergence 

suggests that these areas are not essential for the function of the RNase P and that no 

selection pressure has maintained them. How did these domains emerged ? The 
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favored hypothesis would implicate errors of the DNA polymerase in the appearance 

of multiple duplications within the RPR1 gene. Acquisition of these additional 

sequences being neutral, the domains could diverge freely throughout the evolution. 

The presence of duplication signals was investigated within additional domains of C. 

glabrata but no significant results were obtained. This potential mechanism appears to 

be consistent with the « Constructive Neutral Evolution theory" ((Stoltzfus 2012) 

recently proposed to explain the conservation of Rnase P RNA moiety within 

eukaryotes ((Gopalan et al. 2018) 

The study of C. glabrata RNase P during my thesis was a double challenge. First, the 

characterization of a ribonucleoprotein complex is difficult when the majority of its 

properties, such as the structure of the RNA moiety or the nature of the protein 

partners, are unknown. Eukaryotic RNAse P with its structures and functions remain 

enigmatic, despite the large number of publications on this topic. The second challenge 

was intrinsic to the nature of C. glabrata. Even if this yeast is phylogenetically close to 

S. cerevisiae, it is not yet recognized as a yeast model for molecular biology studies, 

despite its great potential. Indeed, C. glabrata lacks a large number of tools, such as 

epitope-tagged protein library for instance, and the manipulation of its genome is 

much more complicated and time consuming than in S. cerevisiae. Even with the help 

of the CRISPR-Cas9 technology, both the low homologous recombination efficiency 

and the lack of mating conditions make the study of C. glabrata molecular 

mechanisms challenging. 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Context  

One of the topic of my host laboratory relies in the identification of C. glabrata loci 

involved in a systemic infection of a host. To identify these genes, the strategy is based 

on the use Drosophila  melanogaster as an animal model of infection. This model has 

many advantages, in particular ease of handling, short generation time and highly 

studied innate immunity (Brunke et al. 2015). Infection experiments were performed 

on the MyD88 strain (Myeloid  Differenciation  primary  response  88) an 

immunodeficient strain of  D.  melanogaster (Tauszig-Delamasure et al. 2002). This 

strain presents a mutated effector of the Toll pathway, which inhibits the production of 

drosomycin, an antimicrobial peptide. The immune system of these flies mutant is no 

longer able to control the proliferation of  C.  glabrata and thus quickly succumb to 

infection (Quintin  et  al., 2013). Before my arrival in the laboratory, a transcriptomic 

analysis of C. glabrata was performed during the D. melanogaster infection process. 

This analysis led to the identification of several genes differentially expressed during 

systemic infection of D. melanogaster. Within this cohort, a particular interest has 

been shown in genes with unknown functions. To study these genes, the CRISPR-Cas9 

system was developed in C. glabrata (Enkler et al. 2016). To assess the impact of a 

given gene during the infection process, the following workflow has been set-up 

(Figure 5.1) : i) genes are disrupted in the triple auxotrophic strain ∆HTL, by insertion 

of the HIS3 marker into the coding sequence enhanced by a Cas9 double-strand-break; 

ii) immunodeficient flies are infected with loss-of-function mutants and their survival 

is monitored. In comparison with a parental ∆TL strain, if infected flies survival 

showed a significative shift, the gene was considered as potentially involved during 

infection of the fly and was labelled as candidate gene . 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Throughout my thesis, I participated in the characterization of one of these candidate 

genes.The CAGL0K07678g gene belongs to the 10% most overexpressed genes during 

the infection of D. melanogaster. Following the workflow, the CAGL0K07678g gene 

was disrupted within the ∆HTL strain via the insertion of an HIS3 marker and its 

impact on virulence was assayed by infection of immunodeficient flies (Figure 5.2). 

As a control, infections were carried in the same time on immunocompetent flies, 

wild-type Drosophila A5001. The fly survival analysis showed that the deletion of the 

CAGL0K07678g gene increased significantly the survival of infected flies. This result 

therefore indicated that CAGL0K07678g gene is somehow likely involved in the 

virulence of C. glabrata. In order to characterize the function of this gene, we first 

analyzed its expression under multiple conditions. In particular, we have demonstrated 

that the expression of CAGL0K07678g is induced after a shift in a low nitrogen 

environment (nitrogen starvation medium). This stress is the same as C. glabrata 

undergoes in the phagosome, and we have confirmed the CAGL0K07678g 

overexpression during human macrophages infection. To bring new information 

concerning the role of CAGL0K07678g, we wanted to analyze the behavior of the 

mutant ∆caglk07678g::HIS3 in nitrogen starvation condition. Surprisingly, we faced a 

major problem: the auxotrophic parental C. glabrata strains ∆HTL and ∆TL, are not 

capable of growing in a nitrogen starvation medium.  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Figure 5.2 Deletion of CAGL0K07678g in ∆HTL strain impedes C. glabrata 

virulence in D. melanogaster. (A) Survival curves of A5001(wt) and MyD88 flies 

infected by ∆TL or ∆cagl0k07678g::HIS3 strains. Two statistical tests (Mantel-Cox 

and Gehan-Breslow-Wilcoxon) were performed using Prism software (GraphPad). 

**** pvalue<0.0001. 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Following this observation, I disrupted the CAGL0K07678g gene within the reference 

strain CBS138/ATCC2001, which has been shown to grow in nitrogen starvation 

medium. To disrupt this gene in the prototrophic strain CBS138, I used the strategy 

developed during the RNase P study, namely the integration of the selectable marker 

Sh Ble, conferring resistance to the antibiotic Zeocin. Following the same procedure as 

described in Chapter I, I designed an integrative cassette flanked by 500bp 

homologous sequences upstream/downstream the insertion site. After transformation, 

cells were streaked on YPD supplemented by Zeocin. The correct integration of the Sh 

ble marker has been assayed by PCR amplification directly on the colonies, using the 

same primers as for the amplification of the complete Sh ble cassette (Figure 

5.3)Several independent mutants ∆caglk07678g::ShBle were thus obtained. To confirm 

the results obtained with the mutant ∆caglk07678g::HIS3 in the ∆HTL strain, I 

performed flies infection experiments with the mutants obtained in the reference strain 

CBS138 (Figure 5.4). Surprisingly, the results obtained were contradictory with the 

previous ones: the disruption of gene CAGL0K07678g in the reference strain CBS138 

does not significantly increase the survival of infected flies. This observation therefore 

challenges the direct involvement of CAGL0K07678g in the virulence of C. glabrata. 

Moreover all, this observation questions the use of the auxotrophic strains ∆HTL and 

∆TL, for the study of C. glabrata pathogenicity. The decreased virulence of the 

∆caglk07678g::HIS3 mutant within the strain ∆HTL would be a combinatorial effect 

due to auxotrophies. 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Figure 5.4 Deletion of CAGL0K07678g in the CBS138 strain has no significative 

impact on C. glabrata virulence in D. melanogaster. (A) Growth were monitored for 

CBS138 ∆cagl0k07678g::Shble and CBS138 wild-type strains in rich (YPD) and 

nitrogen-starvation media by measuring optical density at 600 nm length-wave. (B) 

Survival curves of MyD88 infected by ΔTL, ΔTL ∆cagl0k07678g::HIS3, CBS138 and 

CBS138 ∆cagl0k07678g::Shble. Two log-rank statistical tests (Mantel-Cox and 

Gehan-Breslow-Wilcoxon) were performed using Prism software (GraphPad). 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Aim of the study 
  

Auxotrophic C. glabrata  strains have been described as suitable for the study of 

their pathogenicity (Jacobsen et al. 2010, Brunke et al. 2015). However our data 

suggested the opposite : the use of the triple auxotrophic ∆HTL strain induced a bias in 

the study of C. glabrata. 

This observation was the starting point of the study presented in this chapter. It was 

essential to develop new tools to modify the genome of C. glabrata without the use of 

auxotrophies. Throughout my thesis work, I have set up new methods allowing the 

genome editing of C. glabrata prototrophic strains. 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Results and discussion 

 

The gene disruption method by the integration of a selectable marker into the coding 

sequence is a conventional technique. This method was notably used in C. glabrata for 

the creation of loss-of-function mutants collection, by the integration of the NAT (N-

acetyl transferase) cassette (Schwarzmüller et al. 2014) However, information 

provided by the disruption of a gene is generally not sufficient to understand its 

function. Given genes need to be modified more finely, for instance by modulating 

their expression or by the generation of a chimeric protein. The integration of complete 

exogenous sequences within a genome also enables to provide new insights about the 

biology of an organism. The integration of genes such as GFP (Green Fluorescent 

Protein) and its derivatives; or heterologous enzymes (such as PRORP protein) is a 

useful way to decipher molecular processes within a cell. Concerning the studies 

focused on C. glabrata, the expression of mutated gene is much more supported by 

plasmids than by direct genome modification. Two facts explain likely this situation: i) 

the wide range of plasmids designed for S. cerevisiae are functional within C. 

glabrata; ii) compared to S. cerevisiae, homologous recombination is weakly effective 

for C. glabrata and requires long homology arms(Cormack and Falkow 1999) 

Transient expression via a plasmid may not be the best method. Plasmids must be 

maintained within the cell by selection pressure, so the environment in which C. 

glabrata interacts must be completely controllable. Unfortunately, environmental 

control is not always possible, especially for host infection experiments.Moreover, the 

plasmid maintenance within C. glabrata is often possible via auxotrophy of the 

recipient strain. As previously demonstrated, auxotrophies can eventually provide 

significant bias in the study of C. glabrata. In this context, I have designed new tools 

to overcome the current limitations regarding genome editing of a prototrophic strain 

of C. glabrata.  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A. Protein labelling in the reference strain CBS138 

The protein labelling with an epitope is a very convenient method because it 

provides the ability to monitor the expression of a given protein, to determine its 

location and to characterize its partners. Moreover, this method technique useful for 

the study of C. glabrata since very few antibodies specific to this species are available. 

Studies focusing ont C. glabrata used mostly plasmid carried chimeric proteins. I have 

developed a method for the integration of an epitope at the C-terminal end of a protein, 

positively selectable in a prototrophic strain of C. glabrata. This work focused mainly 

on the integration of the 3X-HA epitope associated with a neutral linker, previously 

used in the RNase P study. Concerning the positive selection of an integration event, I 

chose the Sh ble cassette, conferring resistance to the Zeocin™ antibiotic. 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I. Design of the integrative cassette

To select positively the integration of the 3X-HA epitope at the C-terminal end of a 

protein-coding gene, the integrative cassette had to fulfill four criteria : i) be as small 

as possible, in order to avoid the emergence of point mutations during PCR 

amplification of the cassette; ii) be flanked by homology arms of sufficient size to 

allow homologous recombination; iii) removing the endogenous stop codon to relocate 

it downstream of the HA tag sequence, in order to allow the expression of a chimeric 

protein; iv) simultaneously bring the Sh Ble resistance cassette, while preventing the 

transcription of an aberrant RNA.  

Therefore this integrative cassette had to contain a RNA polymerase II terminating 

sequence, between the 3X-HA epitope stop codon and the Sh ble marker promoter. The 

CYC1 gene terminator sequence from S. cerevisiae is mostly constructs. However the 

large size of this sequence (367 nt.) present a disadvantage for the design of a short 

integrative cassette. Therefore integrated a short synthetic terminator, designed from 

the works of Guo and colleagues (Guo and Sherman 1996) which size is only 39 nt.  

As proof of concept, the protein encoded by CAGL0K07678g gene was chosen to be 

labelled by the 3XHA-ShBle cassette (Figure 5.5). The fragment of the 3XHA-ShBle 

integrative cassette, containing the 255 nt. upstream homology sequence; the neutral 

protein linker; the 3X-HA epitope; the synthetic terminator and a 20 nt. homologous 

sequence with the Sh ble cassette promoter, has been chemically synthesized (by 

Integrative DNA Technologies, Inc). The other components of the cassette were 

amplified by PCR and assembled with the Gibson Assembly® method (Figure 5.5A).  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The labelling of the Cagl0K07678 protein was performed in a CBS138 strain, by 

transformation of the 3X-HA-ShBle integrative cassette. The transformed cells were 

streaked on Zeocin supplemented YPD medium. The correct integration of the 3X-

HA-Shble cassette has been assayed by PCR amplification directly on the colonies. A 

total of 32 colonies were tested by PCR and 3 colonies showed successful integration. 

The PCR fragments obtained were sequenced and confirmed the integration of the 3X-

HA cassette into the Cagl0k07678 protein. Subsequently, the expression of the 

Cagl0k07678-HA protein in the three generated strains was confirmed by western-blot, 

using an antibody directed against the HA epitope (Figure 5.5.C). The clone 2 

appeared to have a weaker expression than the others, however the poor quality of the 

load controls did not give insight about this divergent expression.  

These data have proved that the 3X-HA-ShBle integration cassette is functional. The 

development of this cassette is therefore transposable to virtually any protein of C. 

glabrata, and allowed an effective protein labelling without the need for auxotrophies. 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B. Integration of a full gene into the genome of the 

reference strain CBS138.

The integration of a full gene sequence (promoter + coding sequence + terminator) 

within a genome is a commonly used method to restore the function of a deleted gene, 

in order to confirm the phenotype of a mutant. Moreover, the integration of a gene 

within the genome is also used to bring new functions to a given organism, such as the 

constitutive expression of a fluorescent protein. Concerning C. glabrata, the 

integration of a fluorescent protein would be very useful to follow the evolution of 

fungal cells during the infection process of a host. Data obtained for the integration of 

3X-HA epitope, within the CBS138 reference strain, suggest that such method can be 

applicable for the integration of a complete gene. Nevertheless, the application of this 

integration method faces a major constraint, the size of the integrative cassette. Indeed 

the average eukaryotic genes size is about 1300 nt. ((Xu et al. 2006) Since the Sh ble 

marker has a size of 1172 nt., fusion of this marker with a full gene would give the 

integrative cassette a size of about 3000 nt., including the homology arm. A PCR 

amplification of a such fragment would likely lead point mutation emergence. It was 

essential to reduce the size of this cassette. Using a synthetic terminator was not 

sufficient for this reduction, so I focused on promoter sequences. Indeed, the promoter 

sequence most commonly used in exogenous protein expression is the promoter of the 

gene encoding the Glyceraldehyde-3-phosphate dehydrogenase (GPD). The sequence 

of this constitutive promoter 655 nt. long. To cope with this constraint, I have 

developed new synthetic promoters, based on the work of Redden and Alper (Redden 

and Alper 2015) whose promoter sequence size varies between 80 nt. and 130 nt., at 

least 5 times shorter than the GPD promoter. These short promoters developed for S. 

cerevisiae, provided a transcriptional activity comparable to constitutive promoters. 

Moreover, due to their synthetic nature, they have no homology with genomic 

sequences of C. glabrata, thus preventing non-specific recombination events. 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I.  Development of short synthetic promoter for C. 

glabrata. 

The  synthetic  promoters  were  built  following  the  indications  of  Redden  and 

colleagues (Redden and Alper 2015). Their promoter were composed of a synthetic 

upstream activating sequence (UAS); a 30 bp. neutral AT-rich sequence to distance the 

UAS upstream the TATA box; a 30 bp. synthetic core promoter and a transcription start 

site (Figure 5.6.A). The first synthetic promoter designed for C. glabrata showed a 

similar structure. Concerning the modifications made for C. glabrata  : UAS C was 

chosen; an A/T rich spacer of 30 bp and an A/T rich transcription start site (TSS) of 19 

bp were randomly generated (Figure 5.6.B).  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Integration of the GFP coding sequence within the reference strain CBS138  

The insertion of the GFP coding sequence was chosen as a proof of concept (Figure 

5.7). The first step was to amplify by PCR both homology arms fragments. The 

upstream homology arm was amplified by overhang primers containing a 20 nt. 

sequence homologous to the synthetic promoter and a 20 nt. sequence homologous to 

the GFP sequence The downstream homology arm was amplified by overhang primers 

containing a 20 nt. sequence homologous to the Sh ble. Both homology arms were 

assembled with the other fragments by the "Gibson Assembly®" method (New 

England Biolabs®). The  CBS138 C. glabrata reference strain transformed by this 

cassette (Fig. 5.7B) and gene integration was confirmed by PCR (Fig. 5.7C).  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 Expression of the GFP protein. 

The GFP protein expression can be visualized by microscopy, however, observation 

of the transformed cells showed no fluorescence signal. To provide a finer detection of 

the GFP protein, a western blot analysis was performed (Fig. 5.8A). As control, these 

experiments were also performed in a ∆HTL strain transformed with the plasmid 

pRS313-GFP, allowing the expression of the GFP gene under the GPD promoter. 

Western-blot data showed the absence of GFP protein in the samples. It was 

hypothesized that the absence of GFP signal could result from the absence of 

messenger RNA expression (mRNA). An RT-PCR analysis was performed (Figure 

5.8.B) and showed the expression of the GFP mRNA. An RT-qPCR experiment 

supported the efficiency of the synthetic promoter (Figure 5.8 C). These data indicated 

that the problem certainly lay in the translation stage of the GFP mRNA 

Why is the GFP protein not functionally translated ? 

RT-PCR experiments were performed with a forward primer annealed to the ATG 

codon  and showed that the GFP mRNA was correctly transcribed. However the 

protein was not functional. I suggested that the transcription of a non-functional GFP 

was due to the start position of the transcription, which might be slightly downstream 

start codon. 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II.  Development of three new synthetic promoters for C. 

glabrata.

To test this hypothesis, I built three new synthetic promoters (Figure 5.9), which differ 

from the original promoter.  

• Synthetic Promoter A: To distance the TATAbox from the start codon, a 30 bp A-rich 

sequence was inserted between the TATA Box and the transcription initiation site 

(TSS).  

• Synthetic Promoter B: Throughout my thesis work I performed multiple PCR with 

short primers. The shortest primer I was able to use was 13 nt. long. The forward 

primer used to amplify the GFP coding sequence was 19 nt. long. Hence, I created a 

small spacer of 6 random nucleotides and I placed it upstream the TSS to relocate it 

away from the initiation codon.  

• Synthetic Promoter C: This promoter was designed after preliminary tests on 

Synthetic Promoter A and B. For this promoter I assessed the impact of three 

different UAS (Upsteam Activation Sequences) combination on the efficiency of the 

Synthetic Promoter A.  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For convenience and to reduce costs, the experiments assessing the new synthetic 

promoters efficiencies were performed within the ΔHTL strain. The three synthetic 

promoters were cloned upstream the GFP coding sequence in the pRS313-GFP 

plasmid. The transformed strains fluorescence was visualized by confocal microscopy 

(LSM700, Zeiss ; Fig. 5.10A). The expression of  the GFP protein was thus confirmed 

in all strains.  

I performed RT-qPCR experiments to quantify the efficiencies of the synthetic 

promoters, and to compare them with the GPD promoter (Fig. 5.10B). None of the 

synthetic promoter tested was effective as the GPD promoter. However their 

efficiencies are still remarkable given their short size. These data validated the 

hypothesis that the initiation codon was too close to the « Core Element ». Indeed, 

increasing the distance between the core promoter and the TATA-box (Synthetic 

Promoter A) had the same effect as increasing the distance between the TSS and the 

core promoter (Synthetic Promoter B). Both modifications provided a consistent 

expression of the GFP protein. Moreover the TATA-box likely was to close to the 

initiation codon, increasing the distance with only 6 nt. solved the problem.  

The combination of three UAS within the Synthetic Promoter C, provided a 10% 

increase of efficiency compared to the Synthetic Promoter A. The synthetic promoter 

B was the most effective promoter. The presence of a 30 nt. spacer between the TATA-

box and the core promoter therefore seemed to decrease the efficiency of the Synthetic 

Promoter A and C. 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Figure 5.10. The three new synthetic promoters for C. glabrata provide an 

efficient expression of the GFP protein. (A) Translation efficiency of the Gfp protein 

was visualized by confocal microscopy (LSM 700, Zeiss). Images were processed 

using ZEN (Zeiss) and ImageJ software. (B) The GFP mRNA expression was 

measured by RT-qPCR and the analysis of the results was performed using Prism 

software (GraphPad). Unpaired t test with Welch’s correction were performed to test 

the significant differences between each promoter efficiency. 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Chapter II

Conclusion and perspectives 

The work performed during my thesis on the improvement of genome editing tools 

for Candida glabrata brought new findings that may be useful to overcome the 

limitations encountered in its study. Moreover this work provided new insight about 

the use of auxotrophic strain of C. glabrata. 

Auxotrophies may represent a bias in the study of the virulence of C. glabrata. 

The development of auxotrophic C. glabrata strains was a major step forward, 

allowing the range of tools available for C.glabrata to be extended. Such strains 

allowed the use of plasmids commonly used in S. cerevisiae. Auxotrophies did not 

appear to interfere with the biology of C. glabrata (Schwarzmüller et al. 2014), unlike 

deletion of the URA3 marker in C. albicans which is known to affect its virulence 

(Brand et al. 2004). However recent studies have highlighted the profound impact of 

auxotrophies on yeast transcriptome, proteome and metabolome, despite their 

supplementation in culture media (Alam et al. 2016). Moreover our data suggested that 

auxotrophies may have a combinatorial role with a loss-of-function mutant, and could 

lead to misinterpretations about the virulence. My work obviously does not challenge 

all former studies performed with the ∆HTL strain. Rather, it highlights the 

precautions we must take in reaching hasty conclusions. It seems however reasonable 

to abandon the study of autotrophic strains in favour of wild-type strains. This is even 

more consistent in view of recent results from Carreté and colleagues (Carreté et al. 

2018) whose highlighted the high diversity between different C. glabrata isolates. 

Studies on virulence must take this high diversity into account, and the development of 

new genetic manipulation tools applicable to clinical isolates is now necessary. 
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Towards a return to the conventional homologous recombination? 

Many efforts have been made by the scientific community working on C. glabrata to 

increase the efficacy of its homologous recombination. This is notably the case of my 

host laboratory, whose implemented the CRISPR-Cas9 system into C. glabrata 

(Enkler et al. 2016). The advantages of this system are undeniable, and this tool was 

necessary to modify the RPR2 gene, since all previous attempts were unsuccessful. 

This does not prevent to take a critical look at this technology. Indeed, even if the 

Cas9-induced double-strand-break significantly increases the recombination efficiency, 

its implementation requires eventually a lot of effort. The limited availability of 

cleavage site in the genome and the need to sufficiently express Cas9 protein and the 

single guide RNA are major constraints in the application of this system. In addition, 

constitutive expression of the Cas9 protein appears to be toxic to C. glabrata (Enkler 

et al. 2016). CRISPR-Cas9 system appeared promising for the study of C. glabrata but 

its use is eventually disproportionate for the current studies on C. glabrata. Increasing 

the efficiency of the homologous recombination was the preliminary part, it is now 

necessary to move on to the second step: the generation of a mutant collection with an 

equivalent quality to that available in S. cerevisiae or even in D. melanogaster.  

I have attempted through my thesis work to contribute to this shift. The lack of 

effective tools is frustrating given the high potential of C. glabrata (frustration I 

personally experienced by studying its nuclear RNase P) and the community working 

on C. glabrata should no longer waste time by constantly « reinventing the wheel ». 

The new method I have set up tends to go in this direction. Since the design of a new 

positively selectable integration cassette is not revolutionary, it may take into account 

for the first time the constraints allowing its scalability. I tried to create elements as 

short as possible, to reduce strongly the probability of point mutation inherent to PCR 

amplification, but also in a concern of financial cost. By combining a synthetic 

promoter and terminator, the size of an expression cassette can be reduced by almost 

700 nt. Taking as a reference the prices charged by Integrative DNA Technologies, this 

size reduction would save 150€ for each complete synthesis of an expression cassette. 
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This kind of cassette could be the key element in the development of a large-scale 

protein-labelled mutant collection. Most importantly, this technique might enable us to 

manipulate easily clinical isolates genomes. Improvements are nevertheless necessary, 

such as the use of a recyclable selection marker, or the shift from antibiotic resistance 

marker to a dominant nutritional marker such as the Aspergillus nidulans acetamidase 

(Fu et al. 2016).  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Introduction

 Depuis la fin des années 1980 l’incidence des infections fongiques est en nette 

augmentation et est aujourd’hui une cause majeure de morbidité et de mortalité. Cette 

émergence est en corrélation avec l’augmentation du nombre de patients immunodéprimés, 

ainsi qu’avec l’évolution des pratiques médicales et chirurgicales, notamment l’utilisation 

croissante de techniques invasives et de radiothérapie.  

Candida glabrata est une levure pathogène opportuniste appartenant au clade des 

Nakaseomyceses. Cette levure fut longtemps considérée comme un simple champignon 

saprophyte commensal pour les humains. Ce n’est qu’à la fin des années 1980 que Candida 

glabrata a été décrite comme responsable d’infection fongique systémique chez des patients 

immunodéprimés (Just et al. 1989). Candida glabrata a alors rapidement été considérée 

comme un pathogène émergent (Hazen 1995). Aujourd’hui, Candida glabrata est la 

deuxième cause de candidémie en Europe et en Amérique du Nord (Guinée 2014). Le taux 

de mortalité lié aux infections par Candida glabrata est l'un des plus élevés parmi les 

espèces de Candida:  40% des infections invasives par C. glabrata conduisent au décès du 

patient (Tortorano et al. 2006). Une hospitalisation en unité de soins intensifs est le principal 

facteur de risque d’une infection par C. glabrata. Les caractéristiques présentées par C. 

glabrata font davantage référence à un colonisateur opportuniste plutôt qu’à un pathogène 

hautement virulent. De plus, C. glabrata ne semble pas présenter des caractéristiques claires 

résultant de l'adaptation à l’humain. Contrairement à Candida albicans, C. glabrata induit 

très peu de dommages aux tissus colonisés. Sa stratégie d’infection réside principalement 

dans la furtivité et l’évasion passive des cellules phagocytaires. Néanmoins, le fort taux de 

mortalité induit par ce pathogène ainsi que sa resistance accrue aux antifongiques font de C. 

glabrata  une menace sérieuse pour la santé publique. L’équipe « Evolution des ARN non-

codants chez les levures », dirigée par le Dr. Fabrice Jossinet, s’intéresse de près aux 

différents mécanismes moléculaires mis en jeu par C.  glabrata  lors de l’infection. La  

thématique majeure du laboratoire d’accueil réside dans l’étude des particularités 

génomiques de C. glabrata et leur possible implication dans la pathogénicité de cette levure. 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Objectifs des travaux de thèse

C. glabrata est considérée comme phylogénétiquement très proche de la levure modèle 

Saccharomyces cerevisiae. Pourtant, le génome de C. glabrata présente de nombreuses 

particularités telles qu’une plasticité accrue, l’émergence de gènes codants pour de 

nouvelles protéines et l’apparition de nouveaux domaines structuraux au sein d’ARN non-

codants ubiquitaires. Ces particularités sont partagés à des niveaux différents avec toutes les 

espèces du clade des Nakaseomyces. C’est dans ce contexte que s’est inséré mon travail de 

thèse, qui est subdivisé en deux parties distinctes. J’ai dans un premier temps étudié le 

complexe ribonucléoprotéique atypique de la Ribonucléase P (RNase P) nucléaire de C. 

glabrata, en caractérisant le rôle de sa sous-unité ARN ainsi que la nature de ses partenaires 

protéiques (Chapitre I). Dans un second temps, j’ai amélioré les outils d’édition du génome 

de C. glabrata existants, afin de faciliter les etudes expérimentales portant sur les 

particularités génomique de cette levure (Chapitre II). 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Chapitre I : Caractérisation de la 

RNase P nucléaire de C. glabrata

La RNase P est une endoribonucléase essentielle impliquée dans la maturation de différents 

ARN et notamment des ARN de transfert (ARNt). Elle est présente sous la forme d’un 

complexe ribonucléoprotéique composé d’un ARN non-codant, appelée RPR1 chez les 

levures, détenant l’activité catalytique. La présence de cette enzyme sous la forme 

ribonucléoprotéique est conservée dans les trois domaines du vivant. Néanmoins, la taille et 

la complexité de la sous-unité ARN a diminué au cours de l’évolution en faveur de 

l’acquisition d’un nombre accru de partenaires protéiques. Si chez la grande majorité des 

eucaryotes l’ARN RPR1 présente une taille de l’ordre de 400 nucléotides, chez C. glabrata 

cet ARN non-codant possède une taille surprenante de 1149 nucléotides (Figure 1). 

L’augmentation de la taille de la sous-unité ARN de la RNase P va à l’encontre de 

l’évolution du complexe observée chez les eucaryotes. Cette taille est due à la présence de 

trois domaines additionnels, P8.1, P7.1 et p7a, qui ne semblent cependant pas modifier le 

coeur structural conservé chez les eucaryotes. L’emergence de ces domaines pourrait donc 

hypothétiquement impliquer la RNase P de C. glabrata dans de nouvelles fonctions. 

Mon travail de thèse a consisté à caractériser le rôle des domaines additionnels de l’ARN 

RPR1 de C. glabrata. Ces insertions soulèvent deux questions majeures auxquelles j’ai tenté 

de répondre par des approches expérimentales et bio-informatiques :  

 - 1) Les domaines additionnels au sein de l’ARN RPR1 sont-ils essentiels à l'activité 

catalytique de la RNase P de C. glabrata ? 

- 2) La présence de ces domaines modifie-t-elle la composition de la fraction protéique 

RNase P ?  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Figure 1. Structure secondaire de l’ARN RPR1 de C. glabrata. Cette représentation 

est basée sur la structure secondaire de S. cerevisiae. Chaque domaines additionnels (P7a, 

P7.1 et eP8.1) est mis en évidence par l’utilisation d’une couleur spécifique. Pour des 

raisons de commodité, cette vue schématique ne représente pas la taille exacte des domaines 

supplémentaires. Domaine P7a : 230 nt./ P7.1 : 30 nt. / eP8.1 : 485 nt. CR : « Conserved 

Region » , région conservée parmi toutes les RNase P. S-Domain : Domaine de Spécificité ; 

C-domain : Domaine Catalytique.
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1. Rôle des domaines additionnels de RPR1 dans l’activité catalytique  

de la RNase P de C. glabrata. 

Les domaines additionnels pourraient simplement être impliqués dans la stabilisation 

structurelle. Leur présence serait donc essentielle pour l'activité catalytique de la RNase P. 

En revanche, si ces domaines ne fournissent que de nouvelles fonctions non canoniques à la 

RNase P, la suppression des domaines supplémentaires n'empêchera pas l'holoenzyme 

d’effectuer son activité essentielle de maturation pré-ARNt. Afin de tester cette hypothèse, 

la méthode de travail mise en place a consisté en l’échange de l’ARN RPR1 de C. glabrata 

par une version de RPR1 ne possédant pas de domaines additionnels. Le choix s’est porté 

sur l’échange du gène RPR1 de C.  glabrata  par la version de S.  cerevisiae  très proche 

phylogénétiquement. L’échange a été réalisé dans les deux sens par trans-complémentation 

fonctionnelle à savoir : un échange de l’ARN RPR1 au sein de S. cerevisiae par la version 

de C. glabrata; et l’échange de l’ARN RPR1 au sein de C. glabrata par la version de S. 

cerevisiae. 

1.1 Remplacement du gène RPR1 de S. cerevisiae par le gene RPR1 de C. glabrata 

La diploïdie de S. cerevisiae est un avantage majeur pour l'étude des gènes essentiels, 

permettant ainsi la délétion de l'une des deux copies d'un gène essentiel, sans compromettre 

la survie de la cellule. A cet effet, le gène RPR1 de S. cerevisiae a été délété au sein d'une 

souche diploïde de S. cerevisiae nommée souche S2. Pour déterminer si le gène RPR1 de S. 

cerevisiae pouvait être échangé par la version C. glabrata, des tests de trans-

complémentation ont été réalisés (Figure 2). L’analyse phénotypique des cellules obtenues a 

prouvé que toutes les cellules viables possédaient uniquement la version endogène de RPR1. 

Aucun événement de trans-complémentation fonctionnelle n’a donc été mis en évidence, 

indiquant que la levure S. cerevisiae n’est pas capable de survire avec le gène RPR1 de C. 

glabrata. Ces résultats ont permis démontrer indirectement que l’ARN RPR1 de C. glabrata 

a besoin de co-facteur spécifiques pour permettre l’activité du complexe de la RNase P. Ces 

co-facteurs pouvant être soit totalement absent au sein de S. cerevisiae ; soit présents mais 

incapables de reconnaitre efficacement l’ARN RPR1 de C. glabrata. 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1.2 Remplacement du gène RPR1 de C. glabrata par le gene RPR1 de S. cerevisiae 

Contrairement à S. cerevisiae, C. glabrata est strictement haploïde empêchant une délétion 

directe d’un gène essentiel tel que RPR1. L’échange des RNAse P a donc été réalisé en deux 

étapes. Dans un premier temps une construction permettant l’expression du gène RPR1 de S. 

cerevisiae a été insérée dans le génome de C. glabrata (Figure 3). Cette étape a résulté en la 

génération d’une souche unique de C.  glabrata  exprimant deux gènes RPR1 d’origines 

différentes. La seconde étape a consisté en la délétion de la version RPR1 endogène de C. 

glabrata pour permettre l’expression exclusive de la gène RPR1 de S. cerevisiae. La cassette 

de disruption utilisée contenait le gène Sh Ble, conférant une resistance à une molécule 

antibiotique, la zeocine (Figure 4). Toutes les cellules résistantes à la zéocine obtenues 

résultaient d’une recombinaison homologue aspécifique, prouvant que la délétion du gène 

RPR1 de C. glabrata n’est pas possible. Ce résultat indique donc que l’ARN RPR1 de C. 

glabrata n’est pas échangeable avec celui de S. cerevisiae. 

Les données obtenues suite aux expériences de trans-complementation n’ont pas apporté de 

réponse concrète quant au rôle des domaines additionnels de RPR1. Néanmoins, ces 

résultats ont confirmé l’hypothèse selon laquelle des co-facteurs de l’ARN RPR1, essentiels 

à l’activité de la RNase P, sont strictement spécifiques à C. glabrata.  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1.3. Analyses bio-informatiques des protéines associées à l’ARN RPR1 

Les séquences des protéines putatives du complexe de la RNase P de C. glabrata (Pop1, 

Pop3, Pop4, Pop5, Pop6, Pop7, Pop8, Rpp1, et Rpr2) ont été analysées bio-

informatiquement. Les séquences de chaque protéine décrite comme interagissant avec 

l’ARN RPR1 de S. cerevisiae ont été comparées avec les homologues présents chez C. 

glabrata ainsi que chez toutes les espèces du clade des Nakaseomyces (Figure 5). De 

manière surprenante, la conservation de séquence et la similarité des résidus entre chaque 

homologue n’ont montré aucun signal fort de co-évolution des protéines avec l’ARN RPR1 

chez C. glabrata. Ces résultats tendent à prouver que l’incapacité d’échanger les genes 

RPR1 entre S. cerevisiae et C. glabrata n’est visiblement pas due à une divergence des 

protéines du complexe, puisqu’elles présentent toutes les caractéristiques permettant une 

liaison aux deux versions de l’ARN RPR1.  

Ces données semblent renforcer l’hypothèse selon laquelle la présence de domaines 

additionnels au sein de l’ARN RPR1 de C. glabrata pourrait influencer la composition 

protéique du complexe de la RNase P. Cet impact pourrait entraîner une modification de la 

nature et du nombre de protéines associées à l'ARN RPR1, par rapport aux complexes de 

levure déjà décrits (Chamberlain et al. 1998). Ainsi, le complexe RNase P de C. glabrata 

pourrait présenter de nouvelles protéines pouvant être impliquées dans : i) le maintien d'une 

structure fonctionnelle de l'ARN RPR1 malgré les contraintes induites par la présence de 

grandes insertions; ou ii) l’apport de nouvelles fonctions à la RNase P, pouvant permettre le 

clivage de nouveaux types d’ARN. Ces hypothèses ont été testées par une purification de 

l'holoenzyme RNase P de C. glabrata et suivie d’une analyse de la fraction protéique par 

spectrométrie de masse. 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Figure 5. Similarité de séquence des proteins associées à l’ARN RPR1 entre C. 

glabrata, les espèces Nakaseomyces et S. cerevisiae. Des alignements par paires de chaque 

protéine  ont été réalisés avec le logiciel T-COFFEE (Notredame, Higgins et al. 2000). Les 

taux de similarité ont été extraits des 40 alignements par paire générés et ont été représentés 

sous forme de diagramme. 
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2. Caractérisation de la composition protéique du complexe  

de la RNase P de C. glabrata. 

Saccharomyces  cerevisiae  est l’organisme modèle le plus proche phylogénétiquement de 

Candida glabrata. Chez cette levure le complexe de la RNase P contient 9 protéines (POP1, 

POP3, POP4, POP5, POP6, POP7, POP8, RPP1, et RPR2) codées par des gènes dont les 

homologues sont retrouvés dans le génome de C.  glabrata. En utilisant la technologie 

CRISPR-Cas9, mise au point dans C. glabrata par le laboratoire d’accueil, j’ai tout d’abord 

intégré directement dans le génome une étiquette HA (human influenza hemaglutinine) par 

recombinaison homologue à l’extrémité C terminale de la protéine Rpr2. Cette protéine a 

été sélectionnée car elle est exclusive à la RNase P contrairement aux autres protéines de la 

RNase P. Cette protéine étiquetée a permis de purifier le complexe par immunoprecipitation 

et d’analyser sa composition, en collaboration avec la plateforme de protéomique de 

l’IBMC, Strasbourg. Les huit sous-unités protéiques putatives de la RNase P ont été co-

purifiées avec Rpr2. Ces données valident l'annotation des 9 gènes codant pour la protéine 

RNase P de C. glabrata. De plus, aucune protéine spécifique de la RNase MRP, à savoir 

Snm1 et Rmp1, n'a été purifiée, indiquant que les protéines co-purifiées avec Rpr2 sont bien 

spécifiquement associées à la RNase P. Ce résultat est fondamental puisqu'il a confirmé les 

analyses in silico : la présence de domaines supplémentaires au sein de RPR1 ne remplace 

pas la perte de partenaires protéiques. Au contraire, une nouvelle protéine a été détectée 

dans le complexe : la protéine Rcl1. Chez S. cerevisiae, cette protéine a été décrite comme 

étant impliquée dans la maturation de l'ARN ribosomal (Horn et al. 2011). La co-

purification de la protéine Rcl1 avec Rpr2 n'a pas encore été publiée et aucune donnée 

d'interaction chez S. cerevisiae n'a encore rapporté leur interaction. La fonction de cette 

protéine est similaire à celle de la RNase MRP, bien qu'aucune protéine de cette enzyme 

n'ait été trouvée après purification. Afin de déterminer le lien entre la présence de cette 

protéine au sein de la RNase P de C. glabrata et la présence de domaines additionnels au 

sein de l’ARN RPR1 la séquence de la protéine Rcl1 a été analysée chez S. cerevisiae et 

toutes les espèces du clade des Nakaseomyces (Figure 6). La séquence protéique de Rcl1 est 

fortement conservée parmi toutes ces espèces et aucune divergence de séquence ne corrèlait 

avec la présence de domaines additionnels au sein de l'ARN RPR1. 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Figure 6. Identité de séquence de la protéine Rcl1 entre C. glabrata, les espèces du 

clade des Nakaseomyces et S. cerevisiae. Les alignements par paires ont été réalisés avec le 

logiciel T-COFFEE (Notredame, Higgins et al. 2000). Les taux d’identité strictes ont été 

extraits des 6 alignements par paires réalisés et ont été représentés sous forme de 

diagrammes. 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Chapitre II : Amélioration des outils 

d’édition du génome de C. glabrata

La délétion d’un gène par intégration d'un marqueur de sélection au sein de sa séquence 

codante est une technique conventionnelle, couramment utilisée dans la génétique des 

levures. Pour C. glabrata cette méthode a notamment permis la création d'une collection de 

mutants « perte de fonction », par l'intégration de la cassette NAT (N-acétyl transférase) 

(Schwarzmüller et al. 2014). Les informations fournies par la délétion d'un gène ne sont 

cependant pas suffisantes pour comprendre sa fonction. Les gènes étudiés doivent être 

modifiés plus finement, par exemple en modulant leur expression ou par la génération d'une 

protéine chimérique. L'intégration de séquences exogènes complètes au sein d'un génome 

permet d'apporter de nouvelles connaissances sur la biologie d'un organisme. L'intégration 

de gènes entiers tels que la GFP (Green Fluorescent Protein) par exemple, est un moyen 

efficace pour décrypter des processus moléculaires au sein d'une cellule. Concernant les 

études portant sur C. glabrata, l'expression de gènes mutés est majoritairement apporté par 

des plasmides plutôt que par la modification directe de son génome. L’inconvénient 

principal dans l’utilisation de plasmides réside dans leur maintien au sein de la cellule 

transformée. Ce maintien est généralement possible par la présence au sein du plasmide 

d’un gène d’une voie de biosynthèse absent au sein d’une souche auxotrophe. Cependant de 

plus en plus de publications mettent en garde quant à l’utilisation des souches autotrophes 

dans l’étude des levures, pouvant apporter de nombreux biais dans l’interpretation des 

expériences menées. Ces problèmes ont été observés au cours de cette thèse en analysant le 

rôle d’un gène aux fonctions inconnues, le gène CAGL0K07678g, dans la virulence de C. 

glabrata au cours de l’infection systémique du modèle animal Drosophila melanogaster. 

L’inactivation de CAGL0K07678g dans une souche auxotrophe de C. glabrata a laissé pensé 

que ce gène était directement impliqué dans l’infection systémique d’un hôte. Cependant, la 

reconduite de cette expérience d’ inactivation dans une souche de référence a confirmé le 

contraire, à savoir que l’inactivation de ce gène ne diminué pas significativement la 
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virulence de C. glabrata lors de l’infection systémique de D. melanogaster. La souche 

auxotrophe de C. glabrata induit donc un biais conséquent dans la caractérisation de la 

fonction des gènes cette levure. Dans ce contexte, j'ai conçu de nouveaux outils permettant 

de surmonter les limitations actuelles concernant l'édition du génome d’une souche 

prototrophique de C. glabrata. J’ai améliorer les méthodes d’édition du génome 

majoritairement utilisés dans l’étude de C. glabrata permettant i) la disruption, ii) 

l’étiquetage par un épitope et iii) l’intégration de potentiellement n’importe quel gène au 

sein du génome de C.  glabrata.  Cette méthode repose uniquement sur le système de 

recombinaison homologue sans induction d’une coupure double brin préalable. Dans un 

premier temps j’ai mis en place une méthode rapide de construction de cassette de 

disruption basée sur l’assemblage de bras d’homologie d’un gène ciblé avec le gène 

conférant la resistance à la zeocine. L’insertion de cette cassette dans une séquence codante 

inactive le gène d’intérêt et peut facilement être sélectionnée sur un milieu supplémenté en 

zeocine. Dans un second temps j’ai conçu une cassette d’étiquetage de l’extrémité C 

terminale des protéines par l’etiquette HA (human influenza hemaglutinine) fusionnée au 

gène conférant la resistance à la zeocine (Figure 7) . Les événements d’étiquetage d’une 

protéine par l’épitope HA peuvent êtres rapidement sélectionnés sur un milieu supplémenté 

en antibiotique. Cet epitope permettra par exemple la réalisation d’expériences 

d’immunoprecipitation afin d’analyser les partenaires d’une protéine donnée. Ces méthodes 

ont été testées sur le gène CAGL0K07678g , qui a pu être inactivé et étiqueté pour la 

première fois dans une souche sauvage de C. glabrata. 

Sur le même principe, j’ai mis en place une méthode d’intégration de gène entier par 

fusion avec le gène de résistance à la zeocine. Un gène nécessite un promoteur et un 

terminateur de transcription afin d’être exprimé. Pour que cette méthode d’intégration de 

gène soit la plus pratique possible ces éléments se devaient être de petite taille. J’ai donc 

conçu 3 nouveaux promoteurs et un terminateur synthétiques présentant une taille de l’ordre 

de 4 fois inférieure à ceux utilisés couramment chez C.  glabrata  (Figure  8  et  9). Cette 

méthode d’intégration de gène a été mise au point et testée de manière positive avec la 

protéine fluorescente GFP (Figure 10) .  

!16









 

Figure 10. Les trois nouveaux promoteurs synthétiques de C. glabrata permettent une 

expression efficace de la protéine GFP. (A) L'efficacité de traduction de la protéine GFP a 

été visualisée par microscopie confocale (LSM 700, Zeiss). Les images ont été traitées à 

l'aide des logiciels ZEN (Zeiss) et ImageJ. (B) L'expression de l'ARNm GFP a été mesurée 

par RT-qPCR et l'analyse des résultats a été effectuée à l'aide du logiciel Prism (GraphPad).  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Conclusion

Mes travaux de thèse ont dans un premier temps permis de caractériser les partenaires 

protéiques de la composante ARN de la RNase P nucléaire de Candida glabrata. Il a été mis 

pour la première fois en évidence la présence de la protéine Rcl1 au sein d’un complexe de 

RNase P nucléaire. Néanmoins nous ne savons pas à l’heure actuelle si sa présence est due 

aux domaines additionnels de RPR1 ou si sa détection est liée l’utilisation de techniques 

récentes de spectrométrie de masse peu utilisée dans la caractérisation de la RNase P d’autre 

espèces. De part sa fonction, la présence de cette protéine pourrait alors expliquer les 

résultats récemment publiés impliquant la RNase P dans des processus de maturation 

d’ARN ribosomiques chez les eucaryotes. Ce travail de thèse a aussi apporté des réponses 

préliminaires aux rôle des domaines additionnels de RPR1 qui sembleraient être 

indispensable à la fonction essentielle de la RNase P à savoir la maturation des ARN de 

transfet. Dans un second temps, mes travaux de thèse ont contribué a étoffer de façon 

importante la palette d’outils disponibles pour l’édition du génome de C.  glabrata. Ces 

nouvelles méthodes modulables mises en place faciliteront grandement l’analyse de gènes 

dans des souches isolées cliniquement mais aussi la mise en place de banque de mutations à 

large échelle. 
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