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L'autisme, ou troubles du spectre autistique, est un ensemble de désordres neuro-

développementaux complexes caractérisés par des troubles de la communication et des 

interactions sociales ainsi que par des centres d'intérêts restreints et répétitifs et des 

stéréotypies. On recense chez les patients autistes une mosaïque de symptômes regroupés sous 

le terme de troubles du spectre autistique.  

Sa prévalence est estimée à une personne atteinte sur cent et semble être en augmentation. Si 

son étiologie est aujourd'hui mal comprise, elle inclut cependant des facteurs génétiques et 

environnementaux et différentes théories existent pour tenter d'expliquer la survenue de cette 

pathologie. Certaines de ces théories se basent sur des hypothèses psychologiques comme la 

théorie de l'esprit ou la théorie de la faiblesse de la cohérence centrale, tandis que d'autres se 

concentrent sur une base physiologique, comme la théorie de l'altération de la balance 

excitation/inhibition ou de l’hyper-connectivité dans certaines structures du système nerveux 

central.  

Des atteintes dans de nombreuses structures cérébrales, comme le cortex préfrontal, 

l'amygdale, l'hippocampe, le noyau accumbens et le cervelet, ont étés mises en évidence chez 

les sujets autistes, chacune d’entre elles pouvant expliquer une partie des signes cliniques 

observés.  

Parmi ces structures, le cervelet est celle dont les modifications anatomiques ont été le plus 

souvent rapportées dans les études post-mortem. Le cervelet, ou petit cerveau, est depuis 

longtemps connu pour son implication dans les processus moteurs (coordination des 

mouvements, équilibre, apprentissage moteur…) mais a plus récemment été mis en avant pour 

son rôle dans des processus cognitifs, tel que la gestion des émotions ou encore la perception 

de l’environnement. Depuis lors, l’étude des altérations du cervelet chez les patients autistes et 

dans des modèles animaux de l’autisme est devenue un axe de recherche primordial pour 

améliorer notre compréhension des troubles du spectre autistique. A ce sujet, nous avons 

compilé différentes informations recensant l’implication du cervelet dans les troubles 

autistiques. 
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Le cervelet reçoit, en provenance de nombreuses zones cérébrales, une multitude 

d'informations qui convergent toutes vers les cellules de Purkinje qui constituent l'unique voie 

de sortie du cortex cérébelleux. De façon intéressante, c’est cette cellule qui a une position 

centrale dans le circuit cérébelleux qui est généralement impactée dans la pathologie de 

l’autisme. 

Au cours de mon travail de thèse, je me suis intéressé à la théorie cellulaire d’un déséquilibre de 

la balance excitation inhibition comme origine des TSA. J'ai étudié, d'une part, la mise en place 

de cette balance dans les cellules de Purkinje, qui se fait dépendamment du développement du 

gradient extra/intra cellulaire en ions chlorures. Ce gradient détermine l’effet du GABA qui est 

considéré comme le principal neurotransmetteur inhibiteur du système nerveux central. D'autre 

part, j'ai étudié l'effet d'un composé X, modulant le gradient aux ions chlorures, sur les 

comportements autistiques. 

Afin de mener à bien mon premier projet, j’ai choisi un modèle murin de l’autisme. Différents 

modèles murins de l'autisme existent : ils sont construits soit  sur des mutations de gènes 

connus pour leur implication dans l’autisme (shank3, Fmr1, Oprm1...) soit sur des expositions 

environnementales prénatales à des agents tératogènes (métaux lourd, parabène, pesticides...). 

Parmi les modèles environnementaux, nous avons choisi celui pour la souris d'une exposition 

prénatale au valproate de sodium (VPA = acide valproïque: un antiépileptique largement 

prescrit) connu pour engendrer chez la descendance des comportements autistiques, ainsi que 

des altérations cérébelleuses. Ce modèle est appelé souris-VPA. Dans le cadre de l'étude 

pharmacologique j'ai travaillé avec les modèles génétiques KO FMR1 (modèle de l'X fragile) et 

KO Oprm1 (modèle d'un déficit de récompense sociale). 

Les résultats obtenus au cours de ma thèse ont permis de démontrer d’une part que la 

régulation du gradient aux ions chlorures, qui contrôle l’inhibition GABAergique, présente un 

dimorphisme sexuel et est altérée chez les souris VPA et d’autre part, bien que les souris VPA 

présentent plus de cellules de Purkinje chez les animaux jeunes (P13), les souris adultes mâles 

(P40) ont elles perdu des cellules de Purkinje de façon régionalisée. Enfin, j'ai réalisé un 
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phénotypage des  comportements autistiques chez les souris VPA et montré la présence de ces 

comportements chez les deux sexes et ce malgré les différences observées précédemment. 
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Les premières descriptions cliniques de  l’autisme datent de plus de 70 ans. En effet, en 1943 

Léo Kanner (Kanner 1943) étudie les comportements de 11 enfants qu’il décrit comme atteints 

de « troubles autistiques du contact affectif ». A l’époque, Kanner ne définit pas de critères 

diagnostiques mais il note néanmoins deux symptômes centraux aux troubles observés chez les 

enfants qu’il nomme « aloneness » et que l’on définit maintenant comme troubles socio-

communicatifs et « sameneness » que l’on appelle : comportement et intérêts restreints et 

répétitifs.  

Cependant, les courants de pensées prédominants dans les années 50-60 ont conduit à 

considérer  l’autisme  comme un trouble correspondant à un retrait actif de l’enfant en réponse 

à une situation relationnelle insupportable et à être confondu avec la schizophrénie infantile. 

Cette conception de l’autisme sera remise en question dans les années 70-80 notamment en 

séparant clairement autisme et schizophrénie infantile (Kolvin, 1971) et en démontrant 

l’implication de facteurs génétiques (Folsein et Rutter, 1977). 

La classification moderne de l’autisme apparait en 1979 dans une étude épidémiologique de 

Wing et Gould portant sur des enfants nés entre 1956 et 1970. Ils ont montré qu’en plus 

d’enfants présentant des symptômes typiques de l’autisme (4.9/10 000) d’autres (22.5/10 000) 

partagent avec eux une triade de déficiences caractérisée par des troubles des interactions 

sociales, de la communication et des comportements et intérêts restreints et stéréotypés. Cette 

triade de symptômes a servi de base à l’établissement d’un nouveau diagnostic nommé troubles 

envahissants du développement (TED) afin d’identifier des enfants ne présentant pas 

l’ensemble des symptômes d’un autisme typique ou qui les présentent avec un moindre degré 

de sévérité. Cette étude a également conduit à l’introduction du diagnostic du syndrome 

d’Asperger pour des enfants présentant la triade caractéristique mais, sans retard de langage 

dans ses aspects formels (phonologie, lexique et syntaxe) et sans un retrait social massif mais 

présentant des interactions sociales inadaptées (Wing and Gould, 1979).  

Enfin, en 2013, apparait la classification des Troubles du Spectre Autistiques (TSA) avec la 

publication du DSM-5 ("Diagnostic and Statistical Manual of Mental Disorders" pour "Manuel 

diagnostique et statistique des troubles mentaux"; (American Psychiatric Association, 2013)). 
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Cette nouvelle classification explique probablement en partie l’augmentation du nombre de cas 

diagnostiqués en permettant aux cliniciens de repérer de façon plus fiable des enfants 

présentant à différents degrés la triade de symptômes. En effet la prévalence des TSA est 

passée d’environs 5/10 000 il y a 20 ans à 1/100 récemment. 

1 - Présentation générale selon le DSM5 

Il existe deux grands systèmes de classification des troubles psychiatriques: le CIM (classification 

internationale des maladies) publié par l'OMS (Organisme Mondiale de la Santé) et le DSM 

(Diagnostic and Statistical Manual of Mental Disorders) publié par l'AAP (Association Americaine 

de Psychiatrie). Le DSM en est à sa 5ème version et est le plus utilisé des deux. Le DSM-5 ne fait 

plus cas que d’une seule catégorie d’autisme : les troubles du spectre autistique (TSA) qui 

regroupent l’ensemble des catégories du DSM-4 (trouble autistique, trouble désintégratif, 

syndrome d’Asperger, TED non spécifié) à l’exception du syndrome de Rett. 

Le diagnostic de TSA, pour être établit, nécessite la présence de 2 symptômes, à savoir des 

altérations des comportements socio-communicatifs et la présence de centre d’intérêt et 

d’activités stéréotypés incluant la présence d’anomalies sensorielles. Un troisième critère est 

relatif à l’âge d’apparitions des symptômes « Les symptômes doivent être présents dès la petite 

enfance mais peuvent ne devenir totalement manifeste que lorsque la demande sociale excède 

les limites des compétences ». Enfin, pour atteindre le diagnostique, le trouble doit constituer un 

réel handicape pour le patient « Les symptômes limitent et handicapent le fonctionnement 

quotidien ». 

Le DSM-5 impose également une évaluation de la sévérité des symptômes, en fonction du 

besoin d’accompagnement, en trois niveau 1) accompagnement nécessaire, 2) nécessite un 

accompagnement important, 3) nécessite un accompagnement très important. La présence 

d’une déficience intellectuelle, d’un trouble du langage ou d’un autre trouble associé doit aussi 

être évaluée ainsi que la présence de facteurs génétiques ou environnementaux connus. 
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2 - Etiologies 

La question de l'étiologie de l'autisme est extrêmement complexe et encore largement 

incomprise (Varghese et al., 2017). En effet seul 5 à 10% des cas peuvent s'expliquer par une 

commorbidité avec une autre pathologie telle que la Sclérose tubéreuse de Bourneville, le 

syndrome de Down ou celui du X fragile (Banerjee et al., 2014). On parle alors d'autisme 

syndromique. Mais dans la majorité des cas, il n'est pas possible d'identifier clairement l'origine 

du trouble que l'on qualifiera alors d'autisme idiopathique ou non-syndromique.  

L'implication de facteurs génétiques a été démontrée par une étude, portant sur des jumeaux, 

qui montre une occurrence des TSA de 60 à 90% chez des jumeaux monozygotes(Folstein and 

Rosen-Sheidley, 2001), soit dix fois l'occurrence retrouvée pour des jumeaux dizygotes 

(Bourgeron, 2015). Ces facteurs génétiques peuvent être regroupés en huit catégories: (1) les 

gènes régulant des voies moléculaires et faisant le lien entre des signaux synaptiques et non-

synaptiques comme TSC1/2 (Tuberous Sclerosis 1 et 2) ou PTEN (Phosphatase and TENsin 

homolog); (2) ceux impliqués dans la traduction et la stabilité des protéines avec notamment 

FMR1 (fragile mental retardation) et UBEA3A; (3) ceux intervenant dans le développement de 

processus neuronales, incluant les neurolignines (NLGN3 et NLGN4), protocadherine 10 

(PCDH10) ou encore SHANK3 (proteine d'ancrage synaptique); (4) les gènes impliqués dans la 

production et la signalisation de neurotransmetteurs et de neuromodulateurs comme le 

transporteur à la sérotonine SLC6A4; (5) ceux régulant la concentration ionique intracellulaire 

en calcium, sodium mais également chlorure; (6) ceux intervenant dans le métabolisme comme 

la phenylalanine hydroxylase; (7) ceux régulant l'expression génétique avec MeCP2, RNF8, En2; 

et (8) ceux dont la fonction n'est pas connue comme AHI1, une des cause du syndrome de 

Joubert (Rubenstein, 2010; De Rubeis et al., 2014). Cependant, aucun de ces facteurs pris 

individuellement ne peux expliquer plus 1 à 2% des cas d'autisme.  

Si ces causes génétiques semblent difficilement expliquer à elles seules la survenue de l'autisme 

il semblerait que ce soit une interaction entre une prédisposition génétique et des facteurs 

environnementaux apparaissant précocement dans le développement (pré/périnatale) qui 
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conduirait à la survenue de la majorité des  TSA (Kalkbrenner et al., 2014). Parmi ces facteurs 

environnementaux on peut citer les métaux lourds, les pesticides, des composés organiques 

volatiles ou encore la pollution atmosphérique (pour revue voir Kalkbrenner et al., 2014). En 

plus de ces composés chimiques d'autres éléments pourraient rentrer en ligne de compte tel 

que le stress maternel, une infection durant la grossesse, l'âge du père. Enfin,  certaines 

substances pharmacologiques  comme la thalidomide ou le valproate de sodium prescrites 

pendant la grossesse sont des facteurs de risque (Gadad et al., 2013). 

3 - Théories sur l'origine des TSA 

De par la complexité de son étiologie et l'hétérogénéité de sa symptomatologie les TSA forment 

un ensemble de troubles difficiles à appréhender. Plusieurs théories tentent d'expliquer les 

causes de la survenue des TSA dont  je vais résumer certaines des plus citées. 

La "théorie de l'esprit aveugle", développée par Baron-Cohen en 1995, pose que les déficits 

observés chez les patients autistes seraient dus à une faiblesse de théorie de l'esprit. Cette 

théorie de l'esprit sous-tend la capacité de comprendre et de prévoir les comportements 

d'autrui en lui attribuant des états mentaux tels que des croyances, des désirs, des émotions ou 

des intentions (Baron-Cohen, 1995). Des études d'imagerie fonctionnelle ont pu montrer, qu’en 

plus d’une sous performance dans les tests cognitifs relatifs à la théorie de l'esprit, il existait 

chez les patients une sous activation et une connectivité fonctionnelle réduite dans les zones 

cérébrales activées pendant les tests (Kana et al., 2015). 

La théorie du "cerveau extrêmement masculin" (Baron-Cohen, 2002) postule quant à elle 

l'existence de plusieurs types de cerveaux, dont le "cerveau féminin" fonctionnant plus sur 

l'empathie et un "cerveau masculin" fonctionnant plus sur la systématisation. Selon cette 

théorie, les TSA résulteraient d'un cerveau fonctionnant comme celui d’un "cerveau masculin" 

mais de façon « exagéré » du faite d'une trop forte exposition à la testostérone pendant le 

développement embryonnaire. On retrouve effectivement dans plusieurs études des rapports 

de dérégulations hormonales, comme des taux élevés de testostérone ou encore une 
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augmentation du nombre de polymorphismes aux niveaux des gènes régulant le métabolisme 

des androgènes (Schmidtova et al., 2010).  

L'une des théories les plus connues sur l'autisme est celle du "monde trop intense" de Markram. 

Le cœur du phénomène serait ici partagé entre un manque de connexion à distance entre les 

différentes aires cérébrales qui impacterait la capacité à intégrer des informations cognitives et 

sensorielles et une sur-connectivité locale qui mènerait à une hyperspécialisation des processus 

sensoriels (Markram et al., 2007; Markram and Markram, 2010). 

Les TSA pourraient également être du à un déficit dans le système de récompense selon la 

théorie de la récompense sociale. En effet, plusieurs études ont révélé des déficits dans la 

perception d'une récompense suite à une interaction sociale positive chez les patients TSA. De 

plus, une diminution de l'activité neuronale a été rapportée dans des zones clés pour 

l'anticipation et le traitement de la récompense, tel que les noyaux accumbens et le caudé-

putamen chez des patients TSA (Pellissier et al., 2017). 

Enfin, la dernière théorie que je souhaiterais évoquer et celle d'un déséquilibre de la balance 

entre l’excitation et l’inhibition dans des systèmes neuronaux clés (sensoriel, mnésique, social et 

émotionnel) tel que proposée par Rubenstein et Merzenich en 2003. Des déséquilibres de cette 

balance seraient à l’origine de la prévalence d'environ 30% de sujets épileptiques parmi la 

population autistique, ainsi que de la présence d'activités anormales révélées par un EEG chez 

50 à 70% des sujets autistes. Les différents facteurs génétiques et environnementaux, cités 

précédemment, contribueraient à augmenter l'activité glutamatergique ou à diminuer l'activité 

GABAergique conduisant à une augmentation du ratio excitation/inhibition. L'augmentation de 

ce ratio créerait un "bruit de fond" perturbant le développement normal du système nerveux 

(Rubenstein and Merzenich, 2003). 

4 - Neuropathologies de l'autisme 

Le paramètre ayant été le plus souvent évalué chez des patients autistes est la taille du cerveau, 

déterminée par une mesure de la circonférence de la boite crânienne. Ce paramètre a permis de 
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mettre en évidence des anomalies du développement cérébral chez les autistes. Si la taille du 

cerveau semble ne pas différer entre autistes et contrôles à la naissance, elle est supérieure 

d'environ 10% chez les sujets autistes à l’âge de 3-4 ans. Cependant, à l'âge adulte, une taille 

cérébrale égale, voire inferieure aux contrôles, est rapportée chez les patients autistes (DiCicco-

Bloom et al., 2006). Un grand nombre d'études ont porté sur la taille cérébrale des patients 

autistes et même si toutes ne s'accordent pas, une méta-analyse de ces données a pu confirmer 

l'existence d'une différence de la taille cérébrale moyenne entre population contrôle et autiste. 

Cette différence apparait de manière dépendante de l'âge avec une taille plus importante dans 

l'enfance (Sacco et al., 2015). 

Si la taille globale du cerveau semble affectée chez les autistes, on retrouve également des 

modifications localisées dans certaines structures : cortex préfrontal, gyrus fusiforme, cortex 

cingulaire et frontoinsulaire, l'hippocampe, l'amygdale, le striatum et le cervelet (pour revue 

voir Varghese et al., 2017). 

Le cortex préfrontal (PFC) est connu pour coordonner la mémorisation, la planification et 

l'activité de différentes autre zones cérébrales (Miller and Cohen, 2001). Le PFC est plus 

développé chez les jeunes sujets autistes où une augmentation de 67% du nombre de neurones 

a même été montrée. Cependant, la taille des neurones pyramidaux y est réduite et l'activité 

des micro-colonnes corticales est perturbée avec un déficit de l'inhibition entre chaque colonne. 

Le gyrus fusiforme est impliqué dans la reconnaissance faciale et joue donc un rôle central dans 

les interactions sociales. Plusieurs études ont montrées une activité moins importante dans 

cette structure chez les patients TSA, de l'adolescence à l'âge adulte, ainsi qu'une diminution du 

nombre de neurones dans certaines couches de cette aire corticale chez l'adulte. Ces résultats 

suggèrent une connectivité diminuée, entre les aires analysant visuellement les visages et le 

gyrus fusiforme, et entre le gyrus et les aires évaluant les expressions faciales. 

Les cortex cingulaire et frontoinsulaire présentent une population spécifique de neurones : les 

neurones  de Von Economo, dont la distribution dans ces aires corticales suggère qu’ils sont 

impliqués dans la cognition sociale et le sens de soi (Allman et al., 2010). Des études ont montré 
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une augmentation du nombre et de la densité de ces neurones chez des sujets autistes ainsi que 

des anomalies de leurs distributions. Des altérations de patron d'activité ainsi que des 

anomalies de la stratification ont également été montrées dans le cortex cingulaire. 

L'hippocampe, impliqué entre autres dans la mémorisation (intégration et récupération des 

souvenir) et la navigation spatiale (Eichenbaum et al., 1999; Burgess et al., 2002), montre une 

diminution de la taille des neurones, une augmentation de leurs nombres (notamment des 

interneurones GABAergiques) ainsi qu'une diminution de la complexité de l'arborisation 

dendritique des neurones pyramidaux chez les patients TSA.  

L'amygdale contrôle l'apprentissage émotionnel (Cahill et al., 1995) et plusieurs études ont 

montré une diminution globale du nombre de neurones dans cette structure uniquement chez 

les autistes adultes. 

Des altérations de la taille du striatum ont étés rapportées chez les enfants et les adultes avec 

TSA. Des études IRM (imagerie par résonance magnétique) ont montré une activité moindre 

dans le striatum de patients TSA lors d'un paradigme testant le traitement d'une récompense 

sociale. Des anomalies striatales sont également rapportées dans différents modèle d'autisme, 

comme une altération de la plasticité ou des modifications structurales au niveau synaptique, 

ainsi qu'une diminution de l'excitation neuronale (Fuccillo, 2016).  

Le cervelet est connu pour réguler la coordination motrice, mais il est apparu qu'il jouait 

également un rôle dans des processus cognitifs comme la régulation des émotions (Reeber et 

al., 2013; Strata, 2015). De nombreuses études ont montré des différences en termes de volume 

du cervelet entre sujets sains et autistes ainsi qu’une diminution du nombre de cellules de 

Purkinje (CP). Les atteintes cérébelleuses liées au TSA seront traitées plus en détail dans le 

chapitre 3. 

5 - Autisme, thérapie et prise en charge 

Aujourd’hui, il n'existe pas de thérapie pour traiter l'autisme. Cependant, il existe différentes 

prises en charges qui permettent de soulager les symptômes et améliorent la qualité de vie des 
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patients et de leurs proches. Ces prises en charge se regroupent principalement en deux 

catégories : les traitements pharmacologiques et les thérapies comportementales. 

Récemment, des études ont été menées sur les effets de la bumétanide (un antidiurétique) qui 

semble montrer des résultats encourageants (Lemonnier et al., 2012). Les laboratoires Roches 

viennent de recevoir le statut de "percée thérapeutique" pour le Balovaptan, un antagoniste 

des récepteurs à la vasopressine ayant montré des résultats positifs en phase 2 (Roche, 2018).  

L'ocytocine est connue pour son rôle dans la cognition et les interactions sociales (Yamasue et 

al., 2012). Sa prise chez l'humain induit, entre autres, une plus grande confiance sociale, de 

l'altruisme et une meilleure capacité à inférer les émotions d'autrui à partir d'expressions 

faciales. Les patients autistes ayant pris de l'ocytocine répondent plus facilement aux autres, 

sont plus coopératifs, répondent mieux dans des tests de reconnaissances d'émotions et 

augmentent leurs contacts visuels (Benner and Yamasue, 2017). 

Même si des résultats encourageant sont trouvé notamment avec le Balovaptan, aucune piste 

n'a pour l'instant permis de fournir un traitement ayant passé toutes les phases d'essais 

cliniques et ayant prouvé une amélioration significative. Il existe cependant des méthodes 

alternatives ayant fait leurs preuves et qui proposent de réelles améliorations : les thérapies 

comportementales. 

Il existe différentes thérapies comportementales pour les TSA et ce sont généralement tous des 

programmes intensifs, ayant pour but d'induire des progrès globaux et durables chez les 

patients. Parmi ces programmes, ABA pour Applied Behavior Analysis (Analyse appliquée du 

comportement) est certainement le plus connu et le plus utilisé. Il met l'accent sur des 

compétences liées à l’autonomie, au langage réceptif, à l’imitation verbale et non-verbale et 

permet d’établir les bases pour le jeu. Il existe deux types d’enseignement : l’enseignement 

structuré et l’enseignement dit secondaire. L'enseignement structuré se déroule en petites 

séances répétées, en succession rapide, jusqu'à ce que l'enfant soit capable de répondre de lui-

même sans aide. Chaque séance se concentre sur une demande ou une directive donnée à 

l'enfant afin qu'il effectue une action, le comportement ou la réponse attendu et enfin la 
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réaction de l'intervenant. Ici, chaque réponse ou ébauche de réponse est récompensée 

(compliment, félicitations) tandis que tout autre comportement que celui attendu est ignoré ou 

corrigé de façon neutre. L'enseignement dit secondaire s'applique à tout endroit et tout 

moment et a pour but de guider l'enfant. Cela peut s'appliquer dans le cadre de jeux pour le 

guider dans l'expérimentation et la découverte de son environnement, lors de moment 

d'autonomie personnelle comme les repas ou la toilette ou encore dans des moments 

d'intégration sociale comme des repas en groupe, des sorties en société... Là encore, chaque 

comportement jugé comme approprié sera récompensé.  

Cependant, ces thérapies comportent également leurs limites notamment du fait de leurs coûts 

de mise en place tant au niveau financier qu'humain. L'efficacité de ces thérapies est difficile à 

évaluer et il n'existe de validation officielle pour aucune d'entre elles. La méthode ABA à été 

sujette à controverse (Shea, 2009). La mise au point d'une thérapie semble être une nécessitée 

et la clé résiderait dans un équilibre entre thérapie comportementale et traitement 

pharmacologique. Cependant, la complexité des TSA et la grande diversité de leur éthologie 

rendent très difficile la mise au point d'un traitement "universel" qui pourrait convenir à tous les 

patients.  

L'autisme est un trouble neuro-développemental complexe que l'on connait depuis de 

nombreuses années mais dont la compréhension est en permanente évolution. Son étiologie 

repose sur de nombreux facteurs de risques, tant génétiques qu'environnementaux, dont 

beaucoup ont été identifiés mais dont les interactions restent méconnues. Si de multiples 

théories existent pour expliquer l'autisme et la diversité des atteintes qui y sont liées, aucune 

n'a, à ce jour, amené à une compréhension suffisamment fine de ce trouble pour pouvoir le 

traiter. Lors de ma thèse, je me suis concentré sur l'étude d'une structure dont l'implication 

dans les TSA a été de plus en plus mise en avant ces dernières années : le cervelet. 
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Le cervelet est une structure du système nerveux central située sous les hémisphères cérébraux 

et à l'arrière du tronc cérébral. Il pèse en moyenne 140 g chez l’homme adulte, ce qui ne 

représente que 10 % du poids du cerveau. Sa structure anatomo-fonctionnelle se met en place 

essentiellement pendant la période postnatale. Avec plus de 50 milliards de neurones, le 

cervelet contient plus de 50 % des neurones de l’encéphale. 

  1 -  Anatomie descriptive 

Schématiquement (figure 1A), en vue dorsale, le cervelet présente deux hémisphères flanquant 

le vermis central. La masse du cervelet est constituée de trois lobes (antérieur, postérieur et 

floculonodulaire) séparés par deux fissures transversales profondes et subdivisée par des 

fissures moins profondes en dix lobules numérotés de I à X dans le vermis. Le cervelet, ou "petit 

cerveau", se compose, à l'instar du télencéphale, d’un cortex externe autour de substance 

blanche englobant les noyaux cérébelleux profonds (dentelé, emboliforme, globuleux et 

fastigial). 

 

D'un point de vue fonctionnel, le cervelet peut-être subdivisé en trois régions apparues 

successivement au cours de l'évolution (Manto and Habas, 2013).  

Le vestibulo-cervelet, partie phylogénétiquement la plus ancienne, est composé des lobes 

floculo-nodulaires. Il est impliqué dans les réflexes occulomoteurs et dans le maintien de 

l'équilibre, il traite des informations vestibulaires, proprioceptives et cutanées. Il projette ses 

efférences vers les noyaux vestibulaires. 

Le spino-cervelet correspond aux régions vermales et paravermales du lobe antérieur. Il est 

impliqué dans les réflexes de maintien et d'adaptation de la posture. Ses afférences sont 

somesthésiques, vestibulaires, sensorielles mais aussi proprioceptives. Il projette vers les 

noyaux profonds et vestibulaires. 

Enfin, le cérébro-cervelet correspond aux hémisphères ainsi qu'à la zone centrale et postérieure 

du vermis. Ses afférences sont principalement corticales et il est impliqué dans la planification 

et la régulation de mouvement fin ainsi que dans différentes taches cognitives, comme nous le 

verrons dans la partie III. 
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 2 -  Histologie (cortex cérébelleux) 

Le cortex cérébelleux est composé d’un circuit neuronal canonique (figure 1C) et s'organise en 

trois couches regroupant sept types cellulaires.  

La couche moléculaire est la plus externe, elle contient des interneurones inhibiteurs (cellules 

étoilées et cellules en panier) ainsi que l'arborisation dendritique des CP et les collatérales des 

axones des cellules granulaires.  

La couche granulaire est, elle, la plus interne du cortex cérébelleux et contient, comme son nom 

l'indique, les corps cellulaires des cellules granulaires mais aussi les cellules de Golgi, les cellules 

de Lugaro et les cellules unipolaires en brosse. 

Enfin la couche intermédiaire est celle des CP. Ces cellules constituent une population centrale 

dans le cervelet, recevant toutes les informations à différents niveaux de leur arborisation 

dendritique. Elles intègrent l’information de différentes modalités sensorielles et envoient un 

message inhibiteur aux noyaux profonds cérébelleux qui véhiculent l’information sortant du 

cervelet. Les CP reçoivent une innervation excitatrice directe très particulière par les fibres 

grimpantes issues de l’olive inférieure (une CP est innervée par une seule fibre grimpante chez 

l’adulte) et une innervation indirecte par les fibres moussues, via un réseau dont le premier 

élément est les cellules granulaires. Les fibres moussues proviennent de nombreux noyaux 

spinaux et centraux. Les interneurones inhibiteurs de la couche moléculaire modulent l’effet des 

innervations excitatrices qui convergent sur la CP. De plus, il existe un rétrocontrôle excitateur 

entre les noyaux cérébelleux et les cellules granulaires (boucle nucléo-corticale) et un 

rétrocontrôle inhibiteur entre les noyaux cérébelleux et l’olive inférieure (boucle olivo-cortico-

nucléaire). Ce circuit serait capable d’adapter les signaux moteurs et pourrait moduler des 

comportements non moteurs. Cependant, les CP diffèrent de par leur taille, leurs propriétés 

électriques et l’expression de certaines protéines (Cerminara, 2016). Elles sont regroupées en 

sous-populations constituant des modules qui traitent des informations sensorielles différentes. 

L’interconnexion de ces modules permettrait leur communication en réponse à des stimulations 

sensorielles multiples qui restent encore à explorer (Voogd, 2014; Cerminara, 2016). 
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Figure 1: Anatomie du cervelet et organisation cellulaire du cortex cérébelleux.  
A. Vue dorsale et organisation lobulaire. 
C. Organisation cellulaire du cortex cérébelleux.
 
 

 3 -  Rôles multiples du cervelet

Le cervelet est depuis longtemps connu pour son rôle dans le

2002). Lors de l'initiation d'un mouvement volontaire

l’ordre moteur en provenance du cortex moteur

somato-sensorielles directes ou indirectes par l’intermédiaire du néocortex et, d’autre 

copie du programme d’exécution de l’ordre moteur de la part de la moelle épinière. Le cervelet 

module la genèse du mouvement et le contrôle au niveau du cortex moteur primaire par 

l’intermédiaire du thalamus. Il confère ainsi aux programmes moteu

organisation chronologique, somatotopique et spatio
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Figure 1: Anatomie du cervelet et organisation cellulaire du cortex cérébelleux.  
Vue dorsale et organisation lobulaire. B. Coupe horizontale : les noyaux cérébelleux. 

cortex cérébelleux. 

Rôles multiples du cervelet 

est depuis longtemps connu pour son rôle dans le contrôle

itiation d'un mouvement volontaire, le cervelet reçoit d'une part

l’ordre moteur en provenance du cortex moteur ainsi que des informations vestibulaires, 

sensorielles directes ou indirectes par l’intermédiaire du néocortex et, d’autre 

programme d’exécution de l’ordre moteur de la part de la moelle épinière. Le cervelet 

module la genèse du mouvement et le contrôle au niveau du cortex moteur primaire par 

l’intermédiaire du thalamus. Il confère ainsi aux programmes moteurs du mouvement une 

organisation chronologique, somatotopique et spatio-temporelle (figure 2A
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Figure 1: Anatomie du cervelet et organisation cellulaire du cortex cérébelleux.   
aux cérébelleux.  
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module la genèse du mouvement et le contrôle au niveau du cortex moteur primaire par 
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le rôle du cervelet serait de générer un modèle interne de l’appareil moteur et de 

l’environnement en utilisant les informations sensorielles (Therrien and Bastian, 2015). Le 

cervelet participe également à l’apprentissage moteur tel que l’adaptation du réflexe vestibulo-

oculaire. Il nous permettrait également d’anticiper le futur par une adaptation prédictive du 

mouvement en relation avec les informations sensorielles (Bastian, 2006; Schlerf et al., 2012). 

L’atteinte du circuit cérébelleux conduit à un déficit moteur se traduisant par des gestes 

maladroits et une difficulté pour le patient à exécuter des gestes fins et précis. Son écriture est 

irrégulière dans le sens horizontal et vertical. On observe une dysmétrie accompagnée d’une 

hypermétrie, une asynergie (mauvaise coordination motrice, le mouvement n’est plus lié mais 

décomposé) et une mauvaise répartition du tonus dans les muscles antigravitaires. Un retard à 

la mise en route et à l’arrêt du mouvement (dyschronométrie), l’impossibilité de faire des 

mouvements associés rapides (adiadococinésie) et des tremblements sont également observés. 

On parle d’ataxie cérébelleuse en référence à la mauvaise coordination des mouvements. Les 

lésions du cervelet causent également des déficits oculomoteurs comme des saccades 

dysmétriques et un nystagmus qui peuvent indirectement affecter la perception visuelle. On 

pense que le cervelet recalibre la perception visuelle de la dynamique des stimulations visuelles 

(Therrien and Bastian, 2015). 

Des études récentes menées sur les connections afférentes et efférentes du cervelet (figure 2B), 

utilisant des virus neurotropes comme traceurs transneuronaux ainsi que des approches 

éléctrophysiologiques (Bostan et al., 2013) ont participé à modifier cette vision purement 

motrice de la fonction du cervelet et l’impliquent à présent dans des fonctions plus complexes, 

telles que les processus perceptuels (Baumann et al., 2015). En effet, les noyaux cérébelleux 

projettent sur de nombreuses régions du néocortex, tels que les cortex prémoteur, préfrontal, 

et pariétal postérieur par l’intermédiaire de multiples noyaux thalamiques. 

Le cervelet est également connecté aux ganglions de la base qui jouent non seulement un rôle 

dans la programmation et le contrôle des mouvements, mais également dans la motivation des 

comportements, le traitement de processus cognitifs et la régulation de l’humeur (Manto and 

Habas, 2013). Le cervelet est connecté au système limbique et notamment à l’hippocampe au 
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niveau duquel il pourrait influencer la navigation spatiale (Rochefort et al., 2013). Le cervelet 

serait nécessaire à la construction de la représentation spatiale par l’hippocampe du fait de sa 

participation au traitement de l’information du mouvement propre de l’individu (Lefort et al., 

2015). Finalement, le cervelet est connecté à l’amygdale, structure essentielle pour l’attribution 

d’une valence émotionnelle aux stimuli sensoriels, tels que les indices sociaux-affectifs faciaux 

(Murray et al., 2014). Les bases neuro-anatomiques de l’implication du cervelet dans les 

processus cognitifs ont ainsi été établies.  

Des études récentes en imagerie démontrent que certaines zones du cervelet sont activées lors 

de la réalisation de tâches cognitives. Il est intéressant de noter que les lobules qui s’activent 

lors de tâches cognitives et émotionnelles sont différents des lobules qui s’activent lors de 

tâches motrices. Par exemple, le lobule VI, VII (Crus I, CrusII, VIIB) et le lobule VII médian, 

connectés aux régions associatives du cortex cérébral, sont fortement activés lors de tâches 

cognitives et émotionnelles (Bostan et al., 2013). De ce fait, les effets moteurs et non-moteurs 

des lésions cérébelleuses vont dépendre de leur localisation. Par exemple, des lésions des 

parties postérieures du cervelet perturbent les fonctions exécutives (planification, 

raisonnement abstrait, mémoire de travail), la cognition spatiale (organisation visuo-spatiale, 

mémoire spatiale), le langage (agrammatisme, dysprosodie) et provoquent des changements de 

personnalité que l’on appelle plus généralement syndrome cérébelleux affectif et cognitif 

(problèmes affectifs, comportements inappropriés, irritabilité, isolement social) (Schmahmann 

and Sherman, 1998). Des lésions des parties antérieures induisent des déficits moteurs sans 

troubles cognitifs (Schmahmann and Sherman, 1998; Schmahmann, 2004; Siuda et al., 2014). 

Les troubles moteurs chez les patients cérébelleux peuvent être aussi associés à des déficits de 

perception visuelle et de proprioception (Therrien and Bastian, 2015). L’atteinte du cervelet 

pourrait sous-tendre des pathologies complexes telles que certaines formes de dystonie, qui se 

traduisent par des mouvements involontaires, des contractions soutenues donnant lieu à des 

mouvements répétitifs et à des torsions posturales (Reeber et al., 2013). Des différences 

anatomiques du cervelet, entre patients et sujets sains, sont également observées dans des 

pathologies d’ordre psychiatrique telles que la schizophrénie, où une diminution du volume du 

lobe antérieur du vermis peut être détectée (Parker et al., 2014), les troubles bipolaires où une 
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atrophie du cervelet peut être observée et, comme nous le verrons, également dans le cas de 

l’autisme (Reeber et al., 2013; Phillips et al., 2015). 
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Abstract  

The aim of this chapter is to discuss how the spontaneous activity, the simple 

spike and the complex spike are generated and modulated depending on the channel 

types expressed on the somatic and dendritic Purkinje cell membranes. Finally, we 

will shortly address the surprising role of PCs in the physiopathology of autism. 

A brief histological prerequisite on Purkinje cells  

Purkinje cells (PCs) were discovered in 1837 by a Czech anatomist, Jan 

Evangelista Purkynĕ and further nicely illustrated by Ramón y Cajal in 1899 using 

Golgi’s staining method. This cell is considered as one of the most fascinating 

neurons for neuroscientists.  PCs have a very large dendritic arbor decorated with 

little spines. The dendritic arbor stems from a primary dendrite that emerges from a 

large pear-shaped cell body with a single axon originating from the other end (see 

Figure 1a). PC somas are Calbindin-positive and aligned in the cerebellar cortex to 

form the PC layer.  

Introduction 

PCs which are spontaneously active, receive two excitatory inputs from distinct fiber 

systems: parallel fibers (PF) and climbing fibers (CF) (Figure 1a). Those inputs 

provide electrical signals that are integrated and modulated along the PC dendritic 

tree and soma due to the presence of a large battery of ionic channels. Each PC 

receives converging inputs from about 200 000 PF synapses. Stimulation of PF 

releases glutamate and produces simple spikes (SS) in PCs (Figure 1b, left panel) at 

various frequencies. CF originate from the inferior olive nucleus and unlike PF, one 

CF contacts a few PCs. In adult animals, after a fascinating synaptic elimination, 

each PC receives only one single CF. Stimulation of CF releases glutamate on PC 

soma and dendrites giving rise to a complex spike (CS) a massive electrical firing 

event (Figure 1b, right panel). Finally, action potentials (AP) propagate along the PC 

axon and trigger GABA release on deep cerebellar nuclei (DCN) neurons. 



 

I. Spontaneous activity of PCs 

In vivo the spontaneous activity of PCs consists in tonic SS trains at 

frequencies ranging between 50-125 Hz and CS at 1Hz due to spontaneous CF 

activation (Latham & Paul, 1971). SS as well as CS are synchronized for pairs of PCs 

localized in the same cortical zone, this synchronization is under the control of 

sensory inputs (Wise et al., 2010).  

This activity has a pacemaker component independent of excitatory synaptic 

inputs, characterized in vitro as an irregular pattern of discharge with a frequency of 

40 Hz (Figure 1c, left panel) the pattern is controlled by GABAergic inhibition 

(Hausser et al, 1997). A trimodal pattern of pacemaker activity (tonic, bursting and 

silent modes, Figure 1c, right panel) has been also depicted and is probably induced 

by the lack of CF input. Its existence (explained by a PC’s bistability with two stable 

levels of membrane potential: a quiescent hyperpolarized state and a depolarized 

state with firing under control of Ih) in vivo is still under debate. (Engbers et al, 2013 

for review). 

a. Ionic mechanism of the pacemaker activity of PCs 

 It was postulated that PC pacemaker activity was driven by low threshold TTX 

sensitive Na-current and a large TEA sensitive K-current (Nam & Hockberger, 1997; 

Raman & Bean, 1999). A role of Ih has been proposed.  This current maintains the 

membrane potential within a range where the inward Na-current responsible for the 

generation of spontaneous AP firing can be activated (Williams et al., 2002). Thus, 

inhibition of the Ih current leads to quiescent periods. Apamin sensitive small 

conductance Ca2+-activated K+ channels (SK) activated by Ca2+ entering through P-  

type Ca2+ channels control the pacemaker firing frequency (Edgerton & Reinhart 

2003). In PCs with a trimodal pattern, blockade of large conductance Ca2+-activated 

K+ channels (BK) shortened the duration of the trimodal pattern (Womack & 

Khodakhah, 2003; Womack et al 2009) whereas dendritic Ca2+-T-type, BK and SK 

channels contribute to interspike and interburst intervals. P/Q Ca2+ channels are 

required to sustain spontaneous bursting (Womack et al, 2004). A partial blockade of 



P/Q channels eliminates dendritic Ca2+-spikes and causes a switch from regular 

bursting to tonic firing or irregular bursting (Walter et al., 2006).  

b. Modulation of the spontaneous activity of PCs 

CF and PF activation can modulate PC spontaneous activity. In vivo 

stimulation of CF is immediately followed by a pause in the spontaneous discharge. 

This effect is also depicted in PCs recorded in acute slices prepared from mouse 

cerebellum (see Figure 1b, right panel). After the pause an increase in SS activity is 

regularly observed and is often followed by a reduction of the SS frequency (De 

Zeeuw et al., 2011 for a review and possible mechanisms).  In vivo removal of CF 

input induces an increase of spontaneous discharge frequency or even a slow 

oscillatory pattern of discharge. Repetitive CF discharge can also convert the 

spontaneous trimodal PC discharge pattern (recorded in vitro) to a non-bursting 

pattern. This pattern consists in spike trains interrupted by CF-evoked pauses or 

longer pauses associated with state transitions (Engbers et al, 2013 for a review).  

Concerning the PF modulation, in vivo when excitatory inputs from GCs are 

chronically reduced the SS firing regularity increased without alteration of the spiking 

frequency. Furthermore, in vitro, when the PFs are stimulated an inhibition of the 

spontaneous activity is depicted (Figure 1 b, left panel; De Zeeuw et al., 2011 for a 

review). 

 

c. Physiological role of the spontaneous activity of PCs  

 PC activity plays a role in sensory-motor calibration. In a recent review 

Medina et al. (2011) proposed a model where PC activity is used in three different 

ways in the early stages of sensory-motor calibration (First, sensory and motor 

prediction. Second, teaching signal. Third, motor command). Interestingly, using 

optogenetic inhibition of PCs activity in awake mice, Heiney et col. (2014) have 

demonstrated that a transient suppression of the spontaneous activity in a sub-

population of PCs causes discrete movements with variations in size, speed and 

timing depending on the duration and intensity of the inhibition. 

 



 

 

II. The simple spike and the complex spike. 

a. The simple spike induced by parallel fibers stimulation 

A simple electrical stimulation of PFs releases glutamate and produces small 

depolarizing synaptic potentials (DSPs) at many synaptic sites dispersed on the 

dendritic arborization. DSPs temporally and spatially summate to reach the proximal 

axon where a high frequency of discharge of SS is generated (Palmer et al., 2010). 

The DSPs are modified in amplitude and shape during their passive propagation in 

the dendritic tree and are also modulated by ionic-channel conductances on the 

dendritic and somatic membrane. This integration is highly conditioned by PCs 

morphology (large dendritic tree and soma) but especially by the  expression of many 

channels types such as P/Q (Cav2.1) and T type (Cav3) Ca2+ channels, voltage-

gated K+ channels (Kv1, Kv3.3) Ca2+-activated K+ channels (BK, SK) and Ih. For 

example, the Cav3 associated with a intermediate conductance Ca2+-activated K+ 

channels suppresses the temporal summation of DSPs generated by PFs activation 

(Engbers et al.,2012).  

 b. The complex spike induced by CF stimulation 

Stimulation of CFs results in a massive depolarization of dendrites giving rise 

CS in the soma. The CS is primarily mediated by Na+ channels and in some extent 

by Ca2+ channels. It consists in a large depolarization inducing one initial fast action 

potential followed by one to six smaller spikelets. The CS is followed by an 

hyperpolarization mediated by Ca2+-activated K+-channels (De Zeeuw, 2011 for a 

review). T-type Ca2+ channels activated by CF stimulation participate to the CS 

waveform, whereas somatic Kv3.3 channels are required for spikelet generation 

(Kitamura and Kano, 2013 for a review). The fast initial spike and the spikelets 

(driven by Na+) are initiated in the initial axon (Palmer et al., 2010). Stimulation of CF 

also triggers dendritic Ca2+ spikes mediated by P/Q type Ca2+-channels. Ca2+-spikes 

are not necessary for CS generation but regulate the pause in firing following the CS, 

probably by activating Ca2+-dependent K+-channels (Davie et al., 2008).  



 

 

III. PCs and autistic syndromes 

Autism, a childhood mental disorder, belongs to a group of disorders 

collectively referred as Autism Spectrum Disorders (ASDs). During the last decade, 

imaging and autopsy studies of autistic patients have shown cerebellar abnormalities. 

Interestingly, it has been shown in mice that a PC loss is associated with autistic 

syndromes such as repetitive behaviors and increased activity (Martin et al. 2010). 

When the Tsc1 gene-deletion is restricted to PCs, a loss of PCs is observed with an 

alteration of the excitability of the remaining PCs. This mutant mouse also shows 

autistic-like behavior (Tsai et al., 2012). Prenatal exposition to sodium-valproate 

induces several autistic symptoms in mice (Roullet et al.,2013) such as repetitive 

behaviors (Figure 2, left panel jlb unpublished data). Using the autistic model of 

valproate-treated mice, we show a global PC loss of about 25% with variations 

among cerebellar lobules (Figure 2, right panel jlb unpublished data). One important 

challenge for the following years would be to determine whether a PCs loss 

associated with modifications of PC excitability can induce autistic syndromes in adult 

mice. 
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Résumé L’autisme est une pathologie neurologique aux conséquen-
ces comportementales sévères regroupées sous le terme de

troubles du spectre autistique. Ses origines peuvent être génétiques mais dans la plupart des
cas l’autisme est considéré comme une pathologie idiopathique. Le lien entre un dysfonc-
tionnement de certains réseaux neuronaux et l’autisme n’a pas été clairement établi et les
mécanismes pathophysiologiques qui lui sont associés restent encore mal connus. Les patho-
logies du cervelet dans certains cas d’autisme sont connues depuis plus de 20 ans. Au-delà
du rôle majeur du cervelet dans le contrôle de l’équilibre, de la coordination motrice et dans
l’apprentissage moteur, on sait que le petit cerveau (du latin cerebellum) est aussi impliqué
dans certaines fonctions complexes telles que la régulation des émotions et de l’attention ainsi
que dans l’apprentissage du langage. La maturation anatomique et fonctionnelle du cervelet
est principalement postnatale, il est donc probable qu’il joue un rôle dans le développement
des capacités cognitives de l’enfant. Cette revue fait la synthèse des connaissances cliniques,
anatomopathologiques et en imagerie ainsi que sur les modèles animaux, qui soulignent
l’importance du cervelet dans l’autisme. Enfin, elle propose quelques axes de recherche sur
le rôle majeur du cervelet dans l’autisme.

Mots clés : autisme · cervelet · neuropathologie · cellule de Purkinje

Introduction
L’autisme est une pathologie neurodéveloppementale

complexe et hétérogène touchant près de un enfant sur
150 en France, d’après les données recueillies par la Haute
Autorité de Santé, en 2012. Cette prévalence est en aug-
mentation de 1,25 % en 2011-2013 à 2,24 % en 2014 aux
États-Unis [1]. L’autisme résulte, en général, d’un déve-
loppement anormal du cerveau pendant la grossesse et
après la naissance conduisant à une augmentation du
volume du cerveau entre 2 et 4 ans et à des anomalies
des microcolonnes du cortex [2, 3]. Selon le DSM-5 (Dia-
gnostic and statistical manual of mental disorders publié par
l’American Psychiatric Association, fifth edition, Washing-
ton, DC : 2013) qui introduit la notion de troubles du spectre
autistique (TSA), le diagnostic de l’autisme est basé sur
l’observation de deux catégories de symptômes :
– des troubles de la communication sociale touchant
notamment la réciprocité des interactions, les comporte-
ments de communication verbale et non verbale, ainsi que
la capacité à développer, maintenir et comprendre une rela-
tion avec autrui ;
– des comportements restreints et répétitifs.

Ces symptômes sont présents dès la petite enfance mais
se manifestent pleinement quand la limitation des capacités
empêche de répondre aux exigences sociales [4]. Selon les
individus, les TSA sont associés à d’autres désordres psy-
chiatriques et médicaux tels que l’épilepsie, l’hyperactivité,
l’anxiété, les troubles du sommeil, des difficultés motrices,
des problèmes gastro-intestinaux. Il est difficile de décrire
l’autisme au vu de la grande diversité des traits de cette
pathologie et de leurs causes. L’étiologie de l’autisme reste
à ce jour mal définie mais semble invariablement multi-
factorielle. L’autisme a des origines génétiques, les études
menées sur des jumeaux montrent un taux de concor-
dance très élevé chez des jumeaux monozygotes (80-90 %)
par rapport aux jumeaux dizygotes où il n’est que de 0 à
30 % [5, 6]. Le nombre de gènes responsables de formes
« monogéniques » de TSA est estimé à plus de 400. Ils
sont impliqués notamment dans l’organisation neuronale
et corticale, dans la formation des synapses, dans la neu-
rotransmission et l’excitabilité neuronale [7]. Cependant, il
apparaît de plus en plus clairement que des facteurs envi-
ronnementaux pourraient contribuer à l’étiologie de cette
pathologie. Ainsi, l’exposition à des agents tératogènes (val-
proate de sodium, mercure, pesticides) durant la grossesse
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augmente les risques de développement de l’autisme chez
les enfants [8]. Des facteurs génétiques et environnemen-
taux pourraient ainsi contribuer à la genèse de l’autisme
[9].

Au niveau cellulaire, il est possible que les TSA
impliquent partiellement une dérégulation de la balance
entre l’excitation (nombre de neurones excitateurs et effi-
cacité de neurotransmission excitatrice) et l’inhibition
(nombre de neurones inhibiteurs et efficacité de la neu-
rotransmission inhibitrice) dans les structures du système
nerveux qui gouvernent les fonctions sensorielles et mné-
siques ainsi que la sociabilité et les émotions [10]. On
sait que suite à une modification du gradient aux ions
chlorures au cours du développement, le GABA, excita-
teur chez les neurones « immatures », devient inhibiteur
chez les neurones « matures ». La persistance de neurones
« immatures » excitables par le GABA serait impliquée dans
la dérégulation de la balance excitation/inhibition respon-
sable des TSA [11].

La majorité des études d’imagerie cérébrale réalisées
chez des patients autistes s’est focalisée sur des structures
impliquées dans les comportements sociaux, le langage
et la flexibilité comportementale et cognitive. Cependant,
tous les réseaux neuronaux affectés dans cette pathologie
n’ont pas été décrits et les mécanismes pathophysiolo-
giques sous-jacents restent encore mal connus. Le cervelet
est régulièrement cité comme structure du système ner-
veux mise en cause dans l’autisme. Dès 1986, Ritvo et al.
[12] décrivent un déficit de cellules de Purkinje dans le
cervelet de patients autistes dans une étude post mortem.
Depuis, plus de 600 publications associent autisme et cer-
velet. Cette structure primordiale dans le contrôle moteur
est également impliquée dans le traitement des signaux
essentiels à la perception, la cognition et aux émotions [13].

Après un court rappel sur l’anatomie, l’organisation cel-
lulaire et le rôle du cervelet, cette revue fait le point sur
la littérature incriminant le cervelet dans l’apparition et le
développement des troubles autistiques.

Le cervelet

Anatomie descriptive
Le cervelet est situé sous les hémisphères cérébraux

et pèse en moyenne 140 g chez l’homme adulte, ce qui
ne représente que 10 % du poids du cerveau. Sa struc-
ture anatomo-fonctionnelle se met en place essentiellement
pendant la période postnatale, avec plus de 50 milliards
de neurones, le cervelet contient plus de 50 % des neu-
rones de l’encéphale. Schématiquement (figure 1A ), en vue
dorsale, le cervelet présente deux hémisphères flanquant
le vermis central. La masse du cervelet est constituée de
trois lobes (antérieur, postérieur et floculonodulaire) sépa-
rés par deux fissures transversales profondes et subdivisés
par des fissures moins profondes en dix lobules numérotés
de I à X, le lobule VII étant subdivisé en Crus I, Crus II et

VIIB. Le cervelet se compose d’un cortex externe autour
de la substance blanche englobant les noyaux cérébel-
leux profonds (dentelé, emboliforme, globuleux et fastigial ;
figure 1B).

Histologie
Le cortex cérébelleux est composé d’un circuit neuro-

nal canonique (figure 1C). Les cellules de Purkinje reçoivent
toutes les informations à différents niveaux de leur arbori-
sation dendritique. Ces cellules intègrent l’information de
différentes modalités sensorielles et envoient un message
inhibiteur aux noyaux profonds cérébelleux qui véhiculent
l’information sortant du cervelet. Les cellules de Purkinje
reçoivent une innervation excitatrice directe très particu-
lière par les fibres grimpantes issues de l’olive inférieure
(une cellule de Purkinje est innervée par une seule fibre
grimpante chez l’adulte) et une innervation indirecte par
les fibres moussues via les cellules granulaires. Les fibres
moussues proviennent de nombreux noyaux spinaux et cen-
traux. Des interneurones inhibiteurs (cellules en panier,
étoilées. . .) modulent l’effet des innervations excitatrices qui
convergent sur la cellule de Purkinje. De plus, il existe un
rétro-contrôle excitateur entre les noyaux cérébelleux et les
cellules granulaires (boucle nucléo-corticale) et un rétro-
contrôle inhibiteur entre les noyaux cérébelleux et l’olive
inférieure (boucle olivo-cortico-nucléaire). Ce circuit serait
capable d’adapter les signaux moteurs et pourrait moduler
des comportements non moteurs. Cependant, les cellules de
Purkinje ne sont pas toutes identiques en taille et par leurs
propriétés électriques et l’expression de certaines protéines
[14]. Elles sont regroupées en sous-populations constituant
des modules traitant des informations sensorielles diffé-
rentes. L’interconnection de ces modules permettrait leur
communication en réponse à des stimulations sensorielles
multiples qui restent encore à explorer [14-16].

Rôles multiples du cervelet
Le cervelet contrôle la motricité. Une commande

motrice volontaire provoque l’arrivée dans le cerve-
let, d’une part, d’informations vestibulaires, somato-
sensorielles directes ou indirectes par l’intermédiaire du
néocortex et, d’autre part, d’une copie de l’ordre moteur en
provenance du cortex moteur et du programme d’exécution
de l’ordre moteur de la part de la moelle épinière. Le
cervelet module la genèse du mouvement et le contrôle
au niveau du cortex moteur primaire par l’intermédiaire
du thalamus. Il confère ainsi aux programmes moteurs
du mouvement une organisation chronologique, somato-
topique et spatio-temporelle (figure 2A). Dans ce contexte,
le rôle du cervelet serait de générer un modèle interne
de l’appareil moteur et de l’environnement en utilisant les
informations sensorielles [17]. Le cervelet participe éga-
lement à l’apprentissage moteur tel que l’adaptation du
réflexe vestibulo-oculaire. Il nous permettrait également
d’anticiper le futur par une adaptation prédictive du mouve-
ment en relation avec les informations sensorielles [18, 19].
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Figure 1. Anatomie du cervelet et organisation cellulaire du cortex cérébelleux. A) vue dorsale et organisation lobulaire ; B) coupe horizontale ; C) organisation
cellulaire du cortex cérébelleux.

L’atteinte du circuit cérébelleux conduit à un déficit
moteur se traduisant par des gestes maladroits et une dif-
ficulté du patient à exécuter les gestes fins et précis. Son
écriture est irrégulière dans le sens horizontal et vertical. On
observe une dysmétrie accompagnée d’une hypermétrie,
une asynergie (mauvaise coordination motrice, le mouve-
ment n’est plus lié mais il est décomposé) et une mauvaise
répartition du tonus dans les muscles anti-gravitaires. Un
retard à la mise en route et à l’arrêt du mouvement (dyschro-
nométrie), l’impossibilité de faire des mouvements associés
rapides (adiadococinésie) et des tremblements sont égale-
ment observés. On parle d’ataxie cérébelleuse en référence
à la mauvaise coordination des mouvements. Les lésions
du cervelet causent également des déficits oculomoteurs
comme des saccades dysmétriques et un nystagmus qui
peuvent indirectement affecter la perception visuelle. On
pense que le cervelet recalibre la perception visuelle de la
dynamique des stimulations visuelles [17].

Des études récentes des connections afférentes et effé-
rentes du cervelet (figure 2B) utilisant des virus neurotropes
comme traceurs transneuronaux ainsi que des approches
électrophysiologiques [20] ont participé à modifier cette
vision purement motrice de la fonction du cervelet et
l’impliquent dans des fonctions plus complexes telles que
les processus perceptuels [21]. En effet, les noyaux céré-
belleux projettent, sur de nombreuses régions du néocortex
telles que le cortex prémoteur, préfrontal, et pariétal posté-
rieur par l’intermédiaire de multiples noyaux thalamiques.
Le cervelet est également connecté aux ganglions de la
base qui jouent non seulement un rôle dans la programma-
tion et le contrôle des mouvements mais également dans
la motivation des comportements, dans le traitement de
processus cognitifs et la régulation de l’humeur. Le cer-
velet est connecté au système limbique et notamment à
l’hippocampe au niveau duquel il pourrait influencer la
navigation spatiale [22]. Le cervelet serait nécessaire à la
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Figure 2. Circuits cérébelleux. A) régulation de la commande motrice ; B) connections mettant en jeu des structures impliquées dans les processus cognitifs.
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construction de la représentation spatiale par l’hippocampe
par sa participation au traitement de l’information du
mouvement propre de l’individu [23]. Finalement, le cer-
velet est connecté à l’amygdale, structure essentielle pour
l’attribution d’une valence émotionnelle aux stimuli senso-
riels tels que les indices sociaux-affectifs faciaux [24]. Les
bases neuro-anatomiques de l’implication du cervelet dans
les processus cognitifs ont ainsi été établies.

Des études récentes en imagerie démontrent que cer-
taines zones du cervelet sont activées lors de la réalisation
de tâches cognitives. Il est intéressant de noter que les
lobules qui s’activent lors de tâches cognitives et émotion-
nelles sont différents des lobules qui s’activent lors de tâches
motrices. Par exemple, le lobule VI, VII (Crus I, CrusII, VIIB)
et le lobule VII médian qui sont connectés aux régions
associatives du cortex cérébral sont fortement activés lors
de tâches cognitives et émotionnelles [20]. De ce fait, les
effets moteurs et non moteurs de lésions cérébelleuses vont
dépendre de leur localisation. Par exemple, des lésions des
parties postérieures du cervelet perturbent les fonctions exé-
cutives (planification, raisonnement abstrait, mémoire de
travail), la cognition spatiale (organisation visuo-spatiale,
mémoire spatiale), le langage (agrammatisme, dysprosodie)
et provoquent des changements de personnalité que l’on
appelle plus généralement syndrome cérébelleux affectif et
cognitif (problèmes affectifs, comportements inappropriés,
irritabilité, isolement social [25]). Des lésions des parties
antérieures induisent des déficits moteurs sans troubles cog-
nitifs [25-27]. Les troubles moteurs des patients cérébelleux
peuvent être aussi associés à des déficits de perception
visuelle et de proprioception [17]. L’atteinte du cervelet
pourrait sous-tendre des pathologies complexes telles que
certaines formes de dystonie qui se traduisent par des mou-
vements involontaires, des contractions soutenues donnant
lieu à des mouvements répétitifs et à des torsions posturales
[28]. Des différences anatomiques du cervelet par rapport
à des sujets sains sont également observées dans des patho-
logies d’ordre psychiatrique telles que la schizophrénie, où
une diminution du volume du lobe antérieur du vermis peut
être détectée [29], les troubles bipolaires, où une atrophie
du cervelet peut être observée et comme nous le verrons
également dans le cas de l’autisme [28, 30].

Cervelet et autisme

Le lien entre cervelet et autisme est basé sur des études
réalisées, d’une part, chez l’homme et, d’autre part, chez
des modèles murins de l’autisme.

Signes cliniques d’atteinte purement cérébelleuse
dans certains cas d’autisme (figure 3)
Les signes cliniques d’une atteinte cérébelleuse les plus

simples à mettre en évidence lors de la description des TSA
sont les troubles moteurs. En effet, une majorité de patients
autistes présentent des problèmes moteurs concernant les

mouvements fins et grossiers et qui peuvent être observées
lors d’une pathologie purement cérébelleuse [31, 32]. Cer-
taines études montrent qu’ils sont généralement associés
avec la sévérité des symptômes autistiques, ce qui sug-
gère une origine commune [33, 34]. Parmi les problèmes
moteurs, la marche anormale, la mauvaise coordination
des membres, la dysmétrie des mouvements manuels et la
dyspraxie sont les plus communément observées [35, 36].

Pour résumer, les études des mouvements des membres
supérieurs, du mouvement des mains et de l’apprentissage
moteur réalisées chez les patients autistes ont montré un
déficit du contrôle qui précède les mouvements (forward),
du rétro-contrôle sensoriel (feedback) et de l’apprentissage
moteur dépendant du cervelet. Chacun de ces proces-
sus met en jeu des zones distinctes du cervelet et leur
interaction avec le cortex frontal et pariétal. Les études réa-
lisées chez les patients autistes qui portent sur la posture,
l’initiation de la marche et la démarche révèlent des pro-
blèmes moteurs compatibles avec des déficits de ces mêmes
témoins mais qui impliquent d’autres circuits cérébelleux
telle que la voie spino-cérébelleuse [32].

Selon le DSM-5, les anomalies de la fixation du regard
font partie des critères de diagnostic du TSA. La fixation
du regard est un processus dynamique qui met en jeu un
contrôle du système oculomoteur qui génère des micro-
saccades des yeux. Des anomalies de la fixation visuelle
ont également été documentées chez des patients présen-
tant des lésions cérébelleuses [32]. Des études récentes
montrent que la dynamique du mouvement en saccades
des yeux ainsi que son adaptation qui met en jeu un cir-
cuit au centre duquel se trouve le cervelet (en particulier
les lobules VI et VII du vermis) est affecté chez les enfants
autistes [37, 38]. La perturbation de l’apprentissage moteur
chez les enfants autistes qui présentent une augmentation
de la sensibilité aux erreurs proprioceptives et une diminu-
tion de sensibilité aux erreurs visuelles pourrait être associée
à une anomalie du cervelet [39].

D’un point de vue cognitif, les patients autistes peuvent
présenter des déficits des fonctions exécutives, des capaci-
tés linguistiques et de mémorisation qui sont similaires aux
perturbations cognitives observées chez les patients pré-
sentant une pathologie cérébelleuse chronique [34]. Ainsi,
dans 40 % des cas, les enfants atteints du syndrome de
Joubert défini par une hypoplasie du vermis [40] sont diag-
nostiqués comme autistes [41].

Imagerie fonctionnelle du cervelet
Très peu d’imagerie fonctionnelle a été réalisée jusqu’à

ce jour chez des personnes atteintes de TSA qui passent des
examens permettant de s’intéresser à leur cervelet. Cepen-
dant, les rares études réalisées [42], qui comparent les
patients autistes à des sujets sains, révèlent une augmenta-
tion de l’activation de certaines zones du cervelet pendant
l’accomplissement d’une tâche purement motrice ou lors
d’un dialogue et une diminution de l’activation d’autres
zones du cervelet lors de la réalisation de tâches cognitives
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Syndrome
cérébelleux

Troubles moteurs
- Dysdiadococinésie (problèmes pour
  exécuter rapidement des mouvements
  opposés)
- Problèmes de planification
  et de coordination des mouvements
- Perturbation des dynamiques d’equilibre
- Problèmes de démarche
- Dyspraxie
- Problèmes oculomoteurs (adaption
  des saccades oculaires)
- Problèmes d’apprentissage moteur

Troubles cognitifs et affectifs
- Problèmes dans les fonctions
  exécutives (planification,
  capacité de mémorisation)
- Problèmes d’organisation
  visuo-spatiale
- Problèmes d’attention
- Problèmes affectifs
- Isolation sociale
- Déficit de communication
- Problèmes de langage

TSA

Figure 3. Troubles communs observés lors d’une atteinte cérébelleuse et dans certains cas d’autisme.

et hautement sensorielles (attention, apprentissage, prise de
décision) chez les patients autistes. Cette dichotomie pour-
rait être le reflet d’une réduction régionalisée du nombre de
cellules de Purkinje observée chez certains patients autistes
(voir section « Histologie chez l’homme : une diminution
du nombre de cellules de Purkinje »). Une étude récente
montre que l’activité fonctionnelle cérébro-cérébelleuse
(sensori-motrice) au repos est accrue chez les adolescents
autistes comparés aux adolescents sains, renforçant l’idée
que le cervelet participe à des fonctions cognitives pouvant
être affectées dans cette pathologie [43].

Imagerie morphométrique du cervelet
Le développement de l’IRM a permis d’étudier les

modifications morphométriques du cervelet des personnes
atteintes de TSA. Les premières études ont conclu à une
hypertrophie du cervelet en corrélation avec une hyper-
trophie du cerveau chez les enfants autistes de 2 à 4 ans,
alors que chez les enfants autistes plus âgés (jusqu’à 16 ans)
le volume du cerveau est normal. Cependant, une réduc-
tion de la matière grise du cervelet est observée, associée
à une hypotrophie des lobules VI et VII du vermis [44]. Il a

fallu attendre l’évolution des techniques de mesure morpho-
métrique quantitative dans les années 2011 pour dresser
un tableau plus précis de la morphologie du cervelet des
patients autistes. La matière grise cérébelleuse présente une
réduction régionalisée chez les patients autistes. Elle peut
être détectée selon les études, bilatéralement dans le Crus II
et le vermis [45], dans la partie inférieure du vermis (lobule
IX), dans le lobule VIIIB, et le Crus I droit [46], dans le lobule
VII (Crus I et II, [47]). Une réduction du volume du cervelet
antérieur a également été rapportée chez certains enfants
autistes [39]. Toutes ces études récentes concernent des
enfants âgés de 2 à 13 ans. Ces réductions régionalisées de
matière grise demandent à être confirmées chez des adultes
autistes lorsque le développement du cervelet est terminé.
Dans ce contexte, Lange et al. [48] précisent les observa-
tions de Courchesne en établissant les courbes d’évolution
du volume du cerveau et du cervelet chez des patients
autistes et témoins entre 2 et 35 ans. En ce qui concerne
les volumes du cerveau et du cervelet, ils sont bien supé-
rieurs à la normale chez les autistes durant la prime enfance,
deviennent identiques aux témoins durant la prime adoles-
cence et, enfin, diminuent jusqu’à l’âge adulte. Alors que
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le volume de matière grise cérébelleuse des sujets témoins
augmente, la réduction du volume de matière grise dans le
Crus I du cervelet droit s’amplifie avec l’âge chez les autistes
entre 7 et 29 ans [49].

À l’heure actuelle, l’association des TSA aux anoma-
lies du cervelet n’est soutenue que par des arguments
indirects. En effet, une corrélation pourrait être établie
entre l’importance de la réduction en volume de la sub-
stance grise au niveau du Crus I et II et du vermis et le
degré d’altération de la communication et de l’interaction
sociale chez certains autistes [45, 47]. Aussi, la perte de
matière grise dans le cervelet et l’occurrence des stéréo-
typies pourraient être corrélées chez les patients autistes
entre 7 et 47 ans [50]. Enfin, la variabilité des interactions
entre le néo-cervelet (Crus I) et certaines structures corti-
cales importantes dans les interactions sociales pourraient
rendre compte des différences de perception sociale obser-
vées chez certains adolescents autistes [51].

Histologie chez l’homme : une diminution
du nombre de cellules de Purkinje
La plupart des études neuropathologiques post mortem

de cervelets de personnes ayant souffert de TSA montrent
une diminution du nombre de cellules de Purkinje dans les
hémisphères et le vermis. Dès 1986, Ritvo et al. [12], par
une étude histologique classique (Crésyl violet), rapportent
une réduction du nombre de cellules de Purkinje d’environ
25 % dans les hémisphères et de 40 % dans le vermis du
cervelet de sujets autistes (garçons de 10-22 ans) ayant pré-
sentés des problèmes de coordination motrice (trois cas) ou
un retard à l’apprentissage de la marche (un cas). Ces résul-
tats ont été confirmés très récemment par la mesure de la
densité linéaire des cellules de Purkinje. Cette étude a été
réalisée post mortem chez trois filles et cinq garçons atteints
de TSA dont les problèmes moteurs ne sont pas précisés [52]
et montre globalement une diminution de 11 % de la den-
sité des cellules de Purkinje dans le cervelet des patients
autistes comparé aux sujets sains. Elle démontre aussi la
régionalisation de cette diminution de densité plus impor-
tante dans certaines régions du cortex cérébelleux telles
que le Crus I et II où elle peut atteindre 20 %. Une étude
récente, utilisant l’IRM nucléaire pour analyser la densité de
la substance blanche cérébelleuse (i.e., nombre et taille des
cellules de Purkinje) a été réalisée chez des enfants présen-
tant des TSA (15 enfants de 3,6 à 13,3 ans dont les troubles
moteurs ne sont pas précisés) et confirme in vivo cette réduc-
tion du nombre de cellules de Purkinje [53]. Par ailleurs,
bien que la densité de cellules de Purkinje ne soit pas affec-
tée, une réduction de leur taille a été mise en évidence post
mortem dans certains cas [54].

Modèles animaux
Il est important de définir les critères qui permettent de

considérer une souris ou un rat comme un modèle d’étude
de l’autisme. De manière générale, pour être valide en tant
que modèle, les animaux doivent répondre à au moins

une des trois conditions majeures : validité de construc-
tion (même étiologie que la pathologie humaine), validité
prédictive (le modèle doit répondre de la même manière
que l’humain au traitement existant) et l’isomorphie des
symptômes (mêmes symptômes que ceux observés dans la
pathologie humaine). L’étiologie de l’autisme n’étant pas
précisément connue et en absence de traitement efficace
sur l’ensemble de la population, la validité d’un modèle
animal de l’autisme sera basée sur l’isomorphie symp-
tomatologique. Ces modèles devront donc présenter une
perturbation des interactions sociales, un déficit de commu-
nication et des mouvements stéréotypés. Une mutation
génétique connue chez certains patients atteints de TSA,
ou un traitement in utero par un facteur tératogène reconnu
comme facteur de risque, sont généralement employés pour
générer un modèle animal d’autisme. Les modèles animaux
de l’autisme permettent d’étudier les atteintes du système
nerveux liés à cette pathologie et de déterminer les fac-
teurs environnementaux susceptibles d’induire des troubles
autistiques. Finalement, ces modèles vont permettre de tes-
ter des traitements potentiels des TSA [55].

Les études réalisées chez les rongeurs ont confirmé
l’importance des cellules de Purkinje du cervelet. Une dimi-
nution du nombre de cellules de Purkinje survient dans le
cervelet de rats exposés au valproate de sodium au cours de
la vie embryonnaire et présentant des comportements autis-
tiques [56]. De façon surprenante, une mutation dirigée
spécifiquement sur les cellules de Purkinje (par utilisation
d’un promoteur spécifique) et ayant pour conséquence de
réduire leur nombre (réduction de 50 % deux mois après la
naissance), leur taille et d’induire des modifications de leurs
propriétés électriques est à l’origine d’un phénotype autis-
tique (stéréotypie, vocalisations et comportement social
anormal) chez la souris [57]. De même, une réduction du
nombre de cellule de Purkinje d’environ 20 % est asso-
ciée à l’apparition de comportements répétitifs chez ce
rongeur [58]. La suppression du récepteur p75 aux neuro-
trophines des cellules de Purkinje, [59] induit l’apparition
de comportement autistiques chez la souris. Ces observa-
tions soulèvent une question importante : comment des
anomalies affectant les cellules de Purkinje du cortex céré-
belleux (nombre, morphologie. . .) et pouvant apparaître
durant leur développement peuvent être à l’origine de TSA
[60]. À la lumière de travaux récents, l’importance du rôle
des cellules de Purkinje au sein du circuit cérébelleux a
pu être démontrée. En effet, chez la souris une stimulation
optogénétique des cellules de Purkinje induit des mouve-
ments fins [61] mais également un apprentissage moteur
mesuré par l’adaptation du réflexe vestibulo-oculaire
[62].

Les premières études d’imagerie morphométrique du
cervelet ont été réalisées chez des modèles de sou-
ris « autistes » génétiquement modifiées. Elles confirment
l’existence d’altérations morphologiques du cervelet [63].
Des altérations fonctionnelles en relation avec le cervelet
comme un déficit d’apprentissage moteur (conditionne-
ment du clignement des paupières) ont été décrites chez
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certains modèles de souris autistes et pourraient être
induites par un défaut de plasticité synaptique dans le circuit
cérébelleux [64, 65].

Conclusions et perspectives

Le cervelet a non seulement un rôle moteur mais égale-
ment un rôle dans les processus cognitifs et psychoaffectifs
[66]. La maturation anatomique et fonctionnelle du cerve-
let se fait principalement après la naissance, il est donc
fort probable que le cervelet joue un rôle dans le déve-
loppement des capacités cognitives de l’enfant. Bien que
des déficits moteurs et cognitifs d’origine cérébelleuse aient
été décrits chez certains patients autistes, les troubles cog-
nitifs liés au dysfonctionnement du cervelet ne sont pas
forcément associés à un déficit moteur. Si l’on considère
que le cervelet est une structure essentielle à la prédiction,
son dysfonctionnement chez l’autiste étayerai l’hypothèse
étiologique selon laquelle les TSA seraient une manifes-
tation d’un désordre des capacités prédictives du patient
[67]. L’autiste aux compétences de prédiction compro-
mises habiterait un monde lui paraissant « magique » où
les événements arrivent inopinément et sans cause, ren-
dant difficile les interactions avec les habitants d’un tel
monde. L’étude anatomique et histologique du cervelet met
en évidence des différences aussi bien chez certains patients
autistes que chez certains modèles animaux « autistes »
comparés à des sujets sains.

De nombreuses questions restent cependant sans
réponse et constituent un axe majeur de recherches cli-
niques et fondamentales pour mieux comprendre cette
pathologie. Déterminer si la perturbation du développe-
ment du cervelet peut être à l’origine de certaines formes
d’autisme semble être une question importante. En effet,
le développement fœtal du cerveau est contrôlé par un
programme génétique qui peut être perturbé par des muta-
tions et des facteurs environnementaux. En ce qui concerne
l’autisme, de nombreux allèles à risque ont été identifiés
pouvant être à l’origine d’un développement anormal du
cerveau. Ils sont impliqués entre autres dans la différen-
ciation neuronale, la maturation, la migration cellulaire, la
mise en place des réseaux neuronaux ainsi que la transmis-
sion synaptique. La localisation et le timing de l’expression
de ces gènes ou groupes de gènes à risque dans le sys-
tème nerveux restent à explorer. Des travaux récents, chez
l’homme, montrent une forte expression de ces gènes dans
le cervelet de la naissance à 6 ans. Des mutations pour-
raient alors induire, d’une part, des perturbations dans

l’établissement des réseaux neuronaux entre le cervelet
et les multiples régions centrales avec lesquelles il est
connecté (sachant que le cervelet à une longue période
de développement post natal) et, d’autre part, modifier
l’architecture de ces régions [68].

Le rôle des pathologies cérébelleuses dans les anoma-
lies de la motricité et dans l’apparition et le développement
des TSA devrait être étudié en tenant compte de l’âge des
patients autistes dans les recherches cliniques associant
bilan psychomoteur, IRM et IRM fonctionnelle. Il sera alors
possible de déterminer l’existence d’une relation entre cer-
tains troubles moteurs et l’importance des déficits cognitifs.
Une rééducation motrice spécifique et adaptée pourrait
alors permettre de corriger les déficits moteurs et d’atténuer
certains TSA.

Dans les modèles murins de l’autisme, les atteintes du
circuit neuronal cérébelleux et notamment la diminution
de la densité des cellules de Purkinje observée chez la
souris valproate devraient être étudiées plus avant. Il sera
essentiel d’établir une cartographie régionale de cette dimi-
nution dans le cervelet et de la mettre en relation avec
le degré d’altération et la spécificité des comportements
moteurs, l’intensité des stéréotypies et l’importance des
troubles d’interaction sociale. L’origine de la diminution de
la densité des cellules de Purkinje pourrait trouver son ori-
gine soit dans la destruction des précurseurs des cellules
de Purkinje, soit dans la migration de ces cellules souches
vers d’autres régions du cerveau. Alternativement, les cel-
lules de Purkinje pourraient mourir prématurément du fait
de leur sensibilité spécifique à certaines agressions [69].
Dans l’hypothèse qu’une modification de la balance exci-
tation/inhibition puisse être une cause de l’autisme, une
analyse détaillée du fonctionnement du réseau neuronal
cérébelleux devra être réalisée chez les souris « autistes ».
Une attention particulière pourra être portée à l’étude des
récepteurs au glutamate de type NMDA excitateurs [70] et
aux modifications du gradient chlore par la voie des récep-
teurs GABA inhibiteurs [71].
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Sur la base de données obtenue chez l'Homme, des modèles animaux ont été développés afin 

de mieux comprendre cette pathologie et ses origines, mais également dans le but de tester 

différents traitements, tant pharmacologiques que cognitifs, susceptibles d'atténuer les troubles 

autistiques et ainsi d'améliorer la qualité de vie des patients.  

Ces modèles animaux, afin d'être valides comme modèle d'étude de l'autisme, doivent remplir 

une condition majeure : présenter les deux critères de diagnostic de l'autisme qui sont, pour 

rappel, une perturbation des interactions sociales et de la communication ainsi que la présence 

de mouvements stéréotypés.  

Même si certaines études sont effectuées sur les primates non-humains, la majeure partie des 

modèles animaux a été validée chez les rongeurs. On retrouve d’une part, plusieurs modèles de 

souris transgéniques où sont mutés divers gènes connus pour être impliqués dans la pathologie 

humaine (cf. chapitre 1.2), et d’autre part, des modèles de rongeurs obtenus par exposition in-

utéro à des facteurs environnementaux à risque, tels que le mercure, des agents viraux ou 

encore des agents tératogènes comme que le VPA (pour revue voir (Gadad et al., 2013). 

1 - Les modèles transgéniques 

De nombreux modèles transgéniques de l'autisme ont été créés par mutation des gènes connus 

pour être à risque chez l'Homme, comme NLGN3 (Neuroligine 3), NRXN1 et 3 (neurexine 3 et 4)  

ou encore SH3 (Shank3) (pour revue voir Varghese et al., 2017 et Gadad et al., 2013). La 

mutation des gènes de la sclérose tubéreuse (TSC1/TSC2) à également été utilisée pour générer 

un modèle d'autisme. Récemment, plusieurs études ont utilisées des modèles ou TSC1 ou TSC2 

était spécifiquement muté dans les CP.  

Parmi ces modèles, le plus connu et le plus souvent utilisé est sans doute le modèle des souris 

KO FMR1, modèle de l'autisme et du syndrome de l'X fragile. Le syndrome de l'X fragile est 

causé par l'expansion d'un trinucléotide cytosine-guanine-guanine dans le promoteur du gène 

FMR1. Ce gène code pour FMRP, protéine se liant aux ARNm et régulant la synthèse de 

protéines de façon locale en fonction de l'activité synaptique (Maurin et al., 2014). Environs 30% 
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des enfants atteint du syndrome de l'X fragile partagent un ou plusieurs symptômes en commun 

avec les TSA, comme des retards mentaux, de l'hyperactivité avec déficit d'attention ou de 

l'épilepsie. Les souris FMR1 KO présentent des perturbations de des interactions sociales et de 

la communication, de même que des stéréotypies ce qui en fait donc un modèle valide pour 

l'étude de l'autisme. Ce modèle présente également plusieurs similitudes avec la pathologie, 

comme l'augmentation de la densité des épines dendritiques dans le cortex cérébral, facteur 

commun à l'X fragile et à l'autisme. 

Un autre modèle avec lequel j'ai eu l'occasion de travailler durant ma thèse est celui des souris  

n'expriment pas le récepteur aux opioïdes mu (KO OPRM1), basé sur la théorie de la 

récompense sociale. Ce modèle a montré des déficits d'interaction sociale et des 

comportements stéréotypés, remplissant ainsi les critères d'un modèle d'étude de l'autisme. Les 

souris KO OPRM1 présentent également plusieurs symptômes associés aux TSA comme de 

l'agressivité, de l'anxiété ou encore une augmentation du risque de développer des crises 

épileptiques. De plus, l'ocytocine ayant montré des effets positifs sur les patient humains, 

permet également une amélioration des symptômes dans le modèle (Becker et al., 2014). 

2 - Les modèles d'atteinte environnementale 

Cette catégorie de modèle est moins diversifiée que celle des modèles transgéniques. 

L'exposition à des produits comme le thalidomide ou le mercure a montré certains points 

communs avec l'autisme (Gadad et al., 2013) et des modèles comme celui de l''exposition 

prénatale à un agent virale, afin d'activer le système immunitaire (MIA), ont été développés. 

Cependant, le plus utilisé d'entre eux, dont je vais faire la description ici, est le modèle 

d'exposition prénatale au VPA. 

2.1 -  Le modèle d'activation du système immunitaire maternel 

Des études épidémiologiques ont montrées qu'une infection ou une fièvre durant la grossesse 

augmentait le risque de survenue de TSA  chez les enfants (Atladóttir et al., 2010; Lee et al., 

2015). Des modèles ont été développé a partir de ces observations en induisant une réponse 

immunitaire chez des souris gestante via une exposition à des virus, des bactéries ou de l'ARN 
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synthétique (Shevelkin et al., 2014). Une perte en CP, des anomalies dans la migration des 

cellules granulaires, des modifications dans le pattern d'expression du marqueur Zébrine II ainsi 

que des perturbations motrices et de l'interactions sociales ont étés rapportés dans ces modèles 

(Shevelkin et al., 2014; Aavani et al., 2015). Il est intéressant de noter que des modifications du 

transcriptome GABAergique sont rapportées dans le cortex préfrontal de ces souris ce qui 

pourrait supporter une altération de la signalisations GABAergique ce qui constitue une piste 

intéressante (Richetto et al., 2014). 

2.2.1 -  Le valproate 

L'acide valproïque ou acide 2-propylpentanoic est une courte chaine d'acide gras synthétisée 

comme un analogue de l'acide valérique, extrait de la valériane. Le valproate induit son effet via 

deux mécanismes principaux. Premièrement il agit sur l'excitabilité neuronale, notamment en 

augmentant la disponibilité du GABA dans la fente synaptique, en diminuant l'activité des 

canaux sodium dépendant du voltage, en augmentant la réponse des récepteurs GABAA et 

GABAB et en diminuant la liaison du glutamate avec son récepteur AMPA. Deuxièmement, le 

valproate régule l'expression génique en phosphorylant des facteurs de transcription et en 

inhibant les histone déacetylases (Monti et al., 2009). Il est utilisé sous forme de valproate de 

sodium comme anticonvulsivant dans le traitement de l'épilepsie, comme stabilisateur de 

l'humeur dans le cadre de troubles bipolaires et également dans des traitements 

antimigraineux. Actuellement, il est étudié comme agent anticancéreux. Le VPA est donc un 

composé largement prescrit dans la population mondiale. Comprendre les risques qui peuvent 

être liés à une exposition prénatale au valproate est un enjeu majeur de santé publique. En 

effet, des observations effectuées au cours des 40 dernières années ont montré qu'une 

exposition prénatale au VPA est associée à des malformations congénitales, des déficits 

cognitifs et à un risque accru de présenter des syndromes autistiques (pour revue voir Roullet et 

al., 2013). Ainsi, des études statistiques, réalisées sur des bases de données médicales, 

indiquent l’existence d’un risque de 4,15% d’avoir des enfants diagnostiqués autistes chez des 

sujets ayant pris comme traitement de l'acide valproïque durant leur grossesse, contre 

seulement 1,02% chez des personnes contrôle (Christensen, 2013). 
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2.2.2 -  Le modèle des souris valproate 

Basé sur ces observations, un nouveau modèle murin d'étude de l'autisme a été mis au point. Il 

est obtenu par une injection intrapéritonéale de VPA, (350mg/kg à 800mg/kg), chez des 

rongeurs en gestation, précisément au jour de développement embryonnaire 12.5 (E12.5) 

(période de fermeture du tube neural). La descendance présente des syndromes s'apparentant 

à l'autisme, tels que des comportements stéréotypés, des déficits d'interactions sociales ou 

encore des déficits en communication. Les animaux utilisés dans la plupart des cas sont des rats, 

mais des études ont montré que ce modèle est également valide chez la souris, notamment 

avec les souches C57BL6 (Moldrich et al., 2013) et, rarement, CD1 (Kataoka et al., 2011). 

La revue inclue dans ce chapitre détaille de façon plus exhaustive l'intérêt du modèle des souris 

valproate dans l'autisme. 

Après avoir décrit l'autisme, le cervelet, les connexions existant entre les deux ainsi que les 

modèles permettant de tester ces connexions, je vais, dans le prochain chapitre, vous présenter 

le mécanisme sur lequel j'ai travaillé au cours de ma thèse afin de mettre à jour une nouvelle 

connexion : le gradient des ions chlorures. 
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Valproic acid and autism spectrum disorder:  
from clinical observations to animal studies 

ABSTRACT 
Autism spectrum disorder (ASD) is a 
neurodevelopmental pathology clinically 
characterized by persistent deficits in social 
communication and social interactions associated 
with restricted repetitive patterns of behavior, 
interests or activity. ASD is actually one of the 
most common childhood neurological disorders. 
Despite a genetic origin, environmental factors are 
determinant in the etiology of autism. Based 
on observations that exposure to valproic acid (VPA) 
during pregnancy increases the risk of autism 
in children, in utero exposure of rodents to VPA 
was performed to produce animal models of autism. 
VPA-treated rodents exhibit social interaction 
deficits and repetitive behaviors, and display similar 
brain structure abnormalities to those observed 
in human cases of ASD. These rodent VPA models 
support the hypothesis that an imbalance between 
excitation and inhibition and/or a hyperconnectivity- 
hyperplasticity in those brain regions implicated 
in social interactions, learning and perception is at 
the root of ASD, and thus provide valuable tools 
for screening novel therapeutics. 
 
KEYWORDS: autism, valproate, prenatal exposure, 
neurodevelopment, connectivity, excitation/inhibition 
balance. 
 
INTRODUCTION 
Autism spectrum disorder (ASD) is classified as a 
neurodevelopmental pathology defined by persistent
 

deficits in social communication and social 
interactions in multiple contexts associated with 
restricted, repetitive patterns of behavior interests 
or activity. Although symptoms may be/are present 
in the early developmental period, they only fully 
manifest when social demands exceed limited 
capacities (DSM 5, Diagnostic and Statistical 
manual of Mental disorders published by the 
American Psychiatric Association, Fifth Edition 
Washington, DC: 2013). Typically, ASD is 
diagnosed within the first three years of life. 
The increase in the prevalence of ASD cases, 
reaching more than 1/100 children worldwide, 
places this disorder as one of the most common 
pervasive neurodevelopmental disorders [1]. The 
etiology of ASD remains elusive, and most ASD 
cases are classified as idiopathic. Nevertheless, 
a genetic origin including single gene mutations, 
copy number variations and polygenic risk factors 
may explain approximatively 20-30% of ASD cases 
[2]. Prenatal exposition to various environmental 
factors such as maternal immune activation, 
maternal stress, heavy metal, air pollution, 
pesticides, endocrine disruptors and drugs have been 
proposed as risk factors for ASD [3]. In this line, 
it is generally admitted that the epigenetic effects 
of environmental factors may affect normal 
neurodevelopment and lead to ASD [4].  
Postmortem neuropathologic explorations of human 
tissue have revealed cellular and cytoarchitecture 
alterations in several regions of the brain from 
individuals with ASD [2]. Cortical regions such as 
the prefrontal cortex, known for its role in cognitive 
control, the fusiform gyrus, that plays a role in our 
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capacity to interact appropriately in social situations, 
and cortical areas (frontoinsular and cingulate 
cortex) implicated in the processing of emotions 
and their integration are consistently altered 
in ASD patients. The limbic system, including 
hippocampus (spatial memory) and amygdala 
(emotional learning) are also altered in ASD 
patients. Finally, the cerebellum that is involved 
in motor coordination and learning, as well as 
in more complex tasks such as the regulation 
of emotion [5] and the perception of environment 
[6] presents alterations in ASD patients. 
The most consistent structural finding yielded 
by magnetic resonance imaging (MRI) is the 
increased growth of total cortical volume in early 
ASD infants. The same observation is also reported 
for some subcortical brain regions (e.g., amygdala 
and hippocampus) and the cerebellum. However, 
studies comparing ASD adolescents or adults with 
controls did not reveal such differences and have 
even reported a decrease of total brain volume 
in ASD patients [7].  
Hyperconnectivity and underconnectivity, as well as 
a combination of both have been revealed 
by functional MRI in the autistic brain [8]. 
Although fascinating, these studies are complex 
and difficult to interpret given the mosaic 
of behavior abnormalities in ASD patients.  
The current animal models of ASD which mimic 
ASD behaviors have been developed in the 
rodents [9] and zebrafish [10] to investigate the 
neuropathological processes of ASD. Based 
on the well-characterized forms of ASD linked 
to monogenic mutations in humans, monogenic 
mouse models of ASDs have been developed and 
provide strong converging evidence for the 
important contribution of synaptic dysfunction 
to the pathophysiology of autism [11]. Animal 
models of idiopathic ASD have also been developed 
using environmental constraints such as maternal 
stress [12], maternal immune activation [13], and 
prenatal exposure to paraben [14] and to valproic 
acid (VPA) [9].  
This review focuses on the “valproate model 
of ASD” that follows epidemiologic observations 
of human ASD cases and summarizes its main 
contribution to our understanding of ASD 
neuropathology. 

                                                                                                  Sebastien Roux & Jean Louis Bossu 

In utero exposure to VPA: a risk factor for 
autism in humans 
VPA is an antiepileptic agent commonly used 
as adjunctive therapy in patients that have failed 
to respond adequately to other medications. One 
of its main modes of action is to potentiate the 
inhibitory effects of gamma-aminobutyric acid 
(GABA) on neuronal firing [15]. Nevertheless, 
although VPA is an efficient therapeutic agent 
for epilepsy and bipolar troubles, it is particularly 
toxic for the fetus. Indeed, exposure to VPA in the 
first trimester of pregnancy is associated with 
three-fold increase in the rate of major anomalies 
such as spina bifida, cardiac and craniofacial 
skeletal and limb defects associated with a cluster 
of anomalies including behavioral delays that are 
clinically defined as the fetal valproate syndrome 
(FVS) [16]. Based on case reports, prenatal 
exposure to VPA was also suspected to be a risk 
factor for infantile autism [17]. Although this was 
subsequently confirmed by several studies and 
clinical observations, the link between in utero 
VPA exposure and autism was finally proven 
in 2013 [18]. In that study, clinical observations 
from a large population of children demonstrated 
that maternal use of VPA during pregnancy 
increases the risk of autism by a factor 4. The FSV 
and autism are the consequence of the teratogenic 
effect of VPA, with drastic effects for the infant 
if VPA is administrated when the neural tube 
of the fetus is closing during pregnancy [16, 19]. 
Nevertheless, later exposure to VPA could not be 
excluded as a cause of autism. At the cellular 
level, VPA acts as a non-selective inhibitor 
of histone deacetylases implicated in the regulation 
of gene transcription and phenotype differentiation 
[20]. 

Exposure to VPA generates an animal model 
for autism 
Based on human cases of autism showing that 
exposure to teratogens during the pregnancy 
period corresponding to closure of the neuronal 
tube causes/leads to lesions of motor cranial nerve 
nuclei, Rodier and colleagues [21] have looked for 
similar lesions in rats exposed to VPA (350 mg/kg) 
during the closure of the neural tube (embryonic 
day (E) 11.5, 12 and 12.5). All treatments with 
VPA affected motor nuclei leading to the conclusion 
that the initiating autism injury occurs around 
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to analyze the deficits relevant to ASD [33]. 
Similarly, Xenopus laevis tadpoles exposed to VPA 
display abnormal sensorimotor and schooling 
behaviors suggesting that the effects of VPA are 
conserved across the vertebrates [34]. 

Contribution of VPA animal models to our 
understanding of ASD and development of 
targeted treatments 
As a major role of VPA in the etiology of ASD 
was demonstrated in several animal species, 
this compound should be prohibited for pregnant 
women at any time of gestation. An important 
issue for pharmaceutical companies is to validate 
an alternative treatment for VPA-sensitive 
epilepsy. 

VPA and epigenetics 
VPA inhibits histone deacetylase (HDAC) and 
consequently impairs the modulation of gene 
transcription. A link between autistic-like behaviors 
and VPA effect on HDAC has been clearly 
established in mice. Indeed, whereas a prenatal 
exposure to VPA induced social deficits, a prenatal 
exposure to valpromide, a VPA analogue lacking 
histone deacetylase inhibition activity had no effect 
[35]. Furthermore, prenatal exposure of mice 
to trichstatine A, a potent HDAC inhibitor, 
reproduces the sociability deficits induced 
by prenatal exposure to VPA [36]. Importantly, 
SHANK2 and SHANK3 [37, 38] which encode 
a family of postsynaptic scaffolding proteins that 
are present at glutamatergic synapses and growth 
cones of developing neurons [39] are genes which 
show impaired transcription after prenatal exposure 
to VPA. Mutations in the SHANK family genes are 
also linked to ASD in humans and animal models 
[40]. In addition, mRNA expression of Neuroligin3, 
a member of the Neuroligins family that are 
postsynaptic cell-adhesion molecules involved 
in synaptic maturation, is downregulated in some 
brain regions in the VPA mice [41]. Furthermore, 
prenatal exposure to VPA induced a transient 
increase in brain-derived neurotrophic factor 
(BDNF) mRNA and protein in the fetal brain [42]. 
In the medial prefrontal cortex, VPA exposure 
altered the expression of a subset of genes 
implicated in the circadian rhythm and acting 
in extracellular matrix [43].  

the time of the neuronal tube closure. 
Interestingly, the same group [22] also showed 
that a single dose of VPA (600 mg/kg) at E12.5 
causes Purkinje cell loss, the cerebellar anomaly 
associated with autism in humans. Furthermore, 
rats exposed prenatally (E9) to VPA present high 
levels of serotonin in several brain regions similar 
to those in autistic patients [23]. These pioneering 
experiments strongly suggest that rats prenatally 
exposed to VPA were potential animal models 
of autism. However, a precise phenotypic 
characterization of these VPA rats was necessary 
to confirm that such animal models reproduce 
the core symptoms of autism i.e deficits in social 
interactions and communication associated with 
repetitive behaviors. Subsequently, Schneider and 
Przewlocki [24] clearly demonstrated that a single 
injection of VPA (600 mg) at E12.5 decreased 
a number of social behaviors, increased latency 
of social interactions and locomotor repetitive 
stereotypic-like hyperactivity combined with low 
exploring activity in male offspring. In addition, 
the VPA rats showed delayed maturation, lower 
body weight, delayed motor development, attenuated 
integration of coordinated series of reflexes and 
lower sensitivity to pain [24]. Comparing different 
embryonic periods of VPA exposure revealed that 
VPA exposure at E12 produced the most 
significant behavioral changes: i.e reduced 
sociability and social preference [25]. Similarly, 
prenatal exposures to VPA (E13, 600 mg/kg) 
in mice produced developmental deficits and 
reduced social interactions and repetitive behaviors 
[26-29]. Experiments conducted by many groups 
have thus confirmed that a prenatal exposure 
of rodents to VPA reproduces the core signs 
of human autism. Consequently, VPA rodents have 
been adopted as environmental models to study 
several aspects of autistic neurodevelopmental 
diseases [9, 30]. 
The zebrafish (larval and adult) presents numerous 
advantages as a model organism to study brain 
function and dysfunction [31]. Zebrafish are 
a highly social species and exhibit a range 
of social behaviors that could be analyzed and 
quantified. Recently, VPA exposure at early 
developmental stages was shown to induce deficits 
in social interactions, anxiety, and hyperactivity 
in the adult zebrafishes [32]. Consequently, the 
VPA-treated zebrafish is another possible model 
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complex dendritic arbors [52]. The morphology 
of the deep cerebellar nuclei was also modified 
after prenatal exposure to VPA [53]. Accordingly, 
animals prenatally exposed to VPA performed 
significantly worse in cerebellum-dependent motor 
tasks [52].  

VPA animal models and the excitation/ 
inhibition imbalance in autism 
Several observations have led to the idea that 
some forms of autism are caused by an increased 
ratio of excitation/inhibition in sensory, mnemonic, 
social and emotional systems [54]. In principle, 
this imbalance between excitation and inhibition 
may be a consequence of one or more of the 
following parameters: ratio between the number 
of excitatory and inhibitory neurons, neuronal 
excitability, connectivity, and synaptic strength 
(based on number of synaptic contacts, number 
of post synaptic receptors and concentration 
of neurotransmitter in the synaptic cleft). 
As detailed above in VPA animal models, the 
morphological alterations in neurons (dendritic 
arbor and dendritic spines) that are susceptible 
to impact the excitatory/inhibitory ratio have been 
depicted. Prenatal VPA may alter the expression 
of transcription factors governing glutamatergic/ 
GABAergic differentiation during fetal neural 
development, in conjunction with the genetic 
preload [55]. Prenatal VPA exposure causes a loss 
of inhibitory GABAergic Purkinje cells in the rat 
cerebellum [22] and a loss of GABAergic 
interneurons in the hippocampal dentate gyrus 
[56]. VPA exposure also impairs the GABAergic 
synaptic transmission in the cortex [57]. Intriguingly, 
GABA has abnormally conserved an immature-
like, depolarizing effect on pyramidal neurons 
in the hippocampus of adult VPA rats [58]. Prenatal 
VPA treatment was shown to alter GABAergic 
transmission in both young and adult rodents 
as the expression of two of its important regulators, 
the GABAAR β3 subunit and the K-Cl 
co-transporter KCC2 [59] was downregulated 
in the temporal cortex, parietal cortex, cerebellar 
cortex and hippocampus. Similarly, GABRA1, 
GABRA5 and GABRB2 subunits were 
downregulated in the cortices of VPA-induced 
autistic adult mice [60]. VPA is believed to cause 
an ectopic increase in glutamatergic synapses 
in the cortex and hippocampus [61] and a selective 
 

Brain structures affected by prenatal VPA 
exposure 
Neuroanatomical and functional investigations 
of ASD patients have mainly revealed alterations 
in neocortical structures, limbic system and 
cerebellum. Similarly, neocortical regions are 
affected in VPA rodent models of autism. Whereas 
the typical cortical organization of the prefrontal 
cortex is preserved, the interneuronal space is wider 
in VPA-treated than in control animals [44]. A loss 
of Nissl positive cells in the middle and lower 
layers of the prefrontal cortex and lower layers 
of the sensory cortex has been reported in VPA 
male mice [35]. However, a longer exposure to 
VPA (prenatal plus postnatal) increased the number 
of neocortical neurons [45] associated with autistic- 
like behaviors, suggesting a differential effect 
of VPA on neocortical structures depending on the 
duration of the VPA treatment. Morphological 
alterations in VPA rodent models include complexity 
of the apical dendrites of cortical motor neurons 
[46], decreased dendritic branching of neurons 
in the orbitofrontal and medial prefrontal cortices, 
decreased spine density of neurons of the prefrontal 
cortex [47, 48], and synaptic structure deficits 
in cortical neurons [49].  
Several alterations have been identified in the 
hippocampus after prenatal exposure to VPA, 
such as a reduced size of CA1 of the dorsal 
hippocampus [50], increased neuronal density 
in CA1, CA2, CA3, dentate gyrus and subiculum 
[51], induced spatial disorganization of the 
pyramidal CA3 layer and dentate granular cell 
layers [44], retracted neuronal arborization in the 
ventral and dorsal hippocampus, reduced number 
of spines in the dorsal hippocampus and increased 
dendritic spine density in the ventral hippocampus 
[48]. The amygdala was also affected by prenatal 
VPA exposure as the size of the basolateral 
amygdala [50], as well as the spine density [48] 
were reduced. A link between morphological 
rearrangements in limbic regions and the typical 
exploratory behavior and enhanced spatial memory 
of VPA animals is under debate [48, 51]. 
In the cerebellum, prenatal exposure to VPA 
reproduces the anomalies associated with autism: 
a reduced volume of the vermis associated with 
a decrease in Purkinje cell number [22]. In addition, 
Purkinje cells are smaller with shorter and less
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In autistic patients, the symptoms may depend 
on the brain areas concerned by alterations 
of microcircuit activity [78]. Interestingly, based 
on the analysis of the number of c-Fos-positive 
auditory neurons in response to tones, VPA-
exposed rats have been postulated to display 
hyperresponsiveness to sound [79].  
The link between hyperreactivity of local neuronal 
circuitry and the excitatory/inhibitory imbalance 
and/or hyperconnectivity is still debated [78]. 
Whereas hyperconnectivity is established in the 
neocortex [68], the synaptic excitatory/inhibitory 
balance is believed to be disrupted in the amygdala 
[72] where the NMDA glutamatergic synaptic 
plasticity is dysfunctional [80] and the GABAergic 
system is disturbed [81, 82].  

VPA models and sexual dimorphism of ASD 
In humans, ASD is reported to be more prevalent 
in males than in females with a ratio of about 4/1. 
Interestingly, the rodent VPA models of autism 
present more pronounced behavioral alterations 
in males than in females [83-86]. Nevertheless, 
most studies on VPA animals have been performed 
on males and only very few studies concern 
cellular and molecular consequences of this 
sexual dimorphism. However, female VPA rats 
appear to lose Nissl-positive cells in the prefrontal 
cortex, but not in the sensory cortex [87], and 
postsynaptic maturation is only disturbed in male 
VPA rats [84]. Interestingly, a recent study reveals 
sex-specific metabolic and connectivity changes 
in VPA rats suggesting that difference in patterns 
of connectivity may underlie autistic-like behavior 
[86]. Finally, after prenatal VPA exposure, 
a preferential expression of exon 1- and exon 
4-BDNF transcripts has been depicted in females 
compared to males and may contribute to sex 
differences in ASDs by protecting females from 
the adverse effects of genetic variants 
or environmental factors such as VPA on the 
developing brain [88]. Investigating sex-related 
differences in the effects of prenatal exposure 
to VPA could yield important information about 
the pathophysiology of ASD. 

VPA models and preclinical studies for ASD 
treatments 
One important issue about animal models 
of human pathologies is their use as a platform for

overexpression of 2A and 2B subunits of NMDAR 
in the neocortex of young autistic rats [62]. 
However, a more recent study shows that NMDAR 
subunits 2A, 2B, 2C are downregulated in the 
cortices of VPA-induced autistic adult mice [60].  
In the hippocampus, VPA treatment is likely 
to alter the clearance of glutamate by astrocytes 
[63] and increase metabotropic glutamate receptor 
1A immunoreactivity [64] while drastically reducing 
the serotonin level [65]. The effect of VPA on the 
serotoninergic system has been confirmed 
in zebrafish which selectively fail to express 
central serotonin after VPA treatment early during 
development [66]. The implication of serotonergic 
and dopaminergic deficiencies in the etiology 
of human ASD is supported by hypofunction 
of the dopaminergic system in the mouse prefrontal 
cortex after VPA exposure [67]. 

VPA models: autism and the intense world 
theory 
At the cellular level, the young rat (PND 12-16) 
VPA model of autism present hyperconnected, 
hyperreactive and hyperplastic neuronal microcircuits 
in different brain regions such as the somatosensory 
cortex [68], prefrontal cortex [69, 70] and amygdala 
[71, 72]. The local electric field potentials in the 
hippocampus and the olfactory bulb also suggest 
a distinct electrical activity of the brain of animals 
prenatally exposed to VPA [73]. Overexpression 
of the NMDA receptor subunits NR2 A and B 
could be involved in the hyperplasticity at least 
in somatosensory cortex [74]. Such modifications 
of the neuronal circuitry are associated with a 
hyperleaning and a hyperfear memory [70, 71]. 
Nevertheless, in contrast to young VPA-treated rats, 
the synaptic function was reduced in the medial 
prefrontal cortex [75] and expression of the NMDAR 
subunits was downregulated in the cortex of adult 
(PND 50) VPA-treated rats [62].  
Based on these observations, at least young VPA 
animals exhibit amplified fear processing and 
memories along the line of the original notion 
of an Intense World Syndrome in autism proposed 
by Markram et al. [76, 77]. Their observations 
in the neocortex and amygdala suggest that 
hyperfunctional microcircuits become autonomous 
and memory-trapped leading to exacerbated 
perception, attention, memory and emotions.  
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ASD patients and VPA-treated rodents. 
Furthermore, whereas behavioral therapies produce 
beneficial effects on ASD patients, environmental 
enrichment has been shown to reverse behavioral 
alterations in rats prenatally exposed to VPA 
[101, 102]. Thus, VPA models of autism provide 
valuable tools to investigate the brain region-
specific neurodevelopmental and cellular defects 
underlying autistic behaviors and to screen for 
novel therapeutics.  
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Le gradient des ions chlorures est le phénomène permettant à l’acide gamma-aminobutyrique 

(GABA) de déclencher l'inhibition du neurone via son récepteur GABAA. Il résulte de la 

différence de concentration en ions chlorures entre le milieu intra- et extra-cellulaire, dont la 

mise en place se fait au cours du développement, sous le contrôle de l'expression de différents 

cotransporteurs cation-chlorure. Une dérégulation de ce gradient est impliquée dans différentes 

pathologies, dont l'autisme. 

1 Le GABA : effets excitateurs et inhibiteurs.  

L’acide gamma-aminobutyrique (GABA), est le principale neurotransmetteur inhibiteur dans le 

système nerveux central. Il agit via deux récepteurs : GABAA et GABAB.  

Le récepteur GABAA est un récepteur canal perméable aux ions chlorures. Il est principalement 

composé de deux sous-unités α, deux β et une ϒ regroupées autour d'un pore ionique. Jusqu'à 

maintenant, 6 isoformes de sous-unités α, 3 de β et 3 de ϒ ont été caractérisées. D'autres sous-

unités mineures ont également été identifiées tels que δ, ƿ ɛ, θ, π, and ƿ. En théorie, un très 

grand nombre de récepteurs GABAA peut être assemblé et ce, même au sein d'une unique 

cellule. Chez l'adulte, l'isoforme dominant est constitué de deux sous-unités α1,  2 β2 et une ϒ2. 

Le récepteur GABAB est, lui, un récepteur métabotropique couplé aux protéines G formé de 4 

sous-unités auxquelles nous ne nous intéresserons pas ici. 

Il existe deux mécanismes par lesquels le GABA peut médier son action inhibitrice, tous deux liés 

à l'ouverture des canaux associés. Dans le premier, l'ouverture des récepteurs GABAA permet 

une entrée d’ions chlorures dans le neurone, selon le gradient électrochimique de cet ion, 

hyperpolarisant ainsi le neurone. Le potentiel membranaire de ce dernier sera donc plus éloigné 

du potentiel seuil pour le déclenchement de potentiels d'action et leur émission sera ainsi rendu 

plus difficile. Le deuxième mécanisme est appelé le mécanisme du shunt inhibiteur. Son principe 

s'appuie sur la loi d'Ohm. Afin de transmettre un message excitateur, les neurones on besoin 

d'une dépolarisation (U) elle-même dépendante d'un courant (I) ainsi que d'une résistance (R) 

fournie par la membrane. Or, si suffisamment de canaux s'ouvrent simultanément, la résistance 
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membranaire diminuera, rendant le seuil de dépolarisation nécessaire à la génération de 

potentiels d'action plus difficilement atteignable. 

Cependant, le GABA peut également avoir un effet dépolarisant. En effet, lorsque la 

concentration intracellulaire en ions chlorures est élevée, le potentiel d’inversion pour cet ion 

peut devenir positif par rapport au potentiel membranaire de repos. Dès lors, l'ouverture des 

canaux GABAA conduira à une sortie d'ions chlorures dépolarisant de ce fait le neurone. Cette 

dépolarisation ainsi créée peut même aller au delà du seuil de déclenchement des potentiels 

d’action conférant ainsi au GABA des propriétés excitatrices (Cherubini et al., 1991).  

 

Figure 2 : Evolution du gradient  aux ions chlorure au cours du développement. 

2 - Cotransporteur et développement du gradient 

Dans le système nerveux central, les neurones matures présentent une faible concentration 

intracellulaire en ions chlorures et s’hyperpolarisent en réponse à l’activation des récepteurs 

GABAA (GABAAR) par le GABA. Cependant, chez les neurones immatures, la concentration 

intracellulaire en ions chlorures est élevée, permettant au GABA de les dépolariser (Cherubini et 

al., 1991; Ben-Ari, 2002).  

Le switch d’une action du GABA dépolarisante à hyperpolarisante au cours du développement 

est due à des changements dans le gradient des ions chlorures, lui-même sous contrôle de 
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cotransporteurs cation-Cl-. Le cotransporteur Na+-K+-2Cl- (NKCC1) permet une accumulation de 

Cl- dans le milieu intracellulaire des neurones en développement (Alvarez-Leefmans et al., 2001; 

Ben-Ari, 2002, 2007; Payne et al., 2003), tandis que le cotransporteur K+-Cl- (KCC2) permet 

l'extrusion des ions chlorures (Watanabe and Fukuda, 2015). Le processus ontogénétique 

subséquent à ce switch est l’augmentation de l’expression du cotransporteur KCC2 et la 

diminution concomitante de l’expression de NKCC1, au cours du développement, qui va amener 

la concentration en ions chlorures sur les bas niveaux couramment observés dans le CNS mature 

et le GABA à son action hyperpolarisante (Yamada et al., 2004). Effectivement, Dzhala et al, 

dans leur papier de 2015, rapportent que NKCC1 est largement exprimé dans le cortex du rat 

nouveau-né, tandis que le niveau d’expression de  KCC2 ne serait que de 5 à 15% de celui de 

l’âge adulte (Dzhala and Staley, 2015). 

Dans le cervelet, la différenciation et la croissance axonale des CP commencent aux alentours 

de E15 (Hatten et al., 1997). Or, ces cellules expriment déjà KCC2 à E15.5 et cette expression 

augmente jusqu’à E18.5. Les niveaux d’expression de KCC2 atteignent les niveaux observés à 

l’âge adulte aux alentours de P21. Il est intéressant de noter que, contrairement à la plupart des 

autres populations de neurones, les CP ne présentent pas d'expression du cotransporteur 

NKCC1 (Mikawa et al., 2002). Zhang et al. (2015) ont mis en évidence deux canaux anoctamine 

exprimés dans le cervelet et notamment dans les CP : ANO1 et ANO2. Plus particulièrement, 

ANO2 est exprimé dans l'arborisation dendritique des CP et diminue la force de l'inhibition en 

augmentant la concentration intracellulaire des ions chlorures (Zhang et al., 2015). Rahmati et 

al. (2016) ont, eux, montrés que le KO du transporteur SLC26A11, présent sur les CP, conduisait 

à une diminution de la concentration intracellulaire des ions chlorures. Ces protéines pourraient 

assurer les fonctions du cotransporteur NKCC1 et expliquer l’absence de son expression dans les 

CP (Rahmati et al., 2016). 
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Figure 3 : Evolution de la signalisation GABAergique et de la balance NKCC1/KCC2 au cours du 

développement. 

3 - Le gradient aux ions chlorures dans un contexte pathologique 

Les cotransporteurs aux ions chlorures vont déterminer le gradient aux ions chlorures et ce 

gradient, en déterminant la force de l'inhibition, va modifier la balance excitation/inhibition 

(E/I). Ainsi, les niveaux d'expression des cotransporteurs NKCC1 et KCC2 vont influer sur cette 

balance. Or, une dérégulation de cette balance a été avancée comme cause dans différentes 

pathologies. 

La première pathologie à laquelle on pense lorsque l'on parle de balance E/I est l'épilepsie. 

L'implication du gradient aux ions chlorures est ici clairement mise en évidence par les 

mutations des cotransporteurs KCC2 et NKCC1, conduisant à une activité épileptique dans des 

modèles animaux et étant observées chez l'humain. Des observations de tranches 

d'hippocampes de patients atteints d'épilepsie temporale montrent une diminution de 

l'expression de KCC2 et une augmentation de celle de NKCC1 menant à un niveau où l'activité 

GABAergique devient dépolarisante (Kaila et al., 2014). 

L'implication du gradient aux ions chlorures a aussi été montrée dans la douleur chronique. En 

effet, dans un modèle animal de douleur chronique, on observe une diminution de l'expression 
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de KCC2 et une perturbation de l'homéostasie des ions chlorures dans les neurones de la corne 

dorsale superficielle de la moelle épinière. 

Un rôle de ces cotransporteurs a aussi été mis en évidence dans la schizophrénie (Arion and 

Lewis, 2011), le stress (Hewitt et al., 2009) et l'hyperalgésie (Price et al., 2005). 

Nous avons vu l'importance du gradient des ions chlorures et de la balance E/I, ainsi que les 

conséquences que peuvent avoir leurs modifications. Nous allons maintenant nous intéresser 

aux éléments qui suggèrent une implication de ces modifications dans les TSA. 

4 - Gradient des ions chlorures et autisme 

Les premières observations menant à l'étude du gradient des ions chlorures pour expliquer le 

déséquilibre de la balance E/I  dans l'autisme ont été une résistance de certains patients aux 

benzodiazépines, qui suggère une possible modification de ce gradient. Partant de ce postulat, 

Ben-Ari et Lemonnier (2012) conduisent un essai clinique utilisant le bumétanide, un 

antagoniste de NKCC1, sur une cohorte d'enfants autistes et obtiennent des résultats positifs 

(Lemonnier and Ben-Ari, 2010). Ces résultats son rapidement suivi d'une deuxième étude 

confirmant les résultats de la première (Lemonnier et al., 2012) avec une amélioration des 

scores sur différentes échelles d'évaluations un mois après la fin des trois mois de traitements. 

Tyzio et al. (2014) ont ensuite montré une augmentation de la concentration intracellulaire des 

ions chlorures et de l'activité excitatrice GABAergique dans des cellules hippocampiques de rats 

VPA et de souris FMR1 (Tyzio et al., 2014). Le même groupe avait, en 2006, mis en évidence 

l'existence d'un switch momentané, sous contrôle ocytocinergique, de GABA dépolarisant à 

GABA hyperpolarisant afin de protéger le cerveau au moment de la naissance (Tyzio et al., 

2006). Ils montrent ici que ce switch est aboli dans leur modèle, mais qu'un traitement 

prénatale au bumétanide restore le profil éléctrophysiologique des neurones et le 

comportement des animaux.  

D'autres études sont venues renforcer l'hypothèse d'une implication du gradient aux ions 

chlorures dans les TSA. Par exemple, sur des neurones obtenus à partir de cellules pluripotentes 
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de patients atteints par le syndrome de Rett, Tang et al. (2016) ont observé une sous-expression 

de KCC2, ainsi qu'un retard de la survenue du switch GABAergique. Ce retard était compensé 

par l'induction d'une surexpression de KCC2 dans ces mêmes cellules (Tang et al., 2016). Ces 

auteurs postulent que ce mécanisme pourrait être à l'origine du syndrome de Rett. Or, celui-ci 

ayant longtemps été considéré comme une forme d'autisme à part entière, on peut émettre 

l'hypothèse que ces mêmes mécanismes sont à l'œuvre dans les TSA. 

D'autres études ont permis de mettre en lumière des interactions possible entre ce que l'on 

connait de l'autisme et de l'homéostasie du chlore. Par exemple Leonizo et al,. (2016) ont 

montré que l'expression de KCC2 était sous la dépendance de l'activation du récepteur à 

l'ocytocine par son ligand (Leonzino et al., 2016). Or, l'ocytocine est connue pour être dérégulée 

dans les TSA ce qui pourrait amener à une dérégulation du GIC 
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Abstract : 

Autism spectrum disorders (ASD) are a set of heterogeneous neurodevelopmental disorders, 

defined by early-onset difficulties in social communication and interaction, together with 

restricted, repetitive behaviours and interests. The median worldwide prevalence of ASD is 

about 1% and has been steadily increasing over the past two decades. Imagining and post-

mortem studies have unravelled lesions in the cerebellum in patients with ASD, pointing to a 

role for this structure in the pathology. Exposure to the antiepileptic valproic acid (VPA) during 

the first trimester of pregnancy, that is associated with a higher incidence of ASD in offspring, 

was accordingly shown to induce cerebellar alterations in patients and animal models. We used 

the in utero VPA exposure in mice to model ASD, in which we evidenced social interaction 

deficits and repetitive behaviours coherent with the pathology, as well as deficient motor skill 

learning.  

Material and methods  

Animals  

All mice were group-housed at the University of Strasbourg, France in temperature-controlled 

animal facilities (24◦C, 12:12 h light/dark cycle), fed ad libitum with free access to water. 

C57Bl/6J mice were mated overnight and survey until a vaginal plug was detected. The day of 

sperm plug detection was defined as gestational day 0 (GD0). At GD12, 400mg/kg or 600 mg/kg 

valproic acid sodium salt (VPA; Sigma–Aldrich) diluted in 0.9% NaCl was IP administered. Control 

animals were administered with 0.9%NaCl. All experiments were performed with permission of 
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the local animal care committee and according the European Communities Council Directive of 

24 November 1986 (86/609/EEC). 

All test were adaptated from (Becker et al., 2014). 

Animals: 

Each behavioural test was performed on 55 mice separate as follow: 

  Salin 
VPA 

400mg 
VPA 

600mg 

Mâles 9 8 8 
femelles 11 7 12 

 

Marble: 

Mice are placed in a T1 cage containing 5cm of sawdust and 20 glasses marbles (1.5 cm 

diameter) evenly spaced (cf diagram). Mice spent 15 min in the cage under a light intensity of 40 

lux. At the end the number of marble being at least half covered by sawdust were counted.  

Direct social interaction: 

This test takes place in a square arena (50×50×35) with black Plexiglas walls and white Plexiglas 

floor allowing infrared light to go through. Test mice are placed in the arena with a stimulus 

control mouse of the same age, sex and strain for 10 min under a light intensity of 15 lux. Total 

time spent in close interactions (nose and paw contact), number and duration of each close 

interaction and of autogrooming events, number of pursuits, rearing and circling are recorded 

on video track.  
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Motor stereotypes: 

This test is realized in 21×11×17 cm cage fill with 5 cm sawdust under 45 lux light intensity 

during 10 min. Number of shakes, rearing, burying, grooming and circling and also total time 

burying are scored directly during the test.  

Y-maze exploration: 

Spontaneous alternations during maze exploration are taken as record of cognitive flexibility. 

The maze consist in three arms made of plexiglas (40×9×16 cm) covered with geometrical 

pattern specific to each arm in order to allow their identification by mice. Test mice are placed 

in the centre of the maze and allow to freely exploring it during 5 min under 15 lux light 

intensity. Successive entries in each arm are quote from video-recording. There is three 

different patterns of exploration: Spontaneous alternation (successive entry in each of the three 

arms), alternate arm return (alternation between two arm), and same arm return.  

Social preference test in the three chamber apparatus: 

The apparatus consists in a Plexiglas box divided into three compartments of equal size 

(40×22×22.5 cm) by transparent acrylic walls. Two sliding doors of 8×5 cm allow mice to go from 

one chamber to another. Cylindrical contention cage (18×9 cm, 0.5 cm diameter rods with 1 cm 

interval) are used to contained stimulus mice or an object (fake mouse) in lateral compartment. 

Stimulus mice are habituated to confinement 20 min daily during two days. During the test, 

mice are placed in the central compartment and allow to freely explore the apparatus during 10 

min under a 15 lux light intensity and with empty cylinder. Then, the mouse is replaced in the 
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central chamber and stimulus is placed in one of the cylinder and moss mouse in the other one 

as a control for novelty preference. Sliding door are removed and test mouse is allow to freely 

explore the apparatus during 10 min. Number of entries in each chamber and number of 

nose/cylinder contact as well as unitary and total time of each are scored on video recording. 

Relative position of stimulus mice and moss mouse are equilibrated between each groups.  

Novelty suppressed feeding: 

Mice are food deprived 24h before test and isolated cage 30 min before test. This test takes 

place in square arena (50×50) fill with sawdust in the center of which is placed a white tissue 

with three pellets of classical food. Mice are placed in a corner and allow to freely explore the 

arena during 15 min maximum under a 60 lux light intensity. Latency to feed is measured as 

time spent by mice in the arena before biting a pellet. Then they are immediately replaced in 

home cage for 5 min at the end of which the amount of food intake is scored.  

String test:  

A metal wire is placed at 40 cm above floor under a 30 lux light intensity. Test begins when mice 

grip the wire with both front paw and stop when a third paw grips the wire. Three consecutive 

tests are made.  

Skill motor learning : 

Motor skill learning are tests on a rotarod (bioseb) accelerating from 4 to 40 rpm in 5 min. 

Wheel diameter is 5 cm and light intensity is set at 30 lux. On the first day, mice were 

habituated to the apparatus until they were able to stay on the wheel at 4 rpm during at least 
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180s. Mice were tested for 3 trials daily during 5 days. For each trial, mice were placed on the 

wheel rotating at 4 rpm for 1 min. Then acceleration is launch and trial stops when mice fall 

from the wheel or made two passive rotations (hanging on the wheel). Time spent on the wheel 

was recorded automatically.  

 

Behaviors of VPA treated mice 

VPA mice present deficits in social interactions  

Deficient social interactions are core symptom of autism in humans. We assessed the effects of 

prenatal exposition to VPA on social abilities using two tests, the direct social interaction test 

and the three-chamber test. 

As expected, In the direct social interaction test (Figure 7) we didn't see any significant effect of 

prenatal exposition to VPA on gender differences (treatment*gender, p>0.05). Nevertheless we 

find a significant deficits in social interactions in VPA mice versus control mice with great 

reduction in total time spent in social contact (p<0.0005 for each doses), number and mean 

duration of nose contact (p<0.0005 for each doses). For the 600mg/kg VPA mice we also saw a 

significant decrease of the number of following episode (p<0.05) and an increase in the number 

of grooming after social contact.  These data show that prenatal exposition to VPA can impaired 

social interactions in C57 mice without gender effect. 
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In the three-chamber test (Figure 8) we see no significant effect of prenatal exposition to VPA 

on gender differences (treatment*gender, p>0.05). Nevertheless we find a significant deficit in 

preferences in VPA mice versus control mice as show by the decrease of the index value which 

goes from 0.63 for control to 0.50 and 0.47 respectively for VPA 400 and VPA 600 (p<0.05 and 

p<0.0005). 

VPA mice present an increase of stereotyped behaviors without gender biases 

We assessed the effect of VPA prenatal injection on repetitive behaviour by scoring the 

presence of motor stereotypes (Figure 9A) and by evaluating the pattern of exploration in the Y-

maze (Figure 9B) in VPA mice and their saline counterparts. 

Figure 9A shows that VPA induce an increase in the number of rearing for both doses (p<0.05 

and p<0.0005 for 400mg and 600mg respectively), in the number of circling for both doses 

(p<0.05 and p<0.005 for 400mg and 600mg respectively), in the number of shakes for both 

doses (p<0.005). Thus VPA prenatal exposition increased the occurrence of two types of motor 

stereotypes. 

In the Y-maze exploration test (Figure 9B) we observed that VPA mice have a fewer rates of 

spontaneous alternation (p<0.0005 for both doses), a higher rates of alternate arms returns 

p<0.05 and p<0.005 for 400mg and 600mg respectively) and exhibits no change in the rates of 

same arms returns in the regards with saline mice. 

In conclusion, prenatal exposition to VPA increased motor (shakes and circling) and cognitive 

(perseveration in the Y-maze test) stereotypies in C57/BL6 strain of mice without gender biases. 
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VPA mice present no increase in anxiety signs 

We evaluated the effects of prenatal exposition to VPA on anxiety levels using two tests, the 

marble burying test (Figure 10A) and the novelty-suppressed feeding test (Figure 10B). 

In neither of this test we find significant differences between VPA and saline mice or between 

male and female mice of each treatment (p>0.05) 

These data indicate that prenatal exposition to VPA did not modify anxiety levels. 

VPA mice present some alterations of their motor performances without gender biases 

We assessed the effect of prenatal VPA exposition using three different tests, the string test 

(Figure 11A), evaluation of locomotors activity (Figure 11B) and the rotarod test (Figure 11C). 

In any of this test we find a significant differences between male and female mice of each 

treatment (p>0.05).  

For the string test (A) and the locomotors activity (B) we didn't find significant differences 

between VPA and saline mice (p>0.05) meaning that VPA prenatal exposition didn't affect 

muscular tonus nor global locomotors activity. 

In the rotarod test (C) VPA and saline mice performed similary on the first day. On day two the 

second trial of 600 mg VPA mice is significantly differents (p<0.05). The difference between VPA 

and saline grow bigger and bigger until day 5 when each trial for each VPA doses are 

significantly shorter than those from saline mice. 
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These data show that if VPA mice didn't present clear baseline differences in their motor 

performance they have more difficulties to learn a new motor paradigm. 
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Figure 7 Effects  of VPA prenatal exposure (400 mg/kg and 600 mg/kg) on the main behavioral 

parameters assessed in the direct social interaction test. Data are presented as mean ± SEM. 

Comparison to saline mice: on asterik p<0.05 ; two asteriks p<0.005 ; three asteriks p<0.0005 

(two-way analysis of variance followed by bonferronis post-hoc test). 
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Figure 8 Effects of VPA prenatal exposure (400 mg/kg and 600 mg/kg) on social preference. 

The social preference was assessed in the three-chamber test. Data are presented as mean ± 

SEM. Comparison to saline mice: on asterik p<0.05 ; two asteriks p<0.005 ; three asteriks 

p<0.0005 (two-way analysis of variance followed by bonferronis post-hoc test). 
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Figure 9 Effects of VPA prenatal exposure (400 mg/kg and 600 mg/kg) on stereotypic 

behaviors. Data are presented as mean ± SEM. Comparison to saline mice: on asterik p<0.05 ; 

two asteriks p<0.005 ; three asteriks p<0.0005 (two-way analysis of variance followed by 

bonferronis post-hoc test). 
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Figure 10 Effect of VPA prenatal exposure (400 mg/kg and 600 mg/kg) on anxiety . The anxiety 

signs were assessed in the marble test and the novelty supressed feeding test. Data are 

presented as mean ± SEM. Comparison to saline mice: on asterik p<0.05 ; two asteriks p<0.005 ; 

three asteriks p<0.0005 (two-way analysis of variance followed by bonferronis post-hoc test). 
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Figure 11 Effects of VPA prenatal exposure (400 mg/kg and 600 mg/kg) on motor 

performance. The motor performance was assessed using the string test, by measuring the 

spontaneous locomotors activity and by the rotarod test. Data are presented as mean ± SEM. 

Comparison to saline mice: on asterik p<0.05 ; two asteriks p<0.005 ; three asteriks p<0.0005 

(two-way analysis of variance followed by bonferronis post-hoc test). 
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Brain development is accompanied by a shift in gamma-aminobutyric acid (GABA)
response from depolarizing-excitatory to hyperpolarizing-inhibitory, due to a reduction
of intracellular chloride concentration. This sequence is delayed in Autism Spectrum
Disorders (ASD). We now report a similar alteration of this shift in the cerebellum,
a structure implicated in ASD. Using single GABAA receptor channel recordings in
cerebellar Purkinje cells (PCs), we found two conductance levels (18 and 10 pS), the
former being dominant in newborns and the latter in young-adults. This conductance
shift and the depolarizing/excitatory to hyperpolarizing/inhibitory GABA shift occurred
4 days later in females than males. Our data support a sex-dependent developmental
shift of GABA conductance and chloride gradient, leading to different developmental
timing in males and females. Because these developmental sequences are altered in
ASD, this study further stresses the importance of developmental timing in pathological
neurodevelopment.

Keywords: cerebellum, Purkinje neuron, chloride gradient, autism, sexual dimorphism, GABAA channels

INTRODUCTION

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous
system. By opening GABAA receptor channels and via chloride flow down its electrochemical
gradient, GABA hyperpolarizes the membrane potential and thus reduces neuronal excitability
in the mature nervous system. Intracellular chloride concentration (Cl−)I is regulated by cation-
chloride co-transporters that determine the strength of GABAergic inhibition (Rivera et al., 1999;
Watanabe and Fukuda, 2015; Raimondo et al., 2017). If the intracellular chloride concentration
is high enough that the equilibrium potential for chloride is positive compared to the resting
membrane potential, GABAA receptor activation can depolarize the cell above the action potential
threshold, acting like an excitatory neurotransmitter (Ben-Ari et al., 1989; Ben-Ari, 2014). This
regulation of (Cl−)I has been reported in a wide range of animal species and brain structures; it
is affected by many factors including sex steroids, BDNF and IGF-1 signaling (Galanopoulou,
2008; Tsutsui et al., 2011; Waddell and McCarthy, 2012; Ben-Ari, 2014; Watanabe and Fukuda,
2015). Immature neurons have lower (Cl−)I than neurons of young adults, leading to depolarizing
GABA actions which both activate voltage-gated calcium currents and allow NMDA receptor
activation, underlying the well-known trophic actions of GABA in development (Ben-Ari, 2002,
2014; Witte et al., 2014; Raimondo et al., 2017). GABAergic signals also generate action potentials
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in many immature neurons, and the switch between excitatory
and inhibitory GABA effects occurs at specific developmental
time-points, depending on the neural structure and animal
species. For example, the GABA ‘‘switch’’ occurs between
E15.5 and E 17.5 in mouse spinal motoneurons (Allain et al.,
2011), around P5 in the ventral horn of the rat spinal cord (Stein
et al., 2004) and in ganglion and amacrine cells of the retina
(Zhang et al., 2006), and from P8–P10 in mouse hippocampal
pyramidal cells (Ben-Ari et al., 1989; Tyzio et al., 2007). Changes
in the timing of the GABA switch, due to genetic mutations
and/or environmental insults, are thought to contribute to
neurodevelopmental disorders including autism (Ben-Ari et al.,
1989; Ben-Ari, 2017).

GABAA receptors are composed of 2 α subunits, 2 β subunits
and 1Υ subunit, which together form a central ion pore.
Excluding splice variants and point mutations, 6 α isoforms,
3 β isoforms and 3 Υ isoforms have been characterized, as
well as some minor subunits (δ, ρ, ε, θ, π and ρ). In theory,
therefore, a very large number of GABAA receptor types may
be found even in a single cell. The major adult isoform is
generally accepted to be composed of α1, β2 and Υ2 subunits.
Whereas some subunits have a broad expression throughout
the central nervous system, other subunits show a restricted
cellular and subcellular localization (Sigel and Steinmann, 2012).
The expression of GABAA receptor subunits is developmentally
regulated, notably with a developmental switch in α subunit
expression associated with a slow-to-fast shift in the kinetics of
GABA-mediated inhibitory postsynaptic potentials (Laurie et al.,
1992; Fritschy et al., 1994). Thus, in thalamic reticular neurons, a
postnatal switch in GABAA receptor subunits from α5 to α3 is
believed to play a role in the early development of the circuit
(Pangratz-Fuehrer et al., 2016). Experiments using subunit
expression in HEK cells or mouse fibroblasts show that single
GABA channels currents have distinct opening conductance
levels depending upon subunit composition (Mortensen and
Smart, 2006).

Studies on developmental GABA shifts during normal
development and in relation to autism spectrum disorders (ASD)
have been done primarily in cortical structures. Yet abnormalities
of the cerebellum and of cerebellar Purkinje cells (PCs) are
frequently described in post mortem studies of humans with
autism (Fatemi et al., 2012) as well as in the rodent valproate
model of autism (Ingram et al., 2000). In addition, PCs undergo
considerable post-natal development, including regression of
climbing fiber multi-innervation and dramatic dendritic arbor
expansion (Dusart and Flamant, 2012), allowing investigation of
these important developmental processes after birth.

We have now measured the changes in somatic GABAA
channel properties and chloride gradient in PCs, comparing
these changes in male and female mice, since sex differences
in the GABA shift have been reported (Galanopoulou, 2008).
We report that in normal and valproate-model male and
female mice, the dominant GABAA receptor channel shifts
from high-conductance in the newborn to low-conductance in
juvenile and adult mice. This shift in conductance parallels
the GABA switch from depolarizing to hyperpolarizing, as it
is sex dependent, being delayed in naïve females compared to

males. Furthermore, the GABA switch is delayed in mice of both
sexes after prenatal exposure to valproate, supporting a role of
cerebellar dysfunction in the pathology of autism.

MATERIALS AND METHODS

Mice
Pregnant C57 mice were injected intraperitoneally with 600 mg
valproate sodium salt (n = 18) or saline (n = 15) at embryonic
day 12.5 (Roullet et al., 2013). Either control pups or pups from
valproate-treated dams were used to prepare acute cerebellar
slices for patch-clamp experiments at ages between postnatal
days 5 (P5) and 45 (P45). For the study of climbing fiber
synapse elimination, either C57 or Swiss pups (because of
large number of pups per litter) were used; no differences
were found in synapse elimination between the two strains
of mice. All procedures followed guidelines established by le
Comité National d’ethique pour les Sciences de la Vie et de la
Santé (EU Council Directive 2010/63/EU) and were approved
by Institutional Animal Care and Use Committees (CREMAS,
Comité Régional d’Ethique en experimentation animale de
Strasbourg).

Slice Preparation
Standard procedures were used to prepare 250-µm or 300-µm
parasagittal slices from control or valproate-treated mice at
P5–P45 following a protocol approved by the European and
French guidelines on animal experimentation established by
le Comité National d’ethique pour les Sciences de la Vie et
de la Santé (EU Council Directive 2010/63/EU) and were
approved by Institutional Animal Care and Use Committees
(CREMAS, Comité Régional d’Ethique en experimentation
animale de Strasbourg). Briefly, mice were killed by decapitation
under isoflurane anesthesia. Brains were dissected in ice-cold
artificial cerebrospinal fluid (ACSF) and sliced with a vibratome
(Leica VT1200S) at 4◦C. Slices were maintained for 30 min
at 32◦C in an interface chamber containing ACSF equilibrated
with 95% O2, 5% CO2 and containing (in mM): NaCl 124,
KCl 2.7, CaCl2 2, MgCl2 1.3, NaHCO3 26, NaH2PO4 0.4,
glucose 10, ascorbate 4, then for at least 1 h at room
temperature before being transferred to a superfusing recording
chamber.

Electrophysiological Recordings
Slices were transferred to a recording chamber on an upright
microscope. The recording chamber was continuously perfused
at room temperature with bath solution containing: (mM)
NaCl 124, KCl 2.7, CaCl2 2, MgCl2 1.3, NaHCO3 26,
NaH2PO4 0.4, glucose 10, pH 7.4, equilibrated with 95%
O2, 5% CO2. For cell-attached recordings (in order to
stabilized the resting membrane potential) the bath solution
contained tetrodotoxin (TTX) 10−5 M and NBQX 10−5 M. In
some experiments isoguvacine or NBQX were applied to the
bathing fluid at a concentration of 10−5 M. For experiments
recording climbing fiber currents, the ACSF contained 10−4 M
picrotoxin.
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Most electrophysiological experiments were performed on
visually identified PCs using the patch-clamp technique in the
cell-attached configuration. Electrodes were filled for single
channels recordings with the following solution (mM): KCl 110,
NaCl 2, MgCl2 2, CaCl2 2, HEPES 10, tetra-ethyl-ammonium-
chloride (TEA) 20, TTX 10−3, CsCl2, 4-aminopyridine (4AP) 1,
BaCl2 1, Isoguvacine or Muscimol 10−5, pH 7.4 ; and for spiking
activity with the following solution (mM): NaCl 124, KCl 2.7,
CaCl2 2, MgCl2 1.3, NaHCO3 26, NaH2PO4 0.4, glucose 10,
equilibrated at pH 7.4 with 95%O2, 5% CO2.

For experiments recording climbing fiber currents,
patch pipettes were filled with a solution containing (mM):
Cs-D-gluconate 120, biocytin 13, 10 HEPES, BAPTA 10, TEACl
3, Na2ATP 2, MgATP 2, NaGTP 0.2, pH 7.3, 290–300 mOsm.
Climbing fiber currents were elicited by stimulation in the
internal granular layer with a saline-filled glass pipette.

Signals were recorded and filtered at 5 kHz using an Axopatch
200A amplifier (Axon Instrument). Current and voltage signal
were digitized at 50 kHz using a Digidata 1322A (Axon
Instruments) prior to being recorded directly using Clampex
(10.2) software. Analysis was performed off-line using Clampfit
(10.2) software. Data were filtered before analysis with a cut off
frequency of 1.5 or 1 kHz.

Graphs, Fitting Procedures and Statistics
Sigma plot 12.5 software was used for graphic representations
of the data, fitting procedures and statistical analysis. For
channels conductance analysis the normality Shapiro-Wilk test,
and equal variance test were used before running an un-paired
Student’s t-test. Data were considered statistically significant
when P < 0.05. ∗ is used for P values between 0.05 and 0.01;
∗∗ for P values between P > 0.01 and 0.001. ∗∗∗ is used for P
values < 0.001. The quality of the fit was determined using the
prediction error.

RESULTS

Two GABAA Conductances in Neonatal
PCs
The single-channel properties of GABAA receptors have been
extensively studied in neuronal cultures and brain slices. In
cerebellar granule cells, three main conductance (28, 17, 12 pS)
have been characterized and are attributed to distinct GABAA
receptor subtypes (Brickley et al., 1999). We analyzed currents
activated by isoguvacine or muscimol, two GABAA receptor
agonists, recorded from 108 cell-attached patches from PCs
in acute cerebellar slices from male and female mice, between
P5 and P45. In 10 patches, two conductance levels were recorded
simultaneously (Figure 1). Figure 1A1 illustrates current traces
showing two channels subtypes with a slope conductance of
19 pS and 7.3 pS, reversing at the same potential, indicating a
similar ionic selectivity (Figure 1A3). The amplitude distribution
in Figure 1A2 shows that the dominant channel conductance in
this patch is level 1, and that it is not the result of simultaneous
openings of two level 2 channels. The mean conductance slope
value is 17.7 ± 0.9 pS for level 1 and 8.1 ± 0.5 pS for

level 2 (Figure 1B, n = 10); these are significantly different
(P < 0.001).

The histogram distribution of the slope conductance of level
1 (in red) and 2 (in blue) channels are illustrated in Figure 1C.
For both channel types the amplitude distribution is normal and
fitted with a Gaussian function but with distinct peak values,
17 pS for level 1 and 7.5 pS for level 2.

GABA Conductance Switch During PC
Development
A switch in the dominant GABAA receptor channel conductance
occurs during development, from primarily level 1 in immature
PCs (P5–12) to primarily level 2 in mature (P26–45) PCs in both
sexes. Two recordings from PCs (female mice) illustrating this
switch are shown in Figure 2A1. At P6, the slope conductance
of the dominant GABAA receptor channel is 18 pS, whereas at
P24 it is 10.8 pS (Figure 2A2).

Figure 2B summarizes and compares the conductances of
the dominant channels recorded in males (left panel) at P5–12
(newborn) and at P28–45 (young adult) and in females (right
panel) at P6–12 and P26–36. In males the mean conductance
of the dominant GABAA channel switch from 17.3 ± 1.6 pS
(n = 14) at P5–12 to 10.5 pS ± 1.7 pS (n = 15, p < 0.001) at
P28–45; and in females from 18.5 ± 3.0 pS (n = 11) at P6–12 to
9.8 ± 8 pS (n = 6, p < 0.001) at P26–36. In newborn mice
(both sexes), the mean conductance of the dominant GABAA
channel is not significantly different from the level 1 conductance
illustrated in Figure 1; similarly, the mean conductance of the
dominant GABAA channel in young-adult mice (both sexes) is
not significantly different from the level 2 conductance illustrated
in Figure 1. Thus GABAA channels in PCs switch from level 1 to
level 2 during post-natal development.

Sexual Dimorphism of the Chloride
Gradient Shift
We then determined the reversal potential of the dominant
GABAA receptor channel relative to the resting membrane
potential (RP) during PC development in males and females.
Figure 3 illustrates current recordings obtained in PCs from a
P16 male (Figure 3A) and a P16 female (Figure 3B). The reversal
potential of the GABAA receptor channel is determined by the
linear regression used to fit the current/voltage (I/V) relationship
of a single GABAA receptor channel. At P16, the reversal
potential is negative to RP (−14 mV) in males (Figure 3A,
bottom panel), but positive to RP (+4mV) in females (Figure 3B,
bottom panel).

The changes in GABA reversal potential relative to RP in
cerebellar PCs frommales and females is illustrated in Figure 3C.
The curve in males can be fitted with a sigmoidal function (four
parameters, X0 14.4 days). Between P5–P11 the reversal potential
is stable, around +10 mV relative to RP; the reversal potential
then rapidly reaches a negative value around P14 and stabilizes at
P26 around −10 mV relative to RP (−10.3 ± 5.0 mV, n = 10 at
P ≥ 26, see bottom graph in inset). Therefore, GABA exerts
depolarizing effects inmale PCs prior to P15 and hyperpolarizing
effects thereafter.
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FIGURE 1 | Two levels of type A gamma-aminobutyric acid (GABAA) receptor channel conductances can be recorded from the same Purkinje cell (PC) membrane
patch. (A1) Current traces recorded in cell-attached conditions at a potential of 80 mV relative to resting potential (RP). Two amplitude levels of GABAA receptor
channels are seen (level 1 in red, level 2 in blue). (A2) Data from the same patch as in panel (A1) is illustrated in a current amplitude histogram. The distribution is
fitted by two Gaussians, with peaks at 1.65 pA and 0.74 pA. (A3) The relation between single channel current amplitude and the potential relative to RP for the two
conductance levels. Linear regressions give slope conductances of 19 pS (red) and 7.3 pS (blue). The reversal potential for the two conducting levels is −11 mV
relative to RP. (B) Bar graphs of level 1 (red) and level 2 (blue) conductances recorded in 7 PC membrane patches. The mean value of level 1 is 17.7 ± 0.9 pA and
differs significantly (∗∗∗p < 0.001) from the mean value of level 2 (8.1 ± 0.5 pA). (C) Histogram distribution of the slope conductance of level 1 (red) and level 2 (blue).
Each conductance distribution follows a normal distribution fitted by a Gaussian with a peak value of 17 pS for level 1 and 7.5 pS for level 2.

With the exception of the earliest post-natal days, the
developmental curve of the reversal potential in female PCs
also follows a sigmoid pattern from P8 to P21 but with
a systematically more depolarized value compared to males
(Figure 3C, red symbols). Although the reversal potential is not
significantly more negative between P5 and P7 in females than
in males (+3.5 mV vs. +8.7 mV), it then becomes significantly
(p < 0.001) more positive between P8 and P12 (+15.8± 3.6 mV,
n = 11) than in males (+9.1 ± 4.1 mV, n = 8, see top
graph in inset). From this higher plateau value, the reversal
potential change over time is best fitted by a sigmoid curve
(four parameters, X0 18.7 days) and decreases to −8.5 ± 3.5 mV
(n = 8), at P26 and older (see bottom graph in inset). These

observations show that GABA exerts more depolarizing actions
in female PCs than in male PCs during a period of nearly
2 weeks (P8 to P21). In addition, the GABA switch is delayed
in females by 4 days (P18 vs. P14 in males), such that from
P15–19 the reversal potential is negative relative to RP in
males (−15.9 ± 7.4 mV, n = 17) but still positive in females
(+7.6± 5 mV, n = 10; see top graph in inset).

An important step in cerebellar synaptic maturation during
the early postnatal period is the refinement of climbing fiber
synapses on PCs, from a multiple climbing fiber innervation to
mono-innervation (Hashimoto and Kano, 2003). To determine
possible links between GABA signaling and circuit refinement
in terms of climbing fiber synapse elimination, we measured
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FIGURE 2 | Developmental evolution of the main GABAA receptor channel conductance. (A1) Current traces recorded in cell-attached conditions at different
potentials relative to RP as indicated, from a female at P6 (left) and at P32 (right). (A2) Current-voltage relationship for the channel recorded at P6 (left) and at P32
(right). Linear regressions yield a conductance of 18 pS (level 1) and a reversal potential at +15 mV relative to RP for the channel recorded at P6; and a conductance
of 10.8 pS (level 2) and reversal potential at −8 mV relative to RP for the channel recorded at P32. (B) The left panel shows the conductance of the dominant GABAA

receptor channel recorded from males between P5–P12 (n = 14) and P28–45 (n = 15). Each point represents an individual cell. The bar graphs show the mean
values ± SD from P5–12 (red) and P28–45 (blue). These mean values (17.3 and 10.1 pS) are significantly different (∗∗∗p < 0.001). The right panel illustrates the
conductance of the dominant GABAA receptor channel recorded from females between P6–P12 (n = 11) and P26–36 (n = 6). Each point represents an individual
cell. The bar graphs show the mean values ± SD at P6–12 (red) and P26–36 (blue). These mean values (18.5 and 10.5 pS) are significantly different (∗∗∗p < 0.001).
The conductances at P5–12 in males and at P6–12 in females are not significantly different and neither is significantly different from the mean level 1 conductance.
The conductances at P24–45 in males and at P26–36 in females are not significantly different and neither is significantly different from the mean level 2 conductance.

the number of climbing fiber synapses on each PC from males
and females at different ages (Figure 3D). The progress of
synapse elimination in both sexes was very similar, indicating
that sex-dependent differences in GABAergic signaling does not
disrupt this fundamental developmental process.

The Developmental Switch of the Chloride
Gradient Is Delayed in the Valproate
Mouse Model of Autism
In the valproate rat model of autism, the developmental
regulation of the chloride gradient, which determines the
effects of GABAA receptor activation on neuronal excitability,

is disrupted in hippocampal neurons. As a result, the
developmental excitatory-inhibitory switch of GABAergic
effects is abolished in hippocampal neurons from valproate rats,
with depolarizing actions from birth onwards (Tyzio et al., 2014).
We used this same model in mice to analyze the developmental
changes in GABAA receptor channel conductance and the
chloride gradient. We recorded 57 PC-attached recordings of
GABAA receptor channels from 35 males and 22 females from
valproate-treated dams, at different postnatal ages. As in control
mice, recordings from valproate mice revealed two conductance
levels (level 1 mean value 15.8 ± 0.4 pS and level 2 mean value
7.8 ± 0.5 pS, p < 0.001) that could occasionally be recorded
from the same patch (five patches, Figure 4A). Furthermore,
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FIGURE 3 | Developmental evolution of the GABAA receptor channel reversal potential in males and females and climbing fiber synapse elimination. (A) Recordings
from a P16 male. Current traces show the GABAA receptor channel recorded from a PC membrane patch at three potentials as indicated on top of each trace. The
I/V curve below, a linear regression of the data from this channel, gives a conductance of 15.2 pS and a reversal potential with an extrapolated value of −14 mV
relative to RP. (B) Recordings from a P16 female. Current traces show the GABAA receptor channel recorded from a PC membrane patch at three potentials as
indicated on top of each trace. The I/V curve below, a linear regression of the data from this channel, gives a conductance of 17.5 pS and a reversal potential with an
extrapolated value of + 4 mV relative to RP. Note that at the same post-natal age the GABAA receptor channel reverses at a negative potential relative to RP in the
male, but in the female reversal occurs at a positive potential relative to RP. (C) Left graph, evolution of the mean reversal potential of the dominant GABAA receptor
channel as a function of the age in males (black) and females (red). The data were best fit (R 0.98) by a sigmoidal hill function with four parameters
(f = Y0 + a/(1 + exp(−(X − X0)/b)) between P5 and P48 in males (black line, a (max) = 22, b (slope) = −0.31, X0 = 14.4 and Y0 (min) = −13.5) and in between P8 and
P36 in females (red line, a = 24.2, b = −1.25, X0 = 18.5, Y0 = −8.3). The horizontal line at 0 mV shows the depolarizing/hyperpolarizing switch. The bar graphs in
inset compare the mean values of the reversal potential relative to RP in males (black) and in females (red) at P8–12, P15–19 and P26–36. A significant difference
between males and females (∗∗∗p < 0.001) was found at P8–12 and P15–19. (D) Right graph: regression of climbing fiber multi-innervation of Purkinje cells (PCs) is
similar in males and females, indicating that this basic circuit maturation during this developmental period is not sex-dependent.

as in control mice, PCs from valproate-treated male or female
newborn mice show a dominant level 1 conductance channel,
and PCs from juvenile and young adult PCs showed a dominant
level 2 conductance channel. In males, the mean conductance
switches from 17.1± 1.6 pS (n = 13) at P6–10, to 13.1 pS± 1.8 pS

(n = 5) at P24–30 (Figure 4B, p = 0.002). In females, the mean
conductance switches from 17.7 ± 3.2 pS (n = 5) at P7–10, to
10.9 pS± 1.6 pS (n = 7) at P23–30 (Figure 4C, p < 0.001). These
conductance levels are not different between the sexes nor are
they different from conductance levels 1 and 2 (Figures 1B, 4A)
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FIGURE 4 | The valproate mouse model of autism alters developmental evolution of GABAA channel reversal potential. (A) Mean slope conductance of the two
conductance levels found simultaneously in five cell-attached recordings from PCs of male and female mice prenatally exposed to valproate. The level 1 (red)
conductance (15.8 ± 0.4 pS) is significantly different from the level 2 (blue) conductance (7.8 ± 0.5 pS; ∗∗∗p < 0.001). (B) Conductance of the dominant GABAA

receptor channel recorded in PCs from male valproate mice at P6–10 (n = 13) and at P24–30 (n = 5). Each symbol represents a single cell-attached recording. The
bar graphs show the mean values ± SD between P6–10 (red) and between P24–30 (blue). These mean values (17.1 and 13.1 pS) are significantly different
(∗∗p = 0.002). (C) Conductance of the dominant GABAA receptor channel recorded from female valproate mice at P7–P10 (n = 5) and at P23–30 (n = 7). Each
symbol represents a single cell-attached recording. The bar graphs show the mean values ± SD at P7–10 (red) and at P23–30 (blue). These mean values (18.5 and
10.5 pS) are significantly different (∗∗∗p < 0.001). The mean conductances at P6–10 in males and at P7–10 in females are not significantly different, and neither is
significantly different from the level 1 channel conductance. The mean conductances at P24–30 in males and at P23–30 in females are not significantly different and
neither is significantly different from the level 2 conductance. (D,E) Reversal potential of GABAA receptor channels during development, in PCs recorded from male
(D) and female (E) valproate mice. (D) In males, the depolarizing/hyperpolarizing switch is delayed in valproate animals (black symbols). Evolution of the GABAA

reversal potential with age (P5–P30). From P10 to P30 the data are best fit using a sigmoidal hill function with four parameters (black line, a = 21, b = −0.16,
X0 = 17.7 and Y0 = −8). The curve in red represents the same curve but for control males. The inset bar graphs compare the mean values of the reversal potential
relative to RP in control males (black) and valproate males (red) at P6–8 and P15–19. A significant difference between control males and valproate males
(∗∗∗p < 0.001) is detected. (E) In females, the depolarizing/hyperpolarizing switch is less altered in valproate animals (black symbols) Evolution of the GABAA receptor
channel reversal potential with age (P6–P30) in valproate females. Data are best fit by a sigmoidal function four parameters (black curve, a = 17, b = −0.28,
X0 = 23 and Y0 = −5). The red curve is a sigmoidal fit of the evolution of the reversal potential in control females and the red open dots the mean value in control
females not included in the fit by the red line. The bar graphs in inset compare the mean values of the reversal potential relative to RP in control females (black) and
valproate females (red) at P20–23. A significant difference between control females and valproate females (∗∗p = 0.003) is reported.

in control mice. Therefore, the conductance shift is not impacted
in this ASD model.

However, the developmental change in the GABAA receptor
channel reversal potential was clearly more complicated in
valproate-treated male mice (Figure 4D, black symbols) than in
control male mice (red sigmoid, from Figure 3C). At P6–8 the
reversal potential is significantly (p < 0.001, see graph in inset)
more positive relative to RP (+20.6± 6.5mV, n = 10) in valproate
males compared to control males (+7.4 ± 4.6 mV, n = 9),
decreases to a plateau value around +12 mV at P10, then reaches
a negative value around P20 (sigmoid curve, X0 = P17.7 days).
Thus, the switch from depolarizing to hyperpolarizing effect of
GABA is delayed by 3 days in valproate male mice compared
to control males. Therefore during a relatively long period,
GABAergic currents are more depolarizing in valproate mice
than in age matched control mice. Indeed, at P15–19 the

mean reversal potential of the GABAA channel is still positive
in valproate mice (+6.6 ± 4.4 mV, n = 17 compared to
−15.9 ± 7.4 mV, n = 11 in control male mice, p < 0.001, see
graph in inset). These differences are less evident in females
(Figure 4E). Yet at P7 in valproate female mice the reversal
potential of GABAA channels is around +20 mV relative to RP
whereas it is about +5 mV relative to RP in control females.
Furthermore, a comparison between the sigmoidal fit of the data
obtained from valproate females (black curve, X0 22.7 days) and
the sigmoidal fit of the data obtained in control females (red
curve, from Figure 3C) reveals a delay of the GABA switch of
almost 4 days. As a consequence, at P20-P23 the mean reversal
potential of the GABAA channels is positive relative to RP
(+5.8 ± 6.5 mV, n = 8) in valproate treated females but negative
(−7.0 ± 3.0 mV, n = 8, p = 0.003) in control females (see inset
Figure 4D).
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FIGURE 5 | Distinct evolution of the GABA switch between conductance levels 1 and 2 in males, females and valproate-treated males. (A1) Dominant GABAA

channel conductance from level 1 to level 2 as a function of the post–natal age in males (each point represents a single cell). Data are best fit with a sigmoidal hill
function with four parameters (black line, a = 6.2, b = −1.33, X0 = 14.7 and Y0 = 11.1). (A2) Dominant GABAA channel conductance from level 1 to level 2 as a
function of the post–natal age in females (each point represents a single cell). Data are best fit with a sigmoidal hill function with four parameters (red line, a = 7.8,
b = −3.3, X0 = 17.7 and Y0 = 10.5). Note the presence of three channels with a conductance around 25 pS. (B1) Histogram distribution of the slope conductance
of level 2 channels (pooled data from Figures 1B, 2B, 4A). The distribution is normal and fit by a Gaussian (blue line) with a peak value at 10.9 pA. (B2) Histogram
distribution of the slope conductance of level 1 channels (pooled data from Figures 1B, 2B, 4A). The distribution is normal and fit by a Gaussian function (red line)
with a peak value at 17.8 pA. (B3) Histogram distribution of the slope conductance of level 1 and level 2 channels (pooled data from B1 and B2). To determine the
limit of conductance between level 2 (blue line) and level 1 (red line) the Gaussian fits obtained in (A1, A2) were superimposed. The limit between levels 1 and 2 is
14 pS. Channels with conductances ≥14 pS are classified as level 1 channels and channels with conductances <14 pS are classified as level 2 channels. (C1) Data
from male mice. The bar plots show the % of level 1 channels (conductance ≥14 pS) at increasing post-natal age ranges, as indicated on top of each bar. (C2) Data
from female mice. The bar plots show the % of level 1 channels (conductance ≥14 pS) at increasing post- natal age ranges (the same range as in C1).
(C3) Percentage of conductance level 1 as the function of the age in male mice (black symbols) female mice (red symbols) and valproate treated male mice (blue
symbols). Data for control males (black curve) and females (red curve) are best fit using a sigmoidal function with the following parameters: a = 99, b = −1.9,
X0 = 15.3 and Y0 = 3.2 for males; and a = 100, b = −2.42, X0 = 18.5, Y0 = 0.43 for females.

Sex Dependence of the GABA
Conductance Shift: Parallel Development
of GABAA Channel Reversal Potential and
Conductance
To determine whether the GABAA channel conductance and
the reversal potential switch occur in parallel, we compared the
development of the GABAA channels conductance in males and

females (Figure 5). As a first approach, the slope conductance
of the dominant GABAA channel was plotted as a function
of age in males (Figure 5A1) and females (Figure 5A2). The
evolution of the conductance could be fitted in both sexes by
a sigmoidal function (black and red lines) but with distinct
parameters (slope = −1.33, X0 = 14.7 days for males and
slope = −3.3, X0 = 17.7 days for females) indicating that the
shift in conductance is slower and later in females compared
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FIGURE 6 | Activation of GABAA receptors increases PC firing in P6 male and
female mice. Cell-attached recordings (voltage clamp) of PC action potentials.
(A) PC from a male at P6. The upper trace shows the control recording (in the
presence of NBQX), and the lower trace shows the recording in presence of
Isoguvacine (10−5 M). Isoguvacine application increases firing frequency and
progressively reduced the spike amplitude. (B) PC from a female at P6. Upper
trace, control conditions (in the presence of NBQX), lower trace in the
presence of Isoguvacine. As in the male, isoguvacine increased firing
frequency and progressively reduced spike amplitude.

to males. In both sexes, a single channel with larger slope
conductance (25–27 pS, not included in the fit) was recorded
in three patches and may indicate the presence of a rarely-
occurring third conductance level of GABAA receptor channel,
as previously described for cerebellar granule cells (Brickley et al.,
1999).

In order to quantitatively analyze the conductance switch,
we determined the conductance ranges of the two levels. We
first constructed separate histogram distributions of conductance
levels 1 and 2 channels by pooling conductance values of
GABAA channels recorded in both sexes between P5–12 for
conductance level 1 (Figure 5B1) and conductance values of
GABAA channels recorded at P28–45 in males and P26–36 in
females for conductance level 2 (Figure 5B2). The distributions

are fitted with distinct Gaussian functions, giving a peak of
17.8 pS for level 1 and 10.9 pS for level 2. Next, we combined the
two distributions and associated fits (Figure 5B3), to show that
the two fits intercept at a value of 13.9 pS. From this observation,
we classified channels with a slope conductance of 14–22 pS as
level 1, and channels with a slope conductance <14 pS as level 2.

Then, we determined the developmental alterations of
level 1 channel percentage at different post-natal ages
(Figures 5C1–C3). In both sexes the proportion of patches
displaying dominant level 1 GABAA receptor channel decreases
with age; but the histograms in Figures 5C1,C2 show that this
drop in level 1 conductance (defined as presence in less than
50% of patches) occurred earlier in males (P14; Figure 5C1)
than in females (P17; Figure 5C2). Therefore, during a
transitional period (around P15–20), PCs in females have a
higher-conductance dominant channel than male PCs.

The evolution of the proportion of level 1 GABAA channel as a
function of age (Figure 5C3) is similar in both males and females
to the evolution of the chloride reversal potential. Both curves are
sigmoidal (four parameters) with similar X0 s (14.4 days for the
level 1 plot and 15.3 days for the chloride reversal potential plot
in males; and 18.5 days for both the level 1 plot and the chloride
reversal potential in females). Interestingly the switch of GABAA
channel conductance is also altered in valproate male mice with
25% of level 1 channel dominant in young adult animals.

Sexual Dimorphism of the GABA
Excitatory/Inhibitory Shift
Finally, we determined possible links between the chloride
driving force and the excitatory or inhibitory actions of
the GABAA agonist isoguvacine on PC firing, with or
without NBQX. Similar effects of isoguvacine were observed
in the presence of NBQX suggesting that glutamatergic
neurotransmission was not involved (not shown; n = 80). When
the reversal potential of the GABAA channel was positive to RP
(at P6), isoguvacine increased the firing rate in males (Figure 6A,
n = 3 out of 5) and in females (Figure 6B, n = 3 out of 6). This
effect was accompanied by a progressive decrease in the size of
the spikes due to the sodium channel inactivation produced by
a strong depolarization. In the remaining recordings, PCs were
silent and isoguvacine applications led to a depolarization. In
older PCs, when the reversal potential of the GABAA channels
is negative to RP, isoguvacine decreased spontaneous activity of
PCs, without altering the spike amplitude in both males (P27;
Figure 7A) and females (P25; Figure 7B).

Additional experiments confirmed the sex and age difference
in the actions of isoguvacine. In males at P15, after 2 min
isoguvacine application, PC firing was blocked by 75± 35% in all
cells tested (n = 4; example in Figure 8A), and completely blocked
(100%) for PCs recorded from P16 to P29 (n = 14; example in
Figure 7A). However in females at P17, 2 min of isoguvacine
increased PC firing frequency by 220 ± 161%, accompanied by
a reduction in spike amplitude in 5 out of 13 PCs (example in
Figure 8B), sometimes preceded by a temporary reduction in the
firing frequency (n = 2, including the example in Figure 8B).
Isoguvacine had no effect on firing frequency in two PCs from
female mice, and inhibited firing frequency in seven of these
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FIGURE 7 | GABAA receptor activation inhibits PC firing in young adult male and female mice. (A) Cell-attached recording (voltage clamp) of the spontaneous
spiking activity of a PC from a male P27 mouse. Upper panel: current traces recorded in control conditions (in the presence of NBQX), in the presence of
Isoguvacine, and after washout. Isoguvacine silences the cell, and activity recovers after washout. Lower panel: data from the same cell showing instantaneous
action potential frequency (left) and action potential amplitude (right) over time. Isoguvacine application is indicated by the red line. The control spike frequency is
about 7 Hz; isoguvacine abolishes the spiking activity of the cell; and this effect is reversible upon washout. Note that spike amplitude is not reduced before the
silencing of the cell. (B) As in panel (A), but from a female P25 mouse. Upper panel: current traces recorded in control conditions, in the presence of Isoguvacine,
and following washout. Isoguvacine silences the cell, and activity recovers after washout. Lower panel: data from the same cell, showing instantaneous action
potential frequency (left) and action potential amplitude (right) over time. Isoguvacine is applied as indicated by the red line. The control spike frequency is around
30 Hz. In presence of isoguvacine the spiking activity of the cell is almost abolished, but the spike amplitude is not altered.

PCs. The excitatory effect of isoguvacine continued to be seen
in female PCs (n = 2 out 5) until P19; then at P20–25 isoguvacine
had only inhibitory effects (87%± 8% inhibition, n = 6).

To summarize the effects of isoguvacine on spontaneous PC,
firing we assigned a value of +1 when isoguvacine produced an
increased firing frequency, 0.5 when the increase was preceded
by a short inhibition of firing, 0 when isoguvacine had no effect
and −1 when isoguvacine inhibited firing. Figure 9 shows the
mean valence as a function of age for PCs from male and female
mice, and clearly illustrates the different time course of the shift
to inhibitory isoguvacine effects between male and females.

DISCUSSION

Development of GABAA Receptor Channel
Subunit Composition in Cerebellar PCs
Somatic GABAA receptor channels in adult vertebrate neurons
have complex gating and multiple conductance states ranging
from 7 to 36 pS, with a single dominant conductance state in

each cell type (Newland et al., 1991; Robello et al., 1998; Brickley
et al., 1999; Mortensen and Smart, 2006). We found three
main conductance levels in PC, with conductances of 7–12 pS,
15–18 pS, and occasionally 25–28 pS. Similar conductance values
are observed in adult cerebellar granule cells, but with a shift
of the dominant conductance from medium (15–18 pS) to
small (7–12 pS) during maturation. This shift likely reflects a
reorganization of GABAA channel subunit composition (Moss
et al., 1990; Verdoorn et al., 1990; Mortensen and Smart, 2006).
Although it is difficult to equate GABA conductance levels
with specific subunits combinations (Brickley et al., 1999), it
is likely that in young-adult PCs, receptors lack the γ subunit
(Verdoorn et al., 1990; Fisher and Macdonald, 1997; Amato
et al., 1999; Hörtnagl et al., 2013). The dominant medium
conductance level (18 pS) in newborn PCs suggests the presence
of an α1β1 GABAA receptor at this developmental stage (Moss
et al., 1990). The very rare occurrence of the 25–28 pS conducting
level is may be related to a low level of expression of the
γ2 subunit (Mortensen and Smart, 2006). Our observations
suggest a subunit reorganization during development (but see
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FIGURE 8 | Different effects of GABAA receptor activation in males and females at P15–P17. (A) Cell-attached recording (voltage-clamp) of spontaneous spiking
activity of a PC from a P15 male mouse. Upper panel: current traces recorded in control conditions, with isoguvacine, and after washout. Regular action potential
firing is reduced in the presence of isoguvacine and recovers after washout. Lower panel: data from the same cell showing instantaneous action potential frequency
with time (left) and action potential amplitude with time (right). Isoguvacine application is indicated by the red line. Control firing frequency is about 30 Hz; isoguvacine
abolishes firing, and this effect is reversible. Note that the abolition of the discharge is not linked to a decrease in spike amplitude. (B) As in panel (A), but from a
P17 female mouse. Upper part: current traces recorded in control conditions, with isoguvacine, and after washout. Regular action potential firing is reduced in the
presence of isoguvacine and recovers after washout. Lower graphs, from the same cell, show instantaneous action potential frequency with time (left) and action
potential amplitude with time (right) Isoguvacine application is indicated by the red line. Control firing frequency is about 30 Hz; with isoguvacine application, a brief
inhibition of the firing frequency is followed by an increase, up to 100 Hz; this effect is reversible. Isoguvacine also reversibly decreased spike amplitude.

Nadler et al., 1994; Haghir et al., 2013) but further experiments
are required to determine if this is associated with changes in
IPSCs kinetics.

Sexual Dimorphism of GABA Driving Force
in Wild Type Mice and in the Valproate
Model of Autism
In a wide range of brain structures, the polarity of GABAA
receptor effects is regulated by the expression and activity of two
chloride membrane transporters: NKCC1 and KCC2. NKCC1 is
expressed in immature neurons and actively transports chloride
ions into the cell; KCC2 is expressed in mature neurons
and actively transports chloride ions out of the cell. This
changes in transporter expression leads to depolarizing effects
of GABA in immature neurons and hyperpolarizing effects in
mature neurons (Ben-Ari, 2014; Watanabe and Fukuda, 2015;
Raimondo et al., 2017) with a developmental switch around

birth (Tyzio et al., 2014; Watanabe and Fukuda, 2015). However,
PCs do not express NKCC1 (Mikawa et al., 2002), suggesting
that alternative mechanisms are required to regulate chloride
homeostasis, including chloride channels (Zhang et al., 2015;
Rahmati et al., 2016) and KCC2. The developmental GABA
switch occurs in PCs at the end of the second post-natal week
(see also Eilers et al., 2001), when profound morphological
and functional alterations occur in PCs (Dusart and Flamant,
2012). The timing of the switch is strongly dependent on the
specific cerebral structure; it is similar in the antero-ventral
cochlear nucleus (Song et al., 2012) and substantia nigra pars
reticulata (SNR; Kyrozis et al., 2006), and earlier in other
brain structures (Stein et al., 2004; Tyzio et al., 2007; Allain
et al., 2011; Witte et al., 2014). Our results also suggest that
the regulation of chloride homeostasis is sex dependent, since
it is delayed in female mice. A similar sex dependence of
chloride homeostasis has been observed in the substantia nigra
(Galanopoulou, 2008).
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FIGURE 9 | Summary of changes in spontaneous action potential frequency
following GABAA receptor activation by isoguvacine, in males and females.
The mean valence of the isoguvacine effects is plotted as a function of the
post-natal age in male and female mice.

The mechanisms underlying these sex differences are poorly
understood. The testosterone surge in males that occurs during
late gestation and shortly after birth (Dean and McCarthy, 2008)
has been suggested to promote the expression and the activity
of NKCC1 and to depress the synthesis and activity of KCC2
(Waddell andMcCarthy, 2012), and thus make the GABA switch
occurs later in males than in females. This effect has been shown
in hippocampal cultures (Nuñez and McCarthy, 2007), SNR
neurons in acute slices (Kyrozis et al., 2006), and embryonic
hypothalamic neurons in culture (Mir et al., 2017). However,
the GABA switch in PCs is delayed in females, rather than
in males, despite this testosterone effect on KCC2, suggesting
that alternative mechanisms must be present. PCs synthesize
estradiol from cholesterol in the neonatal period and the enzymes
involved in this synthesis are developmentally regulated with a
different profile in males and in females (Dean and McCarthy,
2008). In PCs, estradiol promotes BDNF-mediated dendritic
growth, spinogenesis and synaptogenesis during neonatal life
(Tsutsui et al., 2011), and BDNF inhibits KCC2 activity (Huang
et al., 2013). Furthermore, the development of the cerebellar
expression of insulin receptors (IR) and insulin-like growth
factor-1 receptors (IGF-1R) differs in males and females. IR
and IGF-1R expression increase between P0–P7 and is down
regulated at P14 in males, whereas in females IR and IGF-1R
are stable between P0–P7 and up-regulated at P14 (Haghir
et al., 2013). IGF-1 accelerates the developmental switch between
NKCC1 and KCC2 chloride transporters in the visual cortex
(Baroncelli et al., 2017). Collectively, these observations converge
to suggest multiple mechanisms to explain the differences
between chloride homeostasis regulation in males and females.

Using the valproate mouse model of autism, we observed
that the chloride reversal potential in P5–6 valproate males is
more positive than in controls (by about 10–20 mV), and that
the GABA switch is delayed by 3–4 days in both males and
females, extending this experimental model to the cerebellum.

Increased excitatory-inhibitory ratio is suggested to underlie the
pathogenesis of autism and successful clinical trials have shown
that the NKCC1 antagonist bumetanide, which restores low
(Cl−)I and GABAergic inhibition, also attenuates the severity of
autism (Rubenstein and Merzenich, 2003; Lemonnier and Ben-
Ari, 2010; Tyzio et al., 2014; Lee et al., 2016; Uzunova et al., 2016;
Lemonnier et al., 2017). It is now accepted that the cerebellum is
involved in higher order functions (Schmahmann and Sherman,
1998) including perceptual processes (Baumann et al., 2015), in
addition to its roles in balance, posture, and motor control. The
cerebellum has been implicated in many psychiatric disorders
(Phillips et al., 2015) and cerebellar abnormality is associated
with ASD (Tsai et al., 2012). Several reports in individuals
with autism or animal models of autism describe alterations
in PC density and properties (Skefos et al., 2014; Tsai, 2016).
Thus, chloride gradient modifications and alterations in the
GABA switch in cerebellar PCs that we show here may be
particularly relevant for further studies of autism and the role of
the cerebellum.

Parallel Development of GABAA Receptor
Channel Subunit Composition and
Chloride Gradient
Our data show that the kinetics of the shift of the dominant
conductance levels during development, from medium
(15–18 pS) to small conductance (7–12 pS), are similar to
the kinetics of the development of the chloride gradient. Both
phenomena followed a similar sigmoidal process, are delayed
in females, and are altered in valproate mice, suggesting
interactions between the subunit composition of GABAA
channels and intracellular chloride concentration (Succol et al.,
2012).

Interestingly, in PCs, it has been suggested that an
interaction between KCC2 and a specific subunit of the GABAA
receptor represents a fundamental mechanism of regulation
of GABAergic synapses (Huang et al., 2013). Furthermore,
membrane expression of the β3 GABAA receptor subunit at
different postnatal developmental stages is observed in rats
exposed prenatally to valproic acid (Li et al., 2017). Finally,
alterations in the efficacy of neuronal inhibition mediated by
GABAA receptors containing β3 subunits have been implicated
in autism (Vien et al., 2015). Collectively, these observations raise
the possibility of parallel convergent developmental alterations
of GABAergic signals, linking chloride gradient and subunit
composition.

CONCLUSIONS AND PERSPECTIVES

The conductance properties of GABAA receptors as well as
the chloride equilibrium potential and the polarity of GABA
effects in PCs are developmentally regulated in parallel, occurring
later than in other brain structures, which is coherent with
the delayed development of cerebellar PCs to the postnatal
period. The switch is also delayed by 4 days in females,
indicating sexual dimorphism in keeping with recently reported
sex differences in synaptic excitation, inhibition and intrinsic
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properties (Mercer et al., 2016). Finally, we show that the
valproate model of autism produced a shift in the chloride
gradient in developing PCs from males and females, providing
important potential implications for the cerebellum in the
pathology of autism.
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Abstract (165 words) 12 

Neuropathological and neuroimaging studies indicate a decrease in Purkinje cell (PC) 13 

density in the cerebellum of autistic patients and rodent models of autism. Autism is 14 

far more prevalent in males than females and sex-specific properties of PCs have 15 

been recently reported. We investigated the differential sensitivity of PCs in the 16 

valproate (VPA) mouse model of autism by estimating the linear density of PCs 17 

immununolabelled with calbindin in the cerebellum of males and females. Whereas 18 

prenatal VPA treatment surprisingly increased PC linear density in both genders 13 19 

days after birth (P13), it significantly reduced the linear density of PCs in the 20 

cerebellum of 40-day old (P40) males, but not females. In males, PC loss was more 21 

pronounced in the posterior part of the cerebellum and was significant in the VIth, 22 

VIIth, IXth and paramedian lobules. In females, PC loss was restricted to the VIth and 23 

paramedian lobules. These results suggest that this sex-specific sensitivity of PCs to 24 

VPA may contribute to the motor disturbances and behavioural abnormalities 25 

observed in autism. 26 

 27 

Introduction 28 

 29 

Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders 30 

characterized by impaired social interactions, restrictive interests and repetitive 31 

behaviours. ASD is associated with other mental and physical disabilities, such as 32 

attention-deficit/hyperactivity, anxiety, intellectual disability, epilepsy and impairments 33 

in motor coordination.  ASD is diagnosed in 1 out of 88 children and is four times 34 

more frequent in males than in females [1]. Studies of ASD patients and animal 35 
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models of autism reveal that many brain regions are affected, including neocortical 36 

structures, the limbic system, the nucleus accumbens and the cerebellum [2]. The 37 

cerebellum controls movement and cognition [3], and cerebellar abnormalities are 38 

amongst the most consistent findings in individuals with ASD [4] and rodents models 39 

of ASD [5, 6]. Neuropathological studies of autism [4] have reported a decrease in 40 

the density of cerebellar PCs, the key neuron of the cerebellar circuit and the unique 41 

output of the cerebellar cortex receiving all synaptic information from outside the 42 

cerebellum. Furthermore, diffusion MRI tractography in children with ASD reveals a 43 

reduction of PC axons [7]. PC size was also altered in patients with autism [8]. A 44 

reduction in PC number has been reported in the cerebellum of rats with autistic-like 45 

behaviour after prenatal exposure to valproic acid [9]. It has been proposed that a 46 

selective vulnerability of PCs may play a role in the aetiology of autism [10]. Indeed, 47 

core symptoms of autism are observed after a selective PC loss in mice or even 48 

when excitability of PCs is impaired [6,11].  To investigate sexual dimorphism in 49 

autistic-like pathology, we compared the effects of prenatal valproate exposure on 50 

PC survival in male and female mice. Male mice prenatally treated with valproate 51 

were found to present a more pronounced regional loss of PCs.  52 

 53 

Material and methods  54 

Animals  55 

All mice were group-housed at the Chronobiotron (UMS3415 CNRS & Uds, 56 

Strasbourg) in a temperature-controlled animal facility (24 °C, 12:12 h light/dark 57 

cycle) and fed ad libitum with free access to water. C57Bl/6J mice were mated 58 

overnight and surveyed until a vaginal plug was detected at gestational day 0 (GD0). 59 
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At GD12, 600 mg/kg valproic acid sodium salt (VPA; Sigma–Aldrich) in 0.9% NaCl 60 

was administered i.p. Control animals received 0.9%NaCl. All procedures followed 61 

the guidelines  of the Comité National d'Ethique pour les Sciences de la Vie et de la 62 

Santé (EU Council Directive 2010/63/EU) and were approved by the Institutional 63 

Animal Care and Use Committee (CREMEAS, Comité Régional d’Ethique en 64 

Experimentation Animale de Strasbourg). 65 

 Histology 66 

Animals: 67 

Experiments were performed on P13 mice (n=8: 4 control mice (2 females and 2 68 

males) and 4 VPA mice (2 females and 2 males) and on P40 mice (n=24: 12 control 69 

mice (8 females and 4 males) and 12 VPA mice (8 females and 4 males). 70 

 71 

Tissue preparation: 72 

Mice were anesthetized with 75% ketamine (Ketamine 1000, Vibrac, France), 25% 73 

xylazine (Rompur, Bayer Health care, KVP Kiel Germany) and intracardiacally 74 

perfused with a 4% paraformaldehyde in a phosphate buffer saline (pH 7.4). The 75 

cerebella were dissected and post-fixed overnight in the same fixative before 76 

cryoprotection in sucrose 30% for 48h and then freezing at -80°C in isopentane. 77 

Coronal frozen sections (14 µm-thick) were cut in the anterior, median and posterior 78 

cerebellum with a cryostat (Leica CM3050 S) and processed floating for Calcium 79 

binding protein (CaBP) immunohistochemistry (Fig. 1). 80 

CaBP Immunohistochemistry  81 
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The sections were incubated in blocking solution (containing 5% goat serum and 82 

0.3% Triton in 0.1 M phosphate buffer saline (PBS) for 1h at room temperature and 83 

then incubated overnight with mice@calbindin D-28K monoclonal (clone CB8955) 84 

antibody Catalogue number 9848, 031M4859; 1/150 Sigma,) at 4°C. The sections 85 

were washed in PBS 0.1M and incubated 1h at room temperature with a goat@mice 86 

antibody (1/500 Sigma) coupled with Alexa 555. After washing in PBS 0.1M, the 87 

sections were mounted on slides in Mowiol. 88 

Linear density of Purkinje cells. 89 

Images of immunostained sections were made with a fluorescence microscope (Axio 90 

Imager. M2, Zeiss) camera, monitored by the Morphostrider software. Three coronal 91 

slices from each cerebellum were analyzed (Fig. 1A). The linear density of CaBP 92 

immunolabeled PCs (Fig. 1B) was determined as the number of PCs counted along 93 

the PC monolayer using ImageJ. PCs were counted in sections from control animals 94 

(Fig. 1C) and from VPA-treated animals (Fig. 1D). PC density is given in number of 95 

PCs /mm. 96 

Graphs and statistics. 97 

Statistical analysis was performed with Sigma plot (version 12.5). Mean PC linear 98 

densities were compared between the different regions of the cerebellum (posterior 99 

vs anterior vs median cerebellum and lobules) using one-way ANOVA (when the 100 

distribution was normal) or one-way ANOVA on ranks (when the distribution was not 101 

normal). This revealed important variations of PC linear density among the cerebellar 102 

regions which could be related to the distinct roles of those cerebellar regions in the 103 

sensory-motor integration. Thus the above mentioned cerebellar territories were 104 

considered as distinct entities and a paired t-test (when the distribution was normal) 105 
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or a Mann-Whitney rank sum test (if the distribution was not normal) was used to 106 

analyze VPA effects on those regions. The significance threshold was set at P < 107 

0.05.  * 0.05< P<0.01; ** 0.01 <P<0.001 and *** P < 0.001.  108 

Results 109 

Valproate induced regional PC loss in the cerebellar cortex of early adult (P40) 110 

male mice. 111 

In male mice, VPA prenatal exposition significantly reduced PC linear density in the 112 

whole cerebellum from 34.9 ± 0.4 PCs/mm (n =18) for a mean length of 37.7 ± 0.7 113 

mm to 31.0 ± 0.6 PCs/mm (n=18, p < 0.001) for a mean length of 37.6 ± 0.7 mm (ns 114 

compared to untreated controls) that corresponds to about a 10 % loss (Fig. 2A).  115 

In control conditions, the PC linear density varied significantly following the cerebellar 116 

regions. The PCs linear density is significantly (p < 0.001) higher in the vermis (37.5 117 

±  0.9 PCs/mm, n = 18) compared to the hemispheres (32.9 ±  0.9 PCs/mm, n = 18, 118 

Fig 2B) and displayed a postero anterior gradient (from 33.5 ± 0.4 to 36.2 ± 0.6 119 

PCs/mm, n = 6, p = 0.03, Fig. 2C). Similarly, between lobules the PC linear density 120 

varied with a minimum value of 27.4 ± 1.5 (n = 6) in the lobule VII and a maximum 121 

value of 44.1 ± 1.7 PCs/mm (n = 11) in the lobule VI (Fig. 2D). 122 

The VPA-induced reduction of PC linear density was more pronounced in the vermis 123 

than in the hemispheres (Fig. 2B).  In the vermis, VPA reduced PC linear density 124 

from 37.5 ± 0.9 (n = 18, for a mean length of 14.8 ± 0.7 mm) to  33.0 ± 0.9 PCs/mm 125 

(p = 0.0014, n = 18, for a mean length of 13.1 mm, ns compared to controls). In the 126 

hemispheres VPA reduced PC linear density from 32.9 ± 0.9 (n = 18, for a mean 127 

length of 22.4 ± 0.4 mm) to 30.5 ± 0.8 PCs/mm (p = 0.01, n = 18, for a mean length 128 

of 23.3 ± 0.7 mm,  ns compared to controls). The VPA-induced reduction of PC linear 129 
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density was more pronounced in the posterior cerebellum than in the median and 130 

anterior parts of the cerebellum (Fig. 2C). In the posterior cerebellum VPA reduced 131 

PC linear density from 33.5 ± 0.4 (n = 6, for a mean length of 39.1 ± 1.1 mm) to 29.1 132 

± 0.9 PCs/mm (p < 0.001, n = 6, for a mean length of 38.7 ± 1.4 mm, ns compared to 133 

controls). In the median cerebellum, VPA reduced PC linear density from 34.9 ± 0.6 134 

(n = 6, for a mean length of 36.0 ± 1.4 mm) to 31.4 ± 0.6 PCs/mm (p = 0.002, n = 6, 135 

for a mean length of 36.2± 0.7 mm, ns compared to controls).  In the anterior 136 

cerebellum, VPA reduced the PC linear density from 36.2 ± 0.6 (n = 6, for a mean 137 

length of 38.1 ± 1.0 mm) to 32.6 ± 0.6 PCs/mm ( p = 0.032, n = 6, for a mean length 138 

of 37.9 ± 1.4 mm,  ns compared to controls).  139 

Although PC linear density was reduced in most cerebellar lobules of VPA-treated 140 

animals (Fig. 2D), significant loss only occurred in the VIth, VIIIth, IXth and paramedian 141 

(PM) lobules. In the lobule VI, VPA reduced the PC linear density from 44.1 ± 1.7 (n 142 

= 11, for a mean length of 3.99 ± 0.24 mm) to 36.6 ± 1.4 PCs/mm (p = 0.002, n = 10, 143 

for a mean length of 3.88 ± 0.25 mm, ns compared to control). In the lobule VIII, VPA 144 

reduced the PC linear density from 30.0 ± 1.1 (n = 6, for a mean length of 4.85 ± 0.30 145 

mm) to 25.0 ± 1.6 PCs/mm (p = 0.035, n = 6, for a mean length of 5.05 ± 0.28 mm, 146 

ns compared to controls). In the lobule IX, VPA reduced the PC linear density from 147 

35.4 ± 1.4 (n = 12, for a mean length of 4.08 ± 0.65 mm) to 30.7 ± 1.1 PCs/mm (p < 148 

0.019, n = 12, for a mean length of 3.56 ± 0.5 mm, ns compared to controls). Finally, 149 

in the PM VPA reduced the PCs linear density from 31.1 ± 0.5 (n = 12, for a mean 150 

length of 3.90 ± 0.24 mm) to 27.4 ± 1.1 PCs/mm (p = 0.005, n = 10, for a mean 151 

length of 3.88 ± 0.26 mm, ns compared to controls). 152 

VPA had marginal effects on PC density in early adult (P40) female mice. 153 
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As in males, the PC linear density varied significantly between the cerebellar regions 154 

in control conditions untreated controls. The PC linear density was significantly (p < 155 

0.015) higher in the vermis (35.9 ± 0.9 PCs/mm, n = 28) than in the hemispheres 156 

(34.2 ± 0.5 PCs/mm, n = 28, Fig 3B) and also displayed a postero anterior gradient 157 

(from 33.0 ± 0.9, n = 10 to 36.0 ± 0.7 PCs/mm, n = 8, p = 0.021). Similarly, between 158 

the lobules the PC linear density varied with a minimum value of 25.2 ± 1.3 (n = 6) in 159 

the lobule VII and a maximum value of 40.8 ± 1.9 PCs/mm (n = 11) in the lobule VI 160 

(Fig. 3D). 161 

However, in female mice, VPA prenatal exposition did not significantly reduce PC 162 

linear density in the whole cerebellum (34.8 ±  0.5, n = 28 in untreated control 163 

females and 33.5 ± 0.5 PCs/mm, n = 24 in treated females, Fig. 3A) in the vermis 164 

(35.9 ±  0.9, n = 28  in controls and 34.3 ± 0.8 PCs/mm, n = 24 in treated females), in 165 

the hemispheres (34.1 ±  0.5, n = 28  in controls and 33.1 ± 0.5 PCs/mm, n = 24 in 166 

treated females, Fig 3B), in the anterior cerebellum (36.0 ±  0.7, n = 8 in controls and 167 

34.5 ± 0.7 PCs/mm, n = 6 in treated females), in the median cerebellum  (35.6 ±  0.6, 168 

n = 10 in controls and 34.6 ± 0.6 PCs/mm, n = 9 in treated females) and in the 169 

posterior cerebellum (33.0 ±  0.9, n =  10 in controls and 31.8 ± 0.6 PCs/mm, n = 9 in 170 

treated females, Fig. 3C). However, VPA-treated females exhibited a significant 171 

reduction of PC linear density in the VIth and PM lobules, but not in the remainder of 172 

their cerebella (Fig. 3D). Indeed, in the VIth lobule VPA reduced PC linear density 173 

from 41.0 ± 0.8 (n = 15, for a mean length of 5.41 ± 0.79 mm) to 36.9 ± 1.5 PCs/mm 174 

(p = 0.0165, n = 12, for a mean length of 6.48  ± 1.06 mm, ns compared to controls). 175 

In the PM, VPA reduced PC linear density from 32.6 ± 0.7 (n = 32, for a mean length 176 

of 4.22 ± 0.15 mm) to 29.4 ± 0.8 PCs/mm (p = 0.006, n = 24, for a mean length of 177 

4.27  ± 0.24 mm, ns compared to controls).  178 
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VPA-induced PC loss occurred after P13. 179 

The cerebellum displays major developmental alterations after P13 including the 180 

regression of the multiple climbing fibre innervation of PCs [12].  In order to 181 

determine if VPA-induced PC loss occurs before or after P13, PC linear density in the 182 

whole cerebellum of 13 day-old and 40 day-old untreated control and VPA-treated 183 

males and female mice were compared (Fig. 4). Surprisingly, VPA treatment 184 

significantly increased (p < 0.001) PC linear density from 42.0 ± 0.74 (n =12) to 46.2 185 

± 1.1 (n = 9) PCs/mmin both males and females (pooled data from males and 186 

females because no significant difference was found between genders), but this 187 

increase of PC linear density was associated with a decrease in the mean PC layer 188 

length (from 34. 4 ± 1.1 to 30.9 ± 1.7, p = 0.031). As described above, at P40 even 189 

when data from males and females are pooled (for establishing the comparison with 190 

P13 mice), VPA significantly decreased PC linear density from 34.5 ± 0.3 (n = 46) to 191 

32.2 ± 0.4 PCs/mm (n= 42, p< 0.001). Furthermore, in untreated control mice, the PC 192 

linear density decreased from 42.0 to 34.5 PCs/mm during the P13-P40 period and 193 

was associated with a significant (p = 0.004) increase in the mean PC layer length 194 

from 34.4 ± 1.1 to 38.2 ± 0.6 mm. This reduction of PC density may partly be 195 

explained by the fact that numerous PCs are normally lost during postnatal 196 

development of cerebellum [13].  197 

Discussion. 198 

 199 

Sexual dimorphism of VPA toxicity on PCs in mice  200 

ASD has been reported to be more prevalent in males than females with a ratio of 201 

about 4/1. However, an increasing number of studies underscore the link between 202 

sex/gender differences and autism. Several hypothesis implicating sex chromosomal 203 
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genes, as well as the prenatal hormonal environment has been proposed as 204 

protective and risk parameters of sexual dimorphism in ASD [14]. Sex steroid 205 

hormones orchestrate the sexual differentiation of the brain during perinatal 206 

development and adulthood [15] and their effects on several brain regions may 207 

impact the development of ASD. Consequently, it is important to compare the ASD-208 

induced alterations of major brain structures in males and females [2].  The cerebellar 209 

PCs are impacted in autistic patients [4] and animal models of autism [16]. 210 

Interestingly in male and female mice, PCs display distinct electrophysiological 211 

properties [17]. Our data demonstrate that this sexual dimorphism of PC functions 212 

concerns also the PC sensitivity to prenatal exposure to VPA, indeed PCs seem less 213 

vulnerable to toxic effects of VPA in females as recently shown, but this study was 214 

confined to one part of the cerebellum [18]. 17β-estradiol (E2) is potently 215 

neuroprotective from cell stressors (CoCl2, glutamate) for female but not male 216 

neurons [14] and promotes PC dendritic growth, spinogenesis, and synaptogenesis 217 

during neonatal life by inducing BDNF expression [19]. This mechanism may also 218 

protect female PCs against VPA neurotoxicity. For example, a critical period for PC 219 

development is mediated by local estradiol synthesis and this can be disrupted by 220 

inflammation, however long lasting consequences are only observed in males [20].  221 

Regionalized VPA-induced PCs loss in adult P40 males 222 

The present study showed an increased sensitivity of PCs to prenatal VPA in the 223 

posterior part of the cerebellum. Interestingly, functional neuroimaging in humans 224 

revealed that the posterior and inferior parts of the cerebellum are reliably engaged in 225 

dynamic perceptual and affective processes with no explicit motor component [21]. 226 

We additionally showed that the extent of PCs loss varied across the cerebellar 227 

lobules peaking in lobules VI, VIII XI and paramedian (PM). Along this line, a 228 
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topographic organization of motor control versus cognitive and affective processing 229 

has been observed in human cerebellum [22]. Indeed, the cerebellar motor syndrome 230 

results from lesions involving the anterior lobe and parts of lobule VI of the 231 

cerebellum whereas cognitive impairments occur when lesions of the posterior lobe 232 

affect the lobules VI and VII including the Crus I, Crus II, and lobule VIIB [22]. 233 

Furthermore, a regional alteration in PC density has been reported in autists [4]. In 234 

this study, the PCs density was decreased in lobules IV-VI, Crus I & II of the posterior 235 

lobe, and lobule X of the flocculonodular lobe of autistic patients. Nevertheless, no 236 

functional correlation between the cerebellar lobules of humans and mice has yet 237 

been established. Nevertheless, both motor and social deficits has been recently 238 

correlated with a loss of PCs in the Crus I of VPA male mice [18]. 239 

Effects of VPA on PC linear density in young mice 240 

Whereas PC loss occurred in P40 male mice prenatally treated with VPA, increased 241 

PC linear density was shown in young (P13) male and female VPA-treated mice. 242 

Interestingly, MRI studies have shown an increase in brain size early during 243 

development of autistic children. A possible cellular mechanism could involve the 244 

presence of supernumerary neurons [23]. The increased number of PCs in young 245 

VPA mice indicates that the teratogen effect of VPA did not reduce the number of PC 246 

progenitors and that PCs loss is a late developmental process. This opens a time 247 

frame for an eventual treatment designed to impair PC loss. For example, treadmill 248 

exercise was shown to improve motor dysfunctions and inhibit PC loss in the 249 

cerebellum of VPA rats with autistic-like syndrome [24]. 250 

 Conclusions and perspectives. 251 
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In conclusion, that prenatal exposition to VPA was found to affect PCs in a gender-252 

specific way by predominantly deleting them in males. This diminution of PC linear 253 

density was significant in the posterior lobules VI, VIII, IX and PM of the cerebellum, 254 

thereby raising the question of the relevance of these particular lobules to "autistic-255 

like" behaviours in VPA mice. We also show that the VPA-induced diminution of PC 256 

linear density occurred after P13 delineating a possible time frame for adopting a 257 

pharmacological treatment to preserve the cerebellum and improve behavioural 258 

autistic dysfunctions. 259 

 260 
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 338 

 339 

 340 

Figure 1. Measurement of PCs linear density in the mouse cerebellum.  341 

A. Sections were cut in the anterior, median and posterior parts of the cerebellum B. 342 

PCs were visualized (in red) by immunofluorescence using an antibody against the 343 

specific PC marker calbidin (CaBP 28 KD) . PCs were count (white dots) in the PC 344 

monolayer of control (C) and VPA (D) cerebellar sections for a given distance (d). 345 

The linear density of PC is expressed as the number of PCs for 1 mm.  346 

  347 
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 348 

349 
Figure 2. PCs loss in prenatally VPA-treated P40 male mice. 350 

A. Linear density of PCs in the whole cerebellum of control and VPA-treated mice.B. 351 

Linear density of PCs in the vermis and hemispheres of control and VPA-treated mice. C. 352 

Linear density of PCs in the posterior, median and anterior cerebellum in control and VPA 353 

treated mice. D. PCs linear density in the different cerebellar lobules in control and VPA-354 

treated P40 males. Note a significant reduction of the linear PCs density in the lobules VI, 355 

VII, VIII and PM.   356 
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 357 

 358 

Figure 3. PCs linear density in prenatally VPA treated female mice. 359 

A.Comparison of the linear density of PCs in the whole cerebellum for control female 360 

mice (blue) and VPA treated female mice (red),   B in the vermis and hemispheres 361 

and  C in the posterior, median and anterior cerebellum. Note the absence of 362 

significant effect of VPA treatment. D. PCs linear density in the different cerebellar 363 

lobules in control and VPA treated P40 females. Note a significant reduction of the 364 

PC linear density in the lobules VI and paramedian (PM). 365 

  366 
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 367 

 368 

 369 

370 
Figure 4.  Prenatal VPA treatment  induces an increase of PCs linear density in 371 

the whole cerebellum of young mice.  372 

Upper part. Schematic representation of PCs development between E20-P40during 373 

the E20-P40 period.  Lower part.  Compares, PCs linear density at P13 and P40 374 

measured in control mice (n= 4 for P13 and 15 for P40) and in prenatally treated 375 

mice (n=4 for P13 and 12 for P40). The data obtained in males and females are 376 

pooled.  At P13, the PCs linear density is globally significantly larger in VPA-treated 377 

than controls animals. In control mice the PCs linear density is globally significantly 378 

larger at P13 than at P40. 379 
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Au cours de ma thèse j'ai eu la chance de participer a la mise en place d'un brevet portant sur 

un composé modulant le gradient aux ions chlorures que je nommerai composé X. Pour ce 

brevet nous avons testé l'effet du composé X et du bumétanide sur les comportements 

autistiques de trois modèle d'autisme: les souris  FMR1-, OPRM1-  et SHANK3-. Dans le cadre de 

ma thèse je vais présenter certains des résultats auxquels j'ai participé.  

Matériels et méthodes 

Tests comportementaux : 

Les protocoles des tests réalisés ici sont similaires à ceux réalisés dans le deuxième article. 

Animaux: 

Souris ne présentant pas le récpteur au opïoides mu (Oprm1-/-) 

La lignée des souris Oprm1-/- (B6.129S2-Oprm1tm1Kff/J) provient de Jackson Laboratories 

(Farmington, USA). Les souris sont stabulées en groupe (2 à 5 par cage) et maintenue sous un 

cycle jour/nuit de 12 heures (jour à 7h00) à une température contrôlée à 21±1°C. La nourriture 

et l'eau sont disponibles ad libitum. 

Souris ne présentant pas le gène Fmr1 (Fmr1-/-): 

La lignée des souris Fmr1 a été fournie par Rob Willemsen (Erasmus MC, Rotterdam, 

Netherlands). Les souris sont stabulées en groupe (2 à 5 par cage) et maintenues sous un cycle 

jour/nuit de 12 heures (jour à 7h00) à une température contrôlée à 21±1°C. La nourriture et 

l'eau sont disponibles ad libitum. 

Résultats 

Dans le test de l'interaction social direct (figure 1A), le traitement avec le composé (125, 205 et 

500 mg/kg versus saline) montre un effet bénéfique dépendant de la dose, augmentant, dans le 

modèle Oprm1-/-, le temps total passé en contact social (effet génotype: F1,127=16.5, p<0.0001; 

effet genre: F1,127=13.9, p<0.0001; effet dose: F3,127=30.9, p<0.0001; génotype x dose: 
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F3,127=25.6, p<0.0001; génotype x genre x dose: F3,127=5.3, p<0.01), le nombre le temps et la 

durées des contacts aux pattes et aux museaux (nombre de contact du museaux: effet genre: 

F1,127=8.1, p<0.01; effet dose: F3,127=10.3, p<0.0001; génotype x dose: F3,127= 9.4, p<0.0001; 

génotype x genre x dose: F3,127=3.5, p<0.05; temps passé en contact de museaux: effet 

génotype: F1,127=16.9, p< 0.0001; effet genre: F1,127=13.2, p<0.0001; effet dose: F3,127=27.9, 

p<0.0001; génotype x dose: F3,127=23.6, p<0.0001; génotype x genre x dose: F3,127=5.1, p<0.001; 

durée des contacts de museaux: effet génotype: F1,127=16.5, p<0.001; effet genre: F1,127=13.9, 

p<0.0001; effet dose: F3,127=30.9, p<0.0001; génotype x dose: F3,127=25.6, p<0.0001; génotype x 

genre x dose: F3,127=5.3, p<0.01; nombre de contact aux pattes: effet génotype: F1,127=8.9, 

p<0.001; effet dose: F3,127=29.4, p<0.0001; génotype x dose: F3,127= 15.7, p<0.0001; temps passé 

en contact aux patte: effet genre: F1,127=4.9, p<0.01; effet dose: F3,127=23.0, p<0.0001; génotype 

x dose: F3,127=14.4, p<0.0001; durée des contacts aux pattes: effet génotype: F1,127=48.1, 

p<0.0001; effet dose: F3,127=22.3, p<0.0001; génotype x dose: F3,127= 19.9, p<0.0001) et le 

nombres de poursuites (effet dose: F3,127=9.3, p<0.0001; génotype x genre x dose: F3,127=2.7, 

p<0.05). L'administration du composé réduit aussi le nombre de toilettages (effet génotype: 

F1,127=5.2, p<0.05; effet dose: F3,127=19.3, p<0.0001; génotype x dose: F3,127=5.2, p<0.01) et plus 

spécifiquement les toilettages survenant directement après un contact social (effet génotype: 

F1,127=34.7, p<0.0001; effet dose: F3,127=33.7, p<0.0001; génotype x dose: F1,127=36.4, p<0.0001) 

dans le modèle Oprm1-/- (Figure 1A). L'effet genre indique ici que l'administration du composé 

aux plus hautes doses (250 et 500mg/kg) était plus efficaces pour augmenter les paramètres 

d'interactions sociales (temps passé en contact social, temps passé en contact de museaux, 

durée de ces contacts et poursuites) chez les mâles que chez les femelles Oprm1-/-  dans ce test 

(Figure 1B). Ces résultats montrent que l'administration du composé peut restaurer l'interaction 

sociale directe dans le modèle des souris KO mu opioïde. 

Dans les mêmes conditions, un traitement au bumétanide (0.5 mg/kg versus saline) augmente 

mais ne restore pas complètement, le temps passé en contact social (effet génotype: F1,59=73.4, 

p<0.0001; génotype x dose: F1,59=10.0, p<0.01), le temps passé en contact de museaux (effet 

génotype: F1,59=68.9, p<0.0001; génotype x dose: F1,59=9.2, p<0.001) et la durée des contacts de 

museaux (effet génotype: F1,59=342.9, p<0.0001; génotype x dose: F1,59=9.4, p<0.01) chez les 
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souris KO comparés aux contrôles. Ce traitement n'a pas d'effet significatif sur le nombre de 

contact de museaux (effet génotype: F1,59=7.8, p<0.01; effet dose: F1,59=5.8, p<0.001; génotype 

x dose: F1,59=5.2, p<0.05) et le nombre de contact aux pattes (effet génotype: F1,59=46.7, 

p<0.0001; effet dose: F1,59=13.0, p<0.05; génotype x dose: F1,59=9.6, p<0.01), le temps passé en 

contact aux pattes (effet génotype: F1,59=22.9, p<0.0001; effet dose: F1,59=6.0, p<0.05; génotype 

x dose: F1,59=5.2, p<0.05) et la durée des contacts aux pattes (effet génotype: F1,59=76.4, 

p<0.0001; effet dose: F1,59=4.9, p<0.05) chez les souris mutantes. Cependant, le bumétanide 

normalise le nombre de toilettage (effet génotype: F1,59=5.3, p<0.05; effet dose: F1,59=21.4, 

p<0.0001) et le temps passé en toilettage (effet dose: F1,59=11.9, p<0.01) et plus spécifiquement 

les toilettages survenant directement après un contact social (effet génotype: F1,59=27.9, 

p<0.0001; effet dose: F1,59=27.9, p<0.0001; génotype x dose: F1,59=19.6, p<0.0001) dans le 

modèle Oprm1-/-  (Figure 1B). Ces résultat indique qu'a cette dose le bumétanide ne restore que 

partiellement l'interaction sociale chez les souris Oprm1-/- .   
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Figure 1 : effets du traitement avec le composé (125, 250, 500 mg/kg) ainsi que du 

Bumétanide (0.5 mg/kg) sur les principaux paramètres mesurés lors du test d'interaction 

sociale direct. Les données sont présentées comme moyenne ± sem. Différence par rapport aux 

contrôles salins : une étoile: p<0.05; deux étoiles: p<0.01; trois étoiles: p<0.001. Différence par 

rapport aux Oprm1-/-  salins : une étoile: p<0.05; deux étoiles: p<0.01; trois étoiles: p<0.001 

(three-way analysis of variance suivi d'un test post-hoc de Newman-Keules). 

Le traitement avec le composé augmente le nombre de redressements chez tous les animaux 

de manière dose-dépendante (effet dose: F3,121=17.3, p<0.0001). Ce traitement augmente aussi 

de manière dépendant de la dose le nombre de toilettage mais uniquement chez les animaux 

contrôles (effet génotype: F1,121=16.7, p<0.001; effet dose: F3,121= 4.1, p<0.01; génotype x dose: 

F3,121= 6.5, p<0.0001). Cependant, l'administration du composé réduit de manière dose-

dépendante le nombre d'enfouissement (effet génotype: F1,121=12.8, p<0.001; effet dose: 

F3,121=6.6, p<0.001), le temps d'enfouissement (effet génotype: F1,121=15.5, p<0.001; effet dose: 

F3,121=9.8, p<0.0001) et la durée des enfouissements (effet dose: F3,121=4.2, p<0.0001) chez tous 

les animaux. Le traitement avec le composé augmente de manière dose-dépendante le nombre 

d'ébrouement chez les contrôles alors qu'il réduit leurs survenue chez les mutants (effet dose: 

F3,121=3.7, p<0.05; génotype x dose: F3,121=14.5, p<0.0001). Finalement, le composé normalise le 

nombre de tour sur soi chez les Oprm1-/- (effet dose: F3,121=3.0, p<0.05; génotype x dose: 

F3,121=9.1, p<0.0001) au niveau des contrôles (Figure 2). Ainsi, le traitement avec le composé 

réduit efficacement l'occurrence de deux stéréotypies motrices chez les souris Oprm1-/- : les 

ébrouements et les tours sur soi. 

Dans les mêmes conditions le traitement au bumétanide ne change pas le nombre de 

redressement ni de toilettage (pas d'effet significatif) chez les mutants ni chez les contrôles. 

Cependant, ce traitement augmente, le nombre  (effet dose: F1,55=5.3, p<0.05), le temps passé  

(effet dose: F1,55=7.7, p<0.01) et la durée (pas d'effet significatif) des enfouissements chez 

toutes les souris. Enfin, le bumétanide supprime efficacement les ébrouement stéréotypés 

(effet génotype: F1,55=10.0, p<0.01; effet dose: F1,55=13.2, p<0.001; génotype x dose: F1,55=26.4, 

p<0.0001) et les tours sur soi (effet dose: F1,55=14.4, p<0.001; génotype x dose: F1,55=23.9, 
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p<0.0001) chez les animaux mutant (Figure 2). Ainsi, le traitement au bumétanide réduit 

efficacement les stéréotypies motrices chez les souris Oprm1-/-  . 

 

Figure 2 : Effets du traitement avec le composé (125, 250, 500 mg/kg) ainsi que du 

Bumétanide (0.5 mg/kg) sur les comportements stéréotypés. Les données sont présentées 

comme moyenne ± sem. Différence par rapport aux contrôles salins : une étoile: p<0.05; deux 

étoiles: p<0.01; trois étoiles: p<0.001. Différence par rapport aux Oprm1-/-  salins : une étoile: 

p<0.05; deux étoiles: p<0.01; trois étoiles: p<0.001 (three-way analysis of variance suivi d'un 

test post-hoc de Newman-Keules). 

La dose intermédiaire de 250 mg/kg a été choisi pour être tester sur d'autres modèles car elle a 

démontré son efficacité à soulager les symptômes autistiques chez les souris Oprm1-/- . Je vais ici 

présenter certains résultats obtenue chez la souris Fmr1-/-. 

Dans le test d'interaction social direct (Figure 3A), le traitement avec le composé à 250 mg/kg 

normalise le temps passé, en contact social direct (effet génotype: F1,30=31.8, p<0.0001; effet 
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dose: F1,30=40.6, p<0.0001; génotype x dose: F1,30=30.2, p<0.0001) et en contact de museaux 

(effet génotype: F1,30=30.5, p<0.0001; effet dose: F1,30=37.3, p<0.0001; génotype x dose: 

F1,30=28.1, p<0.0001), la durée des contact de museaux (effet génotype: F1,30=112.1, p<0.0001; 

effet dose: F1,30=48.9, p<0.0001; génotype x dose: F1,30=49.5, p<0.0001), le nombre de 

poursuites (effet dose: F1,30=9.9, p<0.01; génotype x dose: F1,30=13.7, p<0.001) et le nombre 

(effet dose: F1,30=14.4, p<0.001; génotype x dose: F1,30=10.7, p<0.01), le temps passé (effet 

génotype: F1,30=9.9, p<0.05; effet dose: F1,30=17.8, p<0.001; génotype x dose: F1,30=10.6, p<0.01) 

et la durée (effet génotype: F1,30=81.4, p<0.0001; effet dose: F1,30=30.9, p<0.0001; génotype x 

dose: F1,30=27.1, p<0.0001) des contacts aux pattes qui sont déficient chez les souris Fmr1. De 

plus, le traitement avec le composé réduit le nombre excessif de toilettage (effet génotype: 

F1,30=8.6, p<0.01; effet dose: F1,30=6.6, p<0.05; génotype x dose: F1,30=10.9, p<0.001) et 

particulièrement ceux survenant après un contact social (effet génotype: F1,30=47.7, p<0.0001; 

effet dose: F1,30=22.4, p<0.0001; génotype x dose: F1,30=30.1, p<0.0001) chez les souris 

mutantes. 

Après traitement avec le composé nous n'observons aucuns effet de génotype ou de traitement 

chez les souris Fmr1 KO ou les contrôles sur le nombre de redressement, de toilettage ou 

d'enfouissement (aucun effet significatif). Cependant, l'administration du composé réduit le 

temps passé à enfouir (effet dose: F1,30=5.5, p<0.05) et la durée des enfouissements (effet 

dose: F1,30=4.9, p<0.05) chez toutes les souris. Enfin, le composé normalise le nombre 

d'ébrouement (génotype x dose: F1,30=19.6, p<0.001) et de tours sur soi (effet génotype: 

F1,30=7.3, p<0.05; effet dose: F1,30=6.1, p<0.05; génotype x dose: F1,30=11.9, p<0.01) chez les 

souris Fmr1-/-  au niveau des contrôles. Ainsi, le composé traite efficacement l'occurrence de 

stéréotypie motrice chez les souris KO Fmr1. 
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Figure 3 : Effets du traitement avec le composé (250 mg/kg) (A) sur l'interaction sociales direct 

et (B) sur les comportements stéréotypés chez les souris Fmr1-/-. Les données sont présentées 

comme moyenne ± sem. Différence par rapport aux contrôles salins : une étoile: p<0.05; deux 

étoiles: p<0.01; trois étoiles: p<0.001. (three-way analysis of variance suivi d'un test post-hoc de 

Newman-Keules). 

Conclusion 

Ces résultats montrent que l'administration du composé améliore significativement l'interaction 

sociale et réduit efficacement les stéréotypies motrices chez les souris Oprm1-/-. Le traitement 

au bumétanide supprime les stéréotypies mais améliore moins significativement les 

comportements sociaux dans ce modèle. Ces résultats montrent également que le traitement 

avec le composé peut améliorer significativement l'interaction sociale et les stéréotypies 

motrices chez les souris Fmr1-/-. 

Ainsi, le composé peut améliorer les comportements sociaux et les stéréotypies qui sont les 

deux symptômes des TSA. De plus, nous avons constaté cette amélioration dans deux modèles 

génétique de l'autisme différents ce qui laisse entrevoir un fort potentiel translationnel pour le 

composé.  
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Au cours de ma thèse j'ai pu caractériser le développement du gradient des ions chlorures et 

des conductances GABAA majoritaires dans les cellules de Purkinje, mais aussi l'impact d'une 

exposition prénatale au VPA sur l'histologie cérébelleuse et sur les comportements de type 

autistiques. Au cours de ces études, les dimorphismes sexuels ont souvent été source de 

nombreuses questions que je vais essayer de rendre compte ici.   

La différence mâle/femelle dans l’autisme 

L’une des observations épidémiologiques la plus souvent rapportée pour l’autisme concerne 

l’occurrence d’un ratio de ¼ entre femmes et hommes dans l’établissement du diagnostique 

(Fombonne, 2003; Kim et al., 2011). Cependant, plusieurs études tendent à montrer que les 

symptômes sont exprimés différemment en fonction du genre et que ces différences pourraient 

expliquer la sous-représentation de femmes dans la population autistique (Mandy et al., 2012). 

En effet, plusieurs arguments sont avancés, comme la capacité inhérente aux filles de mieux 

dissimuler les symptômes ou même, plus simplement, l’existence d’un biais du diagnostique, 

celui-ci ayant été établit pour les garçons et n’étant pas entièrement pertinent pour les filles.  

Différentes études ont porté sur les différences entre filles autistes et garçons autistes, 

notamment au niveau des symptômes centraux de l’autisme et les résultats sont hétérogènes. 

La plupart des études montrent une présence de stéréotypies plus importante chez les garçons, 

tandis que certaines d’entre elles ne montrent pas de dimorphisme sexuel pour ce symptôme et 

d’autres encore notent même plus de stéréotypies chez les filles. Cette disparité se retrouve 

également pour les troubles sociaux et les altérations de la communication. Une méta-analyse 

de ces données a cependant pu montrer que les différences entre filles et garçons ne 

ressortaient significativement qu’en ce qui concernait les stéréotypies (Supekar and Menon, 

2015). Ce symptôme étant peut-être le plus facilement observable, cela pourrait expliquer que 

les filles ne soient pas souvent diagnostiquées. Ce symptôme repose essentiellement sur des 

altérations de structures impliquées dans la gestion de processus moteurs, tels que le striatum 

et le cervelet. Cette même étude montre qu’effectivement un dimorphisme sexuel peut-être 

observé à un niveau anatomique dans le cervelet et que ce dimorphisme serait la seul base 
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anatomique permettant de différencier avec suffisamment de certitude les filles avec un TSA  

des garçons avec un TSA. De manière intéressante, ils montrent que les stéréotypies chez les 

filles seraient corrélées aux différences observées dans le cervelet, tandis que les stéréotypies 

chez les garçons seraient corrélées à des différences dans le striatum. 

Différence dans le gradient aux ions chlorures 

Comme nous l’avons discuté dans l'article 1, un pic de testostérone durant le développement 

modifie les niveaux d'expression de NKCC1 et de KCC2 et amène le switch GABAergique à 

survenir plus tardivement chez les mâles que chez les femelles (Jaylyn Waddell and Margaret M. 

McCarthy, 2012). J'ai cependant observé l'inverse dans les CP. Nous avons proposé (article 1) 

une hypothèse ou ces mécanismes seraient dépendant de l'IGF-1 (insulin-like growth factor-1) 

dans le cervelet et qui expliquerait les observations faites sur le développement post-natal de 

cette structure.  

Mir et al,. (2016) rapportent que des différences mâles/femelles sont déjà observables dans les 

réponses GABAergiques dans des cultures de cellules hippocampiques prélevées à E16, avant le 

pic testostérone (Mir et al., 2016). Cela suggère l'existence d'autres mécanismes jouant un rôle 

antérieur à ceux actuellement proposés et probablement intrinsèques au développement de 

chaque sexe. Cependant, le cervelet se développant plus tardivement que l'hippocampe et 

sachant que le développement du gradient aux ions chlorures n'est pas le même dans le 

cervelet (article 1), il est possible que ces mécanisme précoces n'y aient pas lieux.  

Je montre dans mes études que les souris VPA présentent une modification du développement 

du gradient aux ions chlorures dans les CP. Or, compte tenu de la littérature rapportant 

l'implication du cervelet et de ce gradient dans les troubles autistiques, je suppose que cette 

modification joue un rôle dans les troubles observés. La perte en CP présente chez le mâle 

pourrait laisser penser qu'elle est responsable de la part du cervelet dans les déficits 

comportementaux. Cependant, cette perte n'étant pas présente chez les femelles et celles-ci 

présentant les mêmes comportements que les mâles, nous savons que la perte en CP n'est pas 

responsable des comportements que nous observons. De plus, je montre que, bien que décalé 
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dans le temps, le switch GABAergique survient bel et bien dans les CP des souris VPA. Une étude 

(Deidda et al., 2014) a montré que des altérations dans la signalisation GABAergique tôt dans le 

développement avait des conséquences à long terme sur la plasticité synaptique. Au vu de ces 

données, il est possible que la plasticité synaptique soit altérée dans le cervelet des souris VPA 

et que cela influe sur la difficulté qu'ont ces souris à mettre en place des comportements 

appropriés notamment lors de l'apprentissage moteur.  

Il est intéressant de noter dans cette dernière étude que l'effet de la modification de la 

signalisation GABAergique serait médiée par le BDNF (Brain-Derived Neurotrophic Factor). Or, 

comme que nous l'avons rapporté dans l'article 1, le BDNF intervient dans des processus liés à 

l'autisme et notamment dans le gradient en ions chlorures en exerçant une activité inhibitrice 

sur KCC2 dans les CP (Huang et al., 2013). Le BDNF aurait donc pour conséquence d'augmenter 

la concentration intracellulaire aux ions chlorures ainsi que nous l'avons observé dans les CP des 

souris VPA. Or, l'expression du BDNF est augmentéé dans le modèle VPA (Almeida et al., 2014) 

et ce, de façon plus importante chez la femelle que chez le mâle (Konopko et al., 2017). Cette 

étude propose, sur la base de ce dimorphisme sexuel, un rôle protecteur au BDNF. L'ensemble 

de ces données pourrait expliquer le délai dans la survenue du switch GABAergique chez les 

souris VPA ainsi que le dimorphisme sexuel que j'ai observé dans la perte en CP.  

Une autre piste intéressante révélée par Leonzino et al., (2016) montre l'implication de 

l'ocytocine sur le moment de l'inversion GABAergique en entrainant l'expression de KCC2 

(Leonzino et al., 2016). L'ocytocine montrant des effet positifs dans le traitement de l'autisme 

(Benner and Yamasue, 2017) et ayant des récepteurs exprimés dans le cortex cérébelleux, il est 

possible qu'une partie des effets bénéfiques de cette neurohormone passe par une action sur le 

gradient aux ions chlorures dans le cervelet. 

Lors de mes observations histologiques, j'ai remarqué un dimorphisme sexuel dans la perte en 

CP chez les souris VPA.  

Perez-Pouchoulen et al (2016) ont observés que l'exposition prénatale au VPA modifie 

l'expression des récepteurs aux androgènes, de façon dépendante de l'âge et de la localisation, 
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dans le cervelet de rats mâles et femelles. Ils rapportent chez le mâle une sous-expression dans 

le lobule 8 à P7 et une surexpression à P14,  et chez les femelles à P14 une sous-expression dans 

le lobule 6 et une surexpression dans le lobule 9. De manière générale, ils notent une 

diminution progressive de l'expression des récepteurs aux androgènes au cours du 

développement, toutefois plus marquée chez les femelles que chez les mâles (Perez-Pouchoulen 

et al., 2016). Il est intéressant de constater ici que les lobules sortant comme significativement 

touchés dans cette étude sont les mêmes que ceux où nous avons nous-mêmes rapporté des 

atteintes (article 2). Nunez et al,. (2008) ont montrée sur des cultures de cellules 

hippocampiques, que l'excitotoxicité déclenchée par l’activation des récepteurs GABAA était 

plus importante chez les mâles que chez les femelles. Cette différence serait due à un 

mécanisme non identifié qui, chez les femelles, atténuerait l'influx calcique suite à des 

stimulations répétées et serait aboli par application d'androgènes (Joseph L. Nuñez and 

Margaret M., 2008). Ces données vont dans le sens de nos résultats obtenus dans le cervelet et, 

à la lumières des données de Perez-Pouchoulen, pourraient expliquer la perte de CP plus 

importante chez le mâle que chez la femelle.  

L'effet des androgènes rapporté par Perez-Pouchoulen et al,. (2016)  serait dû à une diminution 

de l'expression de la sous-unité gamma2 du récepteur GABAA qui jouerait un rôle de senseur et 

interviendrait dans la désensibilisation du récepteur. Huang et al. (2013) montrent que l'effet du 

BDNF sur KCC2 est dépendant du couplage de ce dernier avec le récepteur GABAA et avance 

l'hypothèse que ce couplage serait sous la dépendance de la composition en sous-unités du 

récepteur GABAA. Lors de nos observations (article 1), nous avons noté une évolution de la 

conductance GABAA qui suggère une évolution de la composition en sous-unités de ce 

récepteur. Nous avons également observé que cette évolution était altérée dans le modèle VPA.  

Au vu de ces observations et de l'importance que revêt la composition du récepteur GABAA, il 

est probable que celle-ci soit altérée dans le modèle VPA, ce qui expliquerait nos observations.  

Ainsi que le rapporte Pelissier et al., (2017), le circuit de la récompense pourrait occuper un rôle 

prépondérant dans les TSA. Il est donc possible que des atteintes, par exemple dans le noyau 

accumbens, soit présentes chez les souris VPA. 
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Comprendre les origines des TSA ne signifiera pas nécessairement trouver un traitement. En 

effet, l'extrême diversité des atteintes et des symptômes observés m'incite à penser qu'un 

traitement ne sera possible qu'en identifiant un mécanisme commun vers lequel convergeraient 

tous les facteurs de risques. Une autre solution serait d'identifier, sur la base de caractères 

génétiques, physiologiques, fonctionnels ou même symptomatiques, des sous-groupes dans les 

TSA auxquels il serait possible d'adresser des stratégies thérapeutiques spécifiques. 

Perspectives 

A travers l'ensemble de la littérature portant sur le sujet, l'implication du cervelet dans l'autisme 

semble claire. Elle n’est cependant pas simple. En effet, nos études ont montré qu'une simple 

perte en CP n'influait pas sur les comportements autistiques, suggérant ici une influence plus 

fine, que ce soit au niveau de la localisation de la perte ou de la modification dans l'activité du 

réseau cérébelleux. Différentes expériences pourraient être réalisées afin d'affiner notre 

compréhension du développement cérébelleux et des impacts d'une modification de celui-ci, 

des origines et des conséquences du dimorphisme sexuel observées dans ce développement et 

des fonctions spécifiques associées à chaque lobules. Notre modèle nous offre également 

l'occasion de tester des traitements et d'observer leurs effets dans une structure et sur un 

mécanisme spécifique, mais également à un niveau globale sur le comportement. 

Nous avons noté dans nos études un retard dans le développement du gradient des ions 

chlorures. Des modifications de ce développement pouvant avoir des conséquences à long 

terme sur la plasticité synaptique, il serait intéressant de tester celle-ci dans le cortex 

cérébelleux de souris VPA. Nous pourrions également tenter de rétablir pharmacologiquement 

le switch GABAergique en ciblant la période d'inversion que nous avons définie (P14-P15) avec, 

par exemple, le composé X. Cela nous permettrait d'observer les conséquences sur la plasticité 

synaptique, mais aussi sur le comportement à plus long terme 

Il serait intéressant de comparer les niveaux d'expression en sous-unités GABAA dans les CP 

entre mâles et femelles et entre souris VPA et souris contrôles. Les différences entre ces 

conditions pourraient nous en apprendre beaucoup sur le rôle du récepteur GABAA dans le 
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développement et le fonctionnement du cervelet. La construction de modèles génétiquement 

modifiés de plus en plus accessible, il est imaginable d'en construire un reproduisant les 

modifications observées dans la composition en sous-unités du récepteur GABAA chez les souris 

VPA, afin d'étudier les conséquences sur le développement du cervelet et sur les 

comportements autistiques. 

Stoodley et al., (2017) ont montrée qu'une inhibition spécifique des CP dans un lobule (Crus 1) 

pouvait générer des comportements autistiques. Cette approche, appliquée à chacun des 

lobules, permettrait de comprendre les fonctions spécifiques de ceux-ci dans les modèles 

employés et aiderait à comprendre l'implication de modifications régionalisées. 

Nos résultats mettent en avant plusieurs atteintes cérébelleuses dans le cervelet d'un modèle 

d'étude de l'autisme que sont les souris VPA. Nos expériences pourraient être réalisées dans 

d'autres modèles autistiques afin de voir si les atteintes que nous observons sont généralisables 

et pourraient être des facteurs communs à différents modèles.  

Comme nous en discutions dans l'article 2, d'autres structures que le cervelet pourrait être à 

l'origine du phénotype autistique que nous observons dans le modèles VPA. Nous pourrions 

étudier l'influence d'une exposition prénatale au VPA sur le développement du gradient des ions 

chlorures dans d'autres structures, comme le noyau accubens, et les effets que peut y avoir une 

manipulation pharmacologique de ce dernier. 
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Autisme et cervelet : le gradient 
en ions chlorures en question 

 

 

Les objectifs de ma thèse ont été de caractériser le développement du gradient en ions chlorures dans les 

cellules de Purkinje dans un modèle d'étude de l'autisme : les souris exposées de façon prénatale au 

valproate de sodium. A cette fin, j'ai effectué des mesures éléctrophysiologiques de courants GABAergiques 

au cours du développement post-natal de ces animaux et des observations histologiques de la densité 

linéaire en cellules de Purkinje. D'autre part, j'ai participé à une étude comportementale visant à étudier 

l'influence d'un composé modulant le gradient en ions chlorures dans deux modèles génétiques d'étude de 

l'autisme : les souris Oprm1-/- et les souris Fmr1-/-. 

Au cours de ma thèse, j'ai mis en évidence un retard du développement du gradient en ions chlorures. J'ai 

également montré qu'une exposition prénatale au valproate de sodium induisait une perte post-natale en 

cellules de Purkinje. Enfin, le composé avec lequel j'ai travaillé améliore le phénotype autistique et laisse 

entrevoir un fort potentiel translationnel. 

Mots clés: autisme ; cervelet ; cellules de Purkinje ; GABA ; ions chlorures 

 

 

The aims of my PhD were to characterize the development of the chloride gradient in Purkinje cells in a 

model of autism: mice prenatally exposed to sodium valproate. To this end, I measured GABAergic currents 

along the post-natal development of these mice and made histological observations of the Purkinje cells 

linear density. Secondly, I took part of a behavioral study to test the influence of a compound acting on the 

chloride gradient in two genetic models of autism: Oprm1-/- and Fmr1-/- mice. 

During my thesis I showed a delay in the development of the chloride gradient. I also observed that a prenatal 

exposition of sodium valproate induced a post-natal Purkinje cells loss. Finally, the compound I worked with 

improves the autistic phenotype and opens the perspective for translational potential. 
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