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RÉSUMÉ ÉTENDU

Les mesures de forces faibles aux échelles micro et nanométrique ont

plusieurs applications dans différentes disciplines telles que la physique,

la chimie et la biologie. A ces échelles, le mouvement Brownien est

inéluctable, fixe une limite de résolution et représente un bruit pour la

mesure de telles forces.

Ce travail de thèse s’inscrit dans ce contexte. Plus précisément, nous

nous intéressons à la dynamique de suspensions colloïdales dispersées dans

l’eau à température ambiante, pour valider leur intérêt dans un contexte

de mesure de forces optiques de faible intensité. Pour ce faire, nous avons

construit un microscope à champ noir permettant de suivre les particules

et de reconstruire leurs trajectoires. Ces dernières sont ensuite analysées

statistiquement afin de soustraire la contribution balistique au mouvement

de la particule. En effet, la contribution balistique est directement

proportionnelle au champ de force appliqué à la particule et c’est elle

qui permettra la mesure de la force. Au niveau de résolution que nous

visons, la sonde laser permettant l’observation des trajectoires influence

directement la dynamique de l’ensemble colloïdal. Nous démontrons ainsi

l’existence de trois régimes distincts en fonction de la puissance laser

injectée dans le système:

• Basse puissance : les particules sédimentent car leur densité

volumique est plus grande que celle de l’eau ;

• Puissance intermédiaire : la sédimentation des particules est com-

pensée par le courant convectif induit par le gradient de température

résultant de l’absorption par l’eau de la puissance du laser à la

longueur d’onde de travail ;

• Haute puissance : les particules sont entrainées par un courant

convectif induit dominant la sédimentation.

Il est ensuite essentiel de valider les hypothèses de stationnarité et

d’ergodicité qui sont fondamentales pour mettre en place notre méthode

de mesure de force. L’analyse statistique fine de notre système nous permet

de mettre en évidence et de caractériser des effets de diffusion anormale

brownienne. Nos expériences révèlent en effet la présence de trajectoires

anormales dont l’origine se comprend comme un effet d’interaction entre

6
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la particule suivie et le reste de l’ensemble colloïdal. Ces expériences

montrent notamment la richesse dynamique d’une suspension colloïdale

qui s’inscrit dans la famille des systèmes où ces effets de diffusion anormale

sont observés [1].

La thèse est structurée en quatre chapitres. Le premier chapitre décrit

le système expérimental et le microscope à champ noir que nous avons

construit. Il présente également l’ensemble des outils et méthodes utilisés

pour l’enregistrement des trajectoires colloïdales et leur analyse statistique.

Le deuxième chapitre décrit en détail les trois régimes dynamiques

observés en fonction de la puissance du laser du microscope. Un modèle

théorique permettant de comprendre ces différents régimes est également

proposé. Ce modèle couple une description Navier-Stokes du fluide à une

équation de la chaleur.

Le troisième chapitre présente les résultats de mesures de forces

optiques réalisées sur l’ensemble statistique formé par la suspension

colloïdale. Une résolution de 0.3 fN est démontrée.

Le dernier chapitre rassemble les mesures effectuées sur les trajec-

toires browniennes anormales que nous avons pu repérer parmi l’ensemble

colloïdal grâce aux spécificités de notre microscopie à champ noir. Nous

décrivons ci-dessous plus en détails le contenu technique et physique des

chapitres 2, 3 et 4.

Le montage optique réalisé au cours de la thèse est présenté dans

la figure (0.1). Le faisceau d’une diode laser à 637 nm ayant un

profil Gaussien est séparé en deux pinceaux dont les polarisations sont

perpendiculaires, focalisés au niveau de l’échantillon de telle sorte que les

deux faisceaux soient confondus aux plans focaux respectifs.
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Figure 0.1 – Montage optique réalisé au cours de la thèse. Le montage est
utilisé soit en injectant toute la puissance laser dans un bras, soit en
équilibrant la puissance injectée dans les deux bras.
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La lumière diffusée par chaque particule, illuminée par le faisceau,

est collectée par un objectif placé perpendiculairement à l’axe optique. Un

exemple d’image obtenue par le microscope à champ sombre est présenté

à la droite du schéma du montage optique dans la figure (0.1).

Les particules sont localisées à l’aide d’un greffon [2] du logiciel libre

de traitement d’image ImageJ. La taille d’un pixel est ps = 540nm± 5nm,

avec une résolution sur le déplacement mesurée ∆r = 20nm entre deux

images successives. Chaque position est enregistrée avec une fréquence

de 120 Hz. On reconstruit ainsi la trajectoire de la particule avec un pas

temporel ∆t= 8ms. L’estimateur de la moyenne de déplacement suivant

l’axe vertical est calculé par :

µ∆Z
i =

Ni∑

n=1
Zn+1−Zn

Ni− 1
, (0.1)

Où Zn est la position détectée à l’instant t= n∆t dans l’image n, et Ni est

la longueur de la trajectoire i, la vitesse moyenne est définie par :

< Vz >NT
=

< µ∆Z
j >NT

∆t
, (0.2)

Avec NT le nombre de trajectoires détectées.

Dans la figure (0.2) est représentée l’évolution de l’estimateur de la

vitesse moyenne verticale< VZ > en fonction de la puissance totale injectée

dans le système. La zone bleue représente le régime de sédimentation,

la zone rouge le régime de convection et celle en blanc le régime de

suspension.

Figure 0.2 – Vitesse moyenne mesurée en fonction de la puissance laser. Dans
cet exemple, il s’agit de particules de Mélamine de rayon r = 470 nm. On
répète l’expérience à chaque puissance afin de vérifier la reproductibilité
des vitesses mesurées à une puissance donnée. On constate que les valeurs
moyennes se chevauchent.
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On montre bien l’existence de trois régimes dynamiques différents en

fonction de la puissance laser injectée dans le système.

Dans l’optique de mesurer des forces faibles, les propriétés statis-

tiques du mouvement brownien offrent un moyen efficace de réduire

l’erreur sur la mesure en augmentant la taille de l’échantillon statistique.

En effet, la mesure de forces nécessite une résolution à la limite thermique

définie par :

< δF >=

√

2kBTγ
Nt∆t

(0.3)

Où Nt est l’ensemble de tous les déplacements détectés au cours d’une

expérience, kBT l’énergie thermique et γ le coefficient de trainée donné

par la loi de Stokes pour des particules sphériques. Dans nos conditions

expérimentales, la limite thermique en fonction du nombre de points est

donnée par :

< δF >=
93.5 fN√

Nt
(0.4)

De là, vient l’idée d’augmenter la taille de l’ensemble statistique. La force

est alors donnée [3] par :

< Fy >=
< µy > γ

∆t
(0.5)

Où < µy > est le décalage, de la distribution des déplacements, induit

par le champ de force appliqué sur les particules. On injecte toute la

puissance laser dans un seul bras « voir figure (0.1) » et on mesure la force

moyenne de pression de radiation appliquée sur l’ensemble des particules.

Les résultats sont présentés dans la figure (0.3).

Figure 0.3 – Pression de radiation mesurée. La limite thermique est
représentée à 1σ, 2σ et 3σ.
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Les valeurs mesurées sont comparées à la valeur calculée en utilisant

la théorie de Mie pour la diffusion de la lumière par une particule

sphérique. Les résultats sont bien en accord avec notre mesure. Dans le but

de quantifier la sensibilité de notre méthode de mesure, nous utilisons la

configuration à deux bras « voire figure (0.1) ». Les résultats sont présentés

dans la figure (0.4). On atteint une sensibilité d’un femto newton avec une

résolution de 0.3 fN.

Figure 0.4 – Configuration où la différence de puissance entre les deux
faisceaux est réglée finement. Afin de mesuré la force minimale détectable
par notre montage optique.

Avec ces mesures, il est également possible de reconstruire le champ

de force qui suit le profil d’intensité du laser. Les résultats pour la

reconstruction du profil du champ de force sont présentés figure (0.5),

où il apparait bien que le profil du champ de force suit précisément le

profil d’intensité

1 2

th

2 2

th

3 2

th

Figure 0.5 – Profil de force reconstruit à partir du profil d’intensité pour
différentes puissances.
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Dans un ensemble colloïdal diffusif, certaines particules peuvent

se retrouver dans le même voisinage ce qui induit une interaction

particule-particule. Nous avons mesuré que ces interactions correspondent

à des trajectoires diffusant anormalement. Afin de quantifier nos

observations, le déplacement quadratique moyen (Time Averaged Mean

Squarre Displacement) TAMSD est mesuré. Il est défini comme suit :

δjr
2(τn) =

1
Nj

Nj∑

i=1

[rj+i− rj]
2 = 2D∆t. (0.6)

Avec τn = n∆t, i= 1,2,3, . . . ,Ni/4, est l’intervalle temporel sur lequel on

moyenne les déplacements au carré. D est le coefficient de diffusion de la

particule.

Figure 0.6 – Trajectoires de deux particules en interaction.

On représente dans la figure (0.6) un exemple de trajectoire où on

observe cet effet de diffusion anormale, qui se traduit sur la TAMSD

représentée dans la figure (0.7). La TAMSD prend la forme suivante:

δr2(τ) = Kατ
α. (0.7)

Avec α < 1.
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=0.99±0.02

=0.43±0.02

TAMSDs ETAMSD

Figure 0.7 – MSDs des trajectoires anormales détectées en fonction du pas
temporel.

On voit bien le changement de pente des TAMSDs moyennées

temporellement pour toutes les particules sub-diffusives, caractéristiques

d’un mouvement anormal. Ceci est clair aussi sur les (ETAMSD), TAMSD

moyennées sur l’ensemble, qui correspondent simplement à la moyenne

d’ensemble des TAMSDs. Deux pentes se distinguent clairement dans la

figure (0.7).

On regarde ensuite les distributions des déplacements des particules

diffusant anormalement. Les distributions sont représentées dans la figure

(0.8). Les distributions sont bien Gaussiennes, respectant l’hypothèse de «

Gaussianité » alors que la diffusion reste clairement anormale.

Figure 0.8 – Distributions de déplacements, à différents pas temporels, des
trajectoires dont les MSDs sont anormales.



contents 13

Afin de vérifier l’hypothèse ergodique, on utilise le paramètre ξ défini

ainsi [4] :

ξ=
δr2(τ)

< δr2(τ >
=

TAMSD

ETAMSD
, (0.8)

qui nous renseigne sur le comportement de la TAMSD moyennée dans

le temps d’une particule par rapport au comportement de la TAMSD

moyennée dans le temps de l’ensemble de toutes les particules. Finalement,

on exploite un paramètre connu pour caractériser le caractère non

ergodique du système [5] :

EB(τ) =< ξ2 >−< ξ >2, (0.9)

Que l’on simplifie :

EB(τ) =< ξ2 >−1, (0.10)

car < ξ >2= 1par construction. Ce paramètre donne une condition

suffisante pour l’hypothèse ergodique, mais on peut définir une condition

nécessaire à partir de ǫB défini par :

ǫB=
< δr2(τ)>

< ∆r2(τ >
. (0.11)

représentant le ratio entre la moyenne temporelle et la moyenne d’ensemble.

On représente dans la figure (0.9), les résultats obtenus pour les deux

paramètres EB et ǫB.

Figure 0.9 – Paramètres ergodiques en fonction du décalage temporel.

Malgré la TAMSD sous-diffusive, les distributions des déplacements

sont Gaussiennes et l’on n’observe pas de violation de l’hypothèse

ergodique.
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Ce résultat est intéressant en soit, sachant que les descriptions

théoriques de la diffusion anormale s’accompagnent soit d’une distribution

non Gaussienne, soit d’une violation de l’hypothèse ergodique, soit des

deux à la fois. Dans notre cas, on observe une diffusion anormale,

Gaussienne et ergodique.

Dans cette thèse, nous avons exploité la richesse dynamique d’une

suspension colloïdale pour (i) mesurer des forces optiques faibles et (ii)

mener des études fondamentales sur les effets convectifs et les diffusions

anormales.

A travers les quelques exemples de dynamiques spécifiques que nous

avons caractérisées, notre travail cherche à montrer l’intérêt des ensembles

colloïdaux pour ce type d’études, où des techniques optiques de détection

simples mais précises permettent d’extraire les informations quantitatives

pertinentes. Notre travail ouvre des perspectives intéressantes :

D’une part, dans le contexte des mesures de champ de forces optiques,

où l’on peut imaginer reconstruire des champs de force complexes en

utilisant des modes optiques spécifiques (exemple des vortex optiques, les

champs optiques chiraux, . . . ).

D’autre part, les mesures de diffusions anormales appellent à un

travail théorique pour modéliser, dans le point de vue de Langevin,

les évolutions sous-diffusives mesurées. Ce contexte de la description

théorique des mouvements browniens anormaux est aujourd’hui en plein

essor [6], et nos résultats expérimentaux apportent dans ce domaine

d’étude d’autres exemples dont il faudra comprendre la structure.



NOTAT ION AND CHARACTER I ST IC VALUES

Table 0.1 – Notations and characteristic values.
Quantity Notation Equation Typical value1

Particles radius R R = d/2 0,5 µm (Ps)
Density of the particle ρ 1,04 g/m3 (Ps)
Particle mass m m= 4

3πR
3ρ 5,5.10−13g

Dynamic Viscosity η 10−3 Pa.s
Dragg coefficient γ γ= 6πηR 9,42.10−6µm

Thermal Energy kBT 4,11.10−21 J
Diffusion coefficient D kBT

γ 0,436 µm2/s

Number of displacement for the ith trajectory Ni 1200 at least
Number of trajectories NT 50

Number of all the displacement Nt

NT∑

i

Ni 180 k and 600 k

Time between two frames ∆t 1
fps

2
1

120

Measurement time tmes Nt∆t 1,5 ks and 5 ks

Sample mean ∆X 1
Ni

NT∑

i

∆Xi

Sample variance Var{∆X} σ2
∆X

1
Ni−1

NT∑

i

(∆Xi−∆X)2 σ2
∆X

= 2Dx∆t

Sample standard deviation σ∆X

√

Var{∆X}

Sample standard error of the mean SE{∆X}
σ∆X√
Ni

Sample standard error of the variance SE{σ2
∆X

} σ2
∆X

√

2
Ni−1
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1
INTRODUCT ION

That light can exert mechanical pressure on irradiated objects,

this is one of the central predictions that J.C. Maxwell formulated in

his 1873 Treatise [7]. Together with the existence of propagation of

electromagnetic waves, the confirmation of this prediction has motivated

few experimentalists to set up the appropriate experiments in order to

reveal this so-called « radiation pressure ». P. Lebedev, former PhD student

of A. Kundt at the then-German University of Strasbourg, was the first

to be able to conduct successful experiments that confirmed, in all its

main aspects, Maxwell’s prediction [8]. Since, then, optical radiation

pressure has been exploited at the level of micron and nano-scaled objects.

In this context, the pioneering work of Ashkin on the possibility to «

tweeze » tiny objects using light led to the development of optical tweezers

as powerful non-invasive tools in the fields of biology and physics [9].

During the last three decades, optical tweezers performances have been

improved constantly, in order to be able to manipulate small objects such

as nanoparticles and bio- molecules [10, 11].

Essentially, optical tweezers are intensively used [12] to probe,

manipulate and characterize the dynamical properties of small dielectric

objects ranging from few nanometres to few microns. For example, the

force extension relation for a single DNA molecule was measured [13] by

fixing one end to a glass substrate and the other end to a 520 nm particle

trapped using an optical interferometric trap.

More recently, our group, in collaboration with the group of D.J.

Norris, at EH–Zurich, has demonstrated the possibility to trap single chiral

colloidal object and to perform simultaneously in situ chiral recognition

protocols [14]. This capacity was achieved by exploiting the versatility of

the strategy of optical tweezing as a general experimental scheme. The

2018 Nobel Prize in Physics is reminding us that the importance of this

tool from a broad and multidisciplinary point of view.

16



1.1 an introduction on brownian motion 17

Recently, new aspects and properties associated with radiation

pressure have emerged in the context of nano-optics. Here, the possibility

to excite, control and propagate inhomogeneous electromagnetic fields

with complex beam topologies lead to a great variety of optical force effects,

ranging from pulling forces [15] to chiral radiation pressure [16–18].

In this manuscript, we present our effort to propose micron-scaled

colloidal particles as efficient probes of radiation pressure, with the

potential to spatially resolve the topological signatures of these new types

of optical forces. Following previous demonstrations made in our group on

the capacity of metallic colloids to map complex plasmonic band structures

through the measure of radiation pressure [3, 19], we investigate in more

details here the relevance of exploiting collective Brownian motion in

resolving radiation pressure signals.

In this introduction therefore, we will shortly introduce what

Brownian motion is. We will discuss in details in the manuscript why

and how the stochastic character of Brownian motion can be exploited in

the context of weak force measurements. Then, we will briefly describe

the type of colloidal assemblies we have been working with. Our colloidal

systems obey a priori to simple behaviors, but, as it will be discussed below,

it is not obvious to use a colloidal system as a simple meter that can yield

reproducible results. How to control and ensure reproducibility using an

ensemble of colloidal particles has been a central challenge of the work

presented here.

1.1 an introduction on brownian motion

A short introduction, alongside with the basic statistical properties

of Brownian motion are given.

The motion of particles, with a size few orders of magnitude larger

than the size of the surrounding solvent molecules but still invisible by

naked eye, is random and caused by the incessant collisions between

the molecules of the solvent and the wall boundary of the particle. The

first to analyse precautiously such motion is Robert Brown in 1828 [20],

when he observed under the microscope the perpetual jiggling of pollen

grains of different species suspended in water. This incessant jiggling

causes the fluctuations of positional degrees of freedom, in such a way that

the variables describing the mechanical and dynamical evolutions of the

system are no longer deterministic but have become stochastic.
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From the theoretical point of view, Einstein, in 1905 annus mirabilis,

proposed in his paper [21] a solution to the problem of Brownian motion

based on the kinetic theory of gas. Einstein derived the diffusion equation

for a Brownian particle and gave a relation between the Mean Squared

Displacement (MSD) and the diffusion coefficient of the particle immersed

in the thermal fluctuations mediated by the solvent. Contemporary to

Einstein, Smoluchowski [22, 23] derived the diffusion equation for a

Brownian particle under an external force field using combinatory analysis

leading to the same results as Einstein[21]. Figure (1.1) displays an

example of such Brownian motion.

Figure 1.1 – Recorded Brownian trajectory of a Melamine bead of radius
R = 470 nm, immersed in water at room temperature. The "jiggling" of
the particle is caused by thermal fluctuations. The red dot represents the
initial position.

The probability P(x,t) to find a Brownian particle in x at time t

follows the diffusion equation :

∂P(x,t)
∂t

=Dx
∂2P(x,t)

∂x2
, (1.1)

with Dx is the 1D diffusion coefficient. The solution of the equation

assuming that at t=0 the particle starts from x=0 is the Gaussian

distribution :

P(x,t) =
1√

4πDt
e−

x2
4Dt , (1.2)
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Taking the first moment m1 of the distribution gives the expected value of

the stochastic variable X, the positions of the particle, which is:

m1 = E[X] =

∫

ω
xP(x,t)dx, (1.3)

withω is the ensemble of all the positions that X can take . For a Brownian

particle, this average is zero, meaning that the particle explore with

an equal probability "positive" and "negative" displacement regions. In

contrast, the second moment m2 is non zero and given by :

m2 = E[X2] =

∫

ω
x2P(x,t)dx, (1.4)

which defines, for Brownian particle, the MSD:

δx2(t) =m2 = 2Dt, (1.5)

expressing the relationship between the mean squared displacement δx2(t)

of the particle and time. The proportionality coefficient is the diffusion

coefficient D given for a spherical particle of a radius R, diffusing in a fluid

of viscosity η, by Stokes-Einstein equation :

D=
kBT

6πηR
, (1.6)

where kB is Boltzmann constant and T the equilibrium temperature of the

fluid. In 1908 Perrin[24] measured the Avogadro constant NA by studying

the Brownian motion of an emulsion of mastic diffusing in water.

In the same year Langevin [25] proposed a mechanistic description of

Brownianmotion. Langevin equation will be described in details in chapter

III. We will also describe the tools that can be used in order to extact, from

the stochastic behavior of Brownian motion, the observables that can

provide a quantitative measurement of the strength of the external force

field within which the Brownian motion can be performed. This approach

has first been introduced by Uhlenbeck and Ornstein in their well-known

paper [26].

1.2 colloidal suspensions

A colloidal suspensions is a heterogeneous mixture composed of solid

particles dispersed in a fluid. Such a system constitutes a toy system

for probing fundamental interactions [27, 28] and understanding the
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underlying complex dynamics in biological systems [29].

The stability of colloidal suspension is crucial, because aggregation

can introduce inhomogeneity of the size of the dispersion and eventually

precipitation of the colloidal assembly that turn the ensemble into a non-

exploitable phase. In general, stabilization, a delicate task, is done by using

electrostatic charges and thereby balancing unwanted force effects that can

destabilize the assembly.

Figure 1.2 – Schematic view of the electric double layer mechanisms for
charge stabilization of colloidal particles. The negatively charged particle
attract positive counter ions, defining then the Stern layer. Furthermore,
when the particle moves the surrounding fluid is displaced, which
defines the slipping plane and the corresponding Zeta potential as
the value of the electric potential at the boundaries of this slipping
plane. The electric potential drop to zero as we move from the surface
of the charged particle. Source : Modified and converted to SVG
by Mjones1984. Original work by Larryisgood. — Modified image
based upon http://en.wikipedia.org/wiki/File:Zeta_Potential_

for_a_particle_in_dispersion_medium.png by Larryisgood., CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=18238739

In our colloidal systems, the main source of aggregation stems from

Van der Waals attractive forces. Such forces can be neutralized by Coulomb

repulsive forces between two charged particles. The zeta potential is

defined as the value of the electric potential at the slipping plan presented

in figure (1.2). The important parameter in charge stabilization is the

Zeta potential, which gives the strength of the electrostatic repulsion with
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respect to attractive interactions, larger value of Zeta potential leading to

more stable colloidal particles.

The colloidal particles used in this manuscript are charge-stabilized,

and highly diluted with a volume fraction φ = 10−5. Melamine and

Polystyrene particles are purchased from MicroParticles Gmbh, with a

low size polydispersity (with a coefficient of variation C.V.<3%) and a

Debye screening length in the order of 0.5 µm.

1.3 dynamical behavior of colloidal particles under exter-

nal force fields

Controlling the dynamics of a particles by exotic light fields is an

emerging field of research.

Recently, "pulling" optical forces have been demonstrated in the

absence of intensity gradient [30, 31]. This counter intuitive "pulling" force

emerge from the increasing of the forward scattering along the direction

of the incident beam.

Figure (1.3) displays an example of pulling force demonstration. A

gradient-free optical beam is used to illuminate small droplets of dodecan,

trapped in water-air interface, with a power P ∼ 35 µW/µm2. We can see

clearly that the particles localized in the center of the beam are "pulled" in

the opposite direction of propagation of the beam. We can see clearly that

the pulling in localised at the center of the illumination spot confirming

that the origin of this effect is indeed the irradiation laser.

Opticaly efficient mass transport is also demonstrated in an other

experiment [32]. In this experiment optically induced flow is used to

efficiently move the particles. The motion of the particles under the

action of a constant optical force, drag the fluid creating then a flow that

increase the velocity of the ensemble. This enhancement is understood

from hydrodynamical interaction point of view.
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Figure 1.3 – Pulling optical force on oil droplet localized at the water-air
interface. a) represents the detected trajectories of the droplets during 45 s,
the small circles are the final positions and the dashed ellipsoid represents
the illumination spot. The arrow is the direction of propagation of the
light beam. b) the corresponding force induced mean velocities close to the
beam center. The arrow lengths are related to the average velocities. c) The
mean velocity at different laser power and the errorbars are the standard
deviation around the mean value. This figure is directly taken from [31].

Actually, the applied force field induce a particle velocity Vi, defined

as:
~Vi =

∑
µij

~Fj, (1.7)

with Fj is the applied force on the particle j. The summation is done over

all the particles j that "feel" the force field. The hydrodynamic interaction

is taken into account via Oseen tensor µij = µ(ri− rj) for two interacting

colloidal particles i and j localised at ri and rj, defined as :

µii =
1

6πηa
I, µij =

1
8πηRij

(

I + R̂ijR̂ij

)

, (1.8)

where :

• a is the radius of the particles, supposed mono-dispersed,

• η is the dynamic viscosity of the surrounding fluid,

• Rij is the distance between the particles i and i, R̂ij is the unit vector

in a direction from particle j to particle i,

• I is a unitary matrix.
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In the case of a single particle we recover the Stokes force : FS = γV . From

equation (1.7), using a uniform force field one can increase significantly

the velocity of the particles, because the summation is done over terms

that sum up with the same sign.

Figure 1.4 – Dominant mechanism in colloidal suspensions depending on the
size a and the velocity U of the colloidal particle. In our experiments the
typical velocities are in the order of U ∼ 1 µms−1 and the particle size is
a ∼ 0.5 µm. This figure is taken from [33].

The system constituted by an ensemble of colloidal suspension

appears as an interesting system to exploit in the context of optically

induced motional dynamics [3, 19, 30–32, 34].

But when dealing with such assemblies, it will be very important

to keep in mind that they constitute by definition a type of "complex

system" at the level of which the tools of non-equilibrium statistical

physics are necessary. The example of sedimentation is in this regard
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interesting to discuss. Constituting the realization of a non-equilibrium

steady state, sedimentation, despite its apparent simplicity, is accompanied

by very complex dynamics. This is essentially related to the fact that a

colloidal dispersion is, by construction an heterogeneous system, with local

fluctuations of concentrations. Such fluctuations can alter throughout the

volume of the dispersion the sedimentation dynamics via hydrodynamic

interactions (as discussed above) and local advective effects [34]. Figure

(1.4) summarizes the different mechanisms involved when studying the

dynamical behaviour of colloidal suspensions, and strikingly reveals the

richness and complexity of colloidal systems.

Optical micro manipulation is more efficient at low Reynolds number

which is the ratio between the inertial and the viscous forces. The

applications of such mechanical light-matter interaction are tremendous

in physics, chemistry and biology. This type on interaction is that small

that the effects are noticeable only at the micro and nano scales. Indeed

the development of lasers and colloidal science permits the study of such

small optical forces.

The intrinsec stochastic character of colloidal suspensions, leads

to the emergence of stochastic thermodynamics [35], which combines

statistical mechanics and stochastic variables. The work presented in this

manuscript lies within this context.

Our experimental apparatus consists of a nano-optics setup coupled

to a video microscope. The typical spatial and temporal resolutions in

our experiments are ∆r = 20 nm and ∆t = 8.3ms, respectively. The

Single Particle Tracking (SPT) methods enable the acquisition of Brownian

trajectories for colloidal particles suspended in water at room temperature

and illuminated by a collimated Gaussian beam. Nevertheless, the

irradiating laser, in addition to the mechanical pushing of the particle,

slightly heats the fluid and induces a convective flow, changing then the

collective dynamics of the colloidal assembly. Furthermore, the laser beam

is prepared in such a way that the radiation pressure applied at the level

of a single particle is close to the thermal stochastic force limit which is

the mean thermal force applied on the particle due to thermal fluctuations.

An other aspect of colloidal suspension is accessible with our experiment

which is the observation of rare events of anomalous diffusion.

This manuscript is organized as follows :
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• In the second chapter, we describe the optical system built in

the laboratory. From the video tracks, recorded by our dark field

microscope, we extract the Brownian trajectories. We analyse then

this trajectories by exploiting the probability density function and

the mean squared displacement.

• In the third chapter, we use the methods presented in the first

chapter in order to quantify the dynamics of our Brownian particles.

We then show the existence of three regimes of dynamics depending

on the injected laser power into the system. We propose a model

to predict the convective velocity due to water absorption of the

illuminating laser radiation. This model connect Navier-Stokes and

Fourier’s equations to estimate this induced convective velocity. We

clearly observe a compensation of the sedimentation of the particles

by the convectively induced flow for a given laser power.

• In the fourth chapter, we counter-balance the injected power to

exert weak radiation pressure forces on the colloidal assembly. We

demonstrate, in the context of Brownian motion, the stationary

ergodic aspects of the detected displacements. Indeed, in addition to

noise stability, these aspects are crucial in the "concatenation" strategy

we use in order to decrease the uncertainties of our measurements.

Furthermore, we present a method for reconstructing the applied

force field profile via the Brownian trajectories of the particles

diffusing within the extension of the laser beam.

• In the fifth chapter, we report our observation of anomalous

diffusion. we exploit our dark field microscope in order to identify

the hindered motion of targeted particles. The trajectories of such

particles are anomalous from the mean squared displacement point

of view, but remain ergodic and Gaussian. This observations do

not fit any known model, opening then the door for theoretical

investigations. Unfortunately, this exercise is not done in this work.
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S INGLE PART ICLE TRACKING IN COLLOIDAL

SUSPENS IONS

Since the last couple of decades, digital video microscopy has

developed as a powerful tool to study the fluctuating dynamics of

micron-scaled objects. With typical temporal resolution of the order

of few milliseconds and spatial resolution of about tens nanometres,

Single Particle Tracking (SPT) as implemented for instance by Crocker

and Grier[36] has allowed intensive studies of the dynamics of biological

systems such as : cell membranes [37], biomolecules [38],...

In this manuscript, we have used SPT to analyse the dynamics by

tracking micro particles suspended in water at room temperature and

subjected to radiation pressure optical force. Our task in particular has

been to adapt such video microscopy methods to the measure of weak

radiation pressure forces.

This first chapter describes the setup built in our laboratory on which

we acquired, through SPT, Brownian trajectories of colloidal particles

under the external force fields both of gravity and radiation pressure. The

features of the dark field microscope that we built are described in detail.

The core of our methodology in the statistical treatment of the recorded

trajectories is also presented.

2.1 an optical microscope for colloidal tracking and optical

force measurements

The optical setup used to study the dynamics of colloidal particles is

presented in this section. Our home-built experimental setup for single

particle tracking is described including the Gaussian beam optics from

which our dark field microscopy proceeds.

26
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2.1.1 Experimental Setup

The experimental setup consists of a spectroscopic cell, filled with

water within which colloidal particles are dispersed. A laser beam is

sent through the cell and a microscope objective, placed transversally

with respect to the beam, allows imaging the light either scattered by

the colloidal particles diffusing inside the beam extension or the photo

luminescence induced by the laser beam when using fluorescent doped

particles. The experiment is sketched in figure (2.1).

The illumination beam is from a pigtailed Laser Diode with a single

mode fiber and emission wavelength λ= 637 nm, coupled to the forward

focal plane of an inverted Newport objective 10X and NA =0.25 corrected

to infinity, in order to work in collimated beam condition. The beam is

linearly polarized with a nano particle linear film polarizer (LP) with an

extinction ratio of 1:1000. The beam then passes through a polarizing beam

splitter (PBS) which cross-polarizes the transmitted vs reflected beams.

Before the PBS, a half wave plate (HWP) is used to finely tune the injected

laser power in each arm. This is done by rotating the linear polarisation

of the incoming beam. Hence, if the input polarization before the PBS is

set at 45o, the powers P1 and P2 injected in the two beams are equal. The

two beams are then weakly focused by two identical convergent lenses (L1)

and (L2). The two mirrors M1 and M2 are adjusted in such a way that, at

the level of the sample, the two beams are precisely superimposed.

The (L1,L2) focal length f= 400 mm is choosen so that the observed

area of the sample lies within the Rayleigh range of the focused Gaussian

beams. The experimental setup can be used in two configurations :

• Single-beam configuration : all the available laser power P is injected

in one arm by matching the input polarization before the PBS to the

polarization of the arm of interest.

• Counter propagating two-beam configuration : the injected power

is set by the input polarization. As mentioned before, for an input

polarization of 45o, the powers P1 and P2 in the two arms are equal.

The linear polarizations of the beams are set to be orthogonal in order

to avoid interferences inside the cell.
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Figure 2.1 – Scheme of our optical setup. The left hand side shows the
different optical components involved. A HWP is placed before the PBS
to tune the injected power in each arm. The converging lenses (L1) and
(L2) have the same focal length f=400mm. The two mirrors (M1) and (M2)
are aligned such that the two waists of the two cross polarized beams are
superimposed in the middle of the fluidic cell. The detection part will be
detailed in the following section. The right panel represents a schematic
view of the fluidic cell in the (YZ) focal plane of our imaging system. The
fluidic cell is filled with a diluted colloidal suspension in water room
temperature. On one hand, if non doped micro particles are used, the
collected photons scattered by the particles are collected by the objective.
One the other hand when doped micro-particles are used, the objective
collects the photo-luminescent light. The dynamics are the same either the
used particles are doped or not. The sample preparation is described in
the main text.

Each configuration will be exploited in the context of small optical

forces measurements, as discussed throughout the manuscript.

2.1.2 Gaussian beam optics

The intensity profile I(r,t) of the laser beam is Gaussian with:

I(r,t) = I0

(

w0

w(Y)

)

exp
(

−
2r2

w2(Y)

)

, (2.1)

where

• I0 is the peak intensity,

• w0 is the waist of the beam,

• w(Y) is the radius of the beam at the a position Y :

w(Y) =w0

√

1+
(

Y

YR

)2

,
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with YR = πw0
λ is the Rayleigh range,

• r =
√
X2+Z2 is the radial position from the center of the beam

(optical axis).

The parameters are presented in figure (2.2). Experimentally, we measure,

with a power meter, the mean power of the beam defined as :

< P >=

∫+∞

0
I(r,t)rdrdθ=

I0w
2
0π

2
=

Pmax

2
, (2.2)

W02 W0
W(y)

Y R
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Z
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Z

Figure 2.2 – Gaussian beam parameters : w0 the beam waist is the transverse
extension of the beam at the focus. The beam width at the position y is

: w(y) = w0

√

1+
(

y
YR

)2
, where YR =

πw2
0

λ is the Rayleigh range which

is the distance over which the beam size is increased by a factor of
√
2.

The right hand side panel represents a sketch of the power profile of a
Gaussian beam : the maximum power is in the center of the beam, on the
optical axis. In our experimental conditions, using a focal length of 400
mm, YR ∼ 12mm

The important parameter here is the Rayleigh range (or length) of

the beam. As discussed below, an imaging field of view smaller than

the Rayleigh range will essentially probe, from both sides of the waist, a

"collimated" laser beam, with a practically a planar phase front. This

aspect plays an important role in chapter three for our optical force

measurements.

2.2 colloidal suspensions in a fluidic cell

Colloidal particles are used throughout this manuscript as force

probes in our experiments. We work with charge stabilized colloidal

particles, commercially available at MicroParticles GmbH. The particles

are charge-stabilized in order to avoid aggregation. Our samples consist
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of spherical micro-particles dispersed in water. We use a spectroscopic

cell (see figure (2.3)) filled with micro-particles made of Melamine or

polystyrene. The dispersion in size of the particles is 5%, as determined by

the manufacturer.

We choose a relatively low concentration of particles for two main

reasons :

• first in order to avoid particle particle interaction1;

• then to have enough statistics to estimate Brownian parameters with

sufficiently good confidence levels (see below).

The volume fraction defined as follows :

φ=
Vp

Vt
, (2.3)

where Vp is the volume of all the particles in the cell, and Vt is the total

volume of water including the volume occupied by the particles. In our

experiments φ= 10−5 so that in practice for a typical measurement there

is at least ten particles in the field of view of our microscope (cf. figure

(2.4)).

The sample is then sealed by a homemade cup formed by a glass slide

and a PDMS mask. In addition, to improve the sealing, we use vacuum

grease to avoid any evaporation of the water and any induced flow. The

seal has turned out to be a crucial element for our experiments, playing a

central role for the reproducibility of our data.

The sample is left for 1 hour on the sample holder before starting

any SPT recording, in order to let the particles reach the steady state

sedimentation. Finally, we ground the cell to remove any electrostatic

charges on the surface of sample. This experimental protocol has been

fixed and carefully repeated for each new experiment. Before starting

any experiment, we verify that we are working in a laminar flow regime

along the Z axis by recording the dynamics of the particles for 1 min and

verifying that the particles stays in the YZ plane. Any failure on the seal,

electrostatic grounding, and relaxed sedimentation in the laminar regime

led to erratic and non reproducible results.

1 at least most of them. We will however discuss in chapter four a few observations induced
by such, rare, interactions.
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We present is figure (2.3) a sketch of the sample. There is no boundary

wall effect because the Field Of View of the microscope is much smaller

than the distance between the walls and the sample cell.

2 mm

Y

Z

X

30 mm

2YR

Figure 2.3 – Sketch of the sample cell. The cell is a "spectroscopic cell"
(purchased at Hellma Analytics) made of optical glass with four windows.
The dimensions are : height 45 mm, width 12.5 mm and depth 12.5 mm.
The dimensions inside of the cuvette are 30 mm height, 2 mm width and
10 mm depth. The red dots represent the vacuum grease sealing. The blue
segment shows the confocal parameter. F.O.V is the field of view of the
dark field microscope.

2.3 dark field microscopy and spatial calibration

Our dark field microscope is designed in such a way as to collect

the light scattered by spherical particles (or emitted by doped-fluorescent

particles) when passing within the illumination laser beam. The collection

is done in a direction perpendicular to the optical axis (hensce ’dark field’)

using an imaging objective Olympus 20X, NA = 0.25 with a very long

working distance 26.5 mm.
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An example of a recorded image is displayed in figure (2.4) : the

image is diffraction-limited, each particle being seen as an Airy spot. The

field of view (FOV) is defined as the extension of the region observed

by the microscope. In our experiments the dimensions of the FOV are

350µm x 250µm. We stress that the FOV is much smaller than the laser

beam Rayleigh length evaluated to be 12 mm.

50 µm

Y

Z

Figure 2.4 – Example of an image recorded by our dark field microscope.
The red lines highlight the contour of the laser beam and the dashed line
indicate the optical axis. Each spot is a diffraction limited image of one
particle. The depth of field of our imaging system is 11.2µm. When the
particle is leaving the focal volume, higher diffraction orders appear and
the scattered intensity is reduced.

The theoretical (Y,Z) two-dimensional Point Spread Function (2D-

PSF) is compared to the experimental recorded Airy spots. The theoretical

2D PSF is approximated by a Gaussian distribution [39] :

I(y,z) = I0 exp
(

−
(y−y0)

2+(z− z0)
2

2s20

)

(2.4)

with (y0,z0) is the center of the PSF. I0 is the peak intensity and depends

on the brightness of the spot, the pixel size and the exposure time. The

width of the distribution is given by s20.

The results of the comparison are presented in figure (2.5).
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Figure 2.5 – Point Spread Function and corresponding cross cuts. Panel (a)
shows the theoretical 2D-PSF calculated from the optical parameters of
our imaging system. Panel c) displays the experimental diffraction limited
image of one bead. The red dashed line is a cross cut and the corresponding
profiles are presented in panel (b) and (d) where the black dots are the
normalized intensity values in each pixel and the red discontinuous lines
are the corresponding fit using the model represented in equation (2.4).
The standard deviation of experimental spot in c) and d) are respectively
: sexp0 = 621± 75nm and sth0 = 405± 30nm. The experimental profile
is wider than the theoretical one because of the presence of noise. The
corresponding Rayleigh resolution is: 2.95 pixel=1.5µm which defines the
minimal resolvable distance between two spots.

The experimental profiles can be described using a Gaussian PSF,

with a width however larger than expected due to inevitable noise in the

recorded image.

2.3.1 Pixel size calibration

In order to perform the spatial calibration of our imaging system,

a resolution target is used. The target consists of vertical and horizontal

lines with known separation length. Figure (2.6) displays an image of such

a the target used to quantify the pixel size of our imaging system.



2.3 dark field microscopy and spatial calibration 34

a) b)

Figure 2.6 – Calibration target used for the determination of the pixel size of
our imaging system. Panel (a) shows the calibration target and in panel (b)
an image recorded by the microscope is displayed.

From the target data sheet, we know exactly the physical size of each

segment. After imaging the target with our microscope, we can match

the known physical length with the number of pixel. This allows us to

extract the size of one pixel. Using this method, we measure a pixel size

ps = 540nm±5nm. The error is determined by repeating the measurement

of the pixel size several times.

Now that we know the experimental pixel size of our imaging system,

we will describe how we acquire the trajectories of the colloidal particles

and how we measure the localisation errors of our microscope.

2.3.2 Tracking the positions of the particles

We here present the SPTmethods used in this work. In order to record

the trajectories of the particles we have implemented TrackMate[2], an

open source plugin of ImageJ software. TrackMate offers a lot of flexibility

for tracking particles through the possibility to write a Python program

where different algorithms can be called, aimed at tracking the positions of

the Airy spots associated with the particles imaged through themicroscope.

The input parameters for the tracking are :

• the apparent diameter of each spot in pixel units;

• the threshold value which determines the minimum intensity for a

spot to be considered as a particle diffusing in the focal volume of

the microscope;

• the maximum displacement allowed between two successive frames

for linking two detected spots.
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The algorithm for particle tracking we adopt is the one first introduced

by Cooker and Grier [36]. The first step of the algorithm is to find the

centroid of each spot by performing a Gaussian fit of the spots. Then, the

center of the fitted distribution is considered as the real position of the

bead. The second step is to link the detected centroids between successive

frames. The plugin is designed to use each PC processor to treat one image,

hence permitting fast tracking. For example, for a video of 5 min the

tracking software needs between 5 and 15 minutes to track and link the

spots depending on the concentration of the colloids.

2.3.3 Localisation errors

The algorithmic determination of the position of the particle is

accompanied by certain errors which depend on :

• the diffusion coefficient D of the particle,

• the exposure time tE used to record the motion,

• the size of the PSF s0.

There are two main sources of error in determining the positions of

the particles [40] :

• static localisation error : the physical origin of the static error is

the fluctuation in the number N of photon illuminating the particle,

corresponding through the chain of detection to the fluctuations in

the collected scattering intensity

σ0 =
a√
2πI0

=
s0√
N

(2.5)

where :

– a is the pixel size,

– I0 is the peak intensity recorded by the camera,

– s0 is the dimension of the PSF.

We can measure σ0 by tracking the trajectory of a fixed particle. The

particle is fixed to the surface of a glass substrate by dispersing a

droplet of diluted solution of water and micro-particles. After the

evaporation of the water, the particles remain stuck to the surface due

to electrostatic charges. The static localisation error is given by the

standard deviation of the distribution of the detected positions. An
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example of a tracked trajectory for an immobile particle is presented

in figure (2.7). The measured static localisation uncertainty is 10 nm.

a) b)

c)

Figure 2.7 – (a) Tracked positions of a fixed bead. Panels (b) and (c) shows
respectively the displacement histogram along Y and Z directions. The
counts are the number of times that the displacement lies within the bin
width which is in this case 7 nm. The localisation uncertainties are given
by the width of the distribution : σy

0 = 8± 1nm and σz
0 = 9± 0.5nm.

• dynamic localisation error : the finite exposure time over which the

particle diffuses is a source of additional localisation error. This

"dynamic" localisation error is defined as follows [40] :

σ= σ0

√

1+
D0tE

s20
, (2.6)

– D0 is the Stokes-Einstein diffusion coefficient,

– tE is the exposure time of the camera in the tracking process, in

the order of few ms,

– σ0 is the static localisation error,

– s0 is the size of the PSF.

For slow diffusion or short exposure time : D0tE ≪ s0, the error is

dominated by the static error. Although when the diffusion of the particle is

sufficiently high or large exposure time : D0tE ∼ s0, the error is dominated

by the diffusion. Using the adimensional reduced localisation error defined

in [40] by :

x=
σ2

D0∆t
(2.7)
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we evaluate that under our experimental conditions, D0tE
s20

≪ 1. This

implies that localization errors are dominated by σ0, i.e. the static

localisation error contribution.

In order to verify this experimentally, we track themotion of a particle

fixed on a glass substrate. Then, we move with different steps the substrate

using a piezo electric stage. The results for a step size of 50 nm are

displayed figure (2.8) where we can clearly see that a displacement of 50

nm is well resolved by our microscope.

Figure 2.8 – Displacement resolution for 50 nm step. The error bars are
the standard deviations around the mean position calculated from the
ensemble of displacements. There is a good agreement between the
real position and the detected one for the two first points. There is an
issue for the two other measurements but the difference between the two
detected positions and the two real position is the same, confirming that a
displacement of 50 nm is well resolved by our microscope.

We look then for the minimal resolved displacement by setting a step

size of 10 nm. Figure(2.9) displays the results for 10 nm step displacement.

The static localisation errors are in the order of 20 nm and as shown

in figure (2.9) the error bars are basically in the order of 2σ0.

We can compare this results with the root mean square (rms)

displacement of a particle diffusing in water at room temperature

:
√
2D0∆t= 93nm, which represents the typical displacement of a particle

under the influence of thermal fluctuations. This displacement is of courses

well resolved by our microscope.

This section allows us to conclude that our setup can resolve displace-

ments in the order of 20 nm which is below the typical displacement of a

particle diffusing under to thermal fluctuations.
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Figure 2.9 – Displacement resolution for 10 nm step. The error bars are the
standard deviation around the mean position computed from the statistical
ensemble composed from the detected displacements. There is a good
agreement between the real position and the detected one. Nevertheless,
the error bars overlaps demonstrating that a displacement of 10 nm is
not resolved and this expected because the static error are dominant
considering that σ0 is precisely in the order of 20 nano meter.

2.4 statistical properties of brownian motion

In this section, we present some important statistical tools used

to quantify our measurements are presented. The Probability Density

Function (PDF) associated with an ensemble of particle position x at time

t is described, together with the important tool of the Mean Squared

Displacement (MSD).

2.4.1 Probability density function (PDF)

The trajectories recorded by video microscopy represents a rich

source of information about the dynamics of the particle. From the tracking

software, we get as two time series Y(t) and Z(t) the projections of the

trajectory along the Y and Z axes where time t is sampled at a frequency

f=120Hz. An example of a tracked trajectory and the corresponding

projections are displayed in figure (2.10). We obtain here an ensemble

of discretized positions along Y and Z axis :

Y(tn) = Yn, Z(tn) = Zn, (2.8)
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with Y(tn) and Y(tn) the tracked positions of the particle in the video

frame n. The time interval between two successive frames is ∆t= 1/f.

a) b)

c)

Figure 2.10 – Recorded trajectory of a Melamine bead sedimenting in water.
Panel a) shows the 2 D trajectory where the red dot representing the initial
positions recorded at t=0. Panels b) and c) are the projection along Y and
Z axis.

From the position {Yn} and {Zn} ensembles, we can compute the

displacements ensembles {∆Yn} and {∆Zn} where ∆ is the difference

operator defined as :

∆Yn = Yn+1− Yn. (2.9)

The discrete PDF of displacements represents the probability that a particle

diffuses over a distance ∆Yn during the time interval ∆t. It is defined as :

P(∆Yn,∆t) =
1

σ
√
2π

e
−

(∆Yn−µ)2

2σ2 (2.10)

where µ and σ2 are respectively the true mean and the true variance of

the PDF of displacements. This PDF is constructed from the ensemble of

displacements ∆Yn in the following way.

For an ensemble of N detected displacements, we start by choosing

the appropriate number of bins which we choose following the empirical

Rice rule2 as :

nbins= 2 3
√
N, (2.11)

2 http://onlinestatbook.com/
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This chosen number of bins defines a bin width as:

δb=
max(∆Yn)−min(∆Yn)

nbins
(2.12)

with the condition that δb > σ0.

We then count the number of displacements that lies within the

adjacent intervals [min(∆Yn) + jδb,min(∆Yn) + (j + 1)δb] where j =

~0,nbins− 1�. With this method, figure (2.11) displays the constructed

PDF of displacements for the trajectory presented in figure (2.10).

a) b)

c) d)

Figure 2.11 – Constructed PDF of displacements of the trajectory presented
in (2.10). Panels a) and c) shows respectively the temporal displacements
along the Y and Z axis. The panels b) and d) represents the PDFs of
displacements constructed using the method described in the main text.

As always using a finite set of N measurements, the parameters µ

and σ are not respectively the tue mean and true variance of the PDF of

displacements, but estimators of these parameters. They can be estimated

from the statistical sample of detected displacements using the moments

of the PDF. Assuming that the stochastic variable ∆Yn follows the normal

distribution N(µ,σ2), an estimator of µ the mean displacement along the Y

axis is given by :

µ̂=

N∑

n=1
∆Yn

N− 1
(2.13)

The estimator of the variance is given by :

σ̂2 =

N∑

n=1
(∆Yn− µ̂)2

N− 1
(2.14)
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A close discussion on the uncertainties associated with the mean and the

variance are presented in more details in chapter III.

2.4.2 Mean Squared Displacement (MSD)

The MSD gives important informations on the transport properties of

particles diffusing in water. An estimator of the MSD defined in equation

(1.5) is the Time Averaged MSD δY2(τn) [37] :

δY2(τn) =
1
NI

NI∑

i=1

[xi+n− xi]
2 (2.15)

with NI = N+ n− 1 the number of overlapping3 intervals of length n,

and τn = n∆t the time lag over which we compute the mean squared

displacement. In practice, we do not compute the MSD over the length of

the trajectory N, but we rather use a length reduced to N/3 because for

long time intervals, the statistical accuracy of our estimate drops down.

This is due to the decrease in the size of the statistical sample over which

we average the displacements. This N/3 value is usually recognized as a

"safe" value [37].

The standard error associated with the determination of the MSD is

given by:

SE(δY2(τn)) =
σδY2(τn)√

NI

, (2.16)

where σδY2(τn)
is the standard deviation around the mean squared

displacement averaged over the time interval τn.

In our experiments we track an ensemble of NT trajectories. In order

to smooth the time averaged MSD we define the Ensemble time averaged

MSD :

< δY2(τn)>=
1
NT

NT∑

i=1

δY2(τi), (2.17)

which is simply the ensemble average over the individual (single trajectory)

time average MSDs. An example of the time averaged MSDs and the

ensemble time averaged MSD are displayed in figure (2.12). There is a

good agreement between the theoretical and the measured MSDs.

3 We can average the mean squared displacements over dependant or independent
(overlapping or non overlapping) time intervals. Using independent interval decreases
the size of the sample over which we estimate the MSD. In reference [37] a closer
comparison between the two methods is done and they yield the same results. We
chose the overlapping method because of the larger size of the sample.
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Figure 2.12 – Mean Squared displacement for Melamine beads diffusing in
water at room temperature. The black dashed line in the theoretical time
averaged MSD defined by equation (1.5) where we took the theoretical
value of the diffusion coefficient (the offset with respect to the experimental
MSDs is made for the sake of clarity). The blue continuous line represents
the measured time averaged MSDs for different trajectories and the red
continuous line is the ensemble time averaged MSD defined in equation
(2.17). The poor statistics issue explained in the main text is visible for
long time lags.

2.5 conclusion

We described in this chapter our experimental setup build to track the

real-time Brownian trajectories of colloidal particles. The setup consists

of contra-propagating cross-polarized Gaussian beams, combined with

a dark field microscope. The temporal resolution of our experiment is

∆t= 1/120s determined by the inverse of the frame rate, and a positional

resolution of the order of 20 nm is demonstrated. Furthermore, the

statistical properties of Brownian motion are analysed by introducing

the probability density function of the displacements and the mean

squared displacement. The methods of measuring, from the experimental

trajectories, Brownian parameters relevant in the following chapters such

as the PDF of displacements and the MSDs have been described here in

details.

In the following chapters indeed, we will show how this setup and

these methods can be efficiently implemented in order to analyse and
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quantify colloidal Brownian dynamics in various types of external force

fields.



3
BROWNIAN COLLOIDAL PART ICLES IN EXTERNAL

FORCE F IELDS : FROM SEDIMENTAT ION TO

CONVECT IVE TRANSPORT

As presented in the first chapter, colloidal suspensions are good

candidates for the study of the mechanical interaction between light and

matter. It is a straightforward fact that colloidal dispersion displays

collective motions : sedimentation of an ensemble of colloidal particles

suspended in water is an obvious example [34]. Furthermore, mass

transport in the fluid can modify the motion of the particles : convective

drag is an example of an external flow modifying the dynamic of the

particles lying within the convective flow. In this chapter, we exploit a

competition between sedimentation and convection in order to control the

motion of the particle assembly. This competition stems from the heat

dissipated in the fluid under laser illumination. Three dynamical regimes

can be describer :

1 Sedimentation regime : when the particles sediment because of

gravity.

2 Convection regime : when the particles are lifted up because of the

convective flow induced by the temperature gradient generated by

the absorption by water of the laser beam sent through the fluid.

3 Suspended regime : when the particles remain in the field of view

due to the compensation of sedimentation by the convective flow.

In the second part, we will model the convective flow induced by the

laser as a consequence of a change of fluid density. Our model will allow

us to estimate the convection velocities in the steady state. This estimates

turns out to be in good agreement with the experiments.

In the first section, we will present our experimental results revealing

the existence of such three different regimes of dynamics. We will

44
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characterize, from the Brownian motion analysis, the induced fluid

currents as the manifestation of an external force field. We will carefully

compare the dynamics each of the three regimes, and look in detail at the

properties of the suspended regime.

3.1 controlling the colloidal assembly with tunable laser

irradiation

In this section, we will present the experiments we performed in

order to describe and characterize the dynamical regimes that depend

on the power of the laser sent through the system. We will start with

low laser power for which the sedimentation of the particles determines

the colloidal dynamics. We then show that by progressively increasing

the laser power, a convective flow is induced, that eventually drags the

particles upward. Finally, we reveal the existence of an intermediate regime

between sedimentation and convection where the falling of the particles is

compensated by the convective flow.

Our experiments consists in tracking as many particles as possible

that are illuminated by the laser beam, and monitoring the evolution of

the particle motions as the power of the laser is increased.

2 mm

Y

Z

X

30 mm

Figure 3.1 – Experimental SetUp in the contra propagating scheme. The red
arrows represents the direction of propagation of each beam, the blue
arrows is the confocal parameter which is in the experiment 2YR = 12mm.
The green area is the field of view of our microscope 350µm× 250µm. For
our measurements we use Melamine bead with a diameter d = 940 nm.
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This monitoring will essentially consists in averaging over the

ensemble of trajectories the Brownian motion of the colloids in order to

provide estimators of mean velocities along the vertical and the horizontal

axes - see figure (3.1).

3.1.1 Force balance point of view

Let us consider the simple case of a single particle, of a density

ρp = 1.6 g.cm−3 for Melamine and radius R, immersed in water at room

temperature. If the density of the particle is larger than the density of

water ρw = 1 g.cm−3, then the particle will settle with a final velocity

VStokes. The final velocity is determined through the second law of Newton

applied on the particle :

Fs+ Fb = Fg, (3.1)

with Fs = 6πηRUStokes is Stokes viscous force (η being the dynamical

viscosity of the fluid), Fb is the buoyancy force from Archimedes’ principle,

and Fg the gravity force. This situation is schematized in the left hand side

of figure (3.2).

Laser Power

Settling Suspension ConvectionSuspension ConvectionSuspension Convection

Y

Z

X

Figure 3.2 – Applied force analysis on a single particle : Fb buoyancy force,
Fg gravity force, Fs Stokes force. The blue arrow represents the settling
flow direction, and the purple arrow represents the induced convective
flow. From left to right :
Settling regime : The sedimentation flow leads the motion,
Suspension regime : the convective flow compensates the sedimentation
flow,
Convection regime : the convection current dominates the dynamic.
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By replacing each force term in equation (3.1), we get the Stokes final

velocity of the particle :

∆ρg
4
3
πR3 = 6πηRUStokes ⇒ ~UStokes =

2∆ρg
9η

R2
~̂z, (3.2)

where ∆ρ= ρw− ρp < 0.

a)

b) c)

Figure 3.3 – Tracked trajectories of Melamine particles with radius R =

0.47µm at low laser power : panel a) trajectories in the Y-Z plan, panels b)
projection along Y axis where themotion is diffusive and panel c) projection
along the Z axis where the motion is ballistic and directed downward due
to gravity. The color bar represents the time when we start tracking the
particle. The red dots represents the initial positions. We remind that the
filed of view is 250µm and 350µm along Z and Y axis respectively.

This analysis is done for a single particle, settling within a large

cell with no influence of finite volume effects, such as no slip boundary
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conditions. For our experiments, performed with an ensemble of particles,

the situation is more complex. First, each particle creating its own flow

dynamics, interparticle long range interactions must be considered. Such

interactions can be described using the Oseen tensor[41, 42]. Then, from

the collective nature of the colloidal assemblies, the local concentration

of particles is inhomogeneous and change with time due to the formation

of more or less dense "blobs"[34]. Considering this, any measurement of

a velocity averaged over the ensemble of particles will depend on every

initial configuration, obviously different from one sample to another and

one experiment to the other.

We show in figure (3.3) an example of trajectories of particles tracked

using a low laser power. We can see clearly from the trajectories that all

the particles are sedimenting along the vertical axis, The motion remains

diffusive along the Y axis only determined by the thermal fluctuations.

3.1.2 Laser induced convective flow

If we now increase the power of the irradiating laser, we progressively

observe a reduction of the sedimentation velocity. In fact, heating the fluid,

the laser reduces its density along the optical beam. As a consequence,

buoyancy driven flow is induced that can eventually drag the particles

upward - see figure (3.2). We show in figure (3.4) an example of tracked

trajectories of Melamine micro particles transported by this induced

convective flow. In such upward transport, the motion is ballistic along Z

axis, while remaining diffusive along the Y direction, as expected. In these

experiments, we work in the contra-propagating laser beams configuration

presented in the first chapter, so that there is no external force along the Y

axis.
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b) c)

a)

Figure 3.4 – Tracked trajectories of Melamine particles with radius R =

0.47µm at high laser power : panel a) trajectories in the Y-Z plan, panels
b) projection along Y axis where the motion is still diffusive and panel
c) projection along the Z axis where the motion is ballistic and directed
upward. The color bar represents the time when we start tracking the
particle.

As seen comparing figures (3.3) and (3.4), the dynamics in the

sedimenting and convecting regimes are similar, apart of course from

the the change of direction in the Z direction.

3.1.3 Quantitative analysis of both regimes

This similarity will allow us using the same statistical tool to describe

quantitatively the colloidal motion. We measure the estimator of the mean
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velocity along the z-direction for one particle tracked among the assembly,

this estimator is defined as :

< Vz >Ni
=

µ∆z
i

∆t
=

Fiext
γ

(3.3)

where < ... >Ni
is the ensemble average over all the (independent)

elementary displacements (Ni − 1) of the particle i tracked on the CCD

camera and Ni is the number of detected positions. < Vz >Ni
corresponds

to the ballistic component of the motion under the external force field

induced by sedimentation or convection . The external force applied to

the particle i is Fiext, and γ is the dragg coefficient given by γ= 6πηR, for a

spherical particle with a radius R immersed in a fluid of viscosity η. The

large volume of our sample and the position of our region of interest over

which we perform our tracking experiments allow us to assume for η the

bulk tabulated value for water at room temperature.

In equation (3.3), µ∆z
i is an estimator of the mean displacement for

the particle i along z , defined in the first chapter by :

µ∆Z
i =

Ni∑

n=1
Zn+1−Zn

Ni− 1
, (3.4)

where Zn is the absolute tracked position of the bead at t= n ∆t.

Our tracking experiment, as schematized in figure (3.2), consist of

collecting the light scattered by the particles entering the laser beam

extension within the sample. By construction , this "field of view" of our

dark field microscope also defines the volume within which the convective

force field is applied. By construction too, we actually track not a single

particle but an ensemble of NT such particles.

Assuming that this ensemble is made of NT mono dispersed particles (i.e.

identical radii), a mean velocity can be measured as:

< Vz >NT
=

< µ∆Z >NT

∆t
. (3.5)
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where < ... >NT
is an ensemble average, but this time defined over NT

in contrast with equation (3.3). Here then the estimator of the mean

displacement along z, is given by averaging over the NT trajectories :

< µz >=

NT∑

i=1
µ∆Z
i

NT − 1
,

with µ∆Z
i given by equation (3.4).

In figure (3.5), we gather measured estimators of the mean velocity

along z, obtained at different laser powers by averaging over the tracked

particles during at least 5 min for each measurement and repeating

twice the measurement for each laser power. The error bars are the

standard deviation around the mean value averaged over a minimum

of two experiments at a set laser power.

Figure 3.5 – Mean velocity along the z-axis for different laser power P0 for 1
µmmelamine beads. The blue region is the sedimentation regime,the green
region is the convective regime, and the white region is the suspension
regime. The errorbars are the standard deviation around the estimator of
the mean velocity.

We can see that at low laser power, the mean velocity along z, is

negative which means that the particle is settling. However, at high laser

power the mean velocity is positive indicating an ascending convective



3.1 controlling the colloidal assembly with tunable laser irradiation 52

flow. At maximal power P = 35 mW, the convective velocity corresponds

to :

< Vz >convection −< Vz >settling=3 ± 0.5 µm/s, (3.6)

We will try to evaluate the convective velocity by modelling, in the second

part of the chapter, the colloidal dynamics under laser irradiation.

3.1.4 Intermediate laser power : a colloidal suspension regime

As seen in figure (3.5), the vertical velocity of the ensemble of

particles can drop to values close to zero for an intermediate laser power

(around 25 mW). In this case, the ballistic contribution of gravity to the

colloidal Brownian motion is cancelled by the opposed ballistic drag of the

assembly due to the convective flow as described in figure (3.2). In this

compensation regime the particles perform a diffusive motion along both

the Y and Z directions. In figure (3.6), we show the trajectories of such a

regime.

Figure 3.6 – Tracked trajectories of Melamine particles with radius R =

0.47µm at a laser power P = 24 mW. In the right hand side a zoom
is presented to displays the "Free Brownian motion" character of the
suspended regimes.

The projections of the recorded trajectories shows free Brownian

motion, the motion is indeed much more diffusive than the two others

regimes. We will quantify this feature below.
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Figure 3.7 – Projections of the trajectories showed in figure (3.6). The "free"
Brownian motion character is clear along the Y and Z axes. The red Dots
are the initial positions.

3.1.5 Mean-square displacement

The Brownian dynamics of a particle can be efficiently analysed

looking at the time evolution of the MSD. Figure (3.8) displays the expected

evolution of the MSD associated with free Brownian motion and Brownian

motion performed in an external force field.

External force:Ballistic regime

M
S
D

time t

t

t
Normal di usion:FBM regime

t

Figure 3.8 – The MSD for different particle dynamics.
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These evolutions follow simple laws, we present in figure (3.8) the

MSDs for three different particle dynamics :

• For free diffusive motion, the MSD grows linearly with time :

< δr2(t)>= 2Dt, (3.7)

with D is the diffusion coefficient, we analyse projected trajectories on

vertical and horizontal axes, the MSD is defined in one dimension1.

• Under an external force field the motion is directed : the MSD is

quadratic with respect to time :

< δr2(t)>= V2
0t

2+ 2Dt, (3.8)

where V0 is the velocity induced by the force field with V0 =
Fext
γ , as

discussed in equation (3.3).

The quadratic term, known as the ballistic contribution, plays also an

important role in the context of active Brownian motion [43]. At the level

of single recorded trajectory j the Time Averaged MSD (TAMSD) δr2(τ) is

defined a follows[37], with r=Y or r = Z in our experiments :

δjr
2(τn) =

1
Nj

Nj∑

i=1

[rj+i− rj]
2 (3.9)

with Nj the number of time lags used to compute the MSD over the

trajectory length. In addition, τn = n∆t represents the time interval over

which the squared displacements are averaged.

When tracking multiple trajectories, it is interesting to define the

Ensemble Time Averaged MSD (ETAMSD) for an ensemble of NT particles

as :

< δr2(τ)>NT
=

NT∑

j=1
δjr

2(τ)

NT
. (3.10)

We displays in figure (3.9), such ETAMSD in the three different regimes of

experiment. For PLow and PHigh, the ballistic contributions from settling

and convection gives a clear parabolic shape to the ETAMSD along the Z

1 For free Brownian Motion that develops in d-dimension, one has:

< δ(d)r2(t)>= 2dDt,
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axis (< δZ2(τ)>NT
) in agreement with the the model presented in equation

(3.8). In contrast< δY2(τ)>NT
is linear with time, showing how themotion

remains freely diffusive, according to the equation (3.7). It is striking that,

in the suspension regime both < δY2(τ)>NT
, and < δZ2(τ)>NT

are linear

with time. Under the compensation of the settling by the convective

flow, the colloidal assembly develops a dynamic which ressemble in all

directions the dynamics of free Brownian motion.

By fitting the experimental ETAMSD to the equations (3.7) and (3.8)

a measure of the diffusion coefficient is obtained :

Laser power P Dy(µm
2/s) Dz(µm

2/s)

P=1mW 0.528± 5× 10−4 0.573± 900× 10−4

P=24mW 0.616± 5× 10−4 0.622± 10× 10−4

P=36mW 0.596± 1× 10−4 0.623± 150× 10−4

and also the drag velocities :

Laser power P Vy(µm/s) Vzµm/s)

P=1mW 0.012± 0.016 −0.983± 0.071

P=24mW 0 0.131± 0.02

P=36mW 0.125± 0.015 1.1± 0.031

P=1mW P=24mW P=35mW

Figure 3.9 – ETAMSD in the three regimes. In the suspended regime both
the TEAMSD along Y and Z are diffusive. The errorbars represents the
standard deviation around the ETAMSD value defined in equation (3.10)
for a given time lag.
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3.1.6 Diffusion Coefficient from the probability density function of displace-

ment

The diffusion coefficient is the ratio between the thermal fluctuations

and the dissipation within the fluid due to the viscous drag[21]. Defined

by Stokes- Einstein equation, the diffusion coefficient writes as :

D=
kBT

γ
=

kBT

6πηR
, (3.11)

As discussed in equation (1.5), the diffusion coefficient can be measured

from the MSD calculated over a Brownian trajectory. But it can also

be measured, from a statistical point of view, using the variance σ2 of

the displacements probability distribution, known as Probability Density

Function (PDF).

For free Brownian motion, such distribution follows a normal law,

with a Gaussian shape and a variance for a single particle i, defined as :

σ2 = 2Di∆t (3.12)

where ∆t is the sampling time given by the inverse of the frame rate and

Di the diffusion coefficient associated with the particle i.

In our experiment however, and just as for the mean displacement,

we are dealing with an ensemble of NT particles. Two possible methods,

that turn our to be equivalent, to determine the diffusion coefficient :

Method I: This method is based on the concatenation of all the detected

displacement in a single, large statistical ensemble for which the

variance is computed. The result is presented in figure (3.10). This

method assumes that all the particles are indiscernible, with identical

radii and developing the same type of Brownian motion (ballistic

or diffusive) with stationary PDF of displacements. The Melamine

beads have a certain level of size dispersion that we will account

for when comparing the experimental diffusion coefficient and the

corresponding evaluation from Stokes Einstein law (3.11).
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Figure 3.10 – Distribution of all detected displacement for Ml beads at P
= 1 mW. The total number of points used to compute the distribution is
Ntot =

∑
iNi = 4.105 displacements. The histograms are constructed as

presented in the methods section in chapter I. The red continuous line is a
Gaussian fit of the PDF.

Measuring the diffusion coefficient using the variance of the PDF

is more sensitive to localization errors[44], introduced in the first

chapter, than the diffusion coefficient measured by fitting the MSD.

The measured diffusion coefficient along Y and Z axes are : DI
Y =

0.478± 0.002µm2/s and DI
Z = 0.486± 0.002µm2/s. The estimator

of the mean velocity given by equation (3.3) is < VZ >Ntot
= 0.973±

0.035. Nevertheless, the estimators of the mean velocity along the

vertical axis from the variance method and the MSD are in agreement.

Method II: This method computes the diffusion coefficient for each NT trajec-

tories and uses the ensemble of NT diffusion coefficients to get a

mean ensemble diffusion coefficient. An example of the PDF of

displacements for one trajectory is presented in figure (3.11). The

width of this distribution gives the variance given in equation (3.12).
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Figure 3.11 – Distribution of displacements for one Ml bead at P = 1 mW.
The red continuous line is a Gaussian fit of the PDF. The total number of
points used to compute the distribution is Ni = 4150 .

Using this second method, we present in figure (3.12) the distribu-

tions of diffusion coefficient for different powers. In order to have a better

insight about the distributions we present in figure (3.13) the top view

of figure (3.12). The distributions are computed from the NT diffusion

coefficient of the detected particles during each experiment, and we repeat

at least twice each experiment in order to assess the reproducibility of our

measurements for each laser power that we use.

The measured diffusion coefficient using the second method is <

Dy >
MII= 0.491± 0.005µm2/s where the errors are the standard errors

calculated by dividing the estimator of the standard deviation by the

square root of the size of the statistical ensemble used to measure the

estimator of the mean diffusion coefficient. This value is comparable from

the statistical point of view to the diffusion coefficient measured using

method I : <Dy >
MI= 0.473± 0.003µm2/s.

This values are to be compared with the theoretical diffusion

coefficient, calculated at room temperature and the uncetainties are

taken around the size dispersion around the mean radii, which is :

D0 = 0.521± 0.025µm2/s.
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1 mW 10 mW 16 mW 24 mW 35 mW

Figure 3.12 – PDF diffusion coefficient along y for different experiments. The
numbers of bins used to present the distributions is determined by the
Rice rule define chapter I. The counts as presented in the methods section
is the number of times we count a diffusion coefficient within the intervals
defined by the bin width.

As a conclusion of this section, the measured diffusion coefficient

using the MSDs or the variance of the PDF of displacements gives

comparable results, taking into account the sensitive aspect of the variance

based method due to localisation errors. We demonstrate that the diffusion

coefficient is independent from the laser power, taking into account the

increase of the SNR by increasing the laser power. This indicates that the

heat dissipated within the fluid by the laser irradiations induces thermal

changes small enough as not to modify neither the dynamical viscosity of

the fluid nor the diffusion coefficient itself.
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1P (mW) 10 16 24 36

Figure 3.13 – Color map of PDF diffusion coefficient along y for different
experiments. The red dashed line are the theoretical diffusion coefficient
calculated from Stokes Einstein relation taking into account the size
dispersion.

At a constant Stokes drag coefficient γ= 6πηR= 7.88× 10−9Kg.s−1

for our colloidal particles of radius R = 0.47µm and taking the dynamic

viscosity of water at 250C, the expected change in diffusion coefficient as

temperature of the fluid is modified is :

δD

δT
∝ kB

γ
= 1.75× 10−3µm2.s−1.K−1.

As our model will indicate, thermal gradients created by the laser under

our experimental conditions are much too small to induce any significant

change in the diffusion coefficient.

3.1.7 Suspension regime : Influence of the density of the colloidal particles

As determined by the laser power at which sedimentation is balanced

by the convective grag, the suspension regime is obviously expected to

depend on the density difference ∆ρ = ρw − ρp , as already discussed

in equation (3.2). To see this, we moved from Melamine particles to

polystyrene ones, keeping the same radii between the 2 samples. Melamine

has a density 1.5 higher than that of polystyrene. The results of our vertical

velocity measurement at different laser power are presented in figure

(3.14).
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Figure 3.14 – The suspension power for melamine beads is greater than the
one needed to suspend polystyrene beads. The red dots and the blue stars
are the measured velocities for polystyrene and Melamine respectively,
and the error bars represents the standard error with a confidence interval
of 0.95%.

This clearly shows these influence of density on the onset of the

suspending regimes, with Psusp = 7.5mW for polystyrene and PSusp =

24mW for Melamine.

3.1.8 Steady state dynamics

The steady state condition is one important assumption in analysing

our data . This assumption is also important with respect to the model

presented below. In order to verify this experimentally, we fix the laser

power and repeat the mean velocity measurements. The results are

displayed in figure (3.15) which do reveal that, at a fixed laser power, the

dynamics of the colloidal particles reaches a steady state in term of vertical

velocities. This is confirming the assumption of steady state velocities used

to model the absorption by water of laser irradiation and to calculate the

induced velocities within the fluid.
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Figure 3.15 – Evolution of the estimator of the mean vertical velocity of
polystyrene beads of radius R = 0.5µm. Each data point represents the
mean velocity averaged over the mean displacements detected during one
minute. The error bars are the standard deviation around the mean velocity.
The blue, orange and red colors represents laser powers at 1 mW, 8 mW
and 35 mW respectively.

3.2 modeling the light-induced convective currents

In this section, we propose to model the observed effects induced

by a laminar convective effect with the combination of mass and heat

transports. This model relies on a boundary layer formulation of our

experiment, which allows simple scales to be derived [45, 46].

The experiment is schematized in figure (3.16). It consists of a Gaussian

beam immersed within a fluidic cell which lateral dimensions are much

larger than the waist of the beam but which thickness is smaller than the

Rayleigh length (YR =
πw2

0
λ ) of the beam. Within such dimensions, any

effect related to confinement within the fluidic sample is neglected. The

laser beam is then considered as a cylindrical ’hot’ wall which induces

mass transport in a simple laminar way.

3.2.1 Formulation of the problem

Our aim is to describe the flow induced by the temperature gradient

generated by the irradiation laser which energy is (partially) absorbed by

the water surrounding the beam.
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Figure 3.16 – Left hand side : front view of the sample, with the dimensions
: Lx = 10mm, Ly = 2mm, Lz = 30mm. Right hand side : Cross cut
in the (XZ) plan, W0 = 50µm is the beam waist with a Rayleigh length
YR = 12mm, and δT and δu are the thermal and velocity boundary layers
respectively.

Fluidic velocity profiles are determined through the Navier-Stokes

equation (incompressible fluid) [47] :

ρ0
D~v

Dt
= η~∇2

~v− ~∇P+ ρ0~g (3.13)

where ~v is the velocity of a fluid cell of unit mass, density ρ0, dynamic

viscosity η (entering the Stokes drag for a spherical bead of radius Z :

γ= 6πηR), under a gravitational acceleration ~g and pressure P. We adopt

the Lagrangian description of the fluid motion with :

D~v

Dt
=

∂~v

∂t
+(~v.~∇).~v, (3.14)

the term ~v.~∇ describing the advective contribution when following a fluid

cell in its motion. Each term of equation (3.13) has a clear physical meaning

:

• η~∇2
~v corresponds to the viscous force generated by the flow on the

cell within the fluid,

• −~∇P is the pressure force exerted of the fluid cell,

• ρ0~g is the weight exerted by gravity on the cell.
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When the fluid is at rest (~v= ~0), one recovers the hydrostatic equilibrium

condition : ρ0~g− ~∇P = 0.

But when turned on, the laser will heat the fluid and thereby modify

its density. We assume that this modification is a small change δρ in density

with ρ = ρ0 + δρ, δρ ≪ ρ0. In the line of the Boussinesq approximation

[48], this small change breaks the hydrostatic equilibrium with:

ρ0~g− ~∇P =−δρ~g (3.15)

and puts the fluid into motion along the vertical (Z) axis. This induced

motion is described by the Navier-Stokes equation:

ρ0
Dvz

Dt
= η~∇2vz+ δρg, (3.16)

together with the mass conservation equation including the change of

density :

Dρ

Dt
+ ρ~∇.(vzẑ) = 0=

Dρ0

Dt
+ ρ0~∇.(vzẑ)+

Dδρ

Dt
+ δρ~∇.(vzẑ) (3.17)

and obviously Dρ0
Dt = 0 and Dδρ

Dt + δρ~∇.(vzẑ) = 0. This implies that
~∇.(vzẑ) = 0 so that vz = vz(x) and ~∇2vz = ∂2vz

∂x2
in equation (3.16), and

Dvz
Dt vz =

∂vz
∂t considering that vz

∂vz
∂z = 0.

Finally then, the Navier-Stokes equation (3.16) takes the simple form

:

ρ0
∂vz

∂t
= η

∂2vz

∂x2
+ δρg. (3.18)

We limit our solution to the steady state regime, with ∂vz
∂t ∼ 0.

3.2.2 Modeling the heat transfer.

The main task for our description is to model the change in density

δρ of the fluid induced by the laser heating mechanism. The change in

density is related to the change in temperature δT through the thermal

expansion coefficient β (at constant pressure) with :

δρ=−βρ0δT , (3.19)

the change of temperature δT = T(r)− Tbath being the difference between

the temperature at a given radial distance from the optical axis (r= 0) and
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the unperturbed fluid temperature Tbath.

This change of temperature is determined along the displacement of

the fluidic cell, from the heat equation :

ρ0Cp
DδT

Dt
+ ~∇·~J=QL, (3.20)

where Cp is the heat capacity of the fluid (water), ~J the heat flux and QL

the heat generated (per unit of volume and time) in the cell by water

absorption of the laser power.

The heat flux ~J is related to the temperature gradient through

Fourier’s law with ~J = −λ~∇T where λ is the thermal conductivity of

water (0.6 W.m−1.K−1). We will here restrict our description to local

changes, assuming that we can neglect the convective contribution (~v·~∇)δT .

Considering that for the fluid (as discussed above) vx ∝ 0, this assumption

amounts to neglect ρ0Cp(vz
∂δT
∂z ) with respect to QL, which can be done

following simple estimates :

• the heat generated by water absorption of the laser beam QL =

A 2P0
πw2

0
e−r2/a2 with a2 =w2

0/2 is ca. 9.8×105 W.m−3 for a laser power

of 35 mW with a waist of 50 µm and an absorption coefficient for

water A= 0.3m−1 at λ= 637nm. This estimate is done at the edge of

the waist r∝ a where the convective contribution is expected to be

maximal.

• while the convective contribution along the z-axis ρCpvz
∂δT
δz is

estimated from the typical velocities vz ∝ 10−6m.s−1 measured in

the first part of the chapter. Considering temperature changes of the

order of 1K over µm distance, this contribution is ca. 4.18 W.m−3,

i.e. much smaller than QL.

Under such assumptions, the steady state (∂δT∂t = 0) heat equation simply

writes :

−λ~∇2δT =QL,

that is explicitly as

λ
1
r
∂r[r∂rδT ] = −A

2P0
πw2

0
e−2r2/w2

0 . (3.21)

This equation can easily be solved assuming two boundary conditions :
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• r∂δT∂r = 0 on the optical axis at r=0, cylindrical symmetry of

temperature gradient.

• δT(r = δT/2) = 0 at a distance away from the optical axis given by

the thermal boundary layer thickness δT .

With such boundary conditions, we solve equation (3.21) as:

δT =
A.P0
4.π.λ

(

−2ln
(

2.r
δT

)

−E1

(

r2

w2
0

)

+E1

(

δ2T
4w2

0

))

. (3.22)

where E1[...] is the exponential integral. The detailed calculation to find

this solution are presented in the appendix A.

3.2.3 Thermal vs velocity boundary layer thicknesses

The ratio between mass and thermal diffusion rates is fixed by the

Prandtl number. In water, Pr= 7 implying that the fluid velocity induced

by the change of density δρ is controlled by the slow thermalisation of

unit volume fluid cells displaced from thermal equilibrium[47]. As a

consequence, the ratio between the velocity δv and the thermal δT boundary

layer thicknesses is :
δv

δT
∝ Pr1/2 > 1. (3.23)

With such Pr > 1, the thermal boundary layer thickness simply scales as

[49] :

δT = Ra−1/4L (3.24)

where Ra is the Rayleigh number characterizing the flow driven by

buoyancy for the maximal temperature change δTmax of the system :

Ra=
gβρ0

ηλ
δTmax.L3 (3.25)

with L the characteristic length over which the heat transfer is defined. For

our Gaussian laser beam heating the fluid, we will take L∝ 2a.

The maximum temperature change δTmax is given by equation (3.22)

evaluated on the optical axis, at r=0. But since δT is itself a function of

δTmax, this equation becomes implicit. A few approximation can however

be made.
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First, E1(x) ∼ −γ− ln(x) when x → 0 with γ the Euler-Mascheroni

constant. This gives from equation (3.22) :

δTmax ∼
A.P0
4.π.λ

(

2ln
(

δT
2a

)

+γ+E1[
δ2T
4a2 ]

)

. (3.26)

Of course, the thermal boundary layer extends much beyond the mere

extension of the laser beam. With δT >> 2a therefore, E1[
δ2T
4a2 ] ∼ 0.

We graphically solve therefore the simple equation :

f= IAδTmax+ 1/2ln(δTmax)+ 2ln(IB)−γ= 0 (3.27)

with :

IA=

(

AP0

2λπ

)−1

= 114.2 m2K−1

IB=

(

gβρ0

ηλ

)1/4

(2a)3/4 = 4× 10−3 W−1.s−1
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Figure 3.17 – The function f is defined in equation (3.27) and the solution is
given for : δTmax = 6.7 mK..

The solution is determined as δTmax = 6.7mW which corresponds to

a thermal boundary layer thickness of δT = 0.94×10−3m. The thickness

of the corresponding velocity boundary layer follows with δv =
√
PrδT =

2.5× 10−3m.

Starting from δTmax along the optical axis, the full profile of the

temperature change can now be calculated from equation (3.26), in the

(X,Z) plane and also as a function of the laser power, a critical quantity for

the experiments presented in the first part of the chapter.
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Figure 3.18 – Temperature change profile map in the (~ex,~ez) plane for a laser
power P0= 35 mW, taking the absorption of water at λL = 637 nm.
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Figure 3.19 – Temperature change profiles for different laser powers ine the
same conditions as in figure (3.18).

3.2.4 Fluidic velocity profile

Now that the temperature change δT induced by the laser is

calculated, we can derive the corresponding fluid density change δρ =

−βρ0δT . We will thereby calculate the steady state velocity profile of the

heated fluid with the thermal boundary layer δT from the Navier Stokes

equation described above. In fact, the width ∆ of the field of view of our

microscope is such that ∆ < δT . In such conditions of observation, we will

approximate equation (3.26) as δT(r) ∼ δT(x).
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Beyond the thermal boundary layer, the temperature is not evolving

any more (δT = 0) so that the system to be solved is split in two regions :






η∂v
(1)
z

∂x2
= βρ0δT(x) for |x|< δT

2

η∂v
(2)
z

∂x2
= 0 for

δT
2 < |x|< δv

2

(3.28)

keeping in mind that in water, δv > δT . We impose the boundary conditions

for the velocity and its derivative as :

• ∂v
(1)
z

∂x2

∣

∣

∣

x=0
= 0

• v
(2)
z

(

±δv
2

)

= 0, considering that the fluid is at rest at the end of the

velocity boundary layer,

and we impose at the merger of the thermal and velocity boundary layers

the continuity of vz and
∂vz
∂x :

• ∂v
(1)
z

∂x2

∣

∣

∣

x=±δT
2

= ∂v
(2)
z

∂x2

∣

∣

∣

x=±δT
2

• v
(1)
z

(

±δT
2

)

= v
(2)
z

(

±δT
2

)

The system (3.28) supplemented by the boundary and continuity

conditions yields the velocity profile vz(|x|) from the optical axis to the end

of velocity boundary layers. This profile is drawn on figure (3.20).
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Figure 3.20 – Velocity profile for P0 = 36 mW, the maximum velocity is in
the center of the beam Vmax=3.2 µm/s. The black and the red dotted line
shows the thermal and the velocity boundary layer, respectively. The blue
region is the region where the temperature gradient drops to zero, the light
red region is the region where the gradient is non zero, and the dark red
line represents the width ∆ of the field of view of the imaging system with
∆= 11.4 µm.
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We have highlighted in figure (3.20) how the width of the microscope

field of view probes only a small region of the thermal boundary layer

where the induced fluid velocity can be considered as uniform, hence

providing the appropriate conditions for performing experiments under

laminar flows.

The predicted convective velocity on the optical axis vmax = vz(0) =

3.2 µm.s−1 for an irradiating laser power P0 = 35 mW, thus associated

with a temperature change of δT = 7,3.10−3 K, appears to be consistent

with our experiments, where we measured -see figure (3.5) :

< Vz >PLow=−1.5± 0.25 µm/s,

< Vz >PHigh
= 1.5± 0.3 µm/s,

δ < Vz >exp=< Vz >PHigh
−< Vz >PLow= 3± 0.55 µm/s.

(3.29)

These values clearly shows that in our experiments, the convective

motion of the fluid dominates over diffusive transport. This is quantified

through the Péclet number. Figure (3.21) display on the evolution of Pe as

a function of the convective velocity under our experimental conditions.
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Figure 3.21 – Dependence of Peclet number on the flow velocity. When the
flow velocity exceeds 0.436 µm/s, the advective motion starts dominating
over the the diffusive motion. The red dotted line correspond to our
experimental regime of induced convection with PHigh = 35 mW
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3.3 conclusion

The existence of the three different regimes depending on the laser

irradiation has been demonstrated by tracking the colloidal assembly

using Single Particle Tracking methods. Two ballistic regimes have been

observed for the lower and higher limits of laser power, and a diffusive

regime mimicking free Brownian motion in all directions.

The diffusion coefficient was then measured and we demonstrated

that the diffusion coefficient does not depends on the laser power.

In addition, a model was proposed to calculate the convective drag

velocity induced by the heating of water by laser irradiation, which

combines Navier-Stokes and Fourier’s equations. The predicted convective

flow velocity is in good agreement with the estimators of the mean velocity

measured from Brownian trajectories.

The possibility to compensate sedimentation using a laser that

irradiate the fluid is an interesting example where a buoyancy effect is

induced by changing the fluid density through an increase of the local

temperature of the fluid. In other words, the laser, used for tracking the

particle trajectories within the colloidal suspension, injects a given quantity

of heat that is fixed by its power. Our results describe therefore dynamical

regimes of a colloidal suspension which steady states are modified by this

external injection of heat. In the next chapter, we will show that, beside

heat, the irradiating laser can also inject work on the system. This takes

the form of the action of optical forces on the colloidal particles which can

be measured with high resolution and levels of confidence by using similar

statistical tools.



4
MEASUR ING RADIAT ION PRESSURE AT A FEMTO

NEWTON RESOLUT ION LEVEL WITH BROWNIAN

COLLOIDS

Manipulation of particles at the micro and nano scales through light-

induced forces is most efficient at low Reynolds number [50, 51], because

of buoyancy and the dominance of viscous force over inertial force. In

such conditions, Brownian motion becomes an efficient tool for measuring

small forces. This seems paradoxical. On the one hand indeed, thermal

agitation that drives Brownian motion is an inevitable source of noise.

But on the other hand, this noise has equal intensity at all frequencies so

that the statistical properties of Brownian motion follow specific laws. In

the first section of this chapter, we will show how these laws can lead to

efficient methods for measuring small forces on a Brownian micro particle.

We will then discuss a statistical force resolution criteria valid for an

ensemble of Brownian particles. Finally, we will show experimental results

obtained for measuring radiation pressure force applied on an ensemble

of Brownian particles. We will explain how optical force field profiles can

be reconstructed through such type of measurements involving Brownian

motion.

4.1 optical forces measurement.

The mechanical interaction between light and matter is very weak at

our scales. Nevertheless, at the micro and nano scales the force resulting

from momentum exchange between photons and particles can become

significant. Observing and measuring such forces has a long history. In

1970, A. Ashkin, had the idea to exploit such mechanical action in order

to immobilize and trap micro-particles in water at room temperature [52].

Using radiation pressure force to trap micro-particles, Ashkin et al., were

able to induce a ballistic velocity Vballistic
Particle = 26± 5µm/s on the particle

under low laser power P = 19 mW. Such manipulation of micro particles

72
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led to a lot of practical applications [53], among which of course Ashkin’s

optical tweezers for which he was awarded the 2018 Nobel prize is physics.

In our experiments we are working with Melamine micro particles

of radius R = 0.47µm. We present in the next section the theoretical

framework for radiation pressure on particle for which the size is

comparable to the wavelength of the light field.

4.1.1 Optical forces in Mie regime

The different regimes of light scattering on a homogeneous sphere

can be classified by comparing the diameter a = 2R of the sphere to the

wavelength of the light λ interacting with the particle:

• Rayleigh scattering regime : a ≪ λ, where the amplitude of the

scattered light is proportional to 1/λ2, and the volume of the particle.

• Ray optics regime : λ ≫ a, where the beam propagate according

geometrical optics laws.

• Mie scattering regime : λ∝ a. This is the regime of our experiments.

Shape and permetivity of the sphere determine the scattering

patterns through the motion of scattering and extinction cross

sections.

In order to compute the radiation pressure in the regime of Mie

scattering, we need to calculate the extinction σext, scattering σscat, and

absorption σabs cross sections of the spherical particles involved in the

problem[54–56]. In the case of spherical particles, radiation pressure can

easily be evaluated from the "radiation pressure cross section" [57] :

σradiationpressure = σext−< cosθ > σscat, (4.1)

where < cosθ > is the asymmetry factor who characterize the relative

importance of forward vs. backward scattering and σext = σscat+σabs ( in

our case σabs = 0 because we work with dielectric particles ) . We thus get

the mean radiation pressure force applied in the Mie regime as:

FMie
RP =

σRPPinc

c
,

=
P

πw2
0c

σext(1−< cosθ >),
(4.2)
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where P is the power of the incident beam in (W), w0 is the waist of the

beam (m) , and c is the speed of light. We use the online Mie scattering

calculator1 to compute Mie cross sections. For our experimental conditions,

we get :

FMie
RP = 0.98610−13P. (4.3)

We will compare this prediction to our measurements in section (4.6).

4.1.2 Optical Setup

The optical setup is sketched in chapter 3 figure (2.1). For all our

force measurements, we set the input polarization at the PBS at 45o so

that the power in each beam is the same. After that, we can finely tune

the power difference ∆P in order to increase the power in one arm and

decrease the power in the other arm, keeping the total power Ptot

4.2 brownian motion in an external force field

In this section we detail our method of measurement used to extract

the features of the external force field applied on a Brownianmicro-particle

[3, 58]. We consider a single particle of a diameter d = 2R, made in

a material of density ρp immersed in water at room temperature. The

particle undergoes Brownian motion due to thermal fluctuations. In the

following we will present the dynamical properties of Brownian motion.

4.2.1 Langevin equation

Langevin equation is the stochastic version of Newton second law. It

consists in describing the effect on the particle due to thermal excitations of

the fluid as the sum of a random force FThermal and a viscous force given by

the Stokes drag −γv, with v the velocity of the particle in the fluid and γ=

6πηR, η the dynamic viscosity of the fluid. Both forces are related through

the Fluctuation Dissipation theorem with Fthermal(t) =
√
2kBTγL(t) where

kBT is the thermal energy and L(t) is a random (Wiener) process with the

following properties :

I. L(t) is erratic, rapidly fluctuating function with :

< L(t)>= 0, (4.4)

1 https://omlc.org/calc/mie_calc.html
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<...> is the average over all the realization of the process.

II. L(t) does neither influence L(t<t’) nor L(t>t’) :

< L(t)L(t ′)>= δ(t− t ′), (4.5)

the realizations of L(t) are uncorrelated in time. With this property

the process is called a Markov process : the future state xn+1 depends

only on the present state xn and not on the past {xi}i=0,1,2,...,n−1 ones.

III. L(t) is a Gaussian process ⇔ < L(t)> and < L(t)L(t ′)> characterize

the process completely.

A random process with the properties (I), (II) and (III) is called

"Gaussian White Noise".

From Newton’s second law, the motion of the particle is then given

by the simple equation:

mv̇=−γv+ FTherm(t)+ Fext (4.6)

including the presence of an external (non stochastic) force Fext exerted on

the particle. Note that equation (4.6) is a projection taken on a given axis

of the reference frame. In our experiments, following its description given

in chapter 2 figure (3.1), the external optical force is exerted on the particle

along the optical Y-axis. Equation (4.6) is defined over the momentum

relaxation frequency Ω= γ
m . In our conditions, working with a particle of

radius R= 470 nm immersed in water with η= 0,89.10−3 Pa.s one derives

Ω = 1,36.106 Hz. This high value clearly indicates that in the spectral

bandwidth available in our experiments [0.01 to 103] Hz, the inertial term

mv̇ in equation (4.7) can safely be neglected . This corresponds to the low

Reynolds number limit of the equation of motion and corresponds to the

"over-damped" regime of Brownian motion.

4.2.2 Free Brownian Motion in the over-damped regime

With no external force, i.e Fext = 0, the Brownian motion of the

particle is said to be "free" and Langevin equation is simply :

γ
∂Y

∂t
=

√

2kBTγL(t), (4.7)

where the left hand side represents the dissipation of energy as a result

of friction. The right hand side represents the fluctuations due to the
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collisions between the molecules of the solvent that keep the particle

moving. The probability to find the particle at the position x at time t is

given by the diffusion equation first derived by Einstein [59] :

∂P(r,t)
∂t

=D
∂2P(r,t)

∂x2
, (4.8)

where D= kBT
γ is the diffusion coefficient, and where r can stand either for

the spatial coordinate variables Y and Z. The solution of equation (4.8) is

the Gaussian probability density function (PDF) :

P(r,t) =
1

σr

√
2π

e−( r−µr
σr

)2 , (4.9)

where σ2 = 2Dt is the variance of the position PDF. Experimentally we

track the trajectories Y(t) and Z(t) projected along Y and Z axis (see chapter

1), where t is sampled at f=120 Hz. In this way we generate a series of

positions along both axes

Y(τn) = Yn, Z(τn) = Zn (4.10)

where Y(τn) and Z(τn) are the measured positions of the particle recorded

in the frame n at each time τn = n∆t, where ∆t= 1/f is the time between

two successive frames. We then construct experimentally the discrete

version of the PDF (4.9):

P(rn,tn) =
1

σrn

√
2π

e
−( rn

σrn
)2 , (4.11)

by measuring all the trajectories from the same initial position (0,0) at time

step tn.

From the dynamic point of view, the discrete version of (4.7) gives

the Root Mean Squared RMS displacement due to thermal fluctuations:

1
∆t

(rn+1− rn) =
√
2DLn,

< (rn+1− rn)>=
√
2D∆t < Ln >,with < Ln >= 0

(rn+1− rn)
2 = 2D∆t2L2n.

(4.12)
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where D is the diffusion coefficient defined by Stokes-Einstein equation.

This last relation can be connected to the MSD, defined (Chapter I for more

details) as:

< (rn+1− rn)
2 >j=

NI∑

i=1
(ri+j− ri)

2

NI
= 2D∆t, (4.13)

where τj = j∆t defines the time lag over which we compute the mean

squared displacement and NI is the number of temporal intervals over

which we calculate the mean squared displacement.

From (4.12) and (4.13) we get :

< (rn+1− rn)
2 >= 2D∆t2 < L2n >= 2D∆t,

⇒< L2n >=
1
∆t

.
(4.14)

Hence we know the variance2 of Ln:

V(Ln) =< L2n >−< Ln >2=
1
∆t

. (4.17)

In order to work with discrete random variable following normalized

normal law N(0,1), we replace Ln by :

ln = Ln
√
∆t (4.18)

hence with < ln >= 0 and < lnln ′ >= δnn ′ , where δnn ′ = 0 when n , n ′

and δnn ′ = 1 when n= n ′ .

Figure(4.1) panel (a) displays the experimental 1D trajectories along

both the Y and Z axes, reported from a common (0,0) origin.. Panel

(b) displays the corresponding PDF of positions. Projected along the

Y-axis, the motion of the particles does not experience any external force

: the Brownian motion is therefore free. As seen the mean displacement

in indeed zero and the variance grows linearly with respect to time as

expected from Einstein’s relation σ2 = 2Dt. Along the vertical axis, the

2 The variance is defined as follows :

V(X) = E(X2)−E(X)2, (4.15)

where m= E(X) =
∑n

i=1piXi is the expected value of the random variable X, and pi are
the probabilities that X= xi. The standard deviation is defined as:

σX =
√

V(X). (4.16)
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trajectories and the evolution of the position PDF appear clearely different

in panels c) and d) of figure (4.1), manifesting along this Z-axis the presence

of gravity as an external force field.

a)

c) d)

b)

Time t (s)

010

Figure 4.1 – Experimental Brownian trajectories projected along the
horizontal Y-axis in panel a), and along the vertical Z-axis in panel c).
The PDF of positions P(x,t) shown in panels b) and d) are constructed by
the histogram of position at a given time t (The black dashed line in panel
a) is an example of the statistical ensemble, consisting of the positions of
the particles at time t, over which we construct the histogram). The Y and
Z axes are the same axes defined in figure (3.1). The counts in panels b)
and d) are normalized by the total number of trajectories.

4.2.3 External conservative force on a Brownian particle

The PDF of a Brownian particle subjected to an external force field

Fext (constant in space and time) follows the Smoluchowski diffusion

equation[3, 60] :

∂P(r,t)
∂t

=D
∂2P(r,t)

∂r2
−

1
γ

∂

∂r
(FextP(r,t)). (4.19)

The solution in that case is, just like for the case of free Brownian

motion, a Gaussian PDF :

P(r,t) =
1

σr

√
2π

e−(
r−µext

r
σr

)2 , (4.20)

but this time with a mean shifted from zero by a mean displacement µext
r

simply related , in the over-damped regime, to the external force through
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µext = Fext
γ twhere t is the time of observation. This type of time dependent

PDF is observed in panel d) of figure (4.1) in the situation of our Brownian

particles diffusing under the gravity force field. The shift of the mean of

the distribution with time is clearly seen. Remarkably, the variance of the

distributions remain determined by Einstein’s relation and therefore are

equal to the one presented panel b) where there is no external force field.

From Einstein coarse-grained approach, the positions are considered

as rapidly fluctuating stochastic variables over a characteristic time

τE. Langevin coarse-grained time scale τL for which the velocities are

considered fast and fluctuating stochastic variables, is smaller than

Einstein’s characteristic time τE. In terms of stochastic process from one

hand, Langevin used an Ornstein-Uhlenbeck process [61], and from the

other hand Einstein used a Wiener process [62] to analyse the trajectory

of a Brownian particle. The two points of view are equivalent. In our

analysis, we are more interested in the dynamics of the particles so we

will work with Langevin approach. In that case, Langevin equation (4.6)

in an external force field Fext is written for an elementary displacement

monitored on a time interval ∆t :

< rn+1− rn >=
Fext

γ
∆t+

√

2kBT∆t
γ

< ln >, where < ln >= 0

= µext,

(4.21)

where µext is the ballistic contribution to the mean displacement due

to the applied external force. Experimentally, using a finite set of Nt

displacements, we never measure the actual mean value µext but only an

estimator of it, as discussed in chapter one. The estimator of the ballistic

mean is given by averaging over the ensemble ofNt detected displacement

as :

µ∆r =

Nt∑

n=1
rn+1− rn

Nt− 1
. (4.22)

with ∆r is the ensemble of Nt displacements.
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Figure 4.2 – Simulated Displacement distribution P(∆r,∆t) for a Brownian
particle. Blue line : free Brownian motion without external force, red line :
Brownian motion under an external force Fext directed along r, with the
corresponding µext ballistic shift.

From the estimator, we can obtain a mean value for the external force

applied on the particle, as :

< Frext >∆r= γ
µ∆r

∆t
=

γ

∆t

Nt∑

n=1
rn+1− rn

Nt− 1
. (4.23)

4.2.4 Measurement uncertainties

There are two statistical quantities that characterize measurement

errors. The first one is the standard deviation σ (SD), which gives the

dispersion of a random variable around its mean value. SD quantifies

the variability of the measurement with respect to the mean value of the

statistical ensemble the measurement is drawn from. The second quantity

is the standard error (SE) which measures the precision by which the mean

of the sample can be determined. The SE therefore gives the uncertainty

of a measurement performed. The standard error is defined from the

standard deviation, as now discussed.

Let us consider the example of our statistical sample composed of

Nt Brownian displacements {∆y}N measured on the Y-axis as the direction
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along which the force Fext is exerted in our experiment. The variance is

defined as follows :

σ2
∆y =

1
N− 1

N∑

i

(∆yi−µ∆y)
2 (4.24)

where ∆yi = yi+1 − yi and µ∆y =
∑Nt

i=1∆yi
Nt−1 . The SD

√

σ2
∆y = σ∆y can

obviously be defined even though the random variable is not normally

distributed. The meaning of the SD is that 95% of the random variables

falls within 2σ from the sample mean µ∆y.

Now, the value of the SD of the means themselves expected from

several samples can be estimated from a single sample through the

standard error defined as :

SE(∆yi) =
σ∆y√
N
, (4.25)

where Nt giving the sample size. The SE thus measures the uncertainty

of a statistical dtermination of the external force and is used to compute

confidence intervals given as :

• for a 68% confidence interval :
[

µ∆y−
σ∆y√
Nt

;µ∆y+
σ∆y√
Nt

]

(4.26)

• for a 95 % confidence interval :
[

µ∆y− 2
σ∆y√
Nt

;µ∆y+ 2
σ∆y√
Nt

]

(4.27)

• for a 99.7% confidence interval :
[

µ∆y− 3
σ∆y√
Nt

;µ∆y+ 3
σ∆y√
Nt

]

(4.28)

The interpretation of the confidence interval is simple: if we repeat

the measurement there is 95% chance that the mean value falls within the

confidence interval and 5% that the mean value is outside the confidence

interval.

It is then clear that in order to determine with the best resolution

the external force field an interesting strategy is to increase the size of the

statistical sample over which we estimate the mean ballistic displacement.

A simple way to do this is to concatenate all the measured displacements
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in one large ensemble of displacements[3]. We then reconstruct one single

long trajectory and estimate the mean ballistic displacement induced by

the external force. However, some important underlying assumptions are

hidden behind the use the concatenation strategy :

• I) The particles are all indiscernible : this is only true to a certain

extent, essentially due to the unanvoidable dispersion in particles

radii as discussed in chapter I.

• II)The processes are stationary : statistical distributions are invariant

though time translation.

• III) The system is ergodic3 : time average and ensemble average are

equal (converge to be equal in the long time limit).

• IV) The background noise remains spatially the same over the total

measurement time.

We will verify in the following that assumptions II), III) and IV)

correspond indeed to our experimental conditions. This will allow us to

exploit the concatenation strategy at the end of this chapter.

4.3 stationarity and ergodicity aspects

In order to to verify the stationary feature of the system, we will look

at the evolution of the PDF of position P(r,t) and the PDF of displacement

P(∆r,∆t) with respect to time. A distribution P(r,t) will be defined as

stationary if

P(r,t+ T) = P(r,t), (4.29)

for all chosen time-delays T. From this definition, it is clear that the position

based (r,t) or displacement based (∆r,∆t) distribution yield different

results.

4.3.1 PDF of position

For Free Brownian motion, as discussed above, the position-based

PDF takes specific form P(r,t) = N(0,2Dt), corresponding to a normal

distribution of mean µr = 0 and time dependent variance σ2
r = 2Dt. For

Brownian motion under external force field Fext [3], P(r,t) =N(Fextγ t,2Dt)

3 Composed of two greek words : Ergon which means Energy or work, and hodos which
means path or trajectory.
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where now the mean evolves in time as the manifestation of the ballistic

contribution of Fext on the Brownian motion. These evolutions are clearly

seen through our experiments, as discussed on figure (4.1). We will

compute the PDF of position by constructing the probability distribution

of position at a given time t. We start, for a fixed laser power Pi, by

concatenating the detected trajectories into a single long trajectory TPi .

In figure (4.3) are presented the concatenated trajectories TPi in the three

different regimes. At t=0, TPi starts at (0,0). The ballistic contribution

dominates the motion of the particle in the sedimentation and convective

regimes, namely for Ps
i = {1mW} for the sedimentation regime, and

Pc
i = 36mW for the convective one. In contrast, the motion is "freely"

diffusive in the suspension regime for a laser power of PSus
i = 24mW. We

note that the length of the trajectory in the convective regime is larger

because of the convective flow recycles the number of particles entering

the field of view of our microscope.

a) b) c)

Figure 4.3 – Panel a) shows the concatenated trajectory over 1830s under
laser illumination of power P = 1mW, the sedimentation dynamics is
clearly seen. In panel b) the laser power is P = 24mW and the duration of
the trajectory is 1170s, and the dynamic of the trajectory resembles free
Brownian motion. The panel c) displays the concatenated trajectory for a
laser power P = 36mW with a duration of 5070s and the convective flow
dominates the motion. We use Melamine spheres R= 470 nm to conduct
this experiment.

In order to verify the stationarity, we sub-sample Ti into Nsub sub

trajectories. This essentially defines a time delay Tsub. We then look at the

evolution of the statistical properties of successive TNsub
sub-trajectories,

in other words for successive multiple values of Tsub. This strategy is

described in figure (4.4).
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A)Detected trajectories

Trajectories lengths

N1

N2

N3

N4

N5

B)Conctenated trajectory

Trajectory length

Nt =  Njj

C)Sub-sampled trajectory

Fixed Sub-trajectory length

Nt

Figure 4.4 – Sketch of the concatenation strategy starting from individual
trajectories first, we link the tracked trajectories as shown in panel b).
Then, for a chosen time delay Tsub we divide the concatenated trajectory
into equal trajectories. The number of sub trajectories is by construction
defined from the ratio between the total duration of the concatenated
trajectory and Tsub.

Figure (4.5) display sub trajectories along the Y and Z axes. As

expected along the Y-axis, the particles perform free Brownian motion, and

along Z, the ballistic contributions from gravity and convection are clearly

seen.

a) b) c)

d) e) f)

Figure 4.5 – 1D sub-trajectories along Y and Z axes, corresponding to the
trajectories displayed in figure (4.3). The drift seen in panels d) and f)
is induced by sedimentation and convective flow respectively. The free
Brownian character of the suspended regime is clearly seen in panels b)
and e). The number of sub-sampled trajectories for the sedimentation,
suspension and convective regimes are respectively 61, 39 and 169.
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The evolution of the PDF of positions in the three regimes are

presented in figures (4.6) for all theNsub realizations. In the three regimes,

the PDFs of positions along Y are centered around 0, confirming that

the particle is seen undergoing free Brownian motion when its motion is

projected along the Y-axis. The PDFs of positions along Z show in contrast

a clear drift from 0, revealing the ballistic contribution in the low and high

power limits from gravity and convection respectively. In the suspended

regime, the particles experience free Brownian motion along both Y and Z

axes. In addition to that, and as expected for P(r,t), the variance widths of

the PDFs of positions evolve with time.
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Y axis Z axis

P = 1 mW

Laser Power

P = 24 mW

P = 36 mW

Figure 4.6 – Position based PDFs in the three regimes : sedimentation (P=1
mW), suspension (P=24 mW) and convection for Melamine beads (R=470
nm). The PDFs are computed the same way presented in labels b) and d)
of figure (4.1) by adding the time as a third dimension.

The time evolution of the mean and the variance of TNSub
sub

trajectories in the three regimes are presented in figure (4.7). The slope,

in panel a), gives a measure of the mean ballistic velocity Fext
γ , clearly

in agreement with what is expected from the distribution of Brownian

motion under external force field. The same slope, in panel b), corresponds

to the diffusion coefficient. Here, the data are more noisy which is a

consequence of the strong impact of the low signal-to-noise ratio on the
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variance of the distribution, as discussed in the first chapter. In this context

of position based PDF, stationarity has to be understood from the "single"

slope character of the mean and variance time evolutions. In panel c), the

slope is close to zero, which is a clear evidence of suspension and free

Brownian motion along Y and Z axis. The slope in panel d), is similar

to the slope in panel b) confirming the stationary aspect. Furthermore,

in panel f) the strongly non linear behaviour of the variance along z

in the convective regime reveals a non stationary dynamics at play. In

contrast, and remarkably, the dynamical evolution along the Y-axis remains

stationary as seen in panel e).

P = 1 mW

Laser Power

P = 36 mW

Mean Variance

P = 24 mW

a) b)

c) d)

e) f)

Time (s)Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Figure 4.7 – Evolution of the mean and the variance of the PDF of position
with respect to time. The blue and red curves represents Y and Z
respectively. The solid line are the fitting of the data using a linear model.
The errorbars represents the confidence intervals at 95% computed from
fitting the PDFs
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4.3.2 PDF of displacements

In this section, we now look at the PDF of displacements ∆r defined

over a chosen and fixed time difference ∆t. We work with concatenated

trajectories TPi and use the same sub-sampling strategy as in the previous

section. We look at the statistical properties of PNsub
(∆r,∆t) where Nsub

is the number of sub samples.

Figure (4.8) displays, in the same three regimes, the means µ∆r of all

sub-sampled trajectories (numbered as individual trajectory Traj # in the

figure). The estimator of the mean displacement for the sub trajectory i,

µNi
sub

is :

µ∆rNi
sub

=

∑Ni
sub

j=1 rj− rj−1

Ni
sub− 1

=

∑Ni
sub

j=1 ∆rj

Ni
sub− 1

(4.30)

where Ni
sub is the length, as a step number, of the sub- trajectory i. As

discussed above the errorbars are the standard errors around the mean

defined by :

SE(µ∆rNi
sub

) =
σ∆r

√

Ni
sub

(4.31)

with σ2
∆r =

∑Ni
sub

j=1 ∆rj−µ
Ni
sub

Ni
sub

is the variance of the distribution, and σµ∆r

is the standard deviation. The distribution of the mean displacement is

presented in figure (4.9).

As clearly seen, the mean of the displacement distribution of the sub

sampled distribution is constant over time. The width of the distribution

of the estimators i.e. standard deviation of the estimated mean, are within

the standard error fixed by thermal fluctuations
√

2kBT∆t
γNi

sub

.
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Traj # Traj # Traj #

Figure 4.8 – Estimators of the mean displacement of the sampled trajectories.
The blue and red bullets represents respectively the Y and Z directions. The
green shadowed region represents standard error from mean theoretical
displacement due to thermal fluctuations : from the darker to the lighter
green 1σ, 2σ, and 3σ confidence levels.

In addition, the variances of the displacement distribution of the sub

samples are presented in figure (4.10). The variances are more dispersed

than the means presented in figure (4.8), but their distributions still remain

narrow, as shown in figure (4.11).
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Figure 4.9 – PDF of the mean displacement of the sub sampled trajectories.
The continuous lines represents a normal fit to the distribution of the mean
of the estimator of the mean displacement for each sub-trajectory. The
distributions are clearly sharp around the mean displacement. The counts
are the number of estimated means that falls within the bin width defined
in chapter I.

Traj #

Figure 4.10 – Estimators of the variance of the displacement distribution
defined in equation (4.31) of the sub sampled trajectories. The blue and
red bullets represent respectively the Y and Z directions.
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Figure 4.11 – Estimators of the variance of the displacement distribution
of the sub sampled trajectories. The blue and red histograms represents
respectively the along Y and Z axes. The number of bins depend on the
sample size and is determined following Rice rule presented in themethods
chapter.

4.3.3 Autocorrelation function

As another condition for the stationarity of a process, the autocor-

relation function (ACF) measures the correlation between the stochastic

time series ∆rt and ∆rt+k where k stands for time lag τk = k∆t, with

k= {0,1, ...,K}, K being the number of intervals over which we calculate the

ACF. For a Brownian particle the ACF decays to 0 with respect to time lag,

demonstrating the independence of the displacements. The autocorrelation

function for an ensemble of detected displacements {∆rt} is:

C(τk) =< ∆r(t+ τk)−µ∆r >< ∆r(t)−µ∆r > (4.32)

with the discrete version :

Ck =
1
T

T−k∑

i=1

(∆ri−µ∆r)(∆ri+k−µ∆r), (4.33)

with T the number of displacements contained in the ensemble of

displacements {∆ri+k}. The ACF of an ensemble of detected displacements

is shown in figure (4.12).
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Figure 4.12 – Estimators of the covariance of the tracked displacements. The
clear fast decay demonstrate that the displacements are non correlated.
This is expected for Brownian motion.

The results taken together clearly correspond to the stationary

condition (4.29) as verified on the statistical properties o the system.

Having verified that the mean value and the variance of the stochastic

Brownian process do not change over time and having verified a covariance

equal to 0 constitute what is known as "strict stationarity". This stationary

behaviour is confirmed in the three regimes of sedimentation, suspension

and convection. This confirmation is central to the results presented

below where a quantitative measurement of the external optical force

field is performed from the analysis of the displacement based PDF of the

assembly.

4.3.4 Ergodic steady state

The ergodic hypothesis is one fundamental hypothesis in statistical

physics. A stochastic process is called ergodic if time average and ensemble

average converge to be identical in the long time limit. In this section,

we will compare the Ensemble Time Averaged MSD (ETAMSD) and the

Ensemble Average MSD (EAMSD) defined, for an ensemble ofNT particles

and time lags τj = j∆t, as follows :

< ∆x2(τj)>=
1
NT

NT∑

i=1

(xi(τj)− xi(0))
2 (4.34)

where xi(t) is the measured time series for i= {1,2, ...,NT }. The procedure

to compute the EAMSD is presented in figure (4.13). Firstly, we compute
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all the squared differences (xi(τj)−xi(0))2 for the ith particle. Secondly, we

do the same for all the NT trajectories. Finally, we calculate the arithmetic

mean over the ensemble of trajectories.

Particle 1

Particle 2

Particle NT

Bead Positions

<(x1( j)-x1(0))2>

<(x2( j)-x2(0))2>

<(xNT( j)-xNT(0))2>

Figure 4.13 – Procedure to calculate the EAMSD.

We start by computing the ratio between the ETAMSD and the

EAMSD :

ǫB=
< δx2(τ)>

< ∆x2(τ)>
. (4.35)

We show in figure (4.14) in green the results for ǫB parameter in the

three regimes. As naively expected, a ǫB= 1 value should correspond to

the signature of ergodicity. But the concept of weak ergodicity breaking

has stimulated many theoretical analysis [5] which have concluded, in

particular, that ǫB can only be considered as a necessary condition for

ergodicity, and, when testing the ergodic character of a stochastic process,

it should be supplemented by an additional, sufficient, condition, built

from the variance of the dimensionless parameter [5] :

ξ=
δx2(τ)

< δx2(τ)>
, (4.36)

which quantifies the ratio between the TAMSD of a single trajectory δx2(τ)

and the ETAMSD < δx2(τ)> for the ensemble of particles . The parameter

ξ is related to the so called "ergodicity breaking" parameter EB, through

its variance:

EB(τ) =< ξ2 >−< ξ >2 (4.37)
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where < ξ >2= 1 by definition of ξ.

Figure 4.14 – Ergodicity breaking parameters in the three regimes. The red
dashed line represents the free Brownian motion limit. The blue line is EB
and the green line is ǫB.



4.4 statistical resolution 95

For free Brownian motion, which is an ergodic process, the ergodicity

breaking parameter EBBM(τ) scales in the long time limit as [4] :

EBBM(τ) =
4τ
3T

, (4.38)

where T is the time duration of the trajectory. It is important to stress that

this behaviour of EB is a sufficient condition for ergodicity.

The weak ergodicity breaking parameters are consistent with what is

expected for free Brownian motion, validating the ergodic hypothesis for

our system.

Together with the stationarity check, this analysis on ergodicity

confirms, a posteriori, our initial assumptions and "concatenation" strategy,

that we can use without loosing any information on the whole system.

4.4 statistical resolution

We now show how disposing of such long concatenated trajectories,

we can actually measure the mean optical force exerted at the level of a

single particle by the illumination laser itself, together with controlled

uncertainties,

4.4.1 Force estimator.

We estimate the applied force on a single particle from the methodol-

ogy discussed in section (2.1.3) that consists in computing the estimator

of the external force following equation (4.23). We construct the displace-

ments statistical ensemble by differentiating the successive positions Yn
and Zn taken by the Brownian bead on the two main axis of the experiment

presented in the last section.

Simulations are interesting to perform in this context. We start with

the trajectory of Brownian particle under the gravity force field Fg :

Fg =mg= ρVg= 4/3πρgR3, (4.39)

defined along the Z axis. The corresponding discretized Langevin equation

then write as:

zn+1 = zn+
Fg

γ
∆t+

√
2D∆t randn. (4.40)
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where randn is a random number generator of variables following

the reduced centred normal distribution N(0,1). We show in figure

(4.15) an example of such a simulated trajectory and the corresponding

displacement distribution. The applied force is then extracted from

the shift of the mean of displacements from zero. In that case, the

measured force is : Fsimg = 9.3± 2.9fN to be compared to the expected

force Fthg = 6.57fN from equation (4.39). The two values are within the

errorbars, but the relative errors are high in the order of 31%. Therefore

defined for a random variable X as :

RE(X) =
SE(X)

µX
,

where SE(X) is the standard error around the mean, and µX is the estimator

of the mean value of X.

Figure 4.15 – Simulated Brownian trajectory under gravity force field. The
displacement distribution is presented on the right panel. The length of
the trajectory is Ni = 1200.

We now increase the length of the trajectory ten times and present

the results in figure (4.16). In this case the measured force is :

< Fg >sim= 6.15± 0.91fN.

The two values are still within the errorbars, but the relative error in this

case has dropped to 14 %. Furthermore, the displacement distribution fits

even better the Gaussian distribution.
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Figure 4.16 – Simulated Brownian trajectory under gravity force field. The
displacement distribution is presented in the right panel. The length of
the trajectory is Ni = 12000.

These tests clearly reveal the obvious relationship between the sample

size and the measurement uncertainties. We will see in details the

importance of the sample size for reducing the uncertainties from the

experimental point of view, as discussed in section (4.2.4) above.

4.4.2 Simulation results

In this section, we resort to Langevin simulations in order to find a

theoretical estimate of the uncertainties around the mean thermal force.

The thermal force is a stochastic variable defined as :

Fthermal =

√

2kBTγ
∆t

ln, (4.41)

where ln, defined in equation (4.18), follows N(0,1) distribution. The SE

around the mean force is defined from equation (4.41) as :

SE(Fthermal) =

√

2kBTγ
∆t

SE(ln), (4.42)

where, from the definition of SE, one has :

SE(ln) =
σ√
Nt

, (4.43)

where σ= 1 because ln is normally distributed with a variance equal to one,

and whereNt is the total number of detected positions of the concatenated

trajectory.
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Figure 4.17 – Mean thermal force Fthermal
Sim extracted from simulated trajec-

tories as the sample size Nt (total number of simulated displacements)
increases. The errorbars are the standard errors defined (4.42). Panel (b) is
a zoom of panel (a) in the small sample limit.

Then the resolution level on force measurement is :

SE(Fthermal) =

√

2kBTγ
∆t

σ√
Nt

, (4.44)

which is inversely proportional to the square root of the total number of

displacements Nt. As discussed in section (4.2.4) equation (4.44) clearly

show that, the concatenation strategy, under validated assumptions, is

good strategy to reduce the resolution we can reach on force measurement.

4.5 global noise and stability

The discussion above relies on the fundamental role played by

thermal fluctuations in our system. The "white" fluctuating spectrum of the

Langevin force, fixed by the fluctuation-dissipation theorem, determines
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the magnitude of the Langevin force
√
2kBTγ, a value central to the whole

analysis on force resolution.

It is thus critical : (i) to verify that the noise in our system is

determined, essentially, by a white type of noise over a broad spectrum

and (ii) to check the temporal limits of stability of our system under such

white noise conditions since these limits will set a maximal size for our

statistical ensemble of displacements which yields the corresponding SE,

following equation (4.44). The appropriate tool to asses these two points

simultaneously is the Allan deviation analysis used in a variety of contexts,

ranging from atomic clocks, optical traps and optomechanics [63–66] .

The Allan variance AV σ2
AV(x) (the Allan deviation being σAV(x))

quantifies the type and stability of the noise involved in a random processes

[67]. Figure(4.18) summerizes the type of AV expected for different kinds

of noise. In our experiments, determined by a Gaussian white noise, we

expect to measure an AV with a −1
2 slope (uncorrelated white noise).

Allan variance for a time series of Nt displacements is computed in

the following way:

σ2
AV(x) =

1
2
<(xi+1− xi)

2>τ

=

Nt∑

i=1

(

x((i+ 1)τ)− x(iτ)

τ

)2

−
1
2

Nt∑

i=1

(

x((i+ 1)τ)− x(iτ)

τ

)2

,

(4.45)

where τ is the time interval, over which the particle moves by xi+1 − xi,

related to the sampling time τ=m∆t, where m is an integer. Here the <...>

corresponds to an arithmetic mean.
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Figure 4.18 – Sample plot of AV analysis [68] for differents sources of noise.
The slope of AV gives what type of noise and over which time window this
noise determines the studied process.

For our experiments, we have computed the Allan variance for

the ensemble of displacements measured along the Y-axis. The results,

computed for 15 different experiments, are shown in figure (4.19). They

clearly reveal :

• i) a -1/2 slop in log-log scale, corresponding to the signature of white

noise,

• ii) and that this noise signature covers ca. 4 decades in time

lag, enabling experiments to be tracked over ∼ 300s within strict

Brownian conditions
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Figure 4.19 – Experimental Allan variance standard deviation σAV computed
as a function of time lag τ. Each color corresponds to an experiment,
where we compute AV for all the detected displacements. Each
trajectory, concatenated, as been acquired in the contra-propagating beam
configuration, at a given laser power. At long time lags, the noise comes
from poor statistics, considering that the sample size decreases as time lag
is increased. For such time lags, the AV is not so well defined any more.

This is a very important result that essentially confirms that our experi-

ments, up to ∼ 300s integration time, remain thermally limited with no

drift in the thermodynamic noise. We also note that this white noise

signature stemming from the Allan variance analysis is consistent with the

covariance check done in section (4.3.3).

4.6 radiation pressure force measurements.

In this section, we give the results for radiation pressure force

measurements using the setup presented in section (2.1), when all the

power is injected in one arm. This option enables us to explore the

dynamical range accessible in our experiment. We will then search for the

lowest force that can be measured with our setup and compare it with the

mean theoretical thermal force at play in the system.

4.6.1 One beam configuration

For this experiment, we inject all the power in one arm, with a

beam diameter of 50 µm. In term of flux, the maximum input power

is 0.4kW/cm2 which a relatively low power. The measurement of radiation

pressure force is shown in figure (4.20). These points have been acquired
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following the methodology presented in section (4.6). As discussed in

section (4.2.4), the errorbars are the standard errors defined in table (0.1).
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Figure 4.20 – Measured radiation pressure force < Fexty >{Nt} on Melamine
beads along the optical axis for a displacement ensemble {∆Y}Nt

at
different laser powers. The errorbar represents the standard error around
the estimator of the mean force along Y. The thermal limit is calculated
from equation (4.44). The darker blue region is the standard error at the
theoretical thermal limit with 1 σ, the lighter blue is 2 σ, and the green is
3 σ. The red line is the force value expected from a Mie calculation of the
radiation pressure.

In red, we plot the theoretical value for radiation pressure applied on

a single particle as evaluated using equation (4.2). The agreement between

the measured and the calculated force is reasonable.

The question now is related to the minimal force that we can measure

in our experiment. In order to answer this, we will focus on the limits of

the thermal fluctuations, at the smallest level of power, where we reach the

resolution limit of our setup. It is important to assess this resolution

in order to provide a value for the minimum detectable force in our

experiment.

4.6.2 Resolution and sensitivity

While the estimator of the mean displacement µ∆y due to the external

force field, i.e radiation pressure, is given by the drift of the distribution

of displacement from zero, it is clear that the minimum detectable force

will be limited by the variance of the mean value of displacement. In other

words:

< Fext >min=
γ

∆t
σµ∆y

(4.46)
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where σµ∆y
can be estimated by the standard error of µ∆y built on the SD

of the displacements ∆Y. From section (4.2.2) this SD σµ∆y
can be directly

written from the Langevin equation in the absence of external force as:

σµ∆y
=

√

2kBT∆t
γ

.

corresponding to the thermal force discussed in section (??). The standard

error is thus :

SE(µ∆y) =
σµ∆y√
Nt

where Nt is the ensemble of detected displacements. For our thermally

limited experiments, the thermal resolution is thus:

< F >min=

√

2kBTγ
Nt∆t

, (4.47)

which can be evaluated in time-frame interval fixed in our experiments to

∆t= 1/120s, to :

< F >min= 93.5fN/
√

Nt, (4.48)

We display in figure (4.21) the measured values for radiation pressure

for various power difference ∆P injected in each arm. These values are

given with an ensemble of displacements Nt = 5× 105. The thermal limit

is also drawn on the figure, setting 1σ, 2σ and 3σ confidence levels.

Figure 4.21 – Mean radiation pressure force on Melamine beads along the
optical axis. The errorbars represent the standard error around the mean
measured force along Y. The thermal limit is calculated from equation
(4.44) and displayed as 1σ, 2σ and 3σ confidence levels.
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Remarkably we are able to reach a high level of resolution in radiation

pressure measurement. We can indeed unambiguously measure sub-femto

newton forces at the thermal limit. Our experiment resolution is set to

< Fext >min= 0.2fN using Nt = 5.105 displacements, and working at 2σ

confidence level.

4.6.3 Force field profile reconstruction

With such a high level of resolution, it becomes possible to envision

reconstructing complex external force fields. As a proof-of-principle,

we show that the Gaussian profile of the radiation pressure force field

inherited by the laser beam can be reconstructed with good fidelity.

A CCD image of the laser beam is shown in figure (4.22), together

with a cross cut fit of the image that both show the Gaussian nature of the

beam and give an estimation of the beam diameter 2a ∼ 100µm.
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Figure 4.22 – Direct image of the beam at the level of the sample. The pixel
size of the camera we used is 5.6µm. We see clearly the Gaussian profile.
The blue continuous line is a Gaussian fit using the Gaussian model.

Taking into account this Gaussian profile into the force field applied

along Y-axis, the Z dependence of the force field can be written as :

< Fy(z)>= Fmax exp
(

−
z2

a2

)

=
γ

∆t
< µ∆y > (4.49)

wherz the estimator µ∆y is calculated over all the detected displacement

during the experiment.
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In order to find the Gaussian parameters corresponding to the force

field profile, we define the function f(a,b,c) :

f(A) =

(

<Aexp
(

−
2Z2

n

w2
0

)

>−
γ

∆t
< µ∆y >

)2

, (4.50)

where A is the maximal strength of the force applied on the particles in

the center of the beam. This value is reached when the defined function

f(A) reaches a minimum. The statistical samples used to perform the

minimisation are : i) the ensemble of displacements {∆yn} along the

horizontal Y-axis and ii) the corresponding positions ensemble {zn} along

the vertical Z-axis.

In figure (4.23), we present the results obtained for the force profile.

The shaded blue regions represents the theoretical thermal standard error

(see equation (4.21)) with 1σ, 2σ and 3σ confidence levels. At low laser

power, the distributions fall under the thermal noise level. But as we

increase the power the amplitude which represents Fmax scales linearly

with the injected power. From 10 mW the measured values of the force

and their uncertainties clearly emerge from thermal noise floor, and yield

the Gaussian profile of the force field.
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20 mW
25 mW
30 mW

1  2 
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2  2
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3  2
th

Figure 4.23 – Reconstruced force profiles for different laser power. The
shaded regions represents the confidence intervals at 95%. The
uncertainties displayed around the reconstructed profile are the SE defined
in equation (2.41).

Our experiments are sensitive enough to measure very weak forces

at the thermal limit. Exploiting the ensemble of displacements of the
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particles, we can reconstruct the profile of the applied external force field.

As seen in figure (4.23), the reconstructed profiles are in good agreement

with the measured optical profile of the laser beam generating the force.

4.7 conclusion

In this chapter, the optical setup described in chapter 1 has been

exploited for measuring optical weak forces. The Brownian motion under

such an external force field was described and the important statistical

measures have been introduced. The concatenation strategy used to

increase the statistical sample size was presented and the underlying

hypotheses were verified in the context of stationary ergodic stochastic

process. Furthermore, the uncertainties of our measurements have been

quantified from the statistical point of view. We also verified the noise

stability during our experiment which turned out, as expected, to be

a white noise, validating our strategy of concatenation. Finally, the

quantitative measurement of external radiation force was presented and

compared to the evaluated force applied on a spherical particle in the

framework of Mie scattering. We also proposed a method to reconstruct

force field profiles from the tracked Brownian trajectories.

Our experiments open the door for interesting perspectives, by

playing on the one hand on the properties of the colloidal assembly by

using for example non spherical particles and study the torque applied

by the laser radiation on the asymetric particle. We also envision using

chiral particles and measuring their interaction with chiral light. On the

other hand, more exotic field distributions like for example Bessel modes,

or even more complex field distributions, could be used in order to resolve

specific light-matter momentum transfer dynamics.



5
OBSERV INGING ANOMALOUS BROWNIAN

TRAJECTOR IES WITHIN A COLLOIDAL ASSEMBLY

In his derivation of the diffusion equation, Einstein made three

assumptions :

• The particles are independent and non interacting,

• the existence of a sufficiently small time scale, over which the

particles displacements are statistically independent,

• typical displacements of a particle during this characteristic time

scale are symmetrically distributed in positive and negative direc-

tions.

Under such assumptions, the diffusion of a particle is characterized

by the mean squared displacement :

< (r(t)− r(0))2 >= δr2(t) = 2Dt, (5.1)

that we discussed and characterized in the previous chapters.

But if the particle starts interacting with the environment, taken in

the broadest sense, in which it is diffusing, the diffusing behaviour can be

very different. In a non-uniform medium, for instance, the instantaneous

drag felt by the moving particle can lead to a random time-dependent

friction [69]. The interaction can also stem from the hindering of the

motion of the particle due to the presence of obstacles in the medium.

This is exactly the situation corresponding to various work in particular

theoretical ones, that reported anomalous diffusion effects in biological

environments, so called "crowded environments" [70]. In such situations,

the MSD associated with the motion of the particle now scales as :

δr2(t) ∼ tα with α < 1. (5.2)

Experimental observations of sub diffusive motion have been re-

ported in cytoplasm of living cells [71, 72], micellar solutions [73], and

107
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functionalized environment [74, 75] to name of few of them. Such algebric

laws for the MSD have sparkled a huge interest, with new models and

new results proposed that are challenging two fundamental aspects of

free Brownian motion : the ergodic character of the diffusion [76] and the

relation between the MSD and the Gaussian character of the probability

distribution of displacements [6]. Non Gaussian distributions are observed

in viscoelastic fluids where memory effects are no longer negligible [77].

Considering the complexity of the systems, most of them biological,

on which anomalous diffusion is usually observed, the emergence of

anomalous trajectories in our simple experiments came as a surprise. As

explain below, it is the possibility given by our microscope to isolate, from

the colloidal ensemble, specific trajectories that led us to identify a few

which motional behaviours are "anomalous" in the statistical sense within

the ensemble, i.e. as rare manifestations among otherwise normal diffusive

dynamics.

We will show in this chapter that such anomalous trajectories come

from localized and accidental particle-particle interactions. While the

precise mechanism inducing such interaction has still to be described, the

statistical tools presented in the previous chapters allow us to characterize

such trajectories, in particular from their MSD point of view, their

probability displacement functions and their ergodic character.

5.1 observing anomalous diffusion

Experimental observations of anomalous diffusion has been largely

reported in crowded biological systems. Indeed, Single Particle Tracking

(SPT) and optical tweezers have given access to the trajectories of

fluorescent tracers diffusing in such complex media [78]. The observable

which is often used to characterize such trajectories is the Time Averaged

MSD (TA- MSD) which gives information on the dynamics of the particles

from its temporal evolution. Figure (5.1) displays the main types of

evolution expected for different types of dynamics.
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Figure 5.1 – Time Averaged MSD for different type of dynamics. For free
diffusion the TA-MSD grows linearly with respect to the time lag τ. Sub-
diffusive motion is characterized by a slower evolution of the TA-MSD. The
super diffusive TA-MSD is representative of a ballistic motion due to an
external flow transporting the particle, as discussed in chapters 3 and 4.

A simple and clear example of sub-diffusion can be found at the

level of Brownian motion in visco-elastic media. Figure (5.2) displays an

example of sub-diffusion of polystyrene beads in an artificial visco-elastic

medium [73].

Figure 5.2 – Time Averaged MSDs for a mixture of micelles and polystyrene
beads of different diameters {0.52µm,0.96µm,2.5µm}, where ∆ is the time
lag over wich the squared displacements are averaged. The black line
represent the ETA-MSD defined by equation (3.10). The data are taken
from [73]. The right hand side displays the micellar solution used in the
experiment of [79] with added polystyrene beads.

For short time, the ETA-MSD is linear with respect to the time lag

demonstrating a free diffusive motion. Then, for longer time lags, the

evolution of the ETA-MSD is slowed down, with an exponent α = 0.28

which is a clear evidence of sub-diffusive motion. The sub diffusive
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behaviour for long time lags is understood as a manifestation of the

hindered motion of the polystyrene beads by the micelles dispersed in the

solution. This effect is not observed at short time lags because the particles

motion at short time is not influenced by such obstacles.

This experiment demonstrates the cross over in the dynamics of

particles diffusing in a crowded environment. This experiment also shows

how a dynamical behaviour can be analysed be studying the behaviour of

the MSDs at different time scales.

5.2 from ensemble to single particle analysis

Our data analysis presented so far in the manuscript relies on looking

at diffusing particles from an ensemble point of view. In this chapter, we are

rather interested in looking at the dynamic of single particles. In this point

of view, all the other particles become constituents of the medium itself.

In other words, they can be seen as diffusing, neighbouring, dynamical

obstacles for a specific targeted particle. Experimentally, the setup remains

identical but we now reduce the microscope region of interest to one

targeted particle which trajectory is recorded as a "single diffuser".

Figure (5.3) displays such an example where the free diffusive

dynamics of a particle is eventually hindered by the presence of an other

particle in its vicinity. Such neighbouring diffusing particles break down

the Einstein’s assumption of symmetric distribution of the positive and

negative displacements.

t = 0 s t = 5 s t = 10 s t = 13.33 s

10 µm

lc

Figure 5.3 – Raw images of two interacting particles. At t=0, the two particles
diffuse "normally" under the action of thermal fluctuations and the inter
particle distance is d=15R, where R is the physical radius of a particle.
From t=5s, the distance between the two particles is reduced to 10R. After
that, beyond t=10s, the distance is reduced to d=5R and the particles starts
repulsing each other due to the negative charge on their surface. Then from
t=13.33 s the interparticle distance increases to d=13R. The characteristic
length lc is defined in equation (5.6).
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Figure 5.4 – Example of recorded trajectories of two interacting Melamine
particles. Panel (a) displays the evolution of the 2D trajectories with respect
to time. In panel (b) the 2D trajectories are presented. The panel (c) and
(d) are the 1D projections of the interacting particles. The confinement
is highlighted by the green rectangle and the corresponding regions are
showed in panel c) and d).

This configuration is one of the few rare events that we have been able

to notice in our experiments. The interaction occurs when the particles are

in the vicinity of each others. This proximity is a random event, caused by

thermal fluctuations. Such sub-diffusive behaviour has been observed in

the three regimes presented in Chapter II. In figure (5.4) we display the

trajectories of both interacting particles as seen along the Y and Z-axes of

the experiment. It clearly appears on these data that while diffusing freely

at the initial period of acquisition, the two particles accidentally get closer

to each other. If charge stabilization prevent the particles to aggregate, we

clearly observe a region where the two particles seem to interact with each

other, as if one particle eventually hinders the motion of the other to freely

diffuse. The actual origin of such "attraction" is an unsolved question for

us. But its manifestation can clearly be revealed in our experiments, and
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in particular through the time evolution of the motional MSD of a targeted

particle.

5.3 anomalous mean squared displacements

One of the evidence for anomalous diffusion (and sub-diffusion in

particular) is the algebraic evolution of TAMSDs following:

δr2(τ) = Kατ
α, (5.3)

where Kα is the generalised diffusion coefficient [80], with the dimension

m2.s−α. The exponent α determines which type of diffusion the particle is

undergoing. The logarithm of the measured TAMSD leads to extracting

the local scaling exponent α as :

α(τ) =
d(log(δ2r (τ)))

d(log(τ))
, (5.4)

which represents the slope of log(δ2r (τ)) with respect to log(τ). Figure

(5.5) displays the TAMSDs and ETAMSD of the particles undergoing sub-

diffusion of the typical trajectories shown in (5.4).

The sub diffusive behaviour progressively emerges in the TAMSDs

and the ETAMSD of the anomalous trajectories as a deviation from the

linear TAMSD representative of a free diffusive motion. It is interesting to

observe two different regimes that can be quantitatively analysed. Fitted

at short and long time limits by :

log(< δ2y(τ)>) = α log(τ)+ log(Kα), (5.5)

the ETAMSD yields two exponents for each time limits. The results are

presented in figure (5.5), revealing a free diffusive dynamics at short time

(α = 1) while non-ambiguously showing that the motion becomes sub-

diffusive at longer time with α= 0.43.
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=0.99±0.02

=0.43±0.02

TAMSDs ETAMSD

Figure 5.5 – The red curves are the TAMSDs δ2r(τ) of 12 anomalous trajectories
detected for an experiment recorded over 90 min. The black line is the
ETAMSD < δ2r(τ) > of the ensemble of anomalous trajectories. The blue
line represents the exponent of the fitted ETAMSD which is α= 0.43±0.02
for long time. The green line represents the fitted ETAMSD for short time :
α= 0.99± 0.02.

The most interesting result here is the appearance of a well-defined

transition between these two regimes. Indeed it seems that, we can defined

a cut off time τc from which there is a transition from pure diffusion

to anomalous diffusion. This characteristic time can be related to a

characteristic length lc through Einstein’s relation as :

lc =
√

2Dτc (5.6)

where D is the diffusion coefficient.

In our experiments, we find lc = 1.73µm. It is tempting to associate

to this characteristic length lc an interacting range as for instance given by

a Yukawa-type interaction potential :

Vint(r) =Aexp− r
lc , (5.7)

with A the strength of the interaction and r is the inter particle distance

(see figure (5.3)).

5.4 displacement distributions and ergodicity

The observation of anomalous diffusion obviously raises important

questions about the precise mechanism at play behind such deviations

from free Brownian motion. But the variety of situations where anomalous
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diffusion is found challenges the possibility to provide an universal

model. In fact, one finds in the litterature practically as many models

as experimental situations, as discussed for instance in [5]. From

a statistical point of view, the models aim at understanding some

striking consequences of anomalous diffusion, in particular related to

the Gaussian or non-Gaussian character of the motion [6, 81] or its ergodic

or non-ergodic properties [5, 76].

As discussed in the previous chapter, from such Gaussian and

ergodic perspectives, we have implemented the appropriate tools in our

experiments to characterize the diffusive dynamics that we observe. We

will first analyse the statistical nature of the motion by looking at the

displacements distributions. The distributions are computed following

the method presented in the previous chapters. Figure (5.6) displays the

displacements distribution at different time lags P(∆Y,τi = i∆t) where

∆Y = Y(τi+1) − Y(τi). In these experiments, ∆t = 1/120s. At all times,

the displacement distributions seem to follow Gaussian profiles. In this

Gaussian framework, the distribution can be written as:

P(∆y,τ)∝ 1√
4πDτα

exp
(

−
∆y2

4Dτα

)

. (5.8)

keeping the time evolution of the distribution as general as possible

through a power law variation for the variance. This variation is extracted

from the Gaussian fits of all displacements distributions. The results are

displayed in figure (5.6) from which we extract α= 0.92±0.03. We see that

this result is comparable to the results shown in figure (5.7) from the MSD

at short time lags. For longer times, the distributions remain Gaussian and

their associated variances evolve algebraically with time, as displayed in

figure (5.8). The exponent extracted from a linear fitting of the variance

evolution is equal to α= 0.24± 0.1, a value smaller than one that clearly

reveals the anomalous character of the diffusion. As such, this result is

comparable with the exponent extracted from the ensemble time averaged

MSD, although of a smaller magnitude using the distribution approach.
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Figure 5.6 – Displacements distributions P(∆y,t) of the anomalous
trajectories for different times t= {0.5s,1s,1.5s,2s,2.5s,3s}. Remarkably
the distributions remain Gaussian at all time. The counts are the number
of times that the displacement of the particle lies within a given bin width
of 0.17µm.

Figure 5.7 – Evolution of the variance of the displacements distributions with
respect to time. By fitting log(σ2) we extract α = 0.92± 0.03 defined in
equation (5.8).
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Figure 5.8 – Evolution of the variance of the displacements distributions. By
fitting log(σ2) at long time, we extract α= 0.24± 0.1 defined in equation
(5.8).

We then study the ergodicity of the anomalous trajectories. We

implement here the tools detailed in chapter three on the sample we

built from the 12 anomalous trajectories that we recorded. Therefore we

will evaluate the ergodic parameters, EB and ǫB. We recall the expression

of the parameter ξ :

ξ=
δr2(τ)

< δr2(τ >
, (5.9)

which quantifies, at the level of one individual particle, the ratio between

the TAMSD and the ETAMSD.

The EB parameter is defined as follows:

EB(τ) =< ξ2 >−1, (5.10)

which converge at long time to a finite value for free Brownian motion [5]

EBBrownianmotion(τ) =
4τ
3T

, (5.11)

where T is the total duration of the recorded trajectory. While this condition

of convergence is a sufficient condition for ergodicity, a second necessary

condition of ergodicity can be derived from the ratio between the ETAMSD

and the Ensemble averaged MSD EAMSD defined in chapter three as :

ǫB=
< δr2(τ)>

< ∆r2(τ >
. (5.12)

We first show in figure (5.9) the TAMSDs, the ETAMSD and the EAMSD of

the anomalous trajectories presented in the last section. We identify the
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non linear behaviour in both the ETAMSD and the EAMSD that reveal the

anomalous diffusion observed earlier at the level of the TAMSD evaluated

on single trajectories.

Figure 5.9 – Different MSDs for anomalous trajectories. The red curves
are individual TAMSDs. The black curve is the EAMSD. The blue curve
represents the ETAMSD.

We then present in figure (5.10) the corresponding ergodicity

parameters. Our data, and despite their intrinsic fluctuations, seem to

indicate that for long time limit, both of the parameters converge to one.

This implies that although anomalous, our trajectories remain ergodic.

Figure 5.10 – ergodicity parameters computed for the 12 anomalous
trajectories for which the MSDs are presented in figure (5.9). The blue
curve is ǫB which is equal to one. The green line shows the parameter
EB which progressively follow the EB expected for free Brownian motion,
represented by the dashed red line.
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5.5 conclusion

Anomalous diffusion of passive particles is observed in a variety of

systems and contexts ranging from physics to biology. Usually, the systems

have a level of complexity that immediately put Einstein’s assumption

into questions : for instance, crowded environments, confined media,

visco-elastic fluids, structured environments, bacterial media, biological

matter.

The manifestation of anomalous diffusion in our experiments came

as a surprise, considering the simplicity of our setup as a whole, made of

simple dielectric particles, dispersed in a Newtonian fluid at low volume

fraction. But out video microscopy technique allowed us to "focus" on very

specific situations where themotion of a targeted particle is modified by the

presence of one, or more, neighbouring particles. The results presented in

this chapter have shown that the statistical properties of these trajectories,

although anomalous, remain Gaussian and ergodic. This is an interesting

piece of information when relating our experiments to existing models

that could help us in describing the observed dynamics and understanding

its microscopic source.

An obvious guess is to analyze our data in the framework of the

continuous time random walk (CTRW) which is widely used for describing

anomalous diffusion in complexe environments [82]. But such model

implies non ergodic motions [83] which is not what we observe. This

relation with ergodicity also seems to exclude another class of anomalous

diffusion model know as "random diffusivity" models [4] . These models,

among which belongs the model of scaled Brownian motion [84] are very

attractive since they reflect anomalous MSD into a simple rescaling of the

diffusion "constant" as :

δr2(t) = (2Kαt
α−1)t.

However, such models induce generally non-ergodic trajectories through

the time dependence of the diffusion constant.

Our observations rather point towards the onset of an "effective"

motion of the targeted particle induced by 2-body (and more) coupled

interactions. The sudden change in the power law governing the recorded

MSD for the anomalous trajectories that we monitored seem to indicate, as

discussed above, the existence of an attraction volume beyond the exclusion

volume created by charge repulsion. As a consequence, the thermal noise

that drives the particle’s diffusion, can show some correlations. Such
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correlations constitute the basis of another class of models, so called

Fractional Brownian models[5].

Remarkably, Fractional Brownianmotion is characterized by Gaussian

displacement distributions, while maintaining (at least asymptotically)

full ergodicity.

Naturally, these two features turn out into assets for proposing a model

able to describe our experiments in their apparent simplicity. This task

however is beyond the scope of this work.



6
CONCLUS ION AND PERSPECT IVES

Single Particle Tracking has been used to quantify the dynamics of

colloidal suspensions subjected to external force fields. Such technique

allows us to efficiently proceed to real-time tracking of Brownian particles

with a temporal resolution of ∆t = 8ms and positional resolution of the

order of 20 nm.

The non-equilibrium steady state character of our system is inves-

tigated through the study of the stationary and ergodic aspects of the

recorded trajectories. Such aspects have been used in this work as tools for

characterizing the motional effects that we have observed under laser light

irradiation.

The injected laser power in our system has allowed us to manipulate

our colloidal assemblies in different regimes, explored both from a

statistical "ensemble" point of view and a more local one, looking at

specifically targeted trajectories. A first part of the work has been devoted

to look at collective motional manifestation of heat injected by the laser into

the fluid that modified the local density of the fluid. The observation of two

ballistic regimes for high and low laser power limits was presented, with

the interesting intermediate regime where a practically freely diffusive

regime was observed in 3D space.

Moving from such "ensemble" observations, we also reported on rare

individual trajectories signatures of anomalous diffusion. Such report,

on such a simple system as ours, came as a surprise. We identified the

source of anomaly in the accidental modification of Brownian diffusion

of a given particle due to the presence of an other particle in its vicinity.

The statistical characterization of such anomalous motion (Gaussian and

ergodic characters) remarkably seem to indicate that our experimental

records do not match a priori the main model proposed for describing

anomalous Brownian diffusion. This interestingly opens the door for more

theoretical input.

120
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Figure 6.1 – Demonstration of chiral particles separation induced by dissipa-
tive chiral forces. A racemic mixtur illuminated by counter-propagating
circularly polarized two-beam configuration, can be sorted. A separation
of 1 mm is predicted for an experiment lasting one hour. This figure is
from [16].

In addition to heat injection, the illumination laser can also work on

our system by exerting radiation pressure on each colloidal particle that

diffuses inside the optical beam. Under our experimental conditions, we

demonstrated a capacity to measure weak radiation pressure forces at the

thermal limit fixed by the temperature of the fluid. Exploiting the fact

that we can access many trajectories and thereby form a large ensemble

of displacements, we have been able to resolve such radiation pressure

forces at the fN level and reconstruct the actual optical force field profiles

responsible for biasing the Brownian motion of the colloidal assembly.

This level of resolution opens many opportunities in the context

presented in the general Introduction of the manuscript, when aiming

at reconstruct exotic optical force fields from Brownian trajectories. In

the context of dynamical chiral light-chiral matter interactions, resolving

with such a high-resolution level light-matter momentum transfers is

particularly important. We could today envision using chiral colloidal

assemblies illuminated by circularly polarized light, in order to reveal

and measure at the nano-scale the optical chiral forces recently predicted

in our group, and simultaneously also by a couple of other groups [17].

Such forces have only been revealed to date on experiments involving
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Figure 6.2 – Example of active Janus spherical particles (Platinum-
Polystyrene) trajectories. The active motion is fuelled by asymmetric
catalysis of hydrogen peroxide of platinum at the surface of the half coated
particles. At short time scales the motion is directed and at long time scales
the motion is randomized. As shown, for non coated particles the motion
is freely diffusive. However, the motion of platinum coated particles is
clearly directed. This figure is direcly taken from [87].

micron-scaled cholosteric spheres [85], with the argument that at such

a large scale, the "racemizing" effect of Brownian motion could be much

better controlled. Our setup using chiral colloids, as recently prepared

[86], gives the possibility to implement at the nano-scale the all-optical

chiral sorting scheme proposed theoretically in [16].

It is worth mentioning that the force resolution we have reached in

the present work lies within the "realistic" bounds set in this theoretical

proposal. Finally, we would like to stress that our setup is versatile

enough to study active Brownian dynamics, as shown in figure (6.2).

Active Brownian motion constitutes today an extremely active field of

research. This tool is drawing interesting perspectives along which the

general methods implemented in this work could be relevant.
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A
HEAT EQUAT ION SOLUT ION

In this appendix the detailed calculation to solve equations (3.21).

Starting from equation (3.21), we perform a first integration of :

∂

∂r

(

r
∂

∂r
δT

)

=−r
AP0

πa2λ
exp

(

−
r2

a2

)

, (A.1)

to obtain :

r
∂

∂r
δT =−

AP0

πa2λ

∫

r. exp
(

−
r2

a2

)

dr,

r
∂

∂r
δT =−

AP0

2πλ

∫

exp
(

−
r2

a2

)

d

(

r2

a2

)

=
AP0

2πλ
exp

(

−
r2

a2

)

+C.

The constant C is determined assuming the first boundary condition :

r
∂δT

∂r

∣

∣

∣

∣

r=0
= 0= C+

AP0

2πλ

C=−
AP0

2πλ
,

we get then :

∂δT

∂r
=−

AP0

2πλ

(

1
r
−

exp
(

−r2/a2
)

r

)

,

which we integrate to have the temperature difference :

δT =−
AP0

2πλ









ln(r)−
∫ exp(−

r2

a2 )

r
r

a2

r

a2dr+C ′









,

and substitute t=
r2

a2 in the integral to get :

δT =−
AP0

2πλ

(

ln(r)−
1
2

∫
exp(−t)

t
dt+C ′

)

. (A.2)
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We introduce the exponential integral function defined as :

E1(x) =

∫∞

x

exp(−u)

u
du=

∫∞

1

exp(−tx)

t
dt. (A.3)

Taking the first derivative :

dE1(x)

dx
=

∫∞

1

d

dx

(

exp(−tx)

t

)

dt

=−

∫∞

1
exp(−tx)dt

=−
1
x

∫∞

1
exp(−tx)dtx

=−
exp(−x)

x
,

(A.4)

we can identify the integral in equation (A.2) as :

∫
exp(−t)

t
dt=−E1(t)+C1.

Equation (A.2) is rewritten then :

δT =−
AP0

2πλ

(

ln(r)+
1
2
E1

(

r2

a2

)

+C ′
1

)

, (A.5)

then in order to get the constant C ′
1, we use the second boundary condition

:

δT(δT/2) = 0,

we obtain then :

C ′
1 =− ln(δT/2)−

1
2
E1

(

δ2T
4a2

)

,

and finally :

δT =
A.P0
4.π.λ

(

−2ln
(

2.r
δT

)

−
1
2
E1

(

r2

a2

)

+
1
2
E1

(

δ2T
4a2

))

.



B
NAVIER- STOKES EQUAT ION SOLUT ION

In order to solve the system (3.28), we follow the same procedure by

integrating twice each equation of the system. Let us first introduce some

constants :

K=
gβAP0

4πλν
,

K ′ =−2ln
(

δT
2

)

−E1

(

δ2T
4a2

)

.

Starting by the first equation of the system :

∂2v
(1)
z

∂x2
= K

[

2ln(x)+E1

(

x2

a2

)

+K ′
]

, (B.1)

the integral is then :

∂v
(1)
z

∂x
= K

[

2x ln(x)− 2x+K ′x+C1+

∫

E1

(

x2

a2

)

dx

]

.

The integral of E1
(

t2
)

is calculated as follows :

E1

(

x2

a2

)

= E1(t
2) =

∫ ∫∞

1

e−t2u

u
dudt

= tE1(t
2)−

∫

t

(∫∞

1

e−t2u · (−u) · (2t)
u

du

)

dt

= tE1(t
2)+ 2

∫

t2
(∫∞

1
e−t2udu

)

dt

= tE1(t
2)+ 2

∫

e−t2dt

= tE1(t
2)+

√
π erf(t)

(B.2)

where the error function is defined by :

erf(x) =
2√
π

∫x

0
e−u2

du.
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Equation (B.1) become then :

∂v
(1)
z

∂x
= K

[

2x ln(x)− 2x+K ′x+C1+ xE1

(

x2

a2

)

+a
√
π erf

(x

a

)

]

,

here the constant is calculated from the boundary condition :

∂v
(1)
z

∂x

∣

∣

∣

∣

x=0
= 0

then :

C1 = 0

and the expression of the first integral is :

∂v
(1)
z

∂x
= K

[

2x ln(x)− 2x+K ′x+ xE1

(

x2

a2

)

+a
√
π erf

(x

a

)

]

. (B.3)

The solution of the second equation in the system (3.28) is simply :

v
(2)
z =±C ′x+C ′′

the constants are determined using the continuity of vz at the merger of

the thermal and the velocity boundary layer, firstly for the derivative:

∂v
(1)
z

∂x

∣

∣

∣

x=±δT /2
=

∂v
(2)
z

∂x

∣

∣

∣

x=±δT /2

so we obtain :

C ′ = K

[

δT ln
(

δT
2

)

− δT − δT ln
(

δT
2

)

−
δT
2
E1

(

δ2T
4a2

)

+
δT
2
E1

(

δ2T
4a2

)

+a
√
π erf

(

δT
2a

)]

we have then the first constant C’:

C ′ = K

[

−δT +a
√
π erf

(

δT
2a

)]

(10)

Secondly, using the boundary condition:

v
(2)
z (±δv/2) = 0

we then determine the second coefficient C ′′:

C ′′ =−C ′δv
2

= K

[

δvδT
2

−
aδv

2

√
π erf

(

δT
2a

)]

(11)
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Finally we obtain :

v
(2)
z = K

[

−δT +a
√
π erf

(

δT
2a

)](

x−
δv

2

)

(12)

From (B.3), we get the expression for v(1)z :

v
(1)
z = K

[

x2 ln(x)−
x2

2
− x2+

K ′

2
x2+

∫

xE1

(

x2

a2

)

dx+a2√π

∫

erf
(x

a

)

d
(x

a

)

+C2

]

v
(1)
z = K

[

x2 ln(x)+
K ′− 3

2
x2+a2√π

(

x

a
erf

(x

a

)

+
1√
π
e−x2/a2

)

+

∫

xE1

(

x2

a2

)

dx+C2

]

the integral of xE1

(

x2

a2

)

, is obtained by substituting w= x2/a2:

∫

xE1

(

x2

a2

)

dx=
a2

2

∫

E1

(

x2

a2

)

d

(

x2

a2

)

=
a2

2

∫

E1(w)dw=
a2

2

(

wE1(w)−

∫

wdE1(w)

)

then for the last integral:

∫

wdE1(w) =

∫

wd

[∫∞

1

e−tw

t
dt

]

=

∫

w

∫∞

1

−te−tw

t
dtdw=−

∫

e−wdw= e−w

we get then :

∫

xE1

(

x2

a2

)

dx=
a2

2

(

wE1(w)− e−w
)

.

finally v
(1)
z is given by:

v
(1)
z = K

[

x2 ln(x)+
K ′− 3

2
x2+a2√π

(

x

a
erf

(x

a

)

+
1√
π
e−x2/a2

)]

+K

[

a2

2

(

x2

a2E1

(

x2

a2

)

− e−x2/a2
)

+C2

]

(B.4)

the constant C2 is given by taken the value of v(2)z at δt/2:

v
(1)
z (±δt/2) = v

(2)
z (±δt/2)

So we have for this continuity condition:

K ′ =−2ln
(

δT
2

)

−E1

(

δ2T
4a2

)
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v
(1)
z (±δT/2) = K

[

δ2T
4
ln

(

δT
2

)

−
δ2T
4
ln

(

δT
2

)

−
δ2T
4

E1

(

δ2T
4a2

)

2
−

3
2
δ2T
4

+
√
π
aδT
2

erf

(

δT
2a

)

+
a2

2
e−δ2T /4a

2
+

δ2T
4

E1

(

δ2T
4a2

)

2
+C2

]

= K

[

−δT +a
√
π erf

(

δT
2a

)](

δT
2

−
δv

2

)

the equation is simplified:

K

[

−
3
2
δ2T
4

+
a2

2
e−δ2T /4a

2
+C2

]

= K

[

−
δ2T
2

+
δTδv

2
−
√
π
aδv

2
erf

(

δT
2a

)]

then the constant C2 is determined by:

C2 =−
1
8
δ2T +

δTδv

2
−

a2

2
e−δ2T /4a

2
−
√
π
aδv

2
erf

(

δT
2a

)

Finally the maximal convective velocity vmax is taken at x= 0:

vmax = v
(1)
z (0) = K

(

a2

2
+−

1
8
δ2T +

δTδv

2
−

a2

2
e−δ2T /4a

2
−
√
π
aδv

2
erf

(

δT
2a

))

with:

K=
gβAP0

4πλν
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Résumé en français suivi des mots-clés en français

Le travail réalisé dans cette thèse porte sur l’étude du mouvement Brownien d’une suspension 

colloïdale sous champ de force optique faible et l’étude fondamentale des effets convectifs et 

de diffusion anormale. Nous avons construit un microscope à fond noir afin de suivre les 

particules et de reconstruire leurs trajectoires avec une résolution spatiale de 20 nm et une 

résolution temporelle de 8 ms. Ces trajectoires sont analysées statistiquement afin d’en 

extraire la contribution balistique induite par la force de pression de radiation appliquée par le 

laser d’illumination. En plus de l’effet mécanique du laser sur les particules, le fluide absorbe 

les radiations ce qui le chauffe et crée ainsi une différence de température entre la partie 

illuminée et la partie non illuminée de l’échantillon.

Nous validons aussi les hypothèses de stationnarité et d’érgodicité qui sont fondamentales 

pour notre stratégie de mesure de force faible. L’analyse statistique fine de notre système nous 

permet de mettre en évidence et de caractériser des effets de diffusion anormale brownienne. 

Nos expériences révèlent en effet la présence de trajectoires anormales dont l’origine se 

comprend comme un effet d’interaction entre la particule suivie et le reste de l’ensemble 

colloïdal.  

Mots clés :

Mouvement Brownien, Force optique, diffusion anormales, Ergodicité.

 

Résumé en anglais

 

The work presented in this thesis deals with the study of the Brownian motion of a colloidal 

suspension under an external weak optical force, the study of convective effects and 

anomalous diffusion. We have built a dark field microscope in order to track the particles and 

reconstruct the Brownian trajectories with a spatial resolution of 20 nm and a temporal 

resolution of 8 ms.

Statistical analysis of the trajectories has allowed us to extract the ballistic contribution induced 

by the radiation pressure force exerted by irradiating a laser on the particles.

In addition to the mechanical effect of the laser on the particles, the fluid absorbs the radiation. 

Consequently, the temperature of the fluid rises and results in a thermal difference between 

the illuminated and the non-illuminated areas of the sample.

In order to validate our weak force measurement, we have investigated two fundamental 

hypotheses in statistical physics: ergodicity and stationary aspect. A closer statistical analysis 

enables us to demonstrate and characterize the effect of anomalous Brownian diffusion. Our 

experiments have revealed the existence of anomalous trajectories, which can be understood 

as an effect of the interactions between the particles. 

Keywords: 

Brownian motion, optical force, anomalous diffusion, ergodicity 

 


