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R E S U M É

le contexte

La reconnaissance moléculaire représente un événement central dans de nombreux pro-
cessus chimiques et biologiques pertinents. Dans le domaine biologique, un exemple de re-
connaissance moléculaire est la liaison d’un ligand (un drogue ou modulateur endogène)
à une protéine cible. Comprendre comment les ligands se lient aux biomolécules est d’une
importance fondamentale pour les disciplines fondamentales et appliquées. D’autre part, la
reconnaissance moléculaire est largement observée dans les complexes hôte-invité, une zone
d’intérêt accru au cours des dernières années pour les chimistes expérimentaux et computa-
tionnels. L’hôte est une petite molécule synthétique avec une cavité bien définie où un certain
nombre de composés se lient avec une affinité remarquable. La formation de complexes hôte-
invité en solution est conduite par les mêmes forces non-covalentes qui apparaissent dans
la liaison protéine-ligand, ce qui fait d’eux des systèmes modèles appropriés pour explorer
la liaison non-covalente plus complexe comme protéine-ligand. De plus, de nombreux hôtes
synthétiques ont montré des applications technologiques intéressantes en tant que chimiosen-
sors, contenants de réaction, biomimétiques, amplificateurs de solubilité ou transporteurs
de médicaments. Les principaux facteurs qui régissent la reconnaissance moléculaire sont
de nature thermodynamique, en particulier, la valeur de la constante d’équilibre de liaison
(Keq), qui est dictée par le changement d’énergie libre molaire standard sur la complexa-
tion (∆G˝

b) ou la différence absolue de potentiel de liaison chimique (∆µ˝
b), est la quantité

d’intérêt. La possibilité d’accéder à la constante de liaison de manière précise et à partir des
premiers principes fournirait une compréhension chimique de la reconnaissance récepteur-
ligand, décrivant ainsi des lignes directrices pour des médicaments de conception rationnelle
ou des échafaudages pour des hôtes synthétiques. De plus, des prédictions fiables de l’affinité
de liaison récepteur-ligand par le calcul réduiraient considérablement les coûts d’innovation
et de RetD, par exemple au début du développement de médicaments et stimuleraient un
développement plus efficace de nouveaux produits pharmaceutiques par les sociétés pharma-
ceutiques. Cependant, le calcul de la constante de liaison dans la liaison récepteur-ligand pose
en soi un défi théorique et de calcul exceptionnel. En même temps, les méthodes actuelles
d’évaluation de l’affinité de liaison présentent divers degrés d’efficacité en termes de temps
de calcul et de temps personnel pour obtenir des résultats fiables. Ce fait augmente encore
plus les difficultés pour sélectionner une méthodologie appropriée pour l’analyse de cas spéci-
fiques de reconnaissance de liaison récepteur-ligand. Dans ce contexte, le besoin de nouvelles
approches computationnelles pour évaluer l’affinité de liaison avec une précision et une ef-
ficacité élevées est actuellement très nécessaire tant pour le secteur industriel que pour la
recherche fondamentale.
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résultats et discussions

Un cadre de mécanique statistique pour évaluer numériquement les affinités de liaison protéine-ligand

Le calcul de l’affinité de liaison protéine-ligand est loin d’être trivial. Dans ce but, plusieurs
approches de calcul ont été développées au cours des années, qui abordent le problème
à divers degrés d’approximation. L’interprétation de la mécanique statistique présentée ici
suggère qu’il existe deux approches générales de l’énergie libre de liaison standard (voir Fig-
ure 0.1). Une approche passe par l’évaluation (directe) des potentiels chimiques absolus pour
tous les composants de la réaction de liaison (c’est-à-dire le ligand, la protéine et le complexe).
L’autre traite la réaction de liaison comme un équilibre de partition du ligand entre les états
lié et non lié, ce qui suppose que la plupart des contributions protéiques à la différence de
potentiel chimique s’annulent effectivement. Au meilleur de nos connaissances, toutes les
approches rigoureuses de la constante de liaison telles que la perturbation de l’énergie libre
(FEP en anglais) ou celles basées sur les Potential Mean Force (PMF en anglais) tombent dans
la seconde classe; voir la Figure 0.1.

Figure 0.1: Classification des méthodes pour le calcul de l’affinité de liaison protéine-ligand.

Ces méthodes sont très intensives en termes de calculs et peuvent être utiles pour ne
classer qu’un petit nombre de composés, typiquement moins d’une centaine, au stade de
l’optimisation du plomb. La situation est différente pour les approches semi-rigoureuses ou
terminales où MM/PBSA appartient à la première classe et le modèle d’énergie d’interaction
linéaire (LIE en anglais) à la seconde classe; voir la Figure 0.1. Dans les deux cas, la con-
stante de liaison est accessible en résolvant un cycle thermodynamique qui implique un
transfert moléculaire vers la phase gazeuse. Cette stratégie transforme efficacement le cal-
cul de l’énergie de liaison libre standard en une différence entre les énergies sans solvatation
(approximatives), qui peuvent être évaluées avec beaucoup moins de calculs. En remplaçant la
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représentation explicite du chemin de liaison par des estimations approximatives de l’énergie
sans solvatation basées sur des modèles de continuum ou la théorie de la réponse linéaire, ces
méthodes allègent la charge de calcul de façon significative. doit être évalué et classé. Bien sûr,
la qualité des prédictions dépend de manière critique de la précision des calculs d’énergie
sans solvatation, ce qui motive davantage d’efforts pour le développement de modèles de
solvants implicites plus précis. L’analyse des approches empiriques rapides de la protéine-
ligand (incluant certaines des fonctions les plus populaires pour l’amarrage) montre que ces
méthodes décomposent le coût de calcul en se concentrant exclusivement sur l’état lié, c’est-
à-dire sur la protéine ou le ligand en solution, et appartiennent donc à la seconde classe ; voir
la Figure 0.1. Comme le taux de production moyen est d’une détermination de l’énergie libre
par seconde, ces approches simplifiées sont appropriées pour le criblage de millions de com-
posés et trouvent une utilisation répandue à l’étape d’identification des impacts. Néanmoins,
l’accélération significative est obtenue en introduisant une série d’approximations théorique-
ment injustifiées, qui se traduisent par des erreurs systématiques importantes qui rendent les
prédictions souvent peu fiables et/ou fortement dépendantes du système.

Le modèle d’énergie d’interaction linéaire pour les systèmes hôte-invité

Les complexes hôte-invité représentent un modèle intéressant pour tester de nouveaux
développements de méthodes de calcul pour obtenir. Nous présentons un modèle d’énergie
d’interaction linéaire (LIE en anglais) pour les systèmes cavit et hôte-invité. Dans LIE, ∆G˝

b

est calculé en évaluant l’énergie d’interaction du ligand avec son entourant à la fois dans les
états liés (dans le complexe avec le récepteur) et non lié (libre dans la solution). Ces énergies
d’interaction non-liantes sont normalement divisées en van der Waals et en contributions
électrostatiques, pondérées par deux paramètres empiriques, α et β, obtenus par ajustement
linéaire à partir de valeurs expérimentales. Ici, les paramètres LIE ont été générés en util-
isant un ensemble d’entraînement de 14 complexes basés sur l’hôte cucurbit[7]uril (CB7) en
ajustant linéairement les énergies d’interaction ligand / environnement calculées à partir des
simulations de Dynamique Moléculaire avec le champ de force général ambre (GAFF) par rap-
port aux affinités de liaison expérimentales dans l’eau. Le caractère prédictif des paramètres
LIE obtenus, α = 0.43 et β = 0.2, a été évalué en utilisant un ensemble de test de 49 complexes
de cavit et d’hôte-invité chimiquement divers. L’ensemble d’essai comprenait des complexes
d’octa-acide (OAH), tétra-endométhyl-octa-acide (OAM), de β-cyclodextrine (BCD) et de CB7.
Ces familles d’hôtes sont capables de lier un large spectre d’invités chimiques, de petites
molécules rigides à des molécules plus flexibles. Les mesures statistiques utilisées pour éval-
uer l’exactitude de la méthode étaient l’erreur quadratique moyenne (RMSE) des expériences.
Les résultats de la Figure 0.2 (à droit) montrent une corrélation frappante avec les expériences
(R = 0.81) avec un RMSE calculé de 1.08 kcal/mol. Notez que cette erreur est plus faible que
toute autre rapportée dans des études précédentes utilisant une variété de méthodes de cal-
cul. Remarquablement, des prédictions précises ont été obtenues pour les hôtes OAH (RMSE
= 0.66 kcal/mol), OAM (RMSE = 1.06 kcal/mol) et BCD (RMSE de 1.48 kcal/mol), qui ne
faisaient pas partie de l’ensemble d’entraînement. Ces résultats indiquent que les paramètres
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LIE ci-dessus sont transférables parmi des familles d’hôtes chimiquement diverses. Dans le
cas des complexes CB7-guest, un RMSE de 1.17 kcal/mol a été obtenu, dépassant la précision
obtenue par des méthodes plus rigoureuses basées sur des calculs quantiques coûteux (RMSE
= 1.94 kcal/mol) et/ou des méthodes d’échantillonnage extensives basées sur MD (RMSE =
5.05 kcal/mol). La précision des prédictions ci-dessus indique qu’un modèle LIE simple est
capable de capturer les détails modulant l’affinité de liaison hôte-invité dans la solution.

Pour évaluer l’impact du champ de force sur l’exactitude des prédictions, un nouvel en-
semble de paramètres LIE a été dérivé en utilisant le champ de force général de la CHARMM
(CGenFF). Le nouveau modèle LIE paramétré sur le même ensemble d’apprentissage présente
α = 0.66 et β = 0.08. Il est frappant de constater que malgré les valeurs de CGenFF LIE sensi-
blement différentes de la paramétrisation précédente, le RMSE calculé était de 0.92 kcal/mol,
ce qui est cohérent avec la précision obtenue à l’aide de la GAFF. En outre, le modèle LIE
basé sur CGenFF produit des résultats précis (Figure 0.2 à gauche) pour les hôtes individuels
OAH (RMSE = 1.06 kcal/mol), OAM (RMSE = 0.97 kcal/mol), CB7 (RMSE = 0.88 kcal/mol)
et BCD (RMSE = 0.54 kcal/mol). Ainsi, bien que les paramètres LIE dépendent du champ
de force, la précision des prédictions d’affinité de liaison dans ces complexes hôte-invité ne
l’est pas. Enfin, l’analyse de convergence des prédictions d’affinité de liaison en fonction de
l’échantillonnage MD montre que des prédictions fiables peuvent être obtenues avec une
simulation aussi faible que 1.1 ns dans les états liés et non liés. Pris ensemble, ces résultats
supportent la conclusion que LIE fournit un accès précis et efficace à l’affinité de liaison de
cavitand hôtes-invités; ce qui le rend approprié pour le criblage virtuel de grandes biblio-
thèques chimiques. En tant qu’application, le modèle LIE basé sur GAFF a été utilisé pour
prédire l’affinité de liaison de 19 stéroïdes, qui se sont révélés se lier aux hôtes CB7 et CB8

avec des affinités nanomolaires dans l’eau. L’application directe de LIE a produit un RMSE de

Figure 0.2: Valeurs d’énergie libre de liaison expérimentale vs calculée en solution aqueuse pour les sys-
tèmes hôte-invité de l’ensemble de test du modèle LIE basé sur GAFF (à droite) et CGenFF
(à gauche).
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2.45 kcal/mol à partir des expériences; voir la Figure 0.3 (points bleus). Nous avons observé
que la déformation significative de l’hôte est introduite par les stéroïdes encombrants à l’état
lié, en particulier sur le plus petit hôte CB7. Puisque la théorie de LIE suppose que le ligand
est petit par rapport au récepteur et que la conformation de ce dernier est minimalement
affectée lors de la complexation, il ne peut pas rendre compte de la souche du récepteur
dans l’état lié. Dans les complexes stéroïde-cucurbituril, cependant, cette hypothèse est injus-
tifiée car les hôtes stéroïdes ont une taille comparable à celle de l’hôte. Sur la base de ces
considérations, nous avons développé un modèle LIE original qui tient compte de l’énergie
de contrainte de l’hôte (∆Estr) dans l’évaluation de l’énergie libre de liaison. Ainsi, dans la
nouvelle formulation est la différence entre les énergies de champ de force pour les états liés
et non liés au minimum, respectivement. Fait frappant, les résultats de la Figure 0.3 (points
orange) montrent que l’inclusion de la contribution énergétique de la souche améliore con-
sidérablement les prédictions d’affinité de liaison avec un RMSE final de 0.81 kcal/mol et R2

= 0.67.

Figure 0.3: Valeurs de l’énergie libre reliée expérimentale vs calculée en solution aqueuse pour les com-
plexes CB[7,8]-stéroïdes

L’effet co-catalytique des molécules "inertes" dans les réactions catalysées par l’acide de Brønsted

On a montré que la présence de composés nitrés modifiait les vitesses de réaction et la
dépendance de la concentration cinétique des réactions catalysées par l’acide de Brønsted, y
compris la déshydroazidation à l’alcool et l’hydrochloration des oléfines. Cependant, aucun
modèle mécaniste n’existe pour rendre compte de ces observations. Ici, l’effet co-catalytique
du composé nitro "inerte" dans la réaction d’azidation des alcools tertiaires catalysée par
BCF, un acide de Bronsted organoborone, a été adressée par une approche combinée de la
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modélisation moléculaire et des calculs DFT. Nous présentons un modèle supramoléculaire
pour la forme catalytiquement active de l’acide généré par les calculs de DFT, constitué d’un
agrégat lié à H de deux molécules d’acide de Brønsted et de deux molécules de composé
nitro; voir Figure 0.4 (à droit). Les fréquences d’étirement O-H calculées pour l’agrégat sont
d’excellents prédicteurs pour les vitesses de réaction expérimentales, contrairement aux ban-
des IR observées expérimentalement. En appliquant le modèle à un ensemble chimiquement
divers de promoteurs potentiels, nous avons prédit et, de plus vérifié expérimentalement, que
les esters de sulfate fournissent une alternative de travail aux composés nitrés; voir Figure 0.4
(à gauche). Ceci est le premier rapport de l’effet co-catalytique pour une famille chimique de
composés non nitrés dans des réactions catalysées par l’acide de Bronsted.

Figure 0.4: Structure optimisée par DFT pour l’auto-assemblage tétramérique 2:2 de BCF avec du ni-
trométhane (à droite) et du sulfate de diéthyle (à gauche).

conclusions

Notre interprétation des approches computationnelles apparemment non reliées à la liai-
son récepteur-ligand dans le cadre commun de la mécanique statistique permet de repérer les
approximations introduites pour accélérer les calculs, ce qui est utile pour rationaliser leur
impact sur la précision de l’affinité de liaison prédictions. Notre analyse comparative met
déjà en évidence des améliorations possibles d’approches semi-rigoureuses et empiriques
bien établies et aide au développement de variantes avec un équilibre optimal entre préci-
sion et efficacité. En conséquence de ce cadre initial de mécanique statistique, nous avons
présenté un modèle LIE pour les affinités de liaison cavit-hôte-hôte transférable entre des
familles chimiquement diverses, précises et fiables, produisant des prédictions avec un RMSE
<1.5 kcal/mol dans un grand test ensemble comprenant 49 invités et quatre hôtes différents.
Notre modèle est efficace sur le plan des calculs et produit des résultats convergents en
quelques nanosecondes de MD, ce qui ouvre la voie à des criblages informatiques à haut
débit. On a montré que le caractère semi-empirique du modèle absorbait la plus grande
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partie de l’erreur systématique du champ de force, rendant les prédictions essentiellement
indépendantes du champ de force. Enfin, l’inclusion de l’énergie de contrainte de l’hôte dans
le calcul de l’affinité de liaison, qui est absente dans la formulation LIE originale, s’est avérée
améliorer sensiblement la qualité des prédictions, en particulier lorsque les hôtes et les invités
ont des tailles similaires. L’utilité d’une formulation LIE pour la reconnaissance hôte-invité a
été démontrée par la prédiction précise de la liaison stéroïdienne aux hôtes cucurbituril, qui
sont technologiquement pertinentes pour le développement de chimiosensors. Enfin, un mod-
èle de calcul a été généré pour tenir compte des changements dans l’échelle d’acidité d’un
acide de Bronsted par l’inclusion d’une molécule apparemment inerte (composés nitrés) avec
un effet co-catalytique. L’implication importante est que, pour être bien comprise, la catalyse
acide de Brønsted doit être considérée dans une perspective supramoléculaire qui prend en
compte non seulement le pKa de l’acide et les propriétés globales d’un solvant, mais aussi
les interactions faibles entre toutes les molécules dans solution.
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1
I N T R O D U C T I O N

Nature is fascinating!!
It’s remarkable the way how nature is able to carry out regulatory processes in a precise

and controlled way. This phenomenon has molecular origin, through the interaction of two or
more molecules, also called molecular recognition. In fact, it is essential in biology, chemistry
and physics and it got highly attention from the 1980’s with the emergence of the supramolec-
ular chemistry by Lehn, Cram and Pedersen, Nobel prizes awared in 1987

[1–3]. The essence of
molecular recognition is the communication among molecules by non-covalent interactions
and represents the heart of new research in chemistry aimed to design new chemical entities
with technological applications. Thus, it is expected the creation of nano devices composed
of agglomerations of molecules joined by non-covalent forces that can be controlled using
external factors such as changes in temperature or concentration. A typical example is the
use of self-assembly, a fascinating expression of molecular recognition in chemistry, for the
fabrication of nano-scale electronic and photonic devices [4]. The importance of molecular
recognition today is by far undeniable to scientists in many branches of basic and applied
science.

Nevertheless, molecular recognition is, at least, little understood nowadays. For example,
there are not (yet!) universal rules for the design of a small ligand that strongly and selectively
binds to a specific binding site of a protein with known structural information, although this
widely relevant as the fundamental principle for rational drug design. Similarly, the problem
of "protein folding" remains almost intact after 50 years of research and it’s not possible
to predict the mechanism of folding for proteins (or agglomeration of them as in histons)
knowing only the amino acid sequence.

Why such a relevant process still a mystery? a first possibility comes from the fact that we
might not have a complete characterization of all non-covalent interactions present in com-
plex molecular recognition events. With the birth of quantum mechanics since the 1920’s, the
chemical bond was practically solved [5] and much progress has been made in the elucidation
of non-covalent interactions in simple systems such as homogeneous fluids or solid-liquid in-
terfaces. Currently, we have very good knowledge of a list of non-covalent interactions such
as electrostatic, dispersion or magnetic forces and we have characterized those of special rel-
evance as the hydrogen bond [6]. However, the attraction experienced by anions and cations
by the quadrupole of aromatic rings has only been revealed in the last 30 years but with little
understood beyond simple models is present today as few applications exist exploiting this
kind of interaction. Another special case is the halogen bond, a type of non-covalent attrac-
tion between an electrophilic region associated with a halogen atom and another nucleophilic
region very similar to the hydrogen bridge, which was revealed on 1950’s. A second and more
definitive answer is related to the incomplete appreciation we have about the interconnection
that exists among particular non-covalent forces in complex systems of molecular recognition.

1
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That is, the mechanism by which individual non-covalent interactions reinforce or weaken/-
compete with others in an event of molecular recognition with multiple and heterogeneous
actors is still unclear. For example, in the field of rational drug design, one strategy for im-
proving the binding affinity and specificity of a molecule is based on the addition of a polar
group aimed to form a hydrogen bond with a specific residue in the binding site of the re-
ceptor. However, this extra polar group in the new ligand also increases its affinity for the
aqueous medium (unbound state), as it also favors the hydrogen bond network in water and
could end-up with a global decrease of the protein binding affinity with respect to the pre-
decessor molecule. This case shows the difficulty to evaluate a priori how the introduction
of a new chemical group in the ligand will increase its affinity for either the bound or the
unbound states. It’s hard to evaluate the contribution of this new interaction to reinforce
the non-covalent interactions already present between the ligand and its two critical environ-
ments for binding affinity, inside the protein and free in solution, respectively.

This last point indicates a key aspect and is that today, in our opinion, we have a semi-
quantitative understanding of molecular recognition. Excellent advances has been made ori-
ented to characterize each individual non-covalent interaction participating in biological and
chemical processes where molecular recognition is involved [6]. That is, from a qualitative
point of view, we have certainty of what kind of non-covalent interactions are involved in
most of the (bio)chemical process, for example the binding of a ligand to a protein or the self-
assembly of monomers in solution. In fact, we know the relative strength which these interac-
tions participating in a recognition event, the opening door for a more quantitative analysis.
Since the last 40 years, great efforts have been made aimed at the quantification of molecular
recognition using robust experiments based on isothermal calorimetry titration and nuclear
magnetic resonance, at least in some systems with low and medium complexity as protein-
ligand and protein-protein binding [7]. However, in more complex problems as catalysis in
solution or 2D self-assembly, the insight and the estimation of affinity parameters is poor
even by using the most advances experimental techniques (e.g., nuclear magnetic resonance
or scanning electron microscopy) because a poor sensibility, low molecular resolution and/or
other limitations of the experiments. On the other hand, notable theoretical advances on toy
systems for quantitative molecular recognition has been performed since Hill’s work [8] and
others on 1950’s [9,10]. These studies focused on simplified systems have provided the basis
for the developing of computational methodologies to estimate parameters of binding affini-
ties in more realistic systems, which is the base for the computer-aided molecular design.
However, we lack a general method that allows us, from a quantitative point of view, to un-
derstand and control the recognition process of any molecular association. Moreover, we still
do not have a universal methodology that allows us to predict events involving supramolec-
ular systems of two or more molecules. Such predictions are the basis for the rational design
of important chemical entities with social impact, such as new drugs, catalysts, drug carriers,
biomimetics, among others. Although the computational power exponentially increase every-
day, our state-of-the-art methodologies require a highly intense demand of computation not
accessible nowadays, which forces to introduce drastic approximations confining the validity
of the models to specific cases and loosing their generality. This lack of absolute predictive
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power confirms that the phenomenon of molecular recognition remains not totally clear and
we count with methods with an acceptable degree of success to make predictions and design
just for specific cases of supramolecular recognition events.

This manuscript is focused on the study of molecular recognition from a quantitative ap-
proach, specifically in ligand-receptor binding systems such as host-guest and ligand-protein
binding and catalysis in solution. This quantitative approach is possible thanks to the use of
computational (numerical) methodologies based on statistical mechanics, a theory of atom-
istic resolution. With these methods it is possible to discern the conglomerate of non-covalent
interactions present in these systems and provide a path to the understanding of chemical
supramolecular events.



Part I

L E S C O N C E P T S



2
M O L E C U L A R R E C O G N I T I O N

2.1 concepts

The Nobel Prize in chemistry was awarded in 1987 to Cram, Lehn, and Pederson [1–3] for
their work in the development and application of molecules that bind with high selectivity
through structure-specific interactions. This gave birth to the supramolecular chemistry, a
term given by Lehn [2], as a fundamental science encharged to study molecular complexes
built by non-covalent interactions. Inside supramolecular chemistry emerged the concept of
molecular recognition, another term given by Lehn [2], as the mechanism that decides the
specific association among molecules. Thus, if a supramolecule is defined as "a molecular
entity beyond a single molecule" bonded by reversible non-covalent interactions (e.g., hydro-
gen bonding, van der Waals forces, salt bridge, among others), the molecular recognition is
the algorithm which dictates how this supramolecule is built. Molecular recognition covers
many research areas of supramolecular chemistry in solution, as molecular (self)assembly
and host-guest binding, and at interfaces, as the molecular imprinting [11,12].

Because we will focus on the analysis of molecular clusters ("supermolecules") bonded by
intermolecular forces, we might first consider to define what is a molecule. For example, the
diatomic specie Ar2 formed by the binding of two argon atoms is not usually considered as a
molecule. This is because the binding energy to form Ar2 is low than kT (k is the Boltzmann
constant) at room conditions and can be dissociated easily thorough atomic collisions. A
contrast case is N2, which has a binding energy of 226 kcal/mol at 298 K [13], one of the
tightly bonded diatomic specie found in nature. Thus, we might define a molecule as a group
of atoms with a binding energy larger than kT at room temperature and without losing
its integrity when interacts with its environment. There are cases, as in proteins and other
highly flexible molecules, where multiple and stable conformers of the molecule can be found
after large conformational changes induced by the environment but they are accompanied by
relative small changes in potential energy among the conformers.

Molecular recognition has been found among the most relevant events in chemical and
biological systems, and provide a rich pool of chemical diversity and functions for both char-
acterization and design of materials and assemblies [11]. Thus, we can classify many molecular
recognition events according to the properties of the supramolecular assembly such as size,
shape, non-covalent interactions involved, etc. Along this line, we might find molecular recog-
nition at the molecular, meso- and nano- scales according to the system’s complexity based
on size and shape of the supramolecule [12]. From the development of the ionophores crown
ethers and cryptand [2,3], a wide group of synthetic receptors as tweezers, clefts and cavitand
hosts have been prepared [14]. They normally form 1:1 complexes with variable guests; ions,
drug-like compounds, amino-acids, etc, and they are examples of molecular recognition at
the molecular scale (Figure 2.1). Many approaches aimed to the design of receptors have

5
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Figure 2.1: Different scales for molecular recognition from solution to material chemistry [12].

been emerged using molecular imprinting protocols, template reaction and computer-aided
design at the molecular scale. Moreover, new research is point out to molecular recognition
on the meso-scale using more specialized receptors (Figure 2.1). These families of host are
designed to have larger guest cavities (ą1 nm) to accept many types of guests with high
diversity in shape and size and chemical groups. As examples on meso-scale recognition we
have dendrimers and molecular capsules, normally used as drug delivery systems. When the
molecular association forms a supramolecule with dimensions around hundreds nanometers
we are in the regime of molecular recognition at nano-scale. Here, the ultimate goal is the
fabrication of nanodevices with autonomous (smart) or semi-autonomous behavior, able to
perform specific and efficient tasks by following of external instructions from the user [12]

(Figure 2.1).

2.2 relevance of molecular recognition

After 30 years, supramolecular chemistry and molecular recognition is being used in many
branches of basic science and the technological revolution new millenium [7,14]. From the per-
spective of basic science, molecular recognition is at the heart of biology and biochemistry.
Knowing the intrinsic mechanisms that underline the selective binding process of a mod-
ulator ligand to a protein will lead to clarify and control all metabolic pathways in a cell.
Beyond, it opens the door to the field of rational design of receptors and/or ligands for tech-
nological advances. Among these technologies we find medical applications, energy storage,
chemosensors in environment chemistry among others, where the relevance of non-covalent
interactions among molecules is highlighted. Other advances done after the emergence of
molecular recognition is at the nanotechnology level with the fabrication of nano- and micro-
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devices based on molecular self-assembly [4]. Clearly the importance of study molecular recog-
nition today is highlighted from several edges of basic and applied sciences.

As a case study we analyze the sugar-protein recognition, among many others process with
biological relevance, where a deep insight and quantitative analysis of molecular recognition
provide the basis for controlling the biochemistry of the cell. The sugar-protein recognition
is involved in critical process such as cell-cell communication, energy production by their
own catabolism, inmunological recognition among others. Sugars constitute the main and
preferred energy source for cells. A complete network of regulatory gens is activated or
induced by a specific sugar in order to produce proteins which are able to metabolize that
particular sugar. In contrary cases when the inducer is absent, the entire genetic system
is stopped or repressed. This beautiful circuit is carried out on the basis of a well-defined
molecular recognition principle. In a first case, a repressor protein is synthesized when there
is low concentration or absence of the sugar, which binds to DNA (operational region) and
block the RNA polymerase movement. As a consequence, the transcription of genes needed
for the catabolism of the sugar is stopped. In a second case, the activation process is based
on the binding of the sugar with the repressor protein which inhibits the binding of the
repressor with DNA sequence and allows the synthesis of catabolic enzymes for sugars. Here,
the sugar-inducer/repressor mechanism is an unique example of molecular recognition. The
whole regulatory circuit uses the substrate sugar as guarantee of the cell survival and it’s an
excellent target for drug design.

2.3 noncovalent interactions

In general, a molecule selectively recognizes its partner through various intermolecular in-
teractions. These interactions are usually weak forces compared to chemical bonds in molecules
and usually are called weak interactions. Several kind of non-covalent interactions are found
with different features, although in essence, all of them comes ultimately from the electro-
static interaction among particles. Historically, these intermolecular interactions are classified
in two main families: "long-range", with the interaction energy follows an in inverse power
of the distance, and short-range, where the magnitude of the energy exponentially decreases
with the distance (Table 2.1) .

The long-range interactions are: electrostatic, induction and dispersion. They are present
when the interacting particles are separated at large distances. In general terms, the electro-
static effects are the most simplistic to follow. They can be quantified using the Coulomb
law and they are pairwise additive with attractive or repulsive characters depending of the
distance distribution of atoms.

Induction effects come from the changes in electronic structure for a particular molecule
under the influence of a net electric field from all atoms in its environment. The induction
interaction is strictly attractive but non-pairwise additive as the electric fields of molecules in
the environment may intensify or cancel out each other.

Dispersion interactions are the less understood effects from a classical point of view be-
cause they arise from the highly fluctuating charge distribution as the electrons are in con-
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Contribution Additive? Sign Comment
Long-range

(
U „ R´n

)
Electrostatic Yes ˘ Strongly dependence of orientation

Induction No - Always present
Dispersion Approx. -
Resonance No ˘ Degenerate states only
Magnetic Yes ˘ Very small

Short-range
(
U „ e´αR

)
Exchange-repulsion Approx. + Dominates at very short range
Exchange-induction Approx. -
Exchange-dispersion Approx. -

Charge transfer No -

Table 2.1: Classification of non-covalent interactions for molecular recognition [6].

stant motion in molecules. They have mostly quantum nature and are attractive interactions
as the two molecules approach close each other. They come from the pre-defined correlation
existing on the electron movements, which favors specific low-energy configurations for the
two interacting molecules.

Two other interactions with long-range nature, the magnetic and resonance effects, are not
deeply described as they usually don’t participate in molecular recognition events at room
temperature in most of the chemical and biological problems treated here. Firstly, the mag-
netic effect can occur involving electrons or nuclei. The electronic magnetic effects appear
when both interacting molecules have unpaired spins, which is not so common in biological
process, while the magnetic interactions involving nuclei are relatively several order of mag-
nitude smaller in magnitude compared to other interactions as electrostatics or dispersion.
Lastly, the resonance interactions arise when at least one interacting molecule is at a degener-
ate state (e.g., as an excited state) and they are not present in closed-shell molecules usually
treated in molecular recognition problems at ground states (Table 2.1).

Interesting contributions to the total potential energy come from molecular interactions at
short distances where electron exchange effects may be possible as the molecular wavefunc-
tions might overlap significantly. The most significant effect at short-range is the exchange-
repulsion (also known as just exchange), which is the result of two effects, one attractive and
one repulsive. The former arises because in the proximity of the two interacting molecules,
the electrons can freely flow in both molecules rather than one, which decreases the electronic
momentum and energy as the uncertainty of the position is increased. The latter, repulsive
effect comes from restrictions imposed by the Pauli antisymmetry principle where electrons
with the same spin should not be found in the same orbitals which involves an energetic cost
to pay. Normally the repulsive component is higher than the attractive one and the exchange-
repulsion interaction has a net repulsive effect. Finally, other short-range interactions are
exchange-induction, exchange-dispersion and charge transfer, which all of them arise from
the overlap of the wavefunction (Table 2.1).
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2.4 host-guest binding

Chemical hosts are defined as molecules with low molecular weight and a well-defined
cavity used for binding other group of compounds, their chemical guests, to form stable
complexes at experimental conditions. The host-guest binding is driven by conventional non-
convalent interactions found in other association reactions as protein-ligand binding such
as hydrogen bond, salt bridges, van der Waals interactions, etc. Revolutionary techniques in
organic chemistry are allowed the synthesis of host families with divese applications in the
field of chemosensors, biomimetics, reactions containers and chemo/drug transporters [15].

Hosts usually are constituted by specific monomers which provide the chemical identity
to the whole host’s family. These monomers can be present in the host in several units and
localized in specific positions. A typical case is the cyclodextrin, where all members of this
host family are constituted by glucose, a chiral and highly flexible small molecule, which
transfers these properties to the cyclodextrin family [14].

Although host-guest complexes are relatively small, i.e., they present fewer degrees of
freedom compared to protein-ligand systems, they still present critical issues specific of asso-
ciation reactions as flexibility of the host, desolvation and hydrophobic effects or changes in
protonation states and tautomerism upon binding, which involve challenges for quantify their
intrinsic molecular recognition [15]. All these features make the host-guest systems an interest-
ing benchmark systems for evaluating binding affinities using computational methodologies
because their relative small size allows to collect large statistics by run extensive sampling
and remove any source of systematic error due to incomplete conformational sampling [16,17].
Additionally, experiments can be carried out in conditions with greater control where it is
possible to eliminate uncertainties in the assignment of protonation states of host and guests.
In this way, computational chemists can use these systems to evaluate other factors or source
of errors in the binding affinity predictions [17].

In this spirit, around the latest 10 years a group of enthusiastic researchers have organized
blind benchmarks or challenges to compare different computational methods for predict the
same properties in specific systems in an objective manner. These tests become essential as
they represent almost an unique way to assess the predictive power of current computa-
tional methodologies in a similiar way as the challenges presented in real life. Also, results
from these challenges are the base for further refinement of methodologies with poor pre-
dictions. Along this line, the Statistical Assessment of the Modeling of Proteins and Ligands
(SAMPL) [18] blind challenges and the Drug Design Data Resource (D3R) [19] grand challenges
have become excellent projects to this aim.

First, D3R is centered on release blind challenges on predict protein-ligand binding both
for capturing the binding mode of the ligand and its affinity for the receptor. The data sets
for these tests are obtained from the pharmaceutical industry and the methods are tested
in systems with direct pharmaceutical relevance. On the other hand, SAMPL focusses on
predict basic physicalchemsitry properties of small molecules as pKa, partition coefficients in
aqueous and organic solutions and binding affinity for host-guest systems. Both the SAMPL
and D3R challenges, roughly cover assess the prediction for interesting properties for drug
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design/discovery by current computational methods [18,19]. Next, we review some families of
hosts used in SAMPL challenges and/or technologically relevant applications. Most of those
host-guest complexes have been used in the development and application of computational
methods described in next chapters of this manuscript.

2.4.1 Cucurbiturils

The cucurbiturils (Figure 2.2) are cavitand hots formed by glycoluril monomers. From the
discover of the first family member, cucurbit[6]uril, with six glycoluril units, many synthetic
efforts have made possible to obtain members with five-, seven-eight- and 10-monomers in
cucurbit[n]urils (CBn with n= 5, 6, 7, 8, 10). Surprisingly, the member CB9 has not been
synthesized yet. As the number of monomers increases, the diameter of the cucurbituril cavity
increases and it is therefore possible to accommodate larger and larger guests. Cucurbituril
family mainly bind hydrophobic-core, neutral or cationic guests. The interior of the cavity
is very hydrophobic while the carbonyl groups in surface of the hosts makes a hydrophilic
portal where polar (mainly cationic) groups of the guests can interact. Among all members
of the cucurbituril family, CB7 is the most widely used host since it is able to bind a large
amount of different chemical guests with a 1:1 stoichiometry. Also, CB8 is being used in
many applications as chemosensor or drug carriers as allow to bind guests with large size to
form 1:1 or 1:2 host-guest complexes. CB7 is experimentally suitable because is very soluble
in water, and computationally, because it is compact, rigid, without ionizable groups and
can tightly bind many guests. For all these reasons, CB7 has been used in several SAMPL
challenges as well as being used in the most recent HYDROPHOBE challenge [20] aimed to
assess the quality of predictions by computational methods for purely hydrophobic guests.

Figure 2.2: Chemical structures for members of the cucurbit[n]uril family [21].
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2.4.2 Octa acids

The octa acid (OAH) and tetra-endomethyl octa acid (OAM) hosts (Figure 2.3) belong to
a synthetic host family characterized by a basketshaped, hydrophobic and deep cavity [15].
These hosts have eight carboxylic acidic groups which make them highly soluble in water
as they point out to the solvent. The cavity of OAM is much more sterically constrained
than the cavity of OAH due to the presence of four methyl groups extra in the proximity of
the host’s portal. These extra methyl groups confer different binding properties in terms of
selectivity and strength to OAM in comparison to OAH. Both OAH an OAM present a rigid
cavity (compared to the cucurbituril family), which bind guests containing i) a hydrophobic
core that fits inside the cavity of the hosts, and ii) a hydrophilic head that points out into the
solvent. Thus, octa acids family are able to bind a diverse set of ligands as neutral, cationic
and anionic organic compounds. In fact, complexes of OAH and OAM with cyclic carboxylic
acids were included on previous versions of SAMPL challenges. These host-guest complexes
provide a broad range of aqueous binding data suitable for exploring the performance for
making predictions by diverse computational methods.

Figure 2.3: Chemical structures for octa acid (A) and tetra-endomethyl octa acid (OAM) hosts [15].
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2.4.3 Cyclodextrins

The family of cyclodextrins (Figure 2.4) are composed by naturally ocurring hosts having
a glucose molecule as the fundamental unit [22]. The most common cyclodextrins contain six,
seven and eight units of glucose and are named α-, β- and γ- cyclodextrins (Figure 2.4). The
monomers are organized in a vertically stand up position with the primary hydroxyl group
located at the side of a narrow cavity while the secondary hydroxy groups are pointed out
toward the reverse side in direction to a wide cavity. Thus, there are not hydroxyl groups
on the borders of the wall, (i.e., the medium region) giving a hydrophobic character to the
cavity. Thanks to this property, cyclodextrins can bind mostly hydrophobic guests in their cav-
ities such as alkyl and aromatic derivatives. As in cucurbiturils, the size of the cyclodextrins
defines the kind of guests to bind and it depends of the number of glucose units in the cy-
clodextrin host. Nevertheless, cyclodextrins are much more flexible than cucurbiturils because
the flexibility of the glucose monomer in the former is higher than the glycouril monomer in
the latter. Additionally, the glycosidic bounds which link all the glucose members gives more
freedom for internal movements in cyclodextrins. Thus, they are also interesting systems for
computational studies as the cavity of cyclodextrins remains a micro-hydrophobic medium
for guests, analogous to the binding site of proteins. Some cyclodextrin derivatives obtained
by chemical modifications of their hydroxyl groups have been widely used in the pharmaceu-
tical and food industries as transporters of drugs and flavors. Those modified cyclodextrin
present a major compatibility with biological fluids than natural cyclodextrins in terms of
solubility, stability and side effects [14].

Figure 2.4: Chemical structures for natural products α-, β- and γ- cyclodextrins [22].
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T H E R M O D Y N A M I C S O F R E C E P T O R - L I G A N D B I N D I N G

3.1 thermodynamics parameters of binding reactions

Although many kinetics effects can affect the binding of a receptor (as a host) by a ligand (as
a guest), specially in heterogeneous medium as the interior of a cell, the molecular recognition
is an equilibrium phenomena and follows the thermodynamics laws.

Considering a general form of an association reaction for a receptor (R) and a ligand (L)
with a 1:1 stoichiometry as follows:

R+ Lè RL (3.1)

This equilibrium reaction is characterized by thermodynamics parameters, being the stan-
dard molar Gibbs free energy difference of binding, the most important for quantitative anal-
ysis and design, as:

∆G˝
b = ´RT ln (KeqC

˝) = ∆H˝
b ´ T∆S

˝
b (3.2)

where T is the experimental temperature and R is the gas constant. The equilibrium dis-
sociation constant, Keq is the ration between concentrations of the reacts and the products
at specific equilibrium conditions at 1 M concentration (C˝) and constant temperature and
pressure. The other interesting thermodynamic quantities ∆H˝

b and ∆S˝
b are the standard

enthalpy and entropy differences of binding, respectively.
Each thermodynamic parameters express the relationship between products and reacts.

A negative value for ∆G˝
b indicates that the binding reaction is favorable under standard

conditions and the process is exergonic and spontaneous toward the formation of the complex.
In contrary case, a positive value for ∆G˝

b is described as endergonic change and the binding
process is not spontaneous. Also, negative values for ∆H˝

b and positive values for T∆S˝
b are

favorable for the complex formation. Thus, these two thermodynamic functions have the
tendency to make oppose contributions to affinity, which is known as the enthalpy-entropy
compensation. For example, a negative value of ∆H˝

b indicates an increase of bonding terms,
which reduces the disorder of the system, and consequently, decreases the magnitude for
T∆S˝

b is found. Negative values for ∆H˝
b indicates that the binding reaction is an exothermic

process, whereas a positive value corresponds to an endothermic process. On the other hand,
the equilibrium constant Keq can be understood as a measure of the free ligand concentration
needed for saturate 50% the receptor, as smaller its value bigger will be the strenght of the
ligand affinity by the receptor.

13
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Another interesting thermodynamic parameter to consider is the change in heat capacity
(or specific heat) upon binding at constant pressure, ∆Cp, as

∆Cp =
d∆H˝

b

dT
(3.3)

A negative value of ∆Cp measures that the reacts have a higher heat capacity than the
products and its macroscopic interpretation is hard since many factors induces a decrease of
∆Cp.

3.2 experimental determination of binding thermodynamics

Many experimental techniques are useful for estimate thermodynamics of binding affini-
ties, however we will focus on isothermal titration calorimetry (ITC) as the reference method-
ology for experimentally assess thermodynamic values for binding reactions. This is because
ITC is a powerful tool for thermodynamic characterization of compounds which bind to a
target receptor. It’s widely used to gain a major understanding of (bio)molecular recognition
for the design of improved ligands. Speficially, it’s one of the most used techniques in drug
design projects in the pharmaceutical industries. Also, the thermodynamics of host-guest
chemistry are measured using this techniques. ITC allows to get directly, and in a single ex-
periment, many of the thermodynamic parameters described above such as Keq, ∆H˝

b and
the stoichiometry of the reaction. The others thermodynamic quantities as ∆G˝

b and ∆S˝
b are

obtained using Eq. 3.1.

Figure 3.1: Schematic representation of an instrument for ITC experiments (left) and the typical titration
curve obtained from an ITC experiment with the associated data analysis [23].

A typical instrument for ITC have two cells, one for the sample and one for the reference,
which are inserted in an adiabatic jacket (Figure 3.1). The cells and jacket are connected to
independent heaters with devices measuring the temperature difference between the two
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cells and the jacket. In the course of an an experiment, the reference cell is heated by a very
small constant power and a variable power is applied to the sample cell in order to maintain
a fixed temperature difference relative to the reference. The voltage applied to the sample
cell is the experimentally measured quantity which is related to the heat of the reaction.
Exothermic reactions generate a negative signal, whereas endothermic reactions produce a
positive applied voltage. Integration of this power with respect to time gives the amount of
heat produced, or absorbed, by the reaction [24].

For an ITC run, the test compound is injected into a sample of target receptor. While the
reaction takes places and Interaction between the compound and the target leads to release,
or uptake, an small amount of heat (ă 5 µcal in a modern instrument) whilst the mixture
is kept at constant temperature. Monitoring of the relationship between dose of ligand and
magnitude of heat change allows direct calculation of Keq and ∆H˝

b and stoichiometry (n)
of the reaction (Figure 3.1). Additionally, ITC presents other advantages such as the straight-
forward analysis of data and the high precision of the experiments, make suitable for the
widespread use in both academical as industrial environments. Few limitations can be found
for ITC experiments. In a first case, the assays require a not negligible amount of the receptor,
which can be an issue if this material is complicated to obtain (proteins, DNA, etc) although
this technique does not destroy the sample. Also, ITC does not performance very well when
there are cooperative interactions among multiple binding sites, as it is difficult to decompose
the heat signal among the distinct binding modes.

3.3 thermodynamic parameters of binding by statistical mechanics

Thermodynamic parameters for characterizing binding reactions as involved in host-guest
and protein-ligand complexes can be obtained from microscopic information of the system,
in addition to isothermal titration calorimetry described before or other experimental tech-
niques. In fact, there is a great interest into get binding affinities data without to perform
experiments but using theoretical and computational (numerical) approaches. This is because
in many cases experiments are difficult to perform as the compounds involved are unstable
in the experimental conditions or the sensibility of the technique is low. Even more important,
computational approaches based on fundamental laws of nature provide, in addition to the
thermodynamic quantities of interests, an all-atomistic view of the binding reaction which
allows a deeper understanding of the underline process. This knowledge is the fundamental
base for the design of new ligands who binds a specific target in study. Finally, this compu-
tational approaches are cheaper and, with the exponential grow of the computer resources,
they are eventually faster than actual experiments in a laboratory given as a consequence a
better optimization of the resources involved in projects aimed to get binding affinities for
large database of molecules.

Statistical mechanics is the set of laws which allows to obtain thermodynamic properties of
a system using atomistic information, this is, the science that does a bridge and connects the
macroscopic and the microscopic worlds. In the next sections, we will give a short summary
of the most important statements in statistical mechanics that are involved for estimate ther-
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modynamic quantities of binding reactions by computational approaches. A major review of
the statistical mechanics concepts can be found elsewhere [9].

The formalism presented here aims to obtain the free energy of the system and the dif-
ference in free energy of two well-defined states of the system from atomistic information.
Considering a system in the canonical ensemble where the temperature, the volume and
the number of particles are constant, many important statistical thermodynamics variables
can be obtained from numerical approaches. In all scenarios of statistical mechanics [9], the
fundamental quantity is the configurational partition function,

ZN =
1

N!h3N

ż

exp
[
´βE

(
xN
)]
dxN (3.4)

where T is the absolute temperature, h is the Planck’s constant, β = (kT)´1 is the Boltzmann’s
factor and E

(
xN
)

is the configurational energy and the integration is extended over all the
configurational space dxN for theN-particles system. From the configurational partition func-
tion, many thermodynamic quantities are obtained as the internal energy:

U =
A

E
(

xN
)E

=

ż

E
(

xN
)
P
(

xN
)
dxN (3.5)

where the x y implies an ensemble average obtained by molecular simulations and the Boltz-
mann’s probability function, P

(
xN
)
, defined as:

P
(

xN
)
=
exp

[
´βE

(
xN
)]

ZN
(3.6)

and the Helmholtz free energy of the system, i.e., the free energy at the canonical ensemble:

A = ´kT ln [ZN] (3.7)

On the other hand, the Gibbs free energy, the free energy at constant temperature and pres-
sure, can be related to the Helmholtz free energy as:

G = A+ PV = U+ PV ´ TS (3.8)

with P as the pressure of the system and the term U+ PV is the enthalpy, H. All thermody-
namic quantities formulated in the canonical ensemble can be reformulated in the constant
temperature and pressure ensemble, which is more compatible with experimental conditions
and it could be used to compare directly computational results with experimental data [25].

Clearly, the computation of the configurational partition function, and subsequently, the
absolute Helmholtz or Gibbs free energy of the system, is a challenge task because it requires
the collection of statistics over all configurations of the systems, which is only accessible for
systems in special conditions (e.g., molecules in gas phase treated in harmonic conditions)
where the configurational integral has an analytical solution. The configurational partition
function for most of the systems with chemical and biological relevance is not accessible in
exact form as they count with an enormous number of degrees of freedom which difficult to
get an analytical solution in their experimental conditions. Thus, The computation of A and
G for these systems is only assessed numerically using a set of approximations to reduce the
computational complexity [9,25].
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To present the free energy problem in a mathematical context, let’s express the Helmholtz
free energy in terms of an ensemble average expression which can be numerically assessed by
molecular simulations, in similar way as the internal energy was presented (Eq. 3.5). Inserting
the equality:

1 = exp
[
βE
(

xN
)]
exp

[
´βE

(
xN
)]

(3.9)

into the expression for the Helmholtz free energy (Eq. 3.7) gives:

A = kTln

ż

exp
[
βE
(

xN
)]
P
(

xN
)
dxN = kTln

A

exp
[
βE
(

xN
)]E

(3.10)

In general, the Eq. 3.10 gives a way to calculate the free energy in a single simulation of
the system through the determination of an ensemble of configurations in consistency with
the Boltzmann’s probability and does an integration over all configurational space in the
same spirit to obtain the average energy of the system. Nevertheless, P

(
xN
)

is proportional
to exp

[
´βE

(
xN
)]

as indicated by Eq. 3.6 and because the fast increase of exp
[
´βE

(
xN
)]

with the energy, there will be important configurations contributing to the integral with high
energy. However, molecular simulations sample mainly regions of the configurational space
with low energy and the barriers separating them from high-energy configurations are rela-
tively high, which will require a much longer simulation time to collect all significant config-
urations for the ensemble average in the free energy expression.

Finally, for many relevant problems we are more interested on the difference in free energy,
∆A, for two well-defined states of the systems, than the absolute free energy for one state.
For those states denoted as 0 and 1, ∆A is defined by ratio of the configurational partition
function for the two states, Z1 and Z0, as

∆A = A1 ´A0 = ´kTln
Z1
Z0

(3.11)

A direct approach to compute the free energy difference will require independent determi-
nations of Z1 and Z0 through the energy functions E0 and E1. However, each computation
of the partition function for both states will suffer of numerical difficulties as explained be-
fore. Another alternative for solving the problem is to connect both states through a coupling
parameter, λ, which distinguishes both states.Thus, the potential energy, E, depends on this
coupling parameter, and it smoothly passes from E0 and E1 when λ pass from 0 to 1, defining
an equation for the Helmholtz free energy depending of λ.

A (λ) = ´kTlnZ (λ) (3.12)

Then, ∆A might be calculated through integration of the derivative of A (λ) along λ as in
the thermodynamic integration method. Also, it can be built a stratified path connecting the
two end points of the coupling parameter and the computation of ∆A is done in a stepwise
manner as in the case of the Free energy perturbation method.
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4
C O M P U TAT I O N A L A P P R O A C H E S F O R A S S E S S I N G
P R O T E I N - L I G A N D B I N D I N G

4.1 introduction

Protein-ligand binding is an example of a relevant biomolecular recognition event to many
biological processes that take place in living systems. Some ligands inhibit protein function,
some others promote it by stabilizing a large isomerization of their receptor, thereby control-
ling key cell-signaling pathways. [26] Understanding how ligands bind to biomolecules is of
fundamental importance not only for the basic fields of biophysics and biochemistry, but also
for applied disciplines such as medicinal chemistry and pharmacology. [27] Although kinetics
may strongly affect the yield of binding in cellular and other non-equilibrium environments,
the primary factors that govern molecular recognition are of thermodynamic nature. In par-
ticular, the value of the binding equilibrium constant, Keq, which is dictated by the standard
free energy change on complexation, ∆G˝

b, is the primary quantity of interest [28,29]. Being able
to access the binding constant accurately and from first principles would provide a chemical
understanding of protein-ligand recognition, thus unraveling guidelines for drug design. [29]

Over the last decades, innovation costs in the Pharma industry have exceedingly increased
and have recently approached 4 billion U.S. dollars per FDA-approved drug. [30] Lead opti-
mization alone is estimated to involve about 150 million U.S. dollars per hit compound. [30,31]

Reliable predictions of the protein-ligand binding affinity by computation would greatly re-
duce these costs and boost a more efficient development of new pharmaceuticals. However,
the calculation of the binding constant in protein-ligand per se, poses an outstanding theoret-
ical and computational challenge. For instance, there exists no method to solve this problem
when binding of the ligand involves a global structural change of the receptor, which is cru-
cially important in ligand-modulated allosteric equilibria. [26] When the protein response is
more local, the calculation of the standard free energy of binding is possible and several
computational approaches at various levels of sophistication have been developed, which
are currently in use at different stages of the drug discovery pipeline based on a trade-off
between accuracy and efficiency. [32]

Among the available methods, the so-called rigorous approaches evaluate the free energy
of binding based on simplified descriptions of the reaction path, which typically involves
a series of non-physical intermediates. In the alchemical route, which was first introduced
by Jorgensen [33] and later improved by others, [34–36] the ligand is decoupled reversibly from
its environment with the free energy of binding accessed by perturbation theory. Alterna-
tively, the ligand can be physically separated from the receptor by forcing the unbinding
along a one-dimensional reaction coordinate, and the free energy of binding measured by
umbrella sampling. [37–39] In both cases, to ensure configurational overlap between consec-
utive steps of the microscopic transformation, these approaches involve a large number of

19
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intermediate states between the end-points, which results in a large computational effort per
free energy determination; see Figure 4.1 (on top). Moreover, to improve the efficiency of
sampling, the transformation is typically performed in the presence of appropriately chosen
restraints whose contribution to the binding affinity must be evaluated by additional compu-
tation. A rule of thumb, rigorous free energy approaches may grant an approximate output
rate of one determination per week, which is clearly not suited for screening purposes almost
independently of the accuracy of the predictions.

Figure 4.1: Different schemes to access the absolute free energy of binding in protein-ligand association.

To increase the efficiency of the calculation, more simplified computational approaches
have been developed to focus only on the end-points of the binding reaction; see Figure 4.1
(middle). These methods reduce the computational burden by using approximated expres-
sions for the solvation free energy, which can be efficiently evaluated by a continuum treat-
ment of the solvent [40] (i.e. an implicit solvent model), or in the limit of the linear response
approximation. [41] Prominent examples of end-points methods are MM/PBSA (molecular me-
chanics [MM] with Poisson-Boltzmann [PB] and surface area [SA]), which was originally de-
veloped by Kollman et al., [42,43] and the linear interaction energy (LIE) approach of Åqvist. [44]
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In MM/PBSA, the free energy of binding is estimated from the total change in the gas-phase
internal energy, the solvation free energy and the configurational entropy upon protein-ligand
association, with the solvation free energy accessed by solving the Poisson-Boltzmann equa-
tion plus a term accounting for the nonpolar contribution. In contrast, the LIE approach con-
siders the solute/solvent interactions explicitly and estimates the binding free energy from
changes in the electrostatic and van der Waals components of the ligand-surroundings inter-
action energy when the ligand is transferred from the solution bulk to the receptor binding
site. [45] Both approaches rely on a detailed description of both the bound and the unbound
states and explicitly include conformational effects by averaging over structural ensembles
generated by e.g. Molecular Dynamics. These semi-rigorous approaches are clearly more ef-
ficient and grant an approximate output rate of one free-energy determination per day. For
this reason, they have been fairly popular in the Pharma industry in both hit-to-lead and the
lead-optimization phases.

Screening libraries or databases of small-molecule compounds require significantly more
simplified schemes to allow for the efficient evaluation of thousands of millions of binding
modes. Because of the strong computational restraints, empirical approaches based e.g. on
molecular docking, which focus exclusively on the bound state (Figure 4.1, bottom), and gen-
erally neglecting the internal flexibility of the receptor, [46] have flourished. The introduction
of rather drastic approximations results in output rates of one free energy determination per
second, [47] which are suitable for the hit identification stage, although important aspects of
the protein-ligand association reaction, such as translational and rotational entropy loss or
desolvation of the ligand upon binding, are neglected.

Despite the existence of an inverse relationship between accuracy and required computer
time per binding-affinity determination is well established, [45] less is known about the nature
of the approximations that are introduced to reduce the computational effort and their actual
impact on the accuracy of the predictions. In the following, we analyze some of the most
popular approaches to the binding constant for protein-ligand and re-derive their fundamen-
tal equations in the common framework of statistical mechanics. In this chapter, we are able
to pinpoint the approximations inherent to the various approaches (from most rigorous to
most efficient), which represents a first step to devise variants with optimum accuracy/effi-
ciency balance for each stage of the drug discovery pipeline. The final goal is to provide a
self-consistent theoretical framework where apparently unrelated computational approaches
to protein-ligand binding can be interpreted and compared.

4.2 statistical mechanics framework for protein-ligand binding

Let us consider the spontaneous association of a protein molecule (P) with a ligand (L) to
form a non-covalent complex (PL) in aqueous solution

P+ Lè PL (4.1)
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At chemical equilibrium, the chemical potentials of the product and the reactants equalize so
that

∆µb = µPL ´ (µP + µL) = 0 (4.2)

By separating out the volume dependence of the chemical potentials in Eq. 4.2, which is
customary done by introducing an arbitrary state of reference or standard state, as

µi(V, T) = µ
˝
i (T) + kT ln

(
Ci
C˝

)
(4.3)

with T being the absolute temperature, C˝ the standard concentration, and µ˝
i and Ci the

standard chemical potential and the molar concentration of the i-th solute, respectively, and
rearranging, it yields

exp
(
´
∆µ˝
b

kT

)
=
CPL (C

˝)

CP CL
= KeqC

˝ (4.4)

which shows that the ratio between the equilibrium concentrations of the product over the
reactants is volume independent (i.e. it is independent of the initial solute concentrations) and
is therefore a chemical equilibrium constant. Importantly, the value of Keq, or customarily its
inverse Kd, which corresponds to the initial concentration of ligand for which the probability
of binding at equilibrium is one-half (i.e. CP = CPL), sets an absolute scale of ligand-binding
affinities. Hence, Eq. 4.4 quantifies the strength of the protein-ligand binding through the
evaluation of ∆µ˝

b.

the canonical approach . Straightforward access to the chemical potential difference
in Eq. 4.4 is provided by a statistical mechanics treatment of the binding reaction in the
canonical ensemble (N,V, T ). In the limit of idealized solution behavior (i.e. the particle inde-
pendent ansatz) and at constant temperature T and volume V , the chemical potential of the
solute is

µi(V, T) = ´kT ln
qi(V, T)

Ni
(4.5)

with qi and Ni being the molecular partition function and the number of solute molecules.
Introducing the rigid-rotor harmonic-oscillator (RRHO) approximation and in the limit of
Born-Oppenheimer (BO) hypothesis, the molecular partition function in Eq. 4.5 can be further
separated into translational, rotational, vibrational and electronic contributions, all having a
closed form. [25] Also, by incorporating the net effect of the solvent in the electronic contribu-
tion through the evaluation of the potential mean force corresponding to the solvation free
energy of the solute in its configuration at the minimum of the potential energy well (X0),
Eq. 4.5 yields

µi(V, T) = µi,v(V, T) +Wbulk(X0) (4.6)

which provides the chemical potential of the solute as a correction to the harmonic result
in vacuum (µi,v). By evaluating Eq. 4.6 for each component of the binding reaction at the
standard 1M concentration (Figure 4.2) and introducing the results into Eq. 4.2, a rigorous
estimate of ∆µ˝

b is obtained, which provides numerical access to the binding constant in the
limit of the RRHO approximation.
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Figure 4.2: Schematic representation of the initial (free) and final (bound) states for the protein-ligand
association used to compute ∆µ˝

b in the canonical approach; see Main Text.

the grand-canonical approach . A conceptually different approach to the binding
constant in solution goes through a statistical mechanics treatment in the grand canonical en-
semble (µ, V, T ). This formalism [8] provides an alternative expression for the standard chemi-
cal potential of the solute

µ˝
i (T) = ´kT ln

(
Qi(p, T)

V

)
(4.7)

with Qi being an effective partition function of the solute in the solvent at the constant pres-
sure p. Introducing this result into Eq. 4.2 yields

exp
(
´
∆µ˝
b

kT

)
=

(QPL/VPL)

(QP/VP) (QL/VL)
= Keq (4.8)

which shows that the binding constant can be expressed by an effective partition function
ratio. Because in the limit of infinite dilution each effective partition function can be approxi-
mated as

Qi(p, T) «
QN,1
QN,0

(4.9)

with QN,1 and QN,0 being the canonical partition functions of a binary solution with N

solvent molecules and one or no solute, [8] and the solution volume can be assumed as un-
changed upon ligand binding (i.e. VP = VPL), Eq. 4.8 yields

Keq =
QN,LP/QN,P

(QN,L/QN,0)/VL
(4.10)

which shows that the value of the binding constant is related to the reversible work (or the
free energy) to make the ligand disappear from the protein binding site (at the numerator)
minus the work to make the ligand disappear from a box of solvent per unit of volume (at
the denominator). Interestingly, Eq. 4.10 indicates that protein-ligand binding (Eq. 4.1) can
be viewed as a transfer of ligand from the solution bulk to the binding site of the receptor
(Figure 4.3), or as a partition equilibrium

Lfree è Lbound (4.11)
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Finally, if the ligand is small relative to the receptor, the protein contributions in Eq. 4.10

almost cancel out and the numerator can be considered as an effective partition function of
the ligand in the bound state, such that Eq.4.10 yields

Keq =
QL(P)

(QL/VL)
(4.12)

with QL(P) being the volume-independent effective partition function of one ligand bound to
the protein. As we shall see, this important result sets the ground to most statistical mechanics
approaches to the binding constant.

Figure 4.3: Schematic representation of the initial (free) and final (bound) states for the protein-ligand
association used to compute ∆µ˝

b in the grand canonical approach; see Main Text.

4.2.1 Rigorous Statistical Mechanics approaches

In the limit of highly dilute solutions, the results of Eq. 4.6 and Eq. 4.12 provide access to
the binding equilibrium constant without too much approximation. In practice though, the
use of Eq. 4.6 is strongly limited in protein-ligand problems by the evaluation of the solvation
free energy of a large and flexible solute such as the protein alone or the complex, which is
computationally challenging, and so far this approach has been successfully applied only to
small peptide systems. [48] On the other hand, by factorizing out the kinetic energy contri-
bution from the numerator and the denominator of Eq. 4.12, which cancel out as the total
number of degrees of freedom is conserved, the binding constant can be expressed in terms
of configurational integrals over the relevant portions of configurational space accessible to
the ligand in the bound and the unbound states yielding

Keq =

ş

site dL
ş

dX exp (´βU)
ş

bulk dL δ (rL ´ r˚)
ş

dX exp (´βU)
(4.13)

with U being the total potential energy of the system, β = 1/kT , and L and X the coordinates
of the ligand and the remaining (solvent and protein) atoms; note that the δ function at the
denominator has been introduced to make the bulk configurational integral volume indepen-
dent. [38] Importantly, Eq. 4.13 provides numerical access to the binding constant by computer
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simulations and can be considered as the master equation for most rigorous approaches to
protein-ligand binding. Two of them are briefly reviewed below.

4.2.1.1 Alchemical free energy perturbation

An effective strategy to compute protein-ligand binding free energies based on Eq. 4.13

was originally introduced by Jorgensen [33] and later improved by Gilson. [36] This approach,
which is usually referred to as “double annihilation” or “double decoupling”, solves Eq. 4.13

by making use of a thermodynamic cycle in which the ligand is transformed into a fictitious
non-interacting body both in the bound and the unbound states. Such an alchemical trans-
formation, termed annihilation, is achieved through the use a hybrid Hamiltonian with a
coupling parameter λ of the form U (λ) = (1´ λ)U1 + λU0, with U0 and U1 being the total
potential energy of the system with a non-interacting (decoupled) and a full-interacting (cou-
pled) ligand. [49] By introducing an intermediate state in which the ligand is transferred to the
gas phase, Eq. 4.13 yields

Keq =

ş

site dL
ş

dX exp (´βU1)
ş

bulk dL δ (rL ´ r˚)
ş

dX exp (´βU0)
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp (´βU0)
ş

bulk dL δ (rL ´ r˚)
ş

dX exp (´βU1)
(4.14)

where the first term of the r.h.s is related to the reversible work for decoupling the ligand
in the bound state and the second to the work for decoupling it in the solution bulk, which
are both numerically accessible by multi-stage free energy perturbation molecular dynamics
(FEP/MD) simulations. [50] Despite the elegance of the strategy, straightforward applications
of Eq. 4.13 are often impractical as e.g. the ligand in the highly decoupled states becomes free
to “wander” in the volume of the simulation box, which seriously hinders statistical conver-
gence. [36] To improve sampling efficiency, more recent implementations of double decoupling
make use of external restraints which reduce the configurational space accessible to the lig-
and. The sequential activation/deactivation of restraints on the position, the orientation, and
the internal configuration of the ligand significantly improves statistical convergence but in-
troduces a series of additional intermediates along the reaction path, which involve extra
computation. Following one of the most recent implementations, [51] which denotes the har-
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monic restraints on the translation, rotation, and the conformation of the ligand as ut, uo
and uc, Eq. 4.13 becomes

Keq =

ş

site dL
ş

dX exp (´βU1)
ş

site dL
ş

dX exp [´β (U1 + uc)]
ˆ

ş

site dL
ş

dX exp [´β (U1 + uc)]
ş

site dL
ş

dX exp [´β (U1 + uc + uo)]
ˆ

ş

site dL
ş

dX exp [´β (U1 + uc + uo)]
ş

site dL
ş

dX exp [´β (U1 + uc + uo + up)]
ˆ

ş

site dL
ş

dX exp [´β (U1 + uc + uo + up)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc + uo + up)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc + uo + up)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc + uo)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc + uo)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U0 + uc)]]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U1 + uc)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U1 + uc)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U1)]
(4.15)

Eq. 4.15 shows that numerical access to the binding constant is provided by sequential con-
finement of the conformation, orientation and position of the ligand in the binding site; de-
coupling of the ligand from the protein environment; release of the positional and orienta-
tional restraints in the gas phase; re-coupling of the ligand in the bulk; and release of the
conformational restraint in solution. In this approach, the standard free energy of binding is
determined by summing up the reversible work associated with each of the eight steps of a
complex microscopic transformation.

4.2.1.2 Potential of mean force

An alternative approach, which is also based on Eq. 4.13 consists on measuring the free-
energy of binding/unbinding along a highly simplified representation of the reaction path
by a potential of mean force (PMF) calculation. In this case, the ligand is physically sepa-
rated from the receptor and the free energy of binding is obtained by umbrella sampling
over one or more geometric reaction coordinates, typically the Euclidean distance between its
initial position in the binding site and an arbitrary point in the bulk. [37] Because of the high-
dimensionality of the true reaction coordinate for binding, the conformational freedom of the
ligand that may differ substantially in the bound and unbound states, and the intrinsic diffi-
culty of sampling the translational degrees of freedom in the unbound state, this approach is
used in combination with restraints. [38,52] In analogy to the alchemical route, a series of inter-
mediates corresponding to both orientational and conformational confinement/release of the
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ligand in the bound and the unbound states are introduced, which provides the following
expression for the binding constant

Keq =

ş

site dL
ş

dX exp (´βU)
ş

site dL
ş

dX exp [´β (U+ uc)]
ˆ

ş

site dL
ş

dX exp [´β (U+ uc)]
ş

site dL
ş

dX exp [´β (U+ uc + uo)]
ˆ

ş

site dL
ş

dX exp [´β (U+ uc + uo)]
ş

site dL
ş

dX exp [´β (U+ uc + uo + ua)]
ˆ

ş

site dL
ş

dX exp [´β (U+ uc + uo + ua)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U+ uc + uo)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U+ uc + uo)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U+ uc)]
ˆ

ş

bulk dL δ (rL ´ r˚)
ş

dX exp [´β (U+ uc)]
ş

bulk dL δ (rL ´ r˚)
ş

dX exp (´β (U))
(4.16)

Compared to Eq.4.15, the fourth term in the r.h.s. of the equation above is unique to the PMF
approach and corresponds to the physical separation of the ligand from the protein in the
presence of configurational and orientational restraints.

In the absence of large conformational changes of the protein, Eqs. 4.15 and 4.16 provide
rigorous, first-principle access to the binding constant and have been successfully applied in
a number of cases. [51,53,54] However, these approaches require thorough statistical sampling
over a large number of intermediates and are computationally very demanding. Thus, despite
their accuracy, they are not suited to handle large databases of ligands and have found, so
far, little room in the Pharma industry, although this trend is likely to change in the near
future. [55]

4.2.2 Simplified end-points approaches

To facilitate the computational task without compromising too much the quality of the
results, simplified approaches based on Eq. 4.6 and Eq. 4.12 have been also developed. A
prominent group of them explicitly consider the conformational dynamics of the protein-
ligand complex and the ligand alone in solution and accesses the binding constant by focus-
ing on the relevant initial and final states (end points) of the reaction (Figure 4.1). In this
section, two amongst the most popular end-points strategies for protein-ligand binding, i.e.
the MM/PBSA and the linear interaction energy (LIE) methods, are shortly reviewed. Based
on the statistical mechanics framework introduced above, their fundamental equations are
re-derived with emphasis on the approximations introduced.

4.2.2.1 The MM/PBSA method

The MM/PBSA approach aims at the binding constant from the numerical evaluation of
the absolute chemical potentials of the ligand, the protein and the complex in isolation (Fig-
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ure 4.2). Starting from Eq. 4.6 and separating out the enthalpy versus entropy contributions
to the chemical potential in vacuum, it yields

µi(V, T) = (3n´ 3) kT +U(X0)´ TSi(V) +Wbulk(X0) (4.17)

with Si being the configurational entropy in vacuum that includes contributions from the
translational, rotational and vibrational degrees of freedom and Wbulk the solvation free
energy of the solute, which accounts for all enthalpic and entropic contributions of the solvent.
Assuming that Wbulk can be accessed by a continuum model of water such PB/SA, which
evaluates the polar contribution by solving the Poisson-Boltzmann equation and the non-
polar contribution as a linear function of the solvent accessible surface area (SASA), Eq. 4.17

yields

µi(V, T) = (3n´ 3) kT +U(X0) +GPBSA(X0)´ TSi(V) (4.18)

where the configurational entropy can be evaluated in the harmonic limit by classical sta-
tistical mechanics in combination with normal-mode analysis [56] including quantum correc-
tions. [57] To account for part of the anharmonicity, which can be significant in proteins, [58]

the electronic energy of the solute as well as its solvation free energy are often accessed by
ensemble averages based on sampling from room-temperature MD in a box of explicit wa-
ter; note that in this case the electronic energy contribution is obtained by subtracting the
temperature-dependent vibrational energy from the average potential energy of the solute
in vacuum, as ´De = xUy ´

řκ 1/2kT , with κ being the total number of internal degree of
freedom of the solute. Introducing this result into Eq. 4.18, it yields

µi(V, T) =
3

2
nikT + xUy+ xGPBSAy ´ TSi(V) (4.19)

with the configurational entropy corrected for anharmonicity by a quasi-harmonic vibrational
analysis. [59] Using the notation in the original paper by Kollman, [42] i.e. decomposing the
force field energy into bonded (Ebond), electrostatic (Eelec), and van der Waals (EvdW) con-
tributions and splitting the solvation free energy into polar (Gpol) and nonpolar (Gnp) terms,
Eq. 4.19 gives

µi(V, T) =
3

2
nikT + Ebond + Eelec + EvdW +Gpol +Gnp ´ TSi(V) (4.20)

Eq. 4.20 is the master equation for the MM/PBSA approach; note that the first term on
the r.h.s. corresponds to the total kinetic energy of the solute, which was missing in the
original MM/PBSA formulation as pointed out by Gohlke and Case. [60] Evaluating Eq. 4.20

at the standard 1M concentration for the ligand, the protein and the complex separately
(Figure 2), the standard chemical potential difference and therefore the binding constant are
straightforwardly accessed.

In practice, to solve Eq. 4.20 explicit-solvent MD simulations of the ligand, the protein and
the complex are carried out and ensemble averages of the force field energy of the three so-
lutes in the gas phase and the configurational-dependent solvation free energy are evaluated
as arithmetic averages over a large series of MD snapshots. Alternatively, configurational
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ensembles for the uncomplexed reactants can be generated from the trajectory of the com-
plex only, by removing selectively the atoms of the protein or the ligand. Surprisingly, this
simplified version of MM/PBSA, termed the one-average variant, was shown to yield more
accurate results than the original strategy, [61] perhaps due to the exact cancellation of the
bonded energy in Eq. 4.20. Great efforts to improve both the accuracy and the efficiency of
MM/PBSA have been done in recent years by benchmarking and optimizing the calculation
of the individual contributions in Eq. 4.20. [62–64] To this aim, various continuum-electrostatics
models including e.g. the generalized Born (GB) model in the MM/GBSA variant [40] have
been tested and benchmarked searching for improved estimates of the polar solvation term
(Gpol). [65] Similarly, alternative charge schemes for computing the electrostatic contribution
(Eelec) [66] or different approaches to evaluate the configurational entropy of the solute e.g. by
quasi-harmonic analyses [60,67,68] have been reported. In general, the accuracy of the predic-
tions is found to be fairly system-dependent, which makes it difficult to draw conclusions on
the performance of the individual variants. Finally, by replacing the MM terms by a quantum
mechanical model, a significantly improved correlation with experimental binding affinity re-
sults was obtained. [69] In this case, a hybrid QM/MM approach with the atoms of the ligand
assigned to the QM region and the rest treated as MM, was used to sample the configura-
tional ensembles for evaluation of Eq. 4.20, which significantly deteriorated the performance
of the calculation.

4.2.2.2 The Linear Interaction Energy (LIE) method

An alternative simplified approach to the binding constant, which treats the protein-ligand
binding reaction as a partition equilibrium (Eq. 4.11), can be derived from Eq. 4.12. Introduc-
ing the RRHO approximation and incorporating the partition function contributions from the
protein and the solvent in the electronic energy of the ligand in the bound and the unbound
states, Eq. 4.12 yields

Keq =
qCMqrock e

´βWsite

qtr/Vqrot e´βWbulk
(4.21)

with qCM and qrock corresponding to oscillations and rocking of the ligand in the bound
state, qtr/V and qrot to translations (per unit of volume) and rotations of the free ligand in
solution, and Wsite and Wbulk to the reversible work for transferring the ligand from the
gas phase to the protein binding site and the solution bulk, respectively. Note that Eq. 4.21

includes no contribution from the internal vibrations or the potential energy of the ligand in
vacuum, which effectively cancel out in the limit of rigid ligands. By extracting the logarithm
and multiplying by ´kT , Eq. 4.21 yields

∆µ˝
b = ´kT log ζ+Wsite ´Wbulk (4.22)

with ζ corresponding to the fraction of translational and rotational motion left to the ligand
in the bound state relative to its free rotation in the unbound state in solution. Importantly,
Eq. 4.22 indicates that the standard free energy of binding can be accessed from the difference
in the “solvation” free energy of the ligand in the protein and the solvent environments plus a
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contribution corresponding to the entropic confinement. Provided that accurate estimates of
Wsite and Wbulk can be determined e.g. by FEP, Eq. 4.21 is essentially equivalent to Eq. 4.13

and provides a quantitative estimate of the binding constant in the harmonic limit. However,
this result would come with no computational advantage. To simplify the calculation of the
binding constant, the idea developed by the linear interaction energy (LIE) approach, which
follows from linear response theory, [70,71] is that both polar and non-polar contributions to
the solvation free energies in Eq. 4.22 can be approximated by linear functions of the mean
electrostatic and van der Waals interaction energies of the ligand with the surroundings. In
fact, in the limit of a linear response of the solution to changes in the local electric field, e.g.
the appearance of a charged solute, it can be formally shown [44] that the polar contribution to
the solvation free energy equals one half of the mean solute-solvent electrostatic contribution
as

Wpol =
1

2

A

Uelecl/s

E

(4.23)

where the brackets xy indicate a thermodynamic average of the ligand-surroundings (l/s)
interaction energy. Furthermore, based on the observations that the experimental free energy
of solvation for various hydrocarbons in water was approximately linear with the length of
the carbon chain, [72] and that the corresponding solute-solvent van der Waals energies from
computer simulations were also linear with the number of carbon atoms, Åqvist et al assumed
that the non-polar contribution to the solvation free energy could be approximated as a linear
function of the mean van der Waals interaction energy [44] as

Wnp « α
A

UvdWl/s

E

(4.24)

with α being an adjustable parameter subject to empirical calibration. If so, by expressing the
solvation free energy of the ligand in the bound and the unbound states as a sum of polar
(Eq. 4.23) and non-polar (Eq.4.24) contributions, Eq. 4.22 yields

∆µ˝
b =

1

2

[
xUelecl/s ysite ´ xU

elec
l/s ybulk

]
+α

[
xUvdwl/s ysite ´ xU

vdw
l/s ybulk

]
+ γ (4.25)

which provides the master equation for the LIE approach. [44] In this expression, γ includes
the entropic confinement contribution, which can be evaluated numerically in the limit of the
RRHO model (Eq.4.21) or determined empirically by fitting on experimental binding data.
To account for (minor) deviations of the polar term from the exact (linear response) scaling
factor of 1/2, a more general expression of LIE may include an additional fitting parameter
β, which was shown to improve the accuracy of the computational predictions. [73] Note that
unlike the original derivation of LIE, [44] Eq. 4.25 was obtained in the limit of the harmonic
approximation, which would restrain the validity of the approach to rigid ligands. Although
this assumption is not strictly required in LIE, the treatment above provides an explicit ex-
pression for the entropic confinement contribution, which would be otherwise hidden in the
empirical coefficient of the non-polar term.

In the limit of the linear response theory, Eq. 4.25 solves the protein-ligand problem by
measuring the mean ligand/surroundings interaction energy in the bound and the unbound
states on a series of snapshots extracted from room-temperature MD simulations of the fully
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solvated complex and the free ligand in solution. In this approach, the strongest approxima-
tions regard both the validity of the linear response assumption and the rather simplistic
idea that the non-polar contribution to the binding free energy, which includes hydrophobic
effects and both repulsive and dispersive solute/solvent interactions, can be extracted from
the analysis of the non-electrostatic component of the ligand/surroundings interactions. Sig-
nificant effort was made to validate the former hypothesis e.g. by comparing LIE results with
rigorous FEP calculations, and the linear response approximation was found to be accurate
for both the solvent and protein environments. [74,75] More difficult is the validation of the
second assumption, which involves the determination of the parameter α, and possibly γ
when absolute binding free energies are of interest. Because the physical nature of these pa-
rameters is unclear and their value is force-field, ligand and even protein dependent, their
existence introduces a significant degree of empiricism, which has hindered the development
of a “universal” and fully transferable LIE parameterization. Nonetheless, the fact that the
intermolecular energies from simulations of the end-points are sufficient to predict absolute
binding free energies with an accuracy of ă 1 kcal/mol from experiments is absolutely re-
markable and justifies the use of LIE in computer-aided drug discovery.

From a practical viewpoint, the implementation of LIE requires extensive configurational
sampling of both the complex and the free ligand in solution typically by Molecular Dy-
namics or Monte Carlo simulations with an explicit treatment of the solvent, which makes
this approach not suitable for high-throughput screening. To increase the computational per-
formance, Huang and Caflisch developed the Linear Interaction Energy with Continuum
Electrostatics (LIECE), where the MD sampling is replaced by energy minimization plus
finite-difference Poisson calculations for a rigorous treatment of both the protein and the
ligand desolvation energies. [76] When applied to β-secretase (BACE) and HIV-1 protease, a
two-parameter LIECE model was shown to reach a predictive power of of ă 1 kcal/mol rel-
ative to experiments, while being about two orders of magnitude faster than previous LIE.
As such, the LIECE method can be effectively used to screen large libraries of compounds
docked by automatic computational tools and has been successfully applied in virtual screen-
ing campaigns against important drug targets, [77] although the parameters developed for one
target are generally not transferable. The strong dependence of the binding affinities on the
electrostatic component of the protein-ligand interaction energy motivated the development
of a LIECE variant (QMLIECE) in which the ligand-surrounding interactions are evaluated
by a semiempirical quantum mechanical model to include e.g. polarization effects. [78] In-
terestingly, the QM variant was shown to be superior when dealing with formally charged
compounds as the peptidic inhibitors of the West Nile serine protease. [79]

4.2.3 Empirical approaches

Although the endpoint approaches significantly reduce the computing time, they are still
too expensive to estimate binding affinities for a large library or databases of compounds.
Therefore, even more approximated approaches are required for structure-based virtual high-
throughput screening, where hundreds of thousands of compounds for a specific target must
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be evaluated and ranked. To speed up the calculations, the so-called empirical approaches
simplify the description of the binding reaction one step further and focus exclusively on the
bound state (Figure 4.1, bottom). Among them, molecular docking is with no doubt the most
popular approach. [80] In this case, the binding affinity is usually estimated in the context of
a rigid conformation of the receptor with no sampling procedure to account for its dynamics.
The flexibility of the ligand is included through a systematic or stochastic search typically
Monte Carlo or a genetic algorithm, and its fitness is quantified by a crude scoring function,
which is used both for ranking the binding modes and prioritizing compounds extracted
from the library. In most docking protocols, the atomistic details of the protein are replaced
by a grid representation centered on the binding site, where each point stores the interaction
energy of an atomic “probe” with the rest of the receptor. Also, solvent effects are usually
neglected or efficiently accounted for by continuum solvation models. In general, three main
classes of scoring functions are used in protein-ligand binding: empirical, force field-based
and knowledge-based. [46,81] In the following, we will focus on the first two, which despite
their crude nature can still be interpreted in the framework of statistical mechanics.

4.2.3.1 Empirical scoring function

A first approach to efficiently score a large number of docking poses is based on the evalu-
ation of the binding free energy by a weighted sum of empirical descriptors as

∆µ˝
b =

ÿ

i

Wi∆µi (4.26)

with ∆µi corresponding to independent contributions selected based on chemical intuition,
e.g. the electrostatic and van der Waals components of the protein-ligand interaction energy,
the number of H-bonding donors and acceptors, the number of rotable bonds, etc., each ac-
counting for a critical interaction in protein-ligand binding. The weight of the contributions,
i.e. the coefficients in Eq. 4.26 (Wi), are empirically determined by fitting on a training set
of experimental binding affinities typically using multivariate linear regressions. The sim-
plicity and flexibility of Eq. 4.26 grants for the required computational efficiency at the hit-
identification stage. However, the accuracy of the predictions is strongly dependent of the
quality of training set (both in size and composition), which makes the transferability of the
model rather challenging. One of the earliest model for docking was introduced by Böhm [82]

∆µ˝
b =∆G0 +∆Ghb

ÿ

hbonds

f (∆R,∆α) +

∆Gio
ÿ

io int.

f (∆R,∆α) +

∆Glipo
ÿ

lipo cont.

Alipo +

∆Garo
ÿ

aro int.

f (∆R) +∆Grot ˆNrot (4.27)

In this equation, the polar contribution is accounted for by explicit H-bonding (∆Ghb) and
ionic interaction (∆Gio) terms, which are both distant and angle dependent to penalize de-
viations from optimum geometries. The apolar contribution is accounted for by lipophilic
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contacts (∆Glipo) and aromatic interactions (∆Garo), with the former being dependent on
the contact surface

(
Alipo

)
and the latter on the distance. Finally, the flexibility of the ligand

is indirectly included by counting the number of rotable bonds (Nrot), which approximates
the entropy cost to confine the ligand in the bound state.

Another example of fast and simple empirical scoring is provided by Fresno, a model
introduced by Rognan et al [83]

∆µ˝
b = K+α (HB) +β (LIPO) + γ (ROT) + δ (BP) + ε (DESOLV) (4.28)

This empirical scoring function includes five terms corresponding to hydrogen bonds, lipophilic,
rotational, buried-polar and ligand desolvation contributions. The first three are common to
the Böhm model and are similarly evaluated. The buried-polar term (BP) accounts for un-
favorable interactions or “bumps”, which result from contacts between polar and nonpolar
groups in the binding site. The last term accounts for the desolvation free energy of the lig-
and in the unbound state (DESOLV), which is efficiently evaluated by a Poisson-Boltzmann
calculation. Despite the empirical nature of Eq. 4.28, this scoring function can be connected
with the theoretical framework above, particularly with the LIE approach. In fact, the hydro-
gen bond, lipophilic and buried-polar terms are clearly related to the electrostatic and van
der Waals interaction energies of the ligand in the bound state, whereas rotational and desol-
vation contributions correspond to contributions related to the unbound state of the ligand,
which account for the rotational entropy loss and ligand desolvation upon biding. However,
the arbitrary selection of the energy components in such empirical schemes makes it difficult
to rationalize the connection with first-principle statistical mechanics.

4.2.3.2 Force field scoring function

Another class of scoring functions aim at the evaluation of the binding affinity through the
quantification of the physical protein-ligand interactions as quantified by molecular mechan-
ics, where the nonbonding energy is typically evaluated as a sum of pairwise electrostatic
and van der Waals atomic contributions. This two ingredients provide the minimalistic score
used by the program Dock (v. 4.0) [84]

∆µ˝
b =

prot
ÿ

i

lig
ÿ

j

(
Aij

r12ij
´
Bij

r6ij
+ 332.0

qiqj

ε
(
rij
)
rij

)
(4.29)

with rij being the distance between the j-th atom of the ligand and the i-th atom of the pro-
tein, Aij and Bij the atomic van der Waals parameters, and qj and qi their partial charges.
These empirical parameters are usually obtained from popular biomolecular force fields such
as AMBER or CHARMM. Calculations of the nonbonding interactions in the bound state
are typically performed in vacuum, sometimes using a distance-dependent dielectric constant
ε
(
rij
)

to account for solvation effects. Alternatively, more realistic descriptions of the solvent
are achieved through the use of more rigorous implicit solvent models as PB/SA or GB/SA,
which require extra computation. Overall, the great advantage of these methods is that the
binding affinity can be evaluated, in principle, for any non-covalent protein-ligand associa-
tion as force-field parameters are developed to be transferable. Interestingly, Eq. 4.29 can be
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derived from the fundamental equation of LIE (Eq. 4.25) introducing two additional assump-
tions: i. the binding affinity can be accessed from a single structure of the protein-ligand
complex, which turns the ensemble averages in Eq. 4.25 into single-point energy evaluation;
and ii. the desolvation of the ligand upon binding is negligible, i.e. the ligand/surrounding
interaction energy in the unbound state can be set to zero. Thus, Eq. 4.25 yields

∆µ˝
b =

[(
Uelecl/s

)
site

´ 0
]
+
[(
Uvdwl/s

)
site

´ 0
]
=

prot
ÿ

i

lig
ÿ

j

(
Aij

r12ij
´
Bij

r6ij
+

qiqj

ε
(
rij
)
rij

)
(4.30)

Finally, to effectively account for contributions of the unbound state, i.e. the strain energy
of the ligand or the total entropy change upon binding, hybrid implementations of Eq. 4.29

have been developed. A prototypical example is implemented in AutoDock (v. 4.2) [85]

∆µ˝
b =Wvdw
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Cij
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SiVj + SjVi

)
exp

(
´r2ij

2σ2
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(4.31)

where Wi are weighting constants calibrated on experimental binding data. In this case, the
van der Waals and the electrostatic contributions, which are typical of a force field, are com-
plemented by a specialized 10/12 Lennard-Jones potential for directional hydrogen bonding
and a desolvation term that is related to the excluded volume for the ligand in the bound
state. In general, the goal of a hybrid scheme is to introduce critical free energy contribu-
tions to binding (e.g. ligand desolvation) which are missing in the force field representation
without compromising the computational efficiency.

4.3 discussion and conclusions

The calculation of the protein-ligand binding affinity is a fundamental problem that poses
an outstanding theoretical and computational challenge. To this aim, several computational
approaches have been developed over years, which tackle the problem at various degrees of
approximation.

The statistical mechanics interpretation presented here that there are two general approaches
to the standard free energy of binding. One approach goes through the (direct) evaluation of
the absolute chemical potentials for all components of the binding reaction (i.e. the ligand, the
protein and the complex). The other one treats the binding reaction as a partition equilibrium
of the ligand between the bound and the unbound states, which assumes that most of the
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Figure 4.4: Classification of methods for the calculation of the protein-ligand binding affinity based on
a unified statistical mechanics framework.

protein contributions to the chemical potential difference effectively cancel out. To the best
of our knowledge, all rigorous approaches to the binding constant, such as FEP (Eq. 4.15) or
PMF (Eq. 4.16) fall in the second class; see Figure 4.4. Surprisingly and perhaps due to the
intrinsic challenge posed by the accurate evaluation of the solvation free energy of the protein
with and without the ligand, there exists no rigorous approach belonging to the former class.
Because the evaluation of the free energy of binding involves the detailed analysis of a large
number of intermediate states along the reaction path, these methods are computationally
very intensive and may be useful to rank only a small number of compounds, typically less
than a hundred, at the lead-optimization stage.

The situation is different for the semi-rigorous or end-points approaches where MM/PBSA
(Eq. 4.20) belongs to the first class, whereas LIE (Eq. 4.25) to the second; see Figure 4.4. In
both cases, the binding constant is accessed by solving a thermodynamic cycle that involves
molecular transfer to the gas phase. This strategy effectively transforms the calculation of
the standard free energy of binding into a difference between (approximate) solvation free
energies, which can be evaluated with much less computation. By replacing the explicit rep-
resentation of the binding path with approximate solvation free energy estimates based on
continuum models or the linear response theory, these methods alleviate the computational
burden quite significantly, extending their scope to the hit-to-lead stage where thousands of
compounds must be evaluated and ranked. Of course, the quality of the predictions critically
depends on the accuracy of the solvation free energy calculations, which motivates further
effort on the development of more accurate implicit solvent models. Also, the striking simi-
larity with the strategy implemented in the (rigorous) alchemical route suggests that the use
of restraints to control the configurational freedom of the ligand, particularly in the unbound
state, could be beneficial to accelerate numerical convergence.
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Analysis of the fast empirical approaches to protein-ligand (including some of the most pop-
ular scoring functions for docking) shows that these methods break down the computational
cost by focusing exclusively on the bound state, i.e. forgetting about the protein or the lig-
and in solution, and therefore belong to the second class; see Figure 4.4. Because the average
output rate is of one free-energy determination per second, these simplified approaches are
suitable for screening millions of compounds and find widespread use at the hit identification
stage. Nonetheless, the significant speed-up is achieved by introducing a series of theoret-
ically unjustified approximations, which result in sizeable systematic errors that make the
predictions often unreliable and/or highly system-dependent. Comparison of the force-field
(FF) scoring functions with less-approximated approaches in the same class, i.e. LIE, demon-
strates that the strongest approximations in the former are related to both the neglecting of
entropic effects, which results from a rigid-body treatment of the receptor, and the deliber-
ate exclusion of contributions from the unbound state, i.e. the strain energy upon binding
and ligand desolvation. In light of this, the straightforward implementation of a statistical
mechanics treatment of the vibrational entropy e.g. by normal-mode analysis and/or the ex-
plicit inclusion of ligand desolvation by fast implicit solvent models are expected to improve
the quality of the docking predictions. Interestingly, these contributions are already included
in some empirical scoring (ES) functions. [83].

Finally, our classification of methods (Figure 4.4) highlights different sources of systematic
error in the evaluation of the protein-ligand binding affinity. Sampling of the configurational
space accessible to the system in the bound and the unbound state is one of them, which
explains, for instance, the observed increase in accuracy on moving from the fast empirical
methods to the end-points strategies. An accurate treatment of the solvent is another impor-
tant aspect, which is well exemplified by the comparison of the end-points strategies with the
rigorous methods. In this case, when the computationally intensive evaluation of the solvation
free energy in the latter is replaced by continuum models (MM/PBSA) or an ensemble av-
erage of the ligand/surroundings interactions (LIE), sizable inaccuracies may be introduced.
Last but not least, a force-field representation of interactions which neglects polarization
effects is another source of systematic error, which will affect the quality of the predictions in-
dependently of sampling. Simplified quantum-mechanical treatments such those introduced
in QM-MM/PBSA [69] and QMLIECE [79] represent pioneering attempts to quantify this type
of errors. The development of strategies in which errors due to undersampling or a contin-
uum treatment of the solvent are roughly equal in size to those introduced by the force-field
parameterization will be key for the development of optimal computational approaches to
protein-ligand binding.



5
A L I N E A R I N T E R A C T I O N E N E R G Y M O D E L F O R C AV I TA N D
H O S T- G U E S T S Y S T E M S

5.1 introduction

Host-guest complexes have attracted significant interest in recent years both from exper-
imental and computational chemists. [86–88] The host is typically a small synthetic molecule
with a well-defined cavity or cleft, where a number of compounds (i.e. the guests) bind with
remarkable affinity and/or selectivity. [15] The formation of host-guest complexes in solution
is driven by the same non-covalent forces that steer protein-ligand binding such as hydrogen
bonding, electrostatic and Van der Waals interactions, etc., which makes them suitable model
systems to explore molecular recognition in solution. [16,17,89] In addition, a number of syn-
thetic hosts were shown to be interesting targets for technological applications as chemosen-
sors, biomimetics, solubility enhancers, reaction containers or drug carriers, [7,14,90,91] and the
design of scaffolds that bind potently and selectively specific families of guests is currently an
active research field. [92,93] In this context, the development of accurate and efficient numerical
approaches to evaluate the binding constant in host-guests may open to the rational design
of molecular function(s).

The accurate calculation of the free energy of binding in solution, ∆G˝
b, remains a grand

challenge in computational chemistry. [94] Despite a number of numerical strategies have been
proposed, from fast and crude scoring functions to the most accurate and expensive quan-
tum chemistry methods, there is no universal approach to the binding constant. [95] Among
the pool of available methods, “end-point” approaches such as LIE [44,45,74] and MM/PBSA [42]

provide efficient (though approximate) strategies to the free energy of binding and have been
recently used in drug discovery. [32] The great advantage of these methods is that they sample
only the configurational space of the initial and final states of the binding reaction, which
drastically increases the efficiency of the calculations relative to more rigorous approaches.
However, the quality of their predictions has been questioned, the accuracy of LIE being de-
pendent on a set of empirical and typically non-transferable parameters, [76,78] while that of
MM/PBSA being limited by the evaluation of the solvent contribution by continuum electro-
statics. [96]

This chapter is centered in the development of a LIE model for cavitand host-guests with
remarkable efficiency and predictive power. Many unexplored details of the LIE model have
been addressed regarding to the quality of the predictions in dependence of the energy model
and training set used. The usefulness and limitations of the model is illustrated by the nu-
merical evaluation of the differential binding affinity of challenge host-guest systems based
on the cucurbituril (CB[n]) hosts.

37
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5.2 theory of lie

The theory of LIE [44,45] states that ∆G˝
b can be obtained from the ensemble averages of the

electrostatics and van der Waals contributions to the interaction energy of the ligand with the
surroundings in the bound and the unbound states as

∆G˝
b = β

[A
UelecL´s

E

b
´

A

UelecL´s

E

ub

]
+α

[A
UvdwL´s

E

b
´

A

UvdwL´s

E

ub

]
(5.1)

where α and β are empirical parameters, the symbol x y indicates ensemble averages typically
collected by Molecular Dynamics (MD) simulations, and the subscripts b and ub refer to the
bound and unbound states, respectively.

5.3 results and discussion

5.3.1 Building the LIE model

The LIE parameters for cavitand host-guests were generated using a training set of 14

complexes based on the cucurbit[7]uril (CB7) host for which experimental binding affinities
in water were available; [16]. The ability of CB7 to bind a highly diverse set of ligands, [97]

i.e. rigid/flexible, neutral/charged, and alkyl/aromatic compounds, makes it an ideal frame-
work for training the model (Figure A.1). For each guest, classical MD simulations with an
explicit treatment of the solvent were carried both in the bound and free state in solution
using the General Amber Force Field (GAFF); [98]. The LIE parameters were then obtained by
linear fitting the ligand/surrounding interaction energies versus experimental binding affini-
ties using Eq.5.1. Linear fitting of the GAFF simulation results produced a good correlation
with experiments (i.e. RMSE of 1.35 kcal/mol and R2 of 0.62; Figure 5.1 and Table 5.1) and
yielded α = 0.43 and β = 0.20. We note that these values are significantly different from those
that are typically used in protein-ligand binding (β = 0.33´ 0.5 and α = 0.18), [45] with the
coefficient for the electrostatic interactions β being approximately half the theoretical value
of 0.5, and α being twice as large.

Table 5.1: Statistical metrics used to assess the accuracy of the computed ∆G˝
b,LIE for the training set

using the LIE models based on GAFF and CGenFF LIE models.

Metric GAFF CGenFF
RMSE 1.35 1.70

MAE 1.25 1.48

R 0.79 0.63

R2 0.62 0.39

Slope 0.68 0.34

Intercept -4.30 -6.75
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Figure 5.1: Experimental vs calculated binding free energy values in aqueous solution for the training
set used to build the GAFF (R=0.79 and RMSE=1.35 kcal/mol) and CGenFF (R=0.63 and
RMSE=1.70 kcal/mol) LIE models.

5.3.2 Accuracy of the LIE model

The predictive character of this LIE model was assessed using a test set of 49 chemically
diverse cavitand host-guest complexes. The test set included 15 complexes of OAH, 6 com-
plexes of the OAM, 22 complexes of CB7, and 6 complexes of BCD; see Appendix A. The OAH
and OAM complexes were all part of SAMPL4 and SAMPL5 challenges [16,17] and provide a
stringent benchmark for any computational approach. The 22 hydrocarbon guests in complex
with CB7 were used in the HYDROPHOBE challenge, a recent experimental/computational
benchmark of numerical approaches to the binding constant. [20] And, BCD is a flexible cavi-
tand host that has been used as a solubility enhancer for drug formulation. [99]

The prediction strength of the LIE model was assessed by measuring the root mean square
error (RMSE) and the mean absolute error (MAE) as metrics. The results in Figure 5.2 and
Table 5.2 show a striking correlation with the experimental determinations (R=0.81) with a
calculated RMSE of 1.08 kcal/mol . Note that this error is lower than any other reported in
SAMPL4 and SAMPL5 using a variety of computational methods. [16,17] Remarkably, accurate
predictions were obtained for the OAH (RMSE = 0.66 kcal/mol), OAM (RMSE = 1.06 kcal/-
mol) and BCD (RMSE of 1.48 kcal/mol) hosts individually, which were not part of the training
set. Based on these results, we conclude that the LIE parameters above are transferable among
chemically-diverse hosts families. In the case of the 22 CB7-hydrocarbons complexes, a RMSE
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of 1.17 kcal/mol was obtained, surpassing the accuracy obtained by more rigorous methods
based on expensive quantum calculations (RMSE = 1.94 kcal/mol) and/or extensive sampling
based on MD (RMSE = 5.05 kcal/mol). [20] The accuracy of the predictions above indicate that
a straightforward LIE model is able to capture the details modulating the host-guest binding
affinity in solution.

Table 5.2: Statistical metrics used to assess the accuracy of the computed ∆G˝
b,LIE for the test set using

the LIE models based on GAFF and CGenFF LIE models.

Force Field Metric Overall OAH OAM BCD CB7

GAFF

RMSE 1.08 0.66 1.06 1.48 1.17

MAE 0.88 0.55 0.90 1.37 0.95

R 0.81 0.88 0.98 0.95 0.92

R2 0.66 0.77 0.97 0.91 0.84

Slope 0.72 0.56 0.20 1.47 1.05

Intercept -1.09 -2.10 -3.03 0.26 1.20

CGenFF

RMSE 0.92 1.06 0.97 0.54 0.88

MAE 0.64 0.74 0.61 0.42 0.64

R 0.87 0.77 0.55 0.97 0.91

R2 0.76 0.60 0.30 0.94 0.83

Slope 0.80 0.44 0.26 1.26 1.05

Intercept -0.86 -2.75 -3.19 0.49 0.70

5.3.3 Effect of the energy model

To assess the impact of the force-field on the accuracy of the predictions, a new set of LIE
parameters was derived using the CHARMM General Force Field (CGenFF). [100] The new LIE
model parameterized on the same training set presents α = 0.66 and β = 0.08; see Figure A.1
of the Appendix A. Despite the values of α and β are substantially different from the previ-
ous parameterization, the calculated RMSE was 0.92 kcal/mol (see Figure 5.3 and Table 5.2),
which is consistent with the accuracy obtained using GAFF. In addition, the LIE model based
on CGenFF produced accurate results for the individual host families; OAH (RMSE=1.06

kcal/mol), OAM (RMSE=0.97 kcal/mol), CB7 (RMSE=0.88 kcal/mol) and BCD (RMSE=0.54

kcal/mol). We conclude that although the LIE parameters are force-field dependent, the accu-
racy of the binding-affinity predictions in these host-guest complexes is not. Thus, provided a
chemically diverse training set, the empirical parameterization of LIE is likely to absorb most
of the systematic error of the force-field, making LIE even more accurate than the model of
energetics in use.
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Figure 5.2: Experimental vs calculated binding free energy values in aqueous solution for host-guest
systems of the test set from the GAFF LIE model.

5.3.4 Efficiency and robustness of the LIE model

In a first assay to test the robustness of our LIE model for cavitand host-guest systems with
respect to the selection of the training set, two analyses were carried out. First, the entire
data set of 61 host-guest complexes (training plus test) was randomly split in two new sets of
14 and 47 host-guest complexes, which were used as new training and test sets, respectively.
New LIE parameters were obtained and the RMSE for the test set evaluated. By repeating
the procedure 1ˆ 105 times, the frequency distributions for the LIE parameters α and β

and the RMSE for the test set were obtained, which are presented in the Figures A.5 of the
Appendix A. The results indicate that the most populated values of α and β are essentially
equivalent to those used in the original model, which were based on an arbitrary selection
of the training set. Moreover, the distribution of the RMSE shows that free energy results
within 1.5 kcal/mol from experiments are obtained almost independently of the training
set. Based on this analysis, we conclude that the empirical parameters of our LIE model for
cavitand host-guests as well as the accuracy of the binding affinity predictions are essentially
independent of the training set.

In a second analysis, the size of the initial training set, which was composed of n=14 CB7-
guest complexes , was systematically reduced by random elimination of k = 1, 2, 3 . . . 11 com-
plexes. For each value of k, n!

k!(n´k)! unique training sets of n´ k members were generated.
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Figure 5.3: Experimental vs calculated binding free energy values in aqueous solution for the test set
using the CGenFF LIE model (overall R=0.87 and RMSE=0.92 kcal/mol).

New LIE parameters were obtained and the RMSE for the test set evaluated; note that the k
complexes removed from the training set were considered as part of the test set to preserve
the size of the full data set (61 host-guest complexes). Average values and associated errors
for α, β and RMSE for the test set as a function of the size of the training set are presented
in Figures A.6 of the Appendix A. The results clearly show that reliable LIE models yielding
RMSE ă1.5 kcal/mol can be obtained using a training set including as little as 7 experimental
determinations of the host-guest binding affinity.

Finally, the convergence analysis of the binding affinity predictions by LIE was performed
to explore the efficiency of the methodology and its suitability for virtual screening cam-
paigns. For this purpose, the simulation time (tmin) required to obtain predictions with a
deviation of ă0.5 kcal/mol from the ∆G˝

b at full sampling (20 ns) was used as a convergence
metric. The frequency distribution of tmin for all complexes of the test set was evaluated and
fitted with an exponential function of the form exp(´t/τ), whose characteristic time τ was of
1.1 ns. Based on this analysis, we conclude that the simulation time required to obtain con-
verged binding affinity results in most complexes of the test set was ă2 ns independently of
the force field, which demonstrates the remarkable efficiency of our LIE model; see Figure A.7
(top) of the Appendix A. Based on these results we conclude that accurate binding-affinity pre-
dictions in host-guests can be obtained by LIE with a few nanosecond MD. Also, the rapid
convergence of the LIE parameters (α and β) as a function of MD sampling was evaluated
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as presented in Figure A.7 (bottom) of the Appendix A. Taken together, these results support
the conclusion that LIE provides an accurate and efficient access to the binding affinity in
cavitand host-guests; which makes it suitable for virtual screening of large chemical libraries.

5.3.5 Applications of the LIE model

As a first application, the LIE model based on GAFF was used to predict the standard
binding free energy of 19 steroids to cucurbituril hosts, which were shown to bind CB7 and
CB8 with nanomolar affinities in water; [101] their chemical structures are shown in Figure A.8
of the Appendix A.

Figure 5.4: Experimental vs calculated binding free energy values in aqueous solution for CB[7/8]-
steroids complexes in study.

Direct application of LIE produced a RMSE of 2.45 kcal/mol from experiments; see Fig-
ure 5.4 (blue points) and Table 5.3. This result was not totally satisfactory compared to previ-
ous RMSE values obtained for the test set. Visual inspection of the MD trajectories unveiled
that a significant deformation of the host is introduced by the bulky steroids in the bound
state, particularly on the smaller host CB7 (Figure 5.5).

Since the theory of LIE assumes that the ligand is small compared to the receptor and that
the conformation of the latter is minimally affected upon complexation, [95] it cannot account
for the receptor strain in the bound state. In steroid-cucurbituril complexes, however, this
assumption is unjustified as steroid guests have a comparable size to the host. Based on these
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Table 5.3: Statistical metrics used to assess the accuracy of the computed ∆G˝
b,LIE

for the CB[7-8]/steroids complexes using the GAFF LIE model with and without ∆Estr val-
ues.

Metric ∆G˝
b,LIE ∆G˝

b,LIE +∆Estr

RMSE 2.45 0.81

MAE 2.27 0.67

R 0.55 0.82

R2 0.30 0.67

Slope 0.46 0.77

Intercept -7.24 -1.55

considerations, we developed an original LIE model that accounts for the strain energy of the
host (∆Estr) in the evaluation of the binding free energy. In the new formulation

∆G˝
b = β

[A
UelecL´s

E

b
´

A

UelecL´s

E

ub

]
+α

[A
UvdwL´s

E

b
´

A

UvdwL´s

E

ub

]
+∆Estr (5.2)

where ∆Estr = Ehostb ´ Ehostub , with Ehostb and Ehostub are the force-field energies for the
bound and unbound states at the minimum, respectively; see Material and Methods for details
on the calculation of the strain energy correction. Strikingly, the results in Figure 5.4 (orange
points) show that the inclusion of the strain energy contribution improves the binding-affinity
predictions dramatically with a final RMSE of 0.81 kcal/mol and R2 of 0.67 (Table 5.3).

The new implementation of LIE (Eq. 5.2) was used to re-evaluate the binding affinity of the
49 host-guests complexes of the test set. Since several guests are formally charged, the evalu-
ation of the strain energy correction was modified and an implicit solvent model introduced
to screen for the host-guest electrostatic interaction during geometry optimization of the host
with and without the guest.The results (Table 5.4) show that the strain-energy contribution is
small (ă 1 kcal/mol) for all but three complexes, where inclusion of the correction improves
the binding affinity predictions; i.e. R2 increases from 0.66 to 0.71. It follows that when the
guest is flexible and small compared to the host, the strain energy contribution is negligible

Figure 5.5: Geometry of the most populated cluster of CB7 in the unbound state (left) and the bound
state to nandrolone (right) from MD simulations in explicit solvent. The structural deforma-
tion of the host in the bound state is striking.
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and Eq. 5.2 is equivalent to Eq. 5.1. Hence, the strain-including formulation of LIE in Eq. 5.2
is a generalization of the original LIE, which accounts for the strain energy of the host when
host and guest have comparable sizes.

Table 5.4: Statistical metrics used to assess the accuracy of the computed ∆G˝
b,LIE for the test set using

the GAFF LIE model with ∆Estr values.

Metric Overall OAH OAM BCD CB7

RMSE 1.14 0.74 1.28 0.90 1.35

MAE 0.96 0.65 1.21 0.75 1.17

R 0.84 0.86 0.95 0.78 0.90

R2 0.71 0.74 0.89 0.61 0.82

Slope 0.72 0.56 0.43 0.83 0.97

Intercept -0.87 -1.98 -1.61 -1.30 0.93

As a second application, the binding affinities of 28 guests for CB7 extracted from the recent
work of Muddana et al [102] (Figure A.9 of the Appendix A) were analyzed. This additional test
set includes highly charged and bulky compounds spanning a wide range of affinities from
weak to ultra-tight; i.e. the ∆G˝

b varies from ´5.3 to ´21.5 kcal/mol. We note that this dataset
is challenging for numerical methods as demonstrated by the large RMSE of 4.8 and 10.2

Figure 5.6: Experimental vs calculated binding free energy values in aqueous solution for the Muddana
set in study.
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kcal/mol produced by the mining minima method using force-field and quantum-chemical
calculations, respectively, prior to fitting to the experimental data. [102] Predictions based on
the GAFF/LIE model (Eq. 5.1) yielded a large RMSE of 3.47 kcal/mol from experiments
with a poor R2 of 0.3; see Figure 5.6 and Table 5.5. The predictions did not improve using
the CGenFF/LIE model (RMSE of 4.26 kcal/mol) nor including the strain energy correction
(RMSE of 4.40 kcal/mol); see Figure 5.6. A detailed analysis of the computational results high-
lighted the existence of two main sources of errors. First, our LIE model was unable to predict
the affinity of the ultra-tight binders, i.e. guests with experimental ∆G˝

b ă ´16 kcal/mol (e.g.
M21-M28). Considering the numerical values of α and β in the GAFF/LIE model, a predicted
binding affinity of ´21.5 kcal/mol such that of M28 would require a vdW contribution to the
LIE binding energy of ´44 kcal/mol, which is „ 11 kcal/mol larger than the maximum vdW

component measured in this work. The situation is even worse when considering the electro-
static contribution as the β coefficient is half of the size of α. These data thus indicate that
something may be fundamentally missing in the present LIE model, which would be key to
capture the ultra-tight binding affinities to CB7. Perhaps, the use of polarizable force fields in
combination with explicit water Molecular Dynamics will improve the performance, thus ex-
tending the scope of the model. Second, our LIE model overestimated the binding affinity of
weak and bulky guests (e.g. M1, M2, M3, M7 and M14), whose binding to CB7 likely results in
a strained conformation of the host. Upon inclusion of the strain-energy correction (Eq. 5.2),
the correlation with the experiments did improve, i.e. R2 increases from 0.53 to 0.76 and the
slope of the regression goes from 0.35 to 0.61 (see Table 5.5), but the overall RMSE remains
ą 4 kcal/mol. Moreover, the results in Figure 5.4b show that inclusion of the strain energy
of the host overshoots the experimental binding free energy systematically, thereby failing to
correct the numerical predictions. Since the evaluation of the strain energy here required the
use of an implicit-solvent model, we suspect that our numerical protocol is suboptimal (if
not inadequate) with formally charged ligands. The development of better performing proto-
cols for accurate strain-energy corrections on complexation is currently under investigation
and will be reported elsewhere. Overall, the inaccurate predictions on the Muddana dataset
highlight some of the shortcomings of the current LIE implementation and suggest future
directions for improvement.

Table 5.5: Statistical metrics used to assess the accuracy of the computed ∆G˝
b,LIE for the Muddana set

using the GAFF (with and without ∆Estr values) and the CGenFF LIE models.

Metric
GAFF CGenFF

∆G˝
b,LIE ∆G˝

b,LIE +∆Estr ∆G˝
b,LIE

RMSE 3.77 4.26 4.40

MAE 3.12 3.55 3.51

R 0.73 0.87 0.57

R2 0.53 0.76 0.32

slope 0.35 0.61 0.23

intercept -7.40 -1.38 -8.45
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5.4 material and methods

5.4.1 Computational details

5.4.1.1 Preparation of the systems

The initial atomic coordinates for hosts in study; CB7, OAH and OAM and their guests,
were obtained from publications of the blind challenges SAMPL4, [16] SAMPL5

[17] and HY-
DROPHOBE. [20] The Initial geometries for both the BCD and CB8 hosts, which are not
part of SAMPL4 and SAMPL5 challenges, were obtained from the Cambridge Structural
Database [103] and their corresponding guests where built from SMILES. For all hosts and
guests, the protonation states were assigned using the Marvin suite software [104] at the ex-
perimental pH. Here, the CB7, CB8, and BCD hosts were modeled as neutral, the OAH and
OAM hosts had a net charge of ´8. The chemical structures for all hosts were presented in
the chapter 1, while the chemical structures and protonation states for all guests in study are
presented in Figures A.1, A.2, A.3 and A.4 from the Appendix A. Initial atomic coordinates
for the host-guest complexes were extracted from the top ranking binding mode predicted by
docking using the CHEMPLP scoring function implemented in PLANTS. [105] Force field pa-
rameters for hosts and guests were generated using the General Amber Force Field (GAFF) [98]

with AM1-bcc charges. [106] Also, to assess the impact of the force field on the binding affin-
ity predictions, MD simulations were performed using the CHARMM general Force Field
(CGenFF). [100]

5.4.1.2 Protocol for Molecular dynamics simulations

All Molecular Dynamics (MD) simulations were carried out using GROMACS 5.1.2 [107] us-
ing periodic boundary conditions and a time step of 2 fs. Each molecular system was solvated
in a cubic box with a minimum distance of 1.4 nm between the solute and the edge of the
box. The TIP3P model was used to represent water molecules and counter-ions were added
to grant neutrality of the simulation box. Electrostatic and van der Waals interactions were
computed using particle mesh Ewald (PME) with a real-space cut-off of 1.2 nm, a grid spac-
ing of 0.12 nm, a spline order of 4 and a relative tolerance of 1ˆ 10´6 for the reciprocal space.
The LINCS algorithm was used to constrain all covalent bonds involving hydrogens. The sim-
ulation protocol started with an energy minimization of 10000 steps of steepest descent until
a maximum force of 10 kJmol´1 nm´1 was attained. The system was then slowly heated to
the target temperature (i.e., 298 K) using a modified Berendsen thermostat [108] in 6 steps with
increments of 50 K every 50 ps. The system was equilibrated for 1 ns at constant volume and
for another 1 ns at the constant pressure of 1 bar. The first 500 ps of simulation were car-
ried out using the Berendsen barostat, [109] the remaining 500 ps using the Parinello-Rahman
barostat, [110] which grants correct sampling of the NPT canonical ensemble. In both cases,
a barostat coupling parameter of 1 ps and a isothermal compressibility of 4.5ˆ 10´5 bar´1

were used. Finally, a production phase of 20 ns was performed at constant temperature and
pressure. Molecular configurations were saved every 5 ps for further analysis.
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5.4.1.3 Practical aspects of LIE

Since our simulations were performed using PME to treat both the electrostatic and van
der Waals (LJ-PME [111]) interactions, which does not allow direct atomic pair-wise decomposi-
tion, a post-processing step was introduced to evaluate the ensemble averages in Equation 5.1.
Starting with the bound state, the trajectory of the solvated complex was split in two trajec-
tories, one containing the receptor and the solvent molecules (and also counter-ions if the
system was not neutral), the other containing the ligand alone. From these two trajectories
along with the one of the solvated complex, ensemble averages of the electrostatic and van
der Waals (PME) energies for the complex in solution (xUelecRL+solvyb and xUvdwRL+solvyb, respec-
tively), the receptor in solution (xUelecR+solvyb and xUvdwR+solvyb, respectively) and the ligand in
vacuum (xUelecL yb and xUvdwR+solvyb, respectively) were extracted. Then, the electrostatics and
van der Waals contributions to the ligand interaction energy were evaluated as

xUelecL/s yb = xUelecRL+solvyb ´ xU
elec
R+solvyb ´ xU

elec
L yb (5.3)

xUvdwL/s yb = xUvdwRL+solvyb ´ xU
vdw
R+solvyb ´ xU

vdw
L yb (5.4)

Similarly, upon separating the MD trajectory of the ligand in three, i.e. free ligand in solution,
free ligand in vacuum, and solvent alone, the electrostatics (xUelec

L/s
yub) and the van der

Waals (xUvdw
L/s

yub) contributions to the ligand interaction energy in the unbound state were
evaluated as

xUelecL/s yub = xUelecL+solvyub ´ xU
elec
solvyub ´ xU

elec
L yub (5.5)

xUvdwL/s yub = xUvdwL+solvyub ´ xU
vdw
solvyub ´ xU

vdw
L yub (5.6)

Finally, statistical errors associated with the numerical determination of ∆G˝
b by LIE were

estimated as in Baron et al. [112] For this purpose, the MD trajectories of the bound and un-
bound states were split in two chunks, named A and B, and ensemble averages of the electro-
static and van der Waals contributions to the ligand interaction energy were computed per
chunk. Then, the statistical error associated with each ensemble average was estimated as

xEL´sy =
1

2

∣∣∣xUAL´sy ´ xU
B
L´sy

∣∣∣ (5.7)

and that on ∆G˝
b by a LIE-like equation as
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(5.8)

5.4.1.4 Computing the Strain Energy of the Host (∆Estr)

Here, the computation of the strain energy of the host was done using sander [113] from the
AmberTools17 suite package [114] as follows

1. Initially, a cluster analysis (using the GROMACS tool “gmx cluster”) on the production
trajectory of a host-guest complex was performed in order to isolate the structure of the
most populated cluster. The clustering procedure was based on the "single linkage"
method where one conformation of the complex is added to a particular cluster if its
all-atom RMSD (after mass-weight fitting) was less than 0.25 nm.
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2. The central conformation of the most populated cluster was submitted to energy min-
imization by performing 50000 steps of conjugate gradient, prior to four cycles of lo-
cal minimization using steepest descent (maxcyc=50000 and ntmin=0 in sander) un-
til the root-mean-square of the energy gradient was less than 1ˆ 10´5 kJmol´1Å

´1

(drms=1ˆ 10´5 in sander). All geometry optimizations were done in vacuum for neutral
system, whereas the GBSA implicit model by Hawkins et al [115] (igb=1 in sander) was
used for formally charged systems.

3. The atoms of the host were extracted from the optimized structure of the complex and
its intramolecular energy evaluated, which yields the configurational energy of the host
at the minimum in the bound state, Ehostb .

4. Then, the conformation of the host previously optimized in the presence of guest (i.e.
the bound state) was energy minimized with the guest removed using the same proce-
dure. Evaluation of the energy of the host yields the configurational energy of the host
at the minimum in the unbound state, Ehostub .

5. Finally, the strain energy of the host was determined as ∆Estr = Ehostub ´ Ehostb .

5.5 conclusion

In conclusion, we have presented a LIE model for cavitand host-guest binding affinities
that is transferable among chemically diverse families, accurate and reliable, producing pre-
dictions with a RMSE ă 1.5 kcal/mol in a large test set including 49 guests and four differ-
ent hosts. Our model is computationally efficient, its performances are essentially indepen-
dent of the training set, and produces converged results within a few nanoseconds of MD,
which opens to high-throughput computational screenings. The semi-empirical character of
the model was shown to absorb most of the systematic error of the force field, making the
predictions essentially force-field independent; a considerable advantage over other physics-
based approaches that cannot be more accurate than the model of energetics in use. Finally,
the inclusion of the strain energy of the host in the calculation of the binding affinity, which
is absent in the original LIE formulation, was shown to improve the quality of the predictions
substantially, especially when hosts and guests have similar sizes. Nonetheless, the current
formulation of LIE failed in predicting the binding affinity of ultra-tight (femto- to atto-molar)
binders to CB7 and was shown to overestimate the strain energy of the host in complex with
bulky and formally charged guests. The usefulness of a LIE formulation for host-guest recog-
nition was demonstrated through the accurate prediction of steroid binding to cucurbituril
hosts, which are technologically relevant for the development of chemosensors.
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T H E C O - C ATA LY T I C E F F E C T O F " I N E RT " M O L E C U L E S I N B R Ø N S T E D
A C I D C ATA LY Z E D R E A C T I O N S

6.1 introduction

The proton provides the most common and important way to catalyze organic reactions,
however it needs not always operate in isolation. Within a single molecular catalyst, such
as in the active site of an enzyme, multiple hydrogen-bond donors (or Brønsted acidic sites)
can work in cooperation to increase the overall acidity and hence catalytic activity. [116] Co-
operative H-bonding and Brønsted acidity is also possible between molecules, when mul-
tiple H-bond donors or Brønsted acid molecules interact to generate an aggregate that is a
more effective catalyst than either individual molecule. [117] However, what role the bystander
molecules – those that are not H-bond donors or Brønsted acids – might play, if any, remains
to be elucidated. [118,119]

Though poorly understood, a few papers indicate that interactions between Brønsted acids
and seemingly innocuous solvents or additives, particularly nitro compounds, can have a pro-
found accelerating effect on catalytic activity both in terms of reaction rate and the concen-
tration dependence of the reaction. In the 1960s, Pocker and coworkers [120–122] found that the
hydrochlorination of olefins was not only markedly faster when carried out in nitromethane
compared to other solvents, but also displayed an atypical second order kinetic concentra-
tion dependence on HCl (Figure 6.1). Further investigations to uncover why this effect would
be exclusive to nitromethane were not made, and some subsequent authors have attributed
it to the increased polarity of the bulk solvent. Recently in 2015

[123], it was observed that
the presence of nitro compounds, either as solvent or co-catalyst, greatly accelerated the de-
hydroazidation of tertiary aliphatic alcohols catalyzed by B(C6F5)3 ‚H2O (BCF), a strong
Brønsted acid of comparable strength to HCl. When carried out in benzene in the presence
of catalytic quantities of nitro compound, the reaction was found to display a second order
concentration dependence with respect to the nitro compound as well as a second order con-
centration dependence with respect to BCF. In contrast, when carried out in benzene in the
absence of nitro compounds, the reaction was much slower and found to be first order with
respect to BCF (Figure 6.1). No model currently exists to account for how the presence of a
simple molecule like a nitro compound could change the concentration dependence and rate
of a Brønsted acid catalyzed reaction.

Herein, it’s presented a structural model for a higher order aggregate formed by nitro com-
pounds and Brønsted acids based on DFT calculations. We examine the effect of aggregation
on acidity of the Brønsted acid, show that the model can be used to predict reaction rates for
a set of new nitro compounds, and even predict a new class of "template" molecules that can
induce a similar co-catalytic effect. The study demonstrates that weak interactions between
Brønsted acids and all molecules in solution must be taken into account to achieve a com-

50
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prehensive understanding of Brønsted acid catalyzed reactions. This is an clear example of a
quantitative analysis of molecular recognition in solution for catalysis.

Figure 6.1: The effect of nitromethane on the kinetic concentration dependence of reactions mediated
(A) or catalyzed (B) by Brønsted acids.

6.2 results

6.2.1 Structural model for the BCF/nitro compound agregate

Based on the observed second-order dependence of alcohol dehydroazidation on the con-
centration of BCF and nitro compound, as well as spectroscopic and catalytic evidence of
hydrogen bonding to nitro compounds, [123] we postulated that the self-assembly of two BCF
with two nitro-compound molecules is responsible for the co-catalytic effect. Structural mod-
els of the tetrameric assembly of BCF with nitromethane were generated by connecting the
molecules via pairs of H-bonds and optimizing the geometry of the aggregate at the DFT
level of theory using the ωB97X´D [124] functional with the 6-31G(d,p) basis set; see Material
and Methods for details. The DFT optimization results in an almost flat, rectangular hydrogen-
bonded network formed between the nitro groups of two nitromethanes and two boron hy-
drates (Figure 6.2). The tetrameric arrangement is stabilized by two sets of non-equivalent
H-bonds, two shorter and two longer. Vibrational analysis of the DFT-optimized architecture
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indicates that each pair of O-H groups in the network present two distinct stretching modes
(i.e. one symmetric with a lower IR intensity signal and one anti-symmetric with higher in-
tensity) with the symmetric stretching of the hydrogens involved in the shorter H-bonds
characterized by the lowest vibrational frequency of 3501 cm-1; see Figure B.1 and B.4 of the
Appendix B.

Figure 6.2: DFT-optimized structure for the 2:2 tetrameric self-assembly of BCF and nitromethane.

Thus, we conclude that the formation of a tetrameric adduct with nitromethane results
in a red-shift of the O-H stretching frequency as large as the corresponding O-H stretching
modes have vibrational frequencies of 3693 and 3670 cm´1 in the isolated BCF (i.e. the higher
the frequency, the stronger the bond). Thus, the calculations suggest that BCF:nitromethane
tetrameric self-assembly increases the acidity of BCF, in particular for the hydrogens involved
in the shorter hydrogen bonds. The same vibrational analysis of 1:1 complex of BCF with
nitromethane (see Figure B.2) shows that the dimeric form is not the specie responsable for
the co-catalytic effect since a marginal red-shift of the O-H stretching frequency was detected
in this 1:1 complex. These results imply that the interactions between the nitro compound
and BCF in the 2:2 aggregate occurs at just the right angle and strength to have a net effect
on the acidity.

Following the same procedure, tetrameric assemblies of BCF with a variety of nitro com-
pounds including 4-nitrobenzotrifluoride, nitrobenzene, 4-nitroanisole, 2-methyl-2-nitropropane
and 1-nitrohexane, which were shown to experimentally modulate the co-catalytic activity of
BCF, [123] were generated. Upon geometry optimization at the DFT level of theory, the rect-
angular hydrogen-bonding network made of pairs of non-equivalent H-bonds is largely pre-
served in all complexes, with minor distortions in some cases; see Figure B.5 of the Appendix
B.
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Table 6.1: Computed and experimental OH stretching frequencies and Log(rate) values employed to
build and validate correlations. aOutlier in the experimental Model, bin cm´1, cTest set.

Comp. Name
DFT model IR model

Exp.
Log(rate)

bIR
Freq.

Pred.
Log(rate)

bIR
Freq.

Pred.
Log(rate)

1 4-nitrobenzotrifluoride -5.13 3601.31 -4.99 3523 -5.07

2 nitrobenzene -4.58 3506.99 -4.65 3480 -4.63

3 4-nitroanisole -4.34 3454.68 -4.46 3465 -4.47

4
a nitromethane -4.62 3530.63 -4.74 - -

5 1-nitrohexane -4.94 3561.62 -4.85 3500 -4.83

6 2-methyl-2-nitropropane -4.83 3502.86 -4.64 3488 -4.71

7 Background -5.2 3692.52 -5.32 3547 -5.32

8
c

1-nitropropane -4.75 3531.32 -4.74 3510 -4.93

9
c

2-nitropropane -4.77 3528.85 -4.73 3510 -4.93

10
c nitroethane -4.77 3525.08 -4.72 3510 -4.93

11
c

2-nitroanisole -4.39 3447.33 -4.44 3522 -5.06

12
c

1-nitronaphthalene -4.81 3615.81 -5.04 3468 -4.5

Vibrational analysis of the model complexes shows the same characteristic red shift in
the O-H stretching frequency with a magnitude that is dependent on the chemical nature
of the nitro compound; see Table 6.1. Most importantly, the calculated red shift in the anti-
symmetric stretching of the short H-bonds is found to be strongly correlated with the ex-
perimental Log(rate) with a determination coefficient (R2) of 0.81; see Figure 6.3 (red filled
circles). This observation suggests that the O-H stretching frequencies predicted by DFT in
the 2:2 aggregate can be used as predictors for the kinetic rate of dehydroazidation catalyzed
by BCF. Intriguingly, the frequency of the symmetric stretching of the short H-bonds or those
of the longer H-bonds do not correlate with the experimental Log(rate); see Table B.1 of the
Appendix B.

To evaluate the statistical significance of the correlation in Figure 6.3, two validation schemes
were followed. First, a cross (internal) validation based on a leave-one-out (LOO) analysis was
carried out. Second, an external validation was performed using a new set of five nitro com-
pounds (1-nitropropane, 2-nitropropane, nitroethane, 2-nitroanisole and 1-nitronaphtalene)
whose influence on reaction rate was determined by GC-MS. These experimental measure-
ments were provided by the Moran’s Group at the University of Strasbourg.

The results of the internal validation indicate that the DFT model presents a positive pre-
dictive profile with a cross-validated squared correlation coefficient (q2) greater than 0.46 (Ta-
ble 6.2). Those of the external validation show that kinetic rates predicted by the DFT model
are strongly correlated with the experimental rates with a determination coefficient (R2) of
0.70. Also, the statistical parameters of the model appear to be robust to randomization of
the experimental kinetic rates in alternative training/test sets, which is consistent with the
absence of random correlations; see Table B.2. The predictive character of the DFT model in



6.2 results 54

Figure 6.3: Correlations of the experimental kinetic rate with the DFT calculated frequency of the anti-
symmetric stretching of the short H-bonds in the 2:2 aggregate (top left) and experimentally
observed IR stretching frequencies (top right). Filled and empty data points correspond to
the training (six + blank) and test (five) sets of nitro compounds investigated in this study.
The numbering is the same as in Table 6.1.

Figure 6.3 supports the assertion that tetrameric self-assembly of BCF with nitro compounds
is a critical feature of the catalytic mechanism in the azidation of tertiary alcohols.

A similar model for the Log(rate) was constructed using experimentally observed IR stretches.
These experimental IR stretching frequencies were obtained from the Moran’s group at the
University of Strasbourg. Although this IR model was predictive for the initial set of nitro
compounds, it is not for the test set (Table 6.2 and Figure 6.3). In particular, the accelerations
produced by 2-nitroanisole and 1-nitronapthalene (entries 11-12 in Table 6.2) are reversed by
the IR model, which produces an anti-correlation between predicted and observed Log(rate)
in the external validation; see Figure 6.3. The more limited predictive power of the IR model
compared to DFT can be explained on the basis that the intense OH-stretching bands derive
from the overlap of multiple stretching modes, which limits the resolution of the experimen-
tal determination. Despite the inaccuracies associated with the DFT functional/basis set and
the absence of solvent in the calculations, the computational vibrational analysis uniquely
allows to quantify the red shift in the anti-symmetric stretching of the short H-bonds, which
is predictive for the Log(rate).
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Table 6.2: Statistical parameters for internal and external validations of the computational and experi-
mental models. Capital and un-capital parameters refer to the internal and the external vali-
dation, respectively.

Parameter DFT model IR model
r2 0.81 0.88

m -0.00358 -0.010

b 7.891 31.229

q2 0.46 0.6
SDEP 0.08 0.19

R2 0.7 0.34

R20 0.7 -1.68

(R2 ´ R20)/R
2

0.0005 5.97

k 1.01 1.04

6.2.2 New promotors of the co-catalytic effect in the

Lastly, the DFT model was used to explore new chemotypes capable of playing the same
co-catalytic role as nitro compounds. For this purpose, six representative compounds were
selected on the basis of their ability to weakly accept hydrogen bonds on two different atoms.
For each compound, the tetrameric assembly with BCF was modeled and the relevant O-
H stretching frequencies calculated by DFT (Table 6.3). In four out of six cases, the assembly
preserved a rectangular-shape and a planar hydrogen-bond network after geometry optimiza-
tion. Of these four, the Log(rate) predicted by the DFT model was in good correspondence
with the observed reactivity after 24 h under standard reaction conditions in three cases (en-
tries 1-3). These kinetics experiments were performed by the Moran’s group at the University
of Strasbourg. Also, the two compounds that did not result in stable tetrameric complexes in
the calculations did not show any accelerating effect on the reaction (entries 5-6). Most impor-
tantly, as predicted by the DFT model, diethylsulfate (entry 1) as additive showed a similar
accelerating effect to nitromethane. The computed aggregate for diethylsulfate is shown in
Figure 6.4. Indeed, extra kinetics experiments shown a kinetic order dependence of 2.55 on
diethylsulfate, consistent with higher order aggregates being involved in catalysis mediated
by nitro compounds. To the best of our knowledge, this is the first time that an additive other
than a nitro compound has been shown to induce changes in the kinetic order dependence
and an accelerating effect in the azidation reaction. The incorrect prediction for Log(rate) in
entry 4 illustrates that above a certain threshold of H-bond accepting ability, the buffering
effect of the additive dominates any positive effects arising from aggregation.

6.2.3 Limitations of the DFT model

The apparent lack of predictivity with dimethyl-sulfone can be ascribed to both the level
of theory used for the geometry optimization and/or the vibrational analysis, or the ab-
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Table 6.3: Calculated frequency analysis for tetrameric self-assembly of BCF with various promoters
and comparison to the observed reactivity in the dehydroazidation of alcohols. aA complex
was considered stable if it preserves a rectangular-shape and planar hydrogen bond network
as obtained in tetramer self-assembly of BCF with nitro compounds. b Difference between
the OH-stretching frequency of BCF in the complex and alone (3692.52 cm´1). c Reaction
monitored by GCMS relative to dodecane as internal standard.

Entry Promotor
(Stable agregate?)a

OH stretch
(cm´1)

∆µ

(cm´1)b
Pred.

Log(rate)
Conv. at 24 h

(%)c

1
Diethylsulfate

(yes)
3510.47 182.05 -4.66 >99%

2
Dimethyloxalate

(yes)
3561.43 131.09 -4.85 60%

3
Dimethylmalonate

(yes)
3562.81 129.71 -4.85 58%

4
Dimethylsulfone

(yes)
3449.12 243.4 -4.44 <5%

5
Sulfolane

(no)
- - - <5%

6
Dichloroethane

(no)
- - - <5%

sence of solvent in the calculations. In addition, our modeling approach for the Log(rate)
relies on single-point vibrational analyses, which is incorrect for flexible chemical entities.
In this respect, modeling the self-assembly with dimethyl oxalate and dimethyl malonate
indicates that multiple structures (i.e. energy minima) may contribute to the OH-stretching
frequency, which would require more extensive sampling of the potential energy surface. Fi-
nally, the identification of short versus long H-bonds, which correspond to different acidities
(see above), is not straightforward in irregular and/or non-rectangular H-bonded networks
and may introduce a systematic error in the determination of the O-H stretching frequencies.
A generalization of the current modeling approach to fix some of the shortcomings above is
left for future studies.

6.3 material and methods

6.3.1 Computational details

In all cases, the initial geometries of the monomers were modeled using Avogadro [125].
Initial coordinates for the tetrameric assemblies were generated manually, optimized using
the HF-3c semi-empirical method [126] in Orca 2.9 [127], and finally refined at the DFT level
of theory using the ωB97X´D/6-31G(d,p) functional in Gaussian09

[128]. Fully optimized
structures for the supramolecular complex and monomers were used to compute IR frequen-
cies (not scaled) by Hessian diagonalization in internal coordinates. In some cases, conver-
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Figure 6.4: DFT-optimized structure for the 2:2 tetrameric self-assembly of BCF and diethylsulfate.

gence of the DFT optimization of the 2:2 aggregate was hindered by the flexibility of the
nitrocompound, particularly the nitroalkanes (i.e. 1-nitrohexane, nitroethane and 2-methyl-
2-nitropropane). Here, several optimization cycles using different starting structures were
performed in order to identify a minimum in the potential energy surface.

6.3.2 Modeling the self-assembly of BCF with nitromethane

Quantum Chemistry methods were used to explore the co-catalytic role of nitro compounds
in the acceleration of the azidation of tertiary alcohols by BCF. Considering the second-order
dependence of the rate constant on the concentration of both BCF and nitro compound [123],
we postulated that the self-assembly of two BCF and two nitro-compound molecules is
responsible for the co-catalytic effect. Based on this assumption, atomistic models of the
supramolecular adduct formed by the tetrameric association of BCF with nitromethane, i.e.
the smallest nitro compound in Dryzhakov et. al., 2015

[123], were built by connecting the water
molecule hydrating the boron center in BCF with the nitro group of nitromethane via pairs
of planar hydrogen bonds. The resulting square-shaped supramolecular adduct was submit-
ted to geometry optimization at the DFT level of theory using the ωB97X´D functional [124]

with the 6-31G(d,p) basis set. However, due to bulky nature of the substituents in BCF and the
large number of translational and rotational degrees of freedom to be optimized, this proce-
dure resulted in poor convergence of the calculation. Thus, a step-wise approach was devised
to obtain a fully optimized geometry for the BCF:nitromethane tetrameric complex. First, an
initial guess of the tetrameric self-assembly was built using monohydrated tris(trifluomethyl)
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boron (BMF) instead of BCF. The initial guess was optimized at the HF-3c semi-empirical
level of theory [126] and then refined by ωB97X´D/6-31G(d,p) DFT optimization. The use
of the sterically less hindrant BMF simplified the optimization of the hydrogen-bonding net-
work, which converged successfully; i.e. no imaginary frequencies were found in the subse-
quent vibrational analysis. In addition, because BMF and BCF share similar boron-oxygen
distances and O-H stretching frequencies in the calculated IR spectrum (data not shown),
the optimized BMF:nitromethane (tetrameric) complex was a good starting point for model-
ing BCF self-assembly with nitromethane. By replacing BMF with BCF, a fully optimized 2:2
BCF/nitromethane complex was obtained at the ωB97X´D/6-31G(d,p) DFT level of theory
in vacuum. The DFT-optimized geometry illustrates the formation of an almost flat, rectan-
gular hydrogen-bonding network that is stabilized by two pairs of non-equivalent hydrogen
bonds (Figure 6.2). One pair (hb1 = 1.77 Å and hb3 = 1.81 Å) is characterized by shorter
distances between the BCF protons and the corresponding acceptor oxygens, while the other
(hb2 = 1.98 Å and hb4 = 1.99 Å) by longer distances. In addition, DFT optimizations of BCF in
isolation and the 1:1 complex with nitromethane were performed to obtain atomistic models
of the monomeric state and the dimeric form. For the latter, two distinct minima were iden-
tified depending on the initial atomic coordinates of BCF and nitromethane. The most stable
arrangement (by 0.78 kcal/mol) features a double H-bonding interaction between BCF and
nitromethane (Figure B.2 of the Appendix B), the other involves a single hydrogen bond cor-
responding to a slightly lower OH-stretching frequency in the calculated IR spectrum (data
not shown).

6.3.3 Modeling the 2:2 self-assembly of BCF with nitro compounds

To explore how the electron-rich character of the nitro compound affects the OH-stretching
frequency in BCF, the 2:2 tetrameric assembly of BCF was modeled with 4-nitrobenzotrifluoride,
nitrobenzene, 4-nitroanisole, 2-methyl-2-nitropropane, and 1-nitrohexane, which were previ-
ously shown to modulate the co-catalytic activity in azidation reactions [123]. DFT-optimized
models were generated following the same procedure for nitromethane (see above). Remark-
ably, the tetrameric arrangement characteristic of the 2:2 self-assembly with nitromethane
with pairs of non-equivalent hydrogen bonds was preserved in all complexes. In some cases,
structural distortion of the network was observed, which is likely due to the presence of
bulky substituents on BCF and/or the nitro compound.

6.3.4 Vibrational analysis of BCF self-assembly with nitro compounds

A DFT-based vibrational analysis of 2:2 self-assembly of BCF with nitro compounds was
used to develop a model for the co-catalytic activity of the latter. DFT frequencies in vacuum
indicate that the two sets of short and long H-bonds are characterized by distinct OH stretch-
ing signals in the calculated IR spectrum. In particular, the group that vibrates at a higher
frequency corresponds to the stretching of the hydrogens involved in the longer H-bonds,
whereas the one that vibrates at a lower frequency corresponds to the stretching of the hy-
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drogens involved in the shorter H-bonds; see Figure B.1 for an illustration with nitromethane.
In addition, each pair of H-bonds presents two distinct stretching modes: a symmetrical
stretching where opposite protons move synchronously but in opposite direction (in-phase
stretching), and an anti-symmetrical stretching where opposite protons move synchronously
in the same direction (out-of-phase stretching). Notably, the antisymmetrical stretching of the
short H-bonds corresponds to the highest IR intensity signal. The distinction of these four
OH-stretching modes in the 2:2 self-assembly of BCF with nitro compounds is actually quite
relevant. In fact, by using the experimental kinetic rates for the azidation of tertiary alcohols
in the presence of nitrocompounds [123], we have found that the calculated frequency (DFT)
of the anti-symmetrical stretching of the short H-bonds in the 2:2 aggregate is strongly corre-
lated with the experimental Log(rate); see Figure 2 in the Main Text. In sharp contrast and for
reasons that are not fully understood, the vibrational frequencies of the symmetrical stretch-
ing of the short H-bonds (hb1 and hb3) and the stretching frequencies of the longer H-bonds
(hb2 and hb4) do not correlate with the experimental Log(rate) of azydation; confront the
values of the determination coefficient in Table B.1 of the Appendix B. Also, vibrational anal-
yses of the DFT optimized structures of BCF in isolation (Figure B.3 of the Appendix B) and
in the 1:1 complex with nitromethane in vacuum (Figure B.2 of the Appendix B) indicate that
dimeric association corresponds to a marginal red shift in the OH stretching frequency (i.e.
of 23 cm-1), which is significantly smaller than the one predicted in the tetrameric network
(i.e. of 192 cm-1). Based on these results we conclude that the 1:1 aggregate is unlikely to be
the catalytic active specie in the azydation of tertiary alcohols.

6.3.5 Validation of the DFT model to predict the Log(rate)

The correlation between the frequency of the anti-symmetrical stretching of the short H-
bonds and the experimental Log(rate) presented before (Figure 6.3) illustrates how the chem-
ical nature of the nitro compound modulates the catalytic activity of BCF in the azidation of
tertiary alcohols. In conjunction with modeling based on DFT, this correlation provides means
to predict the co-catalytic power of the nitro compound. Here, we demonstrate the statistical
robustness of the computational model for predicting the Log(rate) using both internal and
external validation schemes.

6.3.5.1 Internal validation

To assess the validity of the DFT model presented in Figure 6.3, a leave-one-out (LOO)
cross validation was carried out. In LOO cross-validation, each data-point is removed from
the sample, linear regression is applied to the remaining data-points, and the resulting model
is used to predict the Log(rate) of the left-out. Typically In LOO the statistical significance of
the correlation is evaluated using the cross-validated squared correlation coefficient (q2) and
the standard deviation of prediction (SDEP). For validation purposes, a model is considered
fully predictive if the value of q2 is larger than 0.5 [129]. The results in Table 6.2 indicate that
the DFT and the experimental models present a positive statistical profile from an internal
validation.
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6.3.5.2 External validation

Good statistical parameters from LOO cross-validation is necessary but not sufficient to
obtain reliable predictions [129]. To challenge the statistical robustness of the DFT model, an
external validation was carried out. This more stringent test is based on the prediction of the
Log(rate) for five additional nitro compounds, which were not part of the initial set used to
build up the DFT model. The new set includes: 1-nitropropane, 2-nitropropane, nitroethane, 2-
nitroanisole, and 1-nitronaphtalene. For these compounds the Log(rate) was predicted using
the frequency of the anti-symmetrical stretching of the short H-bonds in the 2:2 aggregate
optimized by DFT and compared with the experimental rates obtained by GC-MS from the
Moran’s Group at the University of Strasbourg. The results of the external validation show
that kinetic rates predicted by the DFT model are strongly correlated with experiments with
a determination coefficient. In addition to high q2 in the LOO cross-validation, a model is
deemed predictive if R2 ą 0.6, (R2´R20)/R

2 ă 0.1 and 0.85 ă k ă 1.15; being k, R2 and R20 the
slope and the determination coefficients of the linear regression with and without crossing
the origin for the test set, respectively.

Finally, the predictive power of the DFT-model was challenged using a more rigorous val-
idation scheme based on the randomization of the experimental kinetic rates for the twelve
data-points in Table 6.1. For this purpose, three new pairs of training/test sets including
eight and four nitro compounds, respectively, were generated as follows. After sorting com-
pounds according to the experimental Log(rate) in descending order (i.e. from the slowest to
the fastest), three new “test” sets were obtained by picking up one compound every three
starting from number one, number two, or number three of the list and sending the rest to
the “training” set. For each training set, a new model was generated and used to predict
the Log(rate) for the corresponding test set. Statistical parameters of the three resulting mod-
els (named 1C-3C) are given in Table B.2 of the Appendix B. This analysis shows that in all
cases the correlations between predicted and observed Log(rate) present positive statistical
profiles independently of the training/test set, which demonstrates the absence of random
correlations.

6.3.6 Experimental IR model for Log(rate)

In addition to the DFT model, an experimental model for predicting the Log(rate) was built
by correlating the kinetic rate of azidation with the OH-stretching frequency estimated from
the experimental IR spectra. These frequencies were obtained using the maximum peak in
the OH stretching band of the IR spectrum recorded from a solution containing BCF and
nitro compounds at room temperature. The predictive power of the IR model was assessed
using the same internal and external validation schemes (Table 6.1). The experimental IR
model presents good statistical parameters for the internal validation (training set) as shown
in Table 6.2. However, its predictivity for the five additional nitro compounds (test set) is
questionable, as indicated by the striking anti-correlation between predicted and observed
Log(rate) for these compounds Table 6.2. The same tendency is also observed upon scram-
bling training/test sets to produce models 1E – 3E, which show poor statistical profiles; see
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Table B.3 of the Appendix B. Therefore, we conclude that the experimental IR model is not suit-
able for predicting the Log(rate) of the azidation by BCF in the presence of nitro compounds.
The comparison with the computational results (DFT model) suggests that the limited predic-
tive power of the IR model may be attributed to the lower resolution of the experimental IR
spectrum, whose broad bands result from the superimposition of many overlapping modes.
Since, the DFT results show that the experimental Log(rate) is strongly correlated with the
frequency of the anti-symmetrical stretching of the short H-bonds in the 2:2 aggregate, the
lack of resolution in the experimental IR spectrum severely limits the predictive power of
the model. Interestingly, the DFT vibrational analyses of the 2:2 aggregates indicate that the
anti-symmetrical stretching of the short H-bonds, which is predictive for the Log(rate), has
the highest intensity signal in the presence of nitro aromatic compounds (3/5 in the training
set) but not with nitro aliphatic derivatives (3/5 in test set), which may explain the predictive
character of the IR model for the training set but not the test set.

6.3.7 Modeling the self-assembly of BCF with non-nitro compounds

The striking correlation between the calculated OH-stretching frequency in the 2:2 aggre-
gate and the experimental rate of azidation (Figure 6.3) provides computational evidence that
the accelerating effect on the catalytic activity of the Bronsted acid BCF is related to the forma-
tion of 2:2 supramolecular aggregates. Based on this conclusion, we explored the possibility
to identify new co-catalysts by searching for chemical entities able to mimic the nitrocom-
pounds in the formation of a H-bonded tetrameric networks with BCF. To this aim, we mod-
eled the 2:2 self-assembly of BCF with six chemically distinct compounds, i.e. dichloroethane,
dimethyl sulfone, diethyl sulfate, sulfolane, dimethyl oxalate, and dimethyl malonate, using
the procedure described for nitromethane (see above). At first, the stability of the tetrameric
network with BCF was used as a criterion to evaluate the suitability of the compound as a
promoter. Then, the co-catalytic power was quantified by isolating the vibrational frequency
of the anti-symmetrical stretching of the short H-bonds and introducing it into the DFT model
for the Log(rate) developed for nitro compounds. The DFT results show that the tetrameric
networks of BCF in complex with dichloroethane and sulfolane are not stable and quickly
disassemble; self-assembly was considered as stable if the main features of the 2:2 aggregate
(i.e. the rectangular shape of the network with four H-bonds characterized by distinct OH-
stretching frequencies) were preserved. In sharp contrast, the tetrameric networks formed by
BCF in complex with diethyl sulfate and dimethyl sulfone were stable; see Figures 6.3 and B.6,
respectively.

Finally, the self-assembly with dimethyl oxalate and dimethyl malonate require more at-
tention. In fact, although the DFT-optimized tetrameric networks correspond to a minimum
of the potential energy surface (Figure B.6), the association of BCF with these compounds
produced hexagonal rather than rectangular arrangements, which makes the identification of
the short H-bonds more challenging. Based on the stability of the DFT-optimized 2:2 aggre-
gates and corresponding vibrational analyses, we predict: (1) significant co-catalytic activity
for diethyl-sulfate (comparable to nitro-methane) and dimethyl-sulfone (comparable to 4-
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nitroanisole); (2) marginal co- catalytic activity for dimethyl oxalate and dimethyl malonate
(comparable to 1-nitrohexane); and (3) no activity for dichloroethane and sulfolane. Strikingly,
the predictions for diethyl-sulfate, dimethyl-sulfone and dimethyl malonate are in qualitative
agreement with experiments; see Table 1. The incorrect prediction for dimethyl-sulfone points
to possible limitations of the model, which is unable to distinguish between sulphates and
sulfones.

6.4 conclusion

In summary, DFT modeling of 2:2 H-bonded aggregates of nitro compounds and BCF
returns computed O-H stretching frequencies that are predictive of the experimentally ob-
served rates in reactions that use the corresponding nitro compound as promoter. In contrast,
a similar model constructed from experimental IR data was found to be not predictive for
the reaction rate, which demonstrates the need for modeling. Also, the structural model of
the aggregate was used to identify sulfate esters as a new class of promoters, which was
verified experimentally a posteriori. The strong correlation between experiments and calcu-
lations suggests that such aggregates couldindeed be involved in the reaction mechanism,
a conclusion that is consistent with prior studies on kinetic concentration dependence of
Brønsted acid catalyzed reactions.8 More broadly, the important implication of this study is
that a deep understanding of Brønsted acid catalysis requires consideration of not only the
molecular structure and pKa of the Brønsted acid, but also the nature of the supramolecu-
lar environment that takes into account the weak interactions between all molecules in the
reaction mixture.
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C O N C L U S I O N S A N D P E R S P E C T I V E S

With the fast growth of technological tools for being used in science nowadays, we are
able to study natural phenomena in a much precise and efficient way. These technological
advances allow the design of experiments with an increased resolution and highly accuracy in
the measurements with a drastic reduction of random uncertaints by noise in the equipment.
Among these revolutionary techniques we have as example the Single molecule fluorescence
resonance energy transfer(smFRET), scanning electron and cryo-electron microscopies, x-ray
crystallography, nuclear magnetic resonance (NMR) and supercomputers, among others. All
these techniques aim to study matter at increasingly smaller grade, ranging from the micro to
the nano scales. The fundamental principle behind this fact states that a better understanding
of matter at the atomistic level, as well as the laws governing at that scale, will give a deeper
insight for solve current questions in natural sciences. In consequence, much more knowledge
will be provided for designing new technologies and the development of better applications.
Thus, the greater understanding of phenomena at the atomic level, the greater the progress
of natural sciences.

Special attention must be paid to the advances in the development of supercomputers
that have boosted the use of molecular simulations to study natural phenomena. Nowadays
it’s possible to simulate realistic systems of hundreds nanometers (as virus) at the atomistic
level in the microsecond scale with relative facility. This has made possible thanks to the use
of recent and inexpensive graphical processor units (GPUs), although they were originally
designed for other purposes. Also, with the birth of ANTON, a supercomputer optimized
to develop molecular dynamics (MD) simulations, it has been possible to reach the scale of
milliseconds in simulation time. Despite the theory behind MD simulations is known since
18th (i.e., the fundamental laws of motion by Newton), these calculations could not even be
conceived at the beginning of the 19th century for complex and relevant systems.

Along this line, molecular recognition, a fundamental problem in biology, chemistry and
physics, has been one of the most benefited from the use of new and revolutionary technolo-
gies. Many open questions on molecular recognition can be treated today thanks to the use
of atomic-scale techniques as smFRET, x-ray crystallography and molecular simulations. In
fact, very little advances in the field of molecular recognition could be done without these ad-
vanced techniques. The exponential progress done in the understanding of this phenomena
is evidenced from the middle of the 20th century since these advanced biophysical methods
have emerged. Molecular recognition is not fully understood today, in fact, we could say that
we have a semi-quantitative perspective of the problem. Then, studies aimed to get a more
quantitative picture of molecular recognition are highly in demand.

In this sense, the present manuscript provided results to address, in a quantitative fash-
ion, some molecular recognition events with chemical and biological relevance as binding
reactions of host-guest and protein-ligand systems, and catalysis in solution. The methodolo-
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gies presented here were not exclusively limited to compute or reproduce some experimental
quantities for the studies systems as a validation scheme but also they were used for mak-
ing reliable predictions on new and challenge systems, which were not experimentally tested
before. In fact, they were used for guiding new experiments and gain insights of the particu-
lar phenomena in study. Furthermore, the quantitative methods presented here significantly
might boost the field on molecular design, specially in the development of novel chemical
entities as drugs, synthetic hosts/guests and catalysts.

In the first scenario, we have performed a theoretical analysis of apparently unrelated
computational approaches to protein-ligand binding in the common framework of statistical
mechanics. Our comparative approach allowed to pinpoint the approximations that are intro-
duced to speed up the calculations, which is useful to rationalize their impact on the accuracy
of the binding affinity predictions. As a perspective, our comparative analysis highlights pos-
sible improvements to well established semi-rigorous and empirical scoring strategies and
will hopefully help in the development of variants with an optimum balance between accu-
racy and efficiency at each stage of the drug-discovery pipeline. Also, our analysis invites
to the development of more reliable methods for computing solvation free energy, being the
main source of systematic errors in many wel-known binding approaches as MM/PBSA.

In our second case, we built a LIE model for predict binding affinities in cavitand host-
guest systems, a less explored computational approach for these relevant systems. This model
turned out to be accurate (RMSE ă 1.5 kcal/mol), efficient and transferable among chemically
diverse families of host-guest complexes. Also, it has been shown that the predictions given
by LIE are independent of the training and test sets used for building and validate the model,
respectively. Furthermore, the accuracy of the model does not dependent of the energy model
(force field) used but it’s parametrization does. As a remarkable note, we have presented a
new LIE model which consider the strain energy of the host for predicting binding affinities,
which is missing in the classical LIE formulation. The success for this new LIE model was
evidenced in the the reliable prediction (RMSE ă 1.0 kcal/mol) of binding affinities for the
challenge cucurbituril-steroid complexes, where the hosts undergo conformational changes
upon the ligands binding. However, the LIE model also reported fails predictions for some
other difficult cases, specially for those guests with ultra-high binding affinity for their hosts.
As a perspective, we have proposed to build a LIE model using a polarizable force fields as a
correction approach to these faults.

In the third case, the co-catalytic effect of the "inhert" nitro compound in the azidation
reaction of tertiary alcohols catalyzed by BCF, an organoborone Bronsted acid, was analyzed
by a computational approach based on DFT calculations. Our DFT model revels a correla-
tion between the red-shift of the anti-symmetric O-H stretching frequencies for BCF and the
experimental kinetic rate for the reaction in presence of nitro compounds. The DFT model
proved to be predictive, passing several statistical validation tests, in contrast to a similar built
based on experimental IR frequencies with low resolution. This DFT model provided a quan-
titative insight for explore other chemical entities with the same co-catalytic effect as nitro
compounds in the azidation reaction. Thus, the DFT model predicted that sulfate esters will
be a new family of promotors for the azidation reaction under study, which was experimen-
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tally confirmed further. Nevertheless, our DFT model was not able to do good predictions in
all tested cases, giving room for further improvements. In fact, the introduction of solvation
effects in the modeling could give a more robust model. As a perspective, and complement-
ing our DFT model, we will study the full reaction mechanism using other computational
methodologies In order to gain a better understanding of the catalytic/co-catalytic role.

In conclusion, we have presented robust models with tested accuracy and pragmatic spirit,
which can be easily applied to study other problems of molecular recognition which involve
receptor-ligand binding and catalysis in solution. The results obtained in this manuscript
revel significant contributions toward the definitive solution of the molecular recognition.
Of course, advances in other fields of science such as the increase computational power or
improvements of the energy models for molecular simulations, will also contribute to the
final solution. There is still a long way to go towards the full understanding of molecular
recognition. This is still a challenge but a very beautiful one. This further confirms that...

Nature is fascinating!!
.



Part IV

A P P E N D I X
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A P P E N D I X A

Figure A.1: Chemical structures of CB7 guests used as a training set, shown in their protonated states
used in the computations to produce the LIE models.
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Figure A.2: Chemical structures of the 15 ligands for octa-acid, OAH, (Gxx and Oxx ligand families
reported in references Yin et al [17] and Muddana et al, [16] respectively) and the 6 ligands for
the tetramethylated octa-acid, OAM, (Gxx [17] ligand family), which were part of the test set.
The guests are shown in the protonation form used in the calculations.
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Figure A.3: Chemical structures of the six β-cyclodextrin guests that were part of the test set. The guests
are shown in the protonation form used in the calculations.
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Figure A.4: Chemical structures the 22 cucurbit-7-uril (CB7) guests that were part of the test set. All
these guests are neutral and belong to the HYDROPHOBE challenge. [20]
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Figure A.5: Frequency distributions of the GAFF/LIE parameters α (A), β (B), and the RMSE for the
test set (C) upon splitting of the full data set into 1ˆ 105 random training/test sets.
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Figure A.6: Average values of the LIE parameters (A) and the RMSE for the test set (B) after removing
k = 1, 2, 3 . . . 11 members from the training set. The dashed lines represent the values for α,
β and RMSE for the test set obtained using the original (n=14) training set.
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Figure A.7: On top, the frequency distribution for tmin values computed for the test set using GAFF.
On bottom, convergence analysis for parameters of the GAFF/LIE model.
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Figure A.8: Chemical structures of steroid compounds that bind to CB[7/8] used in this study.
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Figure A.9: Chemical structures of the CB7 guests from the Muddana set, shown in their protonated
states used in the computations.



B
A P P E N D I X B

Figure B.1: Calculated IR spectrum for the tetrameric complex BCF:nitromethane. Labels and arrows
indicate the O-H stretching modes for each group of hydrogen bonds. The DFT results show
that the short H-bonds (hb1 and hb3) vibrate at 3501 cm-1 (symmetrical) and 3531 cm-1
(anti-symmetrical), whereas the longer H-bonds at 3717 cm-1 (symmetrical) and 3774 cm-1
(anti-symmetrical).
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Figure B.2: Calculated IR spectrum for the most stable dimeric complex BCF:Nitromethane. Labels and
arrows indicate the hydrogen stretching modes for each group of hydrogen bond.



appendix b 79

Figure B.3: Calculated IR spectrum for the BCF isolated. Labels and arrows indicate the hydrogen
stretching modes.
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Figure B.4: Definition of the type of vibrational modes for the OH-stretching frequencies using the
BCF:nitromethane complex as model. Vector displacements (blue arrows) for the symmetri-
cal (a) and the anti-symmetrical OH-stretching modes (b).
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Figure B.5: Optimized structures for the 2:2 self-assembly of BCF with: (a) 4-nitroanisole; (b) nitroben-
zene; (c) 2-methyl-2-nitropropane; (d) nitrohexane; and (e) nitrobenzotrifluoride.
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Figure B.6: DFT-optimized structures for the 2:2 self-assembly of BCF with: (a) dimethyl oxalate; (b)
dimethyl malonate; and (c) dimethyl sulfone. These compounds correspond to entries 2-4 in
Table 6.1.
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Table B.1: Statistical parameters for the correlation between the experimental Log(rate) and the
DFT vibrational frequency of each of the four OH-stretching modes predicted in the
BCF:nitrocompound tetrameric self-assembly in vacuum.

Parameter
DFT OH-stretching frequencies

Short
symmetrical

Short
anti-symmetrical

Long
symmetrical

Long
anti-symmetrical

r2 0.00 0.81 0.13 0.09

m -0.00002 -0.00358 0.00199 -0.00124

b -4.724 7.891 -12.204 -0.174

Table B.2: Statistical parameters for both internal and external validation of three DFT models (1C – 3C)
generated by randomizing training/test sets in the list of eleven nitro compounds.

Parameter Model 1C Model 2C Model 3C
r2 0.78 0.79 0.76

m -0.00386 -0.00328 -0.00295

b 8.9298 6.8527 5.6747

q2 0.53 0.38 0.61

SDEP 0.06 0.07 0.05

R2 0.83 0.74 0.91

R20 0.8 0.63 -0.01

(R2 ´ R20)/R
2

0.04 0.16 1.01

k 0.99 1 1.01
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Table B.3: Statistical parameters for both internal and external validation of three IR models (1E – 3E)
generated by randomizing training/test sets in the list of eleven nitro compounds.

Parameter Model 1E Model 2E Model 3E
r2 0.54 0.17 0.09

m -0.00813 -0.00478 -0.00336

b 23.6387 11.97059 7.04388

q2 -0.06 -1.23 -1.12

SDEP 0.09 0.13 0.14

R2 0.14 0.56 0.83

R20 -1.62 -1.79 -2.43

(R2 ´ R20)/R
2

12.25 4.2 3.93

k 1.03 0.99 0.97
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Reconnaissance Moléculaire: L'analyse de la 
Liaison Hôte-Invité et Protéine-Ligand 

 

 

Résumé 
La reconnaissance moléculaire est un problème très intéressant et surtout un 
défi actuel pour la chimie biophysique. Avoir des prévisions fiables sur la 
reconnaissance spécifique entre les molécules est hautement prioritaire, car il 
fournira un aperçu des problèmes fondamentaux et suscitera des applications 
technologiques pertinentes. La thèse présentée ici est centrée sur une analyse 
quantitatif de la reconnaissance moléculaire en solution pour la liaison l'hôte-
invité, la liaison protéine-ligand et la catalyse. Le cadre de la mécanique 
statistique utilisé pour décrire l'état de la technique de liaison récepteur-ligand 
est un point d'inflexion pour le développement de nouvelles méthodes 
améliorées. En fait, un modèle très performant et précis a été obtenu pour 
l'analyse de la liaison hôte-invité. Enfin, les modèles présentés ont été utilisés 
comme outils prédictifs fiables pour la découverte de nouvelles entités 
chimiques destinées à améliorer la catalyse en solution.  

Mots-clés : Reconnaissance moléculaire, liaison d'énergie libre, effet co-
catalytique, mécanique statistique 

 

Résumé en anglais 
Molecular recognition is a very interesting problem, and foremost, a current 
challenge for biophysical chemistry. Having reliable predictions on the specific 
recognition between molecules is highly priority as it will provide an insight of 
fundamental problems and will raise relevant technological applications. The 
dissertation presented here is centered on a quantitative analysis of molecular 
recognition in solution for host-guest, protein-ligand binding and catalysis. The 
statistical mechanics framework used to describe the state-of-the-art for 
receptor-ligand binding is an inflection point for the developing of new improved 
and methods. In fact, a highly performanced and accurate model was obtained 
for the analysis of host-guest binding. Finally, the presented models were used 
as a reliable predictive tools for discovering new chemical entities for enhance 
catalysis in solution.   

Keywords : Molecular recognition, binding free energy, co-catalytic effect, 
statistical mechanics 
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