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Résumé

Ce mémoire traite du développement et de 'implémentation de nouvelles méthodes visant a
décrire la corrélation électronique forte dans les molécules et les solides. Aprés avoir
introduit ’état de 'art des méthodes utilisées en chimie quantique et en physique de la
matiére condensée, une nouvelle méthode hybride combinant théorie de la fonction d’onde et
théorie de la fonctionnelle de la densité (DFT) est présentée et s’intitule “site-occupation
embedding theory” (SOET). Celle-ci est appliquée au modéle de Hubbard & une dimension.
Ensuite, le probléme du gap fondamental est revisité en DFT pour les ensembles, ot la
dérivée discontinue est réécrite comme une fonctionnelle de la densité de 1’état fondamental.
Enfin, une extension a la chimie quantique est proposée, basée sur une fonction d’onde de
séniorité zéro complémentée par une fonctionnelle de la matrice densité, et exprimée dans la
base des orbitales naturelles.

Mots clefs: Chimie Quantique — Physique de la matiére condensée — corrélation forte —

théorie de la fonction d’onde — théorie de la fonctionnelle de la densité — méthode
d’embedding — modéle de Hubbard.

Résumé en anglais

The thesis deals with the development and implementation of new methods for the
description of strong electron correlation effects in molecules and solids. After introducing
the state of the art in quantum chemistry and in condensed matter physics, a new hybrid
method so-called ‘“site-occupation embedding theory” (SOET) is presented and based on the
merging of wavefunction theory and density functional theory (DFT). Different formulations
of this theory are described and applied to the one-dimensional Hubbard model. In
addition, a novel ensemble density functional theory approach has been derived to extract
the fundamental gap exactly. In the latter approach, the infamous derivative discontinuity is
reformulated as a derivative of a weight-dependent exchange-correlation functional. Finally,
a quantum chemical extension of SOET is proposed and based on a seniority-zero
wavefunction, completed by a functional of the density matrix and expressed in the natural

orbital basis.

Keywords: Quantum chemistry — condensed matter physics — strongly correlated electrons —
wavefunction theory — density functional theory — embedding methods — Hubbard model.




“In these bodies we will live, in these bodies we will die,
Where you invest your love, you invest your life”

Mumford & Sons, Gentlemen of the road.
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Notations

To avoid confusion, the same notations will be used throughout the whole thesis:

Table 1: Notations

Symbol  Refers to
x  Space and spin coordinates x = (r, o)
o Spin of the electron (either o =1 or 8 =|)
r Space coordinates r = (z,y, z)
¢(x) One-electron molecular spin orbital.
(r) One-electron molecular orbital
©?(x) One-electron molecular spin orbital for spin o.
Xx(r) One-electron atomic orbital.
® = ®(xy,...,xn) N-electron Slater determinant
¥ =U(xy,...,xy) N-electron wavefunction







Acronyms

Acronyms, if correctly employed, can ease the reading. I give here a list of acronyms that will be used

throughout the thesis:

Table 2: Acronyms

Acronyms Meaning
BA Bethe Ansatz
BALDA Bethe Ansatz Local Density Approximation
iBALDA(M) M-impurity Bethe ansatz local density approximation
2L-BALDA two-level Bethe ansatz local density approximation
CAS Complete Active Space
CASSCF  Complete Active Space Self-Consistent Field
DFT Density-Functional Theory
DMET Density Matrix Embedding Theory
DMFT Dynamical Mean-Field Theory
eDFT Ensemble Density Functional Theory
(F)CI  (Full) Configuration Interaction
GF  Green’s Function
GOK  Gross—Oliveira—Kohn
KS Kohn-Sham (leading to KS-DFT and KS-SOFT)
LDA Local Density Approximation
MCSCF  Multi-Configurational Self-Consistent Field
NI Non Interacting bath formulation in DMET
P-SOET Projected Site-Occupation Embedding Theory
RDMFT Reduced Density Matrix Functional Theory
1RDM and 2RDM  One- and Two-particle Reduced Density Matrices
SIAM  Single-impurity Anderson model
SOET Site-Occupation Embedding Theory
SOFT  Site-Occupation Functional Theory
SOPT  Second-Order Perturbation Theory
(U)HF  (un)restricted Hartree-Fock
WFT  Wavefunction Theory







Résumé en Francais

Introduction

La chimie quantique est une discipline qui applique la mécanique quantique & 1’étude théorique des
systémes chimiques. Par 1’étude de la structure et de la dynamique de ces systémes, elle vise a
comprendre les différents mécanismes des réactions chimiques régies par leurs propriétés thermody-
namiques et cinétiques. Par ailleurs, le but de la physique de la matiére condensée est de rationaliser
les phénoménes naturels dans les phases condensées (comme les solides), par exemple par la descrip-
tion de la transition entre un métal et un isolant, engendrée par la variation de plusieurs paramétres
tels que la pression ou l'introduction d’impuretés dans le matériau. Plusieurs méthodes et modéles ont
été développés dans ces deux disciplines, permettant non seulement de reproduire les résultats expéri-
mentaux, mais également de faire des prédictions ensuite vérifiées par I’expérience. La qualité d’une
théorie est jugée sur ces deux critéres. Cependant (et malgré les progrés continuellement effectués)
certains systémes restent extrémement difficiles & décrire, comme les systémes dits fortement corrélés.
Les systémes & forte corrélation électronique font ’objet d’une intense recherche depuis de nombreuses
années, a travers le développement et la synthése de matériaux toujours plus innovants, réunissant les
chimistes et les physiciens, aussi bien expérimentaux que théoriciens. Ce sujet de recherche recouvre
de nombreuses problématiques en théorie quantique, passant par la simple description d’une rupture
de liaison chimique a la description des complexes de métaux de transition présentant des propriétés
magnétiques et électroniques trés intéressantes. Par exemple, certains matériaux manifestent des tran-
sitions métal-isolant (NiO et V503), des transitions de phases induites par la température comme les
superconducteurs a haute température critique (LazCuQy), ou encore une magnétorésistance colossale
(LaMnOg) [1]. Ces propriétés originales ont permis de concevoir de nouveaux nanomatériaux ayant
des applications potentielles dans la conversion d’énergie, le transport électronique pour les cellules
photovoltaiques, les champs magnétiques forts, et le stockage magnétique de l'information. Les oxy-
des de métaux de transition sont également employés dans les catalyses homogénes et hétérogénes,

et jouent un roéle essentiel en biologie chimique par leur présence dans les sites actifs des protéines.
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Alors que le nombre de découvertes de nouveaux matériaux continue d’augmenter, le manque de
méthodes théoriques suffisamment précises et efficaces pour décrire de tels matériaux se fait ressentir.
Le développement de nouvelles méthodes permettrait de mieux comprendre et méme de prédire de
nouvelles structures manifestant des propriétés intéressantes, et prend une place importante dans la

conception de technologies futuristes.

D’un point de vue théorique, le terme “fortement corrélé” vient du fait que la théorie dite de champ
moyen n’est pas capable de décrire les phénomeénes et transitions mentionnés précédemment. En effet,
cette théorie ne décrit pas la corrélation électronique, dictée par l'interaction entre les électrons.
Quand cette interaction joue un réle prédominant, on parle de corrélation électronique forte, et celle-
ci reste trés difficile a traiter que ce soit en chimie ou en physique des états solides. A ce jour, aucune
méthode ne fait autorité pour la description de tels systémes. La formulation et I'implémentation

d’une méthode universelle capable de les décrire restent un véritable challenge.

Alors que certaines méthodes (en théorie de la fonction d’onde, WFT en anglais pour wavefunction
theory) seraient en principe suffisamment précises [2], elles restent bien trop chéres en temps de calcul,
si bien que d’autres méthodes moins cotliteuses ont été développées. Par exemple, la théorie de la
fonctionnelle de la densité (DFT en anglais, pour density functional theory) qui est une des méthodes
les plus utilisées a ce jour. Cependant, la DFT ne décrit pas correctement les systémes a forte
corrélation électronique [3]. Intuitivement, il parait naturel de vouloir mixer les théories WFT et
DFT pour obtenir une méthode performante & moindre cotit. Les méthodes dites d“embedding” font
partie de cette nouvelle famille hybride, ou seulement une partie du systéme est traitée en WFT et
le reste en DFT [4]. A présent que la loi de Moore a atteint sa limite, les méthodes de faible cotit
permettant la description de systémes de grandes tailles avec suffisamment de précision prennent de
I'importance. C’est pourquoi un intérét grandissant concernant les approches de type embedding est
observé. Ces derniéres sont devenues populaires aussi bien en chimie quantique, pour les atomes et

les molécules, qu’en physique de la matiére condensée pour les solides.

Cette thése vise au développement de nouvelles théories hybrides, & l'interface entre la chimie
quantique et la physique de la matiére condensée. Dans cette derniére communauté, il est courant
d’utiliser des modéles fictifs simplifiés décrivant les principaux effets physiques manifestés par le sys-

téme réel. Le modéle de Hubbard sera particuliérement employé.

Ce résumé se focalise sur le développement de la théorie hybride dénommée SOET (pour “site-
occupation embedding theory”) appliquée au modéle de Hubbard. Pour comprendre cette théorie,

I’état de l'art de la chimie quantique et la présentation du modéle de Hubbard seront détaillés. Les
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autres théories présentées dans cette thése, comme la théorie de la fonctionnelle de la densité pour les
ensembles permettant I'extraction du gap fondamental, et la théorie de la fonctionnelle de la matrice

densité basée sur une fonction d’onde de séniorité zéro, ne seront pas expliquées dans le résumé.

Théorie de la structure électronique en Chimie Quantique

L’évolution dans le temps d’un systéme physique contenant d’importants effets quantiques est math-
ématiquement décrite par ’équation de Schrodinger (Prix nobel de Physique en 1933). Si le systéme
évolue dans un potentiel indépendant du temps et ou les effets relativistes sont négligeables, alors

cette équation se réduit a I’équation de Schrédinger indépendante du temps:
H|V) = E|V), (1)

ou U est la fonction d’onde décrivant I’état stationnaire du systéme quantique ayant pour énergie
totale E/. Pour un systéme moléculaire contenant N électrons de masse m., charge e et positions
{r;}i=1,~n et M noyaux de masse {M4}a=1,m, charge Z4 X e et positions {Ra}s=1 s, ’'Hamiltonien

de ’Eq. est donné par, dans les unités du systéme international,

H = Tn+ e+‘7ne+Wee+Vn

M

h2 ZAe

_ 7v2 7v2
PIE R I )
M M
ZAZBG

+ (2)
;;47750\1' — 1) ;B;447T50|RA—RB|

ou 1), et T, sont les opérateurs d’énergie cinétique des noyaux et des électrons, respectivement, et Vies
Wee et Vy sont les opérateurs d’énergie potentielle correspondant & I'attraction coulombienne électron-
noyaux, et a la répulsion coulombienne électron-électron et noyaux-noyaux, respectivement. En chimie
quantique, 'un des principaux objectifs est la bonne description des réactions chimiques, impliquant
la formation et la rupture de liaisons chimiques. Ces derniers processus sont dus aux interactions
entre les électrons du systéme. Puisque la masse d’un noyau est au moins 1836 fois supérieure a
celle d’un électron, une approximation judicieuse consiste a négliger les mouvements des noyaux par
rapport aux mouvements des électrons. Autrement dit, les noyaux sont gelés: c’est I’approximation
de Born—-Oppenheimer proposée en 1927 [5]. L’équation de Schrodinger peut alors étre réécrite en

découplant la partie électronique de la partie nucléaire:

f{e|\11e> = Ee|\Ile>7 (3)
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ou l'indice e correspond & “électronique”, et ne sera plus employé dans la suite par simplicité. En

utilisant les unités atomiques, I’Hamiltonien électronique devient simplement:

l\DM—l
=

H—— T+ Wee + ﬁ: iii ﬁ’:izA (4)
h i=1 im1g>i W =1 A=1 A

ol r;4 et r;; sont respectivement les distances entre I’électron ¢ et le noyau A, et entre 1’électron ¢ et

I’électron j. Malgré la simplification apportée par I’approximation de Born-Oppenheimer, 'Eq.

n’a été résolue analytiquement que pour trés peu de systémes pédagogiques simples. Elle peut néan-

moins étre résolue numériquement pour certains atomes et molécules diatomiques. Pour de plus gros

systémes, une telle résolution reste infaisable, bien que de récents progrés aient vu le jour de par

l'utilisation de la méthode de Monte Carlo Quantique (QMC) [6].

Théories de la fonction d’onde

Dans cette thése, nous nous intéresserons a l’état fondamental du systéme, c’est-a-dire I’état de plus

basse énergie. Cette énergie peut étre déterminée par le principe variationnel de Rayleight—Ritz:
Eo = (Wo|H|Wo) < (V|H|W), ()

ou ¥y est la fonction d’onde de 1'état fondamental (généralement indéterminée), et ¥ est n’importe
quelle fonction d’onde d’essai. En théorie de la fonction d’onde, de nombreuses méthodes ont été
développées et visent a approcher le plus possible la fonction d’onde de I'état fondamental. Grace
au principe variationnel [Eq. ], I’énergie associée a cette fonction d’onde approchée sera toujours
de plus haute énergie que celle de 'état fondamental. Pour que la fonction d’onde (électronique)
corresponde bien a un systéme physique fermionique, elle doit décrire un systéme ot les électrons sont
indiscernables et doivent respecter le principe d’exclusion de Pauli, c’est-a-dire que deux électrons ne
peuvent pas se trouver simultanément dans le méme état quantique. Autrement dit, deux électrons
de méme spin ne peuvent pas occuper la méme orbitale spatiale. Ce principe revient & imposer
I’antisymeétrie de la fonction d’onde par rapport a la permutation de deux électrons. Considérons un
systéme & N électrons & répartir dans N spin-orbitales moléculaires {¢;};=1 n. La fonction d’onde

la plus simple respectant les conditions précédemment mentionnées nous est alors donnée par un
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déterminant de Slater:

p1(x1)  P2(x1) ... on(x1)
1| oi(x2) d2(x2) .. dn(x2)
VL o

p1(xn)  P2(xN) ... ON(XN)

D(x1,Xa,...,XN) =

ot 1/v/N! est un facteur de normalisation. Il est clair que si deux électrons sont dans le méme état
quantique, alors deux lignes du déterminant sont identiques et la fonction d’onde est égale & 0. Si
deux électrons sont permutés, cela revient a changer deux lignes du déterminant, et donc a changer
son signe. Le principe de Pauli est ainsi respecté. Les méthodes ol la fonction d’onde peut étre écrite
comme un unique déterminant de Slater ne peuvent décrire qu'une seule configuration électronique.
Elles sont appelées méthodes monoconfigurationelles, et la plus connue est la méthode Hartree—Fock
(HF) |7, |8]. Pour plus de simplicité, considérons un systéme & couches fermées contenant un nom-
bre pair N d’électrons dans un ensemble d’orbitales spatiales orthonormées {¢;}i—1 /2. L’équation

autocohérente Hartree—Fock est donnée par:

LG o) ] -3 2 ) = o) (7)
2 ©j j=1,N/2 ~ |I‘* RA| Pi iPi
N/2
o3 (20, - ) (8)

est opérateur potentiel HF (effectif) monoélectronique, décrivant le champ moyen généré par les

N — 1 autres électrons, avec

@wun:(/aﬁﬁmmmw)xw@n )

|r1 — 12

I’opérateur monoélectronique local décrivant la répulsion coulombienne classique, et

Kjpi(r1) = /dr2<p;f(r2)<pi(r2)%(rl) (10)

v — 2]

lopérateur monoélectronique non local décrivant l'intéraction d’échange électron-électron. L’Eq.
est résolue de maniére itérative, car le champ généré par I'opérateur HF dépend des orbitales, elles-

mémes déterminées par résolution de I’équation HF. Le déterminant de Slater construit par les orbitales
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HF convergées est ensuite utilisé pour déterminer ’énergie HF:

NJ2 N/2 N/2
Bur = (up|H|®ur) =2 (@ilhled) + Y (2Ji; — Kij) > Eo, (11)
i=1 i=1j=1

Jij = (ijlig) = (pipjleip;) = // dridr, (pf(rl)‘p;(ri);:i(rl)‘pj(r2)’
Ky = (ijji) = (oioslos0i) = // drydrs @f(rl)@;(ri)lfi(rz)%(rl)’ (12)

sont respectivement les intégrales de Coulomb et d’échange. Il est clair d’aprés 'Eq. que I’énergie
HF n’est pas une simple somme des énergies orbitalaires, ce qui signifie que la méthode HF décrit
l'interaction entre les électrons 1/r;;, qui est traitée par le champ moyen généré par le potentiel HF

non local.

Cependant, cette approche reste une approximation. Pour retrouver I’énergie fondamentale exacte

du systéme, il faut corriger I’énergie HF par une énergie de corrélation:
E.=FE — Egp. (13)

Cette énergie de corrélation peut étre divisée en deux contributions. La premiére est appelée cor-
rélation dynamique (ou corrélation faible), et peut étre retrouvée en considérant une fonction d’onde
constituée d’un mélange de déterminants: le déterminant HF et des déterminants excités d’ordre
supérieur. Bien que cette fonction d’onde soit multidéterminantale, elle demeure monoconfigura-
tionelle. Ces déterminants excités ont habituellement une contribution trés faible a 1’énergie, mais
celle-ci est nécessaire pour atteindre la précision chimique (& 1 kcal/mol). Par exemple, la corrélation
dynamique est essentielle pour décrire proprement la dissociation du dimeére d’Helium [9]. La deuxiéme
est appelée corrélation statique (ou corrélation forte) et constitue le principal objet de cette thése.
Celle-ci apparait quand des configurations de faibles énergies sont presque dégénérées avec le détermi-
nant de Slater de référence [10]. si bien qu’il n’y a plus une seule configuration dominante. Un mélange
de ces configurations est alors nécessaire: la fonction d’onde est dite multiconfigurationelle. Un exem-
ple pédagogique simple est donné par la dissociation (R — +o0) de la molécule de dihydrogeéne, ou la
fonction d’onde est donnée par une combinaison moyennée de deux configurations électroniques: 103

et 102, oul loy est I'orbitale moléculaire liante, et 1o, I'orbitale moléculaire antiliante.
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Les méthodes mixant ainsi plusieurs déterminants sont appelées les méthodes post-HF. En écrivant
la fonction d’onde comme une combinaison linéaire de déterminants de Slater ®;, nous obtenons la

fonction d’onde d’intéraction de configuration (CI en anglais, pour “configuration interaction”):
(C)) = ZCI(I)Ia (14)
I

ot les coefficients CI (C = {Cr}) sont & optimiser. Si la fonction d’onde contient tous les déterminants
possibles, construits a partir d’'un ensemble donné d’orbitales, alors on parle de fonction d’onde FCI

(pour “Full configuration interaction”). Le nombre de déterminants & considérer est donné par

via = () = s 1

ol N est le nombre d’électrons et M le nombre de spin-orbitales. Par exemple, pour N = 20 et
M = 40, il faudrait considérer 137 846 528 800 déterminants, ce qui est actuellement impossible a
cause du temps de calcul nécessaire pour traiter autant de combinaisons. FCI est donc utilisée comme
méthode de référence pour de trés petits systémes uniquement. En pratique, pour étudier de plus gros
systémes, ce nombre de déterminants est tronqué pour ne garder, par exemple, que les déterminants

obtenus par simple et double excitation du déterminant HF"

T) & |Pyp) + Y cl|08) + ) e |ot) 4+ (16)
ia ijab

ou ¢,7 dénotent les orbitales occupées et a,b les orbitales non occupées du déterminant HF, de sorte

que le déterminant ¥¢ corresponde a I’excitation de I’électron de 'orbitale i & I'orbitale a, et le déter-

minant \Ilgjb corresponde & la double excitation de I’électron de ’orbitale 7 a I'orbitale a, et de I’électron

de l'orbitale j & 'orbitale b. L’énergie obtenue par cette fonction d’onde tronquée ne peut étre qu’une

approximation de la fonction d’onde exacte.

Pour ajouter plus de flexibilité, il est possible d’optimiser non seulement les coefficients CI, mais
aussi ceux des orbitales moléculaires, qui sont exprimées comme une combinaison linéaire d’orbitales
atomiques (CLOA). Cela consiste a faire une rotation des orbitales moléculaires. Permettre cette
réoptimisation des orbitales dans un calcul CI tronqué donne lieu & une nouvelle approche s’intitulant
champ autocohérent multiconfigurationel (MCSCF en anglais, pour “multiconfigurational self-consistent
field”). Plutot que de considérer les déterminants simplement et doublement excités, il serait intéres-
sant de considérer tous les déterminants possibles mais uniquement dans une espace orbitalaire re-

streint, appelé espace actif complet (CAS en anglais, pour “complete active space”). L’énergie associée
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a cette fonction d’onde CASSCEF est donnée par
Es = min { (0945 (i, ©)|T + Wee + Ve W45 (5, ©)) | (17)

ou K est la matrice contenant les paramétres a optimiser pour faire tourner les orbitales. Cette
méthode permet le bon traitement de la corrélation statique, mais manque de corrélation dynamique.
Celle-ci peut étre décrite par une théorie des perturbations. Aussi, au maximum 18 électrons dans
18 orbitales peuvent étre traités, ce qui est insuffisant pour décrire des systéme trés complexes [11].
Pour aller au-dela de cette limite, la méthode DMRG |12} [13] (en anglais, pour “density matrix renor-
malization group”) est utilisée et peut décrire jusqu’a 40 électrons dans 40 orbitales |14l |15]. L’idée
de cette méthode est de tronquer les coeflicients CI. Pour cela, la DMRG exprime les coeflicients sous
forme matricielle, puis effectue une succession de décompositions en valeur singuliére (SVD) et de dé-
compositions de Schmidt, jusqu’a ce que la fonction d’onde soit exprimée comme un état de produits
de matrices. La troncation s’effectue a chaque décomposition en valeur singuliére, ou seulement les m

plus grandes valeurs singuliéres sont conservées.

Théorie de la fonctionnelle de la densité

Nous avons vu précédemment qu’il est difficile d’obtenir une bonne approximation de la fonction d’onde
du systéme tout en conservant un temps de calcul relativement faible. On peut alors se demander si
chercher cette fonction d’onde est le seul moyen de décrire un systéme a plusieurs particules manifestant
des effets quantiques. En effet, une fonction d’onde est un objet d’une extréme complexité. Une
illustration amusante a été donné par Hardy Grosﬂ sur 'atome d’oxygéne possédant 8 électrons. Si

I’on veut représenter la surface d’énergie potentielle de cet atome, donnée par

/drl/drg /drN\I!*(rhrg,...,rN)fI\IJ(rl,rQ,...,rN), (18)

il faut alors pouvoir stocker la fonction d’onde. Pour ce faire, chaque coordonnée (3 par électron, soit
24 coordonnées) va étre discrétisée par 10 valeurs. Ainsi, 10?4 valeurs doivent étre stockées. Pour cela,

0%4 entrées est nécessaire. Si une entrée correspond & un byte, alors il faudra bien stir

un tableau a 1
10%* bytes pour enregistrer toutes ces données. Maintenant, considérons un DVD ayant une capacité
de 5 GB (5 x 10° bytes). Pour pouvoir stocker la fonction d’onde de 1'oxygéne (pour seulement 10

valeurs par coordonnées), 2 x 1014 DVD seront nécessaires. Soit 200 000 milliards de DVD. Si un DVD

Ipendant une école d’été 4 Los Angeles en Aout 2016, intitulée “mathematical foundations of density functional
theory”
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pése environ 10 grammes, cela équivaut & 2 milliards de tonnes de DVD. Pour pallier & ce probléme,
des méthodes se basant sur d’autres variables que la fonction d’onde existent, et utilisent la densité
électronique, la matrice densité, ou encore les fonctions de Green. Dans ce résumé, seule la théorie

basée sur la densité électronique sera présentée.

Utiliser la densité électronique comme variable est un concept introduit par Thomas en 1927 |16,
suivi indépendamment par Fermi [17], donnant lieu & la méthode de Thomas—Fermi. Celle-ci consiste

a représenter I'opérateur Hamiltonien comme une fonctionnelle de la densité électronique

n(r) :NZ/dXQ/dX3 /de|‘If(r,0,X27...,XN)|27 (19)

de sorte que la fonction d’onde n’a pas besoin d’étre construite. Basée sur le gaz homogéne d’électrons,
Iexpression analytique de I’énergie cinétique du systéme non interagissant a donné lieu a la premiére

approximation locale de la densité (LDA en anglais, pour “local density approximation”):

3 .
T n) = 75 (372)*/° / dr n®/3(r). (20)
Cependant, cette énergie est bien loin de refléter la réalité d’un systéme chimique complexe, ou les
électrons sont en interaction et ne forment pas un gaz homogéne. Pour améliorer cette théorie,

Dirac [18] a proposé un terme supplémentaire d’échange:

Eyln] = —2 (i)l/?’/dr /3 (x), (21)

exact dans le cas du gaz homogéne d’électrons. Malgré cette correction, les résultats obtenus par
cette méthode restent trop imprécis. Cette méthode a donc été mise de coté jusqu’au milieu des
années 1960, ot Hohenberg et Kohn (Walter Kohn, prix Nobel en chimie en 1998) ont formulé les
deux théorémes qui firent renaitre cette théorie, maintenant appelée théorie de la fonctionnelle de la
densité (DFT en anglais, pour “density functional theory”) qui est 'une des méthodes les plus utilisées
en chimie quantique. Le premier théoréme démontre la correspondance bi-univoque qui existe entre
le potentiel local externe v(r), & une constante prés, et la densité de 1’état fondamental no(r). Ainsi,
si la densité no(r) est connue, alors le potentiel externe ’est également et avec lui ’'Hamiltonien et ses

valeurs et fonctions propres associées,

) (I’) — U(I‘) = U[’I’L()](I') A d \Ifo[’U] = \Ifo[’t)[no]] = \I/()[?’Lo]. (22)
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De ce fait, toutes les propriétés du systéme deviennent des fonctionnelles de la densité électronique
de I’état fondamental. Le second théoréme est I’analogue du principe variationnel pour les fonctions

d’onde, mais appliqué a la densité électronique:

ol

E,[n] = TIn]+ Ween] + Vin],

Fln] + / dr v(r)n(r), (24)

et, d’aprés le formalisme de recherche sous contraintes de Levy—Lieb [19)],
Fla] = min { (W[ + Wee|0) }. (25)
U—n
L’énergie fondamentale est alors donnée par I’expression variationnelle suivante:

EO [’U]

min [min{(%f + Wee\‘l’>} + /dr v(r)n(r)]

n v—n

n v—n

— min [min{@@ + Wee\m} + /dr v(r)nﬁ’(r)l , (26)
qui est équivalente au principe variationnel pour les fonctions d’onde,
Eolv] = m\gn{<\II|T + W T) + / dr v(r)nq’(r)}. (27)

Pour 'instant, DFT ne semble pas plus simple que WFT, car la fonctionnelle F'[n] dépendant explicite-
ment de la densité électronique n’est pas connue. Celle-ci pourrait étre déterminée numériquement par
la minimisation décrite par I’'Eq. , mais cela revient a connaitre I’ensemble des fonctions d’onde

donnant la densité n(r).

C’est en 1965 que Kohn et Sham (KS) ont eu 'idée de construire la densité de 1’état fondamental
par le biais d’un systéme non interagissant, bien plus simple a résoudre. Pour un tel systéme, la
fonctionnelle de Levy—Lieb devient équivalente & ’énergie cinétique non interagissante,

Tn) = min { (@[7]®) |, (28)
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ol les fonctions d’onde d’un systéme non interagissant peuvent toujours étre écrites comme un déter-

minant de Slater ®. En KS-DFT, la fonctionnelle universelle est alors décomposée comme suit,
F[n} = Ts[n] + EHXC[”L (29)

ot Epyxc[n] est Iénergie d’Hartree-échange-corrélation (Hxc), fonctionnelle de la densité. L’énergie

fondamentale s’écrit alors
Ey = qun {<<I>|T|<I>> + Fiee[n®] + /drvm(r)n‘1> (r)} . (30)

En comparant I'Eq. a I'Eq. , il est clair que la fonctionnelle Hxc décrit implicitement
l'interaction entre les électrons, plutét que de traiter 1/r;; explicitement. Le déterminant KS PKS
minimisant 'Eq. reproduit la densité fondamentale ng(r), et est construit (dans un formalisme

restreint & couches fermées) par les N/2 plus basses orbitales KS, doublement occupées, satisfaisant

I’équation autocohérente suivante:

TL@KS
(;w + one(r) + %) S (1) — 2KSKS (1), 31)

ou la densité électronique est donnée par

N/2

() =23 oS (32)

La KS-DFT est en principe exacte. Malheureusement, I’énergie Hxc, fonctionnelle de la densité, reste

pour le moment inconnue bien que de nombreuses approximations existent |20} 21].

Théories hybrides combinant WFT et DFT

Malgré toutes les approximations existantes pour la fonctionnelle Hxc, la DFT reste incapable de
traiter correctement les systémes multiconfigurationnels (ou la corrélation statique domine). Chercher
la fonctionnelle exacte et universelle est un véritable challenge, si bien que d’autres approches hybrides
ont vu le jour, combinant WFT et DFT. En effet, les méthodes en WET sont capables de traiter la
corrélation statique mais sont trés chéres en temps de calcul, alors que la KS-DFT est trés peu coti-
teuse mais ne décrit actuellement pas bien la corrélation statique. Il parait donc naturel d’extraire
le meilleur de ces deux approches en les combinant. Cependant, WFT et DFT sont deux approches
formulées dans des langages totalement différents. En effet, alors que 'une nécessite la construc-

tion de fonctions d’onde multiélectroniques, 'autre n’utilise que la densité électronique. Bien qu’une
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combinaison rigoureuse de ces méthodes soit également un challenge, un gain d’intérét est tout de
méme observé depuis la fin des années 1990. En particulier, trouver une combinaison qui ne compte
pas plusieurs fois les mémes effets de corrélation (appelé le probléme de “double comptage”) s’avére
compliqué, car la séparation entre WFT et DFT n’est pas unique, et peut étre faite de nombreuses

maniéres différentes. Cette thése traite principalement de cette problématique.

Une maniére de combiner WFT et DFT a été proposée par Savin en 1996 [22] 23|, et consiste &

diviser la répulsion électronique dans ’espace réel en utilisant la fonction erreur:

s _ erf(uri2) L 1-— erf(w”m), (33)

T12 T12 12

ou erf(uria) = 2/\/7 fowm e~t°dt, et le premier terme dans la partie de droite de I'Eq. l) est dit
de longue portée (Ir, pour “long range”), tandis que 'autre est dit de courte portée (sr, pour “short
range”). L’idée est alors de traiter la partie de longue portée en WFT alors que la courte portée sera

traitée en DF'T par une énergie Hxc, fonctionnelle de la densité. Ainsi, quand pu = 0, toute I'interaction

électronique sera traitée en DFT, a 'opposé de u — +00. L’énergie de I’état fondamental devient
Bolv] = min { (|7 + Wi + V|9) + B}, (34)

ou la fonction d’onde minimisante W* satisfait ’équation autocohérente suivante:

(T + Wihe 4 /dr [v(r) + ‘W] ﬁ(r)) |TH) = E1|TH), (35)
on(r)
Contrairement & la KS-DFT, ou le systéme de référence est non interagissant, W* est multiconfigu-
rationnelle car la répulsion électronique de longue portée est traitée explicitement. Cette méthode
s’appelle la DFT a séparation de portée. Bien que cette méthode (en principe exacte) soit prometteuse,
la construction de fonctionnelle Hxc de courte portée reste une tache trés complexe. Par exemple, la
corrélation statique (supposée étre traitée en WFT) n’est pas purement de longue portée |24} [25]. En
effet, la corrélation statique trouve sa définition dans I’espace orbitalaire, ce qui rend la séparation de

I'interaction en courte et longue portées discutable.

Une séparation alternative consiste a séparer I'interaction dans I’espace orbitalaire. Un CAS est
alors considéré, ou linteraction sera traitée en WFT, tandis que les orbitales hors du CAS seront

traitées en DFT, donnant lieu & une nouvelle méthode nommée CAS-DFT. L’expression variationnelle
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de Pénergie fondamentale en CAS-DFT est donnée par |26, [27]:

Eolo] = min { (W95, S) | + Wee + VWS (5, 8) + BEAS [ (9], (36)
ou la fonctionnelle Hxc doit dépendre du CAS considéré pour éviter tout probléme de double comptage
de la corrélation électronique, et ne peut donc pas étre universelle. En pratique, cette méthode est
donc trés compliquée & implémenter [28|. Il est bon de noter que d’autres méthodes similaires ont été
proposées par Savin, combinant CI et DFT [29,[30]. Que ce soit en CAS-DFT ou en CI-DFT, le prob-
léme de double comptage est extrémement difficile & traiter, car ’énergie Hxc doit dépendre de I'espace
orbitalaire dans lequel les interactions sont traitées explicitement en WET. Or, cette énergie est fonc-
tionnelle de la densité électronique qui, elle, est définie dans I’espace réel. Récemment, Fromager a
proposé une nouvelle méthode ou I’énergie de corrélation est définie non plus comme une fonctionnelle
de la densité électronique, mais comme une fonctionnelle des occupations des orbitales [25]. Ainsi, le

probléme de double comptage pourrait étre plus facile & éviter en pratique.

Toutes les méthodes hybrides présentées jusque 1a ne sont pas standard en chimie quantique, pour
deux raisons. La premiére est que ces méthodes restent chéres en temps de calcul. La deuxiéme est
que de nouvelles fonctionnelles doivent étre développées pour éviter les problémes de double comptage,
ce qui est loin d’étre une téache facile. Plutot que de séparer I'interaction en utilisant une séparation
de portée, considérons un systéme plus grand ou seule une petite partie de ce systéme serait traitée
en WF'T, tandis que le reste du systéme serait traité en DFT. Ce type de méthode est désigné par le
terme “embedding” (signifiant ici que la partie traitée en WET est “plongée” dans le reste du systéme
traité en DFT). Ce type d’approche est par exemple utilisé pour décrire des problémes généralement
mal décrits en DFT, comme la chimisorption (adsorbat lié a la surface par des liaisons chimiques) [31]
ou la présence d’impureté(s) dans un semiconducteur [32]. La division du systéme entre WFT et
DFT est définie par 'utilisateur, et n’est pas unique. Il peut étre difficile de vraiment savoir ou faire
cette séparation entre les deux méthodes. Ce probléme devient bien plus clair en considérant des
Hamiltoniens modéles, pour lesquels ’espace devient un nombre de sites dont I'occupation joue le role
de densité électronique. Dans ’esprit de ’embedding, seuls certains sites seront interagissants, tandis
que linteraction des autres sites sera traitée par une fonctionnelle de I'occupation des sites. Cette
méthode est la théorie d’embedding de 'occupation des sites (SOET en anglais, pour “site occupation
embedding theory”) [25] [33H35], qui est la méthode principalement développée durant cette thése.
Avant de parler plus précisément de la SOET, il est important d’introduire le concept d’Hamiltoniens

modéles utilisés dans la physique de la matiére condensée.
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Modéle de Hubbard et la théorie de la fonctionnelle de ’occupation

des sites

Dans le but de développer de nouvelles méthodes capables de décrire la forte corrélation électronique,
il est important de commencer avec des modéles simplifiés. En effet, bien qu’une théorie qui marche
sur un modéle ne soit pas directement transférable aux systémes réels, une théorie qui ne marche pas
sur un modéle est certaine de ne pas non plus pouvoir décrire la physique d’un systéme réel. Et vu la
complexité de ’Hamiltonien moléculaire, il est préférable de commencer par traiter des modéles plus
simples. Il est important de comprendre que méme si le modéle considéré est fictif, il peut cependant
décrire un phénomeéne physique particulier. Par exemple, le modéle de Hubbard considéré dans cette
thése contient la physique nécessaire pour décrire des superconducteurs a haute température critique
(LaCuOy), et des phénoménes comme la transition de Mott (transition métal-isolant due a I'interaction
entre les électrons, qui ne peut pas étre décrite par une théorie de champ moyen). L’Hamiltonien de

Hubbard est décrit comme suit [36/39):

H — T+U-p,
= Y N (@b i)+ U Ay — Y, (37)
(i) @ @ @

o f; = M1+ 1M est 'opérateur d’occupation sur le site i avec ;5 = é;[géia, et p est le potentiel chim-
ique définissant le remplissage en électrons du modéle. Ce modéle peut étre considéré dans plusieurs
dimensions. Dans cette thése, seule une dimension sera traitée, comme le montre la figure[ll Sur cette
figure, nous voyons que la répulsion électronique, dénotée par le paramétre U, est uniquement sur site
(deux électrons sur différents sites n'interagissent pas entre eux), et I’énergie cinétique est dénotée
par le paramétre ¢, qui correspond au saut d’un électron d’un site & son plus proche voisin unique-
ment. Ces restrictions rendent le modéle bien plus simple que la réalité, bien qu’il reste toujours trés
compliqué a traiter. Dans le cas du demi-remplissage (un électron par site), l'interaction U empéche
les électrons de sauter de sites en sites, ce qui rend le modéle isolant. L’introduction d’une impureté
permet de passer d’un isolant & un conducteur (un métal), dénotant une transition de Mott. La valeur
du ratio U/t définit si le modeéle est fortement corrélé ou non. Si U/t > 1, alors les électrons sont
localisés sur le réseau de sites, et on dit qu’ils sont fortement corrélés. Si U/t < 1, alors les électrons

sont délocalisés et faiblement corrélés.

La DFT appliquée au modéle de Hubbard est appelée la théorie de la fonctionnelle de 'occupation

des sites (SOFT en anglais, pour “site-occupation functional theory”). Ainsi, la densité électronique en
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N
Demi-remplissage: U
isolant de NE

Mott—Hubbard

Avec impureté:
introduit de la
metallicité

Figure 1: Modéle de Hubbard en une dimension a demi-remplissage (au haut, correspondant a un
isolant). L’introduction d’une impureté (d’un électron ou d’un trou) rend le modéle métallique (en
bas).

DFT est définie dans I’espace réel, alors qu’en SOFT ’occupation des sites joue le role de la densité.
Plutot que d’avoir une fonction de I'espace n(r), nous avons une collection de nombres (ou vecteur)
d’occupation n = {n;};. Tout comme en DFT standard, une formulation KS existe pour la SOFT, de
sorte qu’'une fonction Epyy.(n) décrit 'interaction entre les électrons. L’expression variationnelle de

I’énergie fondamentale s’écrit alors
o P . o
Ep(v) = min {<\IJ|T|‘~I/> + g vin; + Epxe(n )} (38)

ot v = {v;}; est un potentiel externe, et ®X5 est la fonction d’onde monodéterminantale minimisant

I’énergie, et satisfaisant ’équation autocohérente suivante:

<T+Z

q)KS
v 4 Pee(n” ) )] n) @) = £15]05). (39)

La fonctionnelle utilisée dans cette thése sera BALDA (pour “Bethe ansatz local density approxima-

tion”) [40-42|, dont Pexpression est

U
BB ) = 3 (G + B0, (40)
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avec

U
e?ALDA(n7 U) _ eBALDA(n, U) _ eBALDA(n’ U= 0) _ ZTLZ? (41)

ou

BALDA _ —2tB(U/) sin ™
et Unsh=—2 (7w ()

et la fonction [ est définie par

~28(U/t) (ﬁ(w ) _ _4/0°° dz_Jo(@)h(z) (43)

T U/t) z 1+ exp (%x)

BALDA s’est montrée trés perfomante pour décrire les profils de densité et d’énergie du modéle de

Hubbard a une dimension [40+42].

Théorie d’embedding de ’occupation des sites

Dans 'esprit des théories d’embedding, nous voulons développer une méthode ol seuls certains sites
seront traités en WEFT et les autres en SOFT. Cette méthode est la SOET |25 33135]. Ainsi, un
systéme de référence partiellement interagissant sera considéré a la place du systéme non interagissant
de la SOFT. Les sites interagissants seront appelés les sites d“impureté” (abbrégé par “imp” dans
les équations), tandis que le “bain” (“bath” en anglais) fera référence aux sites non interagissants.
Pour faire cette séparation, la fonctionnelle universelle est séparée en un terme d’impureté et une

fonctionnelle Hxc du bain:

im: —bath
F(n) = Fy*(n) + Eyye, i (0), (44)
ou M dénote le nombre d’impuretés du modéle et
Fp?(n) = min {(W|T+ Oy 9) }, (45)
—n

avec UM =U Zi]\ial ni+M; . Comme en CAS-DFT, la fonctionnelle Hxc doit dépendre du nombre

d’impureté(s) pour éviter tout probléme de double comptage. L’énergie fondamentale en SOET se

réduit a I'expression variationnelle suivante:

B(v) = min{ (9|7 + Uy |9) + Biyerar (0%) + (vIn®) }, (46)
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ot la fonction d’onde d’impureté ¥};” minimisant cette équation satisfait 'équation autocohérente:

—Dbath imp
b
8Ech,M (n M )

ani

NT") = En 1), (47)

—bath . . . .
ol v; + aEHitm v (n)/on; = v}?}f(n) est le potential d’embedding permettant de reproduire la densité

exacte du systéme physique. Tournons-nous a présent vers ’expression de la fonctionnelle Hxc du

bain. Tout d’abord, exprimons la fonctionnelle d’impureté dans la décomposition KS:
Fyr®(n) = Tu(n) + B o (n), (48)

ou une fonctionnelle Hxc d’impureté est introduite, décrivant implicitement les interactions sur les

sites d’impureté. Il est ensuite trés facile de démontrer que la fonctionnelle du bain s’écrit comme:

—=bath im
EHXC,M(n) = EHXC(H) - EHXE:),M(n)‘ (49)

Ainsi, pour trouver la fonctionnelle du bain, nous pouvons utiliser les fonctionnelles en SOFT et
développer de nouvelles fonctionnelles pour Eﬁ?fc’ M- Les systémes non interagissants, partiellement
interagissants et entiérement interagissants sont alors connectés par ces trois fonctionnelles, comme
le montre la figure 2] Dans le cas du modéle uniforme (v = 0), Papproximation locale est exacte et

nous pouvons exprimer la fonctionnelle du bain par site, mesurant la déviation de la fonctionnelle

d’impureté par rapport a la fonctionnelle standard, comme:

1 M-1 )
o = 3| (32 ) - o) 50)

i=0
tel que
bath L
Eear () = Y ee(ni) + Me37 (n), (51)
i=M

ot BALDA sera utilisée pour décrire I’énergie de corrélation par site eq(n).

Pour résumer, trois résultats importants ont été trouvés dans cette thése:

1. I est nécessaire que la fonctionnelle du bain par site EE?‘]&}](H) doive dépendre de toutes les

occupations des sites. Autrement, 'embedding ne peut pas étre exact.
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Figure 2: Ilustration de la connexion entre le systéme physique, le systéme a une impureté, et le
systéme non interagissant pour le modéle de Hubbard & 32 sites, & une dimension avec des conditions
périodiques.

2. L’expression exacte de 1’énergie par site du modéle uniforme est donnée par:

M—1 _ TP Sbath (o wimP
1 yip aec(ni M ) imp aec,M (1’1 M )
GZM; ts(n; M )+tT+UdM,i Ty (52)
ot dyy® = (WP igfiy [ 5P).
3. L’expression exacte de la double occupation du modéle uniforme est donnée par:
M-1 Sbath (. wimP
1 i delpy (m™ar)
d=— dy + — 53

D’aprés les deux expressions des Eqs. (52)) et , il est clair que nous avons bien une combinaison
de termes déterminés par la fonction d’onde d’impureté, et de termes venant de la fonctionnelle des

occupations des sites: donc une méthode hybride mixant WFT et SOFT.

Ensuite, pour appliquer la SOET en pratique, des fonctionnelles de corrélation de I'impureté ont

été développées. La premiére, la plus simple, utilise BALDA sur le(s) site(s) d’impureté, donnant
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naissance a approximation iBALDA (pour “impurity BALDA”):

M-—1
EEP | (n) BARAGD, NP BALDA . (54)
1=0

ce qui revient a négliger la contribution de I’énergie de corrélation par site du bain:

iBALDA (M
IBALDAGMD, (55)
Une autre consiste a utiliser la fonctionnelle d’impureté exacte du dimére de Hubbard, dénotée par

A(2L77:
imp imp,2L 2L
EC,M:I (n) Ec,]\/[:l (U’ no) = Ec (U/27 no), (56)

ou la relation de scaling en U/2 de légalité précédente a été prouvée dans un précédent travail sur le
dimeére [33], et la fonctionnelle E2%(U, ng) posséde une expression paramétrée par Carrascal et al. |43
44] (ng correspond a loccupation du site d’impureté). Combinée & BALDA, utilisée pour la fonc-
tionnelle standard [voir Eq. ], I’approximation s’intitulera 2L-BALDA. Enfin, des fonctionnelles
basées sur le modeéle d’Anderson (SIAM, pour “single impurity Anderson model) ont également été

développées, grace a la grande similarité entre le modéle d’impureté de Hubbard et le STAM:
BN (0) — BN (ng). (57)

Combinées & BALDA décrivant la fonctionnelle standard, ces approximations sont dénotées par
Pacronyme STAM-BALDA. Dans ce résumé, seule 'approximation SIAM-BALDA|[n=1] (qui est une
interpolation de deux fonctionnelles, I'une valide dans le régime faiblement corrélé et 'autre dans le

régime fortement corrélé) sera présentée.

Passons a présent aux résultats obtenus par la résolution de 'Eq. (47)) en fonction des différentes ap-
proximations. Cette résolution nous donne la fonction d’onde d’impureté \I/i]&np, et donc 'occupation

‘I’ifx?p7 ainsi que la double occupation des sites de I'impureté, di]\?E. Il suffit

convergée des sites, n
d’utiliser ces valeurs dans les Eqs. et pour obtenir les résultats des figures |3[ et 4] pour le
modéle de Hubbard & 32 sites, respectivement. Il est important de noter qu’a demi-remplissage,
le potentiel d’embedding exact est connu et est égal a —U/2 sur les sites d’impureté et 0 dans le

bain. Ce potentiel restaure donc ’occupation exacte des sites, et aucune erreur due a la densité n’est

observée. Il est clair d’aprés ces deux figures que I'approximation iBALDA pour M = 1 n’est pas
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trés performante. Il existe deux maniéres possibles pour améliorer les résultats en SOET. La pre-
miére maniére est d’augmenter le nombre d’impuretés dont l'interaction est traitée explicitement en
WFT, conduisant aux approximations iBALDA(M=2) et iBALDA(M=3). L’amélioration est visible
mais n’est pas significative, or le temps de calcul augmente avec le nombre d’impuretés considéré.
La deuxiéme maniére est de considérer une fonctionnelle élc’,a]\t/}‘(n) non nulle. Les approximations
2L-BALDA et STAM-BALDA[n=1] sont de telles fonctionnelles, et elles fournissent de meilleurs ré-
sultats que iBALDA (M =3) bien qu’une seule impureté soit considérée. Ainsi, il semble plus impor-

tant de développer de meilleures fonctionnelles en gardant un nombre d’impuretés faible, plutot que

d’augmenter le nombre d’impuretés.

Vers une implementation performante de la SOET

Contrairement aux autres méthodes de type embedding, I'information sur 'occupation des sites du
bain n’est pas perdue en SOET. Cependant, bien que ce point semble avantageux, il génére également
des problémes, notamment dans I'implémentation de la SOET dont la résolution nécessite un temps
de calcul élevé. Or, seulement certains sites sont explicitement interagissants. Il est donc naturel de se
demander si une implémentation différente de la SOET, nécessitant un temps de calcul faible, existe.
Dans cette partie, nous allons montrer qu’il est en effet possible de résoudre les équations de la SOET
en un temps trés court, tout en conservant d’excellents résultats. Dans 1’esprit de la DMET (“density
matrix embedding theory”) [45], cette nouvelle implémentation de la SOET consiste & employer la
décomposition de Schmidt (également utilisée en DMRG). Dans une premiére étape, le systéme est
divisé en deux parties: un fragment F et le reste du systéme E, appelé environnement. L’espace de
Hilbert du systéme s’écrit alors comme un produit tensoriel de celui de F et de E, H = Hr ® Hg.
La taille de Hp (HE) est Np = 457 (Ng = 452) et {|F})}; ({|E:)};) représente une base d’états
multicorps. Lp et Lg sont respectivement le nombre d’orbitales (ou ici, le nombre de sites) du
fragment et de I’environnement, et le nombre 4 vient du fait qu’un site est décrit par 4 états différents:

|rmuacy, | 1), | ) et | 11). La fonction d’onde de I’état fondamental du systéme peut alors s’écrire

Nrp Ng

[Wo) = > > Cis FE;), (58)
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et peut étre simplifiée en appliquant une décomposition en valeur singuliére:

Nr Ng min(NF,NE)

o = Y Y T IRIE) (59)

Np
3 AalFallBal, (60)

ol on a supposé que Np < Ng. Uy (V) transforme la base {|F;)}; ({IE;)};) en une nouvelle base

{IFa)ta ({|Ba)a}):
Ng Ng
D ULIF) =1Fa), | DoVEIE) =1Ba) |, (61)

appelée la base du fragment. Quand cette derniére est combinée a la base du bain [entre parenthése
dans I'Eq. ], une nouvelle base dite de Schmidt de dimension N2 est construite. En effet, il est
clair d’aprés 'Eq. que le nombre d’états a considérer pour I'environnement a été réduit & Ng
états du bain, alors que le nombre d’états du fragment est resté inchangé. Ensuite, un projecteur
sur cette base de Schmidt est construit griace aux nouveaux états du fragment et du bain tel que
P= Zgg |FoBg)(FaBg|. On peut montrer facilement que la fonction d’onde de I'état fondamental ¥
est invariante sous cette projection, et que ’'Hamiltonien projeté (dit Hamiltonien d’embedding), H =
PHP, partage la méme énergie d’état fondamentale que le systéme physique. Ainsi, la décomposition
de Schmidt permet de réduire considérablement le nombre d’états & considérer dans la fonction d’onde,
tout en conservant les propriétés de I’état fondamental. Cependant, celle-ci nécessite la connaissance a
priori de la fonction d’onde Wy, qui est bien entendu inconnue. En DMET, un calcul Hartree—Fock est
utilisé pour obtenir une approximation a Wy. La décomposition de Schmidt est ensuite appliquée sur
le déterminant de HF, pour construire des états du bain simple corps au lieu d’états multicorps. En
SOET, un calcul SOFT est effectué a la place. La décomposition de Schmidt est donc appliquée sur le
déterminant KS, permettant de construire les états du bain (approximés) et donc le projecteur P. La
grande différence avec la formulation précédente de la SOET est que 'information sur I’environnement
est perdue, puisque celui-ci est projeté pour former les états du bain. Reconsidérons ’'Hamiltonien en

SOET pour un systéme uniforme:

L—1 —bath
N PN OF (n)
HSOET -7+ Hxc, M

+Unm + Z on. i

=0 —
n=n,

;. (62)
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Figure 5: Etapes de la P-SOET pour une seule impureté dénotée par 0. Le projecteur est calculé une
seule fois grace a la décomposition de Schmidt sur la fonction d’onde obtenue en appliquant KS-SOFT
sur le modéle de Hubbard.

Ce dernier est projeté pour construire I’Hamiltonien d’embedding. Pour ce faire, seule la partie

HSOET ogt projetée (la répulsion électronique traitée explicitement sur les im-

monoélectronique de
puretés reste inchangée), c’est-a-dire 'opérateur d’énergie cinétique et le potentiel d’embedding, pour

former h°™P = PARSOET [ 'Hamiltonien SOET projeté devient alors

2M—1 M-1
e = ey = S0 S A (CZUCJU T h C) +U D iy (63)
ij=0 o 1=0

Dans le cas d’une seule impureté, ce nouveau probléme d’embedding se réduit & un site d’impureté
et un site de bain uniquement, c’est-a-dire un dimére de Hubbard a une impureté qui peut étre ré-
solu analytiquement. Une fois le probléme résolu, une nouvelle occupation du site de I'impureté est
obtenue et réinsérée dans le potentiel d’embedding de ’Hamiltonien de 1'Eq. , lui-méme a nouveau
projeté, et ainsi de suite jusqu’a ce que 'occupation converge. Pour résumer, la figure [f] décrit les
différentes étapes de cette nouvelle implémentation, nommée P-SOET (pour “Projected-SOET”). Plus

généralement, pour M impuretés, le probléme d’embedding & résoudre est de taille 2M.

La P-SOET nous permet d’étudier un modéle de Hubbard bien plus grand qu’avec la premiére

implémentation de la SOET, pour un temps de calcul encore plus petit. De ce fait, 400 sites seront &
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présent considérés au lieu de 32 sites. Dans ce résumé, seule la description de la transition de Mott en
fonction du remplissage [46] sera présentée. Cette transition de Mott est manifestée par Pouverture
d’un gap de charge entre la bande de valence et la bande de conduction. Dans le modéle de Hubbard,
Iouverture du gap se fait dans le cas du demi-remplissage. Autrement, aucun gap n’est observé. Pour
voir apparition de cette transition, nous tragons la densité en fonction du potentiel chimique g qui

correspond & un déplacement du potentiel externe, et qui fixe le nombre d’électrons dans le systéme:

H— H(p)=H — puN, (64)

o N = >_; i est Popérateur de comptage. Le nombre total d’électrons varie avec p tant que p ne se
situe pas a l'intérieur du gap. Dans le cas contraire, la variation de p & I'intérieur du gap n’induit aucun
changement du nombre d’électrons, qui restera égal au nombre d’électrons remplissant entiérement la
bande de valence (c’est-a-dire n = N/L = 1 pour le modéle de Hubbard). Pour trouver le nombre
d’électrons correspondant & une valeur du potentiel chimique, il suffit de résoudre I’'Hamiltonien H (1)
pour un p donné en faisant varier le nombre d’électrons du systéme. Autrement dit, la minimisation

suivante doit étre résolue:
ml\i[n {eP‘SOET (n) — ,u,N/L}, (65)

ou n est la densité exacte n = N/L. Pour voir Veffet de autocohérence et l’erreur sur la densité
due aux différentes approximations en P-SOET, la densité convergée a aussi été utilisée, n = n, iﬁp.
Puisque seulement des nombres pairs d’électrons sont considérés, et que le modéle contient 400 sites,
un ensemble de 200 valeurs de N est pris en compte pour la minimisation. Cette minimisation n’aurait
pas été qualitativement correcte dans la formulation précédente de la SOET, ou le modéle contenait
uniquement 32 sites. La densité minimisante, n(u) = N(u)/L [ou N(u) est le nombre d’électrons
qui minimise le terme dans I’Eq. ] est tracée sur la figure |§| en fonction du potentiel chimique.
D’apreés la figure[6] la densité augmente avec le potentiel chimique de fagon monotone jusqu’a atteindre
le demi-remplissage n = 1. A cette valeur, la densité reste constante bien que le potentiel chimique
continue d’augmenter, indiquant 'ouverture du gap de charge. En utilisant la densité exacte n = N/L
dans 'Eq. (lignes pleines sur la figure @, iBALDA (M=1) est quasiment superposée a la courbe
exacte (légendée par BA). Du coup, augmenter le nombre d’impuretés n’améliore pas les résultats,
bien que cela ne les détériore pas non plus. Si la densité convergée est utilisée, alors de fortes erreurs
sont observées plus on s’approche du demi-remplissage. Il est intéressant de noter que I’approximation

2L-BALDA sous-estime largement la valeur du gap de charge par rapport & iBALDA. Cependant, il

est déja impressionnant que ces approximations en P-SOET permettent de décrire 'ouverture du gap
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Figure 6: Variation du remplissage en fonction du potentiel chimique pour U/t = 8 obtenue en
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courbe de référence exacte.

avec une seule impureté. En effet, cette transition de Mott (en fonction du remplissage) n’est décrite
ni par la DMET [45, |47], ni par la DMFT [46] (pour “dynamical mean-field theory”) avec une seule
impureté. L’ouverture de ce gap avec une seule impureté est le résultat le plus marquant de la SOET,

en plus des autres résultats trés prometteurs pour la double occupation et ’énergie par site.

Conclusions et Perspectives

Ce résumé nous a permis de voir succintement le développement et les résultats principaux de la
SOET, et également de la P-SOET. Nous avons montré que cette théorie était bien une théorie
hybride, mélangeant WFT et DFT pour obtenir les résultats les plus précis possible en un temps
relativement court. La SOET (et sa version projetée) s’est montrée trés prometteuse, et peut jouer
un role trés important dans le développement de nouvelles méthodes hybrides. De par sa formulation
en principe exacte, celle-ci permet d’avoir une compréhension plus approfondie des méthodes de type
embedding, ot les problémes de double comptage ne sont pas toujours évidents & identifier. Pour que
la SOET devienne plus populaire et soit utilisée par la communauté scientifique, il faudrait appliquer
a des modeéles plus complexes, comme les modéles de Hubbard a deux (pour la description des su-

perconducteurs LaCuQy) ou trois dimensions. Pour cela, de nouvelles fonctionnelles sont nécessaires,
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et un moyen d’en développer de fagon automatique serait trés attrayant. Dans le cadre de la chimie
quantique, une généralisation de la SOET a été proposée dans le dernier chapitre de cette thése (non

montrée dans ce résumé), et est encore en cours de développement.
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Introduction

Quantum chemistry applies quantum mechanics to the theoretical study of chemical systems. It aims
at understanding the mechanisms of chemical reactions (driven by thermodynamic and kinetic prop-
erties of chemical systems) by the study of chemical structure and chemical dynamics. On the other
hand, the purpose of condensed matter physics is to rationalize natural phenomena in condensed
phases, like the transition between a metal and an insulator driven by the variation of various pa-
rameters (such as pressure or the introduction of impurities, so-called “doping”). Several methods
and models have been developed in both fields. Not only they were able to reproduce experimental
results, but they can also make predictions which are then verified by new observations. The quality of
a theory is judged on both these criteria. Nevertheless (and despite the numerous progress made since
the last decades) some systems remain extremely challenging to describe, for instance the so-called
strongly correlated materials.

Strongly correlated systems are the object of intense research since many years now. The development
and synthesis of innovative materials gather both chemists and physicists, experimentalists or theoreti-
cians. This topic covers several long-standing issues in quantum theory, starting from the theoretical
modelling of a simple bond-breaking in chemistry to the description of transition metal complexes, fea-
turing magnetic and electronic properties of high interest. For instance, strongly correlated materials
can exhibit metal-insulator transitions (NiO and V2Qs3), temperature induced phase transition leading
to high-T. superconductors (LasCuO4 and the doped Las_,Sr,CuOy) or colossal magnetoresistance
(LaMnO3) in condensed matter physics [1]. These exotic properties have led to the design of new
nanodevices, with applications to energy conversion and electronic transport for solar cells, magnetic
storage, and superconducting magnets generating strong magnetic fields. Transition metal oxides are
also employed in homogeneous and heterogeneous catalysis, and are present in chemical biology where
the active part of a protein is composed of metallic centers. While the discovery of novel materials
continues to grow, there is a profound need for the development of new theoretical approaches. New
methods should be able to give a better understanding of these existing materials and, ultimately, to

predict new structures featuring such interesting properties, which promise to shape the technology
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of the future.

From a theoretical point of view, the name “strongly correlated” originates from the fact that
mean-field theory (or band theory for solids) is not able to describe the aforementioned systems.
The reason is that mean-field theory (in a sense of Hartree-Fock theory) misses the description of
correlation effects, driven by the interaction between the electrons. When this correlation plays a
prominent role, it is the so-called strong electron correlation which remains a tremendous problem in
both quantum chemistry and solid state physics. Indeed, no method has yet emerged as the method of
choice for modelling such materials. While the standard low-cost methods such as density functional
theory (DFT) usually fail to describe strong correlation effects |2], more involved wavefunction-based
approaches (WFT) [3] could in principle be applied, but they remain out of reach in terms of com-
putational cost. A natural and intuitive idea is to merge the two methods to build a new one that
gathers all advantages: a low computational cost and good accuracy. One specific class of these hybrid
methods features is the class of “embedding” theories |4]. They rely on the separation of the whole
system into small subsystems, where only the active part of interest is treated by a high-level (WFT)
method while the rest of the system is treated by a low-level approach (such as DFT or mean-field
theory). Embedding techniques are gaining more and more interest, above all because Moore’s law is
now reaching its limit, thus lending weight to the development of low-cost approaches able to model
large systems with sufficient accuracy. They are now popular in both quantum chemistry, for atoms
and molecules, and condensed matter physics for extended systems like solids. In the latter commu-
nity, it is common to start with a simple model (which still contains the key physical effects of the
realistic material) in order to develop new approaches. For example, the Hubbard model features the
competition between localization (induced by a strong repulsion between the electrons, interpreted as
the strongly correlated regime) and delocalization (interpreted as the weakly correlated regime) of the

electrons, and is one of the worst case scenarios for mean-field theories.

This thesis aims to develop and implement novel and in-principle-exact hybrid methods at the
interface between physics and chemistry. Focusing on the description of strong correlation effects, the
methods will first be applied to the Hubbard model, and then generalized to the ab-initio molecular

Hamiltonian. The thesis is organized as follows.

Chapter [1] gives the state of the art of the electronic structure theory in quantum chemistry.
Sec. [II] starts from the foundation of quantum chemistry through the Schrodinger equation, for
which several approximate solutions are discussed. The Hartree—Fock theory is briefly explained as
well as the definition of the electronic correlation. Then, post-Hartree-Fock approaches are considered

to account for correlation effects. Due to their high scaling with respect to the number of electrons,



Introduction 3

these methods become rapidly not tractable as the size of the system increases. Alternatively, methods
based on reduced quantities as basic variable, instead of the complicated many-body wavefunction,
are presented in Sec. They consist of DFT, reduced density matriz functional theory (RDMFT)
and one-body Green’s function theory. Finally, various hybrid methods that merge WFT and DFT

are introduced in Sec. [L3

Turning to the electronic structure theory in condensed matter physics in Chapter [2 model Hamil-
tonians (in particular the Hubbard model) and their relations with real materials are discussed in
Sec. Applying DFT in this context leads to the so-called site occupation functional theory (SOFT),
described in Sec. Then, the single impurity Anderson model (STAM) is introduced in Sec. as

well as embedding techniques employed in condensed matter physics in Sec.

Chapters[[]and 2] provide a large overview of the current state of the art in both quantum chemistry

and condensed matter physics, respectively. They are both really helpful to understand the four
following Chapters, which are all dedicated to new methods developed in this thesis.
Chapter [3] deals with the main topic of this thesis, i.e. the development and implementation of
a new embedding scheme, so-called site-occupation embedding theory (SOET) applied to the one-
dimensional Hubbard model. Starting with the in-principle exact formulation of SOET in Sec.
exact expressions for the per-site energy and the double occupation have been derived in the uniform
case (Sec.|3.2). Then, exact properties that the functional in SOET should fulfil are given in Sec.
Finally, after introducing the approximate analytic functionals in Sec. the SOET self-consistent
equation is solved. The resulting per-site energy and double occupation are discussed extensively in
Sec.

Then, efficient implementations of the self-consistent impurity problem in SOET are discussed
in Chapter [} A transformation of the SOET Hamiltonian into the STAM is made in Sec. and
is then solved using Green’s function techniques. Another implementation in Sec. [£.2] consists in
using the Schmidt decomposition, thus allowing a drastic decrease of the computational cost. As
an important result, this projected version of SOET is able to describe the “density-driven” Mott—
Hubbard transition, related to the opening of a gap.

Turning to another long-standing issue in DFT, Chapter [§] provides a complete reformulation of
the infamous derivative discontinuity, necessary to extract the exact fundamental gap in DFT. This
formulation is based on ensemble DF'T, originally formulated for excited states to extract the optical
gap, as described in Sec.[5.1] After introducing the fundamental gap problem within DFT in Sec.[5.2]
we present our new formulation, so-called N-centered ensemble DFT, in Sec.

To conclude, the extension of SOET to the quantum chemical Hamiltonian is discussed in Sec.[6.1]of

Chapter [6] An alternative approach is then developed based on geminals, i.e. pair-electron functions.
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The notion of seniority-zero and theories based on geminals are first briefly introduced in Sec. [6.2]
then followed by the new hybrid method formulated in the natural orbital basis, where a reference
seniority-zero wavefunction is complemented by a functional of the reduced one-particle density matrix

(Sec.[6.3). Conclusions and perspectives are finally ending this work.



Chapter 1

Electronic Structure Theory in

Quantum Chemistry

The correct description of the total ground-state energy of a molecule is essential in chemistry and
material science. Indeed, the understanding and the prediction of a given chemical reaction obvi-
ously involve the knowledge of the ground-state energy of the electrons [5], as it gives informations
about the reaction barrier which has to be overcome to obtain a given chemical product. It often
appears that only a very small energy difference determines the geometries and qualitative properties

of molecules [6], such as a transition state or the adsorption of a molecule on a surface.

Hence, one needs highly accurate theoretical methods to reach this chemical accuracy (= 1
kcal/mol). This is the main goal of quantum chemistry. However, systematically improvable meth-
ods are usually extremely expensive in terms of computational cost so that only very small systems
can be considered. Because of the growing interest in supramolecular science, as well as the need to
understand biological processes or the modelling of real size materials (such as batteries or photo-
voltaic cells), more than a thousand of atoms is commonly studied. This can be achieved by using
the mean-field theory, but the gain in computational cost usually comes with a decrease in chemical

accuracy.

In this Chapter, I will review some of the quantum chemical methods that are needed to understand
the development and the context of our new methods described in Chapters and [0] First, the
Schrédinger equation which is the central equation in quantum chemistry is introduced. Because this
equation is impossible to solve generally, approximations have to be employed such as the mean-field
theory. However, such a theory does not describe the electron correlation, essential to describe chemical

processes involving creation or breaking of the bonds, for instance. To go beyond this approximation,
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several post-mean-field methods have been developed and are described in this chapter, which is
organized as follows. Sec. lays the basics of the electronic structure theory which relies on the
explicit calculation of a many-body wavefunction. Starting from the mean-field approximation with
a single Slater determinant wavefunction, more involved methods employing a multiconfigurational
wavefunction (which are approximate solutions of the Schrodinger equation) are introduced. Then,
alternative treatments of the electronic problem are considered in Sec. where the whole many-body
complexity is transferred from the wavefunction to reduced quantities, such as the electron density, the
one-particle density matrix or the one-particle Green’s function. Finally, Sec. introduces hybrid

methods which combine wavefunction theory with density functional theory.

1.1 Wavefunction Theory

1.1.1 Schrodinger Equation and Born-Oppenheimer Approximation

The evolution in time of a physical system containing significant quantum effects is mathematically
described by the Schrédinger equation, derived in 1925 by Erwin Schrédinger (Nobel Prize in Physics,
1933). Considering a system evolving in a time-independent potential and where relativistic effects are
negligible, this equation reduces to one of the most famous eigenvalue equations, the time-independent

Schrédinger equation,
i) = E|w), (1.1)

where V¥ is the stationary state wavefunction of the quantum system with associated total energy FE.
For a given molecular system containing N electrons of mass me, charge e and positions {r;};=1 y and
M nuclei of mass {M 4} a=1,m, charge Z4 x e and positions {Ra}a=1 s, the Hamiltonian in Eq. (1.1)

reads (in ST units)

H = To+To+ Vie + Wee + Vi
Mo N o N o2
- Z 227 ;,42:1 47r60\RA—r|
ZAZBG
Jr;; 47T80|I‘ —rj ,421;;44WEO|RA_RB| (12)

where Tn and Te are the nuclear and electron kinetic energy operators, respectively, and Vne, Wee and
V, are the potential energy operators corresponding to Coulomb electron-nuclei attraction, electron-

electron and nuclei-nuclei repulsions, respectively. In quantum chemistry, one of the main targets is
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the correct description of chemical reactions. In other words, the forming and breaking of chemical
bonds between atoms. These processes involve interactions between the electrons in the system, so
that the part of interest of the Hamiltonian in Eq. is the electronic part. Considering the ratio
in mass between nuclei and electrons (M 4/m. & 1836), a first sound approximation is to consider the
electronic motion decoupled from the motion of the nuclei. Equivalently, it means that the electrons
accommodate almost instantaneously to any change in the positions of the nuclei, so that one can
study the electronic part of a system while keeping the nuclei frozen. This is the so-called Born—
Oppenheimer approximation proposed in 1927 [7]. The Schrédinger equation in Eq. is then

reduced to an electronic part decoupled from the nuclear part,
I:IC|\IJC> = Ee|W.), (1.3)

where F, is the electronic energy associated to the electronic wavefunction ¥,. From a mathematical

point of view, both are respectively the eigenvalue and eigenfunction of the electronic Hamiltonian
H.=H-T, -V, =Ty + Wee + Vise, (1.4)

where the nuclear kinetic energy operator in Eq. has been neglected and the nuclear-nuclear
repulsive potential has become a constant for a given geometry, that has to be added after solving
the electronic problem. This approximation is used in the whole thesis as well as the use of atomic
units, so that the subscript “e” (standing for “electronic”) will be dropped. From now on, atomic units
will be used, which simply consists in using unitless energy E=E /Ep and coordinates & = x/ay,
§ =y/ag and Z = z/ag, where E}, = h?/(mea?) (= 1 hartree) corresponds to two times the ionization
energy of the hydrogen atom and ag = 4megh?/(mee?) is the Bohr radius. Within the atomic units,

the following N-electron Hamiltonian reads

bS

(1.5)

l\D\»—l
<
d>

R o N N N o N Mo,
H— T+ Wee + ; XZ:Z;T ;A; :
where 74 and r;; are the distances between the ith electron and the Ath nucleus, and the ith and
the jth electrons, respectively. Note that the tilde notation that has been introduced to denote
atomic units will be dropped for convenience. Although the number of degrees of freedom has been
reduced from 3(N + M) to 3N using the Born-Oppenheimer approximation, finding the solution of
the electronic Schrédinger equation remains an extremely difficult task due to the electron-electron

repulsion term in Eq. (L.5). Only few physical systems exist for which their eigenvalues and eigenstates

are found analytically. Some (pedagogical) examples are the particle in a box, the hydrogen atom



8 ELECTRONIC STRUCTURE THEORY IN QUANTUM CHEMISTRY

and the quantum harmonic oscillator. Otherwise, the electronic Schrédinger equation has to be solved
numerically. Highly accurate numerical solutions have been obtained for atoms and diatomic molecules
containing a small number of electrons by including the interelectronic distance r;; explicitly in the
wavefunction. For instance, the Helium atom by Hylleraas in 1929 [8], the hydrogen molecule by James
and Coolidge in 1933 [9] and the Beryllium atom by Sims and Hagstrom in 1971 [10]. While such
numerical solutions were unfeasible for more than a few electrons at the time, lots of progress have
been made recently, in particular by the development of the quantum Monte Carlo (QMC) method in

quantum chemistry [11].

1.1.2 Variational Principle

The state having the lowest energy is called the ground state of the system. This associated ground-

state energy can be determined variationally through the Rayleigh-Ritz variational principle:
Bo = (Wo| H|Wo) < (W[ W) (1.6)

where ¥ denotes any trial normalized wavefunction. The equality holds only for the ground-state
wavefunction ¥y. Based on this variational principle, the ground-state energy of the system can be

found by minimizing the expectation value of the Hamiltonian over W:
Eo :mqin{<\P|T+Wee+Vne|\I/)}. (1.7)

Unfortunately, the exact minimization is not possible in practice as one would need the whole set of
normalized many-body wavefunctions. As mentioned in the previous section, solving the Schrédinger
equation exactly for a general many-body system is unfeasible. Therefore, approximate parametriza-
tions of the wavefunction have been proposed to approach the ground-state wavefunction, and the
energies resulting from these wavefunctions will always be an upper bound to the true ground-state
energy, if determined variationally. In the following, the standard approximations used by quantum

chemists to approach the exact ground-state wavefunction are introduced.

1.1.3 Molecular Orbital Theory

The difficulty of finding the exact solution to the electronic Schrédinger equation comes from the
interelectronic term 1/r;; of the Hamiltonian in Eq. (1.5). To bypass this issue, one could approximate
this interaction by an effective one-body potential, so-called a mean-field approximation. In such an

approach, the many-electron wavefunction will be defined by a set of one-electron functions, so-called
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spin orbitals. The simplest approximate wavefunction was proposed by D. R. Hartree |12] and takes
the form of a product of orbitals: this is the so-called Hartree product. For a system containing
N electrons with a set of molecular spin-orbitals {¢;};=1 n, the approximate many-particle Hartree

wavefunction reads

(I)H(Xl,XQ7 . 7XN) = ¢1(X1)¢2(X2) - (b]\/(XN)7 (18)

where x = (r,0) denotes the spatial coordinate vector r; = (;,y;, 2;) and the spin state o = +1/2,
which corresponds to a spin up (+1/2) or a spin down (—1/2). The molecular spin orbital is defined
by ¢i(x) = ¢7'(x) = i(r)ds,s, Where @;(r) is the corresponding spatial orbital, ¢ is the Kronecker
delta (0,,, = 1 if 0; = 0, §5,0 = 0 otherwise) and o; is the spin state of the ith orbital. In practice,
the molecular orbitals are determined by a linear combination of atomic orbitals (LCAQO). For a set of
K non-orthonormal atomic orbitals x,,(r) centered at each nucleus, K orthonormal molecular orbitals

are constructed as follows:

K
i(r) =Y Cuixu(r). (1.9)

p=1
The atomic orbitals are defined with basis functions such as Slater-type or the more standard Gaussian-
type functions, forming the so-called basis set (see Appendix. According to the variational principle
[Eq. ]7 the coefficients C}; are determined so that the set of molecular orbitals minimizes the
energy. The wavefunction written as a Hartree product describes the electron-electron interaction
implicitly in an effective manner. Indeed, each electron evolves in a mean-field (described by a one-
electron potential operator) created by the nuclei and all the other electrons in the system, as described

by Hartree in 1957 (p.18, Ref. [13]):

“Fach one of these functions ... should be determined as a solution of Schrodinger’s equation for
one electron in the field of the nuclei and of the total average charge distribution of the electrons in the
other wavefunctions. In such a treatment, the field of the average electron distribution derived from

the wavefunctions ... must be the same as the field used in evaluating these wavefunctions”.

The first sentence of this quotation describes a mean-field, while the second sentence introduces
the idea of self-consistency, i.e. the mean-field has to be evaluated in an iterative manner. This is the

Hartree method.

The problem with this wavefunction is that it does not ensure the Pauli exclusion principle [14]

proposed by Wolfgang Pauli in 1925, which states that two electrons cannot have the same values
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of the four quantum number (the principal quantum number n, the angular momentum quantum
number [, the magnetic quantum number m; and the spin quantum number m;). In addition, each
electron is attached to one particular spin orbital ¢;(x) such that they are not indistinguishable. In
order to enforce the Pauli exclusion principle and have indiscernible electrons, the wavefunction has
to fulfil the fermionic antisymmetry condition, i.e. the sign of the wavefunction should change when
permuting two electrons. This can be done by considering all possible electron permutations in the

Hartree product, thus leading to the Slater determinant [15]:

p1(x1)  d2(x1) ... on(x1)
_ 1 ¢1(X2) ¢2(X2) ¢N(X2)
TR .

P1(xn)  d2(xn) ... ON(XN)

(I)(Xl,X%... (110)

where 1/v/N! is a normalization factor. Permuting two electrons would be equivalent to permuting

two lines in the determinant, such that
D(x1,X2, ..., Xiy o, Xy oo, XN) = —P(X1, X2, ., Xy oo, Xy XN, (1.11)

and if two orbitals are the same, two columns would be identical and the determinant would be equal
to 0. Hence, the structure of a Slater determinant fulfils the Pauli principle and the antisymmetry

condition by construction. For convenience, a lighter expression of a Slater determinant is introduced,

(I)(Xl,XQ,...,XN)E ‘¢1¢2¢N|; (112)

and can be expressed in second quantization as (see Appendix |C):

(p16b ... on| = éleb .. &l |vac), (1.13)

where éi is the creation operator of one electron in the ith spin-orbital ¢; and |vac) is the vacuum state
(no electrons). The methods for which the wavefunction can be written as a single Slater determinant

describe a single configuration only, and are therefore called single-configuration methods.

1.1.4 Hartree—Fock method

In 1930, Slater and Fock |16} |17] applied the Slater determinant ® to the Hartree method, leading

to one of the core theories in quantum chemistry: the so-called Hartree—Fock (HF) method. For
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simplicity, a closed-shell system containing an even number of electrons IV in the set of spatial orbitals

{®i}i=1,n/2 Will be considered. The orthonormalization condition

1, i=j
(pilps) = 6ij = (1.14)
0, i#]
is set by considering the following Lagrangian:
L[] = (DH|®) - Y eij (piles) — 8i5)- (1.15)
ij

Imposing §£ = 0 upon a small variation ¢;(r) — ¢;(r) + dp;(r) leads to the famous Hartree-Fock

equations,

Foi(r) = ei4(x), (1.16)
where F is the one-electron Fock operator, defined by
Fe g oltr, (1.17)

h is the one-electron operator containing the kinetic energy operator and the attractive electron-nuclei

potential operator,

1 M 7
h=—--v2-) 24 1.18
7 2 (118)

and 9MF is the one-electron nonlocal Hartree-Fock (effective) potential describing the mean field
generated by the (N —1) other electrons. The latter potential takes into account the classical coulomb

repulsion (which is local) and the electron-electron exchange interaction:
N/2
oM =3 (2jj - fg—) : (1.19)

=1

where

Jipi(ry) = (/ drz‘mw> X ;(r1) (1.20)

|r1 — 12
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is a one-electron local operator and

5 1‘2 ©i( 1‘2)
Kypilry) = [ drs S e m) (1.21)

is a one-electron non local operator. Note that the summation runs over the N occupied spin-orbitals
only or, equivalently, the first N/2 spatial orbitals which are occupied twice in a spin-restricted closed-
shell formalism. It is clear from Egs. and that the Fock operator depends explicitly on
the orbitals, themselves eigenfunctions of the Fock operator in Eq. . Hence, the Hartree—Fock

solution is given by solving

M

(—V2 " Hesdimiiz] = 3 _Z;‘m> pi(r) = cipi(r) (1.22)

ol
self-consistently with an iterative method:
1. Start with a set of trial orbitals {;};
2. Compute the (orbital dependent) Fock operator
3. Solve Eq. to obtain new orbitals {y;};

4. If the difference between the sets {®;}; and {@;}; is smaller than a given threshold, then {y;};
are solutions to the Hartree-Fock equation forming the Hartree-Fock determinant. Otherwise,

return to step 2 with the new set {;}; until convergence is reached.

Note that in practice, damping factors are used in order to facilitate the convergence process.
Convergence can also be reached for a local minima instead of the global one.
Another formalism consists in rewriting the Hartree—Fock eigenvalue problem [Eq. ] in the non
orthonormal basis of atomic orbitals [Eq. (I.9)]. The optimization of the LCAO coefficient vector C

is reached when the following stationary condition is satisfied,

OE(C) _ 8 (®(C)|H|®(C))

= ———— i =0, (1.23)
oC  9C (@(C)|2(C))
thus leading to the famous Roothan equations:
FC =&SC, (1.24)

where F is the Fock matrix, S is the metric also called overlap matrix and e is the diagonal ma-
trix giving the orbital energies. The optimized Hartree—Fock molecular orbitals can be obtained by

means of unitary transformations, within the so-called exponential parametrization written in second
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quantization as [3]:
|P(k)) = e "|@o), (1.25)

where &' = —# is anti-Hermitian, and |®¢) is the Slater determinant constructed from the unrotated

orbitals. The singlet excitation operator & that allows for orbital rotations is defined as

k= Z Z Kpq (é;)UéqU - égoépg) ) (126)

p>q o

where &f, (¢45) is the creation (annihilation) operator of an electron of spin ¢ in the pth spatial orbital,
and Kk = {Kpq }pg is the matrix containing all the parameters k,, to be optimized. The Hartree-Fock

energy expression therefore reads
E(k) = (®(k)|H|®(x)), (1.27)

and the Hartree-Fock molecular orbitals satisfy the following stationary condition:

OE(k) _ 0(®(k)|H|®(x)) _
A = o = 0. (1.28)

As readily seen in Eq. the orbital optimization consists in doing single excitations, thus creating
a multideterminantal wavefunction in the given orbital basis set. Then, the orbital rotates to form a
new single Slater determinant in the transformed basis, highlighting the fact that the wavefunction
still describes a single configuration only. This should not be confused with a multiconfigurational
wavefunction, which cannot be written as a single Slater determinant, in any molecular orbital basis.
The term multiconfigurational usually refer to multideterminantal wavefunction in which more than

one determinant dominates.

By comparing the one-body Hamiltonian in Eq. (1.22) and the two-body one in Eq. (1.5), it
becomes clear that the explicit electron-electron repulsion 1/7;; has been replaced by an effective
Hartree—Fock potential containing the classical Coulomb repulsion as well as the exchange interaction,

also called the Fermi correlation. Therefore, the physical two-body Hamiltonian can be rewritten as

N N 1 N
ﬁ:ﬁwZZﬁ—Z@?F, (1.29)
i Y i

1 g>
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where
N N
Hy=> hi+> o, (1.30)

is a one-electron operator containing the mean-field Hartree-Fock potential. The difference between
H and H,y is usually called the fluctuation operator and denotes the difference between the explicit
and the mean-field treatment of the electronic repulsion. The Hartree-Fock energy Eyy is therefore
not equal to the exact ground-state one, except if this fluctuation term is equal to 0 (which is not the
case except for one electron). Due to the variational principle, which states that any trial wavefunction
¥ will have an energy greater or equal to the energy Ej of the exact ground-state wavefunction ¥
[Eq. ]7 the Hartree—Fock energy can only be an upper bound to the true ground-state energy. Its

expression for a closed-shell system with the first N/2 doubly-occupied spatial orbitals reads

N/2 N/2 N/2
Bur = (Pup|H|®ur) =2 (@ilhled) + Y (2Ji; — Kij) > Ey, (1.31)
i—1 i=1 j=1

where ®yp is the Slater determinant constructed from the self-consistently converged HF molecular

orbitals, and

Ty =Gl = Aeseileoie) = [[ arian,TENEEDARIRT),
Ky = (ij]ji) = <80i§0j90j90i>://dI‘1dI‘2(p?(rl)@;(ri)lji(rQ)wj(rl), (1.32)

are the Coulomb and exchange integrals, respectively. As readily seen in Eq. and in contrast to
the non-interacting case (1/7;; — 0), the HF energy is not a simple sum over occupied orbital energies,
simply because it describes the electron interaction. However, this description remains approximate
such that the lowest Hartree—Fock solution is not exact and is called the Hartree—Fock limit, which is
obtained when the orbital basis set reaches completeness. Going beyond this limit means accounting
for the fluctuation term in Eq. . This fluctuation can be treated as a perturbation, thus leading to
the Mgller-Plesset second-order perturbation theory (MP2) [18]. Note that the Hartree-Fock energy
is recovered by adding the first-order energy correction on top of the zeroth-order one (given by

2 vaz/f ;) in MP2. MP2 therefore accounts for electronic correlation through second-order exactly.

1.1.5 Electron Correlation

The electronic correlation energy is defined as the difference between the exact energy and the Hartree—

Fock one. It quantifies the corrections applied to the mean-field approximation in order to recover the
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exact solution of the Schodinger equation,
E.=F — Enr. (1.33)

In Hartree-Fock, the wavefunction is written as a single Slater determinant. Note that the exchange
contribution is also called Fermi correlation. The latter gives rise to the Fermi hole, i.e. the zero
probability of finding two electrons with the same spin at the same point in space. Hence, from
a mathematical point of view, Hartree—Fock already contains some correlation. However, electrons
with different spins remain uncorrelated such that the mean-field treatment of the repulsion is an
approximation. It can be proved by showing that a Slater determinant cannot be the exact solution
of the Schrodinger equation. Consider a two-electron wavefunction written in the following ansatz,

where the antisymmetrization is included in the spin part of the wavefunction (not shown),

(ry,r2) = @(r1)p(ra), (1.34)

and assume that we can find an orbital ¢(r) such that ¢(r1)e(re) is a solution of the Schrodinger

equation,

H (p(r1)p(r2)) = Ep(ry)e(rs), (1.35)

for any ry and ry values. Given that H=T+ Wee + Vne, we obtain

Wee (p(r1)(r2)) = Beor1)(r2) = (T + Vo) (1) (x2). (1.36)

Then, using the definition of the operators in Eq. (1.5)) and dividing by ¢(r1)¢(r2) leads to

1 1V; 1V3
= 5 rlgp(rl) o r2§0(r2) - 'Une(rl) - 'Une(rQ)' (137)
1 — o 2 o) 2 p(rz)
In the particular limit ro — ry = r, it comes
2
B VP o ) oo, (1.38)

o(r)

which is absurd because it has no reason to diverge. Indeed, ¢(r) could be zero for some distance but
not everywhere in space. As a consequence, the Schrodinger equation cannot be solved by a single
Slater determinant. To account for the electron correlation originating from the electronic repulsion

1/r;j, one has to go beyond the Hartree-Fock approximation. Before introducing post-Hartree-Fock
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methods, let us give more insights about this electron correlation, which has been commonly divided in
two different contributions: the dynamic correlation and the nondynamic (static) correlation |19} 20].
The short range part of the former gives rise to the Coulomb hole when the electrons are close to each
other (ro — r1), which induces a cusp in the electronic wavefunction. Its long rang part corresponds
to dispersion correlation 21|, responsible for weak interaction such as van der Waals interaction. The
dynamical correlation is usually referred to as weak correlation effects and can be recovered by mixing
the dominating Hartree—Fock reference Slater determinant with higher-order excited determinants [21}-
23]. Such a (multideterminantal) wavefunction is said to be monoconfigurational. Even though these
excited determinants are not dominating, their energy contribution is essential to reach the chemical

accuracy, for instance in the description of the Helium dimer dissociation curve [24].

On the contrary, static correlation arises when low-energy configurations are nearly degenerate
with the reference Slater determinant [21], such that no single configuration dominates and a mixing
of these configurations is needed. The wavefunction is then said to be multiconfigurational. This
correlation, also referred to as strong correlation, is the main contribution that arises in bond-breaking
of a molecule and in transition metal oxides with localized d- or f-orbitals, for instance. This thesis

focuses on this type of correlation.

A simple pedagogical example featuring static correlation is the hydrogen molecule Hy --- Hg in
a minimal orthonormal basis set containing the 1s spatial atomic orbitals centered on each atom,
X1s4(r) and x1s,(r). The linear combination of these spatial atomic orbitals leads to the well-known

bonding and antibonding molecular orbitals, respectively:

_ X1sa (1) + X155 () _ X154 (1) = X155 (1)

P10, (1) 7 ; Q1o (1) 7 : (1.39)

where the subscripts g stands for gerade (symmetric) and u for ungerade (antisymmetric). The most
natural two-electron Slater determinant to consider is the one containing two electrons in the orbital
having the lowest energy, i.e. the bonding orbital ¢1,,(r), |Pur) = [¢7,, Lp[fag\ where ¢f, (x) =
15, (r,0) = ¢10,(r)dsa and gofgg (x) = gpfay (r,0) = ¢10,(r)ds5. Using Eq. 1 , it can be shown

that the HF Slater determinant becomes

XS X | XS X | XS X |+ XS p X | ] - (1.40)

N =

ionic forms neutral forms

Hence, the Hartree-Fock wavefunction contains ionic forms ©H 4 - - - Hg and ®Hy---H g which con-
tribute equally with the neutral forms TH 4 - -~Hf9 and YH, - H; This is obviously completely

wrong when considering the dissociation limit R4p — oo, for which the exact ground-state wavefunc-
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tion should only contain the neutral forms, equally weighted. By calculating the ratio p(Rap) between
the ionic and the neutral form as a function of the interatomic distance Rp, one finds pgp(Rap) = 1
for any Rag, in total contradiction with p(Rap — oo) = 0. How can we get rid of these ionic contri-
butions? In the dissociation limit, the molecular orbitals 1., and ¢1,, are nearly degenerate. Hence,
it is not obvious if one should take [¢f, gofgg\ or |¢f, gofgu| as a single determinant. Indeed, in order
to get rid of the ionic contributions, one can check that the exact wavefunction

1 (07 «
W ranoe) = 75 (X e | = Gy ) (L41)

is obtained by combining the 2 configurations as follows,

1 (03 (a7
R v A T e ) B (1.42)

such that a mixing of two Slater determinants needs to be taken into account in order to recover the
exact wavefunction or, equivalently, the missing correlation energy in the Hartree—Fock method. It is
clear from this illustration that a single Slater determinant representing a single electronic configura-
tion (here, 103) is not enough to describe the correct physics of a many-electron wavefunction, when
static correlation dominates. To account for this missing correlation, one can use a linear combination
of Slater determinants as done in Eq. to get a multiconfigurational wavefunction. It is worth
mentioning that the unrestricted Hartree-Fock method (UHF) [25], developed to treat open shell sys-
tems, describes the Hy dissociation correctly. In the UHF formalism, the wavefunction is not required
to be a spin eigenfunction and the spatial orbitals are different for o and (3 electrons. However, there is
no guarantee that this wavefunction remains a singlet, in contrast to the restricted HF wavefunction.
Indeed, the expectation value of the total spin squared <5‘2> tends to 1 as the hydrogen molecule

dissociates, and the wavefunction reads [3]

|Punr) = |X(fsAstB | (1.43)

Therefore, although UHF enables a better description of the bond dissociation, it also contains the
so-called spin contamination which leads to a discontinuity in the dissociation curve of Hy [26]. In this
illustration, the UHF Slater determinant is contaminated by the triplet state instead of describing a

pure singlet state, and is therefore not an eigenfunction of the total spin operator 52,
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1.1.6 Configuration Interaction and Exact Diagonalization

As mentioned in the previous section, a single Slater determinant cannot be a solution of the Schrédinger
equation, because it does not contain any correlation. Instead, a better approximation consists in
writing the wavefunction as a linear combination of Slater determinants ®; constructed from the HF

orbitals. This leads to a post-HF method so-called the configuration interaction (CI) wavefunction,

W(C)) =D Crler), (1.44)
I

where the CI coefficients C = {Cr}1 (to be distinguished to the LCAO coefficients) can be obtained

from the variational principle [Eq. (1.6)] following the stationary condition:

=, (1.45)

Note that only the CI coefficients are optimized, while the LCAO coefficients in Eq. (1.9)) are fixed, in
contrast to the Hartree-Fock method [see Egs. (1.23) and (1.28])], meaning that there is no rotation of
the orbitals. An equivalent formulation of this optimization can be considered by using an exponential

parametrization, in analogy with the orbital rotation:
[¥(8)) = |9, (1.46)

where [U(0)) =3, C§0) |®) is a given starting multideterminantal wavefunction with fixed coefficients

C}O). S is the operator that controls rotations in the configuration space S = {|®;)}7,

§=3 St (| (@] - W) a). (147)

IeS

with (®;|®,) = d;;. The stationary condition becomes

OE(S) _ (W(S)[H|¥(S)) _
5 = S —0, (1.48)

where U(S) is normalized. If all the possible determinants constructed from a given basis set are con-
sidered to build the wavefunction in Eq. (1.44)), then the wavefunction is exact in this particular basis

set E| and is called the full configuration interaction (FCI) wavefunction. The number of determinants

I Considering higher-order excited determinants to build a multideterminantal wavefunction has been suggested to
describe the short-range dynamical correlation or, equivalently, the Coulomb cusp. It is interesting to note that even
the FCI wavefunction in a complete basis set of one-electron orbitals cannot describe the Coulomb cusp, due to the
two-electron repulsion 1/r12. Because a basis of atomic orbitals is considered, only bound states are described and FCI
is not exact. FCI is exact in a given and fixed basis set only. An alternative strategy consists in incorporating ri2
explicitely in the wavefunction, leading to the so-called explicitly electronic correlated method.
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Table 1.1: Number of all Slater determinants Nge; and singlet states Slater determinants N, dlet obtained
by distributing NV electrons in N spatial orbitals (or 2V spin orbitals).

N Nyet N}

det
2 6 4
4 70 36
6 924 400
8 12 870 4 900
10 184 756 63 504
12 2 704 156 853 776
14 40 116 600 11 778 624
16 601 080 390 165 636 900

18 9075135300 2 363 904 400
20 137 846 528 800 34 134 779 536

to be considered is given by

M M!
Nget = <N> = m, (1.49)

where N is the number of electrons and M the number of spin-orbitals forming the basis set. A
tabulation of the number of determinants necessary to build a FCI wavefunction is given in Tab. [I.1]
In a case of singlet states with an even number of electrons and m spatial orbitals, the number of
determinants increases exponentially with N as m”. Hence, FCI is in general not applicable and is
most of the time used as a benchmark for small systems. Relatively recently, Alavi and co-workers
have developed quantum monte carlo (QMC) method applied in the FCI space, so-called FCIQMC,

enabling to converge towards the FCI energy for much larger spaces [27].

For a given basis set, the configuration interaction in Eq. (1.44]) can be expanded as follows,

B) & |Ro) + > cf|BF) + Y ) + .., (1.50)
ia ijab

where 7, j denotes occupied orbitals and a, b unoccupied ones in the HF determinant ®;. ®¢ and (bf;’
are the determinants corresponding to the single excitation from the ith to the ath orbital, and to the
double excitation from the ith to the ath and from the jth to the bth orbitals, respectively. Because
of the intractability of such an expansion for large systems, one usually truncates the expansion to
the double excited determinants (CISD, for “configuration interaction with single and double excited

determinants”), thus leading to size-inconsistency,

Rap—+o0

E(A+B) 4 E(A)+E(®B), (1.51)
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where A and B are two subsystems (such as two atoms in a diatomic molecule). Note that it is also not
size-extensive (linear scaling of the energy with the number of electrons, the size of the molecule) [28].
The size-extensivity [29-31] can be recovered by construction when using an exponential ansatz, giving
birth to the standard coupled cluster (CC) theory [32]. Together with MP2, the CISD and CCSD are
good approximations when dynamical correlation dominates, but they tend to fail for the description of
strongly correlated systems, when static correlation is important. The reason is that static correlation
arises when a single electronic configuration is not sufficient to describe the system. However, both
CISD or CCSD are based on a single reference Slater determinant which is used to construct other

low-excited Slater determinants, thus leading to a description of a single electronic configuration.

1.1.7 Multiconfigurational Self Consistent Field

The FCI energy is invariant under orbital rotation, in contrast to truncated CI expansion. Although
the CI coefficients are optimized [Eq. ], the orbitals are frozen to the Hartree-Fock ones. Allowing
for the reoptimization of the orbitals in a truncated CI calculation leads to the so-called multiconfig-
urational self-consistent field (MCSCF) method. This additional flexibility can be achieved by using

the same exponential parametrization as in the Hartree—Fock method:
|U(k,S)) = e F|T(S)) = e Fe 5| W), (1.52)

Note that the exponential parametrization is usually not used for single state in practice, but is very
convenient for response theory and state-average calculation. The convergence is reached when the
stationarity conditions are fulfilled:

9E(r,S) OE(r,S)
ok  OS

=0, (1.53)
where
E(k,S) = (U(k,S)|H|U(k,S)). (1.54)

Depending on the composition of the configuration space, the energy will of course take different
values. The multiconfigurational form of the MCSCF wavefunction is particularly interesting to treat
static correlation, which arises when near degeneracy of states appears. Hence, one usually selects only
a specific orbital space (expected to be small) based on chemical intuition (this orbital space, called
active space, has to be composed by the orbitals responsible for such a correlation). For instance, in

the case of stretched Hs, the active space would be composed by two electrons in the two molecular
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orbitals 104 and 1o,,. In the minimal basis set, this is equivalent to FCI. If all the possible determinants
constructed from this active space are taken into account in the MCSCF calculation, we talk about
complete active space self-consistent field (CASSCF), which is FCI in the active space. Otherwise, the
method is called restricted active space self-consistent field (RASSCF). An automated selection of a
relevant and optimal active space has been recently proposed by Stein and Reiher 33| and is based
on orbital entanglement in quantum information theory. This selection is a step towards making
CASSCF a black box approach, which was unthinkable 10 years ago. The CASSCF ground-state

energy is obtained variationally as follows:
Bes = min { (W45 (1, 8)|T + Wee + Vo 995 (s, 9)) |, (1.55)

where U¢AS (k, C) is the wavefunction built from all possible Slater determinants constructed from the
orbitals contained in the CAS. The inactive and virtual orbitals outside the CAS are involved in the
orbital rotation, which can be seen as mono-excitations from the inactive to the active, from inactive
to the virtual, and from active to the virtual, thus contributing to the minimization of the CASSCF
energy. Note that the rotation does not apply within the CAS where all possible determinants are
constructed.

CASSCEF is in principle able the treat static correlation, but not the dynamical one. This defi-
ciency can be fixed by applying perturbation theory onto a multiconfigurational method, leading to
the CASPT2 approach [34] as well as the so-called N-electron valence state second order perturbation
theory (NEVPT?2) [35] [36] ; or multireference CI (MRCI) (see for instance Ref. |37] and references
therein) which consists in generating higher-excited determinants from more than one reference de-
terminant. Despite the overall performance of the CASSCF and related methods, the exponential
scaling with respect to the number of single particle states in the active space prevents its application
to more than 18 electrons in 18 orbitals, which can be insufficient for the accurate treatment of highly

complex systems [38].

1.1.8 Density Matrix Renormalization Group

This section aims to provide a brief overview of the density matriz renormalization group (DMRG)
method, originally developed by S. White in 1992 |39, |40] to treat one-dimensional (1D) models. For
the first time in 1999, DMRG has been applied to a molecule by mapping the molecular orbitals onto
a 1D quantum lattice model [41]. Since then, DMRG has gained increasing interest in quantum chem-
istry due to its faculty to treat much larger active space than standard CASSCF, up to 40 electrons in

40 orbitals |42} |43] instead of 18 electrons in 18 orbitals within CASSCF, thanks to its wavefunction
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ansatz: the matriz product state (MPS) which is a low rank decomposition of the FCI tensor. DMRG
codes for quantum chemistry are the spin-adapted Block code [44] 45| and the QCMaquis software [46].
The derivations made in this section are mainly based on the review by Schollwock [47], which is a
useful introductory reference for beginners in DMRG. Other DMRG reviews are provided in Refs. |42,
46, 48|, and a practical guide to quantum chemists is reported in Ref. [49]. Before considering the

MPS ansatz, some algebraic tools should be introduced.

Singular value decomposition

Consider an arbitrary rectangular matrix M of dimension (N4 x Np). This matrix can be decomposed

using the singular value decomposition (SVD),
M =UAVT A =diag{\,\o,..., \}, (1.56)

where U is a rectangular matrix of dimension (N4 x min(N4, Np)) with orthonormal columns (UTU =
1), A is a square diagonal matrix of dimension (min(N4, Ng) X min(N4, Np)) with positive entries
{\;} called singular values, and VT is a rectangular matrix of dimension (min(Na, Ng) x Np) with
orthonormal rows (VV = 1). Note that the left (right) singular vector U (V) is unitary only if
Na < N (Ng > Np) so that UUT = 1 (VVT = 1). The number 7 of non zero singular values is
called the Schmidt rank of M, and the singular values are sorted as A\ > Ao > ... > A, > 0. The

SVD can be used to find the optimal approximation of M by a matrix M of rank m < r:
M =UAVT, A =diag{\,\s,..., Am,0,...} (1.57)

which is done in practice by shrinking the columns (rows) of U (V') according to m.

Schmidt decomposition

SVD is the central tool in the Schmidt decomposition of the wavefunction. Consider a bipartition
of the total system in two parts A and B (for example, split the orbital space in two). The many-

body Hilbert space is then spanned by the product space {|4;)} ® {|B;)}, where {|A4;)};=1,... ~, and

.....

{IBj)}j=1,.. N5 are the orthonormal basis states of the many-body Hilbert spaces of subsystems A

and B, containing N4 and Np states, respectively. The general form of the wavefunction for this
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system is

Nag Np

=2 CylAilB;). (158)

By applying SVD onto the matrix elements C;; (i and j are the row and column indices) we obtain

N4y Ny min(Na,Ng) min(Na,Ng)

ZZ Z UiadaVEIADB) = 3 Aalda)|Ba), (1.59)

[e3

with Y~ A2 =1 for the normalization of ¥ and

NA NB
> Uialdi) =14a), Y ViIBj) = |Ba). (1.60)

i J
Exactly like in the SVD, an approximation |¥) to |¥), (optimal in a least squares sense || [¥) — |®) ||2)
can be obtained by neglecting the smallest singular values (or Schmidt numbers) A, thus leading
to a smaller number of terms in the summation in Eq. (1.59). This approximation is one of the key

ingredient in DMRG, as shown in the following.

Returning to DMRG, the general form of the FCI wavefunction in Eq. (1.44)) can be rewritten in

the occupation number representation for & orbitals:

|\Il>: Z Cn1 RS nk‘nl k> (161)

Nk

where |ny...n;...n) is an occupation number vector representation of a Slater determinant [see

Eq. (LI3)]:
1. g = (c{) (c*) (CL)” Ivac) (1.62)

and n; denotes the d-dimensional occupation state of the ith orbital with {|n;)} = {|vac),| 1), | 1), | T4
)}, so that d = 4. In contrast to Eq. where each creation operator creates an electron in a given
spin-orbital, the exponant n; applied on the creation operator é;[ in Eq. 1} denotes the occupation
state created in the ith spatial orbital, which can be either empty, occupied by one electron with spin
up or down, or doubly occupied. We have already seen that it is common to truncate the size of the
configuration space, either by considering only singles and doubles (truncated CI), or by restricting

the configuration space to a given set of orbitals (CASSCF). Then, the CI coeflicients are optimized
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according to the variational principle. The underlying idea in DMRG is to truncate the CI coefficients

in the MPS representation. Let us now introduce the MPS wavefunction ansatz.

Starting with the wavefunction in Eq. (1.61)), we decompose it into left (nq) and right (ns...ng)
blocks:

) =" > Clnnynanm)na)Inz . .n), (1.63)

niy n2...Mg

where we recall that molecular orbitals are mapped onto a 1D quantum lattice model. The previously
introduced state vector Cy,.. ., in Eq. (1.61) is now viewed as a matrix C(y,)(n,...n,) Oof dimension
(d x dE=1) where the left (n;) and right (ng...n;) block states are the row and column indices,

respectively. Applying the SVD on this matrix, as in the Schmidt decomposition [Eq. (1.59)], leads to

T1
_ T
Cnymam) = 2 Ui Ben Vi) (o mi): (1.64)

a1

with the rank r; < d, such that the wavefunction reads

D) =37 > > UniyenAaa Vi naemny P02 - nk) = > Aoy [Lay )| Ray), (1.65)

ni Na..np o1 ai

where the left and right-singular vectors are defined as

|Lay) = ZU(nl)(a1)|n1>a |Ra1> = Z V(Ll)(m,,_nk)|n2-~-nk>v (1.66)
ny na... Nk
respectively. Then, the matrix product Ay, V(Ll)(mmnk) in Eq. l) is rewritten as a vector Cy,ny...n,

that can be decomposed into a matrix form C(q,n,)(ns...n,) Of dimension (rid x d*=?%). By applying

SVD again, it comes:

72
— § : T
Clarns)(ng...nx) = U(Oélnz)(M)AazV(ag)(ng...nk)’ (1.67)

a2

with the rank ro < r1d < d?. Inserting Eq. (1.67)) into (1.64) gives a new expression for the state

vector,

T1
Cnl...nk = Z U(nl)(al)C(alng)(ng...nk)a (168)

al

which leads to a Schmidt decomposition of the original wavefunction with respect to the new left and
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right blocks:

T2
‘\I/> = ZAa2|L062>|RCK2>7 (169)
Qs
where
‘La2> = Z U(alnz)(az)lLa1>‘n2>’ |R0¢2> = Z V(Taz)(n&.,nk)|n3 . nk> (1-70)
a1ng nz...nk

We reiterate these steps by growing the left block and performing further SVDs recursively, until

reaching the end of the lattice:

Tk—1
|U) = Z Ao\ Lap_ ) Ras_1) (1.71)
ap_1
with rank 7,1 < d*~! and
‘Lai> = Z U(Ozi—lm)(ai)‘Laz‘—1>|ni>7 (Z =2,...,k— 1)7 (1'72)
Q;—1n;
IRak71> = Z‘/(lkfl)(nk)‘nk>' (173)
ng

Finally, these successive SVDs and Schmidt decompositions have led to a new expression for the

wavefunction,

W) = Z Z U("l)(al)U(a1n2)(a2)U(0t2n3)(a3) cee U(O‘k72nk—1)(0‘k71)‘/(-Lk_l)(nk)|n1 ng). (1.74)

ny...Ng 1.0

Replacing the matrix Ui, ,n,)(a,) Of dimension (r;_1d x r;) by a set of d(= 4) matrices A" of

dimension (r;_1 x r;) with entries A}! = U(a,_,n,)(a;), We obtain

‘\Ij> = Z Z Agi Agzaz e Agz:;ak—lAZ:—l |n1 e nk>7 (175)

ny...ng &1...g

where AQ! = Uy, )(a,) and Ak = V(Lkil)(nk) are a set of d(= 4) row vectors and columns vectors,
respectively. This form can be further compacted by recognizing the sum over {a;} as a matrix

multiplication:

ny... Nk

which is nothing but the wvariational MPS ansatz of the wavefunction [50, |51], yielding a variational



26 ELECTRONIC STRUCTURE THEORY IN QUANTUM CHEMISTRY

upper bound for the ground-state energy. This whole procedure starting from the left (i = 1) and
finishing when the left block has reached its maximal size (i = k — 1) is called a sweep. Once this
sweep is done, it goes back in the reverse direction, starting from the right and growing over the left
side, defining a macro-iteration. The process converges after several macro-iterations (defining the
number of sweeps), when a threshold value is reached for the energy.

What makes DMRG appealing in term of computational cost is the approximation of the wave-
function in Eq. by optimally truncating the A™ matrices, keeping only the m highest singular
values (so-called the virtual dimension) for each applied SVDs [Eq. (L.57)]. An optimal value for m
is not universal, and one can resort to extrapolation techniques [52, [53]. DMRG has a polynomial
scaling |53| with respect to both m and k as O(m?k* + m3k3), which considerably reduces the com-
putational cost of the method in contrast to FCI, thus explaining why DMRG can treat an active
space up to 40 electrons in 40 orbitals. Of course, m should be kept large enough to conserve as much
as renormalized states as possible, but sufficiently small to reduce the computational cost. Besides,
DMRG is not invariant under orbital rotations, such that the choice of the molecular orbitals as well
as their ordering [49, 54] on a 1D lattice are of considerable importance, otherwise one could converge

to a local minima [52, 55].

1.2 Reduced Quantity Theories

One may wonder if searching for the many-body wavefunction is the only way to reach an accurate
description of the many-particle system featuring quantum effects. As mentioned in the previous
section, obtaining an exact (or even highly accurate) numerical solution becomes rapidly impossible
when the number of electron increases. An amusing illustration of this problem has been given by
Hardy Grosﬁ for the wavefunction of the oxygen atom (1s22s%2p*), hence having 24 degrees of freedom

(3N =3 x 8, where N is the number of electrons). In order to plot the potential energy surface,

/drl/drg /drN\I!*(rhrg,...,rN)fI\IJ(rl,rQ,...,rN), (1.77)

the wavefunction ¥(ry,ra,...,ry) has to be stored. To do so, each coordinate can be discretized by
10 values, leading to 10?* values to store. So we would need a table with 10?* entries or equivalently
10%* bytes if one entry corresponds to one byte. Then, considering a standard DVD with a capacity
of 5 GB (5 -10° bytes), it means that 2 - 10 DVDs are needed to store the wavefunction of the

oxygen atom with only 10 points per coordinate. If a DVD’s weight is approximately 10 grams, then

2In the IPAM (Institute of Pure and Applied Mathematics) summer school entitled Mathematical Foundations of
Density Functional Theory, UCLA (2016).
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we would need 2 - 10° tonnes of DVDs ! There are different points of view regarding this issue. First,
one can wait for better computers to be able to treat larger and larger systems accurately using
wavefunction methods and exact diagonalization (equivalent to FCI), as suggested by the empirical
law of G. Moore, one of the founders of Intel enterprise, which states that the number of transistors
in a microprocessor doubles every two years |56} 57]. However, this empirical law is nearing its end,
as the transistors have reached the size where quantum effects play an important role [58]. Although
not new [59} |60], the field of quantum information theory on the development of quantum computers
and associated algorithms have gained increasing interest recently in quantum chemistry, due to
their possible application to the description of quantum chemical problems out of reach by classical
computers [61H63|. Of course, the development of quantum computers has its own issues which are out
of the scope of this thesis. Meanwhile, one still has to find a better way to treat the electronic structure
efficiently. A question arises naturally: are there methods able to reach the chemical accuracy with an
affordable computational cost 7 The answer to this question is yes. In principle. And these methods
use reduced quantities as basic variable such as, for example, the electronic density, the one-particle
density matrix, or the one-particle Green’s function instead of the many-body wavefunction. This
section is devoted to these reduced quantity theories, starting from the well-known density functional
theory (DFT) and followed by the reduced density matriz functional theory (RDMFT) as well as the

one-particle Green’s function theory.

1.2.1 Density Functional Theory

The concept of using the electronic density as a basic variable to treat a quantum system has first been
suggested by Thomas in 1927 |64, independently followed by Fermi [65]. It has led to the so-called
Thomas-Fermi method, which consists in representing the Hamiltonian operator as a functional of the
electron density n(r) only. Therefore, one can bypass the construction of the complicated object that
is the wavefunction and concentrate on the electronic density only, switching from ¥(x1,xXa,...,Xn)
with (3 + 1)N coordinates to n(r) with three spatial coordinates. Note that the electron density is

obtained from the wavefunction by integrating over all but one coordinate,

n(r) ZNZ/dXQ/dX3 /dXN|\I/(I‘,O',X2,.-.,XN)|27 (1.78)

where x; = (r;,0;) and f dx; = f dr; ZU Based on the uniform electron gas, they developed the

non-interacting kinetic energy functional of the electron density n(r),

Trpln] = % (37{2)2/3/(11« n®/3(r), (1.79)
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which is the first local density approximation (LDA). The total energy within the Thomas—Fermi

approximation is given by
Err(n] = Tre[n] + Vaeln] + En(n], (1.80)

where Vpe[n] = [ drn(r)vne(r) is the potential energy due to the electric attraction of the positively

charged nucleus, and

Eyln] = %// drdr'n(:)jbgll), (1.81)

is the Hartree energy, corresponding to the potential energy of the electrons due to their mutual
electric repulsion. However, when applied to real systems this method does not give accurate results,
even qualitatively, simply because there is a huge gap between a realistic interacting system and
a noninteracting uniform one. To improve on its accuracy, Dirac proposed an additional exchange

density-functional energy [66|,

Ey[n] = —Z (3>1/3/dr n*/3(r), (1.82)

which is the exact exchange functional for a uniform electron gas. Despite this correction, the Thomas—
Fermi method is still not accurate enough to describe chemical bonds qualitatively. This is not
surprising, as the origin of chemical bonds is driven by the electronic repulsion. To go beyond the
Thomas—Fermi approximation, one should include the electron repulsion in the density-functional
kinetic energy, and an additional correlation functional of the density might also be needed. Besides,
the lack of physical background establishing the uniqueness of the solution and the existence of a
universal density functional has led to wonder if all of this makes any sense, and has shelved this
theory until the mid-1960s, when Kohn (Nobel prize in Chemistry in 1998) answered “yes it does” and
called the method DFT.

1.2.1.i Hohenberg—Kohn theorems

The aforementioned theory has been revived by two theorems which provide sound theoretical foun-
dations of DFT, derived by Hohenberg and Kohn in 1964 [67]. For convenience, we start by rewriting

the external local potential operator as

N

V= Zv(ri)x = Z/dr v(r)d(r —r;)x = /dr v(r)n(r), (1.83)

i=1 =1
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where fi(r) = Zi\il d(r —r;) is the so-called density operator, with §(r —r;) the Dirac distribution. Its
expression in second quantization is provided in the Appendix [C| While T and W, are universal (i.e.
they do not depend on the nuclei), the local potential v(r) is molecule-dependent and its contribution
to the ground-state energy Eo[v] of H[v] = T + Wee + [ dr v(r)a(r) is the only one that depends

explicitly on the ground-state electron density as follows:
Eo[v] = (Uo[0]|T + Wee + V| Wo[v]) = (Wo[v]|T 4+ Wee| Tolv]) + /drv(r)no(r), (1.84)

where ng(r) = n¥oll(r) and ny(r) = (¥|A(r)| D).

The first Hohenberg—Kohn theorem establishes a one-to-one correspondence between the external
local potential v(r), up to a constant, and the non-degenerate ground-state density ng(r). Hence, if
the density is known, one has access to the external potential, and therefore to the Hamiltonian and its
associated eigenfunctions and eigenvalues. As a consequence, all the properties of the system become
a functional of the ground-state electronic density. This first theorem is a proof of contradiction.
Indeed, consider two local potentials v(r) and v'(r) that differ by more than a constant. It gives rise

to two Schrédinger equations,

Hv)|Wolu]) Eo[v]|Wo[v]),

H|Wo[v']) Eo[v'][o[v"]). (1.85)

Let us consider the case ¥y[v] = ¥y[v] which leads to
(A1) = AW]) [Wolu]) = (Eolv] — Bolv/]) [¥olv]), (1.86)

such that

v(r) —v'(r) = w =C, (1.87)

where C is a constant. Hence ¥g[v] # Uo[v'] if v(r) # v'(r) + C. Now starting with Ug[v] # ¥o[']

which are non-degenerate, the variational principle leads to two strict inequalities,

(Wo[v']| H [v]|o[v']) > Eo[v],

(Wo[v][H[v']|Wo[v]) > Eolv'). (1.88)
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Assuming that both wavefunctions have the same electronic density n%0[*!(r) = n%0[*(r) and using

Egs. (L.85), it comes

(Wov||T + Wee|Wo[v']) — (Wo[0]|T + Wee|¥o[v]) > 0, (1.89)
and

(Wo[o]|T + Wee|Wo[v]) — (Wo[v']|T + Wee|¥o[0]) > 0, (1.90)

which is absurd. In conclusion, if v(r) # v/(r) + C then the ground-state densities of the two systems
cannot be the same. They are equal to each other if v(r) and v'(r) differ by no more than a constant.
Hence, there is indeed a one-to-one correspondence between the external local potential v(r) and the
ground-state electronic density no(r). As a consequence, the nondegenerate ground-state wavefunction
of a system as well as its ground-state energy can be expressed uniquely as a functional of the ground-

state density,
no(r) «— v(r) = v[nol(r) — Yo[v] = Yo[v[no]] = Yo[no]. (1.91)

In other words, the ground-state energy is a functional of the ground-state density, Ey[v] = Eg[vng]] =

E,[ng], where

E,[n] = TIn]+ Ween| + Vin],

Fln] + / dr v(r)n(r), (1.92)

and
Fln] = (Uo[n)|T + Wee|¥o[n]) = T[n] + Wee[n] (1.93)

is the universal Hohenberg—Kohn functional. Similarly, the other observables are also functionals of

the density:

0 = (Wo[n]|O]Wo[n]) = Oln. (L.94)

The second Hohenberg—Kohn theorem is the analogue for densities of the conventional wavefunction
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based variational principle,
Ep [U] < Lk, [n}v (195)

for any trial density n(r) such that n(r) > 0 and [ dr n(r) = N. The equality holds for the ground-

state density ng(r). This leads to the following variational principle in DFT:
Eolv] = min{Eq, [n]} = Ey[no). (1.96)

That said, a problem remains: the explicit expression for the universal (in a sense that it does not
depend on local potential and thus is the same for all electronic system) functional F[n] is unknown.

The domain of definition of this functional is discussed in the following.

1.2.1.ii The v- and N-representable densities

The Hohenberg—Kohn energy functional in Eq. is defined for densities that are v-representable
only. A density said to be v-representable has to be associated with the antisymmetric ground-state
wavefunction Up[v]. As a consequence, the minimization in Eq. is over the set of v-representable
densities only.

An alternative formulation of the Hohenberg—Kohn functional is given by the so called Lieb max-

imization (or, equivalently, the Legendre-Fenchel transform) [68|, obtained by rearranging the varia-

tional principle in Eq. (1.95). This leads to, for all v(r),
F[n] > Ey[v] — /dr v(r)n(r), (1.97)
or, equivalently,

Fln]= sup {Eo[v] - /dr v(r)n(r)}. (1.98)

Note that the ground-state energy Fy[v] is a concave function with respect to v(r). For the ground-
state density ng(r), the maximizing potential is v[no](r). As Eq. is derived from the variational
principle that holds only for v-representable densities, the density in Eq. should also be v-
representable. This leads to serious difficulties as many densities have been shown to be non v-
representable |68 |69].

Fortunately, it turns out that DFT can also be formulated in a way that requires the so-called

N-representability conditions only for the densities. This is done by introducing the Levy-Lieb con-
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strained search formalism [70],

Fln) = min { (8|7 + Wee|9) }, (1.99)

which consists in searching, in the whole set of antisymmetric wavefunctions with density n(r) that
integrates to IV electrons, the one minimizing the expectation value for the operator T + Wee. Since
the density comes from an antisymmetric wavefunction, specifying the v-representability of the density

is no more needed as the search is extended to the N-representable densities [70]:
n(r) >0, /dr n(r) =N, and /dr |Vn(r)Y?? < oo, (1.100)

which is a weaker condition than the v-representability one, since the former is necessary for the
latter [5]. Note that the Levy-Lieb [Eq. (1.99)] and Hohenberg-Kohn [Eq. (L.93)] functionals coin-
cide if the N-representable density is also v-representable. In addition, this new formulation of the
universal functional generalizes the first Hohenberg—Kohn theorem to degenerate states, given that
the minimization will select only one wavefunction that reproduces n(r). Combining Eq. and
leads to the following form of the variational principle in DFT:

Eolv] = min[min{(%f—&—Wee\m} +/dr v(r)n(r)]

n v—n

min [min{(lllﬁ“ + Wee| ) + /dr v(r)nq’(r)}] : (1.101)

n v—n

which is equivalent to the original variational principle for wavefunction methods,
Ey[v] = n}ﬁn{(ﬂf + Wee\\m + /dr v(r)nq’(r)}. (1.102)

Note that the difference between the Levy—Lieb and the Legendre—Fenchel functionals is subtle, and the
reader is referred to Ref. |71] for a deeper discussion on this. One advantage of the latter formulation
is that if it is easy to calculate Ey[v] (for example in a model system), the potential remains a much
more simpler variable than the many-body wavefunction W. Hence, this formulation has been shown

useful in the various improved DFT-like methods applied on simple models [72475].

Thus far, it has not appear obvious if DF'T contains any simplification over WFT. One can therefore
wonder about the existence of any useful implementation of DFT. This answer is again “yes, it exists”,

and is the so-called Kohn-Sham (KS) DFT method.



1.2 Reduced Quantity Theories 33

1.2.1.iii Kohn—-Sham method

Although the universal functional F[n] can be found numerically through the Levy-Lieb constraint-
search formalism [Eq. (T.99)] or through the Legendre-Fenchel transform [Eq. (1.98)] for a given
density n(r), its exact analytic expression is of course unknown. Hence, the DFT formulation presented
in the previous section is a many-body theory which is even more expensive than WFT, given that the
Schrodinger equation should be solved many times. In 1965, Kohn and Sham suggested a formulation
of DFT which is a single-electron-like theory with an effective potential functional of the density,
hence succeeding in a drastic decrease of the computational cost. This is the so-called Kohn-Sham
(KS) DFT |76].

Based on the idea that only the ground-state density is needed to find all the properties of the
physical system, could this density be obtained from a noninteracting electronic system ? For such
a system, the first Hohenberg—Kohn theorem still holds so that there is a one-to-one correspondence
between the noninteracting density and the local potential, up to a constant. In this context, the
noninteracting universal functional reduces to the noninteracting kinetic energy, functional of the
density. In the Levy—Lieb constrained search formalism, it is given by

Ty[n] = mm{<<1>|T|<1>>}, (1.103)

d—n

where the minimization is over the whole set of many-body wavefunctions giving the density n(r). Note
that the minimizing wavefunction for a noninteracting system will always be a Slater determinant,
such that it is sufficient to consider Slater determinants only in the minimizing set of wavefunction.

Alternatively, one can use the following Legendre-Fenchel transform:

L[] = sup { €] - / dr v(rjn(r) (1.104)

v

where E[v] is the ground-state energy of the noninteracting Hamiltonian 7" + Jdr v(r)n(r). As for
F[n], the Levy—Lieb constrained search formalism is replaced by an unconstrained maximization over
the potential. In KS-DFT, the universal functional of the interacting system can be decomposed as

follows:
Fn] = Ty[n] + (F[n] — Ti[n]) = Ti[n] + Euxc[n], (1.105)

where Ty[n] can be expressed exactly in terms of orbitals, but for which an exact explicit expression in
term of the electron density remains unknown. The remaining term contains the difference in energy

between the fully interacting system and the noninteracting one, and is so-called Hartree-exchange-
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correlation (Hxc) energy. It should not be forgotten that this term contains a correlation contribution

from the kinetic energy and not only the contributions coming from the electron-electron repulsion,
Eyxc[n] = Tn] + Wee[n] — Ti[n]. (1.106)

The latter energy functional is usually decomposed into the explicitly known Hartree term [Eq. (1.81))]
and the unknown exchange and correlation parts. The exchange contribution is given by the expecta-

tion value of the electron-electron repulsion for the minimizing KS determinant ®%5[n] in Eq. (1.103)),
Ey[n] = (%5 [n]|[Wee|®¥5[n]) — Euln]. (1.107)

The correlation energy is the difference between the expectation value of the Hamiltonian T + Wee
associated with the exact physical wavefunction and the KS Slater determinant, both having the same

density n(r),

En] = (Wn]|T + Wee| ¥[n]) — (25 [n]|T + Wee| 2% [n])

(]| H[o[n]]|¥[n]) — (@S] | H v [n])| ¥ [n]), (1.108)

and differs from the definition of the correlation energy in WFT. Following exactly the same steps as

in the previous section, the variational principle in KS-DFT reads

Ey = min [min{<<I>|T|<I>>} + Fuxc[n] + /drvne(r)n(r)l

n |[d—-n
= min L%nin {<<I>|T|(I>> + Py [n®] + /drvne(r)n@(r)}} , (1.109)
n —n
or, equivalently,
Ey, = mqin {((I)|T|(I)> + EHXC[n‘D] + /drvne(r)né(r)} . (1.110)

By comparing Eq. with , it is clear that the Hxc energy functional does describe
implicitly the interaction between the electrons, and that the explicit 1/r;; operator has been hidden.
The minimizing KS determinant ®%5 in Eq. reproduces the exact ground-state density ng(r).
It is constructed (in a spin-restricted closed-shell formalism) from the N/2-lowest doubly occupied KS

orbitals that fulfil the following one-electron self-consistent KS equations,

1 E @KS
<—2V2 + 'Une(r) + 75 HXC[n ]> kS

Snry ) P ) =R (), (1.111)
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where

N/2
n® ) =23 K ). (1.112)
=1

Note that the same exponential parametrization as in Hartree—Fock theory can be used for optimizing
the KS orbitals, where (®(k)|H|®(k)) is replaced by (®(k)|T + Vie| ®(k)) 4 Epixe[n(x)] in Eq. (1.27),
with |®(k)) = e=#|®KS) and

n(k.x) = (k) |(r) [ B(k)). (1.113)

Note also that in practical calculations, we work in a basis of atomic orbitals as in Hartree—Fock
theory, and the Kohn—Sham equations in Eq. can be rewritten as Roothaan equations in
Eq. , where the Fock matrix becomes the KS matrix. The main difference between the KS
self-consistent equations and the Hartree—Fock ones comes from the effective potential. In contrast to

the Hartree—Fock potential, the KS one

KS

5Ech [nq’ ]

Vs(r) = vne(r) + Sn(r)

(1.114)

is local instead of non local [see Egs. and ], contains a correlation contribution, and
is constructed to reproduce the exact ground-state density of the physical system. Note that it
corresponds to the maximizing potential of Eq. . However, the explicit density-dependence
of the exact exchange contribution is generally unknown, and the exact exchange energy functional
becomes an explicit functional of the KS orbitals [see Eq. ], themselves implicit functionals of

the density:

N/2N/2 KSx KS* (/) KS KS (!
@i (1) (r) s ()i (')
EX[n]:_§ :E //drdr' ! |r7rf| , (1.115)
i=1 j=1

where i and j run over spatial occupied KS orbitals. It has the same form as the exchange contribution
in Hartree-Fock, but the orbitals are different. Because the exact exchange energy has no simple
explicit expression in term of the density, the corresponding exchange potential vy (r) = §Ex[n]/dn(r)
cannot be calculated directly. It can be approximately determined using the method of optimized
effective potentials (OEP) [77-79], which considers the functional derivative of Fy[n] with respect to

the local potential vs(r) and the application of the chain rule (see Appendix for functional calculus):

(1.116)
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where on(r’)/dvs(r) is the KS static linear-response function. The determination of OEP can be
formulated as an optimization problem where the energy is minimized with respect to the KS potential
vs(r). In practice, vs(r) is expanded into an initial guess vg(r) and a linear combination of auxiliary
functions g:(r) (typically Gaussian type functions for atoms and molecules) so that vs(r) = vpe(r) +
vo(r) + >, bege(r), where {b;}; are the expansion coefficients to be optimized. This leads to the
“discrete” OEP equations [80H82|. It should be noted here that this optimization is not without issue
and can be an ill-posed problem |79} [83]. Indeed, it can happen during the optimization of vs(r) that
the basis set {b;}; is unbalanced in comparison to the orbital basis set {x,(r)}, (for instance, some
Gaussian functions b;(r) with much higher exponent than the ones in {x,(r)},). This unbalanced basis
set problem can lead to unphysical potentials, so that many potentials can produce the same numerical
total energy. In this case, high oscillations can be observed during the optimization procedure, and
can be fixed by including smoothness in the functional [84] 85| or by requiring a minimal change in
the density upon increasing the orbital basis set |86]. Let us now turn to the exact expression for the

correlation energy, which can be obtained in the adiabatic connection formalism.

1.2.1.iv  Adiabatic Connection

The development of approximate xc energy functionals is a difficult task and a strategy is provided
by the linear adiabatic connection (AC) [87H91]. The linear AC consists in scaling the electron-
electron repulsion by a factor A while holding the density constant. Consider the following A-dependent

Schrédinger equation:
HA[][W2 o)) = EXo] | WA [u]), (1.117)
where the A-dependent Hamiltonian reads
H*[v] :T+/\Wee+Zv(r,») X . (1.118)

The local potential should be A-dependent in order to recover the exact density of the physical sys-
tem (A = 1) for any A, i.e. n*(r) = n*(r) = n(r) and v(r;) — v (r;). The analogue of the
Hohenberg-Kohn functional for a partially-interacting system is given by the Levy—Lieb constrained

search formalism,

A _ . ; 3
Fln] = énirgl{<W|T+AWee|W>},

= (UMT + AW |TH), (1.119)
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which can be alternatively written using the Legendre-Fenchel transform:

FAn) = bup EA /drv (1.120)

= &Mt - /drv (r)n(r). (1.121)

Note that Egs. (1.98) and (1.104]) are recovered from Eq. (1.120]) for A = 1 and A = 0, corresponding

to the Hohenberg—-Kohn DFT and the KS-DFT, respectively.
Given that F*=°[n] = Ti[n], the KS decomposition of F[n] = F*~![n] leads to

Fln] = Ti[n] + Erxe[n] = Tu[n] + F*=tn] — F*=[n), (1.122)

so that the Hxc energy functional reads,

F)\
Fiixe[n /dAd /d)\ (TN Wee| U, (1.123)

where the Hellmann-Feynman theorem has been used to derive the second equality. By isolating the

correlation part,
1
n] = / AW n], (1.124)
0
one can introduce the correlation integrand
W2n] = (UM Wee|T?) — (551, |2KF) (1.125)

which can also be written as

8E’\[ ]

W2in 1.126
where E[n] is given by the following scaling relation |92, 93]
A ~ ~
B2 ] = [ dw (0 Wea ) — (@70 %)) = XEfon ), (1.127)
0

with ny/5(r) = (1/A)*n(r/X). The adiabatic connection is built by varying continuously A between
0 and 1 and provides some insights about the form of the Hxc energy functional, as well as possible
routes for the development of improved hybrid functionals [94) |95]. In other words, the variation of A

allows to go continuously from a noninteracting KS reference system to the fully interacting one.
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As readily seen in Eq. , the calculation of the integrand requires the many-body wave-
function WA. Therefore, its accurate construction is very limited in practice [96], and one has to
use approximation to it, such as Gorling-Levy perturbation theory with respect to the coupling con-
stant A [97] (still keeping the ground-state density constant at each order), Padé approximation [98|,
interaction-strength interpolation [99] or other forms derived from coupled cluster theory [100]. An
alternative kinetic-energy based adiabatic connection has also been derived and offers new possibilities
for modelling correlation energy functionals [101].

The density functional approximations (DFAs) in KS-DFT — which will be discussed in the next
section — are not able to treat strongly correlated systems, i.e. systems where the static correlation
dominates. In order to develop more appropriate functionals able to describe such challenging sys-
tems, one can look at the A — 400 limit instead of the noninteracting A = 0 [102} |103], leading to the
strictly correlated electron (SCE) DFT [104H106]. When combined with the KS scheme, it is called
the KS SCE DFT approach and it has been shown promising for the treatment of strongly correlated
systems [107H110|. However, its application to chemical systems, which are not close enough to the
strong-interaction limit, remains a challenge [111} [112].

Another interesting limit which has been considered is A — —o0, corresponding to negative coupling

constant (attractive electrons) and which could be appropriate to the study of supraconductivity [113].

The underlying idea of scaling the electron interaction in the adiabatic connection has been a
source of inspiration for the development of new methods in which the electron-electron repulsion
is separated into two part: one part treated by wavefunction theory (WFT) and the other one by
DFT. It has led to in-principle exact combination of WFT and DFT theories, free of double counting

problem, as discussed in more details in Sec. [[.3]

1.2.1.v Density functional approximations

This section aims to give an overview of the different DFAs. The first and significantly old DFA that
have been developed is the local density approximation (LDA) |76} [114} [115] which is based on the
uniform electron gas [116]. Within this approximation, the exchange-correlation energy functional

reads
ELDA[] — / drn(r)exe[n], (1.128)

where ey [n] is the exchange-correlation energy per particle of a homogeneous electron gas of density

n(r). This energy can be decomposed into an exchange contribution, given in Eq. (1.82), and a
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correlation one for which accurate values have been calculated by QMC calculations [117], and then
interpolated to provide an analytic form for e.[n] [118] [119]. Going beyond LDA, the generalized
gradient approximations (GGA) |76} 120] (which use the gradient of the density) have been proposed
like B88 [121], LYP [122], PW91 |123H125] and PBE [126] functionals. Improvements are possible
by considering higher level functionals such as meta-generalized-gradient approximations (mGGAs)
implying the Laplacian of the density like the TPSS [127] and SCAN [128| functionals. The KS
potential in the above DFAs is an explicit functional of the density and can be calculated easily in
contrast to the OEP approach which is computationally expensive.

Note that because of the approximations made in the exchange and correlation energy functionals,
the unphysical self-interaction error arising from the direct product of the densities in the Hartree
functional [Eq. ] is not compensated by the exchange contribution in contrast to Hartree—Fock
theory, so that a single electron can unphysically interact with itself [129]. This self-interaction error
is a major drawback of a DFA for the calculation of band gaps, ionization potentials and electronic
affinities due to the violation of the famous piecewise linearity of the energy between two integral num-
bers of electrons |130ﬂ It can be fixed by using implicitly density-dependent functionals, so-called
hybrid functionals. The term “hybrid” comes from the idea of mixing a fraction of Hartree—Fock
exchange with density functionals. Based on arguments relying on the adiabatic connection [|131],
it has led to the B3LYP [132|, PBEO [133], and Coulomb attenuating method (CAM)-B3LYP [134]
approximations. This exchange contribution is given in Eq. but the orbitals are now opti-
mized in a Hartree-Fock way with a non local exchange potential (also called generalized KS-DFT
method [135]) in contrast to the OEP approach. The mixing parameters are usually determined by

fitting to experimental data, or determined dynamically depending on the density of the system [136].

Another deficiency in the usual DFAs is the correct description of dispersion effects and long-range
interactions such as van der Waals interactions. To overcome this issue, semiempirical dispersion
corrections can be employed 137} |138]. Note that one has to be particularly careful when developing
functionals based on empirical fitting, as it has been noted that the accurately obtained total energies
are at the expense of the accurate recovering of the electron density [139]. Alternatively, a class of
double-hybrid approximations has emerged where a fraction of MP2 correlation energy, known to
recover proper dispersion effects, is used in combination with density-functional correlation approx-
imations [140-142]. A combined HF /DFA exchange and MP2/DFA correlation functionals can also
be obtained by introducing a range-separation parameter [143H151]. This idea originates from the

range-separated DFT [152] [153] which will be described in Section All these approximations

3This will be further discussed in Chap. [5| where a solution to the band gap problem in KS-DFT will be proposed
using ensemble DFT.
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can be sorted in different categories, forming the density functional Jacob’s ladder [154] which rises up
in the “heaven”, where the exact universal functional is patiently waiting to be discovered. This brief
summary of the various approximations emphasizes how large the collection of density functionals

approximations is |155, 156].

To summarize, the KS-DFT is an in-principle exact method based on a noninteracting system,
on which is applied a single-electron effective potential. The ground-state energy and density of the
physical system can be recovered exactly, provided that the exact Hxc energy functional is used. While
this universal functional has not been found yet, several approximations have been derived and are able
to treat weakly correlated systems (i.e. systems containing dynamical correlation). Unfortunately, the
functionals present in the literature are still not able to describe strongly correlated systems such as
transition metal oxides |157] for which the ground-state is highly multiconfigurational (due to the d-
or f-orbital manifolds, responsible for static correlation). The treatment of strong (static) correlation
remains the biggest challenge in DFT, and no DFA is sufficiently accurate when applied to such system
yet.

Different paths can be investigated to fix this deficiency of the current DFAs. A promising approach
already mentioned in Sec. and which conserves the DFT formalism is provided by the strictly
correlated electron (SCE) DFT [102H110]. Another possible strategy is to merge the KS-DFT with
WEFT, as we have seen that the former performs well for the description of dynamical correlation,
while the latter can treat static correlation (at the expense of a higher computational cost) when
MCSCF-type methods are used. However, because DFT and WFT are formulated in a completely
different framework, merging the two approaches without accounting for the same correlation effect
twice (thus leading to the so-called double counting problem) is an extremely difficult task. This will
be further discussed in Sec. [I.3] and is one of the central thematic of this thesis.

It should be noted that even if the exact functional is known, there are still some quantities which
cannot be extracted exactly from KS-DFT. For instance, the description of the fundamental energy gap
(referred to as the fundamental gap, or band gap for solids) cannot be equal to the KS gap. This band
gap problem in DFT is commonly addressed by considering fractional number of electrons (i.e. DFT for
open systems) [130, 158ﬂ To improve over the description of band gaps in systems containing strongly
localized d- or f-orbitals, the introduction of a Hubbard-like correction U in the Hxc functionaﬂ
has been proposed, thus leading to the so-called DFT+U [159-161]. Although DFT+U and hybrid
functionals are of course not identical [162], they share similarities in a sense that they both add a non

local correction (the Hubbard U correction and the Hartree-Fock exchange, respectively) to a local

4This problem will be discussed in Chap.
5See Sec. for a general description of the Hubbard model
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exchange potential. However, in DFT+U one has to deal with the double counting of the correlation
due to this additional correction on top of a LDA or GGA density functional [163}|164]. Still, DET+U

does not always provide accurate band gaps [165], [166].

1.2.2 Reduced Density Matrix Functional Theory

The ground-state energy of the ab-initio Hamiltonian in Eq. in an external nonlocal potential
(e.g. the kinetic operator, the hopping in the Hubbard model, or even a potential in the presence
of a magnetic field) can be written as a functional of the one-body density matrix (IRDM) and the
diagonal of the two-body reduced density matrix (2RDM) only (see Appendix:

E[, TP = Thl+ WP+ Vi)

2 !
/ dxdx’§(x — x') <—V) x,x’) / dxdx (x, X3, ')
2 r—r|

+// dxdxvexs (x, x")y(x, x'), (1.129)

where the 2RDM reads
I®(xq,x;%],%x5) = N(N — 1) /dx3 /de\I'*(x’l,xé,x;g, XN (X, X)), (1.130)

and the 1IRDM,

y(x,x") :N/dXQ/dx;), /dXN‘II*(X,X27...,XN)‘I’(X/,XQ,...,XN). (1.131)

Note that the 1IRDM can be obtained exactly from the 2RDM, so that the energy is only a functional
of the 2RDM. Unfortunately, simple N-representability conditions do not exist as they require the
knowledge of all higher order density matrices from 3- up to N-order when considering N > 2 elec-
trons [167]. By not considering the N-representability constraints, the 2RDM obtained by straight
minimization of the energy in Eq. is not guaranteed to correspond to some antisymmetric
N-electron wavefunction, and one could get energies lower than the exact ground-state one. This
has justified the choice to keep only the 1IRDM as basic variable, for which N-representability con-
ditions are known, leading to the so-called (one-electron) reduced density matrix functional theory
(RDMFT) [168, |169]. Still, note that significant progress has been achieved recently in the field of
2RDM [170-172]. Intuitively, expressing the ground-state energy as a functional of the IRDM rather
than the electronic density n(r) = > ~(x,x) is appealing, because it contains more informations.

Besides, the type of chemical bond is better revealed by the off-diagonal elements of the IRDM [173]
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174]. The theoretical foundation for RDMFT has been given by Gilbert [175], who extended the
Hohenberg—Kohn theorem to nonlocal potentials, thus proving the one-to-one correspondence between
the ground-state wavefunction and the ground-state 1IRDM. This theorem guarantees the existence
of an energy functional of the 1IRDM, whose minimum with respect to all N-representable 1IRDMs
yields the exact ground-state IRDM and energy for a given non local external potential,

Fo= min {Ewﬂ}::lnm {hhy+wqﬂ}. (1.132)

YEN-rep YEN-rep

h[v] is the one-particle energy functional of the IRDM, representing the kinetic and external potential

contribution,

W] = / / dxdx’ {5(){ ~ %) (V;) e (, x’)] ~(x, %), (1.133)

and W{y] corresponds to the two-electron repulsion energy which is also an implicit functional of the
1RDM, so-called the interaction functional. As readily seen in Eq. , a major advantage of using
the 1IRDM as a basic variable is that the kinetic energy can be calculated exactly if the exact 1IRDM
is known, in contrast to KS-DFT. However, the exact energy functional Wy] = (¥[y]|[Wee|¥[4]) is

not known, in analogy with the universal Hohenberg—Kohn functional Wee[n| in DFT.

In Eq. (1.132), one has to ensure that the set of IRDM over which the minimization is done
contains only physical 1IRDM, which are N-representables. This can be done by using the Levy-Lieb

constrained search formalism which extends the domain to all pure-state N-representable 1IRDMs,
Wy] = min (¥|W|P). (1.134)
W—y

In other words, the 1IRDM has to be associated with a properly anti-symmetrized wave function. Un-
fortunately, the pure-state N-representability conditions (also known as generalized Pauli constraints)
are extremely difficult to tackle for the IRDM, although significant progress has been reported [176}-
179]. To solve this problem, the constrained-search domain has been further extended to ensemble

N-representable 1IRDMs [180], thus leading to

WMZIMlﬂFmWA, (1.135)

T(N) -y

where the T(Y) = S™ w;|W,)(¥,| is the density matrix operator describing a mixed state composed by

an ensemble of pure states |¥;) with weights w; and with the normalization ), w; = 1. Tr denotes
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the trace, such that
Tr [fW)Wee} =3 w0 (U Wee | T5). (1.136)

In other words, there exists an ensemble of N-electron wavefunctions that together yield . This
extension is particularly useful as the conditions for ensemble N-representability (also known as Pauli
constraints) are known [181]. These conditions are commonly formulated using the basis of the

eigenfunctions of the IRDM, which are the natural spin-orbitals {¢,},,
)= npep(x)e(x), (1.137)
P
which form a set of orthonormal orbitals,

<‘PP|‘Pq> = Opgs (1.138)

where {n,}, are the corresponding eigenvalues called the occupation numbers. The ensemble N-

representability conditions for an integral number N of electrons are simple and read [181]
0<m, <1, Y m=N. (1.139)

Using the spectral representation in Eq. (1.137]), the 1IRDM becomes a functional of the natural
orbitals and their occupation numbers. Because these conditions involve eigenvalues and eigenvectors
of the 1IRDM, the energy functional is commonly written as a functional of the occupation numbers

and natural orbitals,

Ely] = E{eptp, {np}pl- (1.140)

Returning to the interaction functional expression, it can be decomposed into Hartree (H), exchange

(x) and correlation (c) terms as follows:

// ‘r_r 70 XY X g (1.141)

which is identical to Ex[n] in KS-DFT, and

:_,// |r—r’| 106 X)X %) 4 (1.142)
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which is exactly written as an explicit functional of the IRDM. Only the correlation part remains

unknown. Then, numerous functionals have been developed in the context of RDMFT, of the form

r—r

Wellin) (g} = 3 fngey) [ [ e Arlic)enl )“Op,ﬁx %), (1.143)

The first one was introduced by Miiller [182], equivalently obtained by Buijse and Baerends [183] by
modelling the exchange and correlation hole of the hydrogen molecule. Since then, several correc-
tions have been derived to improve on the correlation contribution, such as the power functional [184}
185], the Goedecker-Umrigar functional |186} |187], the corrections to Buijse and Baerends functionals
(BBC) |188| [189], functionals based on the homogeneous electron gas [190] and empirical function-
als |191]. Some other functionals are based on the reconstruction of the 2RDM in terms of the
1RDM, thus leading to Piris natural orbital functionals PNOFi (i = 1,7) [192-203]. The latter aim

at recovering the cumulant part of the 2RDM, written in the following cumulant expression [204]:

qurs = nglj.s + /\pqrsh]a (1'144)
where TEE. = nynq(6pr0gs — OpsOqr) is expressed as a functional of the occupation numbers (it has

the same expression as the Hartree-Fock 2RDM but n, and n, can be fractional) and Apq-s[7] is the

cumulant part written as a functional of the 1IRDM, so that

Wely] = % > Apars[] / / dxdx’ P95 () @p(X)ipg () (1.145)

v —r/|
pqrs

Then, it is assumed that the cumulant part depends on the occupation numbers only. To simplify the
construction of A\pq.s[{n,}], Piris functionals generate the elements that correspond to Coulomb or

exchange contributions only. Note that setting A,q-s = 0 will simply lead to the Hartree-Fock energy.

In addition to molecular dissociation curves, RDMFT has also been applied to the homogeneous
electron gas [185] |205] [206] and to the description of ionization potentials, electron affinities and band
gaps in solids or molecules [207H210]. A nice review of the RDMFT and its associated functional ap-
proximations can be found in Ref. [189)], as well as a recent benchmarking of density matrix functional

approximations in Refs. [203} 211].

Despite its promising results, RDMFT is still facing issues. Indeed, for a functional to be fully
N-representable, the ensemble N-representability conditions for both the IRDM and 2RDM have to

be fulfilled. These conditions are commonly not satisfied for most of the approximate functionals [203]
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211], such that too low energies can be obtained. In principle, the ensemble N-representability con-
ditions for the 1IRDM in Eq. are sufficient [180} 212| providing that the exact functional is
known, which is of course not the case. PNOFi (i = 5,6,7) approximations fix this problem by recov-
ering the ensemble N-representable 2RDM, thus ensuring that the ground-state energy remains an
upper bound to the true energy [213|. It is worth mentioning that even though a functional fulfils the
ensemble N-representability conditions for both the 1IRDM and the 2RDM, there is still no guarantee
that it is associated to a given wavefunction. To my knowledge, the only functional that is associated
to a given wavefunction is PNOF5, which was shown to be connected to the wavefunction of anti-
symmetrized product of strongly orthogonal geminal (APSG) |214ﬂ Hence, the 1RDM is pure-state
N-representable within PNOFS5.

Another issue arises for functionals being explicit functionals of the natural orbitals and occupation
numbers, instead of being explicit functionals of the full IRDM, which is the case of most current
approximations. For instance, if there are two or more degenerate natural orbitals (in terms of
occupation numbers), the spectral representation of the IRDM is no more unique. This should not be a
problem if one performs a unitary transformation to change the basis in the degenerate subspace which
leaves the 1IRDM, and therefore the energy, unchanged. But because the functionals are explicitly
dependent on the natural orbitals and occupation numbers only, they are not invariant by unitary
transformations in the degenerate subspace, which can lead to size-inconsistency problems [215].

Finally, the mapping of the physical system onto a noninteracting one, like in DFT, is also missing
in RDMFT. The problem is that the physically interacting 1RDM is not pure-state noninteracting
v-representable [180, 216]. This is clearly understandable by looking at the property of the 1IRDM of
noninteracting wavefunction (i.e. a single Slater determinant). In the noninteracting case, the occu-
pation numbers of the IRDM are either 0 or 1 and therefore the 1RDM is idempotent, i.e. v = 2.
On the contrary, the IRDM of an interacting system will have fractional occupation numbersﬂ and
will not be idempotent. It is therefore impossible to map the physical interacting system onto a
pure-state noninteracting one having exactly the same 1RDM. However, one can consider an ensem-
ble of idempotent density matrices able to reconstruct the physical one with fractional occupation
numbers [218], but it leads to a completely degenerate orbital spectrum at the Fermi level energy.
Then, the mapping is possible and the 1RDM is said to be ensemble non-interacting v-representable,
but the molecular orbital view (essential for chemists to understand chemical processes) is completely
lost. However, this degeneracy of the orbital energies is in fact a consequence of a zero temperature

consideration in RDMFT and can be lifted by considering finite temperature [219]. In the latter ap-

6More details on geminal wavefunctions will be provided in Chap. |§|

"Note that non integral occupation numbers denote a deviation for the monodeterminantal description of the system,
so that all the natural orbitals having fractional occupation number should in principle be incorporated in the CAS of
a CASSCEF calculation [217].
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proach, the authors used another reduced quantity which is very popular in condensed matter physics,
namely the one-particle Green’s function. They provided a systematic strategy to elaborate improved
1RDM functionals by connecting diagrammatic many-body perturbation theory to RDMFT at finite
temperature. Note that at zero temperature, the corresponding Green’s function of the noninteract-
ing system in RDMFT would have degenerate poles, which is completely unphysical [219]. Like in
RDMEFT, ensembles have to be considered to overcome this issue.

Alternatively, one could consider mapping the physical system onto a partially-interacting one
instead of a non-interacting one. This mapping would be able to reproduce the physical pure-state
N-representable 1IRDM from the partially interacting system. This idea was originally suggested by
P. W. Ayers (not published) and will be investigated in chapter @, where a seniority-zero wavefunction
is used as a reference to get a pure-state N-representable 1IRDM, while a functional of the IRDM is

employed to recover the missing correlation.

1.2.3 One-particle Green’s function

This section uses the material presented in the PhD theses of Fabien Bruneval [220] and Elisa Re-
bolini [221]. The reader is referred to these two references for a more advanced introduction about
Green’s function.

Let us start from the many-body second-quantized Hamiltonian written in real space (see Appendix|C|):

o= /dX\iJT(x)h(r)\i/(x) Jr;//dxdx,@T(X)@T(x')@(x/)@(X)’ (1.146)

v —r'|

where Uf(x) (U(x)) is the creation (annihilation) field operator of one electron with spin o at position
r and h(r) = (=1/2)V2 +v,0(r). We define the time-ordered one-particle Green’s function of a system

with NV electrons as

iG(1,2) (N|T [@(1)@(2)} IN)

= 0t — ta) (NJE()FTQ)IN) — 0t — 1) (N[ T (2)F(1)| V), (1.147)

where |N) is the ground state of the N-electron system. For convenience, the short-hand notation
1 = (x1,t1) = (r1,01,t1) has been introduced. T is the time-ordering operator which orders the
operators with larger times on the left. In practice this is done by considering the Heaviside step
function € that reads

O, t1 < to

O(ty — to) = . (1.148)
1, t1>12
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In contrast to the previous approaches, a time dependence is included in the field operators (so-called

Heisenberg representation) as follows:
(1) = P (xp)e 0 GH(2) = 2l (xp)e 12, (1.149)

Therefore, the first term in the right-hand side of Eq. measures how an extra electron prop-
agates from (xo,%2) to (x1,%1), while the second term measures how a missing electron (or a hole)
propagates from (x1,%1) to (x2,t2). The one-particle Green’s function is thus a more complex (but
richer) reduced quantity than the IRDM or the electronic density. The latter can be recovered from

the Green’s function in the limit to — ¢ = #; + 0% (where 0% is an infinitesimal positive number),
y(x1,%2) = (N|UT(x1)T(x2)|N) = —iG(x11, %27 ), (1.150)
and by setting xo = x; and integrating over the spin coordinates,

n(ry) = Z’Y(I’lffl,rlcfl) = —iZG(I‘lalthI‘l(ﬁtf)- (1.151)
o1 o1
More generally, any expectation value of a one-particle operator O can be extracted from the one-

particle Green’s function,
(U|0|W) = fi// dx;dx0(x1, X2)G (X1t 1, Xt ] ). (1.152)

To compute the expectation value of two-body operators, one would need the two-body Green’s
function. However, the ground-state energy of the N-electron system can be expressed by the Galitskii-

Migdal formula [222] as,

2—1+

EY = —i/dx1 lim (ia +h(r1)> G(1,2), (1.153)
2 ot

thus becoming a functional of the one-particle Green’s function only. Let us now look at a more
explicit form of the one-particle Green’s function. Because no time-dependent external potential is
applied (FI is time-independent), the Green’s function is invariant under translation in time and we
can write the Green’s function as a function of the time difference 7 = 1 — ¢5 rather than ¢; and t».

Additionally, by introducing the closure relation for the (N —1)- and (N + 1)-electron states (denoted
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by ¢ and a indices, respectively),
D IN = 1) (N = 1,1, D IN +1,a)(N +1,ql, (1.154)

and using Eq. (1.149), it comes

iG(xi,x2:7) = O(r) Y _(NW(x1)|N + 1,a)(N + 1, al§ (x0) [ N)e B B

a

—0(—) S (N (x2) [N — 1,i)(N — 1,d[ ¥ (x1) | N)e B0 —ED7 (1.155)

%

where EZN ~!and EN*t! are the energies of the ith excited state of the (N — 1)-electron system and the
ath excited state of the (N 4 1)-electron system, respectively. Then, by using the Fourier transform

of the Heaviside step function,

+o0 —iwT +oo —iwT
o) = [ do e o) = | e (1.156)

oo 2miw 40T o 2miw —i0t]

we obtain the following expression for the Green’s function:

+oo
G(x1,%x2;7) = / dw

oo 2m

e—iw+ES T —Ef)T

D N (1) [N + 1,a)(N + 1, 0¥ (x2)| V)

a

w +10F

—i(wt+EY-EN"Hr

w — 10t

+ SN (x0) [N — 1, i) (N — 1,387 ()| V)

%

(1.157)

Then, by a simple change of variable and by recognizing the Fourier transform of the Green’s function,

+o0 d .
—wG(xl,xQ,w)eﬂ‘”, (1.158)

G(X17X2;7) :/ o

— 00

we finally obtain the Lehmann representation of the one-particle Green’s function,

fa Xl fz
E E 1.1
G, xz3 0 w—E&, +ZO+ 5 71()+’ (1.159)

where f,(x) = (N|‘il(x)|N + 1,a) and f;(x) = (N — 1,i\\i/(x)|N> are the Lehmann amplitudes,
£, = ENt' BV = —A, and & = E) — EN7! = —I, correspond to minus the exact electron
affinities A, and exact ionization energies I;, respectively. As readily seen in Eq. , the one-
particle Green’s function contains information about charge excitations i.e. ionization processes, such

as photoemission and inverse photoemission spectroscopies). Those energies are conventionally called

the poles of the one-particle Green’s function. In principle, they could also be extracted within DFT,
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because the Green’s function can be written as a functional of the density. In practice however, we
don’t know how to do this and DFT or time-dependent DFT are limited to the description of the
N-electron system (N-electron ground-state properties and neutral excitations). The “position” of the
peaks as a function of the momentum quantum number yields the band structure in solids [223]|. Note

that the total energy in real-space in Eq. (1.153)) is expressed in the frequency domain as follows,

E) = %/M dwTr [(w — k) ImG (w)], (1.160)

— 00

where p is the chemical potentiaﬁ and the imaginary part of the Green’s function gives the spectral
function, which has peaks at the poles of the Green’s function.

In practice, of course, the exact charged excitations energies and excited states are not known, and
one has to find another way to construct the one-particle Green’s function. One can start by computing
the Green’s function of a noninteracting system by solving the following equation of motion:

[iaatl - h(rl)} Gn(1,2) = 5(1,2), (1.161)

where G}, is the noninteracting Green’s function, which poles correspond to the orbital energies.
Clearly, the spectral function of the noninteracting system differs from the interacting one. For an
interacting system, the peaks are shifted and broadened and exhibit satellites (also called side-band)
in extended systems, due to the coupling between excitations in the interacting system. Those features
are totally absent in the noninteracting spectrum.

It can be shown that the fully-interacting Green’s function can be recovered from the noninteracting

one by using the so-called Dyson equation,
G(1,2) = Gxp(1,2) + // d3d4Gh(1, 3)2nx(3,4)G(4, 2), (1.162)
or, equivalently,
G71(1,2) = G; ' (1,2) — uxe(1,2). (1.163)

YHxe 18 the self-energy that contains all the effects of the electron-electron repulsion, in perfect analogy
with the Hxc energy potential in DFT [see Eq. (1.164])]. Note also that Xpx.[G] is a functional of the
one-particle Green’s function, like Epyc[n] is a functional of the density and W[y] is a functional of

the IRDM.

8The chemical potential will be further discussed in Chapter
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Instead of starting from G}, one could compute the one-particle Green’s function of the KS system,

leading to Gks. The two Green’s functions are connected as follows,
Gks(1,2) = Gi(1,2) +/d3Gh(1,3)vch(r3)GKS(3,2), (1.164)
or, equivalently,
Grs(1,2) = G 1 (1,2) — vixe(1)8(1, 2). (1.165)

The link between the KS-DFT and the Green’s function theory is provided by the Sham-—Schliiter
equation [224, 225|. The idea is to use the fact that the noninteracting density in the KS-DFT
formalism is in principle the same as the interacting one. Hence, the diagonal of both Gkg and G

gives the same ground-state density,

—iG(1,17) = —iGks(1,17). (1.166)

From Egs. (1.163) and (1.165)), it comes

G1(1,2) = GRb(1,2) — (Siee(1,2) — e (1)5(1,2)) (1.167)
or, equivalently,
G(1,2) = Gs(1,2) + / / 03d4Gxs(1,3) [Srie(3.4) — vie(3)5(3.4)) G(4,2),  (1.168)

where the double counting of the correlation is removed by subtracting the Hxc potential from the
self-energy. This equation allows to recover the physical Green’s function from the KS one. Using the

relation in Eq. (1.166) yields an equation for the unknown Hxc potential,
// d3d4Gxs(1,3) [CHxe(3,4) — vaxc(3)5(3,4)] G(4,11) = 0, (1.169)

which can be expressed in the frequency domain, thus leading to the Sham—Schliiter equation [224}

295),
// dr3dr4dwei‘“0+GKs(r1, r3;w) [Baxe(rs, ra;w) — Uxe(r3)d(rs — r4)] G(ry,r1;w) = 0. (1.170)

In analogy with DFT and RDMF'T, the one-particle Green’s function is used as a basic variable instead
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of dealing with the complicated many-body wavefunction. The functionals of these reduced quantities
are yet to be found, and we are still searching for the most accurate (and universal) approximation
for each of them. In Green’s function theory, like in DFT or RDMFT, the self-energy needs to
be approximated. It is in 1965 that Hedin proposed a set of coupled equations, so-called the Hedin’s
equations [226], that yields the exact self-energy, in principle. In practice, because these are non-linear
equations, the determination of the self-energy remains a challenge, even numerically. This set has laid
the foundation of the different self-energy approximations, like the popular GW approximation [227}-
229| for the description of band gaps |223), 230H234], and beyond using vertex corrections 235} 236].

1.3 Combining Density Functional Theory with Wavefunction
Theory

Although DFT is in principle exact, we have seen that the many approximations developed in the
literature are not adequate for the treatment of strongly correlated electrons. Since the mid-1980s,
a huge collection of different DFAs has been proposed (and is still increasing), but none of them
are able to treat multiconfigurational systems efficiently. One may wonder if searching for such a
Hxc functional is possible, or if there are other trails to follow. One of this alternative trail is the
combination of WFT with DFT. On one side, WFT is able to describe strongly correlated electrons
within the MCSCF method, but the treatment of large systems remains impossible due to its high
computational cost. On the other side, DFT is a very low cost approach that can handle calculations
on large systems, but only the dynamical correlation effects are accurately described within the current
DFAs.

Hence, merging the two approaches in order to extract the “best” of the two methods in terms of ac-
curacy and computational cost is natural and intuitive. Unfortunately, WFT and DFT are formulated
in two completely different languages. While the former uses the many-body (multideterminantal)
wavefunction, the latter is based on the simple electronic density only. Although this combination
is a very challenging task, it has gained much interest since the end-1990s. Depending on how the
merging is performed, the resulting hybrid method could account twice for the same correlation effect,
thus leading to the infamous double counting problem. One promising way of performing this merging
is to separate the electronic interaction such that one part is treated by WEFT and the other part by

DFT. This separation is not unique and is one of the central questions of this thesis.

This section is organized as follows. First, the range-separation of the two-electron repulsion

operator is introduced by using a linear scaling or the error function. The latter leads to the so-



52 ELECTRONIC STRUCTURE THEORY IN QUANTUM CHEMISTRY

called multiconfigurational range-separated DFT. Alternatively, the correlation can be separated in
the orbital space, where the orbitals are explicitly interacting in a given active space, while the
remaining (inactive) orbitals are implicitly treated by a density functional. Finally, one can also think
about a large system where a small part only would be explicitly interacting, and the rest of it treated
by DFT. This strategy leads to the so-called embedding methods. The advantages and drawbacks of

each of these distinct separations are discussed throughout this section.

1.3.1 Multiconfigurational range-separated DFT
1.3.1.i Range separation of the two-electron interaction in real space

In 1996, Savin suggested to split the electronic repulsion in real space by means of the error function,

thus leading to the following range separation of the two-electron repulsion [152, [153]:

1 erf(urio) n 1 — erf(uria)

T12 T12 12

: (1.171)

where the first term in the right-hand side of Eq. ((1.171)) is called the long-range (Ir) part and the

second term is the short-range (sr) part. The error function reads

2

2 HT12 .
erf(urie) = —/ e " dt. (1.172)
VT Jo
This leads to a decomposition of the electronic repulsion operator as follows:
Woe = Wit 4 (W = WEo) = Wl + W20, (1173)

where only the first term of the right-hand side of Eq. (|1.173|) is treated explicitly. The remaining
short-range contribution will be treated by a complementary short-range Hxc functional, thus leading

to the ground-state energy variational expression
Eolv] = m\%n{(lll\f F W4 VW) 4 Ei{,’(@‘[n‘p]}, (1.174)

where the minimizing wavefunction W# fulfils the following self-consistent equation:

Epe[n™"]

(T + Whe 4 /dr {v(r) + 5611(1‘)] ﬁ(r)) |THY) = EF|TH). (1.175)

Note that ¥# is multideterminantal as the long-range part of the repulsion is treated explicitly.

The separation is dependent on the parameter p for which two limits can be distinguished. The
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Figure 1.1: Explicit contribution of the electronic repulsion in the partially-interacting Hamiltonian
in the linearly-separated DFT (full lines) and in the range-separated DFT (dashed lines).

first limit is 4 = 0 and corresponds to a pure KS-DFT calculation. The second limit is pure WFT
and is obtained when p — +o00. For finite nonzero p values, the approach is a multideterminantal
range-separated DFT method (abbreviated as range-separated DFT in the following). To illustrate
the difference between the linear separation \/r12 (which will be further discussed in the next section)
and the range separation defined by the error function, Fig. [I.I] shows the contribution of the long-
range electronic repulsion as a function of the distance between two electrons. This contribution is the
one present in the Hamiltonian which is treated explicitly with a many-body wavefunction. It is clear
from Fig. (dashed lines) that the Coulomb hole does not need to be described by the wavefunction
in range-separated DFT (Because erf(uri2)/r12 tends to a finite value when r15 — 0). It is treated by
the complementary short-range Hxc functional. In range-separated DFT, the long-range repulsion is
taken into account by the wavefunction. For p = 1 and p = 1/2, the exact long-range electron-electron
interaction (see the red curve for A = 1) is recovered for r12 > 1.5 and r19 > 3, respectively, which
is not the case with the linear separation. This is particularly interesting as long-range interactions
(for instance van der Waals interactions) are usually not well described using standard DFT, such
that one has to incorporate dispersion corrections [137] |138| to conventional functionals, by using
MP2 [147, [237, [238|] or the random phase approximation [239} [240|. It has also been shown that the
range-separated DFT (finite p) converges faster with respect to the number of configuration state

functions than pure WFT (u — +00) [241].

Note that standard DFAs in KS-DFT cannot be used directly in range-separated DFT without



54 ELECTRONIC STRUCTURE THEORY IN QUANTUM CHEMISTRY

facing the infamous double counting problem. Hence, specific p-dependent functionals have been
developed [143H150]. In practical calculations, i has to be fixed and its value is not universal, although
it has been shown to be optimal for u = 0.4 [242].

Promising results have been obtained by combining the electronic density and the 1IRDM based
on the range separation of the electron-electron operator [243-245]. The idea is to recover the dy-
namical correlation using a short-range density functional and to treat long-range correlation effects
in RDMFT. Along those lines, the range separation has also been used to handle near degeneracies
in atoms and molecules [241], 246] as well as transition metal complexes with a large active space by
using DMRG [247].

Extensions to the time-dependent multi-configuration regime [248-252| have also been explored,
thus allowing for the description of multiple excitations [253| 254] and charge transfer excitations.
The formers are simply absent in the Kohn-Sham time-dependent DFT [255] within the adiabatic
approximation, while the latter are not well described [256] even by using the exact KS-DFT Hxc
functional (which is frequency-independent). This is due to the lack of memory effect, meaning that
the kernel should be time-dependent or, equivalently, frequency-dependent. Still dealing with the ex-
cited states, note that the Gross-Oliveira-Kohn ensemble DFT (GOK-DFT) [257-259] has also been
combined with the range-separation formalism [260-266]. During my Master studies, I had the chance
to work on GOK-DFT and to apply it to atoms and diatomic molecules. At the time, we suggested
a strategy to get weight-independent excitation energies in GOK-DFT through a linear interpolation

method [263], further improved using the extrapolation scheme of Savin [264} 267]. H

Returning to the range-separated DFT, although the method has the advantage of avoiding the
explicit description of the Coulomb hole and the range-separated wavefunction has the corrected long-
range behaviour, the construction of specific u-dependent DFAs remains a challenging task. This can

be avoided by considering the linear separation of the two-electron repulsion in real space.

1.3.1.ii Linear separation of the two-electron interaction in real space

In the spirit of the range-separated DFT, Toulouse and co-workers [141] suggested a linearly-separated
DFT in which the standard DFAs can be used (with respect to a given scaling relation). This ap-
proach follows closely the standard adiabatic connection in Sec. where the multideterminantal
U wavefunction is used instead of ®XS for the calculation of the density, therefore switching from

a mapping onto a noninteracting system to a partially-interacting one for any A in 0 < A < 1.

9These studies will not be described in this thesis, as they are not part of the main theme, which is the development
of hybrid methods focused on the ground-state. However, the ensemble DFT will be highly discussed in Chap. [5] in
another context: the extraction of the fundamental gap and first ionization potential and electronic affinity.
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The Hohenberg—Kohn functional of the fully-interacting system is then decomposed into a partially-

interacting one and a complementary A-dependent Hxc energy functional,
Fln] = FMNn] + (Fln] — Fn]) = F*[n] + Epeln). (1.176)

Note that in the noninteracting limit A = 0, the KS-DFT is recovered such that F*=%[n] = Ti[n]
and E;\;S [n] = Enxe[n]. In the fully-interacting limit A = 1, the pure WFT is recovered such that

F*=1[n] = F[n] and E;‘Izcl [n] = 0. The A-dependent interaction functional is given by
FAn] = min {<\11|T + )\Wee|\11>} = (UNT + AW, | ), (1.177)
v—n

where ¥ is introduced in Sec. According to the Hellmann-Feynman theorem, the comple-

mentary A-dependent Hxc energy functional reads

= bodFv L )
Bvelnl = [ v 0 = v v, 1.178)
A v A

After a few simple mathematical steps, it comes
Fipeeln] = (1= ) Eu[n] + Eoln] — EX[n), (1.179)

where E}[n] is given by the uniform coordinate scaling relation in Eq. (1.127). The ground-state

energy is obtained variationally as follows:
Eolv] :mqin{@Il\T—&-)\Wee—i-W\P) +ngc[nﬂ}, (1.180)

where the minimizing wavefunction > fulfils the self-consistent, (multideterminantal) extension of the

KS-DFT equation,

<T+AWee+/dr

In summary, this method decomposes the electronic repulsion as follows:

—\ 71WA
o(r) + %1 ﬁ(r)) [T = EMNTH). (1.181)

1 A (1-2x
1_2 .0 ), (1.182)
T12 T12 12

where the first term in the right-hand side is treated explicitly (in WFT) and the second term is

described implicitly with a density functional.
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Obviously, the partial interaction A/ri2 diverges when r15 — 0 even for infinitesimal values of A
so that one will have to describe a part of the Coulomb hole with WFT [see Fig. , thus leading
to a slower convergence with respect to the basis set when compared with DFT (or range-separated
DFT). Despite this drawback of the linearly-separated DFT in comparison to range-separate DFT,
note that all the functionals already developed in the literature can be used directly thanks to the

linear scaling expression of the correlation energy in Eq. (1.127]).

Let us now summarize the previous subsections. Range-separated DFT is a promising method
which merges WFT and DFT in-principle exactly. It is free from double counting problem. Interest-
ingly, this range separation of the electron-electron repulsion allows to avoid the explicit description
of the Coulomb hole by WFT, thus leading to a faster convergence with respect to the basis set
(in comparison with pure WFT). However, such an implementation necessitates the development of
p-dependent functionals. This can be done by considering a uniform electron gas with a modified
coulomb interaction, thus leading to a short-range LDA [152, [268]. A different strategy that allows
the use of the already developed functionals in standard KS-DFT (and which remains free from dou-
ble counting) is the linearly-separated DFT, thanks to the linear scaling expression of the correlation

energy in Eq. (1.127). In return, the Coulomb hole still has to be described by WFT.

Despite the fact that these two methods are in principle exact, one may wonder if this separation
of the two-electron interaction is optimal. Indeed, even though the short-range (connected with the
Coulomb hole) and long-range (dispersion, van der Waals interactions) dynamical correlations are
well defined in the coordinate space, this is more ambiguous for static correlation. Range-separated
DFT was originally formulated to describe static correlation by reproducing the accurate long-range
behaviour of the electron-electron interaction with WFT. However, static correlation can be purely
short-range, as shown on the dissociation of the hydrogen molecule [269, 270|. This static correlation,
manifested by the coupling between the [¢f, <pi,g| and |of, 90?0“‘ determinants, is correctly described
in range-separated DFT for even an infinitesimal p value. But this correct description is due to the
residual contribution (at short-range) of the long-range interaction when r15 — 0, and has nothing
to do with the accurate recovering of the long-range behaviour [270]. Hence, the separation of the

electron-electron interaction into a short- and long-range part is questionable.

Alternatively, the correlation can be separated in the orbital space, as discussed in the following

section.
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1.3.2 CAS-DFT

The static correlation is usually accurately treated with CASSCF, while the orbitals outside of the
active space are not correlated, such that CASSCF is lacking of dynamical correlation. In analogy
with range-separated DFT, this correlation could be recovered by combining CASSCF with DFT,
thus leading to the so-called CAS-DFT. The CAS-DFT energy would be obtained variationally as
follows [271} [272]:

Eo[v] = min {(xpCAS(n, S)|T + Wee + V|UCAS (55, S)) + ECAS [nWCAS("vS)]}, (1.183)

K,S

where WCAS(k, S) is the CASSCF wavefunction in Sec. (1.1.7). Note that, in analogy with range-
separated DFT, standard DFAs cannot be used directly. In order to avoid double counting problem,
the complementary correlation functional ECCAS [n] has to depend on the CAS and thus cannot be
universal. As a consequence, even though this approach looks attractive at first sight, CAS-DFT
is extremely difficult to implement in practice [273]. Note that a multiconfiguration pair-density
functional theory has been recently proposed and consists in computing the kinetic energy by WF'T,
while the correlation energy is calculated using a functional of the electron density together with an
on-top pair density correction [274].

Along those lines, a rigorous method combining CI and DFT has been explored in 1988 by
Savin [275|, so called CI-DFT. It consists in separating the correlation in the space of natural or-
bitals. The selection of the explicitly interacting orbitals is made by using a given threshold v, with
0 < v < 2. The natural orbitals with occupation greater than v are treated by CI calculation, while
the remaining part is described by a v-dependent DFA. More recently, Gutlé and Savin [276] proposed
alternative CI-DFT schemes, where the correlation energy is still split in the orbital space but through
the introduction of gap shift or cut-off parameters applied to the virtual orbitals. In these approaches,
a reference wavefunction is divided in two parts that are treated by different methods. The separa-
tion follows nicely the definition of the static and dynamical correlation provided by Becke 21|, thus

leading to three different parts,

1. a low-energy part of the one-particle spectrum involving the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) that usually drive the chemical

reactivity and properties of the system,
2. high-energy excitations, less system-specific,
3. a mixing of low- and high-excitations.

For computational reason, the CI treatment is better suited to the first part which is defined in a

rather small orbital subspace. Moreover, this subspace is likely to contain nearly-degenerate partially
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occupied orbitals, known to be problematic in KS-DFT. On the other hand, the second part is usually
well described by KS-DFT while the wavefunction calculation becomes rapidly numerically unfeasible

as the size of the subspace increases.

In both CAS-DFT and in CI-DFT, the energy is split into wavefunction-functional and density-

functional contributions. The separation is achieved in the orbital space.

An alternative approach has been formulated very recently by Fromager [270|, where the comple-
mentary correlation is recovered by a functional of the orbital occupation instead of the electronic
density. Because the static correlation is usually defined in the orbital space, one could expect the
separation of the correlation energy into WFT and DFT contributions to be easier to achieve in prac-
tice. In this context, the functional becomes a CAS-dependent functionals of the orbitals occupation.

The formulation of such an approach will be briefly discuss in Chapter [6]

Several different ways of merging WFT and DFT have been discussed already. All of these methods
are not standard in quantum chemistry for two main reasons. (1) They remain computationally
expensive, (2) they require the challenging development of new density functionals. Note that the
second point is related to the double counting problem and the fact that the standard DFAs cannot
be used. Instead of separating the electron interaction on the atoms by using a range separation,
let us consider a much larger system in which the electrons are interacting only in a small area and
treated by WFT. This area is “embedded” in the rest of the system treated by DFT, thus leading to

so-called embedding methods.

1.3.3 Wavefunction in Density Functional Theory Embedding
1.3.3.i DFT-in-DFT embedding

Consider a large system (extended system or molecule) out of reach by a pure WFT calculation, for
which only a small part of it contains the physics of interest. This small part could correspond to
impurities, vacancies, adsorbates on a solid, or even an active center in a molecule of chemical or
biological interest. Intuitively, one would like to treat only this small subsystem within a high-level
correlated method and the rest of the system with a low-level method, thus allowing (hopefully) for a
significant reduction of the computational cost while keeping an accurate description of the active part
of the system. Usually, the system will be decomposed in two parts. One is the small part containing

the active center called “cluster” and the other referred to as the environment |277|. The total energy
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is then decomposed as follows:
Eiot = Eclu + Eeny + Einta (1.184)

where FEi, is the interaction energy between the cluster and the environment. Within DFT, the total
electronic density can be decomposed as not(r) = Neiu(r) + Nenv(r) [note that two out of the three

densities can be considered as independent|, thus leading to separate energy contributions [278-H280],

Ex = Ti[na] + Eulna) + Exc[na] + E[na] + E2 (1.185)

where A can denote the cluster part (clu), the environment (env) or the total system (tot). EZ is the
electron-nuclear attraction energy functional and EZ is the nuclear-nuclear repulsion energy of the
(sub)system A. The interaction energy can be written as the difference between the total energy and

the two separate subsystem energies,

Eint [ntota nclu] = Tsint [nt0t7 nclu] + E%—?t [ntotv nclu] + E [ntota nclu] + E [ntota nclu] + EI‘]?:? (1186)

where

T [tor o] = Talneor] — Tilnei] — Tulneny]; (1.187)

B [tiors new] = Bulnvot] = Bulnc] = Bu[nen] / / ndurfeﬁ Rt (e () g qpr - (1.188)

EX ntotser] = Exc[neot] = Exc[nei] — Exe[neny], (1.189)
ER ot ne] = B neot] — Ege [nei] — EgeY [neny]

= / dr (v5e (0)neny (r) + vpe” (1) e (r)) | (1.190)

En = En - En - EnY. (1.191)

Then, we would like to solve the cluster region by taking into account the environment through the
use of an embedding potential, functional of n.t(r) and 7, (r). This potential is updated iteratively

through the following self-consistent equation:

(=572 + 0 J) + o, ne ) ) 510) = 05, (1.192)

where the embedding potential

Vemb [nt0t7 nclu] = Uty [nt0t7 nclu] + vg [nt0t7 nclu] + Uxe [ntota nclu] + Une [ntotv nclu] (1193)
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is obtained by performing a functional derivative of Ein¢[ntot, nelu] with respect to ney (r) with ney (r)

and neny (r) are considered independent. This consideration, which is not an approximation, leads to:

5Ts [ntot} N 5Ts [nclu]

oty Melu] = , 1.194
(%8 [nt ty Tl ] 6ntot (I’) 6nclu (I‘) ( 9 )
Neny (1
VH [ntot, TLC]u] = |r_(r/|)dr', (1195)
0Fxc [ntot] 0Fxc [nclu]

X I u = - 3 1 . 196
Uxc [ntot el ] Titor (I‘) 5ndu(r) ( )
Une [nto‘w nclu] = Uﬁgv (I‘) (1197)

The Hartree, the electron-nuclear attraction potentials, and the xc contribution (which is usually
approximated as an explicit functional of the density) are straightforwardly determined. However, the
noninteracting kinetic energy is not known as an explicit functional of the density and is determined
by the KS orbitals. Therefore, the kinetic contribution in Eq. 7 also called nonadditive kinetic
energy, cannot be directly differentiated with respect to the density to get the potential in Eq. .
In practice, one can use explicit DFAs like the Thomas—Fermi approximation [277] [Eq. ], gradient
corrections [278+280|, or the OEP technique [86, [2811283|. One way to get rid of the calculation
of the nonadditive kinetic energy functional is to ensure that the densities of each subsystem are
constructed from mutually orthogonal orbitals by level-shifting projections [28411287], so that Ts[niet] =
Ty[new] + Ts[neny)-

This fragmentation of the system through a partitioning of the density is called DFT-in-DFT
embedding (from the notation “(high-level)-in-(low-level)” embedding theory), where the cluster is
treated by a high-level functional (typically a hybrid functional) while the environment is treated by
a low-level functional (typically LDA or GGA). This theory has been applied to the description of
chemical processes in solution by Wesolowski and Warshel [278|. Assuming that the densities ng, (r)
and neyy (r) are independent, one has to determine each of them separately. In the latter approach, so-
called Frozen Density Functional Embedding Theory [278|, the density neny (r) is constructed explicitly
by performing a DFT calculation on the isolated environment. This density is then kept frozen so
that only ney(r) is updated in Eq. , and et (r) = nNe(r) + Nenv(r). Of course, keeping
Neny(r) frozen is an approximation which appears to be non negligible when nep(r) is significantly
smaller than net(r) everywhere in space. To overcome this issue, Wesolowski and Weber suggested
the freeze-and-thaw cycles [279] which consist in computing n.y, (r) with the frozen neyy (r), then freeze
N (r) and determine neyy (r), and do this iteratively until the densities have converged. The total
electron density obtained by summation of ng,(r) and neyy (r) should be the same as the one obtained

from KS-DFT applied to the whole system, providing that the nonadditive kinetic energy is exactly
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known, which is of course not the case in practice. Although some progress on the development of

this approximate functional can be noted [288], it remains an important open challenge.

1.3.3.ii WFT-in-DFT embedding

An extension of the DFT-in-DFT embedding scheme to wavefunctions has then been suggested by
Carter and co-worker [280], 289], for the purpose of addressing problems such as chemisorption [280}
283, 290, [291] and point defects in semicondutors [292] which are not well described in DFT. The
approach is referred to as WFT-in-DFT embedding. In this approach, the density and the energy of
the cluster is determined in WFT, while the environment is still described in DFT. The embedding
potential remains the same as in Eq. and is determined self-consistently by solving the following

many-body self-consistent equation [289]:

N
<I:Iclu + Z Vemb [Mtot, Melu) (T4) ><> Ve = EeuVelu, (1.198)
i=1

where U, is a many-body wavefunction with density nq,(r) and from which local properties of the
cluster can be extracted accurately. &, is the auxiliary energy of the cluster. Note that an alternative
way to compute the densities has been proposed, which consists in keeping niot(r) (determined by
doing a KS-DFT calculation on the whole system) frozen instead of neyy (r) [280]. This WFT-in-DFT
scheme is more flexible than DFT-in-DFT as it allows the use of different wavefunction methods,
such as MP2, CI, CASSCF [290] and Coupled Cluster [293]. In the latter, calculation of localized
excited states in large systems have been performed. Note that the description of open-shell systems
by using a spin-dependent embedding potential [294] has been proposed, as well as the recovering of
local excited state properties by using time-dependent DFT within the DFT-in-DFT framework [295].
However, time-dependent DFT with local or semi-local approximate functionals is known to fail in
describing charge-transfer excitations [255] 256, 296], which can happen inside the cluster. Hence,
WET-in-DFT is more appropriate in this context. One major problem related to the embedding
potential is its non-uniqueness [281-283| (i.e. different embedding potentials for the environment and
the embedded regions), because two different embedding potentials (both yielding the same density)
can yield different results, like different absorption energies [297]. Nevertheless, some recent progress
have been reported by constraining the embedding potentials to be the same in the cluster and the
environment [283], or by using finite temperature [297|, or within the so-called partition DFT |288]
298, 1299].

The latter approach differs from DFT-in-DFT and WFT-in-DFT in a sense that each fragment can

have a fractional number of electrons. Imagine a separation of the system in two where the frontier of
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the two subsystems is in between a covalent bond. Obviously the number of electrons would not be
integer anymore in each subsystem, thus lending weight to partition DFT. In this theory, the variable
becomes the collection of fragment densities {n,(r)}, which are allowed to integrate to a fractional
number of electrons [158]. The only constraint is that they have to sum up to the total electron
density. An extension of a WFT-in-DFT type method with fractional number of electrons in each

fragment remains an open question.

We have seen that the combination of WFT with DFT can be performed in several different ways.
In the WFT-in-DFT method, one has to define a specific area in which the electronic repulsion will
be treated by WFT. Therefore, one has to be careful when defining the partitioning of the system.
This is made much clearer in model Hamiltonians, in which the area becomes a number of sites which
occupations play the role of the electron density. Then, in the spirit of the adiabatic connection, a
mapping of the density is made between the physical system and the partially-interacting one. This
method, so-called site-occupation embedding theory (SOET) [72}270, 300, |301], is the main topic of this
thesis and will be largely discussed in Chapter [3] As a proof of concept, a model Hamiltonian [302]
(the Hubbard model) is used rather than the realistic ab initio Hamiltonian. Because the model
Hamiltonians are commonly used in condensed matter physics, the next chapter aims to provide
an introduction to the electronic structure in this field. The so-called dynamical mean-field theory
(DMFT) as well as the density matriz embedding theory (DMET), which are closely related to SOET,
will be discussed as well. Another hybrid scheme is also proposed in Chapter[6] based on the separation

of the electron correlation in the basis of natural orbitals, using a seniority-zero reference wavefunction.



Chapter 2

Electronic Structure Theory in

Condensed-Matter Physics

Due to the presence of the electron-electron repulsion in the electronic Hamiltonian, solving the
Schrodinger equation is far from trivial, as demonstrated in the previous Chapter on quantum chem-
istry. Although methods have been proposed to give a numerical solution with a relatively manageable
computational cost, it is sometimes preferable to look at a simplified and solvable version of real com-
plex systems. This is the concept of model. Despite their apparent simplicity, models can capture the
physical effects of interest and give accurate approximations to real systems. A well-known example is
the uniform electron gas, where interacting electrons are in the presence of positive charges uniformly
distributed in space, which is used to construct LDA [114]. Obviously, this model is far from the
idea that we have of a molecule, or even a solid consisting of different types of atoms. For instance,
correlation effects induced by partially filled d- or f-bands in transition and rare-earth metals, often
bounded to oxygen atoms forming transition-metal oxide complexes, cannot be described in such a

model.

As stressed in Sec[1.2.1] standard KS-DFT is not adequate for the treatment of strongly correlated
materials. A few examples among others are the Mott-insulator phase in nickel oxide NiO |1} [303]|
and titanium dioxide TiOg [165], the manganese oxide compounds with perovskite structure like
LaMnOsj [1], the vanadium(III) oxide V503 [304, 305] and the high-T. cuprates LaCuO,4 [304} 306}~
309| discovered in 1986 by Bednorz and Miiller [310} |311]. They all depict a Mott-insulator transition,
i.e. they are predicted to be metallic by band theory (equivalent to molecular orbital theory for
extended systems) when the temperature tends to 0, whereas they are in fact insulators [312-314].

Note that different types of metal-insulator transitions exist, see Ref. [315] for a review. In this
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thesis, I will be interested in the Mott insulator, where the insulating state is due to strong electron
correlation. Mott-insulators are particularly interesting because a small change in the system leads
to dramatic modifications in its properties. Such phase transitions, leading to high-T. cuprates and
colossal magnetoresistance in manganites, are controlled by Jahn—Teller effects, carrier doping, the
applied magnetic field, pressure and chemical composition. A review of these transitions is given in

Ref. [304].

Transition metal oxides are of various type, and remain an active and challenging research field,
such as the development of efficient nanodevices like molecular junctions for the design of solar (or pho-
tovoltaic) cells or also in homogeneous and heterogeneous catalysis [233]. These exotic electronic and
magnetic properties can be difficult to understand and to capture in theoretical physics. Therefore,
models have been developed in order to describe the key physical effects in these materials. Instead
of considering a model accounting for the delocalization of the electrons in the metal (large energy
bands), one needs to describe the electrons in the narrow energy bands related to the localization of
the d- or f-orbitals. While an atomic model would be sufficient to model f-electrons of rare earth
metals due to their extreme localization on the metal center, d-electrons need to be described by a
model that interpolates between delocalized (band model) and localized (atomic model) picture. Of
course, such a model does not reflect the true electronic behaviour of a real material, but it contains

the key ingredients to capture the right physics, at least qualitatively if not quantitatively.

Turning to the development of new methods for strongly correlated electrons, it appears important
to begin with such simplified models. Indeed, even if a theory which works on a model cannot be
straightforwardly applied to a real system, it is even more unlikely that a theory which does not
provide a correct description of the model will work on the real one ! This legitimates the use of
models, which remains challenging despite their apparent simplicity, like the two- or three-dimensional

Hubbard model.

In Sec. the Hubbard model will be derived from the ab-initio Hamiltonian. In order to motivate
the use of this model, its connection with high-T. superconductor cuprates (which properties are driven
by the Mott transition) is discussed in Sec. Various limits of the model, leading to the tight-
binding, the Heisenberg and the t—J models, are given in Secs DFT on the Hubbard model
[so-called site-occupation functional theory (SOFT)] is introduced in Sec. Then, another model
mainly used in physics [so called the Anderson impurity model] which describes localized defects in a
solid is introduced in Sec. Finally, two standard embedding techniques, the dynamical mean-field
theory (DMFT) and the density-matric embedding theory (DMET), are presented in Sec.
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Figure 2.1: Real part of the Bloch function (full line) and of the plane wave (dotted line). Black
circles represent atomic centers.

2.1 One-dimensional Hubbard model

For simplicity, only the one-dimensional Hubbard model is studied in this thesis.

2.1.1 From delocalized to localized orbitals

Starting with the model of a free electron gas in one dimension where electrons are completely delo-

calized, it is usual to use the “k-representation” instead of the “r-representation”,

1 oo ikx
\k>=E/W dz €|z, (2.1)

where |k) is the quantum state of one electron with momentum % and |z) is the quantum state of one

electron at position x. The associated wavefunction,
or(r) = —=€", (2.2)

is a plane wave with momentum k. Note that if we work on a segment with length L, the renormal-
ization factor would be 1/v/L instead of 1/v/27. While this model gives very useful physical insights
about metallic materials, it is not adequate to treat a finite system such as a molecule.

For a solid described by a unit cell with an infinite number of replica, plane waves are no longer

adequate and one should use Bloch functions instead,
or(x) — W(z) = up(x)e™, (2.3)

which combine a plane wave with a function uy(z) having the same periodicity as the solid (i.e. the
unit cell length). An illustration of the plane wave and the Bloch function is given in Fig. To

get even closer to an atomic description of a crystal, one can use Wannier functions @;(x) since they
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are localized and centered on the nuclei at position i. The Wannier functions form an orthonormal
basis set, i.e. (@;|®;) = J;;, and are obtained by applying the inverse Fourier transform to the Bloch

functions:

®;(z) = \/% / dk e *iw (), (2.4)

where the integral over k runs over the Brillouin zone (i.e. the primitive cell in the momentum k-space).

Turning to a one-dimensional lattice of L atoms with one basis function per atom, the integral over
k is transformed into a finite summation. & runs over all the Brillouin zone in the range —7 < k < +,
with £ = 2rm/L and m = —L/2 4+ 1,—L/2 + 2,...,L/2. The normalization factor is also changed
into 1/v/2m — 1/V/L, so that Eq. (2.4) becomes

1 o
Di(x) = —=> e My (), (2.5)
=752
and the Bloch functions can be recovered by Fourier transform:

W (z) = %L zj: eFip;(x). (2.6)

In second quantization, élg (éro) and ézg (éi5) denote the creation (annihilation) operators that create

(annihilate) an electron in the Bloch state |¥y, o) and in the Wannier state |®;, o), respectively,
|@,0) = é;a|vac>, |B;,0) = ¢&l_|vac). (2.7)

These operators are linked together by

1 ikj AT o1 —ikj
ﬁzj'e jCjo'? Cko = ﬁzje jcjav

AT
Cho =

ol —

1
. = —— e
jo \/Z Zk

i

. 1 o
kj st P— ikj A
Clgs Cjo = \/» E L€ " Cko-

Note that by using the following orthogonality identities,

1 i(k—k')j 1 ik(n—m
f Z el(k ¥ = 5k’k/; Z Z € M ) = 5nma (2~9)
J k



2.1 One-dimensional Hubbard model 67

we can show that the anticommutation rules,

JU Lt PN
C;M,C o’ :5/6]6’60'0"3 C 0-70 o’ 207 Cko’7ck'o" :0
R (el clo} =0 e i) 210)
{Clo'v _70' } 51150'0' Y { zo” _]o- } - O {éi0'7éjo"} = Oa
still hold for these operators.
2.1.2 From the ab-initio Hamiltonian to the Hubbard model
The one-dimensional second-quantized electronic Hamiltonian reads as follows in k-space:
. o+ 1 R R . R
H = Z{:‘kCLUCkg + 5 Z Z<k1/€2|k/1/€/2>clloc;r€20,ckég/ckllg7 (2.11)
ko kikakikl oo’
where the two-electron integral equals, in the spin-restricted formalism,
U ()& (2" ()W (2
(k1 ks |K)K)) = // S CULACY) ",1'( W, (@) (2.12)
T —x

Turning to the lattice system, it is convenient to use Wannier functions and to rewrite the Hamiltonian

in Eq. (2.11]) using the inverse Fourier transform in Eq. (2.4)):

H Zztlj ZUCJU+ ZZ Zj‘kl Cis jglcla’éka7 (213)

1jkl oo’

where

1 *
tij = 3 /dx b} (2)V2P;(2), (2.14)
is the hopping integral between lattice sites ¢ and j, and

(ij|kl) = / / drdy TOL D) (2.15)

|z — |

The hopping integral ¢;; is also called the kinetic contribution, the electron itineracy, the tunnelling
amplitude, or the resonance integral. In any case, it accounts for the delocalization of the electrons
in the system.

No approximation has been made on the Hamiltonian in Eq. so far. The main simplification
relies on considering that the orbitals centered on the atomic positions form an atomic shell with
smaller radius than the inter-atomic distance. Hence, only the largest value of (ij|kl) will be kept,

and is obtained when ¢ = j = k = [. This two-electron integral will be denoted by U = (ii|ii). To
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further simplify the Hamiltonian, the overlap of orbitals that are not centered on neighbour atoms
are neglected. In addition, the hopping integral between the nearest neighbouring-sites is considered
constant, thus leading to t;; = —t(J;(;41) + 0;(i—1)) where £ > 0. By applying these approximations
to the Hamiltonian in Eq. , the so-called Hubbard Hamiltonian [316-319] is obtained,

H — T+U- i,
= —tY Y (ot i) T U i, —p Y i, (2.16)
(ijy o % %
where n; = fi; + ny) is the occupation operator on site ¢ with 7, = égaéw. The last term in
the Hamiltonian is the chemical potential p which controls the electron filling in the system. It is
considered for grand canonical calculations, and omitted otherwise. In this model, ¢ and U will be
used as parameters and are no more defined as one- and two-particle integrals. As we now work in a
localized basis, it looks like real space has been discretized into a grid of points, called sites, such that
|®;) — |7). The sites form a basis set {|¢)};=1,1, so that any one-electron state previously written in

the continuum (in position representation) now reads
b= [ dopn(a)ia) — 1K) = ) (2.17)

where ¢ (i) is a discrete function of the site positions i = 1,. .., L.

In general, the single-band Hubbard model is studied, meaning that only one orbital per site is
considered, which is physically relevant for the description of solids with only one energy band at the
Fermi surface. As a consequence, each site has only four configurations: empty (|vac)), singly-occupied
(] 1) or | |)) and doubly-occupied (| 11)). An illustration of this model is given in Fig.[2.2l The ratio
U/t controls the importance of the localized electron picture over the delocalized one. Despite the
apparent simplicity of the model, an analytic solution exists only in the half-filled case (the number
of electrons equals the number of sites) in the thermodynamic limit (infinite number of sites). It is
obtained from the Bethe Ansatz, as shown by Lieb and Wu in 1968 [320]. Away from half-filling, the

exact solution based on the latter is found numerically.

The next section is devoted to the Mott-insulator state, responsible for the unusual properties of

some transition metal oxides, which can be described in the Hubbard model.
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Mott—Hubbard
insulator

Carrier doping
introduces
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Figure 2.2: One dimensional Hubbard model at half-filling corresponding to an insulator (top panel).
Carrier doping (of a hole or a particle) from the half-filled model introduces some metallicity (bottom
panel).

2.1.3 Mott insulators and the Hubbard model

The difference between a metal and an insulator was given almost ninety years ago [321H324] by the
theory of independent-electron (molecular orbital theory). If the highest occupied band is partially
filled, the material is a metal; if it is completely filled, the material is an insulator. In other words, the
Fermi level of an insulator lies in a gap between the highest filled band (valence band) and the lowest
empty band (conduction band), while it lies in the valence band for a metal. However, it has been
pointed out in 1937 by de Boer and Verwey that this independent-electron picture is not sufficient
to describe the transition-metal oxides with a partially-filled d band such as cubic nickel oxide [303,
325|, which are Mott-insulators. Several discussions have followed to explain how the Mott-insulator
state is related to the electron-electron repulsion [312, [313] |326| [327]. In the following, I will focus
on the Mott insulator and its description within the Hubbard model, derived in 1964 to describe
electron correlation in narrow energy bands [316H319]. For pedagogical purposes, it is interesting to
discuss the two-dimensional Hubbard model which is related to the high-T. cuprates, although the
one-dimensional case only is studied in this thesis. This discussion is illustrated in Fig. According
to the definition given by the independent-electron picture, the single band model should always
predict a metallic state unless the valence band is completely filled. This is in fact not true, as shown
in the following.

Fig. 2:3] shows the p- and the d-bands in a solid. The left panel describes a Mott-Hubbard in-
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Figure 2.3: Representation of the Mott—Hubbard insulator (left panel) by the single-band Hubbard
model, and the charge-transfer insulator (right panel) in CuOs plane by the multi-band Hubbard
model. Concerning the energy band diagrams at the bottom of each panel, the one on the left
corresponds to the noninteracting case while the one on the right corresponds to the interacting case

(U >0).
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sulator, while the right panel describes a charge-transfer insulator. The distinction between the two
will be explained later in this section. Let us focus on the Mott—Hubbard insulator first. In the case
of the single band model, only the d-bands remain. Starting with the non interacting case (U = 0),
the model forms a single band where electrons can move freely, and thus describes a metal. The only
way to get an insulator would be to fill the band completely, until the electrons are motionless due to
the Pauli principle. This is the standard metal-insulator transition. By switching on the interaction
(U > 0), two electrons on the same site will repeal each other, thus splitting the band in two [328].
The lower band for electrons joining an empty site and the upper band for electrons joining an already
occupied site, thus leading to the double occupation of a site which necessitates an energy U. If the
lower band is completely filled, a competition between the delocalization induced by the hopping ¢
and the localization of the electron induced by U will prevent the electrons to occupy the same site.
The system can therefore switch from a metal to an insulator state for a given value U, /t defining the
Mott-transition. For U > U, electrons are completely localized with one electron per site, and cannot
move because of the energy penalty to create a doubly occupied site. So the electronic motionlessness
is not due to the Pauli principle, but to the electron repulsion only. Away from half-filling, the elec-
trons will be able to jump on empty sites even if the repulsion U is huge. Such a carrier (particle or
hole) doping does introduce some metallization. Interestingly, reducing the dimension of the system
will diminish the critical value U, for which the Mott-transition appears, because a low dimension does
not favour the motion of the electrons. In the drastic one-dimensional case, the Hubbard model is a
Mott-insulator for any U > 0 [320], so that it does not manifest a Mott-insulator transition anymore.
However, there is still a charge gap opening, present at half-filling only. Hence, the one-dimensional

Hubbard model still exhibits a transition, which is called a “density-driven” Mott transition |329].

Let us now discuss the charge-transfer insulator by making a link between this simplified model
and the transition metal oxides. Transition metal oxides depict narrow d- bands and the Wannier
orbitals are well localized, satisfying the Hubbard assumption to neglect the non-local interactions
and to consider hopping between first neighbour only. Taking high-T. Lay;CuO,4 as an example, the
Mott-insulating phase is dominated by the d° configuration of Cu. Indeed, the high-level splitting
of the d-orbitals due to Jahn-Teller effect tells us that all d-band are filled except dy2_,2 which is
half-filled and is the only relevant orbital to be considered. Hence, considering the isolated d2_ -
band only is a good starting point for the study of high-T. cuprates. In other words, the single-band
approximation of the Hubbard model is relevant in this case [304]. However, this approximation does
neglect the hybridization effect between the d-band of the metal and the p-band of the oxygen atoms,

which appears to be important in transition metal oxides. These materials are called “charge-transfer”
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insulators rather than Mott-Hubbard insulators [330, 331], because the lowest excitation gap is now
between the (fully occupied) p-band of the oxygen and the (unoccupied) d-band of the transition
metal. As illustrated in the right panel of Fig. the overlap between the p-bands of the oxides and
the d-band of the metal cannot always be neglected. Thus, one has to consider an additional parame-
ter A = ¢4 —€p, and the single-band approximation cannot give a proper description of such systems.
The multi-band Hubbard model |315] has to be considered to model charge-transfer insulators. For
instance, a two-band model is needed to describe the cubic nickel oxide NiO, and a three-band model
for the cuprate plane CuO4 (one d-band for the Cu and one p-band for each oxygen, called also the
d — p model [304]). Despite the fact that they are charge-transfer insulators, cuprates can still be

approximated by an effective single-band model [331},1332].

Let us now investigate the noninteracting limit (U = 0) and the strongly correlated limit (t < U)
of the Hubbard model.

2.1.4 Connection between Hubbard and simpler model Hamiltonians
2.1.4.i The tight-binding or Hiickel model (the U = 0 limit)

By setting U = 0 in the Hubbard model [Eq. (2.16])], the tight-binding model is recovered,

i =t 3 (oo +lotio) =Y (2.18)
(i) i

leading to the (L x L) Hamiltonian matrix representation in the sites basis:

4t 0 0 T
b —p —t 0 0 0
0 —t —u —t 0 0
{PI]: 0 0 —t —pu 0 0 (2.19)
0 0 0 0 - —pu —t
[t 0 0 0 o —t —p

which is nothing but Hiickel theory. Note that periodic boundary conditions have been used in
Eq. (2.19), given by the additional —¢ term in the upper right and lower left elements of the matrix,
which is simply included in the Hamiltonian by setting éTL 11 = éi This Hamiltonian can be diag-

onalized in the Bloch basis by using the canonical transformation of the creation and annihilation
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bandwidth

Figure 2.4: Energy dispersion e, = —2tcos(k) of the tight-binding model plotted in the one-
dimensional Brillouin zone for 12 sites at half-filling. The Fermi momentum kg is the momentum
associated with the Fermi energy corresponding to the chemical potential p.

operators in Eq. (2.8)), together with Eq. (2.9), leading to:

H= Z(Ek — 10)é} e, (2.20)
ko
where the £, = —2t cos(k) is the dispersion relation. The bandwidth, defined as the difference between

the maximum and the minimum of ¢, equals to 4t as shown in Fig.

2.1.4.ii t—J model and Heisenberg model for ¢t < U

Turning to the strongly correlated limit ¢ < U, the hopping term in the Hubbard model can be treated
as a perturbation of the electronic repulsion. The second-order perturbation expansion at half-filling

leads to the Heisenberg model [333] |334],

fisenters — g 8788, = 0> (S75F + 587 +8785), (2.21)

(i) (i)
where S} = éj‘féila S = (S;")T = é;&ém and §7 = % (Ryr — Ryy) are spin operators. J = 4t /U is the
antiferromagnetic exchange constant. Note that there is no more non local term in the Hamiltonian, as
it would create “doubly-occupied-site” states that are prohibited in the limit ¢ < U for the ground state
at half-filling. This model describes the super-exchange interaction between antiparallel spins, while

the interaction between parallel spins is forbidden by Pauli principle (the electron-electron repulsion
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is only on-site in this model, and two electron of same spin cannot be in the same site). The term

super-exchange comes from the process of virtual double occupation:

| 14, vac)
[vac, 1)

|1, 4) —EEE, ~PPRE | 1, 1) (2.22)
which can be mediated by the oxygen atom separating two metallic centers in transition metal oxides.
A generalization of this model away from half-filling (particularly interesting to study carrier doping
leading to high-T, cuprates for instance) is provided by the so-called ¢—J model, which reintroduces

the hopping integral ¢ thanks to the creation of free charge carriers (particles or holes):

A7 =3 P (élgéjo + h.c.) P+ FHicisenbers, (2.23)
(id)o

where P is a projector that prohibits the double occupation of sites. Those two Hamiltonians allow

the study of magnetic properties of strongly correlated materials.

2.1.4.iii The Hubbard dimer

In order to have a better understanding of the physics involved in the Hubbard model, it is appealing
to reduce the size of the system. In the thermodynamic limit at half-filling, an analytical solution
is given by Bethe Ansatz [320]. Another analytical solution exits for the two-site Hubbard model,
called the Hubbard dimer, for which the exact eigenvectors and eigenvalues are known. This section
is first dedicated to the symmetric case, in the weakly correlated (U = 0) and strongly correlated
(U > t) limits, followed by the study of the asymmetric Hubbard dimer. The half-filled case (N = 2)

is considered.

Symmetric Hubbard dimer

The Hamiltonian of the symmetric Hubbard dimer is given by

1= =ty (ehotrs + Elotos) +U D iy (2.24)
- i=0,1

In the case of the singlet subspace (S = 0), the system is described by three states,

I g, o oA o
7 (chcii - C&CIT) |vac), C(T)Tcguvac), CLCJ{JV&C), (2.25)
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conveniently rewritten as

RS

\/i (| T0a$1> - | \LOaT1>)a | T\LO,VaC1>, |VaC07/Nr1>' (226)

It leads to the following Hamiltonian matrix representation,

0 V2t —V2
a]=|-vat v o | (2.27)
-2t 0 U

which gives after diagonalization,

(U—-VU2+16t2) /2 0 0
[H] = 0 U 0 : (2.28)
0 0 (U+VU?+162) /2
Turning to S = 1, the triplet subspace is spanned by the states:
1
= ) + ) ) ) ) ) ) 229
NG ([ To,d1) +1dos 1))y [tosT1),  [dosda) (2.29)

which all have zero energy. In the U = 0 limit, the whole spectrum is {—2¢,0, 2t} and the associated

wavefunctions are

=y = 5 l(| fo,41) = do, 1)) + (1o, vacr) + vacO,N1>)]7
W) = (o vaen) — fuaco. 7). (2:30)
i) = o [(| o 41) = 4o, 1)) = (| 1o, vacy) + vaco,m>)]7

where U7=0 is degenerate with the triplet states. Because the Coulomb repulsion U can be interpreted
as an energy penalty for having two electrons on the same site, we expect the coefficients for the
“doubly-occupied-site” states in U5=C to decrease with U, contrary to the “singly-occupied-site” states.
Indeed, in the strongly correlated regime (U > t), the diagonalized Hamiltonian matrix restricted to

the singlet states reads

—412/U 0 0
{H} = o U 0 : (2.31)
0 0 U+4t*/U
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so that the spectrum is {—4t2/U,0,U,U + 4t*>/U} in the strongly correlated limit. The energy 0
comes from the triplet while the singlet energies are —4t?/U, U and U + 4t%/U with the associated

wavefunctions,

|\Ij§:0> - %(|T07¢1>_ |\J/07T1>>7
|qu:0> = % (| T\LO)V&C1> - |V3,C0,T\L1>),
|\Ij§:0> = % (| T\L()vvacl> + |V3,C[),T\L1>), (232)

respectively. It is clear from Egs. (2.30) and (2.32) that increasing U reduces “double-occupied-site”
states in the ground state. Note also that there is no charge fluctuation in the ground state of the
strongly correlated limit in contrast to the U = 0 case, thus revealing the connection between U and

the localization of the electrons.

Asymmetric Hubbard dimer

In the symmetric model, the site occupation was equal to 1 on each site. If one wants more
flexibility in the model, different on-site potentials can be introduced, thus leading to the asymmetric

Hubbard dimer with Hamiltonian

==ty (ehoe1s + &0 ) + U (orioy + fngin,) + voiio + viin. (2.33)

(el

For convenience, we choose vg + v; = 0 and denote Av = v; — vy which gives (for two electrons),

= =ty (ehotrs + &0 ) + U (ioriioy + fnging) + Av(l = ), (2.34)
o

where 1 = g = 2—n3. This model is a very good laboratory for testing new methods. It can describe
various regimes of density and correlation by varying U, ¢ and Av. We have already discussed the
competition between localization and delocalization dictated by the ratio U/t. It is shown in Fig.
how the insertion of a new parameter Av affects this competition for U > t. On the left panel of
Fig. U/Av > 1 and the electron-electron repulsion prevents the electron to be on the same site,
such that the occupation is strictly 1 on each site, thus featuring a Mott-Hubbard insulator state. On
the right panel, U/Av < 1 such that the difference of potential dominates and the electrons tend to

be on the same site (charge-transfer insulator).

This model is solvable exactly. The exact energies F; are determined by solving the following
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Figure 2.5: Mott-Hubbard and charge-transfer insulators depending on the ratio U/Av for U >
t. Horizontal black lines represent spin orbitals. The red arrows represent the coulomb repulsion

magnitude U and the green arrows the difference in on-site potential Aw.

electrons with spin 1 and |. This figure is inspired from Ref. [335].

third-order polynomial equation,

which leads to [335]

where

and

—4U + (48* — U + AV®) E; + 2UE} = E?,

2 2 2
?U + é cos (0 + %(z + 1)) , 1=0,1,2 (singlet states)

0, 1i=3,4,5 (triplet state),

r= \/3(4752 + Av2) + U?,

1 U (Av? —2t%) — U?
9:§arccos ( Y )

r3

Black arrows are the

(2.35)

(2.36)

(2.37)

(2.38)

According to the Hellmann-Feynman theorem, we have access to the density (i.e. the occupation on
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site 0) of the ith state,
; 0E;
f=1- 2.39
" OAv’ (2.39)
and the one-particle density matrix,
N R : 10E;
= N B v (2.40)
Yo 2-n'

The double occupation are not the same on site 0 and site 1, but they can still be obtained exactly
by rewriting the asymmetric Hubbard dimer with two different on-site electron-repulsion parameters

UO and Ul,
g o s At oA - . i
H=—t E (cogcl(7 + clgcog> + Uptortuoy + Uriipitay + Av (1 — 7). (2.41)

Its associated energies &;(Up, Uy, Av) can be obtained by considering an effective physical system such

that [72]:

Uet — A’Ueff = Up— AU7

Uet + Aveg = U7 + Avw, (2.42)
or, equivalently,

U — Uy +Us ,
2
Uy — U

Aveg = Av+ = 5 0 (2.43)

thus leading to
gi(U07 Ul, AU) = Ez((UO + U1)/2, Av + (Ul — U())/2) (244)

According to the Hellmann—Feynman theorem, the expressions for the double occupations read

G = (horiey) = 05 _ L OB 19E; 1 (0B -
0 00, T2 00 [y sy, 280 2\ U | i o ’
(2.45)
, 08, 1 OE, 10E;, 1 ( 0F,
d; Aping) = 2 = = e +(1-n)).
! (i) = 500 = 2 30 U—osvnyy2 | 2 Av 2 <8U U (UssU1))2 ( )>
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The various derivatives can be expressed as follows, simply obtained by differentiating Eq. (2.35):

OE; 8t(U — E;)

ot —3E?4AUE; + 4t2 — U2 + Av?’

OFE; _ —2AvE; (2.46)
OAv —3E? + AUE; + 4t — U? + Av?’ '
OE; 4% +2E;(U — E;)

oU —  —3E2 +4UE; + 42 — U2 + Av?’

In the ground state of the symmetric case, the site occupation is equal to n = 1, the off-diagonal density
matrix element yp; = 4¢/U and the double occupation d = (1 — U/U)/4, where U = /U2 + 16¢2.

In addition to be solvable analytically, this model has been proven very helpful in understanding
deficiencies of DFAs, for example in the description of strong electron correlation. It has also been
used to test new ideas as a proof of concept. For example, one can cite the use of ensembles in
RDMFT [218], the benchmark of functionals in RDMFT [203} 1336} 337|, and the development of al-
ternative formulations of DFT such as lattice DFT [335], [338], site-occupation embedding theory |72,
270], thermal DFT [339], ensemble DFT [73H75, |340|, and DFT beyond the Born-Oppenheimer ap-

proximation [341].

2.2 Site-Occupation Functional Theory

The site-occupation functional theory (SOFT), also called lattice DFT, is the discretized version of
conventional real-space DFT. In this section, I will focus on the theory originally formulated by Gun-
narsson and Schonhammer [342} [343] and on the Bethe ansatz local density approzimation (BALDA).
It is worth mentioning that extensions have been investigated over the past few years by including
time- [344H346] and temperature-dependence [347, |348], as well as the steady current in connection

with steady-state transport [349} [350].

2.2.1 Density Functional Theory on a lattice

Consider a one-dimensional lattice with L sites forming a discretized space. The sites can be associated
to orthonormal orbitals centered on each nucleus (Wannier orbitals). Electron evolving on this lattice
can be described by the one-band Hubbard model in Eq. (2.16) where, for sake of generality, we

introduce an additional external potential v = {v;};,

H T+U~+V,

—t > (@l + el b)) + U D hupiay + Y viths. (2.47)

(i) ©
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In such a system, the most intuitive analogue of the density n(r) in real space is the collection of site

occupations from which a site-occupation vector n = {n;}; can be constructed as follows,

n(r) = <Z \iﬁ(x)xi/(x)> —n; = <Z @;@w>, (2.48)

where n; denotes the number of electrons on the ith site (or ith localized orbital). One may wonder if
the Hohenberg—Kohn theorem is still valid in this context. DFT on a lattice has been first introduced
by Chayes in 1985 [351], followed by the work of Gunnarsson and Schénhammer [342] in 1986 who
showed that there is indeed a one-to-one correspondence between the external on-site potential and

the site-occupation vector in the Hubbard model. Therefore, the variational principle,
Eo(v) = min{F(n) + (v|n)}, (2.49)

still holds, where (v|n) = )", v;n; and the minimization is performed over the site-occupation vector
instead of the spatial density n(r). F(n) is the analogue of the Hohenberg—Kohn functional in DFT.
It reads as follows within the Levy-Lieb constrained search formalism:
F(n) = min { ([T + 0]) }. (2.50)
¥—n
Strictly speaking, F'(n) is a function and not a functional of the site occupations, given that the site-
occupation vector is just a collection of discrete numbers. Nevertheless, the standard DFT terminology

will be used for convenience. As the Hohenberg—Kohn theorem is also valid for U = 0, we can

decompose the Hohenberg—Kohn functional as follows (in analogy with KS-DFT):
F(n) = Ts(n) + Euxc(n), (2.51)

where the Hxc energy functional is ¢- and U-dependent, but it remains universal in a sense that it
does not depend on the external potential v. In the KS decomposition in Eq. (2.51)), the hopping

plays the role of a noninteracting kinetic energy,

Ty(n) = min {(9/71w)}, (2.52)

in
V—n
thus leading to the alternative formulation of the variational principle,

Eo(v) = min{ min { (9/T19) } + (v]n) + Birve(n) }, (2.53)

n ¥ —n
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or, equivalently,
Eo(v) = mq}n{<\p|:f|\p> + (vn?) +EHXC(n‘1’)}. (2.54)

The minimizing wavefunction in Eq. (2.54) is a monodeterminantal wavefunction satisfying the fol-

lowing self-consistent equation,

@KS
vi + 8EHx8chn )] ﬁz) ‘(DKS> _ (c/‘KS|(I>KS>7 (255)

(res

where [v; + 0 Fpy.(n)/0n;] is the KS potential denoted by vX5(n). This potential is responsible for the
recovering of the same density than the physical system. If we denote by {¢x }x the occupied orbitals

in ®X5_ they fulfil the following equation (in matrix representation):

WES 0 0 0 —t| [ eti=0) | [ oui=0) |
-t RSt 0 0 0 or(i=1) er(i=1)
0 —t kS —t 0 0 or(i=2) on(i = 2)
0 0 —t 5 0 0 op(i=3) | =ex| wu(i=3) |, (2.56)
o 0 0 0 - 85, ¢ or(i=L—2) or(i=L—2)
|-t 0 0 0 t oS |ee(i=L—-1)] lor(i=L—1)]

where the density dependence in the KS potential has been dropped for clarity. This matrix repre-

sentation can be expressed in a more compact equation that reads

L
(—ti]‘ +
j=1

with ¢;; =t for j = ¢+ 1 and ¢;; = 0 otherwise. Note that the site occupations for a closed-shell

q:.KS

6Ech (1’1

‘ )
v; + on;

51'3') or(j) = erpr(i), (2.57)

system are recovered from the KS orbitals ¢ (i) as follows,

occ

ni =2 lpe(), (2.58)
k

where ¢y, (i) are either doubly or not occupied in ®%5 and form the basis in which the N-electron
wavefunction is written as a single Slater determinant. However, the N-electron wavefunction in the

basis of sites {|¢)}; is multideterminantal.
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The one-electron state in the basis of KS orbitals are related to the one-electron state of the basis

of sites as follows,

L—-1
|<Pk70'> = Z @k(i)liv U>’ (2'59)
=0

or, in second quantization,
L—1
e =" eri)el,. (2.60)
i=0

Therefore, while the KS orbitals are only not occupied or doubly occupied, the sites can be fractionally
occupied.

It is important to distinguish SOFT from the other functional theories applied to the Hubbard model,
where other quantities are used as basic variables [302]. In analogy with RDMFT, one can consider

the IRDM 1;; as variable,

Vij = <Z @Ig@ja>, (2.61)

as done by Pastor and co-workers [352H357]. Interestingly, one can recover the electronic density in

real space n(r) within this formalism [216] [302] (see Appendix D)),

n(r) = <Z ¢*<x>¢<x>> =3 i) (eloéin) (2:62)
o ijo
where {p;(r)}; are Wannier orbitals in this context. Using the whole IRDM as a basic variable is
appealing for various reasons. First of all, the kinetic energy is obtained exactly in terms of ¢;; and
Vij, in analogy with RDMFT. Therefore, the Hxc functional in this theory is ¢;;- and v-independent,
and is in a sense more universal than the v-independent only Hxc functional in SOFT. However, it
remains U-dependent, as in standard DFT where the Hxc functional depends on the coulomb inter-
action. Besides, it has been shown in the early work of Schindlmayr and Godby [216] that the IRDM
is not noninteracting v-representable, like in RDMFT. As a consequence, the KS-type scheme cannot
be straightforwardly derived. In summary, SOFT and the latter theory developed by Pastor and co-
workers are the analogues of the real-space DFT and real-space RDMFT, expressed in a discretized

real-space (a lattice of sites), respectively.

Returning to SOFT, the minimizing wavefunction in Eq. (2.54) is not expected to reproduce

anything else than the diagonal of the IRDM. However, the Hxc energy functional and its derivatives



2.2 Site-Occupation Functional Theory 83

allow to recover all the properties of the system, in principleﬂ even the two-body correlation functions
such as the double occupation and of course the ground-state energy [Eq. ] As an illustration,
let us consider the uniform half-filled case where «; = 1 for any value of U/t. For such a system,
the density does not provide any information to discern between weakly and strongly correlated
states. This difference is governed by the off-diagonal elements of the density matrix, representing
the orbital overlaps and the competition between localization (strong correlation) and delocalization

(weak correlation) of the electrons. For instance for the symmetric half-filled Hubbard dimer,

1 N - 1 1
rqu, _ o1 U/t=0
7% 1 _1 1_
0o 1 0
% ; (2.63)
0 1

where W is the exact ground-state wavefunction of the dimer. As readily seen in Eq. , the
off-diagonal elements depend on U/t. In SOFT, the repulsion between the electrons is effectively
accounted for by a local potential, functional of the density. As a consequence, the off-diagonal
elements remain unchanged when U varies, in contrast to the exact one-particle density matrix in the

basis of sites,

495 = . (2.64)

Because SOFT is a monoconfigurational method, it is also obvious that the double occupation (747 )
cannot be reproduced directly from the KS determinant. However, any observable is in principle a
functional of the density. According to the Hellmann—-Feynman theorem in Eq. (2.45) for the double

occupation, it comes, in KS-SOFT for the symmetric Hubbard dimer,

_ 19EBm.(n)

—_— 2.
d 5 oU (2.65)
and for the off-diagonal elements of the density matrix [see Eq. (2.40))],
1 (0Ts(n) OE.(n)
= — . 2.
Y01 3 ( o + 5 (2.66)

The numerical proof of these statements is given in Fig. for the two-electron Hubbard dimer, for

which a very accurate parametrization of the correlation energy has been proposed by Carrascal et al.

n practice, as the theory is currently formulated, one cannot extract dynamical (time-dependent) properties but
only static ground-state properties.
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Figure 2.6: Exact off-diagonal element of the 1IRDM (left) and double occupation (right) of the
Hubbard dimer compared to Egs. (2.66)) and (2.65)), respectively.

(see Eqgs. (102)-(115) in Refs. [335} |358]). The derivatives of the Hxc energy functional with respect
to U and t used to generate the curves in Fig. (2.6 are provided in the Appendix

Returning to the L-site uniform 1D model, the Hxc functional is simplified as follows in the mean-

field approximation for the singlet ground state,
Eiixe(n) — — E n? (2.67)
XC 4 : i .

which is called the Hartree energy by physicists, so that the exchange contribution is equal to 0 for
the Hubbard model. Indeed, for the one-band model, there is only one orbital per site, and given
that the interaction is on-site, only electrons with opposite spin interact with each other. However, in
quantum-chemical terminology, Eq. is called the Hartree-exchange energy, which is decomposed

as follows,

Fum) = Bu(n) + Be(w) = 5 Yo, (2.68)
En(n) = %er (2.69)
E.(n) = %an—EH(n). (2.70)

The correlation part remains unknown, except in some particular cases, and reads

E.(n) = F(n) — Ty(n) — % Z n. (2.71)
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2.2.2 Bethe Ansatz Local Density Approximation

In order to find approximations for the correlation energy in this context, it is useful to refer to a
reference system for which exact (or highly accurate) solutions can be found. For instance, the uniform
electron gas (UEG) has led to the famous local density approximation (LDA) in KS-DFT. Within
LDA, the xc energy of any inhomogeneous system is approximated locally in space by that of the
UEG. In the context of SOFT, the reference system is the one-dimensional uniform Hubbard model,
for which an exact Bethe ansatz (BA) solution exists [320] in the thermodynamic limit. It is obtained

from two coupled equations:

cosx [T U
plz) = % + T /,Qo dy (u/4)2 + (/y4— sin z)2 (), (2.72)

_ e u/4 A e B
W = w/Q YT (g —sm ") w/,oo Yamrs -y’ B

where n = N/L is the filling factor (the uniform density in the language of SOFT) and u = U/t the
dimensionless coupling constant. The parameter @ in Eq. (2.73) is determined from the normalization
condition ijQ dzp(z) = n while o(y) is normalized according to fj;o dyo(y) = n/2. The ground-state

per-site energy is then given by

eBAn < 1,u) = -2t /+Q dap(x) cos z. (2.74)
-Q
In some particular cases, a simpler analytical expression can be obtained. In the noninteracting case
(u = 0), the ground-state per-site energy reduces to the noninteracting per-site kinetic energy,
BAn<1l,u=0)=tP4n<1) = - sin (E) (2.75)
and for any positive value of u at half-filling (n = 1), the system becomes a Mott insulator with

per-site energy

Jo(x)J1(x)
1+ exp(zu/2))’

—+o0
eBAn=1u) = —4t/ dz (2.76)
0 z (

where Jo(z) and Jy(x) are zero- and first-order Bessel functions. The two metallic regions n < 1 and

n > 1 are connected by a hole-particle symmetry relation that reads

eBAn > 1,u) = eBA2 —n,u) +U(n —1). (2.77)
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Regarding the expression of the correlation energy,

eBA(n,u) =e

U
BA(n,u) — eBA(n,u = 0) — =n?, (2.78)
where (U/4)n? is the per-site Hx energy, and using Eq. (2.77)), it comes
€§A<2 -n, ’U,) = ecBA(na u>7 (279)
so that the per-site correlation energy is invariant under hole-particle symmetry.
In order to have an analytical expression for any density regime, Lima et al. proposed a local

density approximation based on the BA. This so-called Bethe ansatz local density approzimation

(BALDA) [359-361] leads to the following per-site energy expression,

BALDA _ —2tB(U/) sin ™
e (Un<1l) = - (6(U/t)> ) (2.80)

where the function 3(U/t) is determined by solving

-258(U/t) . ™ [T de Jo(z)Ji(x)
- sin (ﬁ(U/t)) = 4/0 v 1toxp (Ua) 5) (2.81)

This approximation is exact in the thermodynamic limit for U/t = 0 and U/t — +oco at any filling,
and for any U/t at half-filling (n = 1). Plugging Eq. (2.80)) into Eq. (2.78]) gives the BALDA per-site
correlation energy,

e]CBALDA

U
(n,u) = eBALPA (n y) — eBALDA (4 = 0) — = n? (2.82)
which has been shown to give very accurate density and energy profiles [359-361]. Promising exten-
sions have also been developed, including the spin-dependent BALDA [362] and its fully numerical
formulation 363, |364], with application on both the repulsive [365} [366] (U > 0) and attractive [367,

368| (U < 0) Hubbard models.

In spite of the aforementioned performances of the BALDA approximation, it depicts a wrong
behaviour around U = 0 away from half-filling, which appears to be important for the calculation

of the double occupation in Eq. (2.65). Indeed, since 5(0) = 2 and 98(U/t)/0U|y=o = —7/(8t) it
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comes, for n <1,

0eBA(n) 1 ™m ] n ™
“ar |, = alm(F) o es(F)
(2.83)
and, consequently,
0 0eBA(n) nw? . /mn n
oo |, = 1(3) % (2.84)

As readily seen from Egs. and , both BALDA correlation energy and potential will vary
linearly with U in the weakly correlated regime for n < 1, which is of course unphysical. The
manifestation of this unphysical behaviour on the double occupation will be illustrated latter in
Chap. [3] [see Fig. showing that, away from half-filling, the BALDA approximation within SOFT

systematically underestimates the double occupation in the weakly-correlated regime.

2.2.3 Derivative discontinuity and density-driven Mott transition

Interestingly, the exact correlation potential de.(n)/dn should depict a discontinuity at half-filling,
which is related to the opening of the charge gap [359]. It can be shown by looking at the atomic

limit (¢ = 0), where the fully-interacting L-site uniform Hubbard Hamiltonian reads,

H(n) = U+v(n)2m, (2.85)

with v(n) chosen to reproduce the uniform density profile with density n. Starting from the half-
filling situation (L electrons or, equivalently, n = 1), we can add an electron in order to investigate
the behavior of v(n) when n — 1%, In order to have a total number of electrons varying continuously
from L to L 4+ 1 or, equivalently, 1 < n < (L + 1)/L, the L- and (L + 1)-electron ground states of

H (n) must be degenerate, thus leading to the following condition,
Lv(n) = (L + 1)v(n) + U, (2.86)
or, equivalently, v(n) = —U. Therefore we conclude that, in the thermodynamic limit (L — +00),

v(n)|,_+ = —U. (2.87)
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On the other hand, if we consider the removal of an electron, the density can vary continuously in the
range (L — 1)/L < n < 1 if the (L — 1)- and L-electron ground states of H(n) are degenerate, thus

leading to the condition (L — 1)v(n) = Lv(n) and, consequently,
v(n)|,,—;- =0. (2.88)

According to Egs. (2.87)) and (2.88)]), the physical potential is discontinuous at half-filling. Turning to

the KS Hamiltonian with ground-state uniform density n (and t = 0),
H¥S(n) = v85(n) Z g, (2.89)

we can similarly show that, in contrast to the interacting case, the KS potential has no discontinuity

atn =1,

v¥S(n) | = v"%5(n) | =0. (2.90)

n=1+ n=1-

Consequently, we recover the discontinuous behavior of the correlation potential at half-filling:

8657(:) . _ (va(n) —v(n) — [-2]”> . =+U/2, (2.91)
and
6657(171) = <UKS(n) v(n) — (2]”> . =-U/2. (2.92)

In contrast to standard LDA, which is unable to describe Mott-Hubbard phenomena in realistic
materials [369} 370], BALDA can model such a discontinuity by construction in the one-dimensional
Hubbard model. Despite this extremely appealing feature, it may lead to convergence problems when
the density gets close to half-filling. Solutions have been proposed by using finite temperature [348]|
or ad-hoc parameters [345] 1346l 371]. A similar derivative discontinuity, featuring the well-known
discontinuous jump in the xc potential when crossing an integral number of electronﬂ [130, 1158,
also arises in the Anderson junction model within SOFT [3721374]. This model, consisting of two
macroscopic leads coupled to an Anderson impurity, is used to describe the electron transport through

a molecular junction.

2This derivative discontinuity will be discussed in Chap. [5|in detail
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2.3 Single-impurity Anderson model

In this section, the single impurity Anderson model [375] (SIAM), employed to describe a magnetic
impurity in a metallic host, is introduced. It is used, for instance, to model impurities in a semicon-
ductor [376], molecular junctions [372H374], and the single-electron transistor (quantum dot coupled
to two decoupled metallic leads) [377].

The STAM Hamiltonian is given in (discretized) real space (i.e. in the basis of sites) as follows:

L
A = 33 (et + 0 ) + VI [(elotar +60a0) + hec] + Uty + 2aia, (2.93)
o i=1 o
where the impurity is denoted by d (referring to a d-like orbital) with 74, = é;aédg and g = > Ndo,
and is coupled to a noninteracting bath. The term “h.c.” stands for “Hermitian conjugate”. Note
that this particular form of the STAM Hamiltonian will be shown useful when compared to the SOET
Hamiltonian in the next chapter.

By applying the canonical transformation of Eq. and using periodic boundary condition

¢L+10 = €10, the usual SIAM Hamiltonian expression in k-space is recovered,

H =3 exélytno + cana + Unayia, + Y (Voo + hec.) (2.94)
ko ko

where ¢y, is the dispersion energy of the metallic band, like in the tight-binding model [e, = —2¢ cos(k)],
€4 is the impurity level energy, and Vj is the coupling term between the interacting impurity and the

noninteracting bath,
Vi = 2Ve */2 cos(k/2) / VL. (2.95)

Note that ¢4 = —U/2 in the symmetric case. The impurity Anderson model is particularly useful
to model impurities, so that it plays a major role in embedding approaches in condensed matter
physics [378|, like the dynamical mean-field theory (DMFT) which is one of the most established
method for strongly correlated materials. In this approach, the physical Hamiltonian is mapped onto

a SIAM, in analogy with the KS system in DFT.

2.4 Embedding techniques

In this section, two embedding theories are described: the dynamical mean-field theory (DMFT),

formulated with Green’s function, and the frequency-independent density matriz embedding theory
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Figure 2.7: Hubbard site mapped onto a single Anderson impurity.

(DMET). They differ from the hybrid approaches described in Sec. in a sense that they were
originally formulated to solve translational invariant systems by performing a mapping onto a smaller
subsystem, called the embedded system. It is worth mentioning that other promising embedding
techniques exist, in particular the recently developed self-energy embedding theory (SEET) by Zgid

and co-workers [379H384] which is also formulated in a Green’s function formalism.

2.4.1 Dynamical Mean Field Theory

Dynamical mean-field theory (DMFT) [369, 378, 385-391] relies on the mapping of the fully correlated
lattice problem [Eq. ] onto a correlated impurity model. In the single-site DMFT, this model is
nothing else but the SIAM [Eq. ] The idea is to separate the lattice and the impurity problems
and to solve them self-consistently as follows: (i) in the impurity problem, the interacting electrons on
the impurity are coupled to an effective bath determined by the lattice problem [illustrated in Fig.
(#4) the lattice problem is solved with a Green’s function approach using the self-energy obtained
from the impurity problem. Hence, (i) and (i7) are coupled and generate a self-consistent cycle,
illustrated in Fig. and discussed in the following. This method has been able to describe the Mott-
insulator transition as well as the Kondo peak [369] |387|, and is thus able to treat strongly correlated

systems. First, we describe how the impurity problem is solved. Starting from the noninteracting

SIAM Hamiltonian H© [Eq. (2.94) with U = 0] given in matrix representation,

g Vi, o o Vi,
Vk*1 €k 0
[g(m} —HO = | : , (2.96)
0
Vi, ke |




2.4 Embedding techniques 91

we define the noninteracting Green’s function, solution of the following equation:
(w]l - H<0>) GOw) =1, (2.97)

leading to G (w) = (wl — H®)~1. The noninteracting Green’s function of the impurity site

reads [378, [392]:

1
GO (w) = Golw) = prE—NpRE (2.98)
where the usual notation Gp(w) is used, and
Vi|?
Aw) =) th:k (2.99)
i

is the frequency-dependent “host-impurity” hybridization function. One can then compute its asso-
ciated spectral function, related to the imaginary part of the impurity Green’s function, where the
frequency is shifted in the complex plane by an infinitesimal constant 7 > 0 (thus giving the so-called

“retarded” Green’s function):

1 1 1
Aw) = -1 in)] = —-1
(@) = =2 Tm[Go(w + )] P (w —eq— Re[A(w + )] — Im[A(w + in)]>
1 Im[A(w +1
- = [Aw + in) —. (2.100)
T (w—eq — Re[A(w +in)])” + (Im[A(w + in)])
The real part of the retarded hybridization function A(w + in),
, (w — er)| Vil
A - 7]
Re[ (w + 177)} zk: (w _ 5k)2 + 772
n—0t |Vk‘2
— 2.101
g W — Ek7 ( 0 )

engenders a shift of the peak at position g4 in the spectral function, while its imaginary part [37 8|E|,

e L
I'w) = —Im[A(w + in)] ?(w—ak)QJrUZ
20w 3 VaPSw — e, (2102
k

is responsible for the broadening of the peak, related to the life time of the states in the continuum.

Note that 7 also plays a role in practice, as it avoids singularity in the Green’s function by moving

3The limit of Eq. (2.102) comes from lim N

W-’OW = §(z) where §(z) is the delta function
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its poles away from the real frequency axis. As an illustration to the noninteracting single-impurity
Anderson model, one can imagine a single orbital (with orbital energy e4) in real space coupled to
all the other orbitals in k-space by a hopping V;, (see Fig. , for which the k-dependence is usually
neglected.

Then, let us switch on the interaction U. In analogy with the Hubbard model for U/t, the ratio
U/T denotes the competition between the impurity to be either uncoupled or hybridized with the
bath. The interacting Anderson impurity model can be solved using many-body approaches (so-called
impurity-solver) such as exact diagonalization (ED) [393], Iterative Perturbation Theory (IPT) 385,
3806, 1394], Quantum Monte Carlo (QMC) [395-399], CISD [400], or DMRG [401 1402|, thus leading to

the impurity Green’s function:

1

Gu) = Gomel) = 3 550y

(2.103)

Note that in contrast to DFT+U where coulomb interaction is treated in static mean-field theory, the
interactions are treated explicitly in DMFT. Indeed, the impurity Green’s function contains many-

body effects, accounted for by the impurity (or local) self-energy obtained from the Dyson equation,
S(w) = G (W) = Gy (W), (2.104)

which will be used in step (i4).
The purpose of step (ii) is to solve the lattice problem (i.e. the Hubbard model). This is usually done

by computing the interacting lattice Green’s function in k-space:

1

Gk(w) = W— ek — Zk(w)a

(2.105)

where the self-energy ¥j(w) is momentum-dependent [403|, except in the case of infinite dimension
where the k-dependence disappears [385, 386]. Then, by using Fourier transform, the interacting local

Green’s function (in the basis of sites) is obtained:

1 1 1
Gii(w) = Z;Gk(W):EXk:m. (2.106)

Of course, the k-dependent self-energy is unknown, otherwise there would be no point in mapping the

Hubbard model onto an impurity one. The DMFT approximation is first to neglect this k-dependence
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®Q
Q .

Figure 2.8: DMFT self-consistent cycle, usually initialized by setting ¥(w) = 0.

(such that it becomes exact in the infinite dimension [385} |386]), thus leading to

1

Gii(w) = Gloc(w) = % > prp—— L (2.107)
k

and then to require the local Green’s function in Eq. (2.107) to be equal to the impurity one of the

Anderson model,

Groc(w) = Gimp (w)

|

1 1 1
;m - w—cq4—Aw) - 2(w)’ (2.108)

where ¥(w) is the self-energy obtained from Eq. . By solving the DMF'T condition in Eq. ,
which is rigorously possible only for an infinite bath, one gets a new hybridization function A(w). This
function describes a modified bath for the effective impurity model, that can be solved again to get
the impurity interacting Green’s function Gimp(w) and the self-energy ¥(w). These cycles continue
until the self-energy does not change or, equivalently, until the calculated local Green’s function is
equal to the impurity one. This self-consistent cycle is illustrated in Fig. [2.8] The idea behind the
equality in Eq. is to map the physical system (represented by Gjo.) onto a STAM (represented
by Gimp) where the coupling between the impurity and the noninteracting bath is optimized through

the calculation of the hybridization function A(w).

Finally, DMFT suffers from limitations due to the assumption that the self-energy is purely local.
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Extensions of DMFT to include nonlocal correlations are possible by considering an impurity cluster
instead of just a single impurity site [329} [399| |404H409], or by combining DMFT with GW [410-414]
or DFT [369] 415]. Regarding the latter approach, the double counting problem is usually removed
empirically [416} 417]. For the time being, DMFT is mostly employed in condensed matter physics,

although its generalization to quantum chemistry is not excluded [400].

2.4.2 Density-Matrix Embedding Theory

The basic idea of an embedding procedure is to extract properties of the physical system from a
subsystem. DMET belongs to this scheme, as it separates the system into multiple fragments, each
of them embedded in an approximate bath that accounts for the entanglement between itself and the
rest of the system. The idea of the DMET relies on the Schmidt decomposition (see Sec. on
the DMRG), which is briefly reviewed here for clarity, with some different notations. Suppose that
the system is divided into a fragment F' and the rest of the system called the environment, E. The
Hilbert space H of the system is then the tensor product of the ones corresponding to F' and to F,
H = Hr ® Hp. The size of Hp (HEg) is Np = 457 (Np = 4F7), and we denote {|F;)}; ({|E;)};)
a basis of many-body states. Ly and Lg denote the number of orbitals in the fragment and in the
environment, respectively. This decomposition leads to the following exact ground-state wavefunction
expression:
Np Ng

|¥o) = ZZQJ\FMEJ% (2.109)

which can be further simplified by applying a singular value decomposition to Cj;,

Ngrp Ng min(NF,NE)

SN UV IR)IE)
[ J «

Vo)

Np
> XalFu)|Ba). (2.110)

Note that N < Npg has been assumed in the second equality of Eq. (2.110)). U, (f/T) rotates the

aj

many-body basis {|F;)}; ({|E;)};) into the new many-body basis {|Fu)}a ({|Ba)}a)s

NE _ NE B
> ULIF) =|Fa) > VEIIE) =Ba) | . (2.111)

i J
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so-called the fragment (bath) states. It is clear from Eq. (2.110) that the number of states to be
considered has been reduced to Ng bath states for the environment, while the number of states
remains unchanged for the fragment. The projected Hamiltonian onto this new many-body basis

reads
H = PHP, (2.112)

where P = Zgg |FoBg)(FyBg| is the projector onto the Schmidt basis of dimension (Ng)?. It is

shown that the ground-state wavefunction remains invariant under this projection,
Np
P|¥o) = Y |FaBp)(FaBs|¥o)
ap

Np Np
= Z|FaB6><FaBﬁ|Z)W‘F’YBW>
afB vy
Np
= Z)"Y|F“/B’Y> = |Wo) (2.113)
Y

where |F,Bg) are orthonormal, such that (F,Bg|F,B,) = 0a03,. As a consequence, the embedded

Hamiltonian shares the same ground-state energy with the physical one,

HlVo) = Eo|Vo),
5 PHP|V,) = PEP|¥,),

According to Eq. , the ground-state solution of a small embedded problem (fragment + bath) is
the same as the one of the full system. This embedding is exact, but it requires the a priori knowledge
of the exact wavefunction of the full problem, which is of course unknown. The idea of DMET is to
construct an approximate one-electron projection operator, thus leading to single-particle bath states
|B,) instead of the many-body states in Eq. . The explicit interaction will then be added
on the fragment sites, such that the fragment states will remain many-body states. The embedding

Hamiltonian is constructed from this approximate projection operator, as described in the following.

In this section, I will focus on the original formulation of DMET, where only one fragment (that
can contain multiple impurities) is considered, with application to lattice systems with translational

invariance [418]. For clarity, I will describe the theory for the uniform L-site one-dimensional Hubbard
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model,
L L
==t 3 (et + &lptio ) + U Auigita, (2.115)
(id)o i

decomposed into a fragment F' and an environment E with Ly < Lg. Note that several equivalent
derivations of DMET are available in the literature [418-424]. In addition, DMET has different
formulations: the interacting bath formulation and the noninteracting one. Besides, the convergence
criteria, which will be described in the following, is also not uniquely defined. In this thesis, we will
focus on the noninteracting bath formulation. The derivations of Refs. [420] |424] will be used. The
starting point in DMET is to determine the low-level wavefunction |®g(u)) which is used to construct
the approximate bath orbitals. It is obtained by searching for the ground state of the following

one-particle Hamiltonian,

L L
h=T+i=—t Y (e + o) + 3 iy (edtso + eyt ). (2.116)
(i7)o i

where 4 is a one-body operator that contains the so-called correlation potential {u;;};;. The IRDM
of |®p(u)) is idempotent and will be denoted p. To construct the projector P, one has to apply the
Schmidt decomposition to ®¢(u). In the following, we show how this is done in practice, following
the lines of Ref. [424]. First, we diagonalize the IRDM of ®((u) to obtain the unitary transformation

matrix D of size (L x L), such that
[h] = D[e|DY, p= DnDT, (2.117)

where [€] and n are (L x L) diagonal matrices. The diagonal elements of the matrix n are either 1
(occupied spin-orbitals) or 0 (empty spin-orbitals), and the number of occupied states will be denoted

Nocc- We split D into its fragment and environment blocks,
D= , (2.118)

where Dp is a (Lp x L) rectangular matrix. D is further decomposed into

Dy = [ poce D;nocc], (2.119)
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where D9 is of size (Lp X noec). Then, a singular value decomposition is performed on D9,

—=0ccC

DY =UD VT, (2.120)
where U and V are (Lrp x Lp) and (Noce X Moce) Unitary matrices, respectively, and
DY ={Vn0,0}, (2.121)

is a (Lp X Nocc) diagonal matrix, with vn0 of size (Lr x Lp). Alternatively, one can also decompose

V into

V= [VF VE} , (2.122)
where f/p is a (neec X Lp) rectangular matrix, to get the diagonal matrix m,

DY = UVnOV. (2.123)

Note that if the fragment contains only one site, U and v/n0 become real numbers while D%¢ and VZ]:
are column vectors of size nqc.. Finally, still following Ref. [424], the approximate projection onto the

original orbital basis is given by P of size (L X 2Lp):

P= : (2.124)
CpCl

where 1 is a (Lp X Lp) identity matrix and C’BC} is a (Lg x Lp) rectangular matrix which is the

transformation from the environment to the bath, given by

Cr=U, Cp= (2.125)

As readily seen in Eq. , the transformation of the one-particle fragment states in the original
basis is the identity. The fragment is therefore invariant under this projection. In the following, we will
show that the electron-electron repulsion is explicitly treated in the fragment, such that the fragment
part of the embedded Hamiltonian corresponds to the physical Hamiltonian, which is of course not

the case for the bath.

Once this approximate one-electron projector P is obtained or, equivalently, once the Schmidt
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decomposition of |®g(u)) is performed, the embedded Hamiltonian can be determined. In the nonin-

teracting bath formulation, the two-electron repulsion is only on the impurity sites, such that
Lr
H™ = B 4 U gy (2.126)
i

Let us look at the derivation of the one-body operator hemb. In DMET, an effective one-body Hamil-
tonian, corresponding to the one in Eq. (2.116]) but where the correlation potential acts on the envi-

ronment only, is defined as

Lg
BT =T+ > iy (o + oo ) (2.127)
ijeER, o
This one-body Hamiltonian is then projected onto the fragment-+bath representation by using the

one-electron projection operator as follows,

Lr+Lp
he = PP = 37 (el 650 + el ) (2.128)
ijo

Finally, the on-site two-electron repulsion operator is simply added to hemb o recover the embedded
impurity problem of Eq. . This is why the correlation potential in Eq. has to act on
the environment only in order to avoid double counting effects. This correlation potential is deter-
mined self-consistently to enforce a particular matching condition between the low-level wavefunction
|®o(u)) and the high-level one |[U™P). The latter is obtained by solving the many-body problem in
Eq. (2.126)), containing 2L electrons [422], by a high-level method (typically, FCI or DMRG). Note
that the correlation potential in Eq. is involved in the determination of the approximate bath
orbitals. Hence, it is implicitly taken into account in the embedded one-body part of Eq. , as

well as in |PimP),

In the original DMET paper [418]|, the correlation potential was optimized until the following two
1RDM are matched. (i) The density matrix of the embedded problem,

PP = (el ¢ yimn, (2.129)

o

and (i7) the projection of the density matrix of the reference problem, described by |®¢(u)), onto the
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embedded subspace,
PP = Pipp. (2.130)

Hence the name “density-matrix” embedding theory.

In order to perform such a matching, the correlation potential has to minimize the so-called cost

function [420] 422]:
min CF, (u), (2.131)

where x denotes different definitions, which are explained in the following. In the original formulation,
the cost function is computed by summing the difference between all density matrix elements of

Eqgs. (2.129) and (2.130)),

Lr+Lp
Chunw) = 3 [o™ = s (), (2132

j

or, alternatively, in the fragment only [419] |422} |425],

Lr
CFimp(u) = > 5™ — o™ (w)]*- (2.133)
ij

Note that the minimization of these above cost functions does usually not reach 0, as the mean-field

emb@n

density matrix p is idempotent, while the high-level one p'™P is not, in principle.

This representability issue has been highlighted by Tsuchimochi et al. [425]. In their work, they de-
cided to approximate the bath by the antisymmetrized geminal power correlated wavefunction (instead
of Hartree-Fock like the original formulation of the theory [418]), from which any N-representable den-
sity matrix can be constructed [426], thus allowing for an exact matching between the low-level and
high-level density matrices in DMET. The approximate bath states also remain many-body states. Al-
ternatively, the matching can be performed on the diagonal of density matrices [420] on the fragment,

leading to

CF diag (u Z oI = P (w)]?, (2.134)

or even by recovering the proper number of electrons by using a global chemical potential only [427],
instead of the correlation potential. An illustration of the whole DMET procedure is given in Fig.

for the Hubbard model with one impurity.
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Figure 2.9: DMET procedure for the Hubbard model with a single impurity, in its non-interacting
bath formulation. The impurity site is labelled as 0.

The theory presented above was developed for a lattice system with translational invariance, so
that one fragment only is sufficient to compute the per-site quantities (energy and double occupation).
Because of the mean-field approximation which defines the starting point of the DMET calculation,
the bath states are only single-particle states so that DMET is lacking correlation effects in the bath.
In order to fix this issue, one can start the DMET procedure with a spin-unrestricted Hartree-Fock

wavefunction [420] or with the antisymmetrized geminal power correlated wavefunction [425].

In order to extend the method to quantum chemistry, the whole system (a molecule) has to
be decomposed into multiple fragments. Each of these fragments are embedded into an environment
composed of all the other fragments, which are then projected to construct new effective bath orbitals.
Hence the whole system has been replaced by multiple smaller subsystems, connected by a chemical
potential which ensures that the number of electrons in each of these subsystems sums up to the total
number of electrons. For more details about DMET for quantum chemistry, the reader is referred
to the work of Sebastian Wouters and co-workers [422]|. It has also been noticed that the central

part of the fragments only are very well described, as it is surrounded by interacting orbitals like



2.4 Embedding techniques 101

in the original lattice problem. The description of the fragment edges, which are in contact with
noninteracting bath orbitals, can be substantially improved by overlapping the fragments, which is
also shown to improve the convergence with fragment size. The latter idea is referred to as “Bootstrap
embedding” and is developed by Voorhis and co-workers [428]. It could also be interesting to look at
the connection between the single-site DMET (one impurity and one effective bath sites composing
the embedded problem) and the linearized DMFT from Bulla and Potthoff [429, 430], who have
approximated the mapping in DMFT onto a two-site Anderson model, i.e. one impurity and one bath
sites as well. Finally, let us stress that the embedding subspace of 2L (spatial) orbitals (with 2L g
electrons) can play the role of an active orbital space, thus make a connection between DMET and
CASSCEF [422]. Therefore, like CASSCF, dynamical correlation effects are missing in DMET. In this
respect, combining DMET with DFT is appealing. To the best of our knowledge, this combination
has not been developed yet. Such a comparable merging will be addressed in the following, in the

context of site-occupation embedding theory (SOET), which is the main topic of this thesis.






Chapter 3

Site-Occupation Embedding Theory

In the spirit of the previously described embedding schemes, only a small number of sites (referred to as
impurities) are kept interacting, while the remaining sites (referred to as the bath) are noninteracting.
This partitioning defines our impurity-interacting system. In analogy with SOFT, a mapping is made
to recover the exact density of the physical system. However, rather than considering a noninteracting
fictitious system, the impurity-interacting one becomes the new reference and a complementary bath
Hxc energy functional of the site occupations is used to perform the mapping. This is the so-called
site-occupation embedding theory (SOET) |72, 270} [300L 301]. Being still in its early stage, SOET is
applied to the one-dimensional Hubbard model only. Extensions to higher dimensions are of significant
interest and will be investigated in a near future. In contrast to DMET and DMFT, which are exact
in some particular limits only, SOET is in principle exact for any correlation and filling regimes. Of
course, approximate functionals are used in practice. In this chapter, the foundations of SOET are
introduced and exact SOET expressions are derived for the per-site energy and the double occupation
in the uniform case. Then, some required properties that an exact functional should fulfil are discussed.
Finally, we describe the approximate functionals that have been developed throughout this thesis,
which are used to solve the SOET self-consistent equation. The resulting per-site energy and double

occupation are extensively discussed.

3.1 In-principle exact formulation

Consider the one-dimensional L-site Hubbard model in an (not necessarily uniform) external potential

with periodic conditions (if not otherwise specified, the summation runs over all sites labelled from 0
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to L — 1),

==ty (0 +he) + U cenelen + Y viel i (3.1)

10 1o

If only M sites (labelled asi =0, 1,..., M —1) are explicitly interacting, the conventional Hohenberg—
Kohn functional can be decomposed as follows [301],

F(n) = Fyr® (0) + Eypye.n (0), (3.2)

s

which introduces the analogue of the Levy—Lieb functional [Eq. (2.50))] for M interacting impurity

sites,
imp _ . a 2
Fy " (n) = min {<\I’|T + UMI‘I/>} ; (3.3)

where Uy = U Zﬁal firf;y is the on-site M-impurity-interacting repulsion operator. In addition,
the complementary contribution E;itch o (n) in Eq. is the bath Hxc energy functional of the site
occupations. This functional accounts for the difference in energy between the M-impurity-interacting
system and the physical one. In other words, it describes all the coupling between the interacting
impurity sites and the noninteracting bath sites. The decomposition in Eq. leads to a new
expression for the ground-state energy as follows:

E(v) = min{\in_i}rl1 {(\II|T + UM|\P>} +E;T2M(n) + (v|n)}, (3.4)

n

thus leading to the final variational expression,

. PR —bath
B(v) = min{ (¥[7 + U |¥) + Biiyerar (0%) + (vIn®) }, (3.5)
where n¥ = {(U|n;|V)}, is the site-occupation vector associated with the wavefunction W. The
minimizing M-impurity-interacting wavefunction in Eq. 1' denoted by \I/i;v?p, fulfils the following
self-consistent SOET equation [301],

—bath imp
v
8EHXC,M (n M )

3ni

(W) = Exp P[P | (3.6)
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where the embedding potential

—Dbath
oF Hxc, M (n)

5711-

vﬁf}‘?(n) =v; +

is built to reproduce the exact site occupations of the physical system.

Let us now make a brief comparison between SOET [Eq. ] and other methods that may appear
very similar. The electronic repulsion on the impurity sites is treated explicitly in SOET, in contrast
to DFT+U where this contribution is incorporated implicitly as a correction factor, thus making
DFT-+U not variational anymore. Interestingly, SOET can be seen as a lattice alternative to the
range-separated DFT [Eq. ], where the electronic repulsion is now separated in the discretized
real space and the electronic density is replaced by the site-occupation vector. Another interesting
difference can be made between SOET and WFT-in-DFT [Eq. (1.198)]. Apart from the fact that
WEFT-in-DFT is applied to ab-initio Hamiltonian and not on a lattice, note that the kinetic operator
in SOET acts on the whole system, while it acts only inside the cluster part (analogue to the impurity
sites) in WFT-in-DFT. The impact of the latter difference will be further investigated in Chap.

where practical alternative implementations of SOET are discussed.

. —=bath
Let us return to the expression of the complementary Hxc energy for the bath, EHTC, u (n). The

derivation of an analytical expression for this object is far from trivial as it has to (¢) account for all
the missing Hxc effects in the M-interacting-impurity system and (i¢) map the physical system onto
the impurity-interacting one by recovering the exact physical density. Let us start by writing the KS

decomposition of the M-impurity-interacting Levy-Lieb functional,
Fyp'(n) = Ty(n) + By (). (3-8)

E;E{E u(n) is the impurity Hxc energy functional, which accounts for the difference of Hxc contri-
butions between the non-interacting system and the M-impurity-interacting one. Plugging Eq.
into Eq. 7 and using the KS decomposition of the conventional Levy—Lieb functional F'(n) =
Ts(n) + Fuxc(n), it comes

—bath im

Ech,JV[(n) = Faxc(n) — EHxIc),M(n)‘ (3.9)
According to Eq. (3.9), the challenging task of developing the complementary bath Hxc functional has
been replaced by searching for both the conventional Hxc functional and the impurity Hxc functional.

For the former, The BALDA [359H361|] approximation can be used, as well as other extensions already



106 SITE-OCCUPATION EMBEDDING THEORY

it flojl‘ t
X s
o ..
X P
L9 * e
> -
\,Q *’ Y h %6@’5
/’\/ 2 LAy <X \5
’%/ 777111 3 94
$Q,s§’ /\\z/
&% 7
U
N { t.t.t. g * ) .t.t.t.t.[.t
o “ o&.‘ *e
& X .8‘
Y ‘e N o
- 9 °
. SOFT ¢ Physical <
. N . s
. [ o
’?.i ) ~ » J).)2. &.\‘

.
2t et
fn @H/f 70,0,0,019"

Figure 3.1: Tllustration of the mappings between the physical system, the (M=1)-impurity-interacting
system and the noninteracting one. The system represented is the 32-site one-dimensional Hubbard
model with periodic boundary conditions.

discussed in Sec. in the context of SOFT. Unfortunately, Eﬁ?{’; (1) remains to be found as no
approximation to it are given in the literature. An illustration of Eq. , which relates the mapping
between the non-interacting, the impurity-interacting and the fully-interacting systems, is given in
Fig.[3:1] The Hxc energies can be decomposed even further by separating the Hartree-exchange and

the correlation part, such that

U
Bise(n) = ) 0} + Ec(n), (3.10)
and
, Mzl .
Egiau(m) = 7 ) i+ ENn), (3.11)
=0

thus leading to

L-1

—bath U —bath

Eiige, () = T Z n; + B (n), (3.12)
i=M
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where

—bath im
E.y (n) = Ee(n) — Ecng}(n). (3.13)

As readily seen in Egs. (3.12) and (3.13), only the correlation energy functionals have to be approxi-

mate. In the following, the local density approximation (LDA) is considered.

3.2 Uniform case and Local Density Approximation

3.2.1 The per-site bath correlation energy

In the uniform case, the full correlation energy can be exactly expressed within LDA as follows,
Ec(n) = ec(ni), (3.14)
such that, according to Eq. ,
bath Z ec(n;) — én;& (m). (3.15)

By separating the contributions of the M interacting impurity sites from the L — M non-interacting

bath sites, it comes

b th M-1 L1 _
B ec(n Z ec(ni) — B3 (n). (3.16)
i=0 i=M

If we introduce the per-site analogue of Eq. (3.13) as follows [301],

1 M-1 )
) = o KZ ec(m)> - E;t“mn)] , (3.17)
=0

the final LDA expression for the bath correlation energy functional is obtained,

Byl (n) Z (ns) + Me2p (n). (3.18)
=M

In the uniform case (v . = 0), the occupations are all equal to n = N/L, such that n = n =
{n,n,n,...,n}. As a consequence, Eq. (3.17)) can be rewritten as
Eimp (n)

elh(n) = ec(n) - —AE

i (3.19)
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As readily seen in Eq. (3.17) or (3.19), the per-site bath energy functional measures the deviation of

the impurity functional from the conventional one.

3.2.2 Derivation of the exact per-site energy

The per-site energy for a uniform system is given within SOFT by [360],

e=FE/L=tsn)+ %nz + eq(n), (3.20)

where the exact expression for t5(n) is given in Eq. (2.75)) in the thermodynamic limit (L — 400). In
SOET, it is desirable to have an expression for the per-site energy that combines contributions from

both (¢) the many-body M-impurity-interacting wavefunction and (i) the site-occupation functionals.

To do so, Eq. (3.19) is inserted into Eq. (3.20) to give

U, e (1)
e =ts(n) + Zn2 + 2% (n) + Y (3.21)
Then, plugging Egs. (3.8) and (3.11) into Eq. (3.21]) leads to
1 .
e=tn) + — (Fi"() ~ L) + e3P (). (3.22)

By applying the Hellmann—Feynman theorem to the variational energy expression in Eq. (3.5)), it

comes

—bath
c,M (ﬂ)

ot

E . .
ta— = (U ITIW ") + ¢

o (3.23)

where E = E(v = 0). By using £ = F(n) together with Eqs. (3.2)) and (3.23), the first term in the
right hand side of Eq. (3.23) is decomposed as follows,

oFP o7, OEIN (n
" M (Q)K_S>t (ﬂ>+t CM()

ot ot ot ’ (3.24)

(" 1T W) =

thus leading to, for U = 0,

(3.25)

By combining Eqs. (3.3)), (3.24) and (3.25)), an expression of the impurity Hxc energy functional which

involves the impurity double occupations [dlj\?s = (it friy) gime = (TP |02 [UPY] is obtained as
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follows:

Eifen(@) = FyP(n) - Tin) = (WP TIE) - T(n) +U ) dyh
aEé“]‘V‘}

= +U Z dyph. (3.26)

Finally, according to Eq. (3.19)), the exact expression for the per-site energy in the uniform case within
SOET reads,

bath
JimP taec(n) 86 B7 GO

M,i o 8t + e (n). (3.27)

Note that the per-site energy expression contains contributions coming from both the many-body

impurity wavefunction and the site-occupation functionals.

However, Eq. (3.27) is not convenient in practice, because the uniform density will not be recovered
anymore when approximate functionals are used. It is therefore useful to introduce another expression

for the per-site energy, which can be rewritten as follows,

M- . v ) sbath (- GimP
Z \I/ P 86C( ) n Udlmp n ngl(n@};?p) _ taeqM (n M ) ’
et at ' ot

(3.28)

such that one can use all the impurity occupations (in practice not always identical) obtained from the
M-impurity-interacting wavefunction. Let us mention that in Ref. [301], we highlighted the connection

between the derivatives of the per-site correlation energy with respect to ¢ and U as follows,

B taec(n) n Uaec(n)

cn) = ) 3.29
ec(n) ot i (329)
as well as for the impurity correlation energy,
. OE™P (n OE™P (n
EMP(n) =t e () +U e ). (3.30)

: ot ou
Consequently, according to Eq. (3.19)),

aébath (n) 87bath ( )
—bath _ c,M
e (n) =t Y +U U (3.31)
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By inserting the latter expression in Eq. (3.28]), the per-site energy finally reads

M— TP ghath () WP
‘Il”“p dec(n ) ; Vi (%)
E ti—l—lid P —|—U7 . 3.32
Pt ot M,i oU ( )

3.2.3 Derivation of the exact double occupation

The double occupation of a uniform system is given by [302]

1 0F
i (3.33)
By applying the Hellmann—Feynman theorem to Eq. (2.54) and using the LDA, it comes
gz Oeeln) (3.34)
4 ou '

The latter can be rewritten within SOET by inserting the decomposition of Eq. (3.19)) into Eq. (3.34]),

thus leading to

1 OBg? p(n) 922} (n)
d= ra e (3.35)

Note that the above expression is exact in the uniform case, provided that the exact functionals are
known. In practice, one has to use approximate functionals, and the double occupation in Eq.
does not take advantage of the explicit treatment of the interaction on the M interacting impurity
sites. In order to get an exact expression which involves the many-body wavefunction, the Hellmann—

Feynman theorem is applied to the variational energy in Eq. (3.5]), thus leading to

= Zdlmp 78EHXCM(E). (3.36)

From the decompositions in Egs. (3.2) and (3.8)), it comes

0 —bath 0 —bath B GF;\}“I’(Q) B 3EE?£7M(Q)
o [F0) = Efen(@)] = o [B - Bleen(w)] = =2 = —Bedle 0 (337)
such that, according to Eq. (3.36]),
o)

=) dyr. (3.38)

=0
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Finally, by combining Egs. (3.35) and (3.38)), the following ezact expression for the double occupation

in SOET with multiple impurities reads

M-1 —bath (. wimP

1 . de i (n¥u )
d=— by o 3.39
M Z,»zo Mt 50 (3.59)

As readily seen in Eq. (3.39)), the double occupation is obtained by combining both wavefunction

and density functional contributions, in analogy with the per-site energy in Eq. (3.32). Alternatively,

Eq. (3.39) could have been derived from Eq. (3.35) by using Eq. (3.30), followed by Eq. (3.26). It

should be noted that the double occupation of the impurity sites (d}\r}lﬂ’) are in principle not identical

for all ¢ in the fictitious M-impurity-interacting system described by \I/il\’/lnp. Indeed, the insertion of
impurities does break the translational symmetry of the system, and the embedding potential restores
uniformity in the density profile only. Finally and according to Eq. (3.39)), it is clear that the impurity

double occupations are not reproducing the exact double occupation of the physical system, such that

an additional functional contribution is required.

3.3 Exact conditions for the correlation energy functionals in

SOET

In the previous section, we have seen that the correlation energy functionals should satisfy the con-
ditions in Egs. , and . Before looking at approximate functionals [Sec. [3.4], more
exact conditions can be investigated. Indeed, it will be shown in Sec. that the impurity cor-
relation functional has to depend on all the site occupations, even in the uniform case. Besides,
the correlation functionals should also fulfil the hole-particle symmetry relation, as demonstrated in
Sec. Finally, we present how the correlation energy functionals can be determined numerically.
These numerically exact functionals will be our references to judge the accuracy of our approximated

functionals introduced in Sec. [3.4]

3.3.1 Numerical investigation of the embedding potential

The embedding potential in Eq. (3.7]) is essential to ensure the in-principle-exact mapping between
the physical system and the M-impurity-interacting one. Firstly, it is primordial to verify that there
is no impurity-interacting v-representability problem in the one-dimensional Hubbard model. The

exact embedding potential can be found numerically by solving the M-impurity-interacting Legendre—
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Fenchel transform |72],
Fip®(n) = sup {£377(v) = (vIm) }, (3.40)

where £37P(v) is the ground-state energy of Hy P (v) =T+ Uy + 3, vifti. Eq. has been imple-
mented and solved in Ref. |72| by exact diagonalization (FCI), by using the lanczos algorithm |43lﬂ
Due to the high computational cost required to compute Eji\rfp (v) exactly, a small ring of eight sites
will be studied. For simplicity, one impurity only is considered. In Fig. the maximising em-
bedding potential (shifted so that it becomes 0 on the impurity site) is plotted (left panel). This
potential is then used to solve Eq. in order to extract the site occupations (middle panel) and
the double occupations (right panel). As readily seen in the middle panel of Fig. the uniform
site occupations are recovered by using the maximising embedding potential of Eq. . Hence,
no impurity-interacting v-representability problem arises. Turning to the right panel of Fig. [3:2] the
impurity double occupations diﬁil’i of the non-interacting bath sites (i = 1,...,L — 1) deviate sig-
nificantly from the physical double occupation (dashed lines). However, it seems that the double
occupation of the impurity site is very close to the physical one, except in the half-filled case where
di]]\}niw ~ 0.0715 (instead of ~ 0.025 for N = 8 [zoomed panel|). In this case, and according to
the double occupation expression in SOET [Eq. ], the complementary per-site bath correlation

energy derivative has a significant contribution. These observations clearly highlight the impact of

the explicit treatment of the electron-electron repulsion on the impurity-interacting wavefunction.

Returning to the embedding potential (left panel of Fig. , an interesting result arises in the half-
filled case. Indeed, the embedding potential in the bath is constant and equal to U/2. Equivalently,
by applying a shift of —U/2, the exact expression for the single-impurity embedding potential at

half-filling becomes

U
U'JS\ZHLDLZ‘(E = l) = _551'0- (3.41)

On the other hand, the potential exhibits some fluctuations in the bath away from half-filling. Thus,
the embedding potential is not trivial anymore, even for a uniform model. This is a direct consequence
of the broken translational invariance due to the insertion of an impurity. According to the exact

embedding potential expression in Egs. (3.7 in the uniform case (v = 0), and considering Eqgs. (3.12)

IThis code has been provided by Masahisa Tsuchiizu (University of Women, Nara, Japan).
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and ([3.15)), it comes

U dec(n;) 8Eimj\5:1(n>
emb c\l c,
—1i(n) = 5n(l —o; -— .
vr=1,i(1) 2 n(l — dj0) + o |, _, o ) (3.42)
By applying a shift of —Un/2 — (0e¢(n;)/On;) |n;=n, the expression reduces to
em U 8Eimz\l/}:1(n)
VR i (n) = —5”51‘0 - 7587” ) (3.43)

From Eq. , it comes that the impurity correlation energy functional (or, equivalently, E'C:’f}\tle(n)
according to Eq. ) has to depend on all site occupations. Otherwise, it would not account for
the fluctuations of the embedding potential in the bath. This is the price the pay to achieve an exact
embedding. In the particular case of half-filling where no fluctuations appear, this dependence can be
neglected exactly. This assumption, so-called the “impurity local density approximation” (iLDA) [72],

leads to
et | (n) PR et (no), (3.44)

where the per-site bath correlation functional depends only on the occupation of the impurity site.
While iLDA is exact at half-filling, it becomes an approximation in the other density regimes. This
approximation will be employed in the construction of all the functional approximations developed in
this thesis. In order to see the limitations of iLDA, an approximate Legendre-Fenchel transform is

introduced as follows |72]:

Fji\flnzl (ng) = sup {gji\?zl(vo) — Uono}, (3.45)

Vo

where only the potential on the impurity is optimized, while it is set to 0 in the bath. The maximising
potential in Eq. is referred to as impurity-optimised potential, and is numerically determined
to recover the physical occupation on the impurity site. The site occupations obtained by solving
the SOET equation [Eq. (3.6)] with this impurity-optimised potential are shown in Fig. 3.3l By
construction, the impurity site occupation is indeed exact in any density and correlation regimes.
In the half-filled case, the uniform occupation on all sites is recovered, demonstrating that iLDA is
not an approximation. However, away from half-filling, the uniform occupation is not recovered and
fluctuations in the bath occupations appear. Nevertheless, those fluctuations are relatively small even
for large U/t values (right panel of Fig. . Therefore, iLDA seems to be a relevant approximation.

Note that in practice, the embedding potentials derived from approximate functionals are not expected
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Figure 3.3: Site occupations obtained with the impurity-optimised potential for U/t = 1 (left panel)
and U/t = 10 (right panel) on the uniform eight-site Hubbard ring model. Dashed lines represent the
uniform site occupation n = N/L.

to reproduce the impurity site occupation exactly, in contrast to the impurity-optimised potential.

3.3.2 Hole-particle symmetry

As readily seen in Fig. the right panel exhibits an axial symmetry around the green line axis
corresponding to the half-filled case. It illustrates the hole-particle symmetry. In this section, we

discuss the invariance of the functionals under this particular symmetry, followed by the generalized

proof of Eq. (3.41) for multiple impurities [301].

Let us consider 2L — N electrons, so that the site-occupation vector becomes 2 —n = {2 — n; };.

Starting with the Legendre—Fenchel transform in Eq. (3.40)), its hole-particle symmetric analogue reads

FimP(y —p) = sgp{é}i\?p’%_N(V) -2 Zvi + (V|n)}7 (3.46)

where Si\}np’QL_N(v) is the (2L — N)-electron ground-state of the M-impurity-interacting Hamiltonian,

which is rewritten here for convenience,
, M-1
HyP(v)=—t> (@;éim + h.c.) + Y vitl,tie + U Y ehenel ey (3.47)
10 o

=0

In order to connect the N- and the (2L — N)-electron systems, the following hole-particle transforma-
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tion to the creation and annihilation operators is introduced:

éja - B;ro‘ = (_l)léﬂﬂ

Cie — by =(—1)%! (3.48)
and applied to the Hamiltonian in Eq. , thus leading to [301]
H‘mP = —t Z ( bit10 + h.c.) +2 Z v; — Z vilA);rglA)w
+UM - U Z > bl b, +U Z b biybf by . (3.49)

Then, by substituting and shifting the potential in Eq. (3.47) as follows:

M—1
’lN)i = —V; — U Z 5ij7 (350)
§=0
we finally obtain
HI™P () = —t Z ( bit10 + h.c.) + > bl big + U Y bbb by + UM +2 vi. (3.51)

As readily seen from Egs. (3.47) and , the (2L — N)-electron ground-state energy Elmp’QL N(wv)

of HyP(v) is connected to the N-electron (or, equivalently, (2L — N)-hole) ground-state energy
5lmp N#) fH}é?p( ) as follows,

S}\?p’2L7N(V) — g]l\?P N + 2 Z v; + MU. (352)

By inserting Eq. (3.52)) into Eq. ([3.46]), the hole-particle relation for the M-impurity-interacting Levy—

Lieb functional is obtained as

Fi™(2—n) = sup{Slmp’ v|n}—|—MU
i}

M-1
1=0

M-1
= Fim(n )+U<M > n> (3.53)

_ bup {glmp N

=0

In the particular case U = 0, we recover the hole-particle symmetry relation for the non-interacting
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kinetic energy,
T5(2 — n) = Ty(n). (3.54)
Then, the invariance under hole-particle symmetry of the impurity correlation energy,
B (2 —n) = B (n), (3.55)
as well as the per-site bath correlation energy using Egs. ) and (| -7
*b&th(2 —n)= eba}\t}l(n) (3.56)

are derived from Egs. ) and (| - and -

Let us turn to the proof of Eq. m concerning the embedding potential at half-filling. The
maximising potential in the second equality of Eq. , denoted by v$¥P(n), is nothing but the
exact embedding potential v§¥*(n) in Eq. (3 . Therefore, the two maximising potentials are equal:

§7°(n) = Vi7" (n), (3.57)

and according to the shift [Eq. (3 ] VS (1) is related to the maximising potential of Eq. (3.46) as

follows:
M—1
W) = —u§f 2 —n) = U Y & (3.58)
§=0
Then, from the equality in Eq. (3.57)), it comes
M—1
v?\f}f(n) = —v]e\ﬁff?(z —-n)-U Z iz, (3.59)
§=0
finally leading to, at half-filling [301],
M—1
U
Vi (=1 === & | (3.60)
7=0

We recognize the (previously numerically determined) result of Eq. (3.41]), now generalized for a system

containing multiple impurities.
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3.3.3 Derivation of the exact correlation functionals and their derivatives

As readily seen in Egs. (3.6)), (3.32) and (3.39)), the derivatives of the correlation functionals with
respect to n, U and t are necessary to compute the self-consistent SOET equation, the double occu-
pation, and the per-site energy, respectively. In the following, we show how these derivatives can be

calculated exactly, without finite differences. As the derivatives with respect to t are intimately related

to the derivatives with respect to U [see Egs. (3.29), (3.30) and (3.31)], only the latter will be described.

Starting with the fully-interacting case, the Levy—Lieb functional in Eq. (2.50) can be rewritten
as follows, as a consequence of the variational principle in SOFT [Eq. (2.49)]:

F(t,Un) = sup {E(t,U,v) — (vin)}. (3.61)

This is the fully-interacting analogue of the M-impurity-interacting Legendre—Fenchel transform
[Eq. (3.40)]. Note that the ¢- and U-dependence have been introduced explicitly for clarity. From
the KS decomposition F(t,U,n) = Ty(t,n) + Fux.(t,U,n), the expression for the correlation energy

is obtained as follows:
EC v(’vn i 7(/311 js ) 11 - 7 3.62

where Ty(t,n) = F(t,U = 0,n). In the uniform case, Eq. (3.61) reduces to the ground-state energy of
the fully-interacting Hamiltonian, F(¢t,U,n) = E(t,U,v = 0). Concerning the derivative with respect
to U, the Hellmann—Feynman theorem is applied to Eq. (3.61), thus leading to

OF (t,U,n)

—au Xl: di(t,U,n), (3.63)
where d;(t, U,n) = (¥(n)|n;17;,|¥(n)) denotes the double occupation of site i and ¥(n) is the ground-
state wavefunction of the fully-interacting Hamiltonian H(t, U, v(t,U,n)), with v(t,U,n) the max-

imising (stationary) potential of Eq. (3.61)). Hence, obtaining the derivative of the correlation energy

functional is straightforward and is given by

OE.(t,U,n) . 1 9
o0 = Xi:dz(t, U,n) — 1 Zn (3.64)

where the KS decomposition of F(t,U,n) together with Eq. (3.63) have been used. For a uniform
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density profile n = n, the per-site analogues of Egs. (3.62) and (3.64) are written as follows:

_ E(t,Un) 1 U,
eolt,Uin) = =222 = L( (t,U,n) — Tu(t, n))— . (3.65)
and, according to Eq. (3.63),
Oec(t,U,n) n?
———= =d(t,U,n) — — 3.66
St v - (3.66)
where d;(t,U,n) = d(t,U,n) is site-independent in the uniform case.
Turning to the embedded impurity problem, the impurity correlation energy is defined by
' . U M-l
EN(t,U,n) = Fy'P(t,U,n) — v n? (3.67)
=0

where Fi™(t,U,n) is given in Eq. (3.40) and Ti(t,n) = FiT®(t,U = 0,n). Differentiating this

impurity correlation energy with respect to U leads to

OEH(t,Umn)  9F™ (¢ Un) 1~ ,
U - U "1 Z i (3.68)

where, by using the stationary potential v§P(U,¢,n) in Eq. (3.40),

OF P (t,Um)  0EyP(U.t,v)
ouU - ouU

(3.69)

v=v$mb(U,t,n)
Besides, according to the Hellmann—Feynman theorem, Eq. (3.69) becomes

QF™P (4 7 ) N im
(7 MI; (3.70)

=0

where dlmp( ) = (U (n)| A7y [ 35P (n)) and WHPP(n) is the ground-state wavefunction of
1mp(U,t,vemb(U,t,n)). Finally, inserting Eq. (3.70) into (3.68) leads to
OEH(t,U,n 1
PENGUD) Z dmm - 13 w2 5.71)

=0
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3.4 Approximate correlation energy functionals of the site oc-
cupations

So far, exact properties of the functionals have been discussed, and the SOET equation has been
solved by using numerically-optimised embedding potentials. In practice, analytical expressions for
the complementary bath Hxc functional have to be developed. As already mentioned in Sec. ,
there are two non trivial cases for which the correlation energy is known analytically within SOFT.
The first one is the one-dimensional half-filled Hubbard model in the thermodynamic limit (n = 1,
L — 400) [320], which has led to BALDA [359,|360]. The second one is the asymmetric Hubbard dimer
for which a highly accurate parametrization has been derived [335, [358|]. From the decomposition of
the per-site bath correlation energy [Eq. ]7 it comes that both the conventional correlation energy
FEpxc(n) and the impurity one Eﬁ?{‘c’ 17 (n) have to be approximate. BALDA will be used to model the

former, such that only the impurity correlation functional remains to be found.

3.4.1 Exact functional for the Hubbard dimer

In order to develop approximate functionals, it is advantageous to look at systems with analytical
solutions. For instance, the two-electron system is considered to be a paradigm in RDMFT, as the
functional of the IRDM is exactly known in this case [189)} 432, |433]. We follow the same direction
by looking at the asymmetric Hubbard dimer (see Sec. [335, 1358]. In SOET, the asymmetric
Hubbard dimer is mapped onto an impurity Hubbard dimer, which ground-state energy is simply

obtained by setting Uy = 0 and Uy = U in Eq. (2.44)), thus leading to |72]
EMP (U, Av) = &(U,0, Av) = Ey(U/2, Av — U/2). (3.72)

We denote the impurity occupation by ng = n and the bath one by ny = 2 —n. The Legendre-Fenchel

transforms are written as follows for the fully-interacting case,

F(U,n) = sup {EO(U, Av) + Av(n — 1)}, (3.73)

and the single-impurity case,

Fi2y(U;n) = sup { €472, (U, Av) + Av(n - 1)}, (3.74)
Av

where the maximising potentials are denoted by Av(U,n) and Av§, (U, n), respectively. By apply-
ing the Hellmann—Feynman theorem to Egs. (3.73) and (3.74), and by using the stationarity of the
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maximising potentials, it comes

DE(U, Av) _ 9E2, (U, Av) —1-n (3.75)
9Av Av=Av(U;n) 0Av Av=AvSP> (U,n)
and, according to in Eq. (3.72),
OE(U/2, Av) _ 9E(U/2,Av) —1-n (3.76)
0Av Av=Av(U/2,n) dAv Av=Av§PP (Un)-U/2

thus leading to the following scaling and shifting relation between the embedding potential and the

conventional one:
emb U
Aviie, (U, n) = Av(U/2,n) + 7 (3.77)
Then, according to this new relation together with Eq. (3.72)), it comes
im U
FiP, (Uyn) = F(U/2,n) + 50— 1) (3.78)

and, by using the KS decompositions of both Levy—Lieb functionals of Eq. (3.78)) [see Egs. (3.8)) and
(2.51)],

i U
Brtveni= (Usn) = B (U/2,n) + 2 (n = 1). (3.79)

2L refers to as “two-level” (i.e. the Hubbard dimer). Deriving Eq. (3.79) with respect to (minus) n
leads to similar scaling and shifting relation as Eq. (3.77)) is obtained, but between the impurity Hxc

potential and the fully-interacting Hxc potential [72]:

i U
Avg i (Urn) = Aviio(U/2,m) = o, (3.80)

where Avﬁ?&%zl(a n) = —3EE?(I;:]2VI;=1(U, n)/On and AvZL (U,n) = —0FEZL (U, n)/on. Finally, from
Eq. (3.79) and by separating the Hx parts,

Epri Un) = o2
oL _ U, oy U N2
EZ3L(Un) = 1 (n*+(2-n)?) = 5 (1+(1—n)?), (3.81)
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from the correlation parts, a simple scaling relation between the impurity- and the fully-interacting

correlation functionals is obtained [72]:
B2y (U,n) = BEH(U/2,m). (3.82)

Eq. tells us that if the analytical expression of E2Y(U, n) is known, so is the impurity correlation
energy. Therefore, the parametrization of Carrascal and co-workers [335, 1358| can be extended to our
impurity problem by using a simple 1/2 scaling of the electronic repulsion parameter U. The deriva-
tions required to implement this correlation functional are presented in Appendix [G} Consequently,
the complementary bath Hxc functional is exactly known for the asymmetric Hubbard dimer and

reads

B i1 (Usn) = B3 (Uyn) — B2l (U,n) = B3 (U,n) — B3k (U/2,n). (3.83)

3.4.2 Two-level Bethe Ansatz Local Density Approximation

Returning to a larger system (L > 2), the conventional correlation energy will be modelled within
BALDA. If a single impurity is considered, the impurity correlation functional in Eq. (3.17)) can be
approximated by the impurity correlation functional of the asymmetric Hubbard dimer [Eq. (3.82))]

as follows:
EXP_ (n) — B2 (U ng) = EZ(U/2,m0). (3.84)

This is obviously an approximation, given that the exact impurity correlation functional should de-
scribe an impurity with occupation ng, surrounded by L — 1 noninteracting sites sharing N — ng
electrons. On the contrary, the 2L impurity correlation functional describes one impurity site with oc-
cupation ng surrounded by one noninteracting site only with 2 —ng electrons. Together with BALDA,

it leads to the so-called 2L.-BALDA approximation,
_ba 2L-BALDA
ez (m) = NP (no) — B (U/2,n0). (3.85)

Note that the dependence on the bath-site occupations is neglected. While thE dependence on the
impurity occupation only is sufficient to describe the Hubbard dimer exactly, it is not the case anymore
for a larger system, as shown in Sec. Hence, 2L-BALDA belongs to the (more general) iLDA
approximation [see Eq. ] This will also be the case for all the functionals developed in the

following.
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3.4.3 Impurity Bethe Ansatz Local Density Approximation

A simple idea consists in modelling the M-impurity-interacting correlation energy within BALDA, thus

leading to the so-called M -impurity Bethe ansatz local density approximation denoted by iBALDA (M),
iBALDA (M) =

E;{I?c]; w(m) ———= Z e MPA (). (3.86)
i=0

According to Eq. (3.17)), the per-site bath correlation functional measures the deviation of the impurity

correlation energy from the conventional one. As both terms are expressed within BALDA, it comes

,Ei\t}(n) iBALDA (M) 0 (3.87)
and, according to Eq. (3.18)),
bath o
Bt = 3 itr) = 3 (U o). (359
i=M i=M

Obviously, if all the sites are considered as impurities (M = L), the SOET Hamiltonian reduces to

the fully-interacting Hamiltonian and

B\ =y (m) =0. (3.89)

On the contrary, if there is no impurity, the SOFT Hamiltonian is recovered and

—bath
EHXCM O( ) EHXC(n)' (390)

iBALDA(M=L) and iBALDA (M =0) fulfil the conditions in Eqgs. (3.89)) and (3.90]), respectively. For
the latter, the Hxc functional in SOFT would be approximated within BALDA.

3.4.4 Density-functional approximations based on the STAM

The SIAM has been briefly described in Sec. where its Hamiltonian in the basis of sites (i.e. the
discretized real space) is given in Eq. (2.93]). Turning to SOET, let us consider the (L + 1)-site SOET

Hamiltonian at half-filling, for a single impurity,

= —tz Z (cmcng + h.c. ) + UTLoTn()i — % (391)

o 1=0
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> & SIAM

Figure 3.4: Single-impurity-interacting Hubbard model and STAM model for L + 1 sites, in the basis
of sites. The difference between the two models is highlighted in green.

where the exact half-filling embedding potential in Eq. (3.41]) has been used. This Hamiltonian and
the symmetric STAM one in Eq. (2.93) (where e = —U/2 in the symmetric case) are essentially the

same if
V =—t, (3.92)

as illustrated in Fig. Note that the single-impurity SOET Hamiltonian at half-filling and the
symmetric STAM Hamiltonian differ by the coupling term between the first neighbours of the impurity
site (¢ = 1 and ¢ = L). The latter (see Fig. in green) will be ignored for simplicity. Guided by
the similarities between the two models, SOET could benefit from previous works on the SIAM, such
as the development of DFAs. Indeed, these DFAs could be generalized to SOET, thus providing new
approximate impurity correlation functionals such as
EXR_ (n) — EJAM(ng). (3.93)
Let us now investigate DFAs developed for the STAM. For example, the perturbation expansion
through fourth order in U/T, developed by Yamada [434] for the symmetric STAM, could be used in
SOET to describe the weakly correlated limit. This fourth-order correlation energy reads

U2

2
ESON LoUT) = — | 00369+ 0.0008 <U> , (3.94)

7

where T is the (frequency-independent [434]) impurity-level-width parameter. In analogy with the
Hubbard model where the ratio U/t defines the correlation strength, the ratio U/T in the STAM model
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is used instead. Regarding the strongly correlated limit, a correlation potential relying on the BA
solution to the strongly correlated STAM [435] 436] has been proposed by Burke and co-workers [372}
373 as follows:

Uye(n) = % (1 —n— %tan_l (t")) : (3.95)

where (U, T') = U/(U +5.68T") and o = 8['/(72U). An impurity correlation energy functional is then
obtained by integrating Eq. (3.95) with respect to the density Tﬂ thus leading to [300]

ESPN, o (U.T,n) = (U, r)% |£(U,T,n) ~ £.(U, T, 0)], (3.96)

where

2 —
SC(U,I‘,n):n—%+ 2(1—n)tan’1 {(1 n)} %

™ o ™

1+ (“;mﬂ : (3.97)

Note that the latter is not restricted to the symmetric case, in contrast to the correlation energy in
Eq. (3.94). In order to get a correct description of the symmetric STAM in all correlation regimes, a
simple interpolation between the weakly [Eq. (3.94)] and the strongly [Eq. (3.96])] correlated limits is

suggested as follows [300]:

1
EEMNUT,n = 1) = - BN (U.T) + ﬁffﬁ%}#%w?nn =1, (3.98)

where f = f(U/T") = eV/T'=6-876 (the parameter 6.876 simply corresponds to the crossing point between
the two functionals). With such an interpolation, the correlation functional based on the perturbation
expansion in the weakly correlated regime will dominate for U/I" < 6.876, while the one based on the
BA solution to the strongly correlated regime will dominate otherwise. Note that ES'AM(U,T',n = 1)
becomes positive for U/T" < 2, which is unphysical (the correlation energy should always be negative).

This artefact is actually removed by the interpolation [Eq. (3.98)] [300].

In order to generalize the DFAs based on the SIAM to SOET, we need to relate the (frequency-
independent) impurity-level-width parameter I' to the hopping parameter ¢ of the Hubbard model.
Now that the connection between the SOET and the STAM Hamiltonians has been clarified in the basis
of sites by the relation in Eq. , let us consider the STAM Hamiltonian in k-space [Eq. ]
As mentioned in the DMFT section (Sec. , the coupling between the impurity and the bath

2Integration from 0 to n. To find the constant of integration, we set the energy to 0 when there is no density. This
leads to a constant equal to 0.
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is characterized by a frequency-dependent hybridization function [Eq. (2.99))], which imaginary part
[Eq. (2.102)] is nothing but the frequency-dependent impurity level width I'(w). The latter is given

in the thermodynamic limit (L — +00) as follows:

Nw) = g dE|Vi?6(w — ex) = L/ dE|V?6(w — ) = 4v2/ dk cos®(k/2)6(w — ),
-7 0 0
(3.99)
thus leading to E|
2t t °
) _£
Pw)= 2 [ de2_§(w—o). (3.100)
t2 —2t 62
a2

The (frequency-independent) impurity-level-width parameter ' of the STAM is defined as the value of

the hybridization function at the Fermi level ep = —2¢ cos(kr), such that
V2 t— %
I = D(ep) = (3.101)

tQ\/T%‘.
4t2

By using Eq. (3.92)) and the relation between the uniform density n = N/L in the bath and kF,

N/4 L kp L
/ dm = =2 = / Zdk, (3.102)
0 0

(or, equivalently, n = 2kp/7) we finally obtain a t-dependent density-functional impurity level width
which connects the SIAM to the original Hubbard problem,

I =TD(tn) =t (W) . (3.103)

Note that the latter expression is valid for 0 < n < 1. In the range 1 < n < 2, the hole-particle
symmetry relation I'(¢,n) = T'(¢,2 — n) is used. As readily seen from Eq. (3.103)), I' = ¢ at half-filling.

Thanks to the relation in Eq. (3.103]), it becomes now possible to develop DFAs in SOET based on
the DFAs of the SIAM, as suggested in Eq. (3.93). The first approximation is given at half-filling by
setting I' = ¢ in Eq. (3.98). Together with BALDA, the following per-site bath correlation functional

1+ cos(2z)
2

3By using the trigonometric relations cos?(z) = and cos?(z)+sin?(z) = 1, together with the substitution
y g g g

e = —2tcos(k).
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is obtained,

el (n) S AP (ng) — EEMMUT = 1,0 = 1), (3.104)

This functional, so-called SIAM-BALDA[n=1], is restricted to half-filling. It could be possible to
extend STAM-BALDA[n=1] away from half-filling by using Eq. . However, the interpolation
formula in Eq. depends on f(U/t), which contains a parameter defined by the crossing point
of the functionals at half-filling only. This function f(U/t) could certainly be generalized into a n-
dependent function, assuring the correct interpolation of the two correlation functionals in any density

regime. This has not been investigated here.

Another DFA is obtained by replacing I by I'(t,n) in Eq. (3.94]). Together with the use of BALDA
for the conventional per-site correlation energy, this new functional will be referred to as STAM-BALDA

(without the suffix [n=1]) in the following,

—bath SIAM ~ BA _ SIAM
Cenr=1(n) = ec (no) = Ecir0 (U, T'(t,no)). (3.105)

In contrast to its [n=1] analog, STAM-BALDA is applicable to any density regime. At half-filling,
STAM-BALDA|[n=1] is expected to be more accurate than SIAM-BALDA in the strongly correlated
regime, by construction. Interestingly, the deviation from half-filling in the original Hubbard model
can be interpreted, in the STAM, as a rescaling of I, as readily seen in Eq. by varying n. In
the low-density regime we have I'(¢t,n) ~ 4t/(wn) > T'(t,n = 1), thus leading to weaker correlation

effects on the embedded impurity site, in comparison to the half-filled case.

3.5 Solution of the SOET self-consistent equations

SOET is a method which combines a many-body correlated impurity wavefunction with correlation
energy functional contributions. As readily seen from Egs. and , the determination of the
per-site energy and the double occupation expressions within SOET relies on the knowledge of the
M-impurity-interacting wavefunction. This wavefunction is the one minimizing the energy, according
to the variational principle in Eq. , and it fulfils the self-consistent equation in Eq. . For the
clarity of this section, let us rewrite this equation for the uniform model (v = 0),

bath

8EHXC7M (n\lji];?p) . . .
5 (WP — gimp|gime). (3.106)

T+UM+Z
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In principle, any correlated method based on the explicit calculation of many-body wavefunctions or
Green’s functions could be employed to solve Eq. . So far in this thesis, the exact diagonalization
(FCI) has been used to investigate the exact embedding potential through the implementation of the
Lieb maximisation [Sec. . Due to the exponential scaling of the method, only the one-dimensional
eight-site Hubbard model has been studied. In order to approach more and more the thermodynamic
limit, we have turned to the cheaper DMRG solver [Sec. to enlarge the size of the model.
From now on, the uniform 32-site ring Hubbard model is investigated using periodic (¢, = éys) and
antiperiodic (ér, = —¢p,) boundary conditions, when (N/2) mod 2 =1 [i.e. N/2 is an odd number]

and (N/2) mod 2 =0 [i.e. N/2 is an even number|, respectively.

Note that approaching the thermodynamic limit has many interesting aspects. One of them is
the possibility to study all the density regime continuously. Indeed, one could then look at the
n — 17 and n — 17 limits which are essential to observe the derivative discontinuity of the
exact correlation functionals [300], as well as the “density-driven” Mott-Hubbard transition that
will be described in chapter [l For the eight-site model, the available uniform occupations were
n = N/L = {0.25,0.5,0.75,1,1.25,1.5,1.75}. Note that even numbers of electrons are considered,
given that the theory is currently restricted to singlet states. For 32 sites, one can approach the sur-
rounding of half-filling by considering 30 electrons, thus leading to a uniform density n = 0.9375. This

is much better compared to the eight-site model, even though it remains relatively far from half-filling.

In the following, Eq. is solved with the iBALDA, 2L-BALDA, STAM-BALDA and STAM-
BALDA[n=1] approximations. In order to be clear on the implementation of these approximations, we
summarize each of them in Tab. The SOET results are compared to the highly accurate DMRG
calculation (i.e. by applying DMRG to the fully-interacting Hubbard model). The convergence criteria
is imposed on the M-interacting-impurity auxiliary energy 5;\?p and the occupation of one impurity
site with a threshold of 1075 (note that in Ref. |72], we have shown that the bath occupations converge
even faster than the impurity occupation). To help convergence, the embedding potential has been

updated as follows in the self-consistent cycle,

{v?&n:’"}l — {(1 — x)vf\??’"71 + xv?&ni’”}l , (3.107)

where n is the number of iterations and x is a coefficient between 0 < x < 1 that mixes the potentials
of the nth and (n—1)th iterations. In this work, z is initialized to 0.4 and incremented by 0.2 each time
the convergence is reached, until x = 1. This scheme prevents eventual oscillations of the potential in

the self-consistent procedure, such that no convergence problem has been faced in the model studied
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SOET method DFA used for E;ltf M () Correlation functional approximation

L
BALDA > (Yni + 0oy Eas. ({30) (5
U2
4

SIAM-BALDA ( n? + eCBALDA(ni)> — Egs. (2.80)—(282), (3.94) and
qg:g.we])

Q

4

SIAM-BALDA[n=1] (Z 4 eBALDA () 1)> -5 Eqgs. (2.80)(2.82), (3.98) with
Z H‘b&% , qj_ﬁg.% and J'L[)3.97

ESM™U T =t,n=1)

2L BALDA 5 (St eerPag) - Has. (£80) (259),

o — B2 (no)

ng — ESON o (U,T(t,no))

Table 3.1: Summary of the DFAs used for ngclf () in the practical SOET calculations [Eq (3.106
The corresponding approximate bath Hxc potentials on site 7 are simply obtained by taking the
derivative with respect to n;. In the half-filled case, we used the exact potential in Eq. (3.60)).

in this chapter (i.e. the uniform one-dimensional 32-site Hubbard model). The convergence is reached
for approximately 10 or 20 iterations, depending on the correlation strength and the density regime.
At half-filling, the exact embedding potential [Eq. (3.60)] is used such that one iteration only is needed

to converge.

3.5.1 Density profiles

In Sec. [3:3.1] the exact embedding potential able to recover the uniform density has been calculated,
showing the absence of impurity-interacting v-representability problem in the Hubbard model within
SOET. Besides, it has been shown that an impurity-optimised potential could reproduce the exact
impurity occupation, at the expense of the uniform occupation in the bath. One may wonder if the
different approximations are able or not to reproduce a correct density profile. At half-filling, the
exact embedding potential is used so that the answer is definitely yes.

The density profiles obtained by solving the SOET equation [Eq. ] are shown in Fig. for
N =8 and N = 24 electrons, and a single impurity site. When no embedding potential is used, it is
clear that the uniform density profile cannot be reproduced due to the impurity site which breaks the

translational invariance of the system. As expected, the exact uniformity is not reproduced by the
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Figure 3.5: Density profile obtained after solving the SOET equations self-consistently. Left panel:
N = 8 electrons. Right panel: N = 24 electrons. The impurity located on site 16. See text for further
details.

approximate functionals in SOET, for any correlation and density regime studied in Fig. [3.5] In spite
of that, the uniformity in the bath sites is usually well recovered within all the approximations, in
contrast to the impurity site on which the strongest deviation from the exact site-occupation arises,
and is somehow echoed on its closest neighbours. Nevertheless, this deviation remains relatively small

in most cases.

To conclude, the DFAs in SOET can correctly reproduce the uniform bath occupation, even away
from half-filling. The recovering of an accurate occupation on the impurity and its closest neighbour
sites is more challenging, due to the presence of the explicit repulsion between the electrons. Never-
theless, the final occupations are very encouraging and they do not differ too much from the exact

one.

We now discuss the resulting per-site energy and double occupation within SOET.

3.5.2 Per-site energy and double occupation at half-filling
3.5.2.i Per-site energy at half-filling

Let us focus on the half-filled case, for which the exact embedding potential is used. Solving the

SOET equation [Eq. (3.106)] leads to the site-occupation vector (n‘l’iﬁ?p = {(\I!}\r}lp|m|\llﬁp>}) and

the double occupations (diﬁ‘z = (\I!ij\r;pmnﬁi ¢|\I/i;&1p)). They are used to compute the physical per-site
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energy and the physical double occupation, for which exact expressions are given in Egs. and
, respectively. Given that the exact embedding potential is used, the exact uniform density is
reproduced and \Ifij\r}lp (as well as {dlﬁg i) will be the same for any DFAs and will only depend on
M. In addition, BALDA is exact at half-filling in the thermodynamic limit for the conventional per-
site correlation energy. In other words, the errors in the per-site energy and the double occupation

within SOET at half-filling are directly caused by the error in the approximate impurity correlation

functionals, which is the so-called functional-driven error [437].

We start by noticing that all the correlation functionals studied in Sec.|3.4]are of the form txG(U/t).

As a consequence, they all automatically satisfy the conditions in Egs. (3.29)), (3.30) and (3.31]). Hence,

passing from Eq. (3.28)) to Eq. (3.32) does not induce any additional error [301]. By inserting Eq. (3.19)
into Eq. (3.32), the following convenient expression for the per-site energy is obtained:

M—-1 _ _ imp ,_gimp
e= % 3 (ts(nfﬁ'p) +eo(n™ ) + Ulfisi ¢>Wp> - U%. (3.108)
i=0
This expression simplifies the understanding of the following results, as the derivative of the impu-
rity correlation energy with respect to U only has to be considered (everything else is exact in the
thermodynamic limit at half-filling). Results are shown in Fig. for the various aforementioned
approximations. The derivatives of the impurity correlation energies with respect to U are also pro-
vided in Fig. to assist the discussion. According to Eq. , Fig. is entirely sufficient to

rationalize the results in Fig. [3.6] apart from a scaling factor —U.

Let us start the discussion with the per-site energy obtained with iBALDA(M=1). For one im-
purity (M = 1), it is clear from Fig. that the derivative of the iIBALDA(M=1) correlation energy
is exactly equal to the exact conventional per-site one (dashed black lines). This was expected as the
iBALDA(M=1) impurity correlation energy is modelled by BALDA, which gives the exact conven-
tional per-site correlation energy at half-filling in the thermodynamic limit. We conclude that errors
due to the size are negligible here. However, the exact per-site correlation energy is not the same as
the exact impurity one (full black lines). The deviation of iBALDA(M=1) from the latter is echoed
on the per-site energy in Fig. [3.21] with a scaling factor —U, giving a poor description of the energy.

bath

In other words, setting the per-site bath correlation energy €.%,_;(n) to 0, as done by construction

within iBALDA (M), is insufficient here.

Improvements over iBALDA(M=1) can be done in two distinct manners. (z) By using function-

als that provide a non-zero contribution for EEf‘]\tf‘:l(n) while conserving a single-impurity, or (i7) by
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increasing the number of impurity sites within iBALDA(M). Indeed, and as already mentioned in
Sec. if all sites are interacting iBALDA(M) becomes exact. In Fig. M =2and M =3
impurities have been considered. While iBALDA(M=2) clearly improves over iBALDA(M=1), the
per-site energy within iBALDA(M=3) does not change much in comparison with iBALDA(M=2).
This slow convergence towards the exact solution with respect to the number of impurities has also
been observed in the context of DMET, and has been further investigated by Welborn et al. [428|,
who showed that the convergence speed is given by 1/M (see Fig. 4 in Ref. [428]). In addition, the
precision gained by increasing the number of impurities is at the expense of a higher computational
cost. The above argument suggests that increasing the number of impurities might not be the route

to pursue in the context of SOET.

Turning to the first solution (i), 2L-BALDA and SIAM-BALDA can be used to improve over
iBALDA(M=1). Impressively, the 2L-BALDA per-site energy is even better than the iIBALDA (M =3)
one in all the correlation range of Fig. [3.6] This lends weight to the development of single-impurity-
interacting functionals rather than increasing the number of impurities. The good accuracy of 2L-
BALDA is quite impressive as this functional is exact for the Hubbard dimer only. Concerning the
approximations based on the SIAM, STAM-BALDA gives an extremely accurate per-site energy in the
weakly correlated regime (U < 4t, where 4t is the bandwidth). This trend confirms the connection
between SOET and the STAM model, as discussed in Sec. [3.4:4] Then, the approximation starts to
deviate from the exact result, which is expected as STAM-BALDA is based on a perturbation expansion
in the weakly correlated limit (U/t — 0). Around U = 6t, the SIAM-BALDA[n=1] functional, based
on the interpolation between the weakly and the strongly correlated regimes, takes over from SIAM-

BALDA to catch up with the correct per-site energy for U > 6t.

3.5.2.ii Double occupation at half-filling

The exact expression of the double occupation in SOET is given in Eq. (3.39)) and, in analogy with the

per-site energy discussed above, will be rewritten for a uniform model as follows by using Eq. (3.17):

M—1 \I,imp imp \I/imp
1 860(”‘ M ) aEC M(n M )

d=— E Ni4T 1 ) g imp L — ’ . 3.109

M = Waatidugr + g7 U (8.109)

The double occupation obtained with the various SOET approximations is shown in Fig. [3.8] Again,
in the particular case of half-filling, only the derivative of the approximate impurity correlation energy
with respect to U is responsible of any error in the double occupation. This observation is in complete

analogy with the per-site energy, except that the error in the double occupation is given by the error
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Figure 3.8: Double occupation at half-filling for the various DFAs in SOET, as a functional of U/t.

in the impurity derivative correlation energy with a scaling factor —1, instead of —U. Consequently,
there is no need to discuss this result differently from the previous discussion on the per-site energy,
as one can directly use Fig. [3.7] to explain Fig. [3.:8 As readily seen in Fig. [3.8] increasing the number

of impurities within iBALDA (M) improves the description of the double occupation. In other words,

according to Eq. (3.39), the double occupation on the impurity sites ({di]f/[ng}i:o7,__,M_1) is getting

closer to the physical double occupation, and 365?13/}1@) /OU decreases with the number of impurities.

3.5.3 Per-site energy and double occupation away from half-filling

Although half-filling, which corresponds to the Mott—Hubbard insulator state, is one of the most
challenging cases, it is also interesting to look at its surrounding. For instance, in the high-T cuprates
the superconductivity arises due to carrier doping of the half-filled system. In contrast to the previous
section, the BALDA per-site correlation energy will not be exact anymore away from half-filling.
Hence, the derivative of the impurity correlation functional with respect to U [Fig. alone will
not be sufficient to rationalize the results. Besides, none of the DFAs developed in this thesis can
reproduce the exact uniformity away from half-filling, as already illustrated in Fig.[3.5] The deviation
from uniformity thus leads to the so-called density-driven errors [437], which can either compensate

the functional-driven errors (so-called error cancellation) or accumulate onto it.
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3.5.3.i Per-site energy away from half-filling

Let us start with the per-site energy, given in Fig. [3.9]in the most challenging site-occupation domain
0.6 <n=N/L<1. Only the U/t =1 and U/t =5 cases will be shown, as the qualitative discussion
of the results do not change by passing from U/t = 5 to U/t = 10, except for STAM-BALDA which
is not physical anymore in the strongly correlated regime [300} |301]. It appears that the results are
easier to analyse by using the exact SOET expression for the per-site energy in Eq. , that we

recall here for convenience,

M-1 , yimp bath (., UimP
1 2 : o aeC(ni M ) imp _bath /. wimP aEC,M (n M )
e = M — ts(nl M ) + tT + UdM,i + eC’M (n M ) — tT . (3110)

According to Eq. 7 the correlation energy functionals as well as their derivative with respect to
t are needed to have a full understanding of the result in Fig.[3.9] They are provided in Figs. and
m respectively. Let us stress that the iBALDA(M=1) curves in Figs. and are equivalent
to the BALDA approximation to the conventional per-site correlation energy and its derivative with

respect to t, respectively.

Functional-driven error away from half-filling

In a first step, we discuss the per-site energies obtained by plugging the exact density n = n =
{n; =n = N/L}; in the functional contributions in Eq. (see full lines in Fig. [3.9), so that the
total error is interpreted as a functional-driven error only. As readily seen in the weakly correlated
regime of Fig. [3.9| (top panel), the iBALDA(M) approximation is the most accurate in the domain
0.6 < N/L < 0.75, being almost on top of the exact per-site energy. On the contrary, the 2L-BALDA
and STAM-BALDA approximations slightly underestimate the per-site energy. At first glance, this
result is counter intuitive. Indeed, as readily seen in the top panels of Figs. 310 and 311} the
iBALDA(M=1) impurity correlation energy and its derivative with respect to t are far from accurate
in contrast to the 2L-BALDA and STAM-BALDA ones. The accuracy of iBALDA (M) can be explained
by error cancellation. Indeed, both the per-site bath correlation functional and its derivative appear
in the expression of the per-site energy in Eq. . For the iBALDA(M=1) approximation, those
contributions are set to zero by construction. Then, judging by Figs. and the exact per-site
correlation energy and the exact impurity one are very close to each other away from half-filling, as
well as their derivatives. Hence, the difference of the two quantities [according to Eq. ] leads
to per-site bath correlation functional which is almost equal to 0, lending weight to the iBALDA (M)

approximation. Indeed, the errors on the impurity correlation energy within iBALDA(M=1) are al-
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Figure 3.9: Per-site energy for the various DFAs in SOET, as a function of N/L for U/t = 1 (top
panel) and U/t = 5 (bottom panel). Full lines correspond to the per-site energies obtained with
the exact occupation n = N/L, while the dashed lines are the per-site energies obtained with the
converged occupations.



3.5 Solution

of the SOET self-consistent

equations 137

-0.005
-0.01
-0.015
-0.02
-0.025 +

(m)/t

imp
c,M

-0.2 exact
egxact(n) .
0.3+ 2L-BALDA ——
-04 | U/t =5 SIAM-BALDA —— |
iBALDA(M=1) ——
0 025 0.5 0.75 1 1.25 15 1.75 2
n

Figure 3.10: Impurity correlation energy as a function of n = N/L. The exact derivatives of e.(n)
and E:';Vl}zl(n) are obtained following Sec. on the eight-site ring model by exact diagonalization.
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most exactly compensated by the errors made by BALDA on the conventional per-site correlation
energy. The same happens for their derivatives. On the contrary, within 2L-BALDA, the error made
on the conventional per-site correlation energy is absolutely not compensated by the one made on
the impurity correlation energy. As a consequence, and despite its better accuracy for the impurity

correlation energy, 2L-BALDA is less accurate than iBALDA(M=1) away from half-filling.

Still in the domain 0.6 < N/L < 0.75, let us increase the correlation strength to U/t =5 (bottom
panels of Figs and . In this regime of correlation and density, both iBALDA(M) and
2L-BALDA per-site energies are very close to each other. This can be simply explain by looking at
the bottom panels of Figs. and where BALDA (labelled by iBALDA(M=1)) is now be-
coming very accurate for the description of both the full per-site correlation energy and the impurity
correlation energy. This is also the case for 2L-BALDA, which is even on top of the exact impurity
correlation functional in this regime. Obviously, STAM-BALDA does not exhibit the same feature. As
a consequence, iBALDA(M) and 2L-BALDA are reproducing the correct per-site energy (and with
almost no error cancellation), while SITAM-BALDA underestimates the per-site energy. Note that, in
contrast to the half-filling case discussed previously, increasing the number of impurities has no true

impact on the per-site energy, because Egﬁ}l(n) is close to zero already for M = 1.

Turning to the density regime 0.75 > N/L > 1in Fig. the per-site energy within iBALDA(M=1)
starts to deviate from the exact curve, both for U/t = 1 (top panel) and U/t = 5 (bottom panel). By
looking at the exact results for the full per-site correlation and the impurity correlation functionals
in Fig. m (and for their derivatives with respect to t), it becomes clear that they differ more
and more from each other as the density moves towards n = 1 (half-filling). This tendency shows
that the bath correlation functional E?i{“}‘:l(n) is not negligible anymore. Therefore, iBALDA(M=1)
is not appropriate and deteriorates the per-site energy within SOET. In this domain of density, and
above all very close to the half-filling case, increasing the number of impurities improves the descrip-
tion of the per-site energy. Alternatively, 2L-BALDA also improves over iBALDA(M) by providing
a better approximation to E‘C)f*]\'}}“:l(n) in the very close vicinity of half-filling. This is also the case of

SIAM-BALDA at half-filling, but as soon as we deviate from the half-filled case, STAM-BALDA has

the poorer performance.
Self-consistent results

For now, only the functional-driven error has been discussed. The total error is the sum of this
error with the so-called “density-driven error”. The latter defines the error in energy due to the

deviation of the occupation from the exact one. This deviation can arise as soon as we solve the
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Figure 3.12: Left panel: impurity occupation obtained self-consistently. For the iBALDA(M=2),
the two impurities have the same occupation by symmetry. Right panel: Same as left panel for the

imp
iBALDA(M=3) approximation. The occupation of the central impurity site (n;IIM=3, in red) is not
imp imp

equal to the occupation of its first neighbour impurity sites (nO\DM == n;y M=3_in blue).

SOET equation self-consistently with an approximate functional. The per-site energy obtained self-
consistently is shown in Fig. [3.9| (dashed lines). The difference between those lines and the DMRG
per-site energy corresponds to the total error. The density-driven error is the difference between this
total error and the functional-driven error (which itself is the difference between the full lines and the
DMRG results). Therefore, if the total error appears to be smaller than the functional-driven one,
it means that the self-consistency has improved over the not converged results (i.e., using the exact
density). This is manifested by a negative density-driven error. Starting with the weaker correlation
regime (top panel of Fig. , only the per-site energy within the iBALDA approximation contains
density-driven errors. For SIAM-BALDA and 2L-BALDA, the full and dashed lines are almost on top

of each other, which means that the error is driven by the energy functional only.

This can be rationalized with the help of the converged impurity occupation and the impurity
correlation potential in Figs. and respectively. As readily seen in Fig. [3.12] the impurity

occupation is generally well reproduced in the weakly correlated regime (top left panel) for all oc-
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Figure 3.13: Impurity correlation potential. The exact potential at half-filling (n = 1) has been used,
so that all potentials are crossing 0 at n = 1. Note that the iIBALDA (M =1) curve does also correspond
to the BALDA approximation modelling the conventional correlation potential dec(n)/on.

cupation filling. However, by taking a closer look to the impurity occupation within iBALDA (M),
we see that it is underestimated for N/L < 0.6 and overestimated otherwise. This explains why the
per-site energy contains density-driven errors within iBALDA(M) and not within 2L-BALDA and
STAM-BALDA. This deviation from uniformity can be rationalized by looking at the impurity corre-
lation potential in Fig. 3.13] The impurity correlation potential is part of the embedding correlation

potential, which reads as follows for all the DFAs considered in this thesis:

dec(ni) N~ OE." (ny)

nb () — §ij—o M2
vc,z (n) on.: Z LJ anj

Jj=

(3.111)

Within iBALDA (M), this correlation potential is always equal to 0 on the impurity sites, and to
Oec(n;)/On; in the bath. I recall that the iBALDA(M=1) correlation potentials in Fig. also
correspond to BALDA, used to model the conventional correlation potential. Focusing on the weakly
correlated regime (top panel of Fig. 7 the correlation potential is strongly attractive (negative) in
the bath for n < 0.6, thus leading to a charge transfer between the impurities and the bath, inducing
a depletion of the density on the impurity sites [301]. The opposite situation happens for 0.6 < n < 1,
as reflected in the impurity occupation in the top panels of Fig. Such an unphysical feature of
the BALDA potential in the weakly correlated regime (already observed in Ref. [366]) is also present
in the 2L-BALDA and STAM-BALDA embedding potentials. However, de.(n)/dn appears on all sites,
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and is not cancelled on the impurity like in iBALDA(M). This has strong consequences, as we could
in principle shift the potential by —de.(n)/dn in the uniform case, hence keeping only the impurity
correlation potential in Eq. . If the latter is accurate (like in 2L-BALDA and STAM-BALDA)
the correct occupation is recovered on the impurity. In the case of iBALDA (M), the impurity corre-

lation potential is not accurate for U/t = 1.

Let us now look at the moderate correlation regime (U/t = 5). By construction, the exact occu-
pation is recovered for N/L = 1 for all DFAs. The impurity occupation (bottom panel of Fig.
within iBALDA (M) remains relatively accurate except in the vicinity of half-filling. On the contrary,
the 2L-BALDA impurity occupation is accurate around half-filling, in this regime of correlation. In
the case of SIAM-BALDA, the impurity occupation deviates strongly from the exact one in the mid-
range occupation filling, while it remains very accurate around half-filling. All these informations
extracted from Fig. are in complete adequacy with Fig. [3.9] for the per-site energy. A more
detailed discussion is provided in Ref. |301].

3.5.3.ii Double occupation away from half-filling

In analogy with the per-site energy, it is interesting to look at the double occupation away from
half-filling, as shown in Fig. [3.14] For clarity, we recall the exact double occupation expression within

SOET:

M-1 sbath (- @imP
1 ~ A 86C,M (1’1 M )

where Egjﬁ}l(n) measures the coupling between the impurities and the bath, and is given in Eq. .
To facilitate the interpretation of the results, we also provide the derivative of the impurity correlation
energy functionals with respect to U in Fig. Starting with the iBALDA (M) approximation, the
density-functional contribution in Eq. reduces to zero by construction, so that only the bare
impurity double occupations remain. It could be seen as a drastic approximation. However, as readily
seen in Fig. for U/t = 1 (top panel), the derivative of the conventional per-site correlation
energy (dec(n)/0U) is almost equivalent to the impurity one (aEélfIAE:l(n) /OU), making the iBALDA
approximation relevant. This observation has already been made for the per-site energy, with the
derivative with respect to t. Hence, the bare impurity double occupation is sufficient to properly
describe the physical double occupation away from half-filling. As a consequence, iBALDA (M) will
be accurate for any M such that there is absolutely no need to increase the number of impurities.

Returning to a single impurity, the 2L-BALDA and SIAM-BALDA approximations do not generally
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Figure 3.14: Top panel: Double occupation as a function of the filling n = N/L for U/t = 1 and
U/t = 5. For readability, the double occupation for U/t = 1 has been positively shifted by 0.05. Full
lines correspond to the iteration 0, using the exact density in the correlation functionals. Dashed lines
represent the double occupation after convergence (with the converged density). For iBALDA, the
two of them are always on top of each others, as same as for 2L-BALDA and STAM-BALDA, but for
U/t =1 only.
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Figure 3.15: Derivative of the impurity correlation energy functionals with respect to U as a function
of n = N/L. The exact derivatives of e.(n) and E.")]_,(n) are obtained following Sec. on the
eight-site ring model by exact diagonalization.
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Figure 3.16: Double occupation at quarter filling (N = 16, n = 0.5) as a function of U/¢. Full lines
correspond to the iteration 0, using the exact density in the correlation functionals. Dashed lines
represent the self-consistently determined double occupation.

improve over iBALDA, except at half-filling. Again, and in complete analogy with the per-site energy,
the deficiency of 2L-BALDA here is not the 2L approximation to the impurity correlation energy, but
the BALDA one for the conventional per-site correlation energy. By construction, 2L-BALDA does
not benefit from the error cancellation which is present in iBALDA. This is the exact reason why
the double occupation is poorly reproduced by both STAM-BALDA and 2L-BALDA for the weakly
correlated regime. Indeed, as shown in Fig. the double occupation within SOFT (BALDA) cannot
reproduce the exact double occupation even for U/t = 0, due to the wrong behaviour of BALDA in
the weakly correlated limit, mentioned in Sec. [Eq. ] Unfortunately, all the functionals for
which the impurity correlation functional is not based on BALDA will inherit this deficiency, which
is the case of every functionals developed in this thesis apart from iBALDA(M). Indeed, the double
occupation within iBALDA(M=1) is almost on top of the physical one in Fig. for any U/t. This
is one of the main improvement of SOET over SOFT, because SOET takes advantage of the explicit
treatment of the electronic repulsion on the impurity sites. For the 2L-BALDA approximation, the
correct double occupation is recovered when entering the strongly correlated regime (U/t > 4), at least
in the quarter-filling shown in Fig. 3:I6] Finally, the effect of self-consistency can be rather strong
in the 2L-BALDA and STAM-BALDA double occupation for U/t = 5, in contrast to iBALDA(M)
for which no density-driven error is observed. For the latter, the double occupation is approximate

by the bare double occupation on the impurity sites only, without any site-occupation functional
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contribution. We can conclude that the change in density does not have a significant impact on the
M-impurity-interacting wavefunction \I/i]\r?p (as same as on dﬁi’) in contrast to the DFAs. Interestingly,
judging by Fig. the self-consistency improves the resulting double occupation in 2L-BALDA. No
similar conclusion can be made about SIAM-BALDA, which is the DFA that leads to the poorer

double occupation.

3.5.4 Derivative discontinuity at half-filling

Returning to the correlation potential, we proved in Sec. that ec(n) depicts a derivative disconti-
nuity at half-filling in the thermodynamic limit. A similar proof has been provided in Appendix D of
Ref. [300], showing that ngﬁ’:l (n) does not contain a derivative discontinuity neither on the impurity
site, nor in the bath. Alternatively, according to the expression of ngjf/}l(n) in Eq. , the impurity
correlation energy functional exhibits a derivative discontinuity on the impurity site, but not in the
bath. From the exact expression of the embedding potential in Eq. and the decomposition of
the bath Hxc energy functional in Eq. 7 we conclude that the embedding correlation potential
should be discontinuous in the bath and smooth on the interacting impurity sites. An intuitive ex-
planation of this result could be that the derivative discontinuity, which is related to the opening of
the Mott-gap [360], is already taken into account by the explicit treatment of the electron-electron
interaction on the impurity sites, while it has to be described by discontinuous correlation potentials
in the bath. According to Fig. iBALDA(M=1) and STAM-BALDA exhibit such a discontinuity
at half-filling due to the hole-particle symmetry condition, as soon as U > 0. On the other hand, even
though the 2L-BALDA impurity correlation potential also fulfils the hole-particle symmetry condition,
it smoothly tends to 0 when approaching n = 1. As a consequence, the potential does not manifest a
derivative discontinuity at half-filling when U/t is finite. It only does when U/t — 400 (See Ref. |72]
for U/t = 100, which is close enough to the atomic limit to reveal the presence of a discontinuity).
As discussed by Dimitrov et al. [438], the dimer functional reproduces an intra-system steepening and
not an inter-system derivative discontinuity. In other words, the change in density in the dimer (2L)
functional does not correspond to a change in the total number of electrons. The latter is indeed
fixed to N = 2 in the dimer. Only the number of electrons on the impurity site varies. The problem
becomes equivalent to describing an inter-system derivative discontinuity only when the impurity can

be treated as an isolated system, which is indeed the case in the atomic limit.

Nevertheless, from a practical point of view, exhibiting a derivative discontinuity is not necessarily
an advantage. Indeed, it may lead to convergence issues around half-filling, as already observed in

KS-SOFT in the description of inhomogeneous models [360]. Practical solutions to this problem have
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been proposed for conventional KS calculations by using either a finite temperature [348| or ad-hoc
parameters [345] [346| [371], and could be considered also in SOET. This is left for future work. One
could think that 2L-BALDA would not be concerned by convergence issues as it does not exhibit a
discontinuity in the impurity correlation potential (except in the atomic limit). However, the BALDA
correlation potential is still employed on the bath sites within 2L-BALDA, which means that conver-
gence problems will appear as soon as bath occupations are close to 1. For now, no such situation has
been observed in SOET, simply because only 32 sites were considered, such that the closest uniform
occupation to half-filling is obtained for 30 electrons, i.e. m = 0.9375. This occupation is far enough

from the half-filling to avoid any problem.

Convergence issues are expected to arise when approaching the thermodynamic limit since the
density can then be much closer to 1. Unfortunately, this limit cannot be reached as the current
implementation of SOET does not allow a decrease of the computational cost in comparison to a fully
many-body treatment of the problem. Nevertheless, because only the impurity sites are explicitly
interacting, we expect SOET to be cheaper than WFT. The following chapter deals with alternative
implementations of SOET, by using a SIAM-solver or a projection method based of the Schmidt

decomposition, possibly enabling the treatment of much larger Hubbard rings.






Chapter 4

Towards an efficient implementation

of the self-consistent impurity problem

in SOET

In contrast to the usual embedding approaches, SOET treats all the bath sites explicitly as the kinetic
operator in Eq. acts on the whole system. Although this explicit treatment is appealing, the
current implementation of SOET in the previous chapter did not allow a decrease in computational
cost in comparison to WFT. This can be contrasted with WFT-in-DFT [Eq. ] for which the
wavefunction is only built on the cluster, thus reducing the size of the Hilbert space and the com-
putational cost. Given that only a small number of sites are explicitly interacting within SOET, it
could be possible to find a more efficient impurity solver, thus leading to a computational cost in
between DFT and WFT. In this chapter, two different implementations are discussed. The first one
is a reformulation of the impurity problem in SOET into a (not necessarily symmetric) STAM, which
can be solved by using Green’s function methods, as discussed in Sec. The second one presented
in Sec. makes use of the Schmidt decomposition (in analogy with DMET) thus leading to the
so-called projected SOET (P-SOET).

4.1 Single-Impurity Anderson Model solver

In the previous chapter, we investigated the connection between the SOET Hamiltonian at half-filling
and the symmetric STAM (see Sec. [3.4.4). Note that this connection was not exact as the coupling

term between the two neighbours (i = 1 and ¢ = L) of the impurity site in the SIAM was ignored.
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In this section, a rigorous transformation of the SOET Hamiltonian into the SIAM Hamiltonian is
provided. By doing so, STAM-solver (also called impurity-solver) can then be employed to solve the
SOET equations by using Green’s function techniques. Note that this work is currently in progress

and a draft is in preparation, in collaboration with Matthieu Saubanére in Montpellier (France).

4.1.1 From the SOET to the SIAM Hamiltonian

Let us start by rewriting the SOET Hamiltonian for a single impurity as follows,

—Dbath

HSOET  — tZ él éiv1o +he) + Z v + Eg’;;( n) i + Uy (4.1)
= ho + hov, + h, + Up, (4.2)
where UO = Unptigy is the on-site repulsion operator on the impurity,
ho = |vo + C{E%%};(m] 7 (4.3)
is the one-body embedding potential operator on the impurity,
hob = —t > _(é,¢10 +hoc) (4.4)

is the hopping Hamiltonian between the impurity and its nearest neighbouring sites, and

—bath
aEHXC (1’1) ~
v; + o ] g (4.5)

b= —t Z cwcz_ﬂg—&—hc —|—Z

1#0,0 i#0

emb (

is the remaining part that contains only bath contributions, with the embedding potential v§™°(n) =

bath
v; + aEHE;tC (n)/0n;. Note that the reference to the number of impurities (M) has been omitted for
convenience, given that only one impurity site is considered in this section. Getting rid of the two-body

part of the Hamiltonian, only the one-body part,

hSOET — ho + hoy + hu, (4.6)
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remains, which matrix representation is of size L x L and reads

ho hi,
v'fmb —t 0
[hSOET} ho by, — -t (4.7)
ho, hy hop —t
—t
0 —t gt

Now, the idea is to recover the STAM Hamiltonian in the “k-space”. To do so, a canonical transfor-

mation using a unitary matrix Py, is employed to diagonalize the block matrix of the bath,
Py,h,P] =D, (4.8)
thus leading to a new one-body Hamiltonian, keeping the impurity site unchanged,

[h‘%OET} - P hSOET P

t
hi,\ (1 ©
0 P,/ \hey hy 0o P

hI)bPI) ho hJ(r)bPIa 19)
= = 1. 4.9
0 Py hop, thI, Pbhob w

The eigenvalues of the diagonal matrix D are denoted by &x. In addition, the column vector Pyhgy
contains the couplings between the impurity and the bath, denoted by Vi, in analogy with the STAM.

The transformed one-body Hamiltonian now reads

B%OET = Zékézoékﬂ + eqfg + Z Vk(éj;lo_éko' + h.C.), (410)
ko k

which is nothing but the one-body part of the STAM Hamiltonian [see Eq. (2.94)], with the substi-
tutions €, — &g, Vi — Vi and g4 — vgmb. To adopt the same notation as in the SIAM, we used
Cdo = Coo, With Ng = Ngp + Mgy and Nge = éLUédc,. By using the canonical transformation given by

the unitary matrix P on the two-body impurity-interacting SOET Hamiltonian [Eq. (4.1)], it comes

HSOBT = PISOETPT = P (iSOFT + 0y P = h3OPT + T, (4.11)
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where the transformation does not affect the impurity site. The full expression of the transformed

Hamiltonian thus reads

HPOPT =N " &é] ko + eatta + Y Vi(élytro +hic) + Unfia. (4.12)
ko k

Note that the Hamiltonian in Eq. is the same as the Hamiltonian in Eq. , written in a
new basis. This basis is analogue to the basis of k-states. As one can pass from the Hamiltonian in
Eq. to the SOET Hamiltonian by applying the unitary transformation in the bath, and vice-
versa, solving one or the other is completely equivalent and no information is lost. Therefore, once
the analytical embedding potentials are calculated, one has to apply the canonical transformation
to get a SIAM-like Hamiltonian, where the band energies &, and coupling values V}, are determined
numerically by the transformation. This Hamiltonian could then be solved by any impurity-solver
method, also used in DMFT (see Sec. . In practice, due to the use of DFAs for the embedding
potential, this procedure has to be reiterated until occupations in the bath and on the impurity are

converged. Also, if the impurity-solver is not exact, additional errors might appear.

4.1.2 Second-order perturbation theory

In Sec. [2:4.1] we have shown how the STAM Hamiltonian can be solved by using Green’s function tech-
niques in the DMFT framework. The procedure described here is different, as there is no mapping on
an impurity Green’s function. This section provides the basic idea to be implemented, as well as an
explicit expression for the self-energy based on second-order perturbation theory (SOPT). We want to
build the retarded impurity-interacting Green’s function, from which the occupations and the double
occupation are obtained. In the following, I will always consider the retarded quantities (Green’s
functions, self-energies and hybridization functions). Let us separate the impurity-interacting Hamil-
tonian into an unperturbed part, corresponding to the one-particle Hamiltonian, and a perturbation

containing the electron-electron repulsion operator,
H = Hy+ H, (4.13)
with

Ho =" éxel,tro + Y Vi(eh,ho +hic) +cana (4.14)
ko k
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and

Hy = Ucléarel éay. (4.15)

As a starting point, the noninteracting Green’s function is considered. This Green’s function is solution

of the noninteracting STAM. Consider the following impurity (or host) noninteracting Green’s function:

1

(0) _
Gaa (2) = z2—E&3— A(z)’

(4.16)
where z = w + in with n — 0T is a infinitesimal positive number, and
A(z) = Z'Vﬁ = Z'Vi —im Y |[Vil?6(w — &) (4.17)
P z — ék % w — 5~k A

is the “host-impurity” retarded hybridization function, already discussed in Sec. Usually, the
k-dependence of the coupling term V}, is neglected, which will not be the case in our theory. The host

Green’s function is then used to compute the following conduction electron Green’s function:

Ok Ve 0 Vir
GO(z) = E_gl) 418
e (2) Z—5k+2—5k dd()z—ék/’ ( )
as well as the Green’s function of the conducting electrons coupled to the impurity,
0 Vi 0
Go(2) = ——G(2), (4.19)
z Ek

for each frequency z. This is different from DMFT where only the impurity Green’s function was

calculated. In practice, two grids have to be defined. One for the k-values,

L
kel-mmn], k=2mm/L, M=—a.,

L 2
= — 4.20
= (4:20)
which is as large as the number of sites L, and §; is the interval between two k-points. The second

one corresponds to the frequency domain of w,

Emax - Emin

Emin;Em'X; 0 = i
wE[ &] E Np—1

(4.21)

where N is the number of points on the grid, and dg is the interval between two points on the

frequency grid. Eqs. (4.16), (4.18) and (4.19) give the matrix elements of the Green’s function in

“k-space”, denoted by Gl((o)(z). Once this zeroth-order Green’s function is calculated, correlation
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coming from the perturbed Hamiltonian has to be included. This is done by computing the impurity-

interacting Green’s function, given by the Dyson equation as follows:

1 © ]!
(Gra(2)] " = [GRA)]  — Zral2), (4.22)
or, equivalently,
Gra(2) = G (2) + G (2) Sk (2) Gral (2). (4.23)

The real-space Green’s function is related to the k-space one by the previously introduced canonical

transformation,
Grel(2) = PTGy (2)P, (4.24)

and Xge (z) is the real-space self-energy that accounts for all the missing impurity correlation effects,

further described in the following. Note that the site occupations are given by

n; = 2 /M pii(w)dw, (4.25)

—0o0

where the factor 2 originates from the spin, and p;;(w) is the diagonal part of the spectral function
1 €
pij(w) = —;Ime} 1(2). (4.26)

This density is then introduced again in the DFAs to compute the embedding potential in the SOET
Hamiltonian [Eq. (4.1)] which is then transformed into the SIAM-like Hamiltonian and solved again

by the impurity solver. This procedure is repeated until convergence is reached.

Turning to the expression of the self-energy, note that a non-local (k-dependent) self-energy is in
principle needed to solve the Hamiltonian in Eq. . It is common to make a local (k-independent)
approximation to the self-energy, which is an exact assumption in infinite dimension, like in DMFT
(see Sec. . We don’t make this assumption here. A non-local self-energy has been proposed
by Schweitzer and Czycholl [439], who have used the limit of infinite dimension to determine the
k-dependence, by taking into account corrections from nearest neighbour contributions to the self-

energy. They introduced a notation R representing the distance between the impurity site and a bath
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site, such that

Rel Rel Rel Rel Rel Rel
YReo 2XRo1 -+ XREN Y00 XZor .- XN
Rel Rel
EfR:I E10

YRel = ) O ) O , (4.27)
S o4
where E?fl = E%el*. From Eq. (SC-17) in Ref. [439], the SOPT self-energy is given by

SR(s) = U2 / aé, / a, / A& pr(€1)pr (E2)p—r (€3)

S (6 — f(&6) + (1~ f(&))(A — f(&)) /(&)
z2—8§ — &+ &3 ’

(4.28)
where f(§) is the Fermi function at T' = 0K,

1 ife<
f(&) = o= ; (4.29)

0 otherwise
and g is the chemical potential. The calculation of y is subtle. Although it is well known in the nonin-
teracting (electron independent) picture like in metals, it is not uniquely defined for semi-conductors
or insulators due to the opening of the band gap. Indeed, if all the valence band is filled, the chemical

potential can take any value inside the gap. In other words, it lies in between the valence and the

conduction bands. In practice, it could be defined thank to the following function,

§
N(¢) = —/ 2ImTr [GRrel(w)] dw (4.30)

—o0 T

which gives the total number of electrons N when & = u. Another definition is the average of the
LUMO and HOMO orbital energies of the noninteracting system. Note that Eq. (4.28]) requires a triple
integral over the frequencies, which is computationally expensive. One can reduce this computational

cost by employing another expression of the self-energy, in Eq. (SC-18) of Ref. [439],

YRel(2) = UQ(—i)/d)\ e (AR (V) B_r(=\) + BR(N)A_r(-))), (4.31)
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with
+o0 .
Ar(N) = [ A€ pr () F(E)e ™, (4.32)
+oo .
Br(\) = / A€ pr(€)(1 — F(€))e P, (4.33)

or, equivalently, for T = 0K,

AR(A)Z/M d¢ pr(§)e™™¢, (4.34)
oo .
Br(A) = / d¢ pr(&)e . (4.35)

In practice, the implementation is initialized by using the noninteracting Green’s function to compute
the spectral functional in Eq. (4.26).
Note that the k-space and the real-space self-energies are related as follows, as same as for the

Green’s function in Eq. (4.24):
21 (2) = PZga(z)PT. (4.36)

To summarize the above discussion, an algorithm is provided in Fig. and illustrated in Fig.
This algorithm has been implemented and tested. For the time being, decent density profiles have
been obtained in the weakly correlated regime U/t = 1 only. This is due to the SOPT approximation.
In order to check if the above implementation is correct, it would be interesting to improve the self-
energy calculation by considering more involved impurity solvers, like in DMFT. Actually, another
PhD student in our lab, Laurent Mazouin, is working on the formulation of SOET using Green’s
function, and on the development of self-energies adapted to the impurity problem in SOET. With
his help, a more detailed and formal connection between SOET and DMFT could be derived.

4.2 Projected Site-Occupation Embedding Theory

Let us now turn to another strategy to reduce the computational cost of SOET. We have seen in
Sec. that DMET uses the Schmidt decomposition to project the original lattice problem onto a
much smaller embedded one. This decomposition is appropriate for the development of embedding
schemes, as it is based on the separation of the whole system into two subsystems. In analogy with
DMET, the Schmidt decomposition will be incorporated in our SOET scheme, leading to the so-called
projected SOET (P-SOET).
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Algorithm 1 SOET/SIAM solver

1: input : L,N,t,U,v,n

2: do while Ang, AE > threshold

Vemb(n)

H%OET — PHSOETPT, Eq "

do for w in frequency grid, Eq. (4.21)
G\ (2), Eqs. (4.16),(4.18),(4.19)

4
5
6:
7 G\ (2) = PIG" (2)P, Eq. (4.24)
8
9

p(rg)(w), Eq. (4.26

: YRrea(z), Eq. (4.31
10 GrRei(z), Dyson Eq.
11 pii(w)a Eq.
12: end do
13: n;, Eq. (4.29))
14: E, <TALTTAL¢> Ref. I440|
15: end do

Figure 4.1: Algorithm to solve the SOET equation using a SIAM solver. Ang and AFE denote the
difference in the impurity occupation and the energy between two successive iterations, respectively.
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Figure 4.2: Tllustration of the self-consistent SOET procedure based on the STAM solver (see algorithm

in Fig. 4.1 and text for further details).
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4.2.1 Construction of the embedded-impurity problem

In complete analogy with DMET, the first thing to do is to compute the bath states by performing
the Schmidt decomposition on a given wavefunction. Given that SOET is a DFT-based method, it
seems natural to use the KS-SOFT wavefunction as a starting point, in contrast to the Hartree-Fock
one in DMET. The procedure to obtain this projector is the same as in DMET and is detailed in
Sec. In the particular case of the uniform Hubbard model, the bath states coming from the KS
Slater determinant or the Hartree—Fock one are identical. Obviously, the projector is therefore also
identical in both method in this case. We start by projecting the SOET Hamiltonian onto the new

embedded-impurity problem as follows,

AP — ptSOET D, (4.37)

where, in the uniform case, the SOET Hamiltonian reads,

A R A L—1 a‘Eba‘ch ( )
HSOET =T + UM + Z Hxc, M . ﬁ’h (438)
i=0 on nen M

where M is the number of impurities.

In contrast to the SOET Hamiltonian in Eq. (3.6), note that the bath Hxc potential is now

. pimp yime o gime wime |, . .
calculated by setting n = ny ™ = {no NN (T }, instead of the usual site-occupation
imp \Ijimp imp . . A A
vector y g™ ,ny ™ ,...,n. Y . In other words, only the occupation on the impurity site labelled

as 0 is used, which is convenient in an embedding formalism. Indeed, like in DMET, the projection
leads to an embedded-impurity problem of 2 x M sites. When this embedded-impurity problem is
solved, only the occupation of the 2 x M sites will be accessible. In order to formulate a self-consistent
procedure similar to SOET, we decided to select a given occupation between these 2 x M sites, chosen
to be the impurity site “0”, and to assume n = leif‘?p. In the uniform case, note that setting n = n, i1
in Egs. and leads to the same embedding potential, providing that the exact bath Hxc
functional is known. Indeed, all sites have the same occupation in the uniform case (in principle) such
that n = {ng,n1,...,np—1} = {n,n,...,n}. However, when it comes to practical use of DFAs, the

embedding potential will not be the same in both Hamiltonians simply because the resulting density

profile is (unfortunately) not uniform anymore.

Let us rewrite the projected Hamiltonian in Eq. (4.37) as

2M—1 M—

e N T S (cwc]g+hc) Z Rirfi (4.39)
ij=0 o =0
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where hemb = PTRSOETP g the projection of HSOET, which is the one-body part of the impurity-
interacting SOET Hamiltonian containing the kinetic energy operator, as well as the density-functional
embedding potential operator. In the particular case of a single impurity (M = 1), the embedded
problem consists of one interacting site embedded into one bath site only (describing the environment).
In other words, an impurity-interacting Hubbard dimer (equivalent to an Anderson dimer) is obtained
and can be solved analytically. Indeed, according to Ref. |72] and Sec. the impurity-interacting

ground-state energy of the dimer is related to the physical one by a simple scaling and shifting relation

[Eq. (3.72))],
EMP (U, t, Av) = Eo(U/2,t, Av — U/2), (4.40)

where Ejy is given in Eq. (2.36)). Given that our Hubbard dimer is obtained by projection, we have
Av = h$PP — hSBP and ¢t = —hgP" > 0. The impurity occupation is recovered by applying the

Hellmann—Feynman theorem as follows (in analogy with Sec. for the conventional Hubbard

dimer):
EI® (U, t, Av)
- 1- M=1 ) Uy
1o dAv ’
t=—hgnP
OE(U,t, A
= 1- M , (4'41)
dAv U=U/2,t=—h&"> Av=A"

where AT = Av — U/2. Similarly, and according to Eq. (2.45]), the double occupation on the impurity

site reads

dimp _

1
2 ou U=U/2,t=—hgP" Av=A"v

( DE(U.1, Av) - m) | (1.2

For more than one impurity, the system cannot be solved analytically anymore, and DMRG will be
imp . .

employed as an impurity solver. Once the impurity occupation ngj M= (WP N ¥Y,Y) is obtained,

it is inserted into the embedding potential in the SOET Hamiltonian in Eq. (4.38)), and the procedure

is reiterated until the impurity occupation converges.

The P-SOET approach is illustrated in Fig. [£:3] As readily seen in this figure, two starting points
are considered. The first one is the fully-interacting Hubbard model. It defines the true physical
system to be solved, for a given U and ¢ and N electrons. This problem is mapped onto an impurity-
interacting Hubbard model, given by the Hamiltonian in Eq. where the embedding potential

is always calculated by using the occupation of the impurity site. Then, a projector is calculated
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Figure 4.3: Projected-SOET procedure for a single impurity site labelled as 0. The projector is
computed only once, by performing the Schmidt decomposition on the KS-SOFT lattice problem with
the exact uniform density.

only once, by performing the Schmidt decomposition on the KS-SOFT lattice problem. This projec-
tor is then applied on Eq. to obtain the embedded-impurity Hamiltonian in Eq. . The
occupation and the double occupation of the impurity sites are then obtained by solving the embedded-
impurity problem, either analytically for M = 1 by using Egs. and , or numerically using
the DMRG solver for M > 1. Finally, the occupation on the impurity site 0 is inserted into Eq. ,
such that the procedure can be reiterated until the impurity occupation converges. Note that the
exact uniform density of the physical problem is used to initialize the embedded potential at iteration
0. For a more general case (not studied in this thesis), the exact density is unknown and we could use

the density obtained from the KS-SOFT calculation, which is in principle exact.

Let us now investigate the performance of P-SOET. The 400-site uniform Hubbard model is stud-
ied, hence demonstrating that P-SOET is a very low-cost approach able to treat large systems. Indeed,
one iteration in P-SOET has exactly the same computational cost than one DMET iteration. In the
regimes where P-SOET converges, the number of iterations needed to reach convergence is small,
usually less than 10 iterations for iBALDA, and less than 20 for 2L-BALDA. My guess is that DMET
needs much more iterations to optimize the correlation potential. Note that the expressions for the

per-site energy and the double occupation in Egs. (3.28)) and (3.39)), respectively, will be used.
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Nbr. electrons N =2 N =4 N =6 N =38 N =10 N =12

Uniform occ. n = 0.16667 0.33333 0.5 0.66667 0.83333 1
U=t 0.16559 0.33174 0.49883 0.66618 0.83329 1
U=2t 0.16377 0.32854 0.49613 0.66488 0.83305 1
U=3t 0.16209 0.32520 0.49296 0.66307 0.83251 1
U=4t 0.16068 0.32223 0.48990 0.66104 0.83167 1
U=5¢t 0.15954 0.31972 0.48719 0.65904 0.83057 1

U =6t 0.15861 0.31765 0.48489 0.65718 0.82930 1
U="Tt 0.15784 0.31593 0.48296 0.65553 0.82796 1
U=28t 0.15720 0.31449 0.48134 0.65409 0.82663 1
U=9t 0.15666 0.31327 0.47997 0.65284 0.82537 1

U =10t 0.15621 0.31224 0.47881 0.65177 0.82421 1

U =100t 0.15141 0.30184 0.46785 0.63440 0.81267 1

Table 4.1: Occupation of the impurity site obtained within P-SOET by using the exact embedding
potential from SOET for the 12-site Hubbard ring with a single impurity.

4.2.2 Errors due to the projection

In contrast to the original formulation of SOET, P-SOET is not in-principle exact anymore, due to
the approximate description of the bath states. In order to quantify the error due to this projec-
tion, let us start by using the exact embedding potential, obtained numerically by Legendre—Fenchel
transform on the 12-site ring Hubbard model (see Sec. for the 8-site ring model), and see if the
uniform density is recovered when solving the (projected) embedded-impurity problem. The resulting
density is given in Tab. [£.1] Interestingly, by using the exact embedding potential from SOET, the
half-filling occupation can be exactly recovered when applying P-SOET. However, this is not the case
away from half-filling, as readily seen in Tab. The deviation of the impurity occupation from
the exact uniform one increases with U/t, showing that the exact embedding potential in SOET does
not reproduce the uniform density when it is projected onto the embedded subsystem. Despite this
unfortunate result, the error in the occupation is around 2 x 102 or less for U = 10t and up to
4 x 1072 for U = 100¢, which remains relatively small in comparison to the final density obtained by

solving the embedded problem within SOET and its various DFAs (chapter [3]).

Let us investigate the effect of the projection on the impurity double occupation d'™P, which is
an essential quantity involved in the calculation of the per-site energy and the true physical double
occupation in SOET. In the case of half-filling for a single impurity, d'™P has been calculated within
SOET using the exact diagonalization, and within P-SOET according to Eq. . The exact
embedding potential has been used in both cases. Results are shown in Fig. [£.4]for the 12-site Hubbard
ring. Note that the impurity double occupation has been plotted with respect to U/ (4t + U), which is

equal to 0 for U = 0, equal to 1 for ¢ = 0, and equal to 1/2 for U = 4t, so that the noninteracting limit,
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Figure 4.4: Impurity double occupation in SOET and in P-SOET for a single-impurity at half-filling.
The exact diagonalization has been used within SOET.

the atomic limit and the medium correlation strength are considered, respectively. Given that the
exact diagonalization is used to solve the SOET Hamiltonian with the exact potential, the resulting
impurity double occupation is exact as well (in a sense that it is calculated from the exact impurity
wavefunction, but it does still not correspond to the true physical double occupation). In contrast
to the impurity occupation [Tab. , the impurity double occupations obtained in SOET and in

P-SOET are not identical at half-filling. Nevertheless, the difference remains small.

4.2.3 BALDA potential at half-filling

In the previous chapter, the exact embedding potential has been used in the half-filled case, for a
finite system. Let us recall that this potential is equal to 0 on the impurity sites and U/2 in the bath
(or, equvialently, —U/2 on the impurity sites and 0 in the bath). According to Eq. , satisfying
this condition is equivalent to set the impurity correlation potential to 0 at half-filling. For the 2L-
BALDA approximation, based on the asymmetric Hubbard dimer, this condition is fulfilled. But
for functionals which are developed in the thermodynamic limit, such as iBALDA(M) and STAM-
BALDA, the impurity correlation potential at half-filling is not defined due to the presence of a
derivative discontinuity in the impurity correlation energy functional.

For convenience, the BALDA (or equivalently, iBALDA) correlation potential,

DeBALDA (< 1) ™m ™ Un
a—n = —2t COS (ﬂ([]/t)) + 2t COS (7) _ (443)
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will take the following value at half-filling,

86103ALDA(TL < 1) ae]CBALDA(n < 1)
. % -
on on

n=1

™ U
L = —2t cos (W) -3 (4.44)

which is equal to 0 for U = 0 only (with $(0) = 2). This choice is made in order to have a continuous
embedding potential in the range 0 < n < 1, and not in the range 0 < n < 1 only like in chapter [3]
Indeed, the half-filling iBALDA correlation potential was previously set to the exact correlation po-
tential for a finite system, i.e. 9eBALPA(n < 1)/0n|,—; = 0. This choice was made for practical
reason. As mentioned in the very end of chapter [3] convergence issues may arise around half-filling,
when either the impurity or the bath occupations are very close to 1. If the iBALDA correlation
potential in Eq. were used to solve the SOET self-consistent equation, the occupations in the
whole system would have fluctuated around 1 and no convergence would have been reached.

In P-SOET, the situation is different. All the bath occupations are set to the impurity occupation in
the theory. Hence, there are no fluctuations and all occupations are the same, such that this particular
convergence issue at half-filling can be avoided (as shown in the following section). Therefore, we can
use the definition of the correlation potential in Eq. at half-filling. In order to make a difference
between the latter potential and the (exact) one used in iBALDA at half-filling, we referred to it as

the iBALDA approximation. The difference between the two approximations is made clear in Fig. 4.5

Also, let us stress that enlarging the size of the system to 400 sites allows us to study the whole
range of the density regime. Therefore, we can approach the m = 17 limit very accurately. Indeed,
taking 398 electrons in 400 sites leads to n = 0.995, against n = 0.9375 for the 32-site Hubbard model
studied in SOET. As already mentioned, approaching the half-filled case can lead to convergence
issues due to the derivative discontinuity in the embedding potential, even within P-SOET. This will
be shown in the next section, where per-site energies and double occupations are calculated in different

correlation and density regimes.

4.2.4 Double occupation and per-site energy at half-filling
4.2.4.i Double occupation at half-filling

Turning to the exact double occupation expression in SOET [Eq. ], the 2L-BALDA, iBALDA (M)
and the new iBALDA(M) functionals are tested on the 400-site ring Hubbard model. The Bethe
Ansatz (BA) [320] results obtained by solving Eq are used as a referencﬂ Let us focus on the
half-filled case, which is the only case where iBALDA(M) and iBALDA(M) differ. In Fig. 4.6, the

IThe BA code has been written by Matthieu Saubanére, CNRS at the Institut Charles Gerhardt Montpellier
(FRANCE).
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Figure 4.5: 2L-BALDA and iBALDA correlation potential with respect to n for U/t = 8. At half-
filling, the iBALDA correlation potential is exact and equal to 0, while the iBALDA correlation
potential is given in Eq. (4.44). Note that this BALDA potential is also used in the bath.
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Figure 4.6: Double occupation for the various functionals at half-filling, within P-SOET. For the
iBALDA (M) approximation, the full lines represent the result at the first iteration while the dashed
lines are the one obtained after convergence. The red dot and the black dashed line correspond to the
correlation regime from which iBALDA (M) starts to converge.
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double occupation has been plotted with respect to the correlation strength. First of all, it is clear that
all approximations are exact in the U = 0 and ¢ = 0 limits. Then, the iBALDA(M) and 2L-BALDA
double occupations are quasi identical to the SOET results [Fig. presented in the previous chapter.
Hence, the same conclusions still hold, e.g. the double occupation is improved when using non-zero
per-site bath correlation functional (2L-BALDA here, as compared to iBALDA(M=1)), and when
increasing the number of impurities. For the latter, the improvement is at the expense of a much
higher computational cost, as passing from M = 1 to M = 4 is equivalent to solve a 8-site Hubbard

model instead of a Hubbard dimer for the embedded problem.

Note that for 2L-BALDA and iBALDA (M), the exact embedding potential is used such that there
are no density-driven errors and the problem converges to the exact density in one iteration only (see
Tab. . For this reason, and because there is no bath correlation energy functional of the density
in DMET, the iBALDA(M=1) double occupation (corresponding to dij\r/fnil) is exactly the same as the
single-impurity DMET one [418, [420|. Indeed, in both P-SOET and DMET theories, the correlation
potential is the same at half-filling for a single impurity, so that there is absolutely no difference
between the two approaches. In other words, the impurity wavefunctions are identical in both meth-
ods at half-filling. Then, if bath correlation functionals are used, P-SOET improves over DMET, as
shown by the 2L-BALDA double occupation. If the matching is performed on the diagonal of the
1RDM of the fragment only, DMET [see the noninteracting (NI) bath formulation in Ref. [420] and
the Fig. 2 therein] is similar to iBALDA (M) for the calculation of the double occupation. To improve
over iBALDA(M) (or, equivalently, NI in Ref. [420]), DMET can match not only the diagonal but
all the 1RDM of the fragment, while the improvement of P-SOET relies on the development of new
M-dependent functionals. Alternatively, constructing more accurate bath orbitals by starting with
the antisymmetrized geminal power wavefunction [425] or the unrestricted Hartree-Fock one [420] is

also a way to increase the performance of DMET as well as P-SOET.

Let us now turn to the new iBALDA approximation for M = 1. The only difference with
iBALDA(M) is in the embedding potential at half-filling. This potential is still 0 on the impu-
rity by construction, but instead of being U/2 in the bath it becomes equal to the one in Eq.
computed with the occupation of the impurity, and is thus no more exact for a finite system. Sur-
prisingly, at the first iteration using the exact uniform density (full lines in Fig. , iBALDA(M=1)
performs better than iBALDA(M=1) for U/(4t + U) > 0.3 (or, equivalently, U > 1.8t), and even
better than 2L-BALDA and iBALDA(M=4) in the strongly correlation regime U > 4¢. Given that

there is no functional contribution in the expression of the double occupation within iBALDA (M) or
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Figure 4.7: Same as Fig. but for the per-site energy.

iBALDA(M) [see Eq. ], it means that the impurity double occupation dij\[/lnil gets much closer
to the true physical double occupation when using the potential in Eq. . Therefore, the em-
bedding potential has a strong influence on the resulting impurity double occupation. For U < 1.8,
iBALDA(M) is however not better than iBALDA(M) (for M = 1 and M = 4). Interestingly, as
shown in Fig. [£.6] by the red dots and the dashed black line, this is exactly the regime in which the
iBALDA(M) shows self-consistent convergence problems. This can be explained as follows: in the
weakly correlated regime, the deviation from the half-filling is small, so that the embedding potential
remains close to the discontinuity and starts to oscillate. On the contrary, in the strongly correlated
regime, the deterioration of the density is strong enough to remain far from the discontinuity, so
that it becomes possible to converge. Impressively, iBALDA(M=4) gives the best double occupa-
tion for U > 1.8t, and is even on top of the exact double occupation for U > 4¢. In analogy with
the SOET results presented in the previous chapter, the density-driven error is almost absent in the
double occupation. This is because the double occupation within iBALDA(M) does consider the
bare M-interacting-impurity double occupation only, without any contribution from a complementary

functional of the density.

4.2.4.ii Per-site energy at half-filling

Let us now turn to the per-site energy at half-filling, shown in Fig. We start by analysing the
per-site energy [Eq. (3.28)] in which the exact uniform density has been inserted (full lines). In anal-

ogy with the double occupation, we notice that P-SOET is exact in both the non-interacting and the
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atomic limits, for all functionals. The 2L-BALDA and iBALDA (M) results are very similar to the per-
site energy obtained within SOET [see Fig. in the previous chapter|. For a single impurity, both of
them feature a positive per-site energy in the strongly correlated regime, although 2L-BALDA remains
constantly better than iBALDA(M=1). By increasing the number of impurities in iBALDA (M =4),
we recover a negative per-site energy. It should be noted that, in contrast to the double occupation,
the per-site energy within iBALDA (M) is not calculated the same way in P-SOET and in DMET,
such that they are not directly comparable. Returning to P-SOET, even though iBALDA(M=4) is
already relatively accurate in all the correlation regime, it is outperformed by iBALDA(M=1) with a
single impurity only, as soon as U/(4t + U) > 0.4. Impressively, iBALDA(M=1) is highly accurate in
the strongly correlated regime (U/(4t + U) > 0.7), and increasing the number of impurities to M = 4
leads to a per-site energy which is almost on top of the exact one in all regimes of correlation, from

U=0toU — +4o0.

Turning to the per-site energy obtained by using the converged density for iBALDA (M) (I recall
that the other approximations have no density-driven error at half-filling, because the exact embedding
potential is employed), the density starts to deviate from the half-filled one as soon as U/(4t+U) > 0.4,
and does not converge for U < 1.8t. It is clear from the dashed lines in Fig. [I.7] that the deterioration
of the density is not in favour of a better accuracy. Indeed, huge density-driven errors arise when
the correlation increases, thus making iBALDA(M) not exact anymore in the atomic limit after

convergence. Note that by increasing the number of impurities, this error is less pronounced.

4.2.5 Double occupation and per-site energy away from half-filling

4.2.5.i Double occupation away from half-filling

Away from half-filling (0 < n < 1), the iBALDA(M) and iBALDA(M) approximations are exactly
the same. In order to have smooth potentials in the range 0 < n < 1, iBALDA(M) is used instead of
iBALDA(M). Therefore, we focus on the iBALDA (M) approximation in the following. Let us first
take a look at the 2L-BALDA double occupation in Fig. [£:8] We start by using the exact density at
iteration O (full lines). The physical 2L-BALDA double occupation [see Eq. (3.39)] (in green) and its
bare double occupation d™P (in yellow) differ by (“)Elg’j‘]\t/}l:l(n) /OU. The latter leads to a significant
overestimation of the double occupation. In other words, it does not account for enough correlation
effects. Very surprisingly, this is not anymore the case when considering the iBALDA (M) double
occupation (which is only given by the bare impurity double occupation). Indeed, the impurity double
occupation becomes highly accurate in the whole density domain, and overcomes the performance of

the physical 2I-BALDA double occupation (in green), which is already relatively good considering
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Figure 4.8: Double occupation for the 2L-BALDA and iBALDA (M) approximations in P-SOET (L =
400). The bare impurity double occupation of 2L-BALDA (yellow lines) is plotted as a comparison
to the bare impurity double occupation of iBALDA(M=1). Full lines: results obtained at iteration
0 using the exact density. Dashed lines: results obtained after reaching convergence. See text for
further details.

only one impurity. I recall that this behaviour could not been really observed previously, as the

number of sites was not sufficient to sample the whole density domain.

Increasing the number of impurities does slightly improves the double occupation. However, this
small improvement is not worth it, considering the already high accuracy and the low computational
cost of iBALDA(M=1). The good performance of iBALDA(M=1) can be rationalized as follows.
According to Fig. [4.50 the impurity correlation potential in iBALDA(M=1) is becoming more and
more negative when approaching n = 1, while the 2L.-BALDA one increases towards 0 for 0.75 < n < 1.
Therefore, and according to Eq. , the embedding potential is much more repulsive on the impurity
site within iBALDA(M=1) than within 2L-BALDA, leading to a decrease of the impurity double

occupation in the density domain 0.75 <n < 1 [see Fig. [4.8].

Considering the final converged results (dashed lines) in Fig. the impurity double occupation
in iBALDA(M) is not much affected by density-driven errors. For M = 4, this error on the double
occupation is even very close to zero, as the dashed line and the full line are almost indiscernible. This
has to be distinguished from the 2L-BALDA double occupation, for which the error in the density
significantly improve the double occupation in the vicinity of half-filling, even for the bare impurity
double occupation. This error in the impurity occupation is indeed very large in this case, as shown

in Fig. [£.9] which shows the densities obtained self-consistently. Within 2L-BALDA, the impurity
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Figure 4.9: Self-consistent impurity occupation(s) for 2L-BALDA and M(M ) approximations
in P-SOET (L = 400). For iBALDA(M=4), the two central impurities are n\flﬁi‘* = nz‘lj}gi“ with their
two neighbours n MZa n;pl]&]i“.

occupation deviates from the exact uniform occupation, and is significantly underestimated. This
underestimation of the impurity occupation close to the half-filled case also leads to an underestimation
of the impurity correlation potential in Fig. functional of the density. In other words, the impurity
correlation potential becomes more attractive or, according to Eq. , the embedding potential

becomes more repulsive. This leads to a decrease of the impurity double occupation which gets closer

to the exact one.

4.2.5.ii Per-site energy away from half-filling

Let us now discuss the per-site energy [Eq. (3.27)] in Fig. Starting with the iteration 0 using the
exact density (full lines), the same conclusions than for the double occupation can be made. Although
2L-BALDA gives relatively accurate results, it is significantly outperformed by iBALDA (M) in the
vicinity of half-filling. Indeed, iBALDA (M =1) is an excellent approximation to the per-site energy.
iBALDA(M=4) is even better, as it becomes almost indiscernible from the exact per-site energy in
the range of 0.6 < N/L < 1.

However, and as already discussed in the context of SOET in the previous chapter, the density-
driven errors can be important for the per-site energy. Turning to the converged results in Fig.

(dashed lines), the density-driven error is now becoming very important for the iBALDA (M) approx-
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Figure 4.10: 2L-BALDA and iBALDA(M) per-site energies in P-SOET (L = 400). Full lines: re-
sults obtained at iteration O using the exact density. Dashed lines: results obtained after reaching
convergence. See text for further details.

imation in the vicinity of half-filling, even for M = 4. Indeed, in contrast to the double occupation,
the per-site energy within iBALDA (M) does include density-functional contributions. According to
Fig. [4.9] it is clear that the density-driven error in the per-site energy follows the same trends as
the error in the impurity occupation, which is quite expected. For all functionals, it leads to a de-
crease of the per-site energy close to half-filling. While it improves the performance of 2L-BALDA, it
deteriorates the iBALDA (M) energies.

4.2.6 Opening of the charge gap at half-filling

The question we now wish to address is whether one could describe the opening of the charge gap
at half-filling. In the 1D Hubbard model, no Mott transition arises as a function of U, as the model
becomes an insulator at half-filling for any U > 0. However, there is another Mott transition which is
a “density-driven” Mott transition, i.e. the transition from a metal (n < 1) to an insulator (n = 1), for
any finite non zero value of U [329]. In order to see this transition, we plot the density as a function
of the chemical potential. The chemical potential is a shift in the external potential that fixes the

number of electrons in the system,

H— H(p) = H— uN, (4.45)
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where N = > ;M is the counting operator. The total number of electrons varies with j, except if
i is in the charge gap. Indeed, the half-filled one-dimension Hubbard model is an insulator, such
that it depicts the splitting of the d band in semi-conductors (see Fig. . Assuming that we are in
the thermodynamic limit, if the chemical potential varies inside of the valence band, the number of
electrons will vary continuously with it. But if the chemical potential varies in the band gap, then
the number of electrons will always be the one that fills the valence band completely (so n = 1 in
the Hubbard model), such that the chemical potential is not uniquely defined anymore. This is also
related to the discontinuity in the correlation potential at half-filling. Alternatively, this behaviour
can be observed by looking at the compressibility dN/dy [418], which vanishes when entering the
charge gap. In order to find the number of electrons associated with a given chemical potential, it

comes from Eq. (4.45]) that we have to solve the following (per-site) minimization within P-SOET:
min {e™SOFT(N/L) - MN/L}, (4.46)

where the exact density n = N/L in the P-SOET per-site energy is used in a first step. The minimizing
number of electrons in Eq. is the one corresponding to the given and fixed chemical potential
w, denoted by N(u). Therefore, for each value of p, we perform the minimization in Eq. to
find the minimizing density n(u) = N(u)/L, where L = 400 in our case. Given that the per-site
energy in P-SOET has been calculated for any even electron number N, the minimization is done
over 200 points. Note that such a minimization would have been irrelevant in the original imple-
mentation of SOET, where only the 32-site Hubbard model was studied. The results are shown in
Fig. for U = 8t, such that it can be directly compared to the DMET results in Figs. 3 and
4 of Refs. [418] and [420], respectively. First, let us discuss the exact curve of this plot, obtained
with BA calculations. As readily seen in the BA curve, increasing the chemical potential leads to
a continuous increase of the number of electrons in the metallic domain N/L < 1. As soon as the
system becomes half-filled (N/L = 1), the number of electrons is not influenced by the change in
chemical potential anymore. Hence, the compressibility dN(u)/dp vanishes, thus manifesting the
opening of the gap. The size of the gap is then determined by the size of the plateau at N/L = 1.
Turning to P-SOET at iteration 0 with the exact density (full lines), iBALDA (M) is almost on top
of the BA curve, even for a single impurity. This is one of the most important result in this thesis,
in my opinion. Indeed, this density-driven gap opening is neither obtained in single-site DMFT [329]
nor in single-site DMET [418], 420] for the one-dimensional Hubbard model, while it is obtained al-
most exactly in P-SOET within iBALDA(M=1) (using the exact density). This very nice feature of

P-SOET (and, more generally, SOET) is clearly due to the fact that all the missing correlation in
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Figure 4.11: Variation of the density filling as a function of the chemical potential for U/t = 8,
according to Eq. (4.46) using the exact density for e"-SOET(N/L) (full lines), and the converged one
(dashed lines). See text for further details.

single-site DMET and single-site DMFT can in principle be included in the SOET bath correlation
functional. In contrast to iBALDA(M), 2L-BALDA is faced to difficulties when approaching half-
filling. At first sight, it seems that it does describe the opening of the gap, even though the position
of the gap is displaced. In fact, it does not describe a gap at half-filling. Indeed, the constant plateau
is reached for N = 398, equivalent to n = 0.995 | Note that this would also be the case if one uses the
iBALDA (M) approximation instead of iBALDA(M) (not shown). Apparently, iBALDA (M) and 2L-
BALDA approximations do not describe the insulating state with enough precision to account for the
density-driven Mott transition correctly. This is most certainly due to the fact that 2L-BALDA does
not depict any discontinuity in the potential, and that iBALDA(M) set the impurity correlation po-
tential to 0 at half-filling, instead of using Eq. [see Fig. . A deeper analysis is still in progress.

Let us now look at the results obtained with the converged density (obtained self-consistency),

inserted in Eq. (4.46) as follows,
m]\ifn {ef\)/}SOET(n(\)Pﬁp) - MN/L}, (4.47)

imp
where eﬁ/}SOET(n(\)PM ) denotes the per-site energy obtained by solving the N-electron/M-impurity-

interacting problem self-consistently within P-SOET. The results are shown in dashed lines in Fig.[{.17]
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Clearly, the density-driven error has a huge impact on the compressibility. In contrast to DMET and
DMFT which always give a good representation of the compressibility in the doped region (n <
0.7) [329, [418| 420], the P-SOET compressibility is subject to strong density-driven errors. As a
consequence, even though iBALDA(M) exhibits a plateau at N/L = 1, the position of the density-
driven Mott transition is misplaced and is strongly overestimated. For 2L-BALDA, it is not even clear
if a plateau is reached or not here. In order to check the opening of a Mott gap in 2L-BALDA, we

could treat a much larger system to have more precision around half-filling.

4.3 Summary and Perspectives

Let us highlight what SOET and its alternative formulations bring to the condensed matter physics
community. To summarize, SOET in its original formulation (Chap. [3) is an in-principle exact theory,
that relies on a mapping of the physical fully-interacting problem onto an embedded one, composed of
interacting impurities surrounded by noninteracting effective bath sites. Within the exact formalism
and using Legendre transforms, we have seen some very interesting features of the embedding po-
tential. Away from half-filling, the breaking of translational symmetry due to the explicit treatment
of the impurity sites leads to fluctuations of the embedding potential in the bath. While this state-
ment is quite intuitive, it highlights the fact that the bath correlation functional (or, equivalently, the
impurity one) has to depend on all sites occupation, and not only on the impurity one(s), as it has
been assumed throughout the various approximations developed in this thesis. This gives an idea of
the difficult task of achieving an exact embedding, even for a uniform model. Then, exact expres-
sions for the double occupation and per-site energy have been derived for the uniform model within
SOET, involving both wavefunction and density-functional contributions, hence showing that SOET
is indeed a true combination of the two approaches. We have also seen how significant is the per-site
bath correlation contribution around the half-filled case, where the density-driven Mott transition
arises. This contribution, for which we provided some exact numerical values and approximate ana-
lytical expressions, can actually help in understanding the missing correlation in DMET. A connection
with the single-impurity Anderson model has also been investigated, throughout the development of
SIAM-based functionals. This connection has been further investigated by transforming the SOET
Hamiltonian onto a STAM Hamiltonian, which can then be solved by impurity-solver techniques using
Green’s function. However, despite this rewriting of the SOET Hamiltonian, it is not obvious if it
leads to a decrease of the computational cost, except if we use approximate solver like second-order
perturbation theory. In our group, Laurent Mazouin is actually working on a Green’s function-based

formulation of SOET, and we hope to get a mapping of the type of DMFT (with a single impurity
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Green’s function), but where the mapping is performed on the density. This is currently in progress.
A clearer connection with DMFT could then be investigated, in the spirit of the projected version of
SOET, which is closely related to DMET. Within this projected formulation, the computational cost
has become almost negligible, as the problem now reduces to the diagonalization of a (L x L) matrix
to create the projector, used to project the physical problem onto a 2L size problem (where L is the
number of impurities). This (now approximate) formulation of SOET has been shown very promising,
and highly accurate results for the per-site energy, the double occupation, and the density-driven Mott

Hubbard transition have been obtained.

Let us now turn to future works. First of all, it is clear that new functionals should be developed.
This could be done by looking, for example, at the perturbation expansion of the embedding potential
by Gorling-Levy perturbation theory |78 (97|, or by adapting the Sham-Schliiter equation [224] to
SOET. The latter approach has been recently investigated by Laurent Mazouin up to second-order,
and the obtained embedding potential is shown to partially compensate the Friedel-like oscillations
of the density that arise when interacting impurities are “inserted” in the model [Fig. . A second-
order correlation energy functional could then be obtained from the self-energy. This would only be
sufficient in the weakly correlated regime, but it would be the first step toward the development of a

functional that depends on all the site occupations. This is currently in progress.

Also, multiple-impurity functionals that account for the per-site bath correlation functional (in
contrast to iBALDA) could also be developed. This is left for future work. Of course, it would
also be interesting to extend SOET to higher dimensions like the 2D Hubbard model that contains a
Mott-Hubbard transition as a function of U/t, as well as superconducting states to model the high-T,
cuprates. But this extension requires the development of appropriate functionals that we have not
investigated yet. For this purpose, an automated way of constructing functionals in SOET is of major
importance, and is also left for future work. Finally, a grand canonical formulation of SOET (to be
contrasted to the canonical formulation of SOET) is also of interest. The so-called partition DFT [299]

could bring an answer to this problem.



Chapter 5

Unified formulation of fundamental

and optical gap problems in ensemble

DFT

In the previous chapters, the Mott transition has been introduced in the context of the Hubbard
model, and is manifested by the opening of a gap between the valence and the conduction band. This
chapter deals with the fundamental gap (or, equivalently, twice the hardness [441]), which is one of the
most challenging quantities to describe in quantum chemistry for molecules [2], as well as in condensed
matter physics for solids [442]. There are several sorts of gaps, which has sometimes led to confusion
in the literature [443|. For instance, the optical gap, given by the lowest excitation energy (neutral
excitation) is completely different from the fundamental gap, obtained by the difference between the
ionization potential and the electronic affinity (charge excitations). We can find different terminology
in the literature, such as the transport gap, the electronic gap, the band gap (for solids) and the charge
gap, all identical to the fundamental gap. These energy gaps between the highest occupied and lowest
unoccupied electronic levels determine the electronic, optical, redox, and transport properties of a
material, such as semiconductors and photovoltaic materials. The determination of the fundamental

gap remains one of the biggest challenge in density-functional theory (DFT) [2].

In this chapter, we first review how the optical and fundamental gap can be extracted from a DFT
calculation, followed by an unified formulation of these two different gaps at a formal level, in the

context of ensemble DFT.
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5.1 Optical gap in ensemble DFT

This section focuses on the extraction of the exact optical gap in ensemble DFT, which is essential to
understand the outcomes of the approach presented in the following, so-called N-centered ensemble

DFT [75).

In DFT, the KS gap is given by the difference between the lowest unoccupied molecular orbital

(LUMO, denoted by L) and the highest occupied molecular orbital (HOMO, denoted by H),
E?S — K5 _ KS, (5.1)

Although this gap gives a first and relatively good approximation to the optical gap in molecules, it
contributes only to about 60% of the optical gap in solids [444]. The correction is commonly provided
by linear response, i.e. the xc kernel in time-dependent DFT (TDDFT) [445], which has been widely
and successfully employed over the last thirty years (see for instance reviews in Refs. [255] 296] and
references therein). Unfortunately, TDDFT does not give an accurate description of charge transfer
excitations [446] when local or semi-local functionals are used. Even worse, multiple excitations are
completely absent from the spectra [254]. Note that some progress regarding these issues have been
made recently [447-449]. Alternatively, and originated from solids state physics, the more involved
many-body perturbation theory (MPBT) within GW together with the Bethe Salpeter equation [450,

451, which relies on the two-particle Green’s function, can be used.

It is desirable to have access to the whole excited spectrum of the system by a time-independent
approach that remains computationally cheap. The Gross—Oliveira—Kohn (GOK) DFT for canonical
ensemble [257H259| is such a theory, proposed in the late 1980s and which generalizes the seminal
work of Theophilou [452]. In the following, we focus on ensembles consisting of two nondegenerate

states,
EY =(1—-w)Ey+wk, (5.2)

where wy = 1 — w is the weight associated to the ground-state energy Fy and w; = w is the one
associated to the first excited state F;. E" is called the ensemble energy and can be expressed

variationally as follows,
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where I = (1 — w)|¥o)(To| + w|T;)(¥,] is the ensemble density matrix operator, and ¥y and ¥,
denote ground- and first-excited state orthonormal trial wavefunctions, respectively. This energy is

linear with respect to w and its derivative gives rise to the first excitation energy, i.e. the optical gap,

dBv
Q=B - By= ——. (5.4)

Turning to GOK-DFT, the exact ensemble energy in Eq. (5.3) can be rewritten as follows [257H259],

n

E* = min {F“’ [n] + /drvcwE (r)n(r)}, (5.5)

where

F*“[n] = min {Tr {fw (T—F Wee)} } (5.6)

fw_sn

is the analogue of the Levy—Lieb functional for ensembles. Note that the minimization is over the
whole set of ensemble density matrix operators with density n(n). Then, the noninteracting ensemble
kinetic energy and the ensemble weight-dependent Hxc energy are introduced by performing the KS

decomposition as follows,
FY[n] =T n] + Ef[n]. (5.7)
The noninteracting ensemble kinetic energy can be rewriting in a Legendre—Fenchel transform,

7} = sup {eitslo] - [ dro(ein(r}, (5.8)

and E¢g[v] is the ensemble energy, obtained by averaging the N-electron ground- and first-excited-state

energies of T + [ drv(r)n(r) as follows,
N N-1 1
Eksv) = (1 —w) Z&i[v} +w (Z gi[v] + EL[’U]> = Z gi[v] + (1 — w)en[v] + wey[v]. (5.9)

=1 =1 i=1

Returning to the KS expression for the exact ensemble energy, combining Egs. (5.5) and (5.7) gives

the variational expression

B = min {Tr [f“f (T + Vextﬂ + ngc[nfw]}, (5.10)

where Vig = J drvex (r)a(r), and the minimizing noninteracting ensemble density matrix operator
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I'{q reproduces the physical interacting density N (r)= N (r). It is constructed from a single set
of orbitals which fulfil the following self-consistent KS equations,

2 5EwXC|:nhw ]
(‘Vz + ven{r) + I}n()> P (r) = el (x). (5.11)

Finally, using Eq. (5.10)) together with the Hellmann—Feynman theorem, followed by Eq. (5.11) leads
to the final GOK-DFT expression for the optical gap [25§],

Q=c? — ¥+ AV

Xc?

(5.12)

where AW, = JE2 [n*]/0ala=w is so-called derivative discontinuity (DD) contribution to the optical
gap [453] |454]. The Hartree contribution is weight-independent. When w — 0,

Q=cp —en+AL70 = ES5 + AR, (5.13)
and A" is the DD that corresponds to the jump in the xc potential when moving from w = 0 (V-
electron ground-state) to w — 0 (ensemble of N-electron ground and excited states), and should not
be confused with the conventional ground-state DD, which will be extensively discussed in the follow-
ing. As readily seen in Eq. (5.12)), the KS gap for ensembles is weight-dependent. This dependency

has to be counterbalanced by the ensemble DD to obtain a physically relevant weight-independent

optical gap.

Despite the in-principle exact and time-independent formulation of GOK-DFT, the theory is not
standard in quantum chemistry or in condensed matter physics, due to the highly complicated task of
developing weight-dependent xc energy functionals. It has however gained increasing interest recently,
first of all by considering the weight-independent functional as a first approximation [261], leading to
curvature in the ensemble energy with respect to w (or, equivalently, to a weight-dependent optical
gap, which is unphysical). A way to deal with this problem is to find an optimal w value [455], or
to use Boltzmann weights [261] (which is not mandatory). Alternatively, we have recently suggested
a linear interpolation between the ground-state (w = 0) and equi-ensemble state (w = 1/2), which
circomvent the selection of a given weight [263] [264]. This interpolation method has been shown to
give very accurate excitation energies on atoms and small molecules, and to catch charge transfer
and double excitation energies (see also Ref. [340]). To go beyond weight-independent functionals,
the so-called generalised adiabatic connection for ensembles (GACE) has been proposed by Franck

and Fromager [260]. Since the last two years, the number of papers on ensemble DFT is increasing
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significantly. For instance to fix the infamous problem of “ghost-interaction” [266], 456, |457] (which is
the ensemble analogue to the self-interaction in KS-DFT), to extract individual energies from GOK-
DFT [458|, and to develop weight-dependent functionals from the Hubbard dimer |73| [74], based on
perturbation expansions to the weakly correlated limit and to the symmetric case |74]. Finally, note
that a general formula for the weight-dependent Hx functional has been proposed [459] and was shown

to provide accurate charge transfer excitations [460] on an asymmetric two-electron diatomic model.

5.2 Fundamental gap and the derivative discontinuity

Let us turn to charge excitations instead of neutral excitations, leading to the famous fundamental

gap. This gap is defined as the difference between the ionization potential,

N =Eg)~' - EY, (5.14)
and the electronic affinity,
AN = BN — gyt = [N (5.15)
thus leading to
EY =1V — AN = EJ'7' + ) - 2E]. (5.16)

In contrast to the optical gap, for which the number of electrons remains constant (hence the term “neu-
tral” excitation), the fundamental gap describes ionization processes (so-called “charge” excitations)
Experimentally, this gap can be determined via photoelectron spectroscopy and electron attachment
spectroscopy [443|. In contrast, the optical gap is a measure of the absorption spectroscopy, as it
describes the lowest possible neutral excitation in the system. The difference is subtle, and is made
clearer by looking at Fig. In this illustration, we see that the optical gap is obtained by exciting
one electron from the valence band to the conduction band thanks to a photon absorption. In this
case, the jump of the electron creates a hole behind, that is bound to the electron, forming what we
call an exciton. This exciton-binding energy is the difference between the optical and the fundamental
gap. In the latter, the hole and the electron are not bound together. Indeed, this gap is defined
by ionization processes, such that the electron is first entirely removed from the system (ionization
potential, thus creating an unbinding hole) and then added in the conduction band (electronic affinity,

thus creating an unbinding electron). Note that in molecules, we usually refer to the hardness, which
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Figure 5.1: Left: Artistic view of the optical gap and the fundamental gap in solids. Right: Illustration
of the energy gaps in molecules. The discrete energy levels Sy and S; denote the singlet ground-state
and the lowest singlet excited state, respectively. This figure is inspired from Ref. [443)].

corresponds to half of the fundamental gap [441]. Now, we shall see how this gap can be obtained
through DFT calculation.

As readily seen in Eq. , three N -electron ground-state energies (with N = {N —1, N, N+1})
are in principle needed to compute the fundamental gap. In practice, we know (as discussed in the
first chapter) that an accurate determination of the energy is expensive in term of computational cost,
such that WFT can be applied to very small systems only. One could also do three different calcu-
lations using DFT or Hartree-Fock, thus leading to the so-called ASCF [461] method that produces
reasonable results for atoms and molecules. But concerning the calculation of the band gap in solids,
it cannot be straightforwardly applied. Indeed, a solid is considered by a unit cell which is infinitely
replicated. Removing or adding an electron to that unit cell is also repeated on all the replica, such
that the N — 1- and N + 1- ground-state energies are not possible to compute directly. This issue is

usually avoided by introducing a compensating uniform background to the unit cell [462].

Therefore, it is desirable to extract the fundamental gap from one calculation on the neutral system
only. In Hartree-Fock theory and DFT, this is done by approximating the fundamental gap by the
simple difference between the LUMO and the HOMO orbital energies, like the KS gap in Eq. .
Hence, the optical gap and the fundamental gap are totally equivalent in both theories, which is of
course not the case in reality, as extensively discussed in Refs. [443] |444]. According to Eq. , the
KS gap differs from the optical gap by a DD. In fact, the term “derivative discontinuity” in KS-DFT
originates from the seminal work of Perdew and Levy in 1983 [130] on the fundamental gap, in the
continuity of the DFT for fractional number of electrons [158]. In the latter work, they showed that

the energy should be piecewise linear with respect to the number of electrons M where M is fractional,
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> M
N -1 N N +1

Figure 5.2: Piecewise linearity of the energy with respect to the (fractional) number of electrons. The
slope when approaching N from the left gives the ionization potential, while approaching from the
right gives the electronic affinity. The blue dashed line corresponds to the convex behaviour of local
and semi-local DFAs.

and that its slope between N — 1 < M < N gives rise to (minus) the ionization potential, while its
slope between N < M < N + 1 is (minus) the electronic affinity. This is illustrated in Fig. As
readily seen in Fig. the derivative of the energy with respect to the number of electrons (which is
nothing but the chemical potential) is discontinuous at each integral number of electrons. In KS-DFT,
this discontinuity is manifested in the xc potential, such that the fundamental gap for a N-electron

system reads

(SEHXC [n] _ 6EHXC [’I’L]

EN _ N _ N
BT T T el 0n() | yes

= EfS + AR, (5.17)

where A)J(VC

is the infamous xcDD, which is not equal to A", Standard xc functionals do not exhibit
such a DD, such that this discontinuous behaviour has been the subject of extensive discussions in the
literature |130} 224, [438] |463H476]. According to Eq. , it is in principle sufficient to extend the
domain of definition of the conventional xc functional to fractional electron numbers in order to account
for the DD. Unfortunately, this task is far from trivial and, despite significant progress [442} |[477H491],
no clear strategy has emerged over the past decades. It is even argued that invoking fractional number

of electrons is maybe not the correct route to pursue [444}, |475| |476]. In the latter works by Baerends

and co-workers [444] [475] |476], an extensive discussion is made on the exact and approximate KS gap
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for both molecules and solids. It is stressed that this gap should not be interpreted as a representation
of the fundamental gap. Baerends also suggests to compute the correction AY, from the response part

of the xc potential, based on an integral number of electrons approach [475|.

In practice, both chemistry and physics communities have turned to generally more expensive “post-
DFT” for the computation of the charged excitations, such as DET+U [159-161} |492(H494] or the even
more involved Green’s function-based methods like GW [223] [231H234], 495]. Hybrid functionals can
also be used [496-499], as they correct for the delocalization error (related to the self-interaction error)
in DFT due to their portion of Hartree-Fock exchange [442} 477|. Note that this correction is due to
an error cancellation between convex (DFT, delocalization error) and concave (HF, localization error)
components, which does not provide a general solution for the description of the band gap [477], and

can even give poorer optical gaps than without HF exchange [444].

5.3 Fundamental gap in N-centered ensemble DFT

Quite recently, Kraisler and Kronik made the formal connection between non-neutral excitations and
GOK-DFT more explicit by introducing a grand canonical ensemble weight, thus paving the way
to the construction of more reliable xc functionals for ionization and affinity processes [500L 501].
Unfortunately, as the total (fractional) number of electrons varies with the weight, the analogy with
GOK-DFT can only be partial. It will be shown below that with an appropriate choice of grand
canonical ensemble, informations about non-neutral excitations can be extracted, in principle exactly,
from a canonical (time-independent) formalism. As a remarkable result, the optical and fundamental
gap problems become formally identical, even though the physics they describe is completely different.
Although it had not been realized yet, advances in GOK-DFT should therefore be beneficial to the

description of fundamental gaps too.

5.3.1 Single-weight N-centered ensemble DFT

In the conventional DFT formulation of the fundamental gap problem, a grand canonical ensemble
consisting of (N — 1)- and N-electron ground states is considered, thus leading to a total number
of electrons that can be fractional. By analogy with the time-ordered one-particle Green’s function,
which contains information about the (N — 1)-, N-, and (N + 1)-electron systems, we propose instead
to consider what we will refer to as an N-centered grand canonical ensemble. The latter will be
characterized by a central number N of electrons and an ensemble weight £, in the range 0 < ¢ < 1/2,

that is assigned to both (N — 1)- and (N + 1)-electron states. In the following, the ensemble will be
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denoted as {N,&}. Tt is formally described by the following ensemble density matrix operator,
DIV — e N- 4 el N+ 4 (1 —26)0Y, (5.18)

which is a convex combination of AV -electron density matrix operators IV with NV € {N_,N,N,}.
Note that, for sake of compactness, we used the shorthand notations N_ = N—1and Ny = N+1 (not
to be confused with left- and right-hand limits). If pure states are used (which is not compulsory) then
NV = |\IIN )(‘IIN ’ where U is an N-electron many-body wavefunction. Although the N-centered
ensemble describes the addition (and removal) of an electron to (from) an N-electron system, the

corresponding N-centered ensemble density,

npen e (1) = Engno (r) + Engn (r) + (1 = 28)ngn (r), (5.19)

integrates to the central integral number of electrons N. Thus we generate a canonical density from
a grand canonical ensemble. This is the fundamental difference between conventional DFT for open
systems and the N-centered ensemble DFT derived in the following. Note that, in a more chemi-
cal language, the deviation of the N-centered ensemble density from the N-electron one nyn (r) is

nothing but the difference between right and left Fukui functions [502| scaled by the ensemble weight &.

For a given external potential vex(r), we can construct, in analogy with Eq. (5.18)), the following

N-centered ground-state ensemble energy,
ENS = ¢B)- 1 ¢BYY + (1 - 20)EY, (5.20)

where E} is the N-electron ground-state energy of H = T + Wi, + [ dr vext(r)n(r), and n(r) is the
density operator. The operators T and W, describe the electronic kinetic and repulsion energies,
respectively. Note that the N-centered ground-state ensemble energy is linear in ¢ and its slope is
nothing but the fundamental gap. From the following extension of the Rayleigh—Ritz variational
principle,

B = min T [PV =T [PV (5.21)

PN

where Tr denotes the trace, we conclude that the Hohenberg—Kohn theorem [67] applies to N-centered

ground-state ensembles for any fized value of £. Let us stress that, unlike in DFT for fractional electron

numbers, the one-to-one correspondence between the N-centered ensemble density and the external
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potential holds up to a constant, simply because the former density integrates to a fixed central number
N of electrons. We can therefore extend DFT to N-centered ground-state ensembles and obtain the

energy variationally as follows,

n—N

EéN’g} = min {F{N’g} [n] + /dr vext(r)n(r)}, (5.22)

where the minimization is restricted to densities that integrate to N. As readily seen from Eq. (5.20)),
conventional (N-electron) ground-state DFT is recovered when ¢ = 0. The analog of the Levy-Lieb

functional for N-centered ground-state ensembles reads

F{N’E}[n] = min Tr {f{N’E} (T—f— Weeﬂ , (5.23)

[{N.€} 5pn

where the minimization is restricted to N-centered ensembles with density n. Let us consider the KS

decomposition,
FWNE ) = TN n) + B ), (5.24)
where
TN )= min Tr [f{N’f}TA} (5.25)
PN} s

is the non-interacting kinetic energy contribution and

1 /

Elgfég}[n} == // drdr’ n(Ln(I/‘) + BN ) (5.26)
2 |r—r'|

is the {-dependent analog of the Hartree-xc (Hxc) functional for N-centered ground-state ensembles.

Interestingly, even though the electronic excitations described in N-centered ensemble DFT and GOK-

DFT |258| are completely different, the two theories are formally identical. Indeed, by rewriting the

noninteracting kinetic energy in Eq. (5.25)) into the following Lieb maximisation,
TN ] = sup {5@@5}@] - / dm(r)n(r)}, (5.27)

where Eég’g}[v] is the N-centered ground-state ensemble energy of T' + Jdr v(r)a(r), and using
Eq. (5.20)), it comes

N-1

ESF =Y el + (1 - €) enlv] + €evlo). (5.28)
=1
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According to Eqgs. and , the non-interacting kinetic energy functionals used in both theories
are actually equal. This is simply due to the fact that, in a non-interacting system, the fundamen-
tal and optical gaps boil down to the same quantity. This is of course not the case for interacting
electrons, which means that each theory requires the construction of a specific weight-dependent xc

functional.

For that purpose, we propose to extend to N-centered ground-state ensembles the generalized
adiabatic connection formalism for ensembles (GACE) which was originally introduced in the context
of GOK-DFT |73} |260]. In contrast to standard DFT for grand canonical ensembles [500], the ensem-
ble weight £ can in principle vary in N-centered ensemble DFT while holding the density constant.

Consequently, we can derive the following GACE formula,

13
BN ] = Byfn] + / da ALV}, (5.29)
0

where, unlike in conventional adiabatic connections [503|, we integrate over the ensemble weight
rather than the two-electron interaction strength. The GACE integrand A,{(év’a}[n] = oY ’a}[n] /O
quantifies the deviation of the N-centered ground-state ensemble xc functional from the conventional
(weight-independent) ground-state one Ey.[n] = B0 [n]. As shown in Ref. [75], the GACE
integrand is simply equal to the difference in fundamental gap between the interacting and non-

interacting systems with N-centered ground-state ensemble density n (and weight «):

Al ) = B n) - (N ] - e ] ) (5.30)

Let us now return to the variational ensemble energy expression in Eq. (5.22)). Combining the

latter with Eqgs. (5.24]) and (5.25]) leads to

EéN’g} = min {Tr [f{N’E} (T+ ‘A/ext)] + Elgfég} [”f{ms}]}, (5.31)

INOSS

where Vext = f dr vext (r)7(r). Note that the minimizing density matrix operator f‘g\sf’g} in Eq. 1'

is the non-interacting N-centered ground-state ensemble one whose density equals the physical inter-

acting one np(v.e) (r). It can be constructed from a single set of orbitals which fulfill the following
0

self-consistent KS equations [the latter are simply obtained from the stationarity condition associed

to Eq. (5.31)],

v2
5 o ) [ o ) = VN ), (5.32)
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where vI{g’g}(r) = Vext (r) + vl{{fc’g}[nfm,g}](r) and UI{{Zf}[n](r) = 6EI{{J)Y(;§} [n]/0n(r). In the particular
0

case of pure non-interacting N -electron states,

nféN,g} (I‘) = Z

i=1

2

, (5.33)

2
e )|

F-9 [0 +efof )

where L (i = Ny) and H (i = N) refer to the LUMO and HOMO of the N-electron KS system,
respectively. By inserting the latter density into Eq. (5.30) and taking o = &, we finally deduce from
Eq. (5.32)) the analog of the GOK-DFT optical gap expression for the fundamental gap,

QBN €
EN = N6 Ve [n]

5 (5.34)

N=nN_(N¢
piNe}

This is the central result of this chapter. Note that, when £ = 0, the famous formula of Perdew and
Levy [130|[Eq. (5.17)] is recovered with a much more explicit density-functional expression for the
DD.

5.3.2 Two-weight generalization of the theory
5.3.2.i Extending the Levy—Zahariev shift-in-potential procedure to ensembles

In order to establish a connection between N-centered ensemble DFT and the standard formulation
of the fundamental gap problem in DFT (which relies on fractional electron numbers), we propose in
the following to extend the theory to N-centered ensembles where the removal and the addition of an
electron can be controlled independently. For that purpose, we introduce the generalized two-weight

N-centered ensemble density matrix operator,

NG = 37 g PNy
v==+

N, | -
1- z;g,,N] . (5.35)

where € = (§_,£;) and the convexity conditions - >0, £ > 0, and - N_ +&; Ny < N are fulfilled.
Note that, by construction, the N-centered ensemble density associated to D{NE} still integrates to
N, and the single-weight formulation of N-centered ensemble DFT discussed previously is simply

recovered when ¢ = £, = . The ensemble energy now reads

EN =N e, B + EY. (5.36)
v==+

N,
1- guiy
5N
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Interestingly, if we extend the Levy—Zahariev shift-in-potential procedure [504] to N-centered ground-
state ensembles as follows [note that the superscripts £ in Eq. (5.32)) should now be replaced by £ in

the generalized two-weight theory],
e o 8 _ V8 L oV e ] (5.37)
0

where the density-functional shift reads

ENE ] — [ar vﬁff}[ (r)n(r)
Jdrn(r ’

CiNEHp) = (5.38)

the N-centered ground-state ensemble energy can be written as a simple weighted sum of shifted KS
orbital energies. Indeed, according to Eq. (5.31]) [where & is replaced by £], the N-centered ground-

state ensemble energy can be written as follows,

ENY = T [f%’g} (T+Vext)] Efxvf}[ fm,e}} (5.39)

= Tr [f}{(]gi,g} (T + Véé\ﬁﬁ})} + Eg:c’g} F{N 5} /dI’ ’UHX’s} FéN.E}:| (I‘) nff({\sf,g}(r),
where
~{N, N, R
Vés &= /dr vés E}(r)n(r) (5.40)

and Np(N.€) (r)="Tr [f‘ggﬁ}ﬁ(r)} Since the two densities ng(v.ey and nguve are equal and integrate
KS 0

to N, we obtain from Eqgs. and ( -7

E{N £ _ Z gVZE{N K3 +

§v Ny - {N.&} {N,¢}
N ZEi + NCWY» [nf({)N,g}j| . (5.41)

i=1

-2
v==+

Finally, by rewriting the last term in the right-hand side of Eq. (5.41)) as follows,
N, ¢
NCOWv€ [nfém}} =Y &Y ctve [nfém}} (1 - Z v ”) Y ctve [nféN,g}] . (5.42)
v==£ i=1 i=1

and by using the definition of the shifted KS orbital energies in Eq. (5.37)), it comes

N
E(EN@}—{ 5*}2 R N (5.43)
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In the non-interacting limit, it is readily seen from Eq. that, unless £ = &, = &, the N-
centered ensemble does not describe a single-electron excitation from the HOMO to the LUMO. In
other words, the generalized two-parameter N-centered ensemble non-interacting kinetic energy is not
equal anymore to its GOK-DFT analog. Interestingly, in the (very) particular case N = 2, the latter
is actually recovered if the weight assigned to the first excited state is set to &4 (see Appendix A in

Ref. |75]).

5.3.2.ii Exact extraction of individual energies

We will now show that, by using the shift-in-potential procedure introduced previously and exploiting
the linearity in € of the ensemble energy, it becomes possible to extract individual A -electron ground-
state energies. Starting from Eq. 1D and noticing that B = EéN’gzo}, we can express the exact

£}

N-electron energy in terms of EéN and its derivatives as follows,

E(J)V = EéNg} - Z fu v

o (5.44)
v==+ agV

Moreover, as readily seen from Eq. (5.36)), the N;- and N_-electron energies can be extracted sepa-

rately from the ensemble energy as follows,

{N7€}
N+ Nty | OE,
E," =—F _ 4
0 N 0 + 8€j: (5 5)
Note that, for convenience, Eqgs. (5.44) and (5.45) will be compacted into a single equation,
BN — '/L/'E{N’ﬁ} + Z (N - N)(N_ N—V) - Nfu 8E§N’£} (5 46)
O NTO — 2 N o, '

where N € {N_, N, N, }.

Applying the Hellmann—Feynman theorem to the variational ensemble energy expression in Eq. (5.31)

[with the substitution & — &] gives

OB [[oe, PR (74 70)] + 2B 0

o6 96, , (5.47)

n=mn.. N,¢
pAN&)
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where

)

S INE N N.g Ny | (Ne N
0 T = o1 (ol - 2 afer (g

(5.48)

and the KS potential operator is defined in Eq. (5.40). Note that the A/-electron Slater determinants
(I)}{\;v,g} in Eq. (5.48) are constructed from the KS orbitals @;{N’g}(r) in Eq. 1) Consequently,
Eq. (5.47)) can be simplified as follows,

Oy N < N+3z+3 7 ¢4 '
=1 n=n_(N ¢}
0
Since the shift introduced in Eq. (5.37)) does not affect KS orbital energy differences,
LN (N _ e _ v, (5.50)
we finally deduce from Egs. (5.43)), (5.46]), and (5.49) the following exact expressions,
N {N.£}
N-N)N-N_,) N¢ OFE [n)
BNV N ANE ( v) _ N& X 5.51
0 ; & + szi 2 N X 6§V ( )

n:nféN,g}

Eq. (5.51) is the second key result of this work. As a direct consequence, the ionization potential (IP),
denoted IV, and the electron affinity (EA), denoted AN = I+, can now be extracted, in principle

exactly, as follows,

,  N_,—Ny\ oElNe
[V = g (BN - pNe) = N8 % (?\f + i) 0 n (5.52)
v=d=

N4z 2 0¢,

N=n_(N.¢
piN-€}

As readily seen from Eq. , individual state properties can be extracted exactly from the
ensemble density. There is in principle no need to use individual state densities for that purpose.
Nevertheless, in practice, it might be convenient to construct N-centered ground-state ensemble xc
DFAs using individual densities, in the spirit of the ensemble-based approach of Kraisler and Kro-
nik [500]. Since the individual densities are implicit functionals of the ensemble density, an optimized
effective potential would be needed. A similar strategy would apply if we want to remove ghost-

interaction-type errors [456] by using an N-centered ensemble exact exchange (EEXX) energy.

Finally, if we consider the conventional N-electron ground-state KS-DFT limit of Eq. (5.51)), i.e.
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exact = ——— GSc +

ensemble energy / t
ensemble energy / ¢

Figure 5.3: Exact and approximate N-centered ground-state ensemble energies plotted as a function
of £ for N = 2 and U/t = 5 in the symmetric (left panel) and asymmetric (right panel) Hubbard
dimers. See text for further details.

N A{N.g=0}
i=1i

&€ = 0, we recover the Levy—Zahariev expression EYY = [504] for the N-electron energy

and, in addition, we obtain the following compact expressions for the anionic and cationic energies,

Ny BE{N”E}[
N {Ng=0} , 1 xe - [ngy]
ENE = : _ 5.53
0 ZZZ; 51 + N:I: agﬂ: o 5 ( )

where Ny denotes the exact N-electron ground-state density. As well known and now readily seen
from Eq. , it is impossible to describe all A-electron ground-state energies with the same po-
tential. When an electron is added (+)/removed (—) to/from an N-electron system, an additional
shift (second term in the right-hand side of Eq. ) is applied to the already shifted KS orbital
energies. Interestingly, we also recover from Eq. a more explicit form of the Levy—Zahariev IP

expression [504],

OB ngy]

{N,£=0
= —51{{ } + DE

: (5.54)
£€=0

where the second term in the right-hand side can be interpreted as the shifted Hxc potential at position

r — oo [504]. Similarly, the electronic affinity reads

OB [ngy]
&+

AN = _g{Ne=0) _ (5.55)

£=0

5.3.3 Application to the asymmetric Hubbard dimer

As a proof of concept, we apply in the following N-centered ensemble DFT to the asymmetric Hubbard
dimer (see Sec.|2.1.4.iii]), Thus, we illustrate the fact that the theory applies not only to exact ab initio
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Hamiltonians but also to lattice ones, which might be of interest for modeling extended systems. In
this case, the density reduces to a single number n = ng which is the occupation of site 0, and
ny = N —n. In the following, the central number of electrons will be set to N = 2 so that the
convexity condition reads &4 < (2 —£_)/3. It can be shown that the N-centered non-interacting

kinetic and EEXX energies can be expressed analytically as follows |75],

TV ) = —2t/(& — 17 — (n—1)%,

2
ENE () = % 1+6+g£+<13f+2+£)(n—1)

2

— By(n), (5.56)

where the Hartree energy reads Ey(n) = U (1 +(n— 1)2). On the other hand, the correlation en-
ergy can be computed exactly by Lieb maximization [73] [75]. As readily seen from Eq. , an
N-centered ensemble density n is non-interacting v-representable if |n — 1| <1 —¢,4. In Fig. the
total N-centered ground-state ensemble energy is plotted as a function of £_ = £, = £ for various
approximate density-functional xc energies [exact densities were used|: E,EN’g}(n) only [EEXX], the
“conventional” weight-independent N-electron ground-state (GS) xc functional B ’5:0}(71) [GSxc],
and BV (n)+ EINE=0) (n) [GSc]. The accurate parameterization of Carrascal et al. |335} [358] was
used for Eé{N’gzo} (n) (see Appendix . In the symmetric case, all energy contributions are linear
in £ since n = 1 [see Eq. ] Nevertheless, the correct slope is reproduced only when the weight
dependence is taken into account in both exchange and correlation energies. This becomes even more
critical in the asymmetric case [bottom panel] where approximations in the xc energy induce cur-
vature, thus leading to a weight-dependent fundamental gap, which is of course unphysical. More
insight into the weight dependence is given by the GACE integrand in Eq. , and is not shown in

this thesis. The reader is referred to as Ref. [75] for a more detailed discussion on the GACE integrand.

Turning to the calculation of the IP, Eq. was verified by calculating each (density-functional)
contribution separately [75]. Results obtained for the asymmetric dimer are shown in Fig. As soon
as the on-site repulsion is switched on (and up to U/t = 4), both the shifted KS HOMO energy and the
DD (second term in the right-hand side of Eq. ) contribute substantially to the IP. Interestingly,
in this regime of correlation and density, the shift-in-potential procedure is not crucial. The unshifted
KS HOMO energy varies with U through the density. Note that the situation would be completely
different in the symmetric case [not shown| where I'V(Avey = 0) = —t — EY¥ (Aveyx, = 0) and the
unshifted KS HOMO energy equals —t. By construction, the latter energy becomes %Eév (Avext = 0)
[which is U-dependent] after shifting. As a result, in the symmetric case, the shift and the DD equally
contribute [by —(3E{ (Avex; = 0) +t)] to the IP. Returning to the asymmetric case in Fig. the
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energy (per unit of ¢)

Figure 5.4: Exact shift-in-potential (difference between dashed and full red lines) and density-
functional DD (full blue line) contributions to the IP [see Eq. (5.54)] plotted as a function of U/t
for Avext/t = 5. The EEXX contribution to the DD is shown in dashed blue line.

IP reduces to the DD in the strongly correlated regime (U/t > 10), thus illustrating the importance

of weight dependence in both exchange and correlation energies.

5.4 Summary and perspectives

We have shown that the fundamental gap problem, which is traditionally formulated in grand canon-
ical ensemble DFT, can be recast into a canonical problem where the xc functional becomes ensemble
weight dependent. As a remarkable result, modeling the infamous DD becomes equivalent to modelling
the weight dependence, exactly like in the optical gap problem. This key result, which is depicted in
Eq. , opens up a new paradigm in the development of DFAs for gaps which are computationally
much cheaper than conventional time-dependent post-DFT treatments. Fig. [5.5]is a summary illus-
tration of the difference between DFT for fractional number of electrons and the N-centered ensemble
DFT. As readily seen in Fig. and as already mentioned, the jump in the xc potential has to be
modelled in DFT in order to recover the fundamental gap with only one calculation. This is still a
major challenge in DFT. Otherwise, one can do two DFT calculations to get the ionization potentials
IV and IN+! = AN which are in-principle exactly given by (minus) the HOMO KS orbital energy
of the N- and N + 1-electron systems, respectively, according to the ionization potential theorem. In

the herein proposed N-centered ensemble DF'T, this xcDD is simply modelled by a weight-derivative
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DFT for fractional electron numbers N-centered ensemble DFT
N, 7
IV = _gNve=0) OB g}[né\]
= &Y Toxe  1Rol
o0&
£=0 £=0
s
—e o—0 > I/ N-1@ N  @N+1
N -1 N N +1 .
&+
AN = _gN+1-5 _ 6]’4\75 N AN = _pANE=0) _ aE}Eé\”E}[n(J)V]
- 5
£=0 S+ £=0
§— 0"

Figure 5.5: Left panel: DFT for fractional number of electrons. The fundamental gap is obtained by
looking at the left limit of the N- and N + 1l-electron energy, which defines the xcDD in Eq. .
The xc potential is uniquely defined for fractional number of electrons . Right panel: N-centered
ensemble DFT. The fundamental gap is obtained through the weight-dependence of the xc energy
functional, whose ensemble density integrates to the central number of electrons N. The KS orbital
energies are fixed by the shift introduced in Eq. .

of the ensemble xc energy functional. Therefore, accounting for the DD is straightforward, providing
that weight-dependent functionals are accessible. In the spirit of our previous work in GOK-DFT ,
in the context of the Hubbard dimer, weight-dependent correlation energy functionals can be devel-
oped by performing Taylor expansions around the noninteracting (U = 0) and the symmetric (n = 1)
limits. Seeking further into GOK-DFT, a linear interpolation [263| could also be considered, even by
using weight-independent functionals. A natural step forward would be to apply the approach, for
example, to a finite uniform electron gas , thus providing an ab initio local DFA that incorporates

DDs through its weight dependence. Work is currently in progress in this direction.






Chapter 6

SOET and the ab-initio Hamiltonians

In the spirit of his predecessors, e.g. DMFT [400], DMET [419] 422] as well as SEET [380], the exten-
sion to quantum chemistry will be investigated in SOET. Such an extension is not straightforward, as
it faces several fundamental issues like representability problems, the universality of the functionals,
and the dependence on the molecular orbital basis. This chapter intends to give general thoughts
and perspectives about this generalization to quantum chemistry, which has finally led us to an exact
formulation of RDMFT based on a seniority-zero wavefunction, for which an article is currently in

preparation.

6.1 Extension of SOET to Quantum Chemistry

The extension of SOET to quantum chemistry has been formally explored by Fromager, leading to
the complete active space site-occupation functional theory (CASSOFT) [270]. In this context, the
impurities in SOET play the role of the active orbitals in the CAS. I recall that the basic variable in
SOFT and in SOET is the site-occupation vector, which corresponds to the diagonal of the IRDM,
i.e. the orbital-occupation vector in quantum chemistry.

Let us start by rewriting the second-quantized form of the Hamiltonian in the basis of molecular

orbitals {p,(r)},,

~ ~ ~ o 1 R R R
H=h+W,= Z Z hpqc;(,cqg + B Z Z(pq|rs>c;fmcjw,cw/cm, (6.1)
Pq

o pqrs oo’

where é:m (épo) is the creation (annihilation) operator of an electron of spin ¢ in the pth orbital, and

(palrs) = / / ardy 20 )er () a(r) (6.2)

v —r'|



194 SOET AND THE AB-INITIO HAMILTONIANS

Then, a CAS is introduced in which the interactions between the active orbitals are treated explicitly,

like the impurity sites in SOET,

active

Wee — WOAS = % S0 (wlay)él, el ey tn,. (6.3)
uvry oo’

In the spirit of SOET, a complementary functional of the orbital occupation should be introduced in
order to recover the missing (dynamical) correlation. This is not an easy task, already because SOET
can be formulated in any orbital basis [270]. Hence, the complementary functional will depend on the
choice of the orbitals, as well as on the active space such that it is not universal anymore and seems
highly complicated to model. One has to choose a given orbital basis in which this generalization
of SOET will be formulated. A “natural” choice would be the natural orbitals which diagonalize the
1RDM. Indeed, all the informations of the IRDM are now concentrated into the occupation numbers
of these orbitals, corresponding to the basic variable in SOET. In addition, we would benefit from
previous works in RDMFT (usually formulated in the natural orbital basis as well, see Sec. . Of
course, one first needs to optimise the orbitals to find the natural orbital basis that diagonalizes the
1RDM, such that the whole IRDM can be constructed. In conclusion, the generalization of SOET
to quantum chemistry requires to work within RDMFT. Let us recall that, in RDMFT, the universal
interaction functional |70] is given by

W(D) = min (¥[Wee|¥), (6.4)

and the ground-state energy is obtained variationally as follows,

where D = {Dpg}pq = { (3, éLaéqa>}pq and (h|D) =3_, hpgDpq-

It has already been mentioned in Sec. that the IRDM is not pure-state noninteracting v-
representable [180, |216] because of its idempotent property. Let us assume that the IRDM is pure-state

CAS-representable, such that a CAS-interacting functional could be introduced as follows,

as well as the following decomposition in the spirit of SOET,

W (D) = WEAS(D) + W (D), (6.7)
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where WCAS (D) is the complementary functional of the IRDM. According to Egs. 1) and

(6.7), the following exact expression for the ground-state energy is obtained,
. CAS ——CAS
E(h) = min { ()|D) + W(D) + W (D) }, (6.8)
or, equivalently,
. 2 2,CAS —CAS o
E(h):m\l}n{<\P|h+W vy + W (D )}. (6.9)

Turning to the natural orbital representation D = (k,n), where x denotes the orbital rotation (see
Sec.|1.1.4) and n is the natural orbital-occupation vector given by the diagonal of the IRDM, Eq.

can be rewritten as
E(h) = min { (W]h -+ WS |w) + T (7,07 }. (6.10)

It is still unclear how such an approach could be implemented. However, if the exact natural orbitals
were known, they could be used as a basis such that
E(h) = min { (W(C) Y hypit, + WAS(C)) + W (") }, (6.11)
P
where |¥(C)) = >, C|I) is a normalized wavefunction expanded in the basis of Slater determinants
{II)}; constructed in the fixed natural orbital basis. Therefore, the minimization in Eq. (6.10] is
reduced to optimize the CI coefficients {C;}; only. The minimizing wavefunction ¥*™" in Eq. (6.11])

describes a fictitious system whose CAS has been embedded in order to reproduce the exact occupation

numbers of the natural orbitals, and fulfils the SOET-like self-consistent equation:

~ T aWCAS (n\I/emb) ~ em! em em!
(;hwnﬁwmhg%% |emby = gemb|gemby | (6.12)

In practice, however, the exact natural orbitals are not known (except for the uniform electron gas and
the symmetric Hubbard dimer, for instance). In addition, the previous assumption that the IRDM is
pure-state CAS-representable, leading to Eq. , is most certainly not valid. Indeed, WEAS allows
for the hopping of the electrons inside the CAS, but not on the totality of the orbital space. Hence
the noninteracting orbitals outside the CAS will have occupation equal to 0 (virtual orbitals) or 2
(core orbitals), thus leading to pure-state v-representability problem. Ensembles are thus needed to

recover the fractional occupation numbers of the exact physical 1IRDM, which we would like to avoid.
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Indeed, using ensembles, we would have many degenerate determinants to handle which would be a

nightmare to implement and to solve numerically.

In practice, one could think about matching the active part of the 1IRDM only, which would be
pure-state CAS-representable, in the spirit of the iLDA approximation in SOET [see Eq. ] In
order to add more flexibility, multiple CAS could be defined and solved separately, but would still
be coupled together in some manner, in the spirit of DMET for quantum chemistry where multiple
fragments are defined using localized orbitals [419, 422|. This has not been investigated yet and
deserves more thinking. Of course, the most challenging part would still be the development of
complementary functionals that are CAS- and orbital-dependent. Another way to look at the problem
is to add partial interactions in the whole molecular orbital space. This has been investigated by using

a seniority-zero interacting Hamiltonian, as shown in the following.

6.2 Seniority-zero Hamiltonian

Before entering into the newly formulated approach which will be detailed in the next section, it
is important to provide a brief overview of the existing methods based on geminals, which describe
the physical behaviour of a pair of electrons. We have seen in the first chapter that the mean-
field approximation is insufficient to describe strongly correlated systems. An alternative consists in
excitation-based configuration selection procedures (CISD, CCSD, ...) based on a single-determinant
reference as a zeroth-order wavefunction, which have been proven highly accurate in the description of
dynamical correlation. However, when strong static correlation arises, due to the multiconfigurational
character of the system, these methods are not accurate anymore and the orbital picture breaks down.
One example of strongly correlated system is a superconductor, which is not correctly described by
a single Slater determinant, but can be alternatively described by a wavefunction built from Cooper
pairs [506], which are geminals. This idea of using two-electron functions as building block for many-
body wavefunctions is old, and the reader is referred to Ref. [507] which gives a good chronological
overview of the theory of geminals, from the early 1950s to the late 1990s. In order to go beyond
the independent particle scheme, given by the product of orbitals forming a Slater determinant, a
product of geminals forming a more general wavefunction termed antisymmetrized product of geminals

(APG) |508l [509] is considered as follows,

Np K
A x At oA
[WAPS) = T[> Gryéliél Ivac), (6.13)
Pq

xT
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where Np is the number of electron pairs (labelled by x), é;Té; | s the electron-pair creation operator

x

»q> and K is the number of basis functions. Unfortunately, the

with associated geminal coefficient G

APG method remains extremely expensive in term of computational cost, due to factorial scaling.

Then, many wavefunction ansétze have been derived to reduce the computational cost of the
method, while keeping its most interesting feature, i.e. the description of strong correlation. Most
of them are seniority-zero wavefunctions. In quantum chemistry, the concept of seniority has been
introduced recently by Scuseria and co-workers [510], and it consists in partitioning the FCI Fock

space into subspaces defined by the seniority number operator,

K
Q=" (fipt + frpy, — 2yt (6.14)
p

This operator simply counts the number of unpaired electrons. In Ref. [510], the authors have shown
that the seniority-zero sector (<Q> = 0) contributes significantly to the static correlation energy. A
FCI calculation in the seniority-zero subspace, which consists in all possible configurations in which
orbitals are either empty or doubly occupied (i.e., wavefunctions constructed solely by closed-shell
determinants), leads to the so-called doubly occupied configuration interaction (DOCI) [511]. The

DOCIT (or, equivalently, seniority-zero) Hamiltonian reads

H% =" hypiny + Y _(palpa)ipig — Y > (palap)ipoiige + Y (pplaa) B Py, (6.15)
P

p>q p>q o pq

where 7, = fipr + i), Ape = et po, and ]5; = éLTé;fw is the creation operator of a pair of electrons

po
in the pth orbital. During the last decade, several wavefunction ansétze have been proposed to solve
this Hamiltonian in the most efficient manner. Starting with the antisymmetric product of interacting
geminals (APIG) proposed by Silver in 1969 [512], which is an excellent approximation to DOCI [513],
one had to find better practical and tractable ways to solve the problem, for instance by using the anti-
symmetrized geminal power (AGP) wavefunction |514]. Another promising approximation to APIG is
the so-called antisymmetric product of one-reference-orbital geminals (AP1roG) [214} 513|, which has
been shown to be exactly equivalent to the pair-coupled cluster (pCCD) method with pair-excitations
only [515H517]. Together with orbital-optimization, AP1roG (or pCCD) is a size-consistent approach
for which accurate energies have been obtained in the strongly correlated regime [518]. Although
they are based on a single closed-shell reference determinant, they have been shown to be a very good
approximation to the APIG and DOCI references, in contrast to CCD, CCSD and CCSD(T) when not

restricted to the seniority-zero subspace [515|. In spite of this extremely satisfying results, AP1roG

and related geminal-based wavefunctions are not appropriate to describe dynamical correlation. In-
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deed, this type of correlation cannot be described by electron-pair states and need to be included
a posteriori using perturbation theory [507) 519-524], coupled-cluster [525, [526], extended random
phase approximation [527], or DFT [528],[529]. For the latter, the double counting problem is handled
by separating the Coulomb repulsion in two parts, one treated by the pCCD wavefunction, while the
other is treated by DFT, thus leading to a hybrid scheme (such as presented in the last section of
Chap. . One of the main advantage of this multideterminantal DFT approach is that pCCD has a
low polynomial scaling, in contrast to usual multiconfigurational wavefunction methods, such that it

is expected to treat relatively large systems.

In the following, an in-principle exact combined WFT-RDMFT theory is introduced, where the
physical ab-initio problem is mapped onto a seniority-zero interacting wavefunction which, thanks to
an appropriate interaction energy functional of the 1IRDM, reproduces the physical natural orbitals

and occupation numbers of the fully-interacting system exactly.

6.3 RDMFT based on a Seniority-zero wavefunction

The following work is still in progress, in collaboration with Naoki Nakatani (Tokyo, Japan) [530]. A

draft is currently in preparation.

6.3.1 Theory

Let us consider the seniority-zero analogue of the interaction functional,

So _ : by
WD) = | min (¥|[Wee|¥), (6.16)

where the minimization is now restricted to (normalized) seniority-zero wavefunctions. If we denote

W™ (D) = W(D) - WS (D) (6.17)

the complementary interaction energy contribution which is not described by a seniority-zero wave-
function (like, for example, interpair nondynamic correlation [201]), it comes from Eqs (6.4) and (6.5)

that, for any trial seniority-zero wavefunction ¥,

(U|Weo| W) + W (DY) + Tr [hDY] > W (D) + Tr [hD"] > Ey, (6.18)
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thus leading to the exact variational expression for the ground-state energy,

Eo = ﬁg{mm\p) + W (DY) } (6.19)

Let us now use the natural orbital representation D = (k,n). In such a representation, Eq. (6.16]) is
rewritten as follows,

WSO(K'an) = ‘I}esl?(inn)ﬁn<qj|wee|qj>7

= omin (W)W ¥(x), (6.20)

where |¥(k)) = e %|¥), and kK = 0 denotes the unrotated molecular orbital basis. The minimization
on the first line of Eq. is restricted to seniority-zero wavefunctions |¥(k)) = > () Cr(s) [ (K)),
where |I(k)) are closed-shell Slater determinants that are constructed in a molecular orbital basis
which rotates with k. Such wavefunctions belong to the seniority-zero subspace denoted by Sy(k),

and fulfil the following density constraint,
0¥ = {(W(R) ey U (K)) =y} - (6.21)

Turning to the second line of Eq. , the minimization is now restricted to linear combina-
tions [W) = 3 ;cs,(0) C1l1) of closed-shell determinants {|I)}; that are constructed in the unro-
tated molecular orbital basis. The wavefunctions |¥) belong to the seniority-zero subspace Sp(0).
Note that the orbital occupation constraint should then be considered in the unrotated orbital basis,

n? = {(V]n,|¥) = np},, which is equivalent to the constraint in the rotated basis. Indeed,

(W(R)[7tp(r) [V (%))

Y (UR)E s oimyo () = D (WleFe el eFe ey efe W)

o o

(0|2, | ). (6.22)

Let us now see if the domain of minimization can be extended to any trial wavefunctions, and not only

the one restricted to seniority-zero wavefunctions. We start with the following equivalent expression

of Eq. (6.20),

WS = i U|Weo(K)| W 6.23
(k,n) Weg%%H (K)[W), (6.23)
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where

Weo(r) = W, = Z (pq|rs)” Zcpg CyorCso' Cros (6.24)
qu’S
and (pg|rs)*® = (p(r)q(k)|r(k)s(k)). According to Eq. (6.24), the rotation has been incorporated into
the electronic integrals, while the creation and annihilation operators act in the unrotated molecular
orbital basis.

By introducing the projection of Wee(k) onto So(0),

Wak) = Y ([ Weelw)| D], (6.25)
1,Je€S80(0)
it comes
SO SO
W (k,n) = qle‘g)l(ln < ‘ch (n)’\ll> (6.26)

Interestingly, the ground-state wavefunction of W0 (k) + >, Epftp (Where 7, acts in the unrotated
molecular orbital basis) belongs to Syp(0) and, by analogy with DFT, we should have a one-to-one
correspondence between the occupation of the unrotated orbitals and the one-electron energies {e,},.

Consequently, for any normalized wavefunction ¥ (including those that do not belong to Sy(0)), the
following inequality is fulfilled,

<\IJ \I'> > <‘Ifﬁ°(°)(

where W‘zO(O)(n) is the minimizing wavefunction of Eq. 1) and {e,(n)}, are the one-electron

energies, functionals of the density n. Note that the natural orbitals of \I'io(o)(

) WSo (i +Zap 7 | WS (m )>, (6.27)

W (k) + ) ep(m)iy

n) are the unrotated

orbitals, by construction. Since
WS (k,n) = (U2 ()| W (k) 020 (m)), (6.28)
inserting the condition ¥ — n into Eq. leads to
WS (s, m) = in (W [TV ()] V), (6.29)

where, as pointed out previously, the occupation constraint is written in the unrotated orbital basis.

In contrast to Eq. (6.26]), the domain of the minimization is now extended to any trial wavefunction
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U that reproduces n. Note that this minimization could have been written over the CI coefficient
C = {C}}, instead of the wavefunction, given that the orbitals are fixed. We now have everything
we need to formulate a variational principle where the minimization is performed over both orbital
rotations and trial wavefunctions ¥ (or, equivalently, C).

The following exact variational expression for the energy is then obtained,

Ep = min {WSO (k,n) + W (s, n) + (h(n)\n)} (6.30)

K,n

where (h(k)n) =3 hy(e)p(r)np- Inserting Eq. (6.29) into Eq. (6.30)), it comes

Eo= xg}g{ min { (VI ()| 9) } + 7 (k1) + (h(x) ) } (6.31)
or, equivalently,
. . 2.8 =S50 N N
Ey = 12’1151{ min {<\II|WCC0(H)\\II> + W™ (k,n") + (h(k)|n") }} (6.32)

By introducing the operators
hSo (k) = Z Pp(r)p () Tip (6.33)
P

and H50 (k) = b5 (k) 4+ W0 (k) [see Egs. (6.15) and (6.25)], we obtain the final variational expression

for the energy,
Ey = min { min {(@WSO (K)|T) + T (&, n‘l')} } (6.34)
K

where k and ¥ are independent variables. Thus, the minimizations in Eq. (6.34)) leads to a set of two
equations. The first one is obtained by searching for the minimizing wavefunction denoted by ¥,

which fulfils the following self-consistent equation,

. oW K,
(HSO (FL) T ; 87517 )

ﬁp> |wS0) = g% |wo) | (6.35)

S
n=n?¥°0

The second one is the stationarity condition, fulfilled when the orbitals are optimized,

015 (r) W™ (r,n)

i B = 0. (6.36)

s
n=n%°0
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Although this method has not been implemented yet, due to the lack of any analytical form of the

complementary functional, it could be done by following these steps:

1. Solve the system with Hartree—Fock to get the starting natural orbitals and occupation numbers

2. Solve Eq. (6.35)) to get the CI coefficients, the seniority-zero wavefunction and the new set of

occupation numbers

3. Optimise the natural orbitals by solving the stationarity condition in Eq. (6.36)). which is fulfilled

for kK = 0 (for convenience)

4. Go back to step 2 with the new sets of natural orbitals and occupation numbers until convergence

is reached.

Note that steps 2 and 3 are similar to a MCSCF calculation. Within this theory, the exact IRDM
should in-principle be recovered provided that the exact complementary functional is known, which

is a long-term undertaking.

6.3.2 Adiabatic Connection

The adiabatic connection [see Sec.[1.2.1.iv| is an appropriate tool that gives some informations about
the form of the complementary functional and its importance. Let us consider the A-dependent

Hamiltonian expressed in the natural orbital basis of the true physical system,

HMe) = HS 4+ (H - Hso) =3 epity + WE 4 A S hpgitpg + Wee = WS |, (637)

P p#q
where i, = é]TMéq(,. Note that D;‘q: I = D;}q: 0 =0 in this basis, but this is not anymore true for
intermediate values of A. The ground-state wavefunction U*(n) of the Hamiltonian H*(e*) reproduces
the exact natural occupation numbers n of the physical system for any A, and e* can be obtained from
the following Legendre—Fenchel transform [68] (see, for instance, Eq. for the noninteracting

kinetic energy functional in KS-DFT),
W (n) = sup{c‘,’)‘(e) - (e|n)} = MM - (eMn), (6.38)

where £ (e) is the ground-state energy of H A(€). Note that this construction reproduces the diagonal
of the density matrix D;}pzl. For A = 1, it represents the occupation numbers of the physical system

in the natural orbital basis and 62‘:1 = hpp. When A = 0, the seniority-zero wavefunction o
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with natural orbital occupancies n is recovered. By construction, it also shares the same set of
natural orbitals with the physical wavefunction, which is in principle not the case for the previously
described seniority zero wavefunction ansatz (DOCI, APIG, AP1roG). For 0 < A < 1, the 1IRDM is
not constrained to be diagonal. Indeed, the system is considered in the natural orbital basis of the
fully-interacting system, which is a priori not the natural orbital basis of the partially-interacting

system.

Let us now investigate the adiabatic path that connects the seniority-zero system to the physical

fully-interacting one, by considering the physical interaction energy,

W(D)=W(n) = WAZl(n) = WA:O(n) + (W)‘Zl(n) — W)‘Zo(n))
= 1/1/A:0(n)+/0 d)\dWT:(n)
_ So n 17So [\ySo n ' BTV n
= (| FE|rem) + [ awo). (6:39)

where, according to the Hellmann—Feynman theorem, the complementary correlation integrand equals

We(n) = (U (0)[Wee = W [T 1) + D Ty (I (1) g |7 (m)). (6.40)
P#q

Therefore, according to Egs. (6.17) and (6.28)), the complementary energy functional is given by

Y L “
W (m)_/0 A\ (). (6.41)

— A=
By construction, W, 0(n) = 0. Note the presence of the nonzero contribution from the off-diagonal
part of the IRDM. We have observed that this contribution is negligible, as assumed by Pernal in a

similar context in Ref. [531].

Let us highlight some similarities and differences between this work and the recent one of Per-
nal [531]. In the latter work, the density matrix is assumed to be diagonal and equal to D)= = dp4n,
along the whole adiabatic connection path, such that the natural orbitals are assumed to be the same
set of orbitals as the seniority zero reference system. In our approach, we want to reproduce the
exact occupation numbers of the physical system, D;‘p = D;‘p:l = n,,, while the off-diagonal elements
are free to vary (and be non-zero) except when A = 0, by construction. The integrand in Ref. [531|
is obtained by the extended random phase approximation. In our work, this quantity is exactly de-

termined through the determination of the potential restoring the occupation number [Eq. (6.38))].
The Lieb maximization of Eq. (6.38) is calculated within the highly accurate DMRG method. We
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will show that the integrand has a quadratic behaviour with respect to A in our context. The linear

approximation in A of the integrand proposed in Ref. [531] could be used in practice.

6.3.3 Results

Let us now look at the correlation integrand as a function of the coupling constant A\. Because the
Legendre—Fenchel transform in Eq. is evaluated by the highly accurate DMRG method, we are
limited to small systems as well as relatively small basis sets. Geminals are exact for a 2 electrons
system, like the hydrogen molecule. In order to get a non-zero form of the complementary interacting
functional, we need to study system which are not well described by the seniority-zero Hamiltonian
[Eq. ], i.e. those for which dynamical correlation effects are important. Therefore, we are
currently looking at the Beryllium atom, the Helium dimer [24] the transition of Hy from Dy, to Dy
geometry [201], the Hy dimer, the LiH, the Ny and hydrogen molecular chains. Given that the work is
still in progress, only few results on the Helium dimer and the chain of eight hydrogens Hg are shown
in this thesis.

Eq. has been solved for different A values in both of these systems, using DMRG. It leads
to the maximizing “local” potentials {5;‘} \ that reproduce the exact occupation number of the true
physical natural orbitals, as well as the eigenfunction U*(n) of H*(e*). Hence, the integrand in
Eq. can be computed and is plotted in Figs. and for the Hg molecular chain and the
Helium dimer in the cc-pVDZ basis set (see Appendix , respectively. According to Figs and
the integrand is quadratic in A, which somehow shows that the assumption of Pernal in Ref. [531]
is not always valid. Interestingly, the integrand for Hg is much larger than in Fig. 2 of Ref. [531].
This can be explained by the orbital basis that we use. Indeed, it is known that the optimization of
the orbitals in seniority-zero approaches has huge importance [518}|532]. Hence, using the (frozen and
delocalized) natural orbitals of the fully-interacting Hamiltonian as a basis set for our seniority-zero
Hamiltonian is not optimal, and does not minimize the energy. This is of course not a problem in the
exact theory, since the complementary functional of the occupation numbers is supposed to contain
the missing correlation energy. Hence, the complementary functional, given by the integration of the
correlation integrand according to Eq. , contributes significantly to the energy. As a conse-
quence, using the natural orbital basis of the fully-interacting Hamiltonian could be problematic in
practice, when approximate functionals are used. This feature also arises in Fig. [6.3] representing the
dissociation curve of the Helium dimer in the natural orbital basis of the fully-interacting Hamiltonian.
A =1 (left panel) corresponds to the DMRG energy of the fully-interacting system, while A = 0 (right
panel) is the DMRG energy in the seniority-zero subspace only. The latter is completely unable to

describe the small dissociation energy of Hes, and gives a particularly wrong (overestimated) energy.
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Figure 6.1: Correlation integrand [Eq. (6.40))] for the Hg molecular chain with interatomic distance

R = 1.8 A in the cc-pVDZ basis. The energy is in atomic unit (hartree).

—0.01
—0.02
~0.03

g —0.04

T§ —0.05

—0.06
—0.07
—0.08

—0.09

He, (ce-pVDZ)

—+— R=2973 A
—— R=10A

0.2 0.4

Figure 6.2: Correlation integrand [Eq. (6.40)] for the Hes molecule with interatomic distance at
equilibrium Req = 2.973 A and close to dissociation R = 10 A, in the cc-pVDZ basis. The energy is

in atomic unit (hartree).
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Figure 6.3: Dissociation energy curve of the Helium dimer obtained by solving Eq. (6.37)) in the natural
orbital basis of the fully-interacting Hamiltonian, for A = 1 (left panel) and A = 0 (right panel) in
cc-pVDZ basis set.

As a consequence, the complementary energy functional should in-principle compensate for this huge
error. At first sight, this result is very surprising. Indeed, as seen in Fig. 1 of Ref. [526], it is clear
that the energy obtained from the antisymmetrized product of strongly orthogonal geminals (APSG)
remains in the scope of the exact energy, even though the dissociation energy is not well described.
Consequently, the wrong energy in our Fig. [6.3| (right panel) is clearly due to the fact that the true
exact natural orbitals are used instead of being reoptimized. It remains unclear if the herein approach,
as formulated in this section, could be successfully implemented, as the reference wavefunction is not

good enough when the physical natural orbitals are used.

The reoptimization of the natural orbitals in our scheme should be investigated, and is left for
future work. In the spirit of Pernal’s approach [531|, we could also apply the extended random phase
approximation [531]. Turning to the development of the complementary functionals of the IRDM that
contain intergeminal correlation, one could look at the recent work of van Meer et al. [533|, which
aims at generating new functionals containing non-geminal dynamical correlation, in the context of
RDMFT. Alternatively, another kind of adiabatic connection could be formulated, by gradually in-
creasing the seniority number until the full configuration space is recovered, in the spirit of Refs [510}

534).

To end this last chapter, I would say that having a variational multi-configurational method able to
treat both static and dynamical correlation effects with a cheap computational cost remains the holy
grail of quantum chemistry. Numerous novel ideas and directions are still emerging, but no method

has yet appeared as the method of choice for describing strongly correlated molecular systems.



Conclusion

The description of strong electronic correlation effects in both quantum chemistry and condensed
matter physics has been extensively discussed throughout this thesis. The combination of wavefunction
theory (WFT) with methods based on reduced quantities as a basic variable (electronic density, one-
particle reduced density matrix, or Green’s function) has been investigated. In particular, we focused
on the combination of WFT with density functional theory (DFT), which aims to treat both static
and dynamical correlations at a reasonable computational cost. Indeed, WFT is computationally
expensive and is usually lacking of dynamical correlation [535|, while the low-cost Kohn—Sham DFT
together with density-functional approximations miss static correlation effects [2]. Given that the
two approaches are formulated in a completely different language, it remains extremely challenging to
merge them in an efficient manner, and to avoid any double counting of the correlation. Despite the
increasing gain of interest in hybrid methods, none of them has emerged as the true solution yet.

During this thesis, we have brought our own contributions to this large and active field of research,
in both fields of quantum chemistry and condensed matter physics. The methods presented herein do
not claim to be a general solution to the treatment of strongly correlated systems. Nevertheless, they
pave the way towards the efficient description of such systems. The first method that we described
is the so-called site-occupation embedding theory (SOET). The formulation of SOET relies on the
in-principle-exact mapping of the physical system onto a partially-interacting one, thus leading to a
rigorous combination of WFT with DFT [Eq. ] Being in its early stages, the theory has been
applied to the one-dimensional uniform Hubbard model only, and an exact expression has been derived
for both the per-site energy [Eq. ] and the double occupation [Eq. ] Several approximate
functionals have been developed in this context, by looking at the exact analytical expressions to the
Hubbard dimer, the one-dimensional half-filled Hubbard model and the symmetric single-impurity
Anderson model (STAM). Promising results have been obtained in the whole range of correlation and
density.

In spite of these successful results, more efficient implementations of SOET needed to be explored in

order to reduce the computational cost. First, we transformed the SOET Hamiltonian onto the SIAM
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Hamiltonian, which can then be solved by using impurity-solvers. Second, we employed the Schmidt
decomposition, thus leading to the so-called projected SOET (P-SOET). The latter share similarities
(as well as differences in many aspects) with the density matriz embedding theory (DMET), but SOET
contains an additional contribution coming from a functional of the density. Thanks to this analytic
functional, the density-driven Mott—Hubbard transition, which denotes the opening of the charge gap,
has been successfully described with a single impurity only. In my opinion, this is one of the most
striking results in SOET. The next step forward would be to study the two-dimensional Hubbard
model, which contains a Mott—Hubbard transition in U/t and can model the physics in the high-T,
cuprates. In order to move in this direction, new functionals have to be considered. As in standard
DFT, an automated way of developing functionals would definitely increase the domain of application

of SOET, which would eventually become a standard and popular embedding approach [4].

The charge gap (or fundamental gap) has then been studied within the ensemble DFT formalism.
By considering a particular choice of ensemble, we provided a complete reformulation of the fun-
damental gap problem in DFT. This reformulation consists in rewriting the derivative discontinuity
(previously formulated within DFT for fractional number of electrons) into a derivative of the weight-
dependent exchange-correlation functional [Eq. ], in complete analogy with the extraction of the
optical gap in ensemble DFT for excited states.

In other words, the fundamental gap problem (traditionally formulated in grand canonical ensemble
DFT) has been recast into a canonical problem where the xc functional is ensemble-weight-dependent.
We called this theory the N-centered ensemble DFT. When combined with the ensemble analogue of
Levy—Zahariev shift in the potential, and together with a generalization of the ensemble weights, the
extraction of individual energies [Eq. (5.53))] (as well as ionization potential and electronic affinity)
has been rendered possible. As a proof of principle, the method has only been applied to the Hubbard
dimer yet. An obvious step forward would be the development of weight-dependent functionals for

model Hamiltonian as well as ab-initio Hamiltonian.

Finally, we discussed the extension of SOET to quantum chemistry. This would in principle lead
to a complete active space DFT (CAS-DFT) approach defined in the orbital space only [Eq. ],
where the active orbitals play the role of the interacting impurities in the original formulation of
SOET. However, this formulation is facing difficulties, such as the CAS-dependence of the functional,
as well as pure-state v-representability issues. Alternatively, a new theory based on a seniority-zero
reference wavefunction has been proposed, in which a complementary functional of the natural orbitals
and occupation numbers should in-principle recover all the missing correlation effects [Eq. ] We
have derived an adiabatic connection and shown the quadratic behaviour in A of the correlation

integrand. The importance of the orbital optimization has also been highlighted.
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To conclude, new ideas and in-principle-exact methods have been derived throughout this thesis,
dealing with significant and actual problems in DFT: the description of strongly correlated systems
and the extraction of the fundamental gap. These methods shed a new light on the treatment of
strongly correlated systems. By extending and investigating them further, we feel in our bones that
they could be useful for the large community of theoretical chemists and physicists. Many challenging

tasks must however be faced, in particular the development of appropriate functionals.
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A Functional calculus

Let F' be a function of f, itself a function of z. Hence, F is called a functional of f. The functional

derivative is given by:

_ [ OFlS]

= | 57 Of(x)dx. (42)

SF[f] = F[f + 6] = F[f]

If f is also a functional of another function g(z), then F { f [g]} has a functional derivative given by

the chain rule:

SFUf| [ OFlA) 05
sgw) ~ ) 5 og@) (43)

If F is a function of f(z), then the functional derivative with respect to f(z') is

OF(f(z)) _ dF(f(z))

5 Y o(x —a'), (44)

~

where §(z — z') is the delta function.

B Lagrangian multipler method

In DFT, the ground-state energy is given by the following variational principle:

Eo = min {{(O[T + Voe|®) + Bie[n?)} = min { El{:}]}, (45)
where
Bl{pi}] = i / ei(r) (—;w + vne<r>) @i(r) + Eiseeln, (46)

i=1
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and n(r) = vazl loi(r)|? = Zi\; ©f(r)e(r). The minimization consists in finding the set of KS
orbitals that minimizes the energy Ey, with the orthonormal constraint (®;|®;) = J;;. Because the KS
orbitals are eigenfunctions of a self-adjoint operator, one can always find an orthogonal set of orbitals,

so that only to normalization constraint can be considered by writting the following Lagrangian:

Cl{ei)] = Bligd] - i ([ etttmar—1). (47)

Considering the stationarity of the Lagrangian with respect to a small change in the orbitals {¢;} —

(i + 803} leads to
SCl{ee}] = Ll + 0} — L)) = O (18)
Considering a small change ¢} — ¢} + dpj, we get
selted] = [ (htn) 4 8i0r) (57 + o)) paan
= [0 (=57 + 0l ) ) + B 258500 = By fn ]

e ([ (i + ek entmar = [ iironwar )

1
= [ 5610 (=57 0aele) ) e+ B9850 B[]

~en [ doite)anlr)dr (19)
Then, by identifying
Biixe[n17983] — B [nl99] = 6Buye[n[{on}]]
- 55;{6[?] 5 (r)dr, (50)

we obtain

B 1 2 5Ech [n] % o
0L[{pi}] = / {( §V + Upe(r) 8k> wr(r) + W do;(r) =0. (51)
Using the formula for the functional derivative in Eq. , one gets
OL[{p: .
scliedd = [ 08N st wyar, (52)

Spi(r)
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so that
1 2 6Ech [n] o
(=577 + tanlr) = 21 ) uto) + 2l (53)
Finally, using the chain rules in Eq. , we have
/
5EH*XC[n] _ / (5EHXCI[n] 5n£r ) ar', (54)
dpp(r) on(r’) dpp(r)
where n = va:l |os(r)|? so that
on(r’) /
= r)f(r —r’), 55
o = )il =) (5)
with §(r — r’) is the delta function. Therefore, Eq. becomes
5EHXC[TL] o 5Ech [n] (56)

* - Pk (I‘),
dpr(r) on(r)
and Eq. turns to the self-consistent KS equations:

(SEch [’I’L]

1o
(—2V + tne(r) + on(r)

) S p— (57)

C Real-space and orbital-space Second Quantization

Starting with the Schodinger theory, the quantum state of a single electron in the so-called “r-

representation” is written as:

vy = / dr b (z)[r), (58)

where U(r) = (r|¥) is the one-electron wavefunction which is continuous in the coordinate space, and
|r) is the quantum state describing the electron at position r. In Pauli theory where the spin o of
the electron is considered as an additional degree of freedom, the quantum state of a single electron

is written as:

|,y = /dr\l/(r)|r,a>, (59)

where |r, o) denotes the quantum state describing the electron at position r with spin o, with o =

{1,1}. In Eq. (1.5)), the electronic Hamiltonian has been written in the first quantization formalism.
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An alternative and more compact formulation is provided by the second quantization |3} [536]. This
second quantization can be formulated in different manner. First of all, we focus on the real-space
second quantization, where the creation and annihilation operators are field operators W (r) and

\ilg(r), which creates or destroys an electron at position r with spin o, respectively, so that

W) = / e (r)[r, o) = / e () §1 (r)[vac), (60)

with U (r)|vac) = |r, o). These operators are satisfying several rules, such as W, (r)|r, o) = U, (r)|vac) =
0: it is impossible to create an electron at position r with spin ¢ if one is already there, as well as it is
impossible to destroy an electron that does not exist. In order to enforce the Pauli exclusion principle,

these operators fulfill the following anticommutation relations:

i), o) = o

- J+

U, (r), Uy (r') = 0, (61)
- ot

\i/(]; (I‘), \ilo’ (I‘,) = 5(1‘ - r/)aoo’;

L 14+

where 0, and 0(r — r’) are the Kronecker delta and the Dirac delta function, respectively. Within

the real-space second quantization, the Hamiltonian reads:

f{ = T+Vne+Wee7

—%//drdr’é(r— r’)VQXU:\IJL(r)‘i’a(r’L

R
I

- , \i/};r\ill, )W, (r )0, (r
W ://drdrz (1) o, () Wo (') ¥y (r) (62)

the density operator:
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and the pair density operator:
Ar, ') =Y W)Ul () Ty (1) Ty (r), (65)

in real-space second quantization. The expectation value of each of these operators gives the one-

particle density matrix,

() =) (W) T, ()W), (66)

g

the electronic density,

n(r) =Y (U] (r) ¥, (r)| V), (67)

g

and the pair density (which is the diagonal of the 2RDM in real-space),

n(r,r') =Y (U] (r) ], ()P0 (1) T, (r) 1), (68)

o0’

respectively. The expectation value of the Hamiltonian is given in Sec.[I.2:2]in the context of RDMFT

[Ba. ([CTZ0)]

Alternatively when working in a given orbital basis set {|¢;)}; one can use creation (é;rg) and
annihilation (&;,) operators to create or destroy an electron of spin o in the ith orbital, respectively,
so that é;ra|vac> = |pi) ® |o) = |p;, 0). These operators are orbital-space operators and also fulfill the

anticommutation rules:

A = 0,

L 1+

CiosCjor| = 0, (69)
L 1+

S S T (70)
L 4+

In contrast to the field operator which act in the real space by creating or annihilating electrons at a

given position, these new operators create and annihilate electrons in orbitals which are delocalized
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in space. The quantum state of one electron can therefore be rewritten as
|¥s) :ZCi|<PiaO'>~ (71)
i

In this basis, the wavefunction is now represented by the coefficients C; forming a vector column. In
principle, the basis set should be infinite, but in practice it will be finite so that the column vector
will have a finite dimension. Note that in the “r-representation”, the wavefunction cannot be written
as a vector column as it is continuous in the coordinate space. Within this orbital-space second

quantization, the Hamiltonian reads:

FI = iL"‘rWeea

h = > hijél,co, (72)
ijo

s _ 1 IS RPN

Wee = 5 Z Uijklcigckg/cla/cjo
ijkloo’

where h denotes the one-electron operator of the Hamiltonian, containing the kinetic operator and

the nuclei potential operator, and

hij = <<Pi|il\<pj>Z/drgof(r)ﬁgpj(r), (73)
Ugs = (ijlkl) = / / drdr’W;(r)(p;r:/zwj(r)@l(r/) -

are the one and two-electron integrals, respectively. The summations and indices in the Hamiltonian
in Eq. , written in first quantization, refer to the electrons, such that this Hamiltonian depends
on the number of electrons in the system. On the contrary, the indices in Eq. , written in orbital-
space second quantization, are orbital indices and the number of electrons is no more specified. The
former formalism (first quantization) can be seen as an answer to the question : “Who occupies what

77, while the latter (second quantization) rather answers to “What is occupied ?”lﬂ

D Passing from the real space to the orbital space

Based on the second quantization presented in the previous section, the connection between the real

space and the orbital space is studied, through the expression of the real-space density and the real-

1From a lecture of Emmanuel Fromager in the ISTPC Summer School, Aussois (FRANCE), 2017
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space one-particle density matrix in the orbital space. Thanks to the identity relation,
Z lpi) (il = 1, (75)
i

we define [r) = >, i) (@i|r) = >, ;5 (r)|p;) which connects the real-space to the orbital-space second

quantized operators:

Ui(r)lvac) = [r,0)=r)@ o)

= Z 502 ‘Qof ® |U Z Qoz |901; Z (,01 |vac (76)

One can therefore pass from one space to another by a simple change of basis:

B0 =il el =3 i (77)

Note that plugging this change of basis in Eq. allows one to recover Eq. where C; =

[ drer(r)¥(r) = (pi|¥). The reverse transformation is of course possible and reads:

éjg = /drgpi(r)‘ifi_(r), Civ = /dmp;‘(r)\ilg(r). (78)

Plugging Eq. into the real-space electronic density in Eq. ,

a(r) = Z Ul (e
Z Z 901 C?,UCJU’ (79)

we find that the real-space density is defined by taking all the density matrix elements D;; =

(B3, el,jo|0),
Z ©; (r)p;(r)Dij. (80)

Therefore, we need the whole orbital-space density matrix to recover the real-space density. Please
note that D;; is the analog of y(r,r’) but in the orbital-space. Indeed, plugging Eq. into the

real-space density matrix in Eq. leads to

Z Z oi(r cwcj(,, (81)
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so that
y(rr') = Z@Z‘(r)%‘(r’)Dm (82)

Passing from ~(r,r’) to D;; is also possible using Eq. :

so that

Dy = [dr [are)e @) (84)

The only case where the diagonal of the orbital-space density matrix is sufficient is when the basis set
is composed of natural orbitals. For instance, in KSDFT, the basis set is constituted of orthonormal
KS orbitals forming a single Slater determinant. In this basis, the density matrix is diagonal and its
diagonal coefficients are the occupation number of the KS orbitals, that are either equal to 2 or 0 in
the spin-restricted formalism. Because it is diagonal, the density of the KS system is written as

N/2

n(r) =2 Z i S (r)l. (85)

The summation goes up to all the occupied orbitals, so N/2 orbitals in the case of a spin-restricted
closed-shell system. This is the case for any theory written in the basis forming a single Slater

determinant.

E Derivatives of BALDA

E.1 Derivative with respect to U and ¢

As readily seen in Eq. , the derivative of the complementary bath per-site correlation energy
functional with respect to U is necessary to compute double occupation in SOET. According to
Eq. , it implies the derivative of the conventional per-site correlation energy, modelled with
BALDA, which reads

™

oU U o) Tsom <o) "1 @9
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and then for n > 1,

PeBAIPA(n > 1, U/t)  9B(U/t) 2 (2 —n) 2t(2 —n) o (2 —n)
ou ou [w (ﬁ(U/t))+ Bt ¢ (ﬁ(U/t) ﬂ

n2

+n—1) - (87)

where 08(U/t)/0U = (0p(U/t)/0(U/t))/t, is computed with finite differences by solving Eq. (2.81)
for p(U/t).
The derivative with respect to ¢ are calculated according to Eq. (3.29)).

E.2 Derivative with respect to n

To get the correlation embedding potential, the derivatives of the correlation functionals with respect

to n is necessary. The derivative of the convention per-site density-functional correlation energy reads

DeBALDA (R 1) ™ ™m Un
a—n_—thos <[3(U/t)> + 2t cos (7) —7, (88)
and
QeBALDA (R > 1) m(2—n) (2 —n) Un
T = 2t cos (ﬂ([]/t)) — 2t cos <2> + U - 7 (89)

F Derivatives of STAM-BALDA

The derivatives of the SITAM-BALDA impurity correlation functional [Eq. (3.94) combined with
Eq. (3.103))] are given with respect to U for n < 1 as follows,

OESSN U T(t,n)  2x0.0369 [ U 4x00008 [ U \*
- i + i) (90)

oU - 0 t,m) 3 t,n
The derivative with respect to ¢ is given according to Eq. (3.30). Then, the impurity correlation

potential is determined by the derivative of the functional with respect to the occupation number 7,

on  On or ’
I'=r(t,n)
where
OESEN o(UT)  0.0369 (U\?  3x0.0008 (U\* (o)
or T oor r w3 r)’
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and
or(t,n) _ _g sin®(mn/2) — (1 + cos(wn/2))g cos(mn/2)
on sin?(7n/2)
__mt (14cos(mn/2)\ _  al(tn)
-2 ( sin®(7n,/2) ) 2sin(mn/2) (93)

If n > 1, the particle-hole formalism imposes to use I'(t,2 —n) instead of T'(¢,n). The derivatives with

respect to n should be changed accordingly.

G Derivatives of 2L-BALDA

G.1 Parametrization of the correlation energy of the dimer

In this section, we summarize the parametrization of the Hubbard dimer correlation energy by Car-
rascal and co-workers [335] 358, necessary to understand the following derivations. The equations
coming from their paper are referred to as (&N), where N is the number of the equation. We start
from the definition of the correlation energy, where n is the occupation of the site 0 and v = U/2¢t is

a dimensionless parameter,

EZXUn) = 1(9,9)|g=g(puy — Te(n) — Enx (U, n), (94)

p=[n—1|

where 2L refers to “two-level”, and

Ty(n) = —2t/n(2 —n), Eux(U,n) = U(1—n(1— g)) (95)

To account for particle-hole symmetry of the functional, the variable p = |n — 1| is used rather than

n directly. We now simply follow the guidelines from Eq.(&102) to (&107), leading to

f(g.p) = —2tg + Uh(g. p), (96)

and

¢ (1-VT= 7 =) +2?

ila.p) = 2(g2 + p?)
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Then, they proposed a first approximation to g(p,u), denoted by the label 0:

_ (A =p) A+ p(L+ 1+ p)’uai(p,u)))
9ol ) = \/ 1+ (1 + p)Puaz(p, u) ’ ©8)
where
ai(p;u) = ain(p) + uaiz(p), i=1,2 (99)
and
anp) = (/P2 a0 = L g, (o) = o (1 n ;) Canlp) = 20 o0)

Plugging g = go(p,u) into f(g,p) leads to the first parametrization of E2(n) in Eq. (94). In this

work, we implemented the more accurate parametrization, given in Eq.(&114) [358]:

oh(g, p)
dp

g1(p,u) = go(p,u) + (u o - 1) q(p,u), (101)

and where ¢(p, u) is given in Eq. (&115) by [358]:

(1= p)(1+ p)*u®[(3p/2 = 1 + p(1 + p)*uaz(p, u))aiz2(p) — p(1 + (1 + p)*uai(p,u))aga(p)]
2g0(p; u) (1 + (1 + p)3uas(p,u))? '

Q(p, u) =
(102)

The accurate parametrization of E2L(n) is obtained by plugging this g;(p,u) into f(g,p), instead of
go(p; u).
In order to obtain the impurity correlation energy, a simple scaling of the interaction parameter U

has to be applied on the conventional correlation energy, as demonstrated in Ref. [72], leading to

Eémp72L(U’ n) = EgL(U/Q’ n) = f(9,p) Ts(n) - EHX(U/27 n) (103)

g=g(p,u/2) ~
p=In—1]|

G.2 Derivative with respect to U and ¢

We compute the derivative with respect to the dimensionless parameter v = U/2t. The p- and u-
dependence of g(p,u) will be omitted for readability. Besides, many functions will be introduced,

aiming to make the implementation and its numerical verification easier. Starting with

1
— (1 -n—1 104
gfg(pﬂli‘) ( o (271 )) ’ (104)

p=In—

OEZ*(n) 1 9f(g,p)

oUu T2t du
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the impurity correlation functional reads, according to Eq. (103]),

OB\ (n) 1 9f(g,p) 1 1
ou T4 Bu g:f(pq‘/?) 2 (1 T <2n a 1)) ’ (105)
p=|n—
with
of(g,p) _ o, (99 __ Oh(g,p)
By 2t ™ h(g,p) —u x 5y . (106)

The derivative of h(g, p) is quite easy, as its only u-dependence is contained in g, so that:

Oh(g,p) _ Og Oh(g; p)
ou ou 0Og

(107)

with

4 322 22 2_1_Y ,
Ohlg.p) _ 9" +39°0° +2p° (p (9.0)) (108)

dg 2 (g% + %) Y (g, p)

where the function Y (g, p) = /1 — g2 — p? has been introduced. For the first approximation, g = go

and
9go(p,u) _ 0y/G(p,u) _ 9G(p,u)/0u (109)
ou ou 2 C;'(,()7 u) ’

where G(p,u) = N(p,u)/D(p,u) and

N(p,u) = (1-p) [1+p(1+(1+p)3ual(p7u))} ) (110)

D(p,u) = 1+ (1+ p)*uaz(p,u). (111)

Their respective derivative with respect to u reads

IR (1 o1+ (a1<p,u>+ua‘“§§“))a (112)
D) 1y pp (a2(p,u)+ua"28<5”‘>), (113)

with
%ﬁ’u) = a22(p)’ w = alg(p). (114)
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Turning to the second approximation g = g; implemented in this work, one get from the derivative of

Eq. (101),
9 _ 990 [ Ohlg,u) Lol [ Ohlgw) o)+ [ u Oh(g,u) ) 9alp,w)
ou ou dg 9=o ou dg 9=00 dg 9=00 ou
(115)
For convenience, we introduce two functions w(g, ) and v(g,u) so that
2 ah(ga U) _ 8w(g7 U) 81}(9, U) 2
o () (28 . 0) — i) ) futg (116
with
w(g,u) = glg" +3¢°p" +20° (0° = 1-Y(9,0))], (117)
vig,u) = 2Y(g.p) (g% + 0%, (118)
and
ow(g,u) _ 0g [ 4 2 2 2(2 1 _ 3 2 2p%g
S = 5 {g +39%p* +2p% (p* =1 -Y(g,p)) + g (49> + 6gp* + Y. )| (119)
dv(g, u) 2, 209 | —2(8* +0°)
= - : 12
S 9(9+r") 5, Y ) (120)
Finally, the last term in Eq. reads, for g(p,u) = j(p,w)k(p,u)/l(p,u):
9j(p;w) , 9k(p, u) , Al(p, u)
a2kt + 0.0 P ) ) = k) 2 -
ou 1(p,u)?
with
jlpsu) = (1=p)(1+p)u?, (122)
k(p,u) = (3p/2 =1+ p(1 + p)’uaz(p,u)) ara(p) — p (1 + (1 + p)*Muai (p, u)) aza(p)  (123)

l(u) = 2go(u) [14 (14 p)*Iuas(p,u, )\)]2 ) (124)
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and their derivative with respect the wu:

33'%91;“) = 2(1-p)(1+p)*xu
8,;(5) - I:p(l L (azm a1+ “W)] ~ ana(p) |:p(1 +p)? (al(p, u) + uaala(z’“)ﬂ
ala(:j) = dgo(u) [1+ (1 + p)Puaz(p, w)] (1 + p)? <a2(ﬁ, u) +u8ai§27u)>
+2% [1+ (1+ p)*uas(p, u)]z- (129

The derivative with respect to ¢ is given according to Eq. (3.30].

G.3 Derivative with respect to n

Regarding the derivative with respect to n which is necessary to get the embedded correlation potential,

it comes

on on  Op g:iq(pqll/?) on 2
p=|n—
where dp/0n = sign(n — 1) and
9Ts(n) _ 2t(1 —n) . (127)
on n(2 —n)
We start with
9f(g,p) _ .99 . 0h(g,p)
o 2tap +U op (128)
where, for the first parametrization using g = go(p, u),
9o 1 <6N<p, W  ,dD(p, u))
AL — , 129
dp 290D (p, w) dp P9p (129)
with
3N , U 8(1 , U
S = a2 (L G P (o) + gt = ) (3 0) + (14 ) P
8D(p? U) _ 2 8&2 (/0’ u)
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and
dar(p,u) _ dani(p) | Oaiz(p)
9 =~ tU g (131)
daz(p,u)  Oazi(p)  OJazl(p)
95 =~ t' %, (132)
dara(p) _ Oax(p) 1
T T (133)
p 2/(1=p)p/2’
dari(p) _ 9az(p) 1y 1
p = ap 1+ p 7 az1(p). (135)
(136)
Then, the right term in the right hand side of Eq. is derived as:
9h(g, p) 1 ( 9g 29(99/0p) + p)
DR o = (4p+2922 (1Y (g, p)) + 2L T
dp 202 + ) \ 7 gap( (9:9)) +9 Y(g,p)
9(99/0p)+p 1y 2, o
— (2 1-Y . 137
Turning to the second parametrization g = g1, the derivative with respect to p leads to
dg1 g0 oh(g, p) 9q(p,u) O [ Oh(g,p)
991 _ 990 |, 1 +tu u 138
9 ~ 0p < 9 |, op 95 9 |, q(p,u) (138)
with
9 (0Oh(g, p)) —(9g/9p)(g* + p*) +49(9(0g/0p) +p) 1, 2 o
- — 2 1-Y
9 < 99 CEYDE (20" + g*( (9,0)))
g 9y 29(9g/9p) +p)
9 (4p+29 (1 -Y(g,p)) + P2 LI TP
(9% + p?)? < g gap( 9.0)) + 9 Y(g,p)
9(9g/9p) + p ( g9 )
_REIERI TP (90(1 — Y (g, p)) +
(9% +p?)? 4 (9:)) Y(g,p)
1 dg 2gp | 59°(9g/9p) = 59(dg/p) + p)
+—— (221 -Y(g,p) + .
s (20 Yo+ 4 SR MO
(139)
Finally,
0 , U oP , U 0 , U
1) (P00 - Pl ) ftp (140

ap dp
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with
P G- - ) | (B = 10 () ) aral)
—p (L+ (14 p)*uai(p,u)) azs(p)]
L= | (G4 3t pPpoaton) + a4 (an(or) + 92252 ) Y )
+ (32/) — 1+ p(1+ p)3uaz(p,u) ) Garz(p ( g + azz(ﬂ)) (1+ (14 p)*uai(p,u))
—pazz(p) (3(1+p)2ua1(07 u) + (14 p)*u (,g ﬂ (141)
a%’;’u) = aag; (1+ (1 + p)*uas(p,u)” + 4g0 (1 + (1 + p)?
< uaa(p)u (3004 pPan(p) + (14 P22 ). (142)

H Atomic orbitals and Basis set

An exact analytic solution of the Schrédinger equation for an atom or a molecule with more than one
electron is not known. In order to approach numerically the exact solution for such systems, one has

to construct molecular orbitals ¢;(r) based on a linear combination of atomic orbitals (LCAO) x,(r):

r) = cuixulr). (143)

For instance, the 1s atomic orbital of the hydrogen atom is given by a Slater-type orbitals function
x1s(r) = (1/y/m)e 7. Slater-type orbitals (STO) centered on the nucleus at position R4 are usually

a better approximation to the atomic orbital:

flm(€7r_RA) (f)plm(l‘ Y, Z) —§\r—RA|) (144)

where N7 (€) is a normalization constant and py,(z,y, 2) is a polynom representing spherical harmon-
ics. Atomic orbitals described by such functions form a so-called STO basis set. The STO have the
advantage to correctly describe the nuclear cusp. However, it directly leads to computational issues,

which are usually solved by approximating the STO by Gaussian-type orbitals (GTO):

k
fim ~ Z fin (145)
i=1
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V\/ith
; a; I Il‘A l « pl77l x? y7 z)e ‘ ‘ I 1 16
lm l

where N () is a normalization constant and the exposant « (as well as ¢ in Eq. ) results from
an optimisation of isolated atoms. Such an assembling of primitive Gaussian functions leads to a
so-called contracted function. The whole set of contracted functions describing the atomic orbitals is
called the contracted basis set, which is easier to handle numerically in comparison to the (larger) basis
set composed of primitive functions. The approximated functions in Eq. form a basis set called
STO-kG, where k is the number of Gaussian functions used to describe the STO. Usually, £ = 3 and
go up to k = 6 and the basis is called minimal basis, because each atomic orbital is described by only
one (approximate) STO. Those basis sets are however not sufficiently efficient to describe electronic
correlation, and are only used for very big systems (in huge organic molecules or biochemical systems)
where larger basis are out of reach in term of computational cost. To improve the performance of the
basis, the next step is to multiply the number of approximate STO to describe the valence atomic
orbitals. This leads to the valence double zeta (VDZ), triple zeta (VTZ), quadruple zeta (VTZ) basis
set, etc. In a different notation introduced by Popler and coworkers, the VDZ basis set can be written
as k-mnG, where k, m and n are contraction length of the core atomic orbitals and of the each “zeta”
of the valence atomic orbitals, respectively. This notation has the advantage to specify the different
contraction lengths used in the approximate STO functions describing valence atomic orbitals. One
example is the VDZ basis 6-31G or the VTZ basis 6-311G. The improvement over the STO-kG
basis sets is significant, but is often still insufficient. To add more flexibility, polarisation function
are added, which are functions corresponding to a higher angular momentum [. Such corrections
leads to the pVDZ, pVTZ and pVQZ basis sets. Using Popler’s notation, one can specify the type
of polarization function added, for instance 6-31G(d) for the carbon atom (or, equivalently, 6-31G*).
Other improvements can be considered by adding diffuse functions (with a weak exponent «) and using
atomic basis that already contain correlation effects between the electrons of the same atom leading
to aug-cc-pVDZ, etc, where “aug” means augmented by diffuse functions and “cc” means correlation

consistent.
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