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Bruno SENJEAN

Development of new embedding techniques for strongly
correlated electrons: from in-principle-exact formulations to

practical approximations.

Résumé
Ce mémoire traite du développement et de l’implémentation de nouvelles méthodes visant à
décrire la corrélation électronique forte dans les molécules et les solides. Après avoir
introduit l’état de l’art des méthodes utilisées en chimie quantique et en physique de la
matière condensée, une nouvelle méthode hybride combinant théorie de la fonction d’onde et
théorie de la fonctionnelle de la densité (DFT) est présentée et s’intitule “site-occupation
embedding theory” (SOET). Celle-ci est appliquée au modèle de Hubbard à une dimension.
Ensuite, le problème du gap fondamental est revisité en DFT pour les ensembles, où la
dérivée discontinue est réécrite comme une fonctionnelle de la densité de l’état fondamental.
Enfin, une extension à la chimie quantique est proposée, basée sur une fonction d’onde de
séniorité zéro complémentée par une fonctionnelle de la matrice densité, et exprimée dans la
base des orbitales naturelles.
Mots clefs: Chimie Quantique – Physique de la matière condensée – corrélation forte –
théorie de la fonction d’onde – théorie de la fonctionnelle de la densité – méthode
d’embedding – modèle de Hubbard.

Résumé en anglais
The thesis deals with the development and implementation of new methods for the
description of strong electron correlation effects in molecules and solids. After introducing
the state of the art in quantum chemistry and in condensed matter physics, a new hybrid
method so-called “site-occupation embedding theory” (SOET) is presented and based on the
merging of wavefunction theory and density functional theory (DFT). Different formulations
of this theory are described and applied to the one-dimensional Hubbard model. In
addition, a novel ensemble density functional theory approach has been derived to extract
the fundamental gap exactly. In the latter approach, the infamous derivative discontinuity is
reformulated as a derivative of a weight-dependent exchange-correlation functional. Finally,
a quantum chemical extension of SOET is proposed and based on a seniority-zero
wavefunction, completed by a functional of the density matrix and expressed in the natural
orbital basis.

Keywords: Quantum chemistry – condensed matter physics – strongly correlated electrons –
wavefunction theory – density functional theory – embedding methods – Hubbard model.



“In these bodies we will live, in these bodies we will die,

Where you invest your love, you invest your life”

Mumford & Sons, Gentlemen of the road.
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Notations

To avoid confusion, the same notations will be used throughout the whole thesis:

Table 1: Notations

Symbol Refers to
x Space and spin coordinates x ≡ (r, σ)
σ Spin of the electron (either α ≡↑ or β ≡↓)
r Space coordinates r ≡ (x, y, z)

φ(x) One-electron molecular spin orbital.
ϕ(r) One-electron molecular orbital

ϕσ(x) One-electron molecular spin orbital for spin σ.
χ(r) One-electron atomic orbital.

Φ ≡ Φ(x1, . . . ,xN ) N -electron Slater determinant
Ψ ≡ Ψ(x1, . . . ,xN ) N -electron wavefunction





Acronyms

Acronyms, if correctly employed, can ease the reading. I give here a list of acronyms that will be used

throughout the thesis:

Table 2: Acronyms

Acronyms Meaning
BA Bethe Ansatz

BALDA Bethe Ansatz Local Density Approximation
iBALDA(M) M -impurity Bethe ansatz local density approximation
2L-BALDA two-level Bethe ansatz local density approximation

CAS Complete Active Space
CASSCF Complete Active Space Self-Consistent Field

DFT Density-Functional Theory
DMET Density Matrix Embedding Theory
DMFT Dynamical Mean-Field Theory
eDFT Ensemble Density Functional Theory
(F)CI (Full) Configuration Interaction

GF Green’s Function
GOK Gross–Oliveira–Kohn

KS Kohn–Sham (leading to KS-DFT and KS-SOFT)
LDA Local Density Approximation

MCSCF Multi-Configurational Self-Consistent Field
NI Non Interacting bath formulation in DMET

P-SOET Projected Site-Occupation Embedding Theory
RDMFT Reduced Density Matrix Functional Theory

1RDM and 2RDM One- and Two-particle Reduced Density Matrices
SIAM Single-impurity Anderson model
SOET Site-Occupation Embedding Theory
SOFT Site-Occupation Functional Theory
SOPT Second-Order Perturbation Theory
(U)HF (un)restricted Hartree-Fock
WFT Wavefunction Theory





Résumé en Français

Introduction

La chimie quantique est une discipline qui applique la mécanique quantique à l’étude théorique des

systèmes chimiques. Par l’étude de la structure et de la dynamique de ces systèmes, elle vise à

comprendre les différents mécanismes des réactions chimiques régies par leurs propriétés thermody-

namiques et cinétiques. Par ailleurs, le but de la physique de la matière condensée est de rationaliser

les phénomènes naturels dans les phases condensées (comme les solides), par exemple par la descrip-

tion de la transition entre un métal et un isolant, engendrée par la variation de plusieurs paramètres

tels que la pression ou l’introduction d’impuretés dans le matériau. Plusieurs méthodes et modèles ont

été développés dans ces deux disciplines, permettant non seulement de reproduire les résultats expéri-

mentaux, mais également de faire des prédictions ensuite vérifiées par l’expérience. La qualité d’une

théorie est jugée sur ces deux critères. Cependant (et malgré les progrès continuellement effectués)

certains systèmes restent extrêmement difficiles à décrire, comme les systèmes dits fortement corrélés.

Les systèmes à forte corrélation électronique font l’objet d’une intense recherche depuis de nombreuses

années, à travers le développement et la synthèse de matériaux toujours plus innovants, réunissant les

chimistes et les physiciens, aussi bien expérimentaux que théoriciens. Ce sujet de recherche recouvre

de nombreuses problématiques en théorie quantique, passant par la simple description d’une rupture

de liaison chimique à la description des complexes de métaux de transition présentant des propriétés

magnétiques et électroniques très intéressantes. Par exemple, certains matériaux manifestent des tran-

sitions métal-isolant (NiO et V2O3), des transitions de phases induites par la température comme les

superconducteurs à haute température critique (La2CuO4), ou encore une magnétorésistance colossale

(LaMnO3) [1]. Ces propriétés originales ont permis de concevoir de nouveaux nanomatériaux ayant

des applications potentielles dans la conversion d’énergie, le transport électronique pour les cellules

photovoltaïques, les champs magnétiques forts, et le stockage magnétique de l’information. Les oxy-

des de métaux de transition sont également employés dans les catalyses homogènes et hétérogènes,

et jouent un rôle essentiel en biologie chimique par leur présence dans les sites actifs des protéines.



viii Résumé en Français

Alors que le nombre de découvertes de nouveaux matériaux continue d’augmenter, le manque de

méthodes théoriques suffisamment précises et efficaces pour décrire de tels matériaux se fait ressentir.

Le développement de nouvelles méthodes permettrait de mieux comprendre et même de prédire de

nouvelles structures manifestant des propriétés intéressantes, et prend une place importante dans la

conception de technologies futuristes.

D’un point de vue théorique, le terme “fortement corrélé” vient du fait que la théorie dite de champ

moyen n’est pas capable de décrire les phénomènes et transitions mentionnés précédemment. En effet,

cette théorie ne décrit pas la corrélation électronique, dictée par l’interaction entre les électrons.

Quand cette interaction joue un rôle prédominant, on parle de corrélation électronique forte, et celle-

ci reste très difficile à traiter que ce soit en chimie ou en physique des états solides. À ce jour, aucune

méthode ne fait autorité pour la description de tels systèmes. La formulation et l’implémentation

d’une méthode universelle capable de les décrire restent un véritable challenge.

Alors que certaines méthodes (en théorie de la fonction d’onde, WFT en anglais pour wavefunction

theory) seraient en principe suffisamment précises [2], elles restent bien trop chères en temps de calcul,

si bien que d’autres méthodes moins coûteuses ont été développées. Par exemple, la théorie de la

fonctionnelle de la densité (DFT en anglais, pour density functional theory) qui est une des méthodes

les plus utilisées à ce jour. Cependant, la DFT ne décrit pas correctement les systèmes à forte

corrélation électronique [3]. Intuitivement, il paraît naturel de vouloir mixer les théories WFT et

DFT pour obtenir une méthode performante à moindre coût. Les méthodes dites d’“embedding” font

partie de cette nouvelle famille hybride, où seulement une partie du système est traitée en WFT et

le reste en DFT [4]. À présent que la loi de Moore a atteint sa limite, les méthodes de faible coût

permettant la description de systèmes de grandes tailles avec suffisamment de précision prennent de

l’importance. C’est pourquoi un intérêt grandissant concernant les approches de type embedding est

observé. Ces dernières sont devenues populaires aussi bien en chimie quantique, pour les atomes et

les molécules, qu’en physique de la matière condensée pour les solides.

Cette thèse vise au développement de nouvelles théories hybrides, à l’interface entre la chimie

quantique et la physique de la matière condensée. Dans cette dernière communauté, il est courant

d’utiliser des modèles fictifs simplifiés décrivant les principaux effets physiques manifestés par le sys-

tème réel. Le modèle de Hubbard sera particulièrement employé.

Ce résumé se focalise sur le développement de la théorie hybride dénommée SOET (pour “site-

occupation embedding theory”) appliquée au modèle de Hubbard. Pour comprendre cette théorie,

l’état de l’art de la chimie quantique et la présentation du modèle de Hubbard seront détaillés. Les
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autres théories présentées dans cette thèse, comme la théorie de la fonctionnelle de la densité pour les

ensembles permettant l’extraction du gap fondamental, et la théorie de la fonctionnelle de la matrice

densité basée sur une fonction d’onde de séniorité zéro, ne seront pas expliquées dans le résumé.

Théorie de la structure électronique en Chimie Quantique

L’évolution dans le temps d’un système physique contenant d’importants effets quantiques est math-

ématiquement décrite par l’équation de Schrödinger (Prix nobel de Physique en 1933). Si le système

évolue dans un potentiel indépendant du temps et où les effets relativistes sont négligeables, alors

cette équation se réduit à l’équation de Schrödinger indépendante du temps:

Ĥ|Ψ〉 = E|Ψ〉, (1)

où Ψ est la fonction d’onde décrivant l’état stationnaire du système quantique ayant pour énergie

totale E. Pour un système moléculaire contenant N électrons de masse me, charge e et positions

{ri}i=1,N et M noyaux de masse {MA}A=1,M , charge ZA × e et positions {RA}A=1,M , l’Hamiltonien

de l’Eq. (1) est donné par, dans les unités du système international,

Ĥ = T̂n + T̂e + V̂ne + Ŵee + V̂n

= −
M∑
A=1

~2

2MA
∇2
A −

N∑
i=1

~2

2me
∇2
i −

N∑
i=1

M∑
A=1

ZAe
2

4πε0|RA − ri|

+

N∑
i=1

N∑
j>i

e2

4πε0|ri − rj |
+

M∑
A=1

M∑
B>A

ZAZBe
2

4πε0|RA −RB |
, (2)

où T̂n et T̂e sont les opérateurs d’énergie cinétique des noyaux et des électrons, respectivement, et V̂ne,

Ŵee et V̂n sont les opérateurs d’énergie potentielle correspondant à l’attraction coulombienne électron-

noyaux, et à la répulsion coulombienne électron-électron et noyaux-noyaux, respectivement. En chimie

quantique, l’un des principaux objectifs est la bonne description des réactions chimiques, impliquant

la formation et la rupture de liaisons chimiques. Ces derniers processus sont dus aux interactions

entre les électrons du système. Puisque la masse d’un noyau est au moins 1836 fois supérieure à

celle d’un électron, une approximation judicieuse consiste à négliger les mouvements des noyaux par

rapport aux mouvements des électrons. Autrement dit, les noyaux sont gelés: c’est l’approximation

de Born–Oppenheimer proposée en 1927 [5]. L’équation de Schrödinger peut alors être réécrite en

découplant la partie électronique de la partie nucléaire:

Ĥe|Ψe〉 = Ee|Ψe〉, (3)
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où l’indice e correspond à “électronique”, et ne sera plus employé dans la suite par simplicité. En

utilisant les unités atomiques, l’Hamiltonien électronique devient simplement:

Ĥ −→ T̂ + Ŵee + V̂ne = −
N∑
i=1

1

2
∇2
i +

N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

, (4)

où riA et rij sont respectivement les distances entre l’électron i et le noyau A, et entre l’électron i et

l’électron j. Malgré la simplification apportée par l’approximation de Born–Oppenheimer, l’Eq. (3)

n’a été résolue analytiquement que pour très peu de systèmes pédagogiques simples. Elle peut néan-

moins être résolue numériquement pour certains atomes et molécules diatomiques. Pour de plus gros

systèmes, une telle résolution reste infaisable, bien que de récents progrès aient vu le jour de par

l’utilisation de la méthode de Monte Carlo Quantique (QMC) [6].

Théories de la fonction d’onde

Dans cette thèse, nous nous intéresserons à l’état fondamental du système, c’est-à-dire l’état de plus

basse énergie. Cette énergie peut être déterminée par le principe variationnel de Rayleight–Ritz:

E0 = 〈Ψ0|Ĥ|Ψ0〉 6 〈Ψ|Ĥ|Ψ〉, (5)

où Ψ0 est la fonction d’onde de l’état fondamental (généralement indéterminée), et Ψ est n’importe

quelle fonction d’onde d’essai. En théorie de la fonction d’onde, de nombreuses méthodes ont été

développées et visent à approcher le plus possible la fonction d’onde de l’état fondamental. Grâce

au principe variationnel [Eq. (5)], l’énergie associée à cette fonction d’onde approchée sera toujours

de plus haute énergie que celle de l’état fondamental. Pour que la fonction d’onde (électronique)

corresponde bien à un système physique fermionique, elle doit décrire un système où les électrons sont

indiscernables et doivent respecter le principe d’exclusion de Pauli, c’est-à-dire que deux électrons ne

peuvent pas se trouver simultanément dans le même état quantique. Autrement dit, deux électrons

de même spin ne peuvent pas occuper la même orbitale spatiale. Ce principe revient à imposer

l’antisymétrie de la fonction d’onde par rapport à la permutation de deux électrons. Considérons un

système à N électrons à répartir dans N spin-orbitales moléculaires {ϕi}i=1,N . La fonction d’onde

la plus simple respectant les conditions précédemment mentionnées nous est alors donnée par un
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déterminant de Slater:

Φ(x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)

φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6)

où 1/
√
N ! est un facteur de normalisation. Il est clair que si deux électrons sont dans le même état

quantique, alors deux lignes du déterminant sont identiques et la fonction d’onde est égale à 0. Si

deux électrons sont permutés, cela revient à changer deux lignes du déterminant, et donc à changer

son signe. Le principe de Pauli est ainsi respecté. Les méthodes où la fonction d’onde peut être écrite

comme un unique déterminant de Slater ne peuvent décrire qu’une seule configuration électronique.

Elles sont appelées méthodes monoconfigurationelles, et la plus connue est la méthode Hartree–Fock

(HF) [7, 8]. Pour plus de simplicité, considérons un système à couches fermées contenant un nom-

bre pair N d’électrons dans un ensemble d’orbitales spatiales orthonormées {ϕi}i=1,N/2. L’équation

autocohérente Hartree–Fock est donnée par:

(
−1

2
∇2 + v̂HF

[
{ϕj}j=1,N/2

]
−

M∑
A

ZA
|r−RA|

)
ϕi(r) = εiϕi(r) (7)

où

v̂HF =

N/2∑
j=1

(
2Ĵj − K̂j

)
(8)

est l’opérateur potentiel HF (effectif) monoélectronique, décrivant le champ moyen généré par les

N − 1 autres électrons, avec

Ĵjϕi(r1) =

(∫
dr2

ϕ∗j (r2)ϕj(r2)

|r1 − r2|

)
× ϕi(r1) (9)

l’opérateur monoélectronique local décrivant la répulsion coulombienne classique, et

K̂jϕi(r1) =

∫
dr2

ϕ∗j (r2)ϕi(r2)

|r1 − r2|
ϕj(r1) (10)

l’opérateur monoélectronique non local décrivant l’intéraction d’échange électron-électron. L’Eq. (7)

est résolue de manière itérative, car le champ généré par l’opérateur HF dépend des orbitales, elles-

mêmes déterminées par résolution de l’équation HF. Le déterminant de Slater construit par les orbitales
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HF convergées est ensuite utilisé pour déterminer l’énergie HF:

EHF = 〈ΦHF|Ĥ|ΦHF〉 = 2

N/2∑
i=1

〈ϕi|ĥ|ϕi〉+

N/2∑
i=1

N/2∑
j=1

(2Jij −Kij) > E0, (11)

où

Jij = 〈ij|ij〉 = 〈ϕiϕj |ϕiϕj〉 =

∫∫
dr1dr2

ϕ∗i (r1)ϕ∗j (r2)ϕi(r1)ϕj(r2)

r12
,

Kij = 〈ij|ji〉 = 〈ϕiϕj |ϕjϕi〉 =

∫∫
dr1dr2

ϕ∗i (r1)ϕ∗j (r2)ϕi(r2)ϕj(r1)

r12
, (12)

sont respectivement les intégrales de Coulomb et d’échange. Il est clair d’après l’Eq. (11) que l’énergie

HF n’est pas une simple somme des énergies orbitalaires, ce qui signifie que la méthode HF décrit

l’interaction entre les électrons 1/rij , qui est traitée par le champ moyen généré par le potentiel HF

non local.

Cependant, cette approche reste une approximation. Pour retrouver l’énergie fondamentale exacte

du système, il faut corriger l’énergie HF par une énergie de corrélation:

Ec = E − EHF. (13)

Cette énergie de corrélation peut être divisée en deux contributions. La première est appelée cor-

rélation dynamique (ou corrélation faible), et peut être retrouvée en considérant une fonction d’onde

constituée d’un mélange de déterminants: le déterminant HF et des déterminants excités d’ordre

supérieur. Bien que cette fonction d’onde soit multidéterminantale, elle demeure monoconfigura-

tionelle. Ces déterminants excités ont habituellement une contribution très faible à l’énergie, mais

celle-ci est nécessaire pour atteindre la précision chimique (≈ 1 kcal/mol). Par exemple, la corrélation

dynamique est essentielle pour décrire proprement la dissociation du dimère d’Helium [9]. La deuxième

est appelée corrélation statique (ou corrélation forte) et constitue le principal objet de cette thèse.

Celle-ci apparaît quand des configurations de faibles énergies sont presque dégénérées avec le détermi-

nant de Slater de référence [10]. si bien qu’il n’y a plus une seule configuration dominante. Un mélange

de ces configurations est alors nécessaire: la fonction d’onde est dite multiconfigurationelle. Un exem-

ple pédagogique simple est donné par la dissociation (R→ +∞) de la molécule de dihydrogène, où la

fonction d’onde est donnée par une combinaison moyennée de deux configurations électroniques: 1σ2
g

et 1σ2
u, où 1σg est l’orbitale moléculaire liante, et 1σu l’orbitale moléculaire antiliante.
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Les méthodes mixant ainsi plusieurs déterminants sont appelées les méthodes post-HF. En écrivant

la fonction d’onde comme une combinaison linéaire de déterminants de Slater ΦI , nous obtenons la

fonction d’onde d’intéraction de configuration (CI en anglais, pour “configuration interaction”):

|Ψ(C)〉 =
∑
I

CIΦI , (14)

où les coefficients CI (C = {CI}I) sont à optimiser. Si la fonction d’onde contient tous les déterminants

possibles, construits à partir d’un ensemble donné d’orbitales, alors on parle de fonction d’onde FCI

(pour “Full configuration interaction”). Le nombre de déterminants à considérer est donné par

Ndet =

(
M

N

)
=

M !

N !(M −N)!
, (15)

où N est le nombre d’électrons et M le nombre de spin-orbitales. Par exemple, pour N = 20 et

M = 40, il faudrait considérer 137 846 528 800 déterminants, ce qui est actuellement impossible à

cause du temps de calcul nécessaire pour traiter autant de combinaisons. FCI est donc utilisée comme

méthode de référence pour de très petits systèmes uniquement. En pratique, pour étudier de plus gros

systèmes, ce nombre de déterminants est tronqué pour ne garder, par exemple, que les déterminants

obtenus par simple et double excitation du déterminant HF:

|Ψ〉 ≈ |ΦHF〉+
∑
ia

cai |Φai 〉+
∑
ijab

cabij |Φabij 〉+ . . . , (16)

où i,j dénotent les orbitales occupées et a,b les orbitales non occupées du déterminant HF, de sorte

que le déterminant Ψa
i corresponde à l’excitation de l’électron de l’orbitale i à l’orbitale a, et le déter-

minant Ψab
ij corresponde à la double excitation de l’électron de l’orbitale i à l’orbitale a, et de l’électron

de l’orbitale j à l’orbitale b. L’énergie obtenue par cette fonction d’onde tronquée ne peut être qu’une

approximation de la fonction d’onde exacte.

Pour ajouter plus de flexibilité, il est possible d’optimiser non seulement les coefficients CI, mais

aussi ceux des orbitales moléculaires, qui sont exprimées comme une combinaison linéaire d’orbitales

atomiques (CLOA). Cela consiste à faire une rotation des orbitales moléculaires. Permettre cette

réoptimisation des orbitales dans un calcul CI tronqué donne lieu à une nouvelle approche s’intitulant

champ autocohérent multiconfigurationel (MCSCF en anglais, pour “multiconfigurational self-consistent

field”). Plutôt que de considérer les déterminants simplement et doublement excités, il serait intéres-

sant de considérer tous les déterminants possibles mais uniquement dans une espace orbitalaire re-

streint, appelé espace actif complet (CAS en anglais, pour “complete active space”). L’énergie associée
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à cette fonction d’onde CASSCF est donnée par

ECAS = min
κ,C

{
〈ΨCAS(κ,C)|T̂ + Ŵee + V̂ne|ΨCAS(κ,C)〉

}
, (17)

où κ est la matrice contenant les paramètres à optimiser pour faire tourner les orbitales. Cette

méthode permet le bon traitement de la corrélation statique, mais manque de corrélation dynamique.

Celle-ci peut être décrite par une théorie des perturbations. Aussi, au maximum 18 électrons dans

18 orbitales peuvent être traités, ce qui est insuffisant pour décrire des système très complexes [11].

Pour aller au-delà de cette limite, la méthode DMRG [12, 13] (en anglais, pour “density matrix renor-

malization group”) est utilisée et peut décrire jusqu’à 40 électrons dans 40 orbitales [14, 15]. L’idée

de cette méthode est de tronquer les coefficients CI. Pour cela, la DMRG exprime les coefficients sous

forme matricielle, puis effectue une succession de décompositions en valeur singulière (SVD) et de dé-

compositions de Schmidt, jusqu’à ce que la fonction d’onde soit exprimée comme un état de produits

de matrices. La troncation s’effectue à chaque décomposition en valeur singulière, où seulement les m

plus grandes valeurs singulières sont conservées.

Théorie de la fonctionnelle de la densité

Nous avons vu précédemment qu’il est difficile d’obtenir une bonne approximation de la fonction d’onde

du système tout en conservant un temps de calcul relativement faible. On peut alors se demander si

chercher cette fonction d’onde est le seul moyen de décrire un système à plusieurs particules manifestant

des effets quantiques. En effet, une fonction d’onde est un objet d’une extrême complexité. Une

illustration amusante a été donné par Hardy Gross1 sur l’atome d’oxygène possèdant 8 électrons. Si

l’on veut représenter la surface d’énergie potentielle de cet atome, donnée par

∫
dr1

∫
dr2 . . .

∫
drNΨ∗(r1, r2, . . . , rN )ĤΨ(r1, r2, . . . , rN ), (18)

il faut alors pouvoir stocker la fonction d’onde. Pour ce faire, chaque coordonnée (3 par électron, soit

24 coordonnées) va être discrétisée par 10 valeurs. Ainsi, 1024 valeurs doivent être stockées. Pour cela,

un tableau à 1024 entrées est nécessaire. Si une entrée correspond à un byte, alors il faudra bien sûr

1024 bytes pour enregistrer toutes ces données. Maintenant, considérons un DVD ayant une capacité

de 5 GB (5 × 109 bytes). Pour pouvoir stocker la fonction d’onde de l’oxygène (pour seulement 10

valeurs par coordonnées), 2×1014 DVD seront nécessaires. Soit 200 000 milliards de DVD. Si un DVD

1pendant une école d’été à Los Angeles en Août 2016, intitulée “mathematical foundations of density functional
theory”
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pèse environ 10 grammes, cela équivaut à 2 milliards de tonnes de DVD. Pour pallier à ce problème,

des méthodes se basant sur d’autres variables que la fonction d’onde existent, et utilisent la densité

électronique, la matrice densité, ou encore les fonctions de Green. Dans ce résumé, seule la théorie

basée sur la densité électronique sera présentée.

Utiliser la densité électronique comme variable est un concept introduit par Thomas en 1927 [16],

suivi indépendamment par Fermi [17], donnant lieu à la méthode de Thomas–Fermi. Celle-ci consiste

à représenter l’opérateur Hamiltonien comme une fonctionnelle de la densité électronique

n(r) = N
∑
σ

∫
dx2

∫
dx3 . . .

∫
dxN |Ψ(r, σ,x2, . . . ,xN )|2 , (19)

de sorte que la fonction d’onde n’a pas besoin d’être construite. Basée sur le gaz homogène d’électrons,

l’expression analytique de l’énergie cinétique du système non interagissant a donné lieu à la première

approximation locale de la densité (LDA en anglais, pour “local density approximation”):

TTF[n] =
3

10

(
3π2
)2/3 ∫

dr n5/3(r). (20)

Cependant, cette énergie est bien loin de refléter la réalité d’un système chimique complexe, où les

électrons sont en interaction et ne forment pas un gaz homogène. Pour améliorer cette théorie,

Dirac [18] a proposé un terme supplémentaire d’échange:

Ex[n] = −3

4

(
3

π

)1/3 ∫
dr n4/3(r), (21)

exact dans le cas du gaz homogène d’électrons. Malgré cette correction, les résultats obtenus par

cette méthode restent trop imprécis. Cette méthode a donc été mise de côté jusqu’au milieu des

années 1960, où Hohenberg et Kohn (Walter Kohn, prix Nobel en chimie en 1998) ont formulé les

deux théorèmes qui firent renaître cette théorie, maintenant appelée théorie de la fonctionnelle de la

densité (DFT en anglais, pour “density functional theory”) qui est l’une des méthodes les plus utilisées

en chimie quantique. Le premier théorème démontre la correspondance bi-univoque qui existe entre

le potentiel local externe v(r), à une constante près, et la densité de l’état fondamental n0(r). Ainsi,

si la densité n0(r) est connue, alors le potentiel externe l’est également et avec lui l’Hamiltonien et ses

valeurs et fonctions propres associées,

n0(r)←→ v(r) = v[n0](r)←→ Ψ0[v] = Ψ0[v[n0]] = Ψ0[n0]. (22)
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De ce fait, toutes les propriétés du système deviennent des fonctionnelles de la densité électronique

de l’état fondamental. Le second théorème est l’analogue du principe variationnel pour les fonctions

d’onde, mais appliqué à la densité électronique:

E0[v] = min
n

{
Ev[n]

}
= Ev[n0], (23)

où

Ev[n] = T [n] +Wee[n] + V [n],

= F [n] +

∫
dr v(r)n(r), (24)

et, d’après le formalisme de recherche sous contraintes de Levy–Lieb [19],

F [n] = min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉

}
. (25)

L’énergie fondamentale est alors donnée par l’expression variationnelle suivante:

E0[v] = min
n

[
min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉

}
+

∫
dr v(r)n(r)

]

= min
n

[
min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉

}
+

∫
dr v(r)nΨ(r)

]
, (26)

qui est équivalente au principe variationnel pour les fonctions d’onde,

E0[v] = min
Ψ

{
〈Ψ|T̂ + Ŵee|Ψ〉+

∫
dr v(r)nΨ(r)

}
. (27)

Pour l’instant, DFT ne semble pas plus simple que WFT, car la fonctionnelle F [n] dépendant explicite-

ment de la densité électronique n’est pas connue. Celle-ci pourrait être déterminée numériquement par

la minimisation décrite par l’Eq. (25), mais cela revient à connaître l’ensemble des fonctions d’onde

donnant la densité n(r).

C’est en 1965 que Kohn et Sham (KS) ont eu l’idée de construire la densité de l’état fondamental

par le biais d’un système non interagissant, bien plus simple à résoudre. Pour un tel système, la

fonctionnelle de Levy–Lieb devient équivalente à l’énergie cinétique non interagissante,

Ts[n] = min
Φ→n

{
〈Φ|T̂ |Φ〉

}
, (28)
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où les fonctions d’onde d’un système non interagissant peuvent toujours être écrites comme un déter-

minant de Slater Φ. En KS-DFT, la fonctionnelle universelle est alors décomposée comme suit,

F [n] = Ts[n] + EHxc[n], (29)

où EHxc[n] est l’énergie d’Hartree-échange-corrélation (Hxc), fonctionnelle de la densité. L’énergie

fondamentale s’écrit alors

E0 = min
Φ

{
〈Φ|T̂ |Φ〉+ EHxc[nΦ] +

∫
drvne(r)nΦ(r)

}
. (30)

En comparant l’Eq. (30) à l’Eq. (27), il est clair que la fonctionnelle Hxc décrit implicitement

l’interaction entre les électrons, plutôt que de traiter 1/rij explicitement. Le déterminant KS ΦKS

minimisant l’Eq. (30) reproduit la densité fondamentale n0(r), et est construit (dans un formalisme

restreint à couches fermées) par les N/2 plus basses orbitales KS, doublement occupées, satisfaisant

l’équation autocohérente suivante:

(
−1

2
∇2 + vne(r) +

δEHxc[nΦKS

]

δn(r)

)
ϕKS
i (r) = εKS

i ϕKS
i (r), (31)

où la densité électronique est donnée par

nΦKS

(r) = 2

N/2∑
i=1

∣∣ϕKS
i (r)

∣∣2 . (32)

La KS-DFT est en principe exacte. Malheureusement, l’énergie Hxc, fonctionnelle de la densité, reste

pour le moment inconnue bien que de nombreuses approximations existent [20, 21].

Théories hybrides combinant WFT et DFT

Malgré toutes les approximations existantes pour la fonctionnelle Hxc, la DFT reste incapable de

traiter correctement les systèmes multiconfigurationnels (où la corrélation statique domine). Chercher

la fonctionnelle exacte et universelle est un véritable challenge, si bien que d’autres approches hybrides

ont vu le jour, combinant WFT et DFT. En effet, les méthodes en WFT sont capables de traiter la

corrélation statique mais sont très chères en temps de calcul, alors que la KS-DFT est très peu coû-

teuse mais ne décrit actuellement pas bien la corrélation statique. Il paraît donc naturel d’extraire

le meilleur de ces deux approches en les combinant. Cependant, WFT et DFT sont deux approches

formulées dans des langages totalement différents. En effet, alors que l’une nécessite la construc-

tion de fonctions d’onde multiélectroniques, l’autre n’utilise que la densité électronique. Bien qu’une
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combinaison rigoureuse de ces méthodes soit également un challenge, un gain d’intérêt est tout de

même observé depuis la fin des années 1990. En particulier, trouver une combinaison qui ne compte

pas plusieurs fois les mêmes effets de corrélation (appelé le problème de “double comptage”) s’avère

compliqué, car la séparation entre WFT et DFT n’est pas unique, et peut être faite de nombreuses

manières différentes. Cette thèse traite principalement de cette problématique.

Une manière de combiner WFT et DFT a été proposée par Savin en 1996 [22, 23], et consiste à

diviser la répulsion électronique dans l’espace réel en utilisant la fonction erreur:

1

r12
=

erf(µr12)

r12
+

1− erf(µr12)

r12
, (33)

où erf(µr12) = 2/
√
π
∫ µr12

0
e−t

2

dt, et le premier terme dans la partie de droite de l’Eq. (33) est dit

de longue portée (lr, pour “long range”), tandis que l’autre est dit de courte portée (sr, pour “short

range”). L’idée est alors de traiter la partie de longue portée en WFT alors que la courte portée sera

traitée en DFT par une énergie Hxc, fonctionnelle de la densité. Ainsi, quand µ = 0, toute l’interaction

électronique sera traitée en DFT, à l’opposé de µ→ +∞. L’énergie de l’état fondamental devient

E0[v] = min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ |Ψ〉+ Esr,µ
Hxc [nΨ]

}
, (34)

où la fonction d’onde minimisante Ψµ satisfait l’équation autocohérente suivante:

(
T̂ + Ŵ lr,µ

ee +

∫
dr

[
v(r) +

δEsr,µ
Hxc [nΨµ ]

δn(r)

]
n̂(r)

)
|Ψµ〉 = Eµ|Ψµ〉. (35)

Contrairement à la KS-DFT, où le système de référence est non interagissant, Ψµ est multiconfigu-

rationnelle car la répulsion électronique de longue portée est traitée explicitement. Cette méthode

s’appelle la DFT à séparation de portée. Bien que cette méthode (en principe exacte) soit prometteuse,

la construction de fonctionnelle Hxc de courte portée reste une tâche très complexe. Par exemple, la

corrélation statique (supposée être traitée en WFT) n’est pas purement de longue portée [24, 25]. En

effet, la corrélation statique trouve sa définition dans l’espace orbitalaire, ce qui rend la séparation de

l’interaction en courte et longue portées discutable.

Une séparation alternative consiste à séparer l’interaction dans l’espace orbitalaire. Un CAS est

alors considéré, où l’interaction sera traitée en WFT, tandis que les orbitales hors du CAS seront

traitées en DFT, donnant lieu à une nouvelle méthode nommée CAS-DFT. L’expression variationnelle
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de l’énergie fondamentale en CAS-DFT est donnée par [26, 27]:

E0[v] = min
κ,S

{
〈ΨCAS(κ,S)|T̂ + Ŵee + V̂ |ΨCAS(κ,S)〉+ ECAS

c [nΨCAS(κ,S)]
}
, (36)

où la fonctionnelle Hxc doit dépendre du CAS considéré pour éviter tout problème de double comptage

de la corrélation électronique, et ne peut donc pas être universelle. En pratique, cette méthode est

donc très compliquée à implémenter [28]. Il est bon de noter que d’autres méthodes similaires ont été

proposées par Savin, combinant CI et DFT [29, 30]. Que ce soit en CAS-DFT ou en CI-DFT, le prob-

lème de double comptage est extrêmement difficile à traiter, car l’énergie Hxc doit dépendre de l’espace

orbitalaire dans lequel les interactions sont traitées explicitement en WFT. Or, cette énergie est fonc-

tionnelle de la densité électronique qui, elle, est définie dans l’espace réel. Récemment, Fromager a

proposé une nouvelle méthode où l’énergie de corrélation est définie non plus comme une fonctionnelle

de la densité électronique, mais comme une fonctionnelle des occupations des orbitales [25]. Ainsi, le

problème de double comptage pourrait être plus facile à éviter en pratique.

Toutes les méthodes hybrides présentées jusque là ne sont pas standard en chimie quantique, pour

deux raisons. La première est que ces méthodes restent chères en temps de calcul. La deuxième est

que de nouvelles fonctionnelles doivent être développées pour éviter les problèmes de double comptage,

ce qui est loin d’être une tâche facile. Plutôt que de séparer l’interaction en utilisant une séparation

de portée, considérons un système plus grand où seule une petite partie de ce système serait traitée

en WFT, tandis que le reste du système serait traité en DFT. Ce type de méthode est désigné par le

terme “embedding” (signifiant ici que la partie traitée en WFT est “plongée” dans le reste du système

traité en DFT). Ce type d’approche est par exemple utilisé pour décrire des problèmes généralement

mal décrits en DFT, comme la chimisorption (adsorbat lié à la surface par des liaisons chimiques) [31]

ou la présence d’impureté(s) dans un semiconducteur [32]. La division du système entre WFT et

DFT est définie par l’utilisateur, et n’est pas unique. Il peut être difficile de vraiment savoir où faire

cette séparation entre les deux méthodes. Ce problème devient bien plus clair en considérant des

Hamiltoniens modèles, pour lesquels l’espace devient un nombre de sites dont l’occupation joue le rôle

de densité électronique. Dans l’esprit de l’embedding, seuls certains sites seront interagissants, tandis

que l’interaction des autres sites sera traitée par une fonctionnelle de l’occupation des sites. Cette

méthode est la théorie d’embedding de l’occupation des sites (SOET en anglais, pour “site occupation

embedding theory”) [25, 33–35], qui est la méthode principalement développée durant cette thèse.

Avant de parler plus précisément de la SOET, il est important d’introduire le concept d’Hamiltoniens

modèles utilisés dans la physique de la matière condensée.
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Modèle de Hubbard et la théorie de la fonctionnelle de l’occupation

des sites

Dans le but de développer de nouvelles méthodes capables de décrire la forte corrélation électronique,

il est important de commencer avec des modèles simplifiés. En effet, bien qu’une théorie qui marche

sur un modèle ne soit pas directement transférable aux systèmes réels, une théorie qui ne marche pas

sur un modèle est certaine de ne pas non plus pouvoir décrire la physique d’un système réel. Et vu la

complexité de l’Hamiltonien moléculaire, il est préférable de commencer par traiter des modèles plus

simples. Il est important de comprendre que même si le modèle considéré est fictif, il peut cependant

décrire un phénomène physique particulier. Par exemple, le modèle de Hubbard considéré dans cette

thèse contient la physique nécessaire pour décrire des superconducteurs à haute température critique

(LaCuO4), et des phénomènes comme la transition de Mott (transition métal-isolant due à l’interaction

entre les électrons, qui ne peut pas être décrite par une théorie de champ moyen). L’Hamiltonien de

Hubbard est décrit comme suit [36–39]:

Ĥ −→ T̂ + Û − µ̂,

= −t
∑
〈ij〉

∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓ − µ
∑
i

n̂i, (37)

où n̂i = n̂i↑+ n̂i↓ est l’opérateur d’occupation sur le site i avec n̂iσ = ĉ†iσ ĉiσ, et µ est le potentiel chim-

ique définissant le remplissage en électrons du modèle. Ce modèle peut être considéré dans plusieurs

dimensions. Dans cette thèse, seule une dimension sera traitée, comme le montre la figure 1. Sur cette

figure, nous voyons que la répulsion électronique, dénotée par le paramètre U , est uniquement sur site

(deux électrons sur différents sites n’interagissent pas entre eux), et l’énergie cinétique est dénotée

par le paramètre t, qui correspond au saut d’un électron d’un site à son plus proche voisin unique-

ment. Ces restrictions rendent le modèle bien plus simple que la réalité, bien qu’il reste toujours très

compliqué à traiter. Dans le cas du demi-remplissage (un électron par site), l’interaction U empêche

les électrons de sauter de sites en sites, ce qui rend le modèle isolant. L’introduction d’une impureté

permet de passer d’un isolant à un conducteur (un métal), dénotant une transition de Mott. La valeur

du ratio U/t définit si le modèle est fortement corrélé ou non. Si U/t � 1, alors les électrons sont

localisés sur le réseau de sites, et on dit qu’ils sont fortement corrélés. Si U/t� 1, alors les électrons

sont délocalisés et faiblement corrélés.

La DFT appliquée au modèle de Hubbard est appelée la théorie de la fonctionnelle de l’occupation

des sites (SOFT en anglais, pour “site-occupation functional theory”). Ainsi, la densité électronique en
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Figure 1: Modèle de Hubbard en une dimension à demi-remplissage (au haut, correspondant à un
isolant). L’introduction d’une impureté (d’un électron ou d’un trou) rend le modèle métallique (en
bas).

DFT est définie dans l’espace réel, alors qu’en SOFT l’occupation des sites joue le rôle de la densité.

Plutôt que d’avoir une fonction de l’espace n(r), nous avons une collection de nombres (ou vecteur)

d’occupation n ≡ {ni}i. Tout comme en DFT standard, une formulation KS existe pour la SOFT, de

sorte qu’une fonction EHxc(n) décrit l’interaction entre les électrons. L’expression variationnelle de

l’énergie fondamentale s’écrit alors

E0(v) = min
Ψ

{
〈Ψ|T̂ |Ψ〉+

∑
i

vini + EHxc(nΨ)
}
. (38)

où v ≡ {vi}i est un potentiel externe, et ΦKS est la fonction d’onde monodéterminantale minimisant

l’énergie, et satisfaisant l’équation autocohérente suivante:

(
T̂ +

∑
i

[
vi +

∂EHxc(nΦKS

)

∂ni

]
n̂i

)
|ΦKS〉 = EKS|ΦKS〉. (39)

La fonctionnelle utilisée dans cette thèse sera BALDA (pour “Bethe ansatz local density approxima-

tion”) [40–42], dont l’expression est

EBALDA
Hxc (n) =

∑
i

(
U

4
n2
i + eBALDA

c (ni)

)
, (40)
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avec

eBALDA
c (n,U) = eBALDA(n,U)− eBALDA(n,U = 0)− U

4
n2, (41)

où

eBALDA(U, n ≤ 1) =
−2tβ(U/t)

π
sin

(
πn

β(U/t)

)
, (42)

et la fonction β est définie par

−2β(U/t)

π
sin

(
π

β(U/t)

)
= −4

∫ ∞
0

dx

x

J0(x)J1(x)

1 + exp
(
U
2tx
) . (43)

BALDA s’est montrée très perfomante pour décrire les profils de densité et d’énergie du modèle de

Hubbard à une dimension [40–42].

Théorie d’embedding de l’occupation des sites

Dans l’esprit des théories d’embedding, nous voulons développer une méthode où seuls certains sites

seront traités en WFT et les autres en SOFT. Cette méthode est la SOET [25, 33–35]. Ainsi, un

système de référence partiellement interagissant sera considéré à la place du système non interagissant

de la SOFT. Les sites interagissants seront appelés les sites d’“impureté” (abbrégé par “imp” dans

les équations), tandis que le “bain” (“bath” en anglais) fera référence aux sites non interagissants.

Pour faire cette séparation, la fonctionnelle universelle est séparée en un terme d’impureté et une

fonctionnelle Hxc du bain:

F (n) = F imp
M (n) + E

bath

Hxc,M (n), (44)

où M dénote le nombre d’impuretés du modèle et

F imp
M (n) = min

Ψ→n

{
〈Ψ|T̂ + ÛM |Ψ〉

}
, (45)

avec ÛM = U
∑M−1
i=0 n̂i↑n̂i↓. Comme en CAS-DFT, la fonctionnelle Hxc doit dépendre du nombre

d’impureté(s) pour éviter tout problème de double comptage. L’énergie fondamentale en SOET se

réduit à l’expression variationnelle suivante:

E(v) = min
Ψ

{
〈Ψ|T̂ + ÛM |Ψ〉+ E

bath

Hxc,M

(
nΨ
)

+
(
v|nΨ

)}
, (46)



Résumé en Français xxiii

où la fonction d’onde d’impureté Ψimp
M minimisant cette équation satisfait l’équation autocohérente:

T̂ + ÛM +
∑
i

vi +
∂E

bath

Hxc,M

(
nΨimp

M

)
∂ni

 |Ψimp
M 〉 = E imp

M |Ψimp
M 〉, (47)

où vi + ∂E
bath

Hxc,M (n)/∂ni = vemb
M,i (n) est le potential d’embedding permettant de reproduire la densité

exacte du système physique. Tournons-nous à présent vers l’expression de la fonctionnelle Hxc du

bain. Tout d’abord, exprimons la fonctionnelle d’impureté dans la décomposition KS:

F imp
M (n) = Ts(n) + Eimp

Hxc,M (n), (48)

où une fonctionnelle Hxc d’impureté est introduite, décrivant implicitement les interactions sur les

sites d’impureté. Il est ensuite très facile de démontrer que la fonctionnelle du bain s’écrit comme:

E
bath

Hxc,M (n) = EHxc(n)− Eimp
Hxc,M (n). (49)

Ainsi, pour trouver la fonctionnelle du bain, nous pouvons utiliser les fonctionnelles en SOFT et

développer de nouvelles fonctionnelles pour Eimp
Hxc,M . Les systèmes non interagissants, partiellement

interagissants et entièrement interagissants sont alors connectés par ces trois fonctionnelles, comme

le montre la figure 2. Dans le cas du modèle uniforme (v = 0), l’approximation locale est exacte et

nous pouvons exprimer la fonctionnelle du bain par site, mesurant la déviation de la fonctionnelle

d’impureté par rapport à la fonctionnelle standard, comme:

ebath
c,M (n) =

1

M

[(
M−1∑
i=0

ec(ni)

)
− Eimp

c,M (n)

]
, (50)

tel que

E
bath

c,M (n) =

L−1∑
i=M

ec(ni) +Mebath
c,M (n), (51)

où BALDA sera utilisée pour décrire l’énergie de corrélation par site ec(n).

Pour résumer, trois résultats importants ont été trouvés dans cette thèse:

1. Il est nécessaire que la fonctionnelle du bain par site ebath
c,M (n) doive dépendre de toutes les

occupations des sites. Autrement, l’embedding ne peut pas être exact.
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Figure 2: Illustration de la connexion entre le système physique, le système à une impureté, et le
système non interagissant pour le modèle de Hubbard à 32 sites, à une dimension avec des conditions
périodiques.

2. L’expression exacte de l’énergie par site du modèle uniforme est donnée par:

e =
1

M

M−1∑
i=0

ts(nΨimp
M

i ) + t
∂ec(n

Ψimp
M

i )

∂t
+ Udimp

M,i

+
∂ebath

c,M (nΨimp
M )

∂U
, (52)

où dimp
M,i = 〈Ψimp

M |n̂i↑n̂i↓|Ψ
imp
M 〉.

3. L’expression exacte de la double occupation du modèle uniforme est donnée par:

d =
1

M

M−1∑
i=0

dimp
M,i +

∂ebath
c,M (nΨimp

M )

∂U
. (53)

D’après les deux expressions des Eqs. (52) et (53), il est clair que nous avons bien une combinaison

de termes déterminés par la fonction d’onde d’impureté, et de termes venant de la fonctionnelle des

occupations des sites: donc une méthode hybride mixant WFT et SOFT.

Ensuite, pour appliquer la SOET en pratique, des fonctionnelles de corrélation de l’impureté ont

été développées. La première, la plus simple, utilise BALDA sur le(s) site(s) d’impureté, donnant
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naissance à l’approximation iBALDA (pour “impurity BALDA”):

Eimp
Hxc,M (n)

iBALDA(M)−−−−−−−−→
M−1∑
i=0

eBALDA
c (ni), (54)

ce qui revient à négliger la contribution de l’énergie de corrélation par site du bain:

ebath
c,M (n)

iBALDA(M)−−−−−−−−→ 0. (55)

Une autre consiste à utiliser la fonctionnelle d’impureté exacte du dimère de Hubbard, dénotée par

“2L”:

Eimp
c,M=1(n) −→ Eimp,2L

c,M=1 (U, n0) = E2L
c (U/2, n0), (56)

où la relation de scaling en U/2 de l’égalité précédente a été prouvée dans un précédent travail sur le

dimère [33], et la fonctionnelle E2L
c (U, n0) possède une expression paramétrée par Carrascal et al. [43,

44] (n0 correspond à l’occupation du site d’impureté). Combinée à BALDA, utilisée pour la fonc-

tionnelle standard [voir Eq. (49)], l’approximation s’intitulera 2L-BALDA. Enfin, des fonctionnelles

basées sur le modèle d’Anderson (SIAM, pour “single impurity Anderson model) ont également été

développées, grâce à la grande similarité entre le modèle d’impureté de Hubbard et le SIAM:

Eimp
c,M=1(n) −→ ESIAM

c (n0). (57)

Combinées à BALDA décrivant la fonctionnelle standard, ces approximations sont dénotées par

l’acronyme SIAM-BALDA. Dans ce résumé, seule l’approximation SIAM-BALDA[n=1] (qui est une

interpolation de deux fonctionnelles, l’une valide dans le régime faiblement corrélé et l’autre dans le

régime fortement corrélé) sera présentée.

Passons à présent aux résultats obtenus par la résolution de l’Eq. (47) en fonction des différentes ap-

proximations. Cette résolution nous donne la fonction d’onde d’impureté Ψimp
M , et donc l’occupation

convergée des sites, nΨimp
M , ainsi que la double occupation des sites de l’impureté, dimp

M,i. Il suffit

d’utiliser ces valeurs dans les Eqs. (52) et (53) pour obtenir les résultats des figures 3 et 4 pour le

modèle de Hubbard à 32 sites, respectivement. Il est important de noter qu’à demi-remplissage,

le potentiel d’embedding exact est connu et est égal à −U/2 sur les sites d’impureté et 0 dans le

bain. Ce potentiel restaure donc l’occupation exacte des sites, et aucune erreur due à la densité n’est

observée. Il est clair d’après ces deux figures que l’approximation iBALDA pour M = 1 n’est pas
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Figure 3: Énergie par site à demi-remplissage en fonction de U/t. L’énergie obtenue par calcul DMRG
sur le système physique entièrement interagissant est la référence.

Figure 4: Pareil que la figure 3 mais pour la double occupation.
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très performante. Il existe deux manières possibles pour améliorer les résultats en SOET. La pre-

mière manière est d’augmenter le nombre d’impuretés dont l’interaction est traitée explicitement en

WFT, conduisant aux approximations iBALDA(M=2) et iBALDA(M=3). L’amélioration est visible

mais n’est pas significative, or le temps de calcul augmente avec le nombre d’impuretés considéré.

La deuxième manière est de considérer une fonctionnelle ebath
c,M (n) non nulle. Les approximations

2L-BALDA et SIAM-BALDA[n=1] sont de telles fonctionnelles, et elles fournissent de meilleurs ré-

sultats que iBALDA(M=3) bien qu’une seule impureté soit considérée. Ainsi, il semble plus impor-

tant de développer de meilleures fonctionnelles en gardant un nombre d’impuretés faible, plutôt que

d’augmenter le nombre d’impuretés.

Vers une implementation performante de la SOET

Contrairement aux autres méthodes de type embedding, l’information sur l’occupation des sites du

bain n’est pas perdue en SOET. Cependant, bien que ce point semble avantageux, il génère également

des problèmes, notamment dans l’implémentation de la SOET dont la résolution nécessite un temps

de calcul élevé. Or, seulement certains sites sont explicitement interagissants. Il est donc naturel de se

demander si une implémentation différente de la SOET, nécessitant un temps de calcul faible, existe.

Dans cette partie, nous allons montrer qu’il est en effet possible de résoudre les équations de la SOET

en un temps très court, tout en conservant d’excellents résultats. Dans l’esprit de la DMET (“density

matrix embedding theory”) [45], cette nouvelle implémentation de la SOET consiste à employer la

décomposition de Schmidt (également utilisée en DMRG). Dans une première étape, le système est

divisé en deux parties: un fragment F et le reste du système E, appelé environnement. L’espace de

Hilbert du système s’écrit alors comme un produit tensoriel de celui de F et de E, H = HF ⊗ HE .

La taille de HF (HE) est NF = 4LF (NE = 4LE ) et {|Fi〉}i ({|Ei〉}j) représente une base d’états

multicorps. LF et LE sont respectivement le nombre d’orbitales (ou ici, le nombre de sites) du

fragment et de l’environnement, et le nombre 4 vient du fait qu’un site est décrit par 4 états différents:

|rmvac〉, | ↑〉, | ↓〉 et | ↑↓〉. La fonction d’onde de l’état fondamental du système peut alors s’écrire

|Ψ0〉 =

NF∑
i

NE∑
j

Cij |Fi〉|Ej〉, (58)
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et peut être simplifiée en appliquant une décomposition en valeur singulière:

|Ψ0〉 =

NF∑
i

NE∑
j

min(NF ,NE)∑
α

ŨiαλαṼ
†
αj |Fi〉|Ej〉 (59)

=

NF∑
α

λα|Fα〉|Bα〉, (60)

où on a supposé que NF < NE . Ũiα (Ṽ †αj) transforme la base {|Fi〉}i ({|Ej〉}j) en une nouvelle base

{|Fα〉}α ({|Bα〉α}):

NE∑
i

Ũ†iα|Fi〉 = |Fα〉,

NE∑
j

Ṽ †αj |Ej〉 = |Bα〉

 , (61)

appelée la base du fragment. Quand cette dernière est combinée à la base du bain [entre parenthèse

dans l’Eq. (61)], une nouvelle base dîte de Schmidt de dimension N2
F est construite. En effet, il est

clair d’après l’Eq. (59) que le nombre d’états à considérer pour l’environnement a été réduit à NF

états du bain, alors que le nombre d’états du fragment est resté inchangé. Ensuite, un projecteur

sur cette base de Schmidt est construit grâce aux nouveaux états du fragment et du bain tel que

P̂ =
∑NF
αβ |FαBβ〉〈FαBβ |. On peut montrer facilement que la fonction d’onde de l’état fondamental Ψ0

est invariante sous cette projection, et que l’Hamiltonien projeté (dit Hamiltonien d’embedding), Ĥ ′ =

P̂ ĤP̂ , partage la même énergie d’état fondamentale que le système physique. Ainsi, la décomposition

de Schmidt permet de réduire considérablement le nombre d’états à considérer dans la fonction d’onde,

tout en conservant les propriétés de l’état fondamental. Cependant, celle-ci nécessite la connaissance a

priori de la fonction d’onde Ψ0, qui est bien entendu inconnue. En DMET, un calcul Hartree–Fock est

utilisé pour obtenir une approximation à Ψ0. La décomposition de Schmidt est ensuite appliquée sur

le déterminant de HF, pour construire des états du bain simple corps au lieu d’états multicorps. En

SOET, un calcul SOFT est effectué à la place. La décomposition de Schmidt est donc appliquée sur le

déterminant KS, permettant de construire les états du bain (approximés) et donc le projecteur P̂ . La

grande différence avec la formulation précédente de la SOET est que l’information sur l’environnement

est perdue, puisque celui-ci est projeté pour former les états du bain. Reconsidérons l’Hamiltonien en

SOET pour un système uniforme:

ĤSOET = T̂ + ÛM +

L−1∑
i=0

 ∂Ebath

Hxc,M (n)

∂ni

∣∣∣∣∣
n=n

Ψ
imp
M

0

 n̂i. (62)
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Figure 5: Étapes de la P-SOET pour une seule impureté dénotée par 0. Le projecteur est calculé une
seule fois grâce à la décomposition de Schmidt sur la fonction d’onde obtenue en appliquant KS-SOFT
sur le modèle de Hubbard.

Ce dernier est projeté pour construire l’Hamiltonien d’embedding. Pour ce faire, seule la partie

monoélectronique de ĤSOET est projetée (la répulsion électronique traitée explicitement sur les im-

puretés reste inchangée), c’est-à-dire l’opérateur d’énergie cinétique et le potentiel d’embedding, pour

former ĥemb = P̂ ĥSOET. L’Hamiltonien SOET projeté devient alors

Ĥ imp = ĥemb + ÛM =

2M−1∑
ij=0

∑
σ

hemb
ij

(
ĉ†iσ ĉjσ + h.c.

)
+ U

M−1∑
i=0

n̂i↑n̂i↓. (63)

Dans le cas d’une seule impureté, ce nouveau problème d’embedding se réduit à un site d’impureté

et un site de bain uniquement, c’est-à-dire un dimère de Hubbard à une impureté qui peut être ré-

solu analytiquement. Une fois le problème résolu, une nouvelle occupation du site de l’impureté est

obtenue et réinsérée dans le potentiel d’embedding de l’Hamiltonien de l’Eq. (62), lui-même à nouveau

projeté, et ainsi de suite jusqu’à ce que l’occupation converge. Pour résumer, la figure 5 décrit les

différentes étapes de cette nouvelle implémentation, nommée P-SOET (pour “Projected-SOET”). Plus

généralement, pour M impuretés, le problème d’embedding à résoudre est de taille 2M .

La P-SOET nous permet d’étudier un modèle de Hubbard bien plus grand qu’avec la première

implémentation de la SOET, pour un temps de calcul encore plus petit. De ce fait, 400 sites seront à
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présent considérés au lieu de 32 sites. Dans ce résumé, seule la description de la transition de Mott en

fonction du remplissage [46] sera présentée. Cette transition de Mott est manifestée par l’ouverture

d’un gap de charge entre la bande de valence et la bande de conduction. Dans le modèle de Hubbard,

l’ouverture du gap se fait dans le cas du demi-remplissage. Autrement, aucun gap n’est observé. Pour

voir l’apparition de cette transition, nous traçons la densité en fonction du potentiel chimique µ qui

correspond à un déplacement du potentiel externe, et qui fixe le nombre d’électrons dans le système:

Ĥ −→ Ĥ(µ) = Ĥ − µN̂, (64)

où N̂ =
∑
i n̂i est l’opérateur de comptage. Le nombre total d’électrons varie avec µ tant que µ ne se

situe pas à l’intérieur du gap. Dans le cas contraire, la variation de µ à l’intérieur du gap n’induit aucun

changement du nombre d’électrons, qui restera égal au nombre d’électrons remplissant entièrement la

bande de valence (c’est-à-dire n = N/L = 1 pour le modèle de Hubbard). Pour trouver le nombre

d’électrons correspondant à une valeur du potentiel chimique, il suffit de résoudre l’Hamiltonien Ĥ(µ)

pour un µ donné en faisant varier le nombre d’électrons du système. Autrement dit, la minimisation

suivante doit être résolue:

min
N

{
eP-SOET(n)− µN/L

}
, (65)

où n est la densité exacte n = N/L. Pour voir l’effet de l’autocohérence et l’erreur sur la densité

due aux différentes approximations en P-SOET, la densité convergée a aussi été utilisée, n = n
Ψimp
M

0 .

Puisque seulement des nombres pairs d’électrons sont considérés, et que le modèle contient 400 sites,

un ensemble de 200 valeurs de N est pris en compte pour la minimisation. Cette minimisation n’aurait

pas été qualitativement correcte dans la formulation précédente de la SOET, où le modèle contenait

uniquement 32 sites. La densité minimisante, n(µ) = N(µ)/L [où N(µ) est le nombre d’électrons

qui minimise le terme dans l’Eq. (65)] est tracée sur la figure 6 en fonction du potentiel chimique.

D’après la figure 6, la densité augmente avec le potentiel chimique de façon monotone jusqu’à atteindre

le demi-remplissage n = 1. À cette valeur, la densité reste constante bien que le potentiel chimique

continue d’augmenter, indiquant l’ouverture du gap de charge. En utilisant la densité exacte n = N/L

dans l’Eq. (65) (lignes pleines sur la figure 6), iBALDA (M=1) est quasiment superposée à la courbe

exacte (légendée par BA). Du coup, augmenter le nombre d’impuretés n’améliore pas les résultats,

bien que cela ne les détériore pas non plus. Si la densité convergée est utilisée, alors de fortes erreurs

sont observées plus on s’approche du demi-remplissage. Il est intéressant de noter que l’approximation

2L-BALDA sous-estime largement la valeur du gap de charge par rapport à iBALDA. Cependant, il

est déjà impressionnant que ces approximations en P-SOET permettent de décrire l’ouverture du gap
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Figure 6: Variation du remplissage en fonction du potentiel chimique pour U/t = 8 obtenue en
résolvant Eq. (65) en utilisant la densité exacte [eP-SOET(n = N/L)] (lignes pleines), et la densité

convergée [eP-SOET(n = n
Ψimp
M

0 )] (lignes pointillées). BA est l’acronyme de “Bethe Ansatz” et est la
courbe de référence exacte.

avec une seule impureté. En effet, cette transition de Mott (en fonction du remplissage) n’est décrite

ni par la DMET [45, 47], ni par la DMFT [46] (pour “dynamical mean-field theory”) avec une seule

impureté. L’ouverture de ce gap avec une seule impureté est le résultat le plus marquant de la SOET,

en plus des autres résultats très prometteurs pour la double occupation et l’énergie par site.

Conclusions et Perspectives

Ce résumé nous a permis de voir succintement le développement et les résultats principaux de la

SOET, et également de la P-SOET. Nous avons montré que cette théorie était bien une théorie

hybride, mélangeant WFT et DFT pour obtenir les résultats les plus précis possible en un temps

relativement court. La SOET (et sa version projetée) s’est montrée très prometteuse, et peut jouer

un rôle très important dans le développement de nouvelles méthodes hybrides. De par sa formulation

en principe exacte, celle-ci permet d’avoir une compréhension plus approfondie des méthodes de type

embedding, où les problèmes de double comptage ne sont pas toujours évidents à identifier. Pour que

la SOET devienne plus populaire et soit utilisée par la communauté scientifique, il faudrait l’appliquer

à des modèles plus complexes, comme les modèles de Hubbard à deux (pour la description des su-

perconducteurs LaCuO4) ou trois dimensions. Pour cela, de nouvelles fonctionnelles sont nécessaires,
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et un moyen d’en développer de façon automatique serait très attrayant. Dans le cadre de la chimie

quantique, une généralisation de la SOET a été proposée dans le dernier chapitre de cette thèse (non

montrée dans ce résumé), et est encore en cours de développement.
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Introduction

Quantum chemistry applies quantum mechanics to the theoretical study of chemical systems. It aims

at understanding the mechanisms of chemical reactions (driven by thermodynamic and kinetic prop-

erties of chemical systems) by the study of chemical structure and chemical dynamics. On the other

hand, the purpose of condensed matter physics is to rationalize natural phenomena in condensed

phases, like the transition between a metal and an insulator driven by the variation of various pa-

rameters (such as pressure or the introduction of impurities, so-called “doping”). Several methods

and models have been developed in both fields. Not only they were able to reproduce experimental

results, but they can also make predictions which are then verified by new observations. The quality of

a theory is judged on both these criteria. Nevertheless (and despite the numerous progress made since

the last decades) some systems remain extremely challenging to describe, for instance the so-called

strongly correlated materials.

Strongly correlated systems are the object of intense research since many years now. The development

and synthesis of innovative materials gather both chemists and physicists, experimentalists or theoreti-

cians. This topic covers several long-standing issues in quantum theory, starting from the theoretical

modelling of a simple bond-breaking in chemistry to the description of transition metal complexes, fea-

turing magnetic and electronic properties of high interest. For instance, strongly correlated materials

can exhibit metal-insulator transitions (NiO and V2O3), temperature induced phase transition leading

to high-Tc superconductors (La2CuO4 and the doped La2−xSrxCuO4) or colossal magnetoresistance

(LaMnO3) in condensed matter physics [1]. These exotic properties have led to the design of new

nanodevices, with applications to energy conversion and electronic transport for solar cells, magnetic

storage, and superconducting magnets generating strong magnetic fields. Transition metal oxides are

also employed in homogeneous and heterogeneous catalysis, and are present in chemical biology where

the active part of a protein is composed of metallic centers. While the discovery of novel materials

continues to grow, there is a profound need for the development of new theoretical approaches. New

methods should be able to give a better understanding of these existing materials and, ultimately, to

predict new structures featuring such interesting properties, which promise to shape the technology
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of the future.

From a theoretical point of view, the name “strongly correlated” originates from the fact that

mean-field theory (or band theory for solids) is not able to describe the aforementioned systems.

The reason is that mean-field theory (in a sense of Hartree–Fock theory) misses the description of

correlation effects, driven by the interaction between the electrons. When this correlation plays a

prominent role, it is the so-called strong electron correlation which remains a tremendous problem in

both quantum chemistry and solid state physics. Indeed, no method has yet emerged as the method of

choice for modelling such materials. While the standard low-cost methods such as density functional

theory (DFT) usually fail to describe strong correlation effects [2], more involved wavefunction-based

approaches (WFT) [3] could in principle be applied, but they remain out of reach in terms of com-

putational cost. A natural and intuitive idea is to merge the two methods to build a new one that

gathers all advantages: a low computational cost and good accuracy. One specific class of these hybrid

methods features is the class of “embedding” theories [4]. They rely on the separation of the whole

system into small subsystems, where only the active part of interest is treated by a high-level (WFT)

method while the rest of the system is treated by a low-level approach (such as DFT or mean-field

theory). Embedding techniques are gaining more and more interest, above all because Moore’s law is

now reaching its limit, thus lending weight to the development of low-cost approaches able to model

large systems with sufficient accuracy. They are now popular in both quantum chemistry, for atoms

and molecules, and condensed matter physics for extended systems like solids. In the latter commu-

nity, it is common to start with a simple model (which still contains the key physical effects of the

realistic material) in order to develop new approaches. For example, the Hubbard model features the

competition between localization (induced by a strong repulsion between the electrons, interpreted as

the strongly correlated regime) and delocalization (interpreted as the weakly correlated regime) of the

electrons, and is one of the worst case scenarios for mean-field theories.

This thesis aims to develop and implement novel and in-principle-exact hybrid methods at the

interface between physics and chemistry. Focusing on the description of strong correlation effects, the

methods will first be applied to the Hubbard model, and then generalized to the ab-initio molecular

Hamiltonian. The thesis is organized as follows.

Chapter 1 gives the state of the art of the electronic structure theory in quantum chemistry.

Sec. 1.1 starts from the foundation of quantum chemistry through the Schrödinger equation, for

which several approximate solutions are discussed. The Hartree–Fock theory is briefly explained as

well as the definition of the electronic correlation. Then, post-Hartree–Fock approaches are considered

to account for correlation effects. Due to their high scaling with respect to the number of electrons,
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these methods become rapidly not tractable as the size of the system increases. Alternatively, methods

based on reduced quantities as basic variable, instead of the complicated many-body wavefunction,

are presented in Sec. 1.2. They consist of DFT, reduced density matrix functional theory (RDMFT)

and one-body Green’s function theory. Finally, various hybrid methods that merge WFT and DFT

are introduced in Sec. 1.3.

Turning to the electronic structure theory in condensed matter physics in Chapter 2, model Hamil-

tonians (in particular the Hubbard model) and their relations with real materials are discussed in

Sec. 2.1. Applying DFT in this context leads to the so-called site occupation functional theory (SOFT),

described in Sec. 2.2. Then, the single impurity Anderson model (SIAM) is introduced in Sec. 2.3 as

well as embedding techniques employed in condensed matter physics in Sec. 2.4.

Chapters 1 and 2 provide a large overview of the current state of the art in both quantum chemistry

and condensed matter physics, respectively. They are both really helpful to understand the four

following Chapters, which are all dedicated to new methods developed in this thesis.

Chapter 3 deals with the main topic of this thesis, i.e. the development and implementation of

a new embedding scheme, so-called site-occupation embedding theory (SOET) applied to the one-

dimensional Hubbard model. Starting with the in-principle exact formulation of SOET in Sec. 3.1,

exact expressions for the per-site energy and the double occupation have been derived in the uniform

case (Sec. 3.2). Then, exact properties that the functional in SOET should fulfil are given in Sec. 3.3.

Finally, after introducing the approximate analytic functionals in Sec. 3.4, the SOET self-consistent

equation is solved. The resulting per-site energy and double occupation are discussed extensively in

Sec. 3.5.

Then, efficient implementations of the self-consistent impurity problem in SOET are discussed

in Chapter 4. A transformation of the SOET Hamiltonian into the SIAM is made in Sec. 4.1, and

is then solved using Green’s function techniques. Another implementation in Sec. 4.2 consists in

using the Schmidt decomposition, thus allowing a drastic decrease of the computational cost. As

an important result, this projected version of SOET is able to describe the “density-driven” Mott–

Hubbard transition, related to the opening of a gap.

Turning to another long-standing issue in DFT, Chapter 5 provides a complete reformulation of

the infamous derivative discontinuity, necessary to extract the exact fundamental gap in DFT. This

formulation is based on ensemble DFT, originally formulated for excited states to extract the optical

gap, as described in Sec. 5.1. After introducing the fundamental gap problem within DFT in Sec. 5.2,

we present our new formulation, so-called N -centered ensemble DFT, in Sec. 5.3.

To conclude, the extension of SOET to the quantum chemical Hamiltonian is discussed in Sec. 6.1 of

Chapter 6. An alternative approach is then developed based on geminals, i.e. pair-electron functions.
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The notion of seniority-zero and theories based on geminals are first briefly introduced in Sec. 6.2,

then followed by the new hybrid method formulated in the natural orbital basis, where a reference

seniority-zero wavefunction is complemented by a functional of the reduced one-particle density matrix

(Sec. 6.3). Conclusions and perspectives are finally ending this work.



Chapter 1

Electronic Structure Theory in

Quantum Chemistry

The correct description of the total ground-state energy of a molecule is essential in chemistry and

material science. Indeed, the understanding and the prediction of a given chemical reaction obvi-

ously involve the knowledge of the ground-state energy of the electrons [5], as it gives informations

about the reaction barrier which has to be overcome to obtain a given chemical product. It often

appears that only a very small energy difference determines the geometries and qualitative properties

of molecules [6], such as a transition state or the adsorption of a molecule on a surface.

Hence, one needs highly accurate theoretical methods to reach this chemical accuracy (≈ 1

kcal/mol). This is the main goal of quantum chemistry. However, systematically improvable meth-

ods are usually extremely expensive in terms of computational cost so that only very small systems

can be considered. Because of the growing interest in supramolecular science, as well as the need to

understand biological processes or the modelling of real size materials (such as batteries or photo-

voltaic cells), more than a thousand of atoms is commonly studied. This can be achieved by using

the mean-field theory, but the gain in computational cost usually comes with a decrease in chemical

accuracy.

In this Chapter, I will review some of the quantum chemical methods that are needed to understand

the development and the context of our new methods described in Chapters 3, 4, 5 and 6. First, the

Schrödinger equation which is the central equation in quantum chemistry is introduced. Because this

equation is impossible to solve generally, approximations have to be employed such as the mean-field

theory. However, such a theory does not describe the electron correlation, essential to describe chemical

processes involving creation or breaking of the bonds, for instance. To go beyond this approximation,
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several post-mean-field methods have been developed and are described in this chapter, which is

organized as follows. Sec. 1.1 lays the basics of the electronic structure theory which relies on the

explicit calculation of a many-body wavefunction. Starting from the mean-field approximation with

a single Slater determinant wavefunction, more involved methods employing a multiconfigurational

wavefunction (which are approximate solutions of the Schrödinger equation) are introduced. Then,

alternative treatments of the electronic problem are considered in Sec. 1.2, where the whole many-body

complexity is transferred from the wavefunction to reduced quantities, such as the electron density, the

one-particle density matrix or the one-particle Green’s function. Finally, Sec. 1.3 introduces hybrid

methods which combine wavefunction theory with density functional theory.

1.1 Wavefunction Theory

1.1.1 Schrödinger Equation and Born-Oppenheimer Approximation

The evolution in time of a physical system containing significant quantum effects is mathematically

described by the Schrödinger equation, derived in 1925 by Erwin Schrödinger (Nobel Prize in Physics,

1933). Considering a system evolving in a time-independent potential and where relativistic effects are

negligible, this equation reduces to one of the most famous eigenvalue equations, the time-independent

Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉, (1.1)

where Ψ is the stationary state wavefunction of the quantum system with associated total energy E.

For a given molecular system containing N electrons of mass me, charge e and positions {ri}i=1,N and

M nuclei of mass {MA}A=1,M , charge ZA×e and positions {RA}A=1,M , the Hamiltonian in Eq. (1.1)

reads (in SI units)

Ĥ = T̂n + T̂e + V̂ne + Ŵee + V̂n

= −
M∑
A=1

~2

2MA
∇2
A −

N∑
i=1

~2

2me
∇2
i −

N∑
i=1

M∑
A=1

ZAe
2

4πε0|RA − ri|

+

N∑
i=1

N∑
j>i

e2

4πε0|ri − rj |
+

M∑
A=1

M∑
B>A

ZAZBe
2

4πε0|RA −RB |
, (1.2)

where T̂n and T̂e are the nuclear and electron kinetic energy operators, respectively, and V̂ne, Ŵee and

V̂n are the potential energy operators corresponding to Coulomb electron-nuclei attraction, electron-

electron and nuclei-nuclei repulsions, respectively. In quantum chemistry, one of the main targets is
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the correct description of chemical reactions. In other words, the forming and breaking of chemical

bonds between atoms. These processes involve interactions between the electrons in the system, so

that the part of interest of the Hamiltonian in Eq. (1.2) is the electronic part. Considering the ratio

in mass between nuclei and electrons (MA/me ≈ 1836), a first sound approximation is to consider the

electronic motion decoupled from the motion of the nuclei. Equivalently, it means that the electrons

accommodate almost instantaneously to any change in the positions of the nuclei, so that one can

study the electronic part of a system while keeping the nuclei frozen. This is the so-called Born–

Oppenheimer approximation proposed in 1927 [7]. The Schrödinger equation in Eq. (1.1) is then

reduced to an electronic part decoupled from the nuclear part,

Ĥe|Ψe〉 = Ee|Ψe〉, (1.3)

where Ee is the electronic energy associated to the electronic wavefunction Ψe. From a mathematical

point of view, both are respectively the eigenvalue and eigenfunction of the electronic Hamiltonian

Ĥe = Ĥ − T̂n − V̂n = T̂e + Ŵee + V̂ne, (1.4)

where the nuclear kinetic energy operator in Eq. (1.2) has been neglected and the nuclear-nuclear

repulsive potential has become a constant for a given geometry, that has to be added after solving

the electronic problem. This approximation is used in the whole thesis as well as the use of atomic

units, so that the subscript “e” (standing for “electronic”) will be dropped. From now on, atomic units

will be used, which simply consists in using unitless energy Ẽ = E/Eh and coordinates x̃ = x/a0,

ỹ = y/a0 and z̃ = z/a0, where Eh = ~2/(mea
2
0) (= 1 hartree) corresponds to two times the ionization

energy of the hydrogen atom and a0 = 4πε0~2/(mee
2) is the Bohr radius. Within the atomic units,

the following N -electron Hamiltonian reads

Ĥ −→ T̂ + Ŵee + V̂ne = −
N∑
i=1

1

2
∇2
i +

N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

, (1.5)

where riA and rij are the distances between the ith electron and the Ath nucleus, and the ith and

the jth electrons, respectively. Note that the tilde notation that has been introduced to denote

atomic units will be dropped for convenience. Although the number of degrees of freedom has been

reduced from 3(N + M) to 3N using the Born–Oppenheimer approximation, finding the solution of

the electronic Schrödinger equation remains an extremely difficult task due to the electron-electron

repulsion term in Eq. (1.5). Only few physical systems exist for which their eigenvalues and eigenstates

are found analytically. Some (pedagogical) examples are the particle in a box, the hydrogen atom
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and the quantum harmonic oscillator. Otherwise, the electronic Schrödinger equation has to be solved

numerically. Highly accurate numerical solutions have been obtained for atoms and diatomic molecules

containing a small number of electrons by including the interelectronic distance rij explicitly in the

wavefunction. For instance, the Helium atom by Hylleraas in 1929 [8], the hydrogen molecule by James

and Coolidge in 1933 [9] and the Beryllium atom by Sims and Hagstrom in 1971 [10]. While such

numerical solutions were unfeasible for more than a few electrons at the time, lots of progress have

been made recently, in particular by the development of the quantum Monte Carlo (QMC) method in

quantum chemistry [11].

1.1.2 Variational Principle

The state having the lowest energy is called the ground state of the system. This associated ground-

state energy can be determined variationally through the Rayleigh-Ritz variational principle:

E0 = 〈Ψ0|Ĥ|Ψ0〉 6 〈Ψ|Ĥ|Ψ〉 (1.6)

where Ψ denotes any trial normalized wavefunction. The equality holds only for the ground-state

wavefunction Ψ0. Based on this variational principle, the ground-state energy of the system can be

found by minimizing the expectation value of the Hamiltonian over Ψ:

E0 = min
Ψ

{
〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

}
. (1.7)

Unfortunately, the exact minimization is not possible in practice as one would need the whole set of

normalized many-body wavefunctions. As mentioned in the previous section, solving the Schrödinger

equation exactly for a general many-body system is unfeasible. Therefore, approximate parametriza-

tions of the wavefunction have been proposed to approach the ground-state wavefunction, and the

energies resulting from these wavefunctions will always be an upper bound to the true ground-state

energy, if determined variationally. In the following, the standard approximations used by quantum

chemists to approach the exact ground-state wavefunction are introduced.

1.1.3 Molecular Orbital Theory

The difficulty of finding the exact solution to the electronic Schrödinger equation comes from the

interelectronic term 1/rij of the Hamiltonian in Eq. (1.5). To bypass this issue, one could approximate

this interaction by an effective one-body potential, so-called a mean-field approximation. In such an

approach, the many-electron wavefunction will be defined by a set of one-electron functions, so-called
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spin orbitals. The simplest approximate wavefunction was proposed by D. R. Hartree [12] and takes

the form of a product of orbitals: this is the so-called Hartree product. For a system containing

N electrons with a set of molecular spin-orbitals {φi}i=1,N , the approximate many-particle Hartree

wavefunction reads

ΦH(x1,x2, . . . ,xN ) = φ1(x1)φ2(x2) . . . φN (xN ), (1.8)

where x ≡ (r, σ) denotes the spatial coordinate vector ri ≡ (xi, yi, zi) and the spin state σ = ±1/2,

which corresponds to a spin up (+1/2) or a spin down (−1/2). The molecular spin orbital is defined

by φi(x) ≡ ϕσii (x) = ϕi(r)δσiσ, where ϕi(r) is the corresponding spatial orbital, δ is the Kronecker

delta (δσiσ = 1 if σi = σ, δσiσ = 0 otherwise) and σi is the spin state of the ith orbital. In practice,

the molecular orbitals are determined by a linear combination of atomic orbitals (LCAO). For a set of

K non-orthonormal atomic orbitals χµ(r) centered at each nucleus, K orthonormal molecular orbitals

are constructed as follows:

ϕi(r) =

K∑
µ=1

Cµiχµ(r). (1.9)

The atomic orbitals are defined with basis functions such as Slater-type or the more standard Gaussian-

type functions, forming the so-called basis set (see Appendix H). According to the variational principle

[Eq. (1.7)], the coefficients Cµi are determined so that the set of molecular orbitals minimizes the

energy. The wavefunction written as a Hartree product describes the electron-electron interaction

implicitly in an effective manner. Indeed, each electron evolves in a mean-field (described by a one-

electron potential operator) created by the nuclei and all the other electrons in the system, as described

by Hartree in 1957 (p.18, Ref. [13]):

“Each one of these functions . . . should be determined as a solution of Schrödinger’s equation for

one electron in the field of the nuclei and of the total average charge distribution of the electrons in the

other wavefunctions. In such a treatment, the field of the average electron distribution derived from

the wavefunctions . . . must be the same as the field used in evaluating these wavefunctions”.

The first sentence of this quotation describes a mean-field, while the second sentence introduces

the idea of self-consistency, i.e. the mean-field has to be evaluated in an iterative manner. This is the

Hartree method.

The problem with this wavefunction is that it does not ensure the Pauli exclusion principle [14]

proposed by Wolfgang Pauli in 1925, which states that two electrons cannot have the same values
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of the four quantum number (the principal quantum number n, the angular momentum quantum

number l, the magnetic quantum number ml and the spin quantum number ms). In addition, each

electron is attached to one particular spin orbital φi(x) such that they are not indistinguishable. In

order to enforce the Pauli exclusion principle and have indiscernible electrons, the wavefunction has

to fulfil the fermionic antisymmetry condition, i.e. the sign of the wavefunction should change when

permuting two electrons. This can be done by considering all possible electron permutations in the

Hartree product, thus leading to the Slater determinant [15]:

Φ(x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)

φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.10)

where 1/
√
N ! is a normalization factor. Permuting two electrons would be equivalent to permuting

two lines in the determinant, such that

Φ(x1,x2, . . . ,xi, . . . ,xj , . . . ,xN ) = −Φ(x1,x2, . . . ,xj , . . . ,xi, . . . ,xN ), (1.11)

and if two orbitals are the same, two columns would be identical and the determinant would be equal

to 0. Hence, the structure of a Slater determinant fulfils the Pauli principle and the antisymmetry

condition by construction. For convenience, a lighter expression of a Slater determinant is introduced,

Φ(x1,x2, . . . ,xN ) ≡ |φ1φ2 . . . φN |, (1.12)

and can be expressed in second quantization as (see Appendix C):

|φ1φ2 . . . φN | ≡ ĉ†1ĉ
†
2 . . . ĉ

†
N |vac〉, (1.13)

where ĉ†i is the creation operator of one electron in the ith spin-orbital φi and |vac〉 is the vacuum state

(no electrons). The methods for which the wavefunction can be written as a single Slater determinant

describe a single configuration only, and are therefore called single-configuration methods.

1.1.4 Hartree–Fock method

In 1930, Slater and Fock [16, 17] applied the Slater determinant Φ to the Hartree method, leading

to one of the core theories in quantum chemistry: the so-called Hartree–Fock (HF) method. For
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simplicity, a closed-shell system containing an even number of electrons N in the set of spatial orbitals

{ϕi}i=1,N/2 will be considered. The orthonormalization condition

〈ϕi|ϕj〉 = δij =

 1 , i = j

0 , i 6= j
(1.14)

is set by considering the following Lagrangian:

L[Φ] = 〈Φ|Ĥ|Φ〉 −
∑
ij

εij (〈ϕi|ϕj〉 − δij) . (1.15)

Imposing δL = 0 upon a small variation ϕi(r) → ϕi(r) + δϕi(r) leads to the famous Hartree–Fock

equations,

F̂ϕi(r) = εiϕi(r), (1.16)

where F̂ is the one-electron Fock operator, defined by

F̂ = ĥ+ v̂HF. (1.17)

ĥ is the one-electron operator containing the kinetic energy operator and the attractive electron-nuclei

potential operator,

ĥ = −1

2
∇2 −

M∑
A=1

ZA
|r−RA|

, (1.18)

and v̂HF is the one-electron nonlocal Hartree–Fock (effective) potential describing the mean field

generated by the (N−1) other electrons. The latter potential takes into account the classical coulomb

repulsion (which is local) and the electron-electron exchange interaction:

v̂HF =

N/2∑
j=1

(
2Ĵj − K̂j

)
, (1.19)

where

Ĵjϕi(r1) =

(∫
dr2

ϕ∗j (r2)ϕj(r2)

|r1 − r2|

)
× ϕi(r1) (1.20)
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is a one-electron local operator and

K̂jϕi(r1) =

∫
dr2

ϕ∗j (r2)ϕi(r2)

|r1 − r2|
ϕj(r1) (1.21)

is a one-electron non local operator. Note that the summation runs over the N occupied spin-orbitals

only or, equivalently, the first N/2 spatial orbitals which are occupied twice in a spin-restricted closed-

shell formalism. It is clear from Eqs. (1.20) and (1.21) that the Fock operator depends explicitly on

the orbitals, themselves eigenfunctions of the Fock operator in Eq. (1.16). Hence, the Hartree–Fock

solution is given by solving

(
−1

2
∇2 + v̂HF

[
{ϕj}j=1,N/2

]
−

M∑
A

ZA
|r−RA|

)
ϕi(r) = εiϕi(r) (1.22)

self-consistently with an iterative method:

1. Start with a set of trial orbitals {ϕ̃i}i

2. Compute the (orbital dependent) Fock operator

3. Solve Eq. (1.22) to obtain new orbitals {ϕi}i

4. If the difference between the sets {ϕi}i and {ϕ̃i}i is smaller than a given threshold, then {ϕi}i

are solutions to the Hartree–Fock equation forming the Hartree–Fock determinant. Otherwise,

return to step 2 with the new set {ϕi}i until convergence is reached.

Note that in practice, damping factors are used in order to facilitate the convergence process.

Convergence can also be reached for a local minima instead of the global one.

Another formalism consists in rewriting the Hartree–Fock eigenvalue problem [Eq. (1.16)] in the non

orthonormal basis of atomic orbitals [Eq. (1.9)]. The optimization of the LCAO coefficient vector C

is reached when the following stationary condition is satisfied,

∂E(C)

∂C
=

∂

∂C

〈Φ(C)|Ĥ|Φ(C)〉
〈Φ(C)|Φ(C)〉

= 0, (1.23)

thus leading to the famous Roothan equations:

FC = εSC, (1.24)

where F is the Fock matrix, S is the metric also called overlap matrix and ε is the diagonal ma-

trix giving the orbital energies. The optimized Hartree–Fock molecular orbitals can be obtained by

means of unitary transformations, within the so-called exponential parametrization written in second
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quantization as [3]:

|Φ(κ)〉 = e−κ̂|Φ0〉, (1.25)

where κ̂† = −κ̂ is anti-Hermitian, and |Φ0〉 is the Slater determinant constructed from the unrotated

orbitals. The singlet excitation operator κ̂ that allows for orbital rotations is defined as

κ̂ =
∑
p>q

∑
σ

κpq
(
ĉ†pσ ĉqσ − ĉ†qσ ĉpσ

)
, (1.26)

where ĉ†pσ (ĉqσ) is the creation (annihilation) operator of an electron of spin σ in the pth spatial orbital,

and κ ≡ {κpq}pq is the matrix containing all the parameters κpq to be optimized. The Hartree–Fock

energy expression therefore reads

E(κ) = 〈Φ(κ)|Ĥ|Φ(κ)〉, (1.27)

and the Hartree–Fock molecular orbitals satisfy the following stationary condition:

∂E(κ)

∂κ
=
∂〈Φ(κ)|Ĥ|Φ(κ)〉

∂κ
= 0. (1.28)

As readily seen in Eq. (1.26) the orbital optimization consists in doing single excitations, thus creating

a multideterminantal wavefunction in the given orbital basis set. Then, the orbital rotates to form a

new single Slater determinant in the transformed basis, highlighting the fact that the wavefunction

still describes a single configuration only. This should not be confused with a multiconfigurational

wavefunction, which cannot be written as a single Slater determinant, in any molecular orbital basis.

The term multiconfigurational usually refer to multideterminantal wavefunction in which more than

one determinant dominates.

By comparing the one-body Hamiltonian in Eq. (1.22) and the two-body one in Eq. (1.5), it

becomes clear that the explicit electron-electron repulsion 1/rij has been replaced by an effective

Hartree–Fock potential containing the classical Coulomb repulsion as well as the exchange interaction,

also called the Fermi correlation. Therefore, the physical two-body Hamiltonian can be rewritten as

Ĥ = Ĥ0 +

N∑
i

N∑
j>i

1

rij
−

N∑
i

v̂HF
i , (1.29)
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where

Ĥ0 =

N∑
i

ĥi +

N∑
i

v̂HF
i , (1.30)

is a one-electron operator containing the mean-field Hartree–Fock potential. The difference between

Ĥ and Ĥ0 is usually called the fluctuation operator and denotes the difference between the explicit

and the mean-field treatment of the electronic repulsion. The Hartree–Fock energy EHF is therefore

not equal to the exact ground-state one, except if this fluctuation term is equal to 0 (which is not the

case except for one electron). Due to the variational principle, which states that any trial wavefunction

Ψ will have an energy greater or equal to the energy E0 of the exact ground-state wavefunction Ψ0

[Eq. (1.6)], the Hartree–Fock energy can only be an upper bound to the true ground-state energy. Its

expression for a closed-shell system with the first N/2 doubly-occupied spatial orbitals reads

EHF = 〈ΦHF|Ĥ|ΦHF〉 = 2

N/2∑
i=1

〈ϕi|ĥ|ϕi〉+

N/2∑
i=1

N/2∑
j=1

(2Jij −Kij) > E0, (1.31)

where ΦHF is the Slater determinant constructed from the self-consistently converged HF molecular

orbitals, and

Jij = 〈ij|ij〉 = 〈ϕiϕj |ϕiϕj〉 =

∫∫
dr1dr2

ϕ∗i (r1)ϕ∗j (r2)ϕi(r1)ϕj(r2)

r12
,

Kij = 〈ij|ji〉 = 〈ϕiϕj |ϕjϕi〉 =

∫∫
dr1dr2

ϕ∗i (r1)ϕ∗j (r2)ϕi(r2)ϕj(r1)

r12
, (1.32)

are the Coulomb and exchange integrals, respectively. As readily seen in Eq. (1.31) and in contrast to

the non-interacting case (1/rij → 0), the HF energy is not a simple sum over occupied orbital energies,

simply because it describes the electron interaction. However, this description remains approximate

such that the lowest Hartree–Fock solution is not exact and is called the Hartree–Fock limit, which is

obtained when the orbital basis set reaches completeness. Going beyond this limit means accounting

for the fluctuation term in Eq. (1.29). This fluctuation can be treated as a perturbation, thus leading to

the Møller-Plesset second-order perturbation theory (MP2) [18]. Note that the Hartree–Fock energy

is recovered by adding the first-order energy correction on top of the zeroth-order one (given by

2
∑N/2
i=1 εi) in MP2. MP2 therefore accounts for electronic correlation through second-order exactly.

1.1.5 Electron Correlation

The electronic correlation energy is defined as the difference between the exact energy and the Hartree–

Fock one. It quantifies the corrections applied to the mean-field approximation in order to recover the
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exact solution of the Schödinger equation,

Ec = E − EHF. (1.33)

In Hartree–Fock, the wavefunction is written as a single Slater determinant. Note that the exchange

contribution is also called Fermi correlation. The latter gives rise to the Fermi hole, i.e. the zero

probability of finding two electrons with the same spin at the same point in space. Hence, from

a mathematical point of view, Hartree–Fock already contains some correlation. However, electrons

with different spins remain uncorrelated such that the mean-field treatment of the repulsion is an

approximation. It can be proved by showing that a Slater determinant cannot be the exact solution

of the Schrödinger equation. Consider a two-electron wavefunction written in the following ansatz,

where the antisymmetrization is included in the spin part of the wavefunction (not shown),

Ψ(r1, r2) = ϕ(r1)ϕ(r2), (1.34)

and assume that we can find an orbital ϕ(r) such that ϕ(r1)ϕ(r2) is a solution of the Schrödinger

equation,

Ĥ (ϕ(r1)ϕ(r2)) = Eϕ(r1)ϕ(r2), (1.35)

for any r1 and r2 values. Given that Ĥ = T̂ + Ŵee + V̂ne, we obtain

Ŵee (ϕ(r1)ϕ(r2)) = Eϕ(r1)ϕ(r2)−
(
T̂ + V̂ne

)
ϕ(r1)ϕ(r2). (1.36)

Then, using the definition of the operators in Eq. (1.5) and dividing by ϕ(r1)ϕ(r2) leads to

1

|r1 − r2|
= E +

1

2

∇2
r1
ϕ(r1)

ϕ(r1)
+

1

2

∇2
r2
ϕ(r2)

ϕ(r2)
− vne(r1)− vne(r2). (1.37)

In the particular limit r2 → r1 = r, it comes

E +
∇2

rϕ(r)

ϕ(r)
− 2vne(r)→∞, (1.38)

which is absurd because it has no reason to diverge. Indeed, ϕ(r) could be zero for some distance but

not everywhere in space. As a consequence, the Schrödinger equation cannot be solved by a single

Slater determinant. To account for the electron correlation originating from the electronic repulsion

1/rij , one has to go beyond the Hartree–Fock approximation. Before introducing post-Hartree–Fock
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methods, let us give more insights about this electron correlation, which has been commonly divided in

two different contributions: the dynamic correlation and the nondynamic (static) correlation [19, 20].

The short range part of the former gives rise to the Coulomb hole when the electrons are close to each

other (r2 → r1), which induces a cusp in the electronic wavefunction. Its long rang part corresponds

to dispersion correlation [21], responsible for weak interaction such as van der Waals interaction. The

dynamical correlation is usually referred to as weak correlation effects and can be recovered by mixing

the dominating Hartree–Fock reference Slater determinant with higher-order excited determinants [21–

23]. Such a (multideterminantal) wavefunction is said to be monoconfigurational. Even though these

excited determinants are not dominating, their energy contribution is essential to reach the chemical

accuracy, for instance in the description of the Helium dimer dissociation curve [24].

On the contrary, static correlation arises when low-energy configurations are nearly degenerate

with the reference Slater determinant [21], such that no single configuration dominates and a mixing

of these configurations is needed. The wavefunction is then said to be multiconfigurational. This

correlation, also referred to as strong correlation, is the main contribution that arises in bond-breaking

of a molecule and in transition metal oxides with localized d- or f -orbitals, for instance. This thesis

focuses on this type of correlation.

A simple pedagogical example featuring static correlation is the hydrogen molecule HA · · ·HB in

a minimal orthonormal basis set containing the 1s spatial atomic orbitals centered on each atom,

χ1sA(r) and χ1sB (r). The linear combination of these spatial atomic orbitals leads to the well-known

bonding and antibonding molecular orbitals, respectively:

ϕ1σg (r) =
χ1sA(r) + χ1sB (r)√

2
, ϕ1σu(r) =

χ1sA(r)− χ1sB (r)√
2

, (1.39)

where the subscripts g stands for gerade (symmetric) and u for ungerade (antisymmetric). The most

natural two-electron Slater determinant to consider is the one containing two electrons in the orbital

having the lowest energy, i.e. the bonding orbital ϕ1σg (r), |ΦHF〉 ≡ |ϕα1σgϕ
β
1σg
| where ϕα1σg (x) =

ϕα1σg (r, σ) = ϕ1σg (r)δσα and ϕβ1σg (x) = ϕβ1σg (r, σ) = ϕ1σg (r)δσβ . Using Eq. (1.39), it can be shown

that the HF Slater determinant becomes

|ΦHF〉 ≡
1

2

|χα1sAχβ1sA |+ |χα1sBχβ1sB |︸ ︷︷ ︸
ionic forms

+ |χα1sAχ
β
1sB
|+ |χα1sBχ

β
1sA
|︸ ︷︷ ︸

neutral forms

 . (1.40)

Hence, the Hartree–Fock wavefunction contains ionic forms 	HA · · ·H⊕B and ⊕HA · · ·H	B which con-

tribute equally with the neutral forms ↑HA · · ·H↓B and ↓HA · · ·H↑B . This is obviously completely

wrong when considering the dissociation limit RAB →∞, for which the exact ground-state wavefunc-
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tion should only contain the neutral forms, equally weighted. By calculating the ratio ρ(RAB) between

the ionic and the neutral form as a function of the interatomic distance RAB , one finds ρHF(RAB) = 1

for any RAB, in total contradiction with ρ(RAB →∞) = 0. How can we get rid of these ionic contri-

butions? In the dissociation limit, the molecular orbitals ϕ1σg and ϕ1σu are nearly degenerate. Hence,

it is not obvious if one should take |ϕα1σgϕ
β
1σg
| or |ϕα1σuϕ

β
1σu
| as a single determinant. Indeed, in order

to get rid of the ionic contributions, one can check that the exact wavefunction

|ΨRAB→∞〉 ≡
1√
2

(
|χα1sAχ

β
1sB
| − |χα1sBχ

β
1sA
|
)

(1.41)

is obtained by combining the 2 configurations as follows,

|ΨRAB→∞〉 ≡
1√
2

(
|ϕα1σgϕ

β
1σg
| − |ϕα1σuϕ

β
1σu
|
)
, (1.42)

such that a mixing of two Slater determinants needs to be taken into account in order to recover the

exact wavefunction or, equivalently, the missing correlation energy in the Hartree–Fock method. It is

clear from this illustration that a single Slater determinant representing a single electronic configura-

tion (here, 1σ2
g) is not enough to describe the correct physics of a many-electron wavefunction, when

static correlation dominates. To account for this missing correlation, one can use a linear combination

of Slater determinants as done in Eq. (1.42) to get a multiconfigurational wavefunction. It is worth

mentioning that the unrestricted Hartree–Fock method (UHF) [25], developed to treat open shell sys-

tems, describes the H2 dissociation correctly. In the UHF formalism, the wavefunction is not required

to be a spin eigenfunction and the spatial orbitals are different for α and β electrons. However, there is

no guarantee that this wavefunction remains a singlet, in contrast to the restricted HF wavefunction.

Indeed, the expectation value of the total spin squared 〈Ŝ2〉 tends to 1 as the hydrogen molecule

dissociates, and the wavefunction reads [3]

|ΦUHF〉 ≡ |χα1sAχ
β
1sB
|. (1.43)

Therefore, although UHF enables a better description of the bond dissociation, it also contains the

so-called spin contamination which leads to a discontinuity in the dissociation curve of H2 [26]. In this

illustration, the UHF Slater determinant is contaminated by the triplet state instead of describing a

pure singlet state, and is therefore not an eigenfunction of the total spin operator Ŝ2.
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1.1.6 Configuration Interaction and Exact Diagonalization

As mentioned in the previous section, a single Slater determinant cannot be a solution of the Schrödinger

equation, because it does not contain any correlation. Instead, a better approximation consists in

writing the wavefunction as a linear combination of Slater determinants ΦI constructed from the HF

orbitals. This leads to a post-HF method so-called the configuration interaction (CI) wavefunction,

|Ψ(C)〉 =
∑
I

CI |ΦI〉, (1.44)

where the CI coefficients C = {CI}I (to be distinguished to the LCAO coefficients) can be obtained

from the variational principle [Eq. (1.6)] following the stationary condition:

∂E(C)

∂C
=

∂

∂C

〈Ψ(C)|Ĥ|Ψ(C)〉
〈Ψ(C)|Ψ(C)〉

= 0. (1.45)

Note that only the CI coefficients are optimized, while the LCAO coefficients in Eq. (1.9) are fixed, in

contrast to the Hartree–Fock method [see Eqs. (1.23) and (1.28)], meaning that there is no rotation of

the orbitals. An equivalent formulation of this optimization can be considered by using an exponential

parametrization, in analogy with the orbital rotation:

|Ψ(S)〉 = e−Ŝ |Ψ(0)〉, (1.46)

where |Ψ(0)〉 =
∑
I C

(0)
I |ΦI〉 is a given starting multideterminantal wavefunction with fixed coefficients

C
(0)
I . Ŝ is the operator that controls rotations in the configuration space S = {|ΦI〉}I ,

Ŝ =
∑
I∈S

SI

(
|ΦI〉〈Ψ(0)| − |Ψ(0)〉〈ΦI |

)
, (1.47)

with 〈Φi|Φj〉 = δij . The stationary condition becomes

∂E(S)

∂S
=
〈Ψ(S)|Ĥ|Ψ(S)〉

∂S
= 0, (1.48)

where Ψ(S) is normalized. If all the possible determinants constructed from a given basis set are con-

sidered to build the wavefunction in Eq. (1.44), then the wavefunction is exact in this particular basis

set 1 and is called the full configuration interaction (FCI) wavefunction. The number of determinants

1Considering higher-order excited determinants to build a multideterminantal wavefunction has been suggested to
describe the short-range dynamical correlation or, equivalently, the Coulomb cusp. It is interesting to note that even
the FCI wavefunction in a complete basis set of one-electron orbitals cannot describe the Coulomb cusp, due to the
two-electron repulsion 1/r12. Because a basis of atomic orbitals is considered, only bound states are described and FCI
is not exact. FCI is exact in a given and fixed basis set only. An alternative strategy consists in incorporating r12
explicitely in the wavefunction, leading to the so-called explicitly electronic correlated method.
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Table 1.1: Number of all Slater determinants Ndet and singlet states Slater determinants N1
det obtained

by distributing N electrons in N spatial orbitals (or 2N spin orbitals).

N Ndet N1
det

2 6 4
4 70 36
6 924 400
8 12 870 4 900
10 184 756 63 504
12 2 704 156 853 776
14 40 116 600 11 778 624
16 601 080 390 165 636 900
18 9 075 135 300 2 363 904 400
20 137 846 528 800 34 134 779 536

to be considered is given by

Ndet =

(
M

N

)
=

M !

N !(M −N)!
, (1.49)

where N is the number of electrons and M the number of spin-orbitals forming the basis set. A

tabulation of the number of determinants necessary to build a FCI wavefunction is given in Tab. 1.1.

In a case of singlet states with an even number of electrons and m spatial orbitals, the number of

determinants increases exponentially with N as mN . Hence, FCI is in general not applicable and is

most of the time used as a benchmark for small systems. Relatively recently, Alavi and co-workers

have developed quantum monte carlo (QMC) method applied in the FCI space, so-called FCIQMC,

enabling to converge towards the FCI energy for much larger spaces [27].

For a given basis set, the configuration interaction in Eq. (1.44) can be expanded as follows,

|Ψ〉 ≈ |Φ0〉+
∑
ia

cai |Φai 〉+
∑
ijab

cabij |Φabij 〉+ . . . , (1.50)

where i, j denotes occupied orbitals and a, b unoccupied ones in the HF determinant Φ0. Φai and Φabij

are the determinants corresponding to the single excitation from the ith to the ath orbital, and to the

double excitation from the ith to the ath and from the jth to the bth orbitals, respectively. Because

of the intractability of such an expansion for large systems, one usually truncates the expansion to

the double excited determinants (CISD, for “configuration interaction with single and double excited

determinants”), thus leading to size-inconsistency,

E(A+B)
RAB→+∞
6= E(A) + E(B), (1.51)
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where A and B are two subsystems (such as two atoms in a diatomic molecule). Note that it is also not

size-extensive (linear scaling of the energy with the number of electrons, the size of the molecule) [28].

The size-extensivity [29–31] can be recovered by construction when using an exponential ansatz, giving

birth to the standard coupled cluster (CC) theory [32]. Together with MP2, the CISD and CCSD are

good approximations when dynamical correlation dominates, but they tend to fail for the description of

strongly correlated systems, when static correlation is important. The reason is that static correlation

arises when a single electronic configuration is not sufficient to describe the system. However, both

CISD or CCSD are based on a single reference Slater determinant which is used to construct other

low-excited Slater determinants, thus leading to a description of a single electronic configuration.

1.1.7 Multiconfigurational Self Consistent Field

The FCI energy is invariant under orbital rotation, in contrast to truncated CI expansion. Although

the CI coefficients are optimized [Eq. (1.45)], the orbitals are frozen to the Hartree–Fock ones. Allowing

for the reoptimization of the orbitals in a truncated CI calculation leads to the so-called multiconfig-

urational self-consistent field (MCSCF) method. This additional flexibility can be achieved by using

the same exponential parametrization as in the Hartree–Fock method:

|Ψ(κ,S)〉 = e−κ̂|Ψ(S)〉 = e−κ̂e−Ŝ |Ψ(0)〉. (1.52)

Note that the exponential parametrization is usually not used for single state in practice, but is very

convenient for response theory and state-average calculation. The convergence is reached when the

stationarity conditions are fulfilled:

∂E(κ,S)

∂κ
=
∂E(κ,S)

∂S
= 0, (1.53)

where

E(κ,S) = 〈Ψ(κ,S)|Ĥ|Ψ(κ,S)〉. (1.54)

Depending on the composition of the configuration space, the energy will of course take different

values. The multiconfigurational form of the MCSCF wavefunction is particularly interesting to treat

static correlation, which arises when near degeneracy of states appears. Hence, one usually selects only

a specific orbital space (expected to be small) based on chemical intuition (this orbital space, called

active space, has to be composed by the orbitals responsible for such a correlation). For instance, in

the case of stretched H2, the active space would be composed by two electrons in the two molecular



1.1 Wavefunction Theory 21

orbitals 1σg and 1σu. In the minimal basis set, this is equivalent to FCI. If all the possible determinants

constructed from this active space are taken into account in the MCSCF calculation, we talk about

complete active space self-consistent field (CASSCF), which is FCI in the active space. Otherwise, the

method is called restricted active space self-consistent field (RASSCF). An automated selection of a

relevant and optimal active space has been recently proposed by Stein and Reiher [33] and is based

on orbital entanglement in quantum information theory. This selection is a step towards making

CASSCF a black box approach, which was unthinkable 10 years ago. The CASSCF ground-state

energy is obtained variationally as follows:

ECAS = min
κ,S

{
〈ΨCAS(κ,S)|T̂ + Ŵee + V̂ne|ΨCAS(κ,S)〉

}
, (1.55)

where ΨCAS(κ,C) is the wavefunction built from all possible Slater determinants constructed from the

orbitals contained in the CAS. The inactive and virtual orbitals outside the CAS are involved in the

orbital rotation, which can be seen as mono-excitations from the inactive to the active, from inactive

to the virtual, and from active to the virtual, thus contributing to the minimization of the CASSCF

energy. Note that the rotation does not apply within the CAS where all possible determinants are

constructed.

CASSCF is in principle able the treat static correlation, but not the dynamical one. This defi-

ciency can be fixed by applying perturbation theory onto a multiconfigurational method, leading to

the CASPT2 approach [34] as well as the so-called N -electron valence state second order perturbation

theory (NEVPT2) [35, 36] ; or multireference CI (MRCI) (see for instance Ref. [37] and references

therein) which consists in generating higher-excited determinants from more than one reference de-

terminant. Despite the overall performance of the CASSCF and related methods, the exponential

scaling with respect to the number of single particle states in the active space prevents its application

to more than 18 electrons in 18 orbitals, which can be insufficient for the accurate treatment of highly

complex systems [38].

1.1.8 Density Matrix Renormalization Group

This section aims to provide a brief overview of the density matrix renormalization group (DMRG)

method, originally developed by S. White in 1992 [39, 40] to treat one-dimensional (1D) models. For

the first time in 1999, DMRG has been applied to a molecule by mapping the molecular orbitals onto

a 1D quantum lattice model [41]. Since then, DMRG has gained increasing interest in quantum chem-

istry due to its faculty to treat much larger active space than standard CASSCF, up to 40 electrons in

40 orbitals [42, 43] instead of 18 electrons in 18 orbitals within CASSCF, thanks to its wavefunction
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ansatz: the matrix product state (MPS) which is a low rank decomposition of the FCI tensor. DMRG

codes for quantum chemistry are the spin-adapted Block code [44, 45] and the QCMaquis software [46].

The derivations made in this section are mainly based on the review by Schöllwock [47], which is a

useful introductory reference for beginners in DMRG. Other DMRG reviews are provided in Refs. [42,

46, 48], and a practical guide to quantum chemists is reported in Ref. [49]. Before considering the

MPS ansatz, some algebraic tools should be introduced.

Singular value decomposition

Consider an arbitrary rectangular matrixM of dimension (NA×NB). This matrix can be decomposed

using the singular value decomposition (SVD),

M = UΛV †, Λ = diag{λ1, λ2, . . . , λr}, (1.56)

where U is a rectangular matrix of dimension (NA×min(NA, NB)) with orthonormal columns (U†U =

1), Λ is a square diagonal matrix of dimension (min(NA, NB) × min(NA, NB)) with positive entries

{λi} called singular values, and V † is a rectangular matrix of dimension (min(NA, NB) × NB) with

orthonormal rows (V †V = 1). Note that the left (right) singular vector U (V ) is unitary only if

NA ≤ NB (NA ≥ NB) so that UU† = 1 (V V † = 1). The number r of non zero singular values is

called the Schmidt rank of M , and the singular values are sorted as λ1 > λ2 > . . . > λr > 0. The

SVD can be used to find the optimal approximation of M by a matrix M̃ of rank m < r:

M̃ = U Λ̃V †, Λ̃ = diag{λ1, λ2, . . . , λm, 0, . . .} (1.57)

which is done in practice by shrinking the columns (rows) of U (V ) according to m.

Schmidt decomposition

SVD is the central tool in the Schmidt decomposition of the wavefunction. Consider a bipartition

of the total system in two parts A and B (for example, split the orbital space in two). The many-

body Hilbert space is then spanned by the product space {|Ai〉} ⊗ {|Bj〉}, where {|Ai〉}i=1,...,NA and

{|Bj〉}j=1,...,NB are the orthonormal basis states of the many-body Hilbert spaces of subsystems A

and B, containing NA and NB states, respectively. The general form of the wavefunction for this
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system is

|Ψ〉 =

NA∑
i

NB∑
j

Cij |Ai〉|Bj〉. (1.58)

By applying SVD onto the matrix elements Cij (i and j are the row and column indices) we obtain

|Ψ〉 =

NA∑
i

NB∑
j

min(NA,NB)∑
α

UiαλαV
†
αj |Ai〉|Bj〉 =

min(NA,NB)∑
α

λα|Ãα〉|B̃α〉, (1.59)

with
∑
α λ

2
α = 1 for the normalization of Ψ and

NA∑
i

Uiα|Ai〉 = |Ãα〉,
NB∑
j

V †αj |Bj〉 = |B̃α〉. (1.60)

Exactly like in the SVD, an approximation |Ψ̃〉 to |Ψ〉, (optimal in a least squares sense || |Ψ̃〉−|Ψ〉 ||2)

can be obtained by neglecting the smallest singular values (or Schmidt numbers) λα, thus leading

to a smaller number of terms in the summation in Eq. (1.59). This approximation is one of the key

ingredient in DMRG, as shown in the following.

Returning to DMRG, the general form of the FCI wavefunction in Eq. (1.44) can be rewritten in

the occupation number representation for k orbitals:

|Ψ〉 =
∑

n1...ni...nk

Cn1...ni...nk |n1 . . . ni . . . nk〉, (1.61)

where |n1 . . . ni . . . nk〉 is an occupation number vector representation of a Slater determinant [see

Eq. (1.13)]:

|n1 . . . ni . . . nk〉 =
(
ĉ†1

)n1

. . .
(
ĉ†i

)ni
. . .
(
ĉ†k

)nk
|vac〉 (1.62)

and ni denotes the d-dimensional occupation state of the ith orbital with {|ni〉} = {|vac〉, | ↑〉, | ↓〉, | ↑↓

〉}, so that d = 4. In contrast to Eq. (1.13) where each creation operator creates an electron in a given

spin-orbital, the exponant ni applied on the creation operator ĉ†i in Eq. (1.62) denotes the occupation

state created in the ith spatial orbital, which can be either empty, occupied by one electron with spin

up or down, or doubly occupied. We have already seen that it is common to truncate the size of the

configuration space, either by considering only singles and doubles (truncated CI), or by restricting

the configuration space to a given set of orbitals (CASSCF). Then, the CI coefficients are optimized
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according to the variational principle. The underlying idea in DMRG is to truncate the CI coefficients

in the MPS representation. Let us now introduce the MPS wavefunction ansatz.

Starting with the wavefunction in Eq. (1.61), we decompose it into left (n1) and right (n2 . . . nk)

blocks:

|Ψ〉 =
∑
n1

∑
n2...nk

C(n1)(n2...nk)|n1〉|n2 . . . nk〉, (1.63)

where we recall that molecular orbitals are mapped onto a 1D quantum lattice model. The previously

introduced state vector Cn1...nk in Eq. (1.61) is now viewed as a matrix C(n1)(n2...nk) of dimension

(d × dL−1) where the left (n1) and right (n2 . . . nk) block states are the row and column indices,

respectively. Applying the SVD on this matrix, as in the Schmidt decomposition [Eq. (1.59)], leads to

C(n1)(n2...nk) =

r1∑
α1

U(n1)(α1)Λα1
V †(α1)(n2...nk), (1.64)

with the rank r1 ≤ d, such that the wavefunction reads

|Ψ〉 =
∑
n1

∑
n2...nk

r1∑
α1

U(n1)(α1)Λα1V
†
(α1)(n2...nk)|n1〉|n2 . . . nk〉 =

r1∑
α1

Λα1 |Lα1〉|Rα1〉, (1.65)

where the left and right-singular vectors are defined as

|Lα1〉 =
∑
n1

U(n1)(α1)|n1〉, |Rα1
〉 =

∑
n2...nk

V †(α1)(n2...nk)|n2 . . . nk〉, (1.66)

respectively. Then, the matrix product Λα1V
†
(α1)(n2...nk) in Eq. (1.65) is rewritten as a vector Cα1n2...nk

that can be decomposed into a matrix form C(α1n2)(n3...nk) of dimension (r1d × dL−2). By applying

SVD again, it comes:

C(α1n2)(n3...nk) =

r2∑
α2

U(α1n2)(α2)Λα2
V †(α2)(n3...nk), (1.67)

with the rank r2 ≤ r1d ≤ d2. Inserting Eq. (1.67) into (1.64) gives a new expression for the state

vector,

Cn1...nk ≡
r1∑
α1

U(n1)(α1)C(α1n2)(n3...nk), (1.68)

which leads to a Schmidt decomposition of the original wavefunction with respect to the new left and
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right blocks:

|Ψ〉 =

r2∑
α2

Λα2 |Lα2〉|Rα2〉, (1.69)

where

|Lα2
〉 =

∑
α1n2

U(α1n2)(α2)|Lα1
〉|n2〉, |Rα2

〉 =
∑

n3...nk

V †(α2)(n3...nk)|n3 . . . nk〉. (1.70)

We reiterate these steps by growing the left block and performing further SVDs recursively, until

reaching the end of the lattice:

|Ψ〉 =

rk−1∑
αk−1

Λαk−1
|Lαk−1

〉|Rαk−1
〉, (1.71)

with rank rk−1 ≤ dk−1 and

|Lαi〉 =
∑

αi−1ni

U(αi−1ni)(αi)|Lαi−1〉|ni〉, (i = 2, . . . , k − 1), (1.72)

|Rαk−1
〉 =

∑
nk

V †(αk−1)(nk)|nk〉. (1.73)

Finally, these successive SVDs and Schmidt decompositions have led to a new expression for the

wavefunction,

|Ψ〉 =
∑

n1...nk

∑
α1...αk

U(n1)(α1)U(α1n2)(α2)U(α2n3)(α3) . . . U(αk−2nk−1)(αk−1)V
†
(αk−1)(nk)|n1 . . . nk〉. (1.74)

Replacing the matrix U(αi−1ni)(αi) of dimension (ri−1d × ri) by a set of d(= 4) matrices Ani of

dimension (ri−1 × ri) with entries Aniαi−1αi = U(αi−1ni)(αi), we obtain

|Ψ〉 =
∑

n1...nk

∑
α1...αk

An1
α1
An2
α1α2

. . . Ank−1
αk−2αk−1

Ankαk−1
|n1 . . . nk〉, (1.75)

where An1
α1

= U(n1)(α1) and Ankαk−1
= V †(αk−1)(nk) are a set of d(= 4) row vectors and columns vectors,

respectively. This form can be further compacted by recognizing the sum over {αi} as a matrix

multiplication:

|Ψ〉 =
∑

n1...nk

An1An2 . . . Ank |n1 . . . nk〉, (1.76)

which is nothing but the variational MPS ansatz of the wavefunction [50, 51], yielding a variational
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upper bound for the ground-state energy. This whole procedure starting from the left (i = 1) and

finishing when the left block has reached its maximal size (i = k − 1) is called a sweep. Once this

sweep is done, it goes back in the reverse direction, starting from the right and growing over the left

side, defining a macro-iteration. The process converges after several macro-iterations (defining the

number of sweeps), when a threshold value is reached for the energy.

What makes DMRG appealing in term of computational cost is the approximation of the wave-

function in Eq. (1.76) by optimally truncating the Ani matrices, keeping only the m highest singular

values (so-called the virtual dimension) for each applied SVDs [Eq. (1.57)]. An optimal value for m

is not universal, and one can resort to extrapolation techniques [52, 53]. DMRG has a polynomial

scaling [53] with respect to both m and k as O(m2k4 + m3k3), which considerably reduces the com-

putational cost of the method in contrast to FCI, thus explaining why DMRG can treat an active

space up to 40 electrons in 40 orbitals. Of course, m should be kept large enough to conserve as much

as renormalized states as possible, but sufficiently small to reduce the computational cost. Besides,

DMRG is not invariant under orbital rotations, such that the choice of the molecular orbitals as well

as their ordering [49, 54] on a 1D lattice are of considerable importance, otherwise one could converge

to a local minima [52, 55].

1.2 Reduced Quantity Theories

One may wonder if searching for the many-body wavefunction is the only way to reach an accurate

description of the many-particle system featuring quantum effects. As mentioned in the previous

section, obtaining an exact (or even highly accurate) numerical solution becomes rapidly impossible

when the number of electron increases. An amusing illustration of this problem has been given by

Hardy Gross2 for the wavefunction of the oxygen atom (1s22s22p4), hence having 24 degrees of freedom

(3N = 3× 8, where N is the number of electrons). In order to plot the potential energy surface,

∫
dr1

∫
dr2 . . .

∫
drNΨ∗(r1, r2, . . . , rN )ĤΨ(r1, r2, . . . , rN ), (1.77)

the wavefunction Ψ(r1, r2, . . . , rN ) has to be stored. To do so, each coordinate can be discretized by

10 values, leading to 1024 values to store. So we would need a table with 1024 entries or equivalently

1024 bytes if one entry corresponds to one byte. Then, considering a standard DVD with a capacity

of 5 GB (5 · 109 bytes), it means that 2 · 1014 DVDs are needed to store the wavefunction of the

oxygen atom with only 10 points per coordinate. If a DVD’s weight is approximately 10 grams, then

2In the IPAM (Institute of Pure and Applied Mathematics) summer school entitled Mathematical Foundations of
Density Functional Theory, UCLA (2016).
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we would need 2 · 109 tonnes of DVDs ! There are different points of view regarding this issue. First,

one can wait for better computers to be able to treat larger and larger systems accurately using

wavefunction methods and exact diagonalization (equivalent to FCI), as suggested by the empirical

law of G. Moore, one of the founders of Intel enterprise, which states that the number of transistors

in a microprocessor doubles every two years [56, 57]. However, this empirical law is nearing its end,

as the transistors have reached the size where quantum effects play an important role [58]. Although

not new [59, 60], the field of quantum information theory on the development of quantum computers

and associated algorithms have gained increasing interest recently in quantum chemistry, due to

their possible application to the description of quantum chemical problems out of reach by classical

computers [61–63]. Of course, the development of quantum computers has its own issues which are out

of the scope of this thesis. Meanwhile, one still has to find a better way to treat the electronic structure

efficiently. A question arises naturally: are there methods able to reach the chemical accuracy with an

affordable computational cost ? The answer to this question is yes. In principle. And these methods

use reduced quantities as basic variable such as, for example, the electronic density, the one-particle

density matrix, or the one-particle Green’s function instead of the many-body wavefunction. This

section is devoted to these reduced quantity theories, starting from the well-known density functional

theory (DFT) and followed by the reduced density matrix functional theory (RDMFT) as well as the

one-particle Green’s function theory.

1.2.1 Density Functional Theory

The concept of using the electronic density as a basic variable to treat a quantum system has first been

suggested by Thomas in 1927 [64], independently followed by Fermi [65]. It has led to the so-called

Thomas-Fermi method, which consists in representing the Hamiltonian operator as a functional of the

electron density n(r) only. Therefore, one can bypass the construction of the complicated object that

is the wavefunction and concentrate on the electronic density only, switching from Ψ(x1,x2, . . . ,xN )

with (3 + 1)N coordinates to n(r) with three spatial coordinates. Note that the electron density is

obtained from the wavefunction by integrating over all but one coordinate,

n(r) = N
∑
σ

∫
dx2

∫
dx3 . . .

∫
dxN |Ψ(r, σ,x2, . . . ,xN )|2 , (1.78)

where xi ≡ (ri, σi) and
∫

dxi ≡
∫

dri
∑
σi
. Based on the uniform electron gas, they developed the

non-interacting kinetic energy functional of the electron density n(r),

TTF[n] =
3

10

(
3π2
)2/3 ∫

dr n5/3(r), (1.79)
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which is the first local density approximation (LDA). The total energy within the Thomas–Fermi

approximation is given by

ETF[n] = TTF[n] + Vne[n] + EH[n], (1.80)

where Vne[n] =
∫

drn(r)vne(r) is the potential energy due to the electric attraction of the positively

charged nucleus, and

EH[n] =
1

2

∫∫
drdr′

n(r)n(r′)

|r− r′|
, (1.81)

is the Hartree energy, corresponding to the potential energy of the electrons due to their mutual

electric repulsion. However, when applied to real systems this method does not give accurate results,

even qualitatively, simply because there is a huge gap between a realistic interacting system and

a noninteracting uniform one. To improve on its accuracy, Dirac proposed an additional exchange

density-functional energy [66],

Ex[n] = −3

4

(
3

π

)1/3 ∫
dr n4/3(r), (1.82)

which is the exact exchange functional for a uniform electron gas. Despite this correction, the Thomas–

Fermi method is still not accurate enough to describe chemical bonds qualitatively. This is not

surprising, as the origin of chemical bonds is driven by the electronic repulsion. To go beyond the

Thomas–Fermi approximation, one should include the electron repulsion in the density-functional

kinetic energy, and an additional correlation functional of the density might also be needed. Besides,

the lack of physical background establishing the uniqueness of the solution and the existence of a

universal density functional has led to wonder if all of this makes any sense, and has shelved this

theory until the mid-1960s, when Kohn (Nobel prize in Chemistry in 1998) answered “yes it does” and

called the method DFT.

1.2.1.i Hohenberg–Kohn theorems

The aforementioned theory has been revived by two theorems which provide sound theoretical foun-

dations of DFT, derived by Hohenberg and Kohn in 1964 [67]. For convenience, we start by rewriting

the external local potential operator as

V̂ =

N∑
i=1

v(ri)× =

N∑
i=1

∫
dr v(r)δ(r− ri)× =

∫
dr v(r)n̂(r), (1.83)
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where n̂(r) ≡
∑N
i=1 δ(r−ri) is the so-called density operator, with δ(r−ri) the Dirac distribution. Its

expression in second quantization is provided in the Appendix C. While T̂ and Ŵee are universal (i.e.

they do not depend on the nuclei), the local potential v(r) is molecule-dependent and its contribution

to the ground-state energy E0[v] of Ĥ[v] = T̂ + Ŵee +
∫

dr v(r)n̂(r) is the only one that depends

explicitly on the ground-state electron density as follows:

E0[v] = 〈Ψ0[v]|T̂ + Ŵee + V̂ |Ψ0[v]〉 = 〈Ψ0[v]|T̂ + Ŵee|Ψ0[v]〉+

∫
drv(r)n0(r), (1.84)

where n0(r) = nΨ0[v](r) and nΨ(r) = 〈Ψ|n̂(r)|Ψ〉.

The first Hohenberg–Kohn theorem establishes a one-to-one correspondence between the external

local potential v(r), up to a constant, and the non-degenerate ground-state density n0(r). Hence, if

the density is known, one has access to the external potential, and therefore to the Hamiltonian and its

associated eigenfunctions and eigenvalues. As a consequence, all the properties of the system become

a functional of the ground-state electronic density. This first theorem is a proof of contradiction.

Indeed, consider two local potentials v(r) and v′(r) that differ by more than a constant. It gives rise

to two Schrödinger equations,

Ĥ[v]|Ψ0[v]〉 = E0[v]|Ψ0[v]〉,

Ĥ[v′]|Ψ0[v′]〉 = E0[v′]|Ψ0[v′]〉. (1.85)

Let us consider the case Ψ0[v] = Ψ0[v′] which leads to

(
Ĥ[v]− Ĥ[v′]

)
|Ψ0[v]〉 = (E0[v]− E0[v′]) |Ψ0[v]〉, (1.86)

such that

v(r)− v′(r) =
E0[v]− E0[v′]

N
= C, (1.87)

where C is a constant. Hence Ψ0[v] 6= Ψ0[v′] if v(r) 6= v′(r) + C. Now starting with Ψ0[v] 6= Ψ0[v′]

which are non-degenerate, the variational principle leads to two strict inequalities,

〈Ψ0[v′]|Ĥ[v]|Ψ0[v′]〉 > E0[v],

〈Ψ0[v]|Ĥ[v′]|Ψ0[v]〉 > E0[v′]. (1.88)
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Assuming that both wavefunctions have the same electronic density nΨ0[v](r) = nΨ0[v′](r) and using

Eqs. (1.85), it comes

〈Ψ0[v′]|T̂ + Ŵee|Ψ0[v′]〉 − 〈Ψ0[v]|T̂ + Ŵee|Ψ0[v]〉 > 0, (1.89)

and

〈Ψ0[v]|T̂ + Ŵee|Ψ0[v]〉 − 〈Ψ0[v′]|T̂ + Ŵee|Ψ0[v′]〉 > 0, (1.90)

which is absurd. In conclusion, if v(r) 6= v′(r) +C then the ground-state densities of the two systems

cannot be the same. They are equal to each other if v(r) and v′(r) differ by no more than a constant.

Hence, there is indeed a one-to-one correspondence between the external local potential v(r) and the

ground-state electronic density n0(r). As a consequence, the nondegenerate ground-state wavefunction

of a system as well as its ground-state energy can be expressed uniquely as a functional of the ground-

state density,

n0(r)←→ v(r) = v[n0](r)←→ Ψ0[v] = Ψ0[v[n0]] = Ψ0[n0]. (1.91)

In other words, the ground-state energy is a functional of the ground-state density, E0[v] = E0[v[n0]] =

Ev[n0], where

Ev[n] = T [n] +Wee[n] + V [n],

= F [n] +

∫
dr v(r)n(r), (1.92)

and

F [n] = 〈Ψ0[n]|T̂ + Ŵee|Ψ0[n]〉 = T [n] +Wee[n] (1.93)

is the universal Hohenberg–Kohn functional. Similarly, the other observables are also functionals of

the density:

O = 〈Ψ0[n]|Ô|Ψ0[n]〉 = O[n]. (1.94)

The second Hohenberg–Kohn theorem is the analogue for densities of the conventional wavefunction
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based variational principle,

E0[v] 6 Ev[n], (1.95)

for any trial density n(r) such that n(r) > 0 and
∫

dr n(r) = N . The equality holds for the ground-

state density n0(r). This leads to the following variational principle in DFT:

E0[v] = min
n

{
Ev[n]

}
= Ev[n0]. (1.96)

That said, a problem remains: the explicit expression for the universal (in a sense that it does not

depend on local potential and thus is the same for all electronic system) functional F [n] is unknown.

The domain of definition of this functional is discussed in the following.

1.2.1.ii The v- and N-representable densities

The Hohenberg–Kohn energy functional in Eq. (1.93) is defined for densities that are v-representable

only. A density said to be v-representable has to be associated with the antisymmetric ground-state

wavefunction Ψ0[v]. As a consequence, the minimization in Eq. (1.96) is over the set of v-representable

densities only.

An alternative formulation of the Hohenberg–Kohn functional is given by the so called Lieb max-

imization (or, equivalently, the Legendre–Fenchel transform) [68], obtained by rearranging the varia-

tional principle in Eq. (1.95). This leads to, for all v(r),

F [n] > E0[v]−
∫

dr v(r)n(r), (1.97)

or, equivalently,

F [n] = sup
v

{
E0[v]−

∫
dr v(r)n(r)

}
. (1.98)

Note that the ground-state energy E0[v] is a concave function with respect to v(r). For the ground-

state density n0(r), the maximizing potential is v[n0](r). As Eq. (1.98) is derived from the variational

principle that holds only for v-representable densities, the density in Eq. (1.98) should also be v-

representable. This leads to serious difficulties as many densities have been shown to be non v-

representable [68, 69].

Fortunately, it turns out that DFT can also be formulated in a way that requires the so-called

N -representability conditions only for the densities. This is done by introducing the Levy–Lieb con-
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strained search formalism [70],

F [n] = min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉

}
, (1.99)

which consists in searching, in the whole set of antisymmetric wavefunctions with density n(r) that

integrates to N electrons, the one minimizing the expectation value for the operator T̂ + Ŵee. Since

the density comes from an antisymmetric wavefunction, specifying the v-representability of the density

is no more needed as the search is extended to the N -representable densities [70]:

n(r) > 0,

∫
dr n(r) = N, and

∫
dr |∇n(r)1/2|2 <∞, (1.100)

which is a weaker condition than the v-representability one, since the former is necessary for the

latter [5]. Note that the Levy–Lieb [Eq. (1.99)] and Hohenberg–Kohn [Eq. (1.93)] functionals coin-

cide if the N -representable density is also v-representable. In addition, this new formulation of the

universal functional generalizes the first Hohenberg–Kohn theorem to degenerate states, given that

the minimization will select only one wavefunction that reproduces n(r). Combining Eq. (1.96) and

(1.99) leads to the following form of the variational principle in DFT:

E0[v] = min
n

[
min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉

}
+

∫
dr v(r)n(r)

]

= min
n

[
min
Ψ→n

{
〈Ψ|T̂ + Ŵee|Ψ〉+

∫
dr v(r)nΨ(r)

}]
, (1.101)

which is equivalent to the original variational principle for wavefunction methods,

E0[v] = min
Ψ

{
〈Ψ|T̂ + Ŵee|Ψ〉+

∫
dr v(r)nΨ(r)

}
. (1.102)

Note that the difference between the Levy–Lieb and the Legendre–Fenchel functionals is subtle, and the

reader is referred to Ref. [71] for a deeper discussion on this. One advantage of the latter formulation

is that if it is easy to calculate E0[v] (for example in a model system), the potential remains a much

more simpler variable than the many-body wavefunction Ψ. Hence, this formulation has been shown

useful in the various improved DFT-like methods applied on simple models [72–75].

Thus far, it has not appear obvious if DFT contains any simplification over WFT. One can therefore

wonder about the existence of any useful implementation of DFT. This answer is again “yes, it exists”,

and is the so-called Kohn–Sham (KS) DFT method.



1.2 Reduced Quantity Theories 33

1.2.1.iii Kohn–Sham method

Although the universal functional F [n] can be found numerically through the Levy–Lieb constraint-

search formalism [Eq. (1.99)] or through the Legendre–Fenchel transform [Eq. (1.98)] for a given

density n(r), its exact analytic expression is of course unknown. Hence, the DFT formulation presented

in the previous section is a many-body theory which is even more expensive than WFT, given that the

Schrödinger equation should be solved many times. In 1965, Kohn and Sham suggested a formulation

of DFT which is a single-electron-like theory with an effective potential functional of the density,

hence succeeding in a drastic decrease of the computational cost. This is the so-called Kohn-Sham

(KS) DFT [76].

Based on the idea that only the ground-state density is needed to find all the properties of the

physical system, could this density be obtained from a noninteracting electronic system ? For such

a system, the first Hohenberg–Kohn theorem still holds so that there is a one-to-one correspondence

between the noninteracting density and the local potential, up to a constant. In this context, the

noninteracting universal functional reduces to the noninteracting kinetic energy, functional of the

density. In the Levy–Lieb constrained search formalism, it is given by

Ts[n] = min
Φ→n

{
〈Φ|T̂ |Φ〉

}
, (1.103)

where the minimization is over the whole set of many-body wavefunctions giving the density n(r). Note

that the minimizing wavefunction for a noninteracting system will always be a Slater determinant,

such that it is sufficient to consider Slater determinants only in the minimizing set of wavefunction.

Alternatively, one can use the following Legendre–Fenchel transform:

Ts[n] = sup
v

{
E [v]−

∫
dr v(r)n(r)

}
, (1.104)

where E [v] is the ground-state energy of the noninteracting Hamiltonian T̂ +
∫

dr v(r)n̂(r). As for

F [n], the Levy–Lieb constrained search formalism is replaced by an unconstrained maximization over

the potential. In KS-DFT, the universal functional of the interacting system can be decomposed as

follows:

F [n] = Ts[n] + (F [n]− Ts[n]) = Ts[n] + EHxc[n], (1.105)

where Ts[n] can be expressed exactly in terms of orbitals, but for which an exact explicit expression in

term of the electron density remains unknown. The remaining term contains the difference in energy

between the fully interacting system and the noninteracting one, and is so-called Hartree-exchange-
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correlation (Hxc) energy. It should not be forgotten that this term contains a correlation contribution

from the kinetic energy and not only the contributions coming from the electron-electron repulsion,

EHxc[n] = T [n] +Wee[n]− Ts[n]. (1.106)

The latter energy functional is usually decomposed into the explicitly known Hartree term [Eq. (1.81)]

and the unknown exchange and correlation parts. The exchange contribution is given by the expecta-

tion value of the electron-electron repulsion for the minimizing KS determinant ΦKS[n] in Eq. (1.103),

Ex[n] = 〈ΦKS[n]|Ŵee|ΦKS[n]〉 − EH[n]. (1.107)

The correlation energy is the difference between the expectation value of the Hamiltonian T̂ + Ŵee

associated with the exact physical wavefunction and the KS Slater determinant, both having the same

density n(r),

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈ΦKS[n]|T̂ + Ŵee|ΦKS[n]〉

= 〈Ψ[n]|Ĥ[v[n]]|Ψ[n]〉 − 〈ΦKS[n]|Ĥ[v[n]]|ΦKS[n]〉, (1.108)

and differs from the definition of the correlation energy in WFT. Following exactly the same steps as

in the previous section, the variational principle in KS-DFT reads

E0 = min
n

[
min
Φ→n

{
〈Φ|T̂ |Φ〉

}
+ EHxc[n] +

∫
drvne(r)n(r)

]

= min
n

[
min
Φ→n

{
〈Φ|T̂ |Φ〉+ EHxc[nΦ] +

∫
drvne(r)nΦ(r)

}]
, (1.109)

or, equivalently,

E0 = min
Φ

{
〈Φ|T̂ |Φ〉+ EHxc[nΦ] +

∫
drvne(r)nΦ(r)

}
. (1.110)

By comparing Eq. (1.110) with (1.102), it is clear that the Hxc energy functional does describe

implicitly the interaction between the electrons, and that the explicit 1/rij operator has been hidden.

The minimizing KS determinant ΦKS in Eq. (1.110) reproduces the exact ground-state density n0(r).

It is constructed (in a spin-restricted closed-shell formalism) from the N/2-lowest doubly occupied KS

orbitals that fulfil the following one-electron self-consistent KS equations,

(
−1

2
∇2 + vne(r) +

δEHxc[nΦKS

]

δn(r)

)
ϕKS
i (r) = εKS

i ϕKS
i (r), (1.111)
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where

nΦKS

(r) = 2

N/2∑
i=1

∣∣ϕKS
i (r)

∣∣2 . (1.112)

Note that the same exponential parametrization as in Hartree–Fock theory can be used for optimizing

the KS orbitals, where 〈Φ(κ)|Ĥ|Φ(κ)〉 is replaced by 〈Φ(κ)|T̂ + V̂ne|Φ(κ)〉+EHxc[n(κ)] in Eq. (1.27),

with |Φ(κ)〉 = e−κ̂|ΦKS〉 and

n(κ, r) = 〈Φ(κ)|n̂(r)|Φ(κ)〉. (1.113)

Note also that in practical calculations, we work in a basis of atomic orbitals as in Hartree–Fock

theory, and the Kohn–Sham equations in Eq. (1.111) can be rewritten as Roothaan equations in

Eq. (1.24), where the Fock matrix becomes the KS matrix. The main difference between the KS

self-consistent equations and the Hartree–Fock ones comes from the effective potential. In contrast to

the Hartree–Fock potential, the KS one

vs(r) = vne(r) +
δEHxc[nΦKS

]

δn(r)
(1.114)

is local instead of non local [see Eqs. (1.19) and (1.21)], contains a correlation contribution, and

is constructed to reproduce the exact ground-state density of the physical system. Note that it

corresponds to the maximizing potential of Eq. (1.104). However, the explicit density-dependence

of the exact exchange contribution is generally unknown, and the exact exchange energy functional

becomes an explicit functional of the KS orbitals [see Eq. (1.107)], themselves implicit functionals of

the density:

Ex[n] = −
N/2∑
i=1

N/2∑
j=1

∫∫
drdr′

ϕKS∗
i (r)ϕKS∗

j (r′)ϕKS
j (r)ϕKS

i (r′)

|r− r′|
, (1.115)

where i and j run over spatial occupied KS orbitals. It has the same form as the exchange contribution

in Hartree–Fock, but the orbitals are different. Because the exact exchange energy has no simple

explicit expression in term of the density, the corresponding exchange potential vx(r) = δEx[n]/δn(r)

cannot be calculated directly. It can be approximately determined using the method of optimized

effective potentials (OEP) [77–79], which considers the functional derivative of Ex[n] with respect to

the local potential vs(r) and the application of the chain rule (see Appendix A for functional calculus):

δEx[n]

δvs(r)
=

∫
δEx[n]

δn(r′)

δn(r′)

δvs(r)
dr′ =

∫
vx(r′)

δn(r′)

δvs(r)
dr′, (1.116)
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where δn(r′)/δvs(r) is the KS static linear-response function. The determination of OEP can be

formulated as an optimization problem where the energy is minimized with respect to the KS potential

vs(r). In practice, vs(r) is expanded into an initial guess v0(r) and a linear combination of auxiliary

functions gt(r) (typically Gaussian type functions for atoms and molecules) so that vs(r) = vne(r) +

v0(r) +
∑
t btgt(r), where {bt}t are the expansion coefficients to be optimized. This leads to the

“discrete” OEP equations [80–82]. It should be noted here that this optimization is not without issue

and can be an ill-posed problem [79, 83]. Indeed, it can happen during the optimization of vs(r) that

the basis set {bt}t is unbalanced in comparison to the orbital basis set {χµ(r)}µ (for instance, some

Gaussian functions bt(r) with much higher exponent than the ones in {χµ(r)}µ). This unbalanced basis

set problem can lead to unphysical potentials, so that many potentials can produce the same numerical

total energy. In this case, high oscillations can be observed during the optimization procedure, and

can be fixed by including smoothness in the functional [84, 85] or by requiring a minimal change in

the density upon increasing the orbital basis set [86]. Let us now turn to the exact expression for the

correlation energy, which can be obtained in the adiabatic connection formalism.

1.2.1.iv Adiabatic Connection

The development of approximate xc energy functionals is a difficult task and a strategy is provided

by the linear adiabatic connection (AC) [87–91]. The linear AC consists in scaling the electron-

electron repulsion by a factor λ while holding the density constant. Consider the following λ-dependent

Schrödinger equation:

Ĥλ[v]|Ψλ[v]〉 = Eλ[v]|Ψλ[v]〉, (1.117)

where the λ-dependent Hamiltonian reads

Ĥλ[v] = T̂ + λŴee +

N∑
i=1

v(ri)× . (1.118)

The local potential should be λ-dependent in order to recover the exact density of the physical sys-

tem (λ = 1) for any λ, i.e. nλ(r) = nλ=1(r) = n(r) and v(ri) → vλ(ri). The analogue of the

Hohenberg–Kohn functional for a partially-interacting system is given by the Levy–Lieb constrained

search formalism,

Fλ[n] = min
Ψ→n

{
〈Ψ|T̂ + λŴee|Ψ〉

}
,

= 〈Ψλ|T̂ + λŴee|Ψλ〉, (1.119)
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which can be alternatively written using the Legendre–Fenchel transform:

Fλ[n] = sup
v

{
Eλ[v]−

∫
dr v(r)n(r)

}
, (1.120)

= Eλ[vλ]−
∫

dr vλ(r)n(r). (1.121)

Note that Eqs. (1.98) and (1.104) are recovered from Eq. (1.120) for λ = 1 and λ = 0, corresponding

to the Hohenberg–Kohn DFT and the KS-DFT, respectively.

Given that Fλ=0[n] = Ts[n], the KS decomposition of F [n] = Fλ=1[n] leads to

F [n] = Ts[n] + EHxc[n] = Ts[n] + Fλ=1[n]− Fλ=0[n], (1.122)

so that the Hxc energy functional reads,

EHxc[n] =

∫ 1

0

dλ
dFλ[n]

dλ
=

∫ 1

0

dλ 〈Ψλ|Ŵee|Ψλ〉, (1.123)

where the Hellmann-Feynman theorem has been used to derive the second equality. By isolating the

correlation part,

Ec[n] =

∫ 1

0

dλWλ
c [n], (1.124)

one can introduce the correlation integrand

Wλ
c [n] = 〈Ψλ|Ŵee|Ψλ〉 − 〈ΦKS|Ŵee, |ΦKS〉 (1.125)

which can also be written as

Wλ
c [n] =

∂Eλc [n]

∂λ
, (1.126)

where Eλc [n] is given by the following scaling relation [92, 93]:

Eλc [n] =

∫ λ

0

dν
(
〈Ψν |Ŵee|Ψν〉 − 〈ΦKS|Ŵee|ΦKS〉

)
= λ2Ec[n1/λ], (1.127)

with n1/λ(r) = (1/λ)3n(r/λ). The adiabatic connection is built by varying continuously λ between

0 and 1 and provides some insights about the form of the Hxc energy functional, as well as possible

routes for the development of improved hybrid functionals [94, 95]. In other words, the variation of λ

allows to go continuously from a noninteracting KS reference system to the fully interacting one.
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As readily seen in Eq. (1.125), the calculation of the integrand requires the many-body wave-

function Ψλ. Therefore, its accurate construction is very limited in practice [96], and one has to

use approximation to it, such as Görling-Levy perturbation theory with respect to the coupling con-

stant λ [97] (still keeping the ground-state density constant at each order), Padé approximation [98],

interaction-strength interpolation [99] or other forms derived from coupled cluster theory [100]. An

alternative kinetic-energy based adiabatic connection has also been derived and offers new possibilities

for modelling correlation energy functionals [101].

The density functional approximations (DFAs) in KS-DFT – which will be discussed in the next

section – are not able to treat strongly correlated systems, i.e. systems where the static correlation

dominates. In order to develop more appropriate functionals able to describe such challenging sys-

tems, one can look at the λ→ +∞ limit instead of the noninteracting λ = 0 [102, 103], leading to the

strictly correlated electron (SCE) DFT [104–106]. When combined with the KS scheme, it is called

the KS SCE DFT approach and it has been shown promising for the treatment of strongly correlated

systems [107–110]. However, its application to chemical systems, which are not close enough to the

strong-interaction limit, remains a challenge [111, 112].

Another interesting limit which has been considered is λ→ −∞, corresponding to negative coupling

constant (attractive electrons) and which could be appropriate to the study of supraconductivity [113].

The underlying idea of scaling the electron interaction in the adiabatic connection has been a

source of inspiration for the development of new methods in which the electron-electron repulsion

is separated into two part: one part treated by wavefunction theory (WFT) and the other one by

DFT. It has led to in-principle exact combination of WFT and DFT theories, free of double counting

problem, as discussed in more details in Sec. 1.3.

1.2.1.v Density functional approximations

This section aims to give an overview of the different DFAs. The first and significantly old DFA that

have been developed is the local density approximation (LDA) [76, 114, 115] which is based on the

uniform electron gas [116]. Within this approximation, the exchange-correlation energy functional

reads

ELDA
xc [n] =

∫
drn(r)εxc[n], (1.128)

where εxc[n] is the exchange-correlation energy per particle of a homogeneous electron gas of density

n(r). This energy can be decomposed into an exchange contribution, given in Eq. (1.82), and a
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correlation one for which accurate values have been calculated by QMC calculations [117], and then

interpolated to provide an analytic form for εc[n] [118, 119]. Going beyond LDA, the generalized

gradient approximations (GGA) [76, 120] (which use the gradient of the density) have been proposed

like B88 [121], LYP [122], PW91 [123–125] and PBE [126] functionals. Improvements are possible

by considering higher level functionals such as meta-generalized-gradient approximations (mGGAs)

implying the Laplacian of the density like the TPSS [127] and SCAN [128] functionals. The KS

potential in the above DFAs is an explicit functional of the density and can be calculated easily in

contrast to the OEP approach which is computationally expensive.

Note that because of the approximations made in the exchange and correlation energy functionals,

the unphysical self-interaction error arising from the direct product of the densities in the Hartree

functional [Eq. (1.81)] is not compensated by the exchange contribution in contrast to Hartree–Fock

theory, so that a single electron can unphysically interact with itself [129]. This self-interaction error

is a major drawback of a DFA for the calculation of band gaps, ionization potentials and electronic

affinities due to the violation of the famous piecewise linearity of the energy between two integral num-

bers of electrons [130]3. It can be fixed by using implicitly density-dependent functionals, so-called

hybrid functionals. The term “hybrid” comes from the idea of mixing a fraction of Hartree–Fock

exchange with density functionals. Based on arguments relying on the adiabatic connection [131],

it has led to the B3LYP [132], PBE0 [133], and Coulomb attenuating method (CAM)-B3LYP [134]

approximations. This exchange contribution is given in Eq. (1.115) but the orbitals are now opti-

mized in a Hartree–Fock way with a non local exchange potential (also called generalized KS-DFT

method [135]) in contrast to the OEP approach. The mixing parameters are usually determined by

fitting to experimental data, or determined dynamically depending on the density of the system [136].

Another deficiency in the usual DFAs is the correct description of dispersion effects and long-range

interactions such as van der Waals interactions. To overcome this issue, semiempirical dispersion

corrections can be employed [137, 138]. Note that one has to be particularly careful when developing

functionals based on empirical fitting, as it has been noted that the accurately obtained total energies

are at the expense of the accurate recovering of the electron density [139]. Alternatively, a class of

double-hybrid approximations has emerged where a fraction of MP2 correlation energy, known to

recover proper dispersion effects, is used in combination with density-functional correlation approx-

imations [140–142]. A combined HF/DFA exchange and MP2/DFA correlation functionals can also

be obtained by introducing a range-separation parameter [143–151]. This idea originates from the

range-separated DFT [152, 153] which will be described in Section 1.3.1.i. All these approximations

3This will be further discussed in Chap. 5, where a solution to the band gap problem in KS-DFT will be proposed
using ensemble DFT.
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can be sorted in different categories, forming the density functional Jacob’s ladder [154] which rises up

in the “heaven”, where the exact universal functional is patiently waiting to be discovered. This brief

summary of the various approximations emphasizes how large the collection of density functionals

approximations is [155, 156].

To summarize, the KS-DFT is an in-principle exact method based on a noninteracting system,

on which is applied a single-electron effective potential. The ground-state energy and density of the

physical system can be recovered exactly, provided that the exact Hxc energy functional is used. While

this universal functional has not been found yet, several approximations have been derived and are able

to treat weakly correlated systems (i.e. systems containing dynamical correlation). Unfortunately, the

functionals present in the literature are still not able to describe strongly correlated systems such as

transition metal oxides [157] for which the ground-state is highly multiconfigurational (due to the d-

or f -orbital manifolds, responsible for static correlation). The treatment of strong (static) correlation

remains the biggest challenge in DFT, and no DFA is sufficiently accurate when applied to such system

yet.

Different paths can be investigated to fix this deficiency of the current DFAs. A promising approach

already mentioned in Sec. 1.2.1.iv and which conserves the DFT formalism is provided by the strictly

correlated electron (SCE) DFT [102–110]. Another possible strategy is to merge the KS-DFT with

WFT, as we have seen that the former performs well for the description of dynamical correlation,

while the latter can treat static correlation (at the expense of a higher computational cost) when

MCSCF-type methods are used. However, because DFT and WFT are formulated in a completely

different framework, merging the two approaches without accounting for the same correlation effect

twice (thus leading to the so-called double counting problem) is an extremely difficult task. This will

be further discussed in Sec. 1.3, and is one of the central thematic of this thesis.

It should be noted that even if the exact functional is known, there are still some quantities which

cannot be extracted exactly from KS-DFT. For instance, the description of the fundamental energy gap

(referred to as the fundamental gap, or band gap for solids) cannot be equal to the KS gap. This band

gap problem in DFT is commonly addressed by considering fractional number of electrons (i.e. DFT for

open systems) [130, 158]4. To improve over the description of band gaps in systems containing strongly

localized d- or f -orbitals, the introduction of a Hubbard-like correction U in the Hxc functional5

has been proposed, thus leading to the so-called DFT+U [159–161]. Although DFT+U and hybrid

functionals are of course not identical [162], they share similarities in a sense that they both add a non

local correction (the Hubbard U correction and the Hartree–Fock exchange, respectively) to a local

4This problem will be discussed in Chap. 5.
5See Sec. 2.1 for a general description of the Hubbard model
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exchange potential. However, in DFT+U one has to deal with the double counting of the correlation

due to this additional correction on top of a LDA or GGA density functional [163, 164]. Still, DFT+U

does not always provide accurate band gaps [165, 166].

1.2.2 Reduced Density Matrix Functional Theory

The ground-state energy of the ab-initio Hamiltonian in Eq. (1.5) in an external nonlocal potential

(e.g. the kinetic operator, the hopping in the Hubbard model, or even a potential in the presence

of a magnetic field) can be written as a functional of the one-body density matrix (1RDM) and the

diagonal of the two-body reduced density matrix (2RDM) only (see Appendix C):

E[γ,Γ(2)] = T [γ] +W [Γ(2)] + Vext[γ]

=

∫∫
dxdx′δ(x− x′)

(
−∇

2
r

2

)
γ(x,x′) +

1

2

∫∫
dxdx′

Γ(2)(x,x′; x,x′)

|r− r′|

+

∫∫
dxdx′vext(x,x

′)γ(x,x′), (1.129)

where the 2RDM reads

Γ(2)(x1,x2; x′1,x
′
2) = N(N − 1)

∫
dx3 . . .

∫
dxNΨ∗(x′1,x

′
2,x3, . . . ,xN )Ψ(x1, . . . ,xN ), (1.130)

and the 1RDM,

γ(x,x′) = N

∫
dx2

∫
dx3 . . .

∫
dxNΨ∗(x,x2, . . . ,xN )Ψ(x′,x2, . . . ,xN ). (1.131)

Note that the 1RDM can be obtained exactly from the 2RDM, so that the energy is only a functional

of the 2RDM. Unfortunately, simple N -representability conditions do not exist as they require the

knowledge of all higher order density matrices from 3- up to N -order when considering N > 2 elec-

trons [167]. By not considering the N -representability constraints, the 2RDM obtained by straight

minimization of the energy in Eq. (1.129) is not guaranteed to correspond to some antisymmetric

N -electron wavefunction, and one could get energies lower than the exact ground-state one. This

has justified the choice to keep only the 1RDM as basic variable, for which N -representability con-

ditions are known, leading to the so-called (one-electron) reduced density matrix functional theory

(RDMFT) [168, 169]. Still, note that significant progress has been achieved recently in the field of

2RDM [170–172]. Intuitively, expressing the ground-state energy as a functional of the 1RDM rather

than the electronic density n(r) =
∑
σ γ(x,x) is appealing, because it contains more informations.

Besides, the type of chemical bond is better revealed by the off-diagonal elements of the 1RDM [173,
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174]. The theoretical foundation for RDMFT has been given by Gilbert [175], who extended the

Hohenberg–Kohn theorem to nonlocal potentials, thus proving the one-to-one correspondence between

the ground-state wavefunction and the ground-state 1RDM. This theorem guarantees the existence

of an energy functional of the 1RDM, whose minimum with respect to all N -representable 1RDMs

yields the exact ground-state 1RDM and energy for a given non local external potential,

E0 = min
γ∈N-rep

{
E[γ]

}
= min
γ∈N-rep

{
h[γ] +W [γ]

}
. (1.132)

h[γ] is the one-particle energy functional of the 1RDM, representing the kinetic and external potential

contribution,

h[γ] =

∫∫
dxdx′

[
δ(x− x′)

(
−∇

2
r

2

)
+ vext(x,x

′)

]
γ(x,x′), (1.133)

and W [γ] corresponds to the two-electron repulsion energy which is also an implicit functional of the

1RDM, so-called the interaction functional. As readily seen in Eq. (1.133), a major advantage of using

the 1RDM as a basic variable is that the kinetic energy can be calculated exactly if the exact 1RDM

is known, in contrast to KS-DFT. However, the exact energy functional W [γ] = 〈Ψ[γ]|Ŵee|Ψ[γ]〉 is

not known, in analogy with the universal Hohenberg–Kohn functional Wee[n] in DFT.

In Eq. (1.132), one has to ensure that the set of 1RDM over which the minimization is done

contains only physical 1RDM, which are N -representables. This can be done by using the Levy–Lieb

constrained search formalism which extends the domain to all pure-state N -representable 1RDMs,

W [γ] = min
Ψ→γ
〈Ψ|Ŵee|Ψ〉. (1.134)

In other words, the 1RDM has to be associated with a properly anti-symmetrized wave function. Un-

fortunately, the pure-state N -representability conditions (also known as generalized Pauli constraints)

are extremely difficult to tackle for the 1RDM, although significant progress has been reported [176–

179]. To solve this problem, the constrained-search domain has been further extended to ensemble

N -representable 1RDMs [180], thus leading to

W [γ] = min
Γ(N)→γ

Tr
[
Γ̂(N)Ŵee

]
, (1.135)

where the Γ̂(N) =
∑
i wi|Ψi〉〈Ψi| is the density matrix operator describing a mixed state composed by

an ensemble of pure states |Ψi〉 with weights wi and with the normalization
∑
i wi = 1. Tr denotes
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the trace, such that

Tr
[
Γ̂(N)Ŵee

]
=
∑
i

wi〈Ψi|Ŵee|Ψi〉. (1.136)

In other words, there exists an ensemble of N -electron wavefunctions that together yield γ. This

extension is particularly useful as the conditions for ensemble N -representability (also known as Pauli

constraints) are known [181]. These conditions are commonly formulated using the basis of the

eigenfunctions of the 1RDM, which are the natural spin-orbitals {ϕp}p,

γ(x,x′) =
∑
p

npϕp(x)ϕ∗p(x
′), (1.137)

which form a set of orthonormal orbitals,

〈ϕp|ϕq〉 = δpq, (1.138)

where {np}p are the corresponding eigenvalues called the occupation numbers. The ensemble N -

representability conditions for an integral number N of electrons are simple and read [181]

0 ≤ np ≤ 1,
∑
p

np = N. (1.139)

Using the spectral representation in Eq. (1.137), the 1RDM becomes a functional of the natural

orbitals and their occupation numbers. Because these conditions involve eigenvalues and eigenvectors

of the 1RDM, the energy functional is commonly written as a functional of the occupation numbers

and natural orbitals,

E[γ] ≡ E[{ϕp}p, {np}p]. (1.140)

Returning to the interaction functional expression, it can be decomposed into Hartree (H), exchange

(x) and correlation (c) terms as follows:

WH[γ] =
1

2

∫∫
γ(x,x)γ(x′,x′)

|r− r′|
dxdx′ (1.141)

which is identical to EH[n] in KS-DFT, and

Wx[γ] = −1

2

∫∫
γ(x,x′)γ(x′,x)

|r− r′|
dxdx′ (1.142)
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which is exactly written as an explicit functional of the 1RDM. Only the correlation part remains

unknown. Then, numerous functionals have been developed in the context of RDMFT, of the form

Wc[{ϕp}, {np}] =
∑
pq

f(np, nq)

∫∫
dxdx′

ϕp(x)ϕq(x
′)ϕ∗p(x

′)ϕ∗q(x)

|r− r′|
. (1.143)

The first one was introduced by Müller [182], equivalently obtained by Buijse and Baerends [183] by

modelling the exchange and correlation hole of the hydrogen molecule. Since then, several correc-

tions have been derived to improve on the correlation contribution, such as the power functional [184,

185], the Goedecker-Umrigar functional [186, 187], the corrections to Buijse and Baerends functionals

(BBC) [188, 189], functionals based on the homogeneous electron gas [190] and empirical function-

als [191]. Some other functionals are based on the reconstruction of the 2RDM in terms of the

1RDM, thus leading to Piris natural orbital functionals PNOFi (i = 1, 7) [192–203]. The latter aim

at recovering the cumulant part of the 2RDM, written in the following cumulant expression [204]:

Γpqrs = ΓHF
pqrs + λpqrs[γ], (1.144)

where ΓHF
pqrs = npnq(δprδqs − δpsδqr) is expressed as a functional of the occupation numbers (it has

the same expression as the Hartree–Fock 2RDM but np and nq can be fractional) and λpqrs[γ] is the

cumulant part written as a functional of the 1RDM, so that

Wc[γ] =
1

2

∑
pqrs

λpqrs[γ]

∫∫
dxdx′

ϕ∗r(x)ϕ∗s(x
′)ϕp(x)ϕq(x

′)

|r− r′|
. (1.145)

Then, it is assumed that the cumulant part depends on the occupation numbers only. To simplify the

construction of λpqrs[{np}], Piris functionals generate the elements that correspond to Coulomb or

exchange contributions only. Note that setting λpqrs = 0 will simply lead to the Hartree–Fock energy.

In addition to molecular dissociation curves, RDMFT has also been applied to the homogeneous

electron gas [185, 205, 206] and to the description of ionization potentials, electron affinities and band

gaps in solids or molecules [207–210]. A nice review of the RDMFT and its associated functional ap-

proximations can be found in Ref. [189], as well as a recent benchmarking of density matrix functional

approximations in Refs. [203, 211].

Despite its promising results, RDMFT is still facing issues. Indeed, for a functional to be fully

N -representable, the ensemble N -representability conditions for both the 1RDM and 2RDM have to

be fulfilled. These conditions are commonly not satisfied for most of the approximate functionals [203,
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211], such that too low energies can be obtained. In principle, the ensemble N -representability con-

ditions for the 1RDM in Eq. (1.139) are sufficient [180, 212] providing that the exact functional is

known, which is of course not the case. PNOFi (i = 5,6,7) approximations fix this problem by recov-

ering the ensemble N -representable 2RDM, thus ensuring that the ground-state energy remains an

upper bound to the true energy [213]. It is worth mentioning that even though a functional fulfils the

ensemble N -representability conditions for both the 1RDM and the 2RDM, there is still no guarantee

that it is associated to a given wavefunction. To my knowledge, the only functional that is associated

to a given wavefunction is PNOF5, which was shown to be connected to the wavefunction of anti-

symmetrized product of strongly orthogonal geminal (APSG) [214]6. Hence, the 1RDM is pure-state

N -representable within PNOF5.

Another issue arises for functionals being explicit functionals of the natural orbitals and occupation

numbers, instead of being explicit functionals of the full 1RDM, which is the case of most current

approximations. For instance, if there are two or more degenerate natural orbitals (in terms of

occupation numbers), the spectral representation of the 1RDM is no more unique. This should not be a

problem if one performs a unitary transformation to change the basis in the degenerate subspace which

leaves the 1RDM, and therefore the energy, unchanged. But because the functionals are explicitly

dependent on the natural orbitals and occupation numbers only, they are not invariant by unitary

transformations in the degenerate subspace, which can lead to size-inconsistency problems [215].

Finally, the mapping of the physical system onto a noninteracting one, like in DFT, is also missing

in RDMFT. The problem is that the physically interacting 1RDM is not pure-state noninteracting

v-representable [180, 216]. This is clearly understandable by looking at the property of the 1RDM of

noninteracting wavefunction (i.e. a single Slater determinant). In the noninteracting case, the occu-

pation numbers of the 1RDM are either 0 or 1 and therefore the 1RDM is idempotent, i.e. γ = γ2.

On the contrary, the 1RDM of an interacting system will have fractional occupation numbers7 and

will not be idempotent. It is therefore impossible to map the physical interacting system onto a

pure-state noninteracting one having exactly the same 1RDM. However, one can consider an ensem-

ble of idempotent density matrices able to reconstruct the physical one with fractional occupation

numbers [218], but it leads to a completely degenerate orbital spectrum at the Fermi level energy.

Then, the mapping is possible and the 1RDM is said to be ensemble non-interacting v-representable,

but the molecular orbital view (essential for chemists to understand chemical processes) is completely

lost. However, this degeneracy of the orbital energies is in fact a consequence of a zero temperature

consideration in RDMFT and can be lifted by considering finite temperature [219]. In the latter ap-

6More details on geminal wavefunctions will be provided in Chap. 6
7Note that non integral occupation numbers denote a deviation for the monodeterminantal description of the system,

so that all the natural orbitals having fractional occupation number should in principle be incorporated in the CAS of
a CASSCF calculation [217].
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proach, the authors used another reduced quantity which is very popular in condensed matter physics,

namely the one-particle Green’s function. They provided a systematic strategy to elaborate improved

1RDM functionals by connecting diagrammatic many-body perturbation theory to RDMFT at finite

temperature. Note that at zero temperature, the corresponding Green’s function of the noninteract-

ing system in RDMFT would have degenerate poles, which is completely unphysical [219]. Like in

RDMFT, ensembles have to be considered to overcome this issue.

Alternatively, one could consider mapping the physical system onto a partially-interacting one

instead of a non-interacting one. This mapping would be able to reproduce the physical pure-state

N -representable 1RDM from the partially interacting system. This idea was originally suggested by

P. W. Ayers (not published) and will be investigated in chapter 6, where a seniority-zero wavefunction

is used as a reference to get a pure-state N -representable 1RDM, while a functional of the 1RDM is

employed to recover the missing correlation.

1.2.3 One-particle Green’s function

This section uses the material presented in the PhD theses of Fabien Bruneval [220] and Elisa Re-

bolini [221]. The reader is referred to these two references for a more advanced introduction about

Green’s function.

Let us start from the many-body second-quantized Hamiltonian written in real space (see Appendix C):

Ĥ =

∫
dx Ψ̂†(x)h(r)Ψ̂(x) +

1

2

∫∫
dxdx′

Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)

|r− r′|
, (1.146)

where Ψ̂†(x) (Ψ̂(x)) is the creation (annihilation) field operator of one electron with spin σ at position

r and h(r) = (−1/2)∇2 +vne(r). We define the time-ordered one-particle Green’s function of a system

with N electrons as

iG(1, 2) = 〈N |T
[
Ψ̂(1)Ψ̂†(2)

]
|N〉

= θ(t1 − t2)〈N |Ψ̂(1)Ψ̂†(2)|N〉 − θ(t2 − t1)〈N |Ψ̂†(2)Ψ̂(1)|N〉, (1.147)

where |N〉 is the ground state of the N -electron system. For convenience, the short-hand notation

1 ≡ (x1, t1) = (r1, σ1, t1) has been introduced. T is the time-ordering operator which orders the

operators with larger times on the left. In practice this is done by considering the Heaviside step

function θ that reads

θ(t1 − t2) =

 0, t1 < t2

1, t1 ≥ t2
. (1.148)
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In contrast to the previous approaches, a time dependence is included in the field operators (so-called

Heisenberg representation) as follows:

Ψ̂(1) = eiĤt1Ψ̂(x1)e−iĤt1 , Ψ̂†(2) = eiĤt2Ψ̂†(x2)e−iĤt2 . (1.149)

Therefore, the first term in the right-hand side of Eq. (1.147) measures how an extra electron prop-

agates from (x2, t2) to (x1, t1), while the second term measures how a missing electron (or a hole)

propagates from (x1, t1) to (x2, t2). The one-particle Green’s function is thus a more complex (but

richer) reduced quantity than the 1RDM or the electronic density. The latter can be recovered from

the Green’s function in the limit t2 → t+1 = t1 + 0+ (where 0+ is an infinitesimal positive number),

γ(x1,x2) = 〈N |Ψ̂†(x1)Ψ̂(x2)|N〉 = −iG(x1t1,x2t
+
1 ), (1.150)

and by setting x2 = x1 and integrating over the spin coordinates,

n(r1) =
∑
σ1

γ(r1σ1, r1σ1) = −i
∑
σ1

G(r1σ1t1, r1σ1t
+
1 ). (1.151)

More generally, any expectation value of a one-particle operator Ô can be extracted from the one-

particle Green’s function,

〈Ψ|Ô|Ψ〉 = −i

∫∫
dx1dx2O(x1,x2)G(x1t1,x2t

+
1 ). (1.152)

To compute the expectation value of two-body operators, one would need the two-body Green’s

function. However, the ground-state energy of theN -electron system can be expressed by the Galitskii-

Migdal formula [222] as,

EN0 = − i

2

∫
dx1 lim

2→1+

(
i
∂

∂t1
+ h(r1)

)
G(1, 2), (1.153)

thus becoming a functional of the one-particle Green’s function only. Let us now look at a more

explicit form of the one-particle Green’s function. Because no time-dependent external potential is

applied (Ĥ is time-independent), the Green’s function is invariant under translation in time and we

can write the Green’s function as a function of the time difference τ = t1 − t2 rather than t1 and t2.

Additionally, by introducing the closure relation for the (N −1)- and (N + 1)-electron states (denoted
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by i and a indices, respectively),

∑
i

|N − 1, i〉〈N − 1, i|,
∑
a

|N + 1, a〉〈N + 1, a|, (1.154)

and using Eq. (1.149), it comes

iG(x1,x2; τ) = θ(τ)
∑
a

〈N |Ψ̂(x1)|N + 1, a〉〈N + 1, a|Ψ̂†(x2)|N〉e−i(EN+1
a −EN0 )τ

−θ(−τ)
∑
i

〈N |Ψ̂†(x2)|N − 1, i〉〈N − 1, i|Ψ̂†(x1)|N〉e−i(EN0 −E
N−1
i )τ , (1.155)

where EN−1
i and EN+1

a are the energies of the ith excited state of the (N−1)-electron system and the

ath excited state of the (N + 1)-electron system, respectively. Then, by using the Fourier transform

of the Heaviside step function,

θ(τ) = −
∫ +∞

−∞

dω

2πi

e−iωτ

ω + i0+
, θ(−τ) =

∫ +∞

−∞

dω

2πi

e−iωτ

ω − i0+
, (1.156)

we obtain the following expression for the Green’s function:

G(x1,x2; τ) =

∫ +∞

−∞

dω

2π

[∑
a

〈N |Ψ̂(x1)|N + 1, a〉〈N + 1, a|Ψ̂†(x2)|N〉e
−i(ω+EN+1

a −EN0 )τ

ω + i0+

+
∑
i

〈N |Ψ̂†(x2)|N − 1, i〉〈N − 1, i|Ψ̂†(x1)|N〉e
−i(ω+EN0 −E

N−1
i )τ

ω − i0+

]
. (1.157)

Then, by a simple change of variable and by recognizing the Fourier transform of the Green’s function,

G(x1,x2; τ) =

∫ +∞

−∞

dω

2π
G(x1,x2;ω)e−iωτ , (1.158)

we finally obtain the Lehmann representation of the one-particle Green’s function,

G(x1,x2;ω) =
∑
a

fa(x1)f∗a (x2)

ω − Ea + i0+
+
∑
i

fi(x1)f∗i (x2)

ω − Ei − i0+
, (1.159)

where fa(x) = 〈N |Ψ̂(x)|N + 1, a〉 and fi(x) = 〈N − 1, i|Ψ̂(x)|N〉 are the Lehmann amplitudes,

Ea = EN+1
a − EN0 = −Aa and Ei = EN0 − EN−1

i = −Ii correspond to minus the exact electron

affinities Aa and exact ionization energies Ii, respectively. As readily seen in Eq. (1.159), the one-

particle Green’s function contains information about charge excitations i.e. ionization processes, such

as photoemission and inverse photoemission spectroscopies). Those energies are conventionally called

the poles of the one-particle Green’s function. In principle, they could also be extracted within DFT,
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because the Green’s function can be written as a functional of the density. In practice however, we

don’t know how to do this and DFT or time-dependent DFT are limited to the description of the

N -electron system (N -electron ground-state properties and neutral excitations). The “position” of the

peaks as a function of the momentum quantum number yields the band structure in solids [223]. Note

that the total energy in real-space in Eq. (1.153) is expressed in the frequency domain as follows,

EN0 =
1

π

∫ µ

−∞
dωTr [(ω − h) ImG(ω)] , (1.160)

where µ is the chemical potential8 and the imaginary part of the Green’s function gives the spectral

function, which has peaks at the poles of the Green’s function.

In practice, of course, the exact charged excitations energies and excited states are not known, and

one has to find another way to construct the one-particle Green’s function. One can start by computing

the Green’s function of a noninteracting system by solving the following equation of motion:

[
i
∂

∂t1
− h(r1)

]
Gh(1, 2) = δ(1, 2), (1.161)

where Gh is the noninteracting Green’s function, which poles correspond to the orbital energies.

Clearly, the spectral function of the noninteracting system differs from the interacting one. For an

interacting system, the peaks are shifted and broadened and exhibit satellites (also called side-band)

in extended systems, due to the coupling between excitations in the interacting system. Those features

are totally absent in the noninteracting spectrum.

It can be shown that the fully-interacting Green’s function can be recovered from the noninteracting

one by using the so-called Dyson equation,

G(1, 2) = Gh(1, 2) +

∫∫
d3d4Gh(1, 3)ΣHxc(3, 4)G(4, 2), (1.162)

or, equivalently,

G−1(1, 2) = G−1
h (1, 2)− ΣHxc(1, 2). (1.163)

ΣHxc is the self-energy that contains all the effects of the electron-electron repulsion, in perfect analogy

with the Hxc energy potential in DFT [see Eq. (1.164)]. Note also that ΣHxc[G] is a functional of the

one-particle Green’s function, like EHxc[n] is a functional of the density and W [γ] is a functional of

the 1RDM.

8The chemical potential will be further discussed in Chapter 4.
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Instead of starting from Gh, one could compute the one-particle Green’s function of the KS system,

leading to GKS. The two Green’s functions are connected as follows,

GKS(1, 2) = Gh(1, 2) +

∫
d3Gh(1, 3)vHxc(r3)GKS(3, 2), (1.164)

or, equivalently,

G−1
KS(1, 2) = G−1

h (1, 2)− vHxc(1)δ(1, 2). (1.165)

The link between the KS-DFT and the Green’s function theory is provided by the Sham–Schlüter

equation [224, 225]. The idea is to use the fact that the noninteracting density in the KS-DFT

formalism is in principle the same as the interacting one. Hence, the diagonal of both GKS and G

gives the same ground-state density,

−iG(1, 1+) = −iGKS(1, 1+). (1.166)

From Eqs. (1.163) and (1.165), it comes

G−1(1, 2) = G−1
KS(1, 2)− (ΣHxc(1, 2)− vHxc(1)δ(1, 2)) , (1.167)

or, equivalently,

G(1, 2) = GKS(1, 2) +

∫∫
d3d4GKS(1, 3) [ΣHxc(3, 4)− vHxc(3)δ(3, 4)]G(4, 2), (1.168)

where the double counting of the correlation is removed by subtracting the Hxc potential from the

self-energy. This equation allows to recover the physical Green’s function from the KS one. Using the

relation in Eq. (1.166) yields an equation for the unknown Hxc potential,

∫∫
d3d4GKS(1, 3) [ΣHxc(3, 4)− vHxc(3)δ(3, 4)]G(4, 1+) = 0, (1.169)

which can be expressed in the frequency domain, thus leading to the Sham–Schlüter equation [224,

225],

∫∫
dr3dr4dωeiω0+

GKS(r1, r3;ω) [ΣHxc(r3, r4;ω)− vxc(r3)δ(r3 − r4)]G(r4, r1;ω) = 0. (1.170)

In analogy with DFT and RDMFT, the one-particle Green’s function is used as a basic variable instead
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of dealing with the complicated many-body wavefunction. The functionals of these reduced quantities

are yet to be found, and we are still searching for the most accurate (and universal) approximation

for each of them. In Green’s function theory, like in DFT or RDMFT, the self-energy needs to

be approximated. It is in 1965 that Hedin proposed a set of coupled equations, so-called the Hedin’s

equations [226], that yields the exact self-energy, in principle. In practice, because these are non-linear

equations, the determination of the self-energy remains a challenge, even numerically. This set has laid

the foundation of the different self-energy approximations, like the popular GW approximation [227–

229] for the description of band gaps [223, 230–234], and beyond using vertex corrections [235, 236].

1.3 Combining Density Functional Theory with Wavefunction

Theory

Although DFT is in principle exact, we have seen that the many approximations developed in the

literature are not adequate for the treatment of strongly correlated electrons. Since the mid-1980s,

a huge collection of different DFAs has been proposed (and is still increasing), but none of them

are able to treat multiconfigurational systems efficiently. One may wonder if searching for such a

Hxc functional is possible, or if there are other trails to follow. One of this alternative trail is the

combination of WFT with DFT. On one side, WFT is able to describe strongly correlated electrons

within the MCSCF method, but the treatment of large systems remains impossible due to its high

computational cost. On the other side, DFT is a very low cost approach that can handle calculations

on large systems, but only the dynamical correlation effects are accurately described within the current

DFAs.

Hence, merging the two approaches in order to extract the “best” of the two methods in terms of ac-

curacy and computational cost is natural and intuitive. Unfortunately, WFT and DFT are formulated

in two completely different languages. While the former uses the many-body (multideterminantal)

wavefunction, the latter is based on the simple electronic density only. Although this combination

is a very challenging task, it has gained much interest since the end-1990s. Depending on how the

merging is performed, the resulting hybrid method could account twice for the same correlation effect,

thus leading to the infamous double counting problem. One promising way of performing this merging

is to separate the electronic interaction such that one part is treated by WFT and the other part by

DFT. This separation is not unique and is one of the central questions of this thesis.

This section is organized as follows. First, the range-separation of the two-electron repulsion

operator is introduced by using a linear scaling or the error function. The latter leads to the so-
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called multiconfigurational range-separated DFT. Alternatively, the correlation can be separated in

the orbital space, where the orbitals are explicitly interacting in a given active space, while the

remaining (inactive) orbitals are implicitly treated by a density functional. Finally, one can also think

about a large system where a small part only would be explicitly interacting, and the rest of it treated

by DFT. This strategy leads to the so-called embedding methods. The advantages and drawbacks of

each of these distinct separations are discussed throughout this section.

1.3.1 Multiconfigurational range-separated DFT

1.3.1.i Range separation of the two-electron interaction in real space

In 1996, Savin suggested to split the electronic repulsion in real space by means of the error function,

thus leading to the following range separation of the two-electron repulsion [152, 153]:

1

r12
=

erf(µr12)

r12
+

1− erf(µr12)

r12
, (1.171)

where the first term in the right-hand side of Eq. (1.171) is called the long-range (lr) part and the

second term is the short-range (sr) part. The error function reads

erf(µr12) =
2√
π

∫ µr12

0

e−t
2

dt. (1.172)

This leads to a decomposition of the electronic repulsion operator as follows:

Ŵee = Ŵ lr,µ
ee +

(
Ŵee − Ŵ lr,µ

ee

)
= Ŵ lr,µ

ee + Ŵ sr,µ
ee , (1.173)

where only the first term of the right-hand side of Eq. (1.173) is treated explicitly. The remaining

short-range contribution will be treated by a complementary short-range Hxc functional, thus leading

to the ground-state energy variational expression

E0[v] = min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ |Ψ〉+ Esr,µ
Hxc [nΨ]

}
, (1.174)

where the minimizing wavefunction Ψµ fulfils the following self-consistent equation:

(
T̂ + Ŵ lr,µ

ee +

∫
dr

[
v(r) +

δEsr,µ
Hxc [nΨµ ]

δn(r)

]
n̂(r)

)
|Ψµ〉 = Eµ|Ψµ〉. (1.175)

Note that Ψµ is multideterminantal as the long-range part of the repulsion is treated explicitly.

The separation is dependent on the parameter µ for which two limits can be distinguished. The
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Figure 1.1: Explicit contribution of the electronic repulsion in the partially-interacting Hamiltonian
in the linearly-separated DFT (full lines) and in the range-separated DFT (dashed lines).

first limit is µ = 0 and corresponds to a pure KS-DFT calculation. The second limit is pure WFT

and is obtained when µ → +∞. For finite nonzero µ values, the approach is a multideterminantal

range-separated DFT method (abbreviated as range-separated DFT in the following). To illustrate

the difference between the linear separation λ/r12 (which will be further discussed in the next section)

and the range separation defined by the error function, Fig. 1.1 shows the contribution of the long-

range electronic repulsion as a function of the distance between two electrons. This contribution is the

one present in the Hamiltonian which is treated explicitly with a many-body wavefunction. It is clear

from Fig. 1.1 (dashed lines) that the Coulomb hole does not need to be described by the wavefunction

in range-separated DFT (Because erf(µr12)/r12 tends to a finite value when r12 → 0). It is treated by

the complementary short-range Hxc functional. In range-separated DFT, the long-range repulsion is

taken into account by the wavefunction. For µ = 1 and µ = 1/2, the exact long-range electron-electron

interaction (see the red curve for λ = 1) is recovered for r12 > 1.5 and r12 > 3, respectively, which

is not the case with the linear separation. This is particularly interesting as long-range interactions

(for instance van der Waals interactions) are usually not well described using standard DFT, such

that one has to incorporate dispersion corrections [137, 138] to conventional functionals, by using

MP2 [147, 237, 238] or the random phase approximation [239, 240]. It has also been shown that the

range-separated DFT (finite µ) converges faster with respect to the number of configuration state

functions than pure WFT (µ→ +∞) [241].

Note that standard DFAs in KS-DFT cannot be used directly in range-separated DFT without
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facing the infamous double counting problem. Hence, specific µ-dependent functionals have been

developed [143–150]. In practical calculations, µ has to be fixed and its value is not universal, although

it has been shown to be optimal for µ = 0.4 [242].

Promising results have been obtained by combining the electronic density and the 1RDM based

on the range separation of the electron-electron operator [243–245]. The idea is to recover the dy-

namical correlation using a short-range density functional and to treat long-range correlation effects

in RDMFT. Along those lines, the range separation has also been used to handle near degeneracies

in atoms and molecules [241, 246] as well as transition metal complexes with a large active space by

using DMRG [247].

Extensions to the time-dependent multi-configuration regime [248–252] have also been explored,

thus allowing for the description of multiple excitations [253, 254] and charge transfer excitations.

The formers are simply absent in the Kohn-Sham time-dependent DFT [255] within the adiabatic

approximation, while the latter are not well described [256] even by using the exact KS-DFT Hxc

functional (which is frequency-independent). This is due to the lack of memory effect, meaning that

the kernel should be time-dependent or, equivalently, frequency-dependent. Still dealing with the ex-

cited states, note that the Gross-Oliveira-Kohn ensemble DFT (GOK-DFT) [257–259] has also been

combined with the range-separation formalism [260–266]. During my Master studies, I had the chance

to work on GOK-DFT and to apply it to atoms and diatomic molecules. At the time, we suggested

a strategy to get weight-independent excitation energies in GOK-DFT through a linear interpolation

method [263], further improved using the extrapolation scheme of Savin [264, 267]. 9

Returning to the range-separated DFT, although the method has the advantage of avoiding the

explicit description of the Coulomb hole and the range-separated wavefunction has the corrected long-

range behaviour, the construction of specific µ-dependent DFAs remains a challenging task. This can

be avoided by considering the linear separation of the two-electron repulsion in real space.

1.3.1.ii Linear separation of the two-electron interaction in real space

In the spirit of the range-separated DFT, Toulouse and co-workers [141] suggested a linearly-separated

DFT in which the standard DFAs can be used (with respect to a given scaling relation). This ap-

proach follows closely the standard adiabatic connection in Sec. 1.2.1.iv, where the multideterminantal

Ψλ wavefunction is used instead of ΦKS for the calculation of the density, therefore switching from

a mapping onto a noninteracting system to a partially-interacting one for any λ in 0 6 λ 6 1.

9These studies will not be described in this thesis, as they are not part of the main theme, which is the development
of hybrid methods focused on the ground-state. However, the ensemble DFT will be highly discussed in Chap. 5 in
another context: the extraction of the fundamental gap and first ionization potential and electronic affinity.
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The Hohenberg–Kohn functional of the fully-interacting system is then decomposed into a partially-

interacting one and a complementary λ-dependent Hxc energy functional,

F [n] = Fλ[n] +
(
F [n]− Fλ[n]

)
= Fλ[n] + E

λ

Hxc[n]. (1.176)

Note that in the noninteracting limit λ = 0, the KS-DFT is recovered such that Fλ=0[n] = Ts[n]

and E
λ=0

Hxc [n] = EHxc[n]. In the fully-interacting limit λ = 1, the pure WFT is recovered such that

Fλ=1[n] = F [n] and E
λ=1

Hxc [n] = 0. The λ-dependent interaction functional is given by

Fλ[n] = min
Ψ→n

{
〈Ψ|T̂ + λŴee|Ψ〉

}
= 〈Ψλ|T̂ + λŴee|Ψλ〉, (1.177)

where Ψλ is introduced in Sec. 1.2.1.iv. According to the Hellmann-Feynman theorem, the comple-

mentary λ-dependent Hxc energy functional reads

E
λ

Hxc[n] =

∫ 1

λ

dν
dF ν [n]

dν
=

∫ 1

λ

dν〈Ψν |Ŵee|Ψν〉. (1.178)

After a few simple mathematical steps, it comes

E
λ

Hxc[n] = (1− λ)EHx[n] + Ec[n]− Eλc [n], (1.179)

where Eλc [n] is given by the uniform coordinate scaling relation in Eq. (1.127). The ground-state

energy is obtained variationally as follows:

E0[v] = min
Ψ

{
〈Ψ|T̂ + λŴee + V̂ |Ψ〉+ E

λ

Hxc[nΨ]
}
, (1.180)

where the minimizing wavefunction Ψλ fulfils the self-consistent (multideterminantal) extension of the

KS-DFT equation,

(
T̂ + λŴee +

∫
dr

[
v(r) +

δE
λ

Hxc[nΨλ ]

δn(r)

]
n̂(r)

)
|Ψλ〉 = Eλ|Ψλ〉. (1.181)

In summary, this method decomposes the electronic repulsion as follows:

1

r12
=

λ

r12
+

(1− λ)

r12
, (1.182)

where the first term in the right-hand side is treated explicitly (in WFT) and the second term is

described implicitly with a density functional.
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Obviously, the partial interaction λ/r12 diverges when r12 → 0 even for infinitesimal values of λ

so that one will have to describe a part of the Coulomb hole with WFT [see Fig. 1.1], thus leading

to a slower convergence with respect to the basis set when compared with DFT (or range-separated

DFT). Despite this drawback of the linearly-separated DFT in comparison to range-separate DFT,

note that all the functionals already developed in the literature can be used directly thanks to the

linear scaling expression of the correlation energy in Eq. (1.127).

Let us now summarize the previous subsections. Range-separated DFT is a promising method

which merges WFT and DFT in-principle exactly. It is free from double counting problem. Interest-

ingly, this range separation of the electron-electron repulsion allows to avoid the explicit description

of the Coulomb hole by WFT, thus leading to a faster convergence with respect to the basis set

(in comparison with pure WFT). However, such an implementation necessitates the development of

µ-dependent functionals. This can be done by considering a uniform electron gas with a modified

coulomb interaction, thus leading to a short-range LDA [152, 268]. A different strategy that allows

the use of the already developed functionals in standard KS-DFT (and which remains free from dou-

ble counting) is the linearly-separated DFT, thanks to the linear scaling expression of the correlation

energy in Eq. (1.127). In return, the Coulomb hole still has to be described by WFT.

Despite the fact that these two methods are in principle exact, one may wonder if this separation

of the two-electron interaction is optimal. Indeed, even though the short-range (connected with the

Coulomb hole) and long-range (dispersion, van der Waals interactions) dynamical correlations are

well defined in the coordinate space, this is more ambiguous for static correlation. Range-separated

DFT was originally formulated to describe static correlation by reproducing the accurate long-range

behaviour of the electron-electron interaction with WFT. However, static correlation can be purely

short-range, as shown on the dissociation of the hydrogen molecule [269, 270]. This static correlation,

manifested by the coupling between the |ϕα1σgϕ
β
1σg
| and |ϕα1σuϕ

β
1σu
| determinants, is correctly described

in range-separated DFT for even an infinitesimal µ value. But this correct description is due to the

residual contribution (at short-range) of the long-range interaction when r12 → 0, and has nothing

to do with the accurate recovering of the long-range behaviour [270]. Hence, the separation of the

electron-electron interaction into a short- and long-range part is questionable.

Alternatively, the correlation can be separated in the orbital space, as discussed in the following

section.
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1.3.2 CAS-DFT

The static correlation is usually accurately treated with CASSCF, while the orbitals outside of the

active space are not correlated, such that CASSCF is lacking of dynamical correlation. In analogy

with range-separated DFT, this correlation could be recovered by combining CASSCF with DFT,

thus leading to the so-called CAS-DFT. The CAS-DFT energy would be obtained variationally as

follows [271, 272]:

E0[v] = min
κ,S

{
〈ΨCAS(κ,S)|T̂ + Ŵee + V̂ |ΨCAS(κ,S)〉+ ECAS

c [nΨCAS(κ,S)]
}
, (1.183)

where ΨCAS(κ,S) is the CASSCF wavefunction in Sec. (1.1.7). Note that, in analogy with range-

separated DFT, standard DFAs cannot be used directly. In order to avoid double counting problem,

the complementary correlation functional ECAS
c [n] has to depend on the CAS and thus cannot be

universal. As a consequence, even though this approach looks attractive at first sight, CAS-DFT

is extremely difficult to implement in practice [273]. Note that a multiconfiguration pair-density

functional theory has been recently proposed and consists in computing the kinetic energy by WFT,

while the correlation energy is calculated using a functional of the electron density together with an

on-top pair density correction [274].

Along those lines, a rigorous method combining CI and DFT has been explored in 1988 by

Savin [275], so called CI-DFT. It consists in separating the correlation in the space of natural or-

bitals. The selection of the explicitly interacting orbitals is made by using a given threshold ν, with

0 ≤ ν ≤ 2. The natural orbitals with occupation greater than ν are treated by CI calculation, while

the remaining part is described by a ν-dependent DFA. More recently, Gutlé and Savin [276] proposed

alternative CI–DFT schemes, where the correlation energy is still split in the orbital space but through

the introduction of gap shift or cut-off parameters applied to the virtual orbitals. In these approaches,

a reference wavefunction is divided in two parts that are treated by different methods. The separa-

tion follows nicely the definition of the static and dynamical correlation provided by Becke [21], thus

leading to three different parts,

1. a low-energy part of the one-particle spectrum involving the highest occupied molecular orbital

(HOMO) and the lowest unoccupied molecular orbital (LUMO) that usually drive the chemical

reactivity and properties of the system,

2. high-energy excitations, less system-specific,

3. a mixing of low- and high-excitations.

For computational reason, the CI treatment is better suited to the first part which is defined in a

rather small orbital subspace. Moreover, this subspace is likely to contain nearly-degenerate partially
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occupied orbitals, known to be problematic in KS-DFT. On the other hand, the second part is usually

well described by KS-DFT while the wavefunction calculation becomes rapidly numerically unfeasible

as the size of the subspace increases.

In both CAS-DFT and in CI-DFT, the energy is split into wavefunction-functional and density-

functional contributions. The separation is achieved in the orbital space.

An alternative approach has been formulated very recently by Fromager [270], where the comple-

mentary correlation is recovered by a functional of the orbital occupation instead of the electronic

density. Because the static correlation is usually defined in the orbital space, one could expect the

separation of the correlation energy into WFT and DFT contributions to be easier to achieve in prac-

tice. In this context, the functional becomes a CAS-dependent functionals of the orbitals occupation.

The formulation of such an approach will be briefly discuss in Chapter 6.

Several different ways of merging WFT and DFT have been discussed already. All of these methods

are not standard in quantum chemistry for two main reasons. (1) They remain computationally

expensive, (2) they require the challenging development of new density functionals. Note that the

second point is related to the double counting problem and the fact that the standard DFAs cannot

be used. Instead of separating the electron interaction on the atoms by using a range separation,

let us consider a much larger system in which the electrons are interacting only in a small area and

treated by WFT. This area is “embedded” in the rest of the system treated by DFT, thus leading to

so-called embedding methods.

1.3.3 Wavefunction in Density Functional Theory Embedding

1.3.3.i DFT-in-DFT embedding

Consider a large system (extended system or molecule) out of reach by a pure WFT calculation, for

which only a small part of it contains the physics of interest. This small part could correspond to

impurities, vacancies, adsorbates on a solid, or even an active center in a molecule of chemical or

biological interest. Intuitively, one would like to treat only this small subsystem within a high-level

correlated method and the rest of the system with a low-level method, thus allowing (hopefully) for a

significant reduction of the computational cost while keeping an accurate description of the active part

of the system. Usually, the system will be decomposed in two parts. One is the small part containing

the active center called “cluster” and the other referred to as the environment [277]. The total energy
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is then decomposed as follows:

Etot = Eclu + Eenv + Eint, (1.184)

where Eint is the interaction energy between the cluster and the environment. Within DFT, the total

electronic density can be decomposed as ntot(r) = nclu(r) + nenv(r) [note that two out of the three

densities can be considered as independent], thus leading to separate energy contributions [278–280],

EA = Ts[nA] + EH[nA] + Exc[nA] + EA
ne[nA] + EA

nn, (1.185)

where A can denote the cluster part (clu), the environment (env) or the total system (tot). EA
ne is the

electron-nuclear attraction energy functional and EA
nn is the nuclear-nuclear repulsion energy of the

(sub)system A. The interaction energy can be written as the difference between the total energy and

the two separate subsystem energies,

Eint[ntot, nclu] = T int
s [ntot, nclu] + Eint

H [ntot, nclu] + Eint
xc [ntot, nclu] + Eint

ne [ntot, nclu] + Eint
nn , (1.186)

where

T int
s [ntot, nclu] = Ts[ntot]− Ts[nclu]− Ts[nenv], (1.187)

Eint
H [ntot, nclu] = EH[ntot]− EH[nclu]− EH[nenv] =

∫∫
nclu(r)nenv(r′)

|r− r′|
drdr′, (1.188)

Eint
xc [ntot, nclu] = Exc[ntot]− Exc[nclu]− Exc[nenv], (1.189)

Eint
ne [ntot, nclu] = Etot

ne [ntot]− Eclu
ne [nclu]− Eenv

ne [nenv]

=

∫
dr
(
vclu

ne (r)nenv(r) + venv
ne (r)nclu(r)

)
, (1.190)

Eint
nn = Etot

nn − Eclu
nn − Eenv

nn . (1.191)

Then, we would like to solve the cluster region by taking into account the environment through the

use of an embedding potential, functional of ntot(r) and nclu(r). This potential is updated iteratively

through the following self-consistent equation:

(
−1

2
∇2 + vs[nclu](r) + vemb[ntot, nclu](r)

)
ϕclu
i (r) = εiϕ

clu
i (r), (1.192)

where the embedding potential

vemb[ntot, nclu] = vTs
[ntot, nclu] + vH[ntot, nclu] + vxc[ntot, nclu] + vne[ntot, nclu] (1.193)
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is obtained by performing a functional derivative of Eint[ntot, nclu] with respect to nclu(r) with nclu(r)

and nenv(r) are considered independent. This consideration, which is not an approximation, leads to:

vTs
[ntot, nclu] =

δTs[ntot]

δntot(r)
− δTs[nclu]

δnclu(r)
, (1.194)

vH[ntot, nclu] =

∫
nenv(r′)

|r− r′|
dr′, (1.195)

vxc[ntot, nclu] =
δExc[ntot]

δntot(r)
− δExc[nclu]

δnclu(r)
, (1.196)

vne[ntot, nclu] = venv
ne (r). (1.197)

The Hartree, the electron-nuclear attraction potentials, and the xc contribution (which is usually

approximated as an explicit functional of the density) are straightforwardly determined. However, the

noninteracting kinetic energy is not known as an explicit functional of the density and is determined

by the KS orbitals. Therefore, the kinetic contribution in Eq. (1.187), also called nonadditive kinetic

energy, cannot be directly differentiated with respect to the density to get the potential in Eq. (1.194).

In practice, one can use explicit DFAs like the Thomas–Fermi approximation [277] [Eq. (1.79)], gradient

corrections [278–280], or the OEP technique [86, 281–283]. One way to get rid of the calculation

of the nonadditive kinetic energy functional is to ensure that the densities of each subsystem are

constructed from mutually orthogonal orbitals by level-shifting projections [284–287], so that Ts[ntot] =

Ts[nclu] + Ts[nenv].

This fragmentation of the system through a partitioning of the density is called DFT-in-DFT

embedding (from the notation “(high-level)-in-(low-level)” embedding theory), where the cluster is

treated by a high-level functional (typically a hybrid functional) while the environment is treated by

a low-level functional (typically LDA or GGA). This theory has been applied to the description of

chemical processes in solution by Wesolowski and Warshel [278]. Assuming that the densities nclu(r)

and nenv(r) are independent, one has to determine each of them separately. In the latter approach, so-

called Frozen Density Functional Embedding Theory [278], the density nenv(r) is constructed explicitly

by performing a DFT calculation on the isolated environment. This density is then kept frozen so

that only nclu(r) is updated in Eq. (1.192), and ntot(r) = nclu(r) + nenv(r). Of course, keeping

nenv(r) frozen is an approximation which appears to be non negligible when nenv(r) is significantly

smaller than ntot(r) everywhere in space. To overcome this issue, Wesolowski and Weber suggested

the freeze-and-thaw cycles [279] which consist in computing nclu(r) with the frozen nenv(r), then freeze

nclu(r) and determine nenv(r), and do this iteratively until the densities have converged. The total

electron density obtained by summation of nclu(r) and nenv(r) should be the same as the one obtained

from KS-DFT applied to the whole system, providing that the nonadditive kinetic energy is exactly
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known, which is of course not the case in practice. Although some progress on the development of

this approximate functional can be noted [288], it remains an important open challenge.

1.3.3.ii WFT-in-DFT embedding

An extension of the DFT-in-DFT embedding scheme to wavefunctions has then been suggested by

Carter and co-worker [280, 289], for the purpose of addressing problems such as chemisorption [280,

283, 290, 291] and point defects in semicondutors [292] which are not well described in DFT. The

approach is referred to as WFT-in-DFT embedding. In this approach, the density and the energy of

the cluster is determined in WFT, while the environment is still described in DFT. The embedding

potential remains the same as in Eq. (1.193) and is determined self-consistently by solving the following

many-body self-consistent equation [289]:

(
Ĥclu +

N∑
i=1

vemb[ntot, nclu](ri)×

)
Ψclu = EcluΨclu, (1.198)

where Ψclu is a many-body wavefunction with density nclu(r) and from which local properties of the

cluster can be extracted accurately. Eclu is the auxiliary energy of the cluster. Note that an alternative

way to compute the densities has been proposed, which consists in keeping ntot(r) (determined by

doing a KS-DFT calculation on the whole system) frozen instead of nenv(r) [280]. This WFT-in-DFT

scheme is more flexible than DFT-in-DFT as it allows the use of different wavefunction methods,

such as MP2, CI, CASSCF [290] and Coupled Cluster [293]. In the latter, calculation of localized

excited states in large systems have been performed. Note that the description of open-shell systems

by using a spin-dependent embedding potential [294] has been proposed, as well as the recovering of

local excited state properties by using time-dependent DFT within the DFT-in-DFT framework [295].

However, time-dependent DFT with local or semi-local approximate functionals is known to fail in

describing charge-transfer excitations [255, 256, 296], which can happen inside the cluster. Hence,

WFT-in-DFT is more appropriate in this context. One major problem related to the embedding

potential is its non-uniqueness [281–283] (i.e. different embedding potentials for the environment and

the embedded regions), because two different embedding potentials (both yielding the same density)

can yield different results, like different absorption energies [297]. Nevertheless, some recent progress

have been reported by constraining the embedding potentials to be the same in the cluster and the

environment [283], or by using finite temperature [297], or within the so-called partition DFT [288,

298, 299].

The latter approach differs from DFT-in-DFT and WFT-in-DFT in a sense that each fragment can

have a fractional number of electrons. Imagine a separation of the system in two where the frontier of
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the two subsystems is in between a covalent bond. Obviously the number of electrons would not be

integer anymore in each subsystem, thus lending weight to partition DFT. In this theory, the variable

becomes the collection of fragment densities {nα(r)}α which are allowed to integrate to a fractional

number of electrons [158]. The only constraint is that they have to sum up to the total electron

density. An extension of a WFT-in-DFT type method with fractional number of electrons in each

fragment remains an open question.

We have seen that the combination of WFT with DFT can be performed in several different ways.

In the WFT-in-DFT method, one has to define a specific area in which the electronic repulsion will

be treated by WFT. Therefore, one has to be careful when defining the partitioning of the system.

This is made much clearer in model Hamiltonians, in which the area becomes a number of sites which

occupations play the role of the electron density. Then, in the spirit of the adiabatic connection, a

mapping of the density is made between the physical system and the partially-interacting one. This

method, so-called site-occupation embedding theory (SOET) [72, 270, 300, 301], is the main topic of this

thesis and will be largely discussed in Chapter 3. As a proof of concept, a model Hamiltonian [302]

(the Hubbard model) is used rather than the realistic ab initio Hamiltonian. Because the model

Hamiltonians are commonly used in condensed matter physics, the next chapter aims to provide

an introduction to the electronic structure in this field. The so-called dynamical mean-field theory

(DMFT) as well as the density matrix embedding theory (DMET), which are closely related to SOET,

will be discussed as well. Another hybrid scheme is also proposed in Chapter 6, based on the separation

of the electron correlation in the basis of natural orbitals, using a seniority-zero reference wavefunction.



Chapter 2

Electronic Structure Theory in

Condensed-Matter Physics

Due to the presence of the electron-electron repulsion in the electronic Hamiltonian, solving the

Schrödinger equation is far from trivial, as demonstrated in the previous Chapter on quantum chem-

istry. Although methods have been proposed to give a numerical solution with a relatively manageable

computational cost, it is sometimes preferable to look at a simplified and solvable version of real com-

plex systems. This is the concept of model. Despite their apparent simplicity, models can capture the

physical effects of interest and give accurate approximations to real systems. A well-known example is

the uniform electron gas, where interacting electrons are in the presence of positive charges uniformly

distributed in space, which is used to construct LDA [114]. Obviously, this model is far from the

idea that we have of a molecule, or even a solid consisting of different types of atoms. For instance,

correlation effects induced by partially filled d- or f -bands in transition and rare-earth metals, often

bounded to oxygen atoms forming transition-metal oxide complexes, cannot be described in such a

model.

As stressed in Sec 1.2.1, standard KS-DFT is not adequate for the treatment of strongly correlated

materials. A few examples among others are the Mott-insulator phase in nickel oxide NiO [1, 303]

and titanium dioxide TiO2 [165], the manganese oxide compounds with perovskite structure like

LaMnO3 [1], the vanadium(III) oxide V2O3 [304, 305] and the high-Tc cuprates LaCuO4 [304, 306–

309] discovered in 1986 by Bednorz and Müller [310, 311]. They all depict a Mott-insulator transition,

i.e. they are predicted to be metallic by band theory (equivalent to molecular orbital theory for

extended systems) when the temperature tends to 0, whereas they are in fact insulators [312–314].

Note that different types of metal-insulator transitions exist, see Ref. [315] for a review. In this
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thesis, I will be interested in the Mott insulator, where the insulating state is due to strong electron

correlation. Mott-insulators are particularly interesting because a small change in the system leads

to dramatic modifications in its properties. Such phase transitions, leading to high-Tc cuprates and

colossal magnetoresistance in manganites, are controlled by Jahn–Teller effects, carrier doping, the

applied magnetic field, pressure and chemical composition. A review of these transitions is given in

Ref. [304].

Transition metal oxides are of various type, and remain an active and challenging research field,

such as the development of efficient nanodevices like molecular junctions for the design of solar (or pho-

tovoltaic) cells or also in homogeneous and heterogeneous catalysis [233]. These exotic electronic and

magnetic properties can be difficult to understand and to capture in theoretical physics. Therefore,

models have been developed in order to describe the key physical effects in these materials. Instead

of considering a model accounting for the delocalization of the electrons in the metal (large energy

bands), one needs to describe the electrons in the narrow energy bands related to the localization of

the d- or f -orbitals. While an atomic model would be sufficient to model f -electrons of rare earth

metals due to their extreme localization on the metal center, d-electrons need to be described by a

model that interpolates between delocalized (band model) and localized (atomic model) picture. Of

course, such a model does not reflect the true electronic behaviour of a real material, but it contains

the key ingredients to capture the right physics, at least qualitatively if not quantitatively.

Turning to the development of new methods for strongly correlated electrons, it appears important

to begin with such simplified models. Indeed, even if a theory which works on a model cannot be

straightforwardly applied to a real system, it is even more unlikely that a theory which does not

provide a correct description of the model will work on the real one ! This legitimates the use of

models, which remains challenging despite their apparent simplicity, like the two- or three-dimensional

Hubbard model.

In Sec. 2.1, the Hubbard model will be derived from the ab-initio Hamiltonian. In order to motivate

the use of this model, its connection with high-Tc superconductor cuprates (which properties are driven

by the Mott transition) is discussed in Sec. 2.1.3. Various limits of the model, leading to the tight-

binding, the Heisenberg and the t–J models, are given in Secs 2.1.4. DFT on the Hubbard model

[so-called site-occupation functional theory (SOFT)] is introduced in Sec. 2.2. Then, another model

mainly used in physics [so called the Anderson impurity model] which describes localized defects in a

solid is introduced in Sec. 2.3. Finally, two standard embedding techniques, the dynamical mean-field

theory (DMFT) and the density-matrix embedding theory (DMET), are presented in Sec. 2.4.
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Figure 2.1: Real part of the Bloch function (full line) and of the plane wave (dotted line). Black
circles represent atomic centers.

2.1 One-dimensional Hubbard model

For simplicity, only the one-dimensional Hubbard model is studied in this thesis.

2.1.1 From delocalized to localized orbitals

Starting with the model of a free electron gas in one dimension where electrons are completely delo-

calized, it is usual to use the “k-representation” instead of the “r-representation”,

|k〉 =
1√
2π

∫ +∞

−∞
dx eikx|x〉, (2.1)

where |k〉 is the quantum state of one electron with momentum k and |x〉 is the quantum state of one

electron at position x. The associated wavefunction,

ϕk(x) =
1√
2π
eikx, (2.2)

is a plane wave with momentum k. Note that if we work on a segment with length L, the renormal-

ization factor would be 1/
√
L instead of 1/

√
2π. While this model gives very useful physical insights

about metallic materials, it is not adequate to treat a finite system such as a molecule.

For a solid described by a unit cell with an infinite number of replica, plane waves are no longer

adequate and one should use Bloch functions instead,

ϕk(x) −→ Ψk(x) = uk(x)eikx, (2.3)

which combine a plane wave with a function uk(x) having the same periodicity as the solid (i.e. the

unit cell length). An illustration of the plane wave and the Bloch function is given in Fig. 2.1. To

get even closer to an atomic description of a crystal, one can use Wannier functions Φi(x) since they
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are localized and centered on the nuclei at position i. The Wannier functions form an orthonormal

basis set, i.e. 〈Φi|Φj〉 = δij , and are obtained by applying the inverse Fourier transform to the Bloch

functions:

Φj(x) =
1√
2π

∫
dk e−ikjΨk(x), (2.4)

where the integral over k runs over the Brillouin zone (i.e. the primitive cell in the momentum k-space).

Turning to a one-dimensional lattice of L atoms with one basis function per atom, the integral over

k is transformed into a finite summation. k runs over all the Brillouin zone in the range −π < k 6 +π,

with k = 2πm/L and m = −L/2 + 1,−L/2 + 2, . . . , L/2. The normalization factor is also changed

into 1/
√

2π → 1/
√
L, so that Eq. (2.4) becomes

Φj(x) =
1√
L

∑
k

e−ikjΨk(x), (2.5)

and the Bloch functions can be recovered by Fourier transform:

Ψk(x) =
1√
L

∑
j

eikjΦj(x). (2.6)

In second quantization, ĉ†kσ (ĉkσ) and ĉ
†
iσ (ĉiσ) denote the creation (annihilation) operators that create

(annihilate) an electron in the Bloch state |Ψk, σ〉 and in the Wannier state |Φi, σ〉, respectively,

|Ψk, σ〉 = ĉ†kσ|vac〉, |Φi, σ〉 = ĉ†iσ|vac〉. (2.7)

These operators are linked together by


ĉ†kσ =

1√
L

∑
j e

ikj ĉ†jσ, ĉkσ =
1√
L

∑
j e
−ikj ĉjσ,

ĉ†jσ =
1√
L

∑
k e
−ikj ĉ†kσ, ĉjσ =

1√
L

∑
k e

ikj ĉkσ.
(2.8)

Note that by using the following orthogonality identities,

1

L

∑
j

ei(k−k′)j = δkk′ ,
1

L

∑
k

eik(n−m) = δnm, (2.9)
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we can show that the anticommutation rules,

 {ĉkσ, ĉ
†
k′σ′} = δkk′δσσ′ , {ĉ†kσ, ĉ

†
k′σ′} = 0, {ĉkσ, ĉk′σ′} = 0

{ĉiσ, ĉ†jσ′} = δijδσσ′ , {ĉ†iσ, ĉ
†
jσ′} = 0, {ĉiσ, ĉjσ′} = 0,

(2.10)

still hold for these operators.

2.1.2 From the ab-initio Hamiltonian to the Hubbard model

The one-dimensional second-quantized electronic Hamiltonian reads as follows in k-space:

Ĥ =
∑
kσ

εk ĉ
†
kσ ĉkσ +

1

2

∑
k1k2k′1k

′
2

∑
σσ′

〈k1k2|k′1k′2〉ĉ
†
k1σ

ĉ†k2σ′
ĉk′2σ′ ĉk′1σ, (2.11)

where the two-electron integral equals, in the spin-restricted formalism,

〈k1k2|k′1k′2〉 =

∫∫
dxdx′

Ψ∗k1
(x)Ψ∗k2

(x′)Ψk′1(x)Ψk′2(x′)

|x− x′|
. (2.12)

Turning to the lattice system, it is convenient to use Wannier functions and to rewrite the Hamiltonian

in Eq. (2.11) using the inverse Fourier transform in Eq. (2.4):

Ĥ =
∑
ij

∑
σ

tij ĉ
†
iσ ĉjσ +

1

2

∑
ijkl

∑
σσ′

〈ij|kl〉ĉ†iσ ĉ
†
jσ′ ĉlσ′ ĉkσ, (2.13)

where

tij = −1

2

∫
dxΦ∗i (x)∇2Φj(x), (2.14)

is the hopping integral between lattice sites i and j, and

〈ij|kl〉 =

∫∫
dxdx′

Φ∗i (x)Φ∗j (x
′)Φk(x)Φl(x

′)

|x− x′|
. (2.15)

The hopping integral tij is also called the kinetic contribution, the electron itineracy, the tunnelling

amplitude, or the resonance integral. In any case, it accounts for the delocalization of the electrons

in the system.

No approximation has been made on the Hamiltonian in Eq. (2.13) so far. The main simplification

relies on considering that the orbitals centered on the atomic positions form an atomic shell with

smaller radius than the inter-atomic distance. Hence, only the largest value of 〈ij|kl〉 will be kept,

and is obtained when i = j = k = l. This two-electron integral will be denoted by U = 〈ii|ii〉. To
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further simplify the Hamiltonian, the overlap of orbitals that are not centered on neighbour atoms

are neglected. In addition, the hopping integral between the nearest neighbouring-sites is considered

constant, thus leading to tij = −t(δj(i+1) + δj(i−1)) where t > 0. By applying these approximations

to the Hamiltonian in Eq. (2.13), the so-called Hubbard Hamiltonian [316–319] is obtained,

Ĥ −→ T̂ + Û − µ̂,

= −t
∑
〈ij〉

∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓ − µ
∑
i

n̂i, (2.16)

where n̂i = n̂i↑ + n̂i↓ is the occupation operator on site i with n̂iσ = ĉ†iσ ĉiσ. The last term in

the Hamiltonian is the chemical potential µ which controls the electron filling in the system. It is

considered for grand canonical calculations, and omitted otherwise. In this model, t and U will be

used as parameters and are no more defined as one- and two-particle integrals. As we now work in a

localized basis, it looks like real space has been discretized into a grid of points, called sites, such that

|Φi〉 → |i〉. The sites form a basis set {|i〉}i=1,L, so that any one-electron state previously written in

the continuum (in position representation) now reads

|k〉 =

∫
dxϕk(x)|x〉 −→ |k〉 =

∑
i

ϕk(i)|i〉, (2.17)

where ϕk(i) is a discrete function of the site positions i = 1, . . . , L.

In general, the single-band Hubbard model is studied, meaning that only one orbital per site is

considered, which is physically relevant for the description of solids with only one energy band at the

Fermi surface. As a consequence, each site has only four configurations: empty (|vac〉), singly-occupied

(| ↑〉 or | ↓〉) and doubly-occupied (| ↑↓〉). An illustration of this model is given in Fig. 2.2. The ratio

U/t controls the importance of the localized electron picture over the delocalized one. Despite the

apparent simplicity of the model, an analytic solution exists only in the half-filled case (the number

of electrons equals the number of sites) in the thermodynamic limit (infinite number of sites). It is

obtained from the Bethe Ansatz, as shown by Lieb and Wu in 1968 [320]. Away from half-filling, the

exact solution based on the latter is found numerically.

The next section is devoted to the Mott-insulator state, responsible for the unusual properties of

some transition metal oxides, which can be described in the Hubbard model.
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Figure 2.2: One dimensional Hubbard model at half-filling corresponding to an insulator (top panel).
Carrier doping (of a hole or a particle) from the half-filled model introduces some metallicity (bottom
panel).

2.1.3 Mott insulators and the Hubbard model

The difference between a metal and an insulator was given almost ninety years ago [321–324] by the

theory of independent-electron (molecular orbital theory). If the highest occupied band is partially

filled, the material is a metal; if it is completely filled, the material is an insulator. In other words, the

Fermi level of an insulator lies in a gap between the highest filled band (valence band) and the lowest

empty band (conduction band), while it lies in the valence band for a metal. However, it has been

pointed out in 1937 by de Boer and Verwey that this independent-electron picture is not sufficient

to describe the transition-metal oxides with a partially-filled d band such as cubic nickel oxide [303,

325], which are Mott-insulators. Several discussions have followed to explain how the Mott-insulator

state is related to the electron-electron repulsion [312, 313, 326, 327]. In the following, I will focus

on the Mott insulator and its description within the Hubbard model, derived in 1964 to describe

electron correlation in narrow energy bands [316–319]. For pedagogical purposes, it is interesting to

discuss the two-dimensional Hubbard model which is related to the high-Tc cuprates, although the

one-dimensional case only is studied in this thesis. This discussion is illustrated in Fig. 2.3. According

to the definition given by the independent-electron picture, the single band model should always

predict a metallic state unless the valence band is completely filled. This is in fact not true, as shown

in the following.

Fig. 2.3 shows the p- and the d-bands in a solid. The left panel describes a Mott–Hubbard in-
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Figure 2.3: Representation of the Mott–Hubbard insulator (left panel) by the single-band Hubbard
model, and the charge-transfer insulator (right panel) in CuO2 plane by the multi-band Hubbard
model. Concerning the energy band diagrams at the bottom of each panel, the one on the left
corresponds to the noninteracting case while the one on the right corresponds to the interacting case
(U > 0).
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sulator, while the right panel describes a charge-transfer insulator. The distinction between the two

will be explained later in this section. Let us focus on the Mott–Hubbard insulator first. In the case

of the single band model, only the d-bands remain. Starting with the non interacting case (U = 0),

the model forms a single band where electrons can move freely, and thus describes a metal. The only

way to get an insulator would be to fill the band completely, until the electrons are motionless due to

the Pauli principle. This is the standard metal-insulator transition. By switching on the interaction

(U > 0), two electrons on the same site will repeal each other, thus splitting the band in two [328].

The lower band for electrons joining an empty site and the upper band for electrons joining an already

occupied site, thus leading to the double occupation of a site which necessitates an energy U . If the

lower band is completely filled, a competition between the delocalization induced by the hopping t

and the localization of the electron induced by U will prevent the electrons to occupy the same site.

The system can therefore switch from a metal to an insulator state for a given value Uc/t defining the

Mott-transition. For U > Uc, electrons are completely localized with one electron per site, and cannot

move because of the energy penalty to create a doubly occupied site. So the electronic motionlessness

is not due to the Pauli principle, but to the electron repulsion only. Away from half-filling, the elec-

trons will be able to jump on empty sites even if the repulsion U is huge. Such a carrier (particle or

hole) doping does introduce some metallization. Interestingly, reducing the dimension of the system

will diminish the critical value Uc for which the Mott-transition appears, because a low dimension does

not favour the motion of the electrons. In the drastic one-dimensional case, the Hubbard model is a

Mott-insulator for any U > 0 [320], so that it does not manifest a Mott-insulator transition anymore.

However, there is still a charge gap opening, present at half-filling only. Hence, the one-dimensional

Hubbard model still exhibits a transition, which is called a “density-driven” Mott transition [329].

Let us now discuss the charge-transfer insulator by making a link between this simplified model

and the transition metal oxides. Transition metal oxides depict narrow d- bands and the Wannier

orbitals are well localized, satisfying the Hubbard assumption to neglect the non-local interactions

and to consider hopping between first neighbour only. Taking high-Tc La2CuO4 as an example, the

Mott-insulating phase is dominated by the d9 configuration of Cu. Indeed, the high-level splitting

of the d-orbitals due to Jahn–Teller effect tells us that all d-band are filled except dx2−y2 which is

half-filled and is the only relevant orbital to be considered. Hence, considering the isolated dx2−y2-

band only is a good starting point for the study of high-Tc cuprates. In other words, the single-band

approximation of the Hubbard model is relevant in this case [304]. However, this approximation does

neglect the hybridization effect between the d-band of the metal and the p-band of the oxygen atoms,

which appears to be important in transition metal oxides. These materials are called “charge-transfer”



72
ELECTRONIC STRUCTURE THEORY IN CONDENSED-MATTER

PHYSICS

insulators rather than Mott-Hubbard insulators [330, 331], because the lowest excitation gap is now

between the (fully occupied) p-band of the oxygen and the (unoccupied) d-band of the transition

metal. As illustrated in the right panel of Fig. 2.3, the overlap between the p-bands of the oxides and

the d-band of the metal cannot always be neglected. Thus, one has to consider an additional parame-

ter ∆ = εd− εp, and the single-band approximation cannot give a proper description of such systems.

The multi-band Hubbard model [315] has to be considered to model charge-transfer insulators. For

instance, a two-band model is needed to describe the cubic nickel oxide NiO, and a three-band model

for the cuprate plane CuO2 (one d-band for the Cu and one p-band for each oxygen, called also the

d − p model [304]). Despite the fact that they are charge-transfer insulators, cuprates can still be

approximated by an effective single-band model [331, 332].

Let us now investigate the noninteracting limit (U = 0) and the strongly correlated limit (t� U)

of the Hubbard model.

2.1.4 Connection between Hubbard and simpler model Hamiltonians

2.1.4.i The tight-binding or Hückel model (the U = 0 limit)

By setting U = 0 in the Hubbard model [Eq. (2.16)], the tight-binding model is recovered,

Ĥ −→ −t
∑
〈ij〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
− µ

∑
i

n̂i, (2.18)

leading to the (L× L) Hamiltonian matrix representation in the sites basis:

[
Ĥ
]

=



−µ −t 0 0 · · · 0 −t

−t −µ −t 0 · · · 0 0

0 −t −µ −t · · · 0 0

0 0 −t −µ · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · −µ −t

−t 0 0 0 · · · −t −µ


(2.19)

which is nothing but Hückel theory. Note that periodic boundary conditions have been used in

Eq. (2.19), given by the additional −t term in the upper right and lower left elements of the matrix,

which is simply included in the Hamiltonian by setting ĉ†L+1 = ĉ†1. This Hamiltonian can be diag-

onalized in the Bloch basis by using the canonical transformation of the creation and annihilation
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Figure 2.4: Energy dispersion εk = −2t cos(k) of the tight-binding model plotted in the one-
dimensional Brillouin zone for 12 sites at half-filling. The Fermi momentum kF is the momentum
associated with the Fermi energy corresponding to the chemical potential µ.

operators in Eq. (2.8), together with Eq. (2.9), leading to:

Ĥ =
∑
kσ

(εk − µ)ĉ†kσ ĉkσ, (2.20)

where the εk = −2t cos(k) is the dispersion relation. The bandwidth, defined as the difference between

the maximum and the minimum of εk, equals to 4t as shown in Fig. 2.4.

2.1.4.ii t–J model and Heisenberg model for t� U

Turning to the strongly correlated limit t� U , the hopping term in the Hubbard model can be treated

as a perturbation of the electronic repulsion. The second-order perturbation expansion at half-filling

leads to the Heisenberg model [333, 334],

ĤHeisenberg = J
∑
〈ij〉

Si.Sj = J
∑
〈ij〉

(
Ŝ−i Ŝ

+
j + Ŝ+

i Ŝ
−
j + Ŝzi Ŝ

z
j

)
, (2.21)

where Ŝ+
i = ĉ†i↑ĉi↓, Ŝ

−
i =

(
Ŝ+
i

)†
= ĉ†i↓ĉi↑ and Ŝ

z
i = 1

2 (n̂i↑ − n̂i↓) are spin operators. J = 4t2/U is the

antiferromagnetic exchange constant. Note that there is no more non local term in the Hamiltonian, as

it would create “doubly-occupied-site” states that are prohibited in the limit t� U for the ground state

at half-filling. This model describes the super-exchange interaction between antiparallel spins, while

the interaction between parallel spins is forbidden by Pauli principle (the electron-electron repulsion
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is only on-site in this model, and two electron of same spin cannot be in the same site). The term

super-exchange comes from the process of virtual double occupation:

| ↑, ↓〉 hopping−−−−−→

 | ↑↓, vac〉

|vac, ↑↓〉

 hopping−−−−−→ | ↓, ↑〉. (2.22)

which can be mediated by the oxygen atom separating two metallic centers in transition metal oxides.

A generalization of this model away from half-filling (particularly interesting to study carrier doping

leading to high-Tc cuprates for instance) is provided by the so-called t–J model, which reintroduces

the hopping integral t thanks to the creation of free charge carriers (particles or holes):

Ĥt−J = −t
∑
〈ij〉σ

P̂
(
ĉ†iσ ĉjσ + h.c.

)
P̂ + ĤHeisenberg, (2.23)

where P̂ is a projector that prohibits the double occupation of sites. Those two Hamiltonians allow

the study of magnetic properties of strongly correlated materials.

2.1.4.iii The Hubbard dimer

In order to have a better understanding of the physics involved in the Hubbard model, it is appealing

to reduce the size of the system. In the thermodynamic limit at half-filling, an analytical solution

is given by Bethe Ansatz [320]. Another analytical solution exits for the two-site Hubbard model,

called the Hubbard dimer, for which the exact eigenvectors and eigenvalues are known. This section

is first dedicated to the symmetric case, in the weakly correlated (U = 0) and strongly correlated

(U � t) limits, followed by the study of the asymmetric Hubbard dimer. The half-filled case (N = 2)

is considered.

Symmetric Hubbard dimer

The Hamiltonian of the symmetric Hubbard dimer is given by

Ĥ = −t
∑
σ

(
ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ

)
+ U

∑
i=0,1

n̂i↑n̂i↓. (2.24)

In the case of the singlet subspace (S = 0), the system is described by three states,

1√
2

(
ĉ†0↑ĉ

†
1↓ − ĉ

†
0↓ĉ
†
1↑

)
|vac〉, ĉ†0↑ĉ

†
0↓|vac〉, ĉ†1↑ĉ

†
1↓|vac〉, (2.25)
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conveniently rewritten as

1√
2

(| ↑0, ↓1〉 − | ↓0, ↑1〉) , | ↑↓0, vac1〉, |vac0, ↑↓1〉. (2.26)

It leads to the following Hamiltonian matrix representation,

[
Ĥ
]
≡


0 −

√
2t −

√
2t

−
√

2t U 0

−
√

2t 0 U

 , (2.27)

which gives after diagonalization,

[
Ĥ
]
≡


(
U −

√
U2 + 16t2

)
/2 0 0

0 U 0

0 0
(
U +

√
U2 + 16t2

)
/2

 . (2.28)

Turning to S = 1, the triplet subspace is spanned by the states:

1√
2

(| ↑0, ↓1〉+ | ↓0, ↑1〉) , | ↑0, ↑1〉, | ↓0, ↓1〉, (2.29)

which all have zero energy. In the U = 0 limit, the whole spectrum is {−2t, 0, 2t} and the associated

wavefunctions are

|ΨS=0
0 〉 =

1

2

[(
| ↑0, ↓1〉 − | ↓0, ↑1〉

)
+
(
| ↑↓0, vac1〉+ |vac0, ↑↓1〉

)]
,

|ΨS=0
1 〉 =

1√
2

(
| ↑↓0, vac1〉 − |vac0, ↑↓1〉

)
, (2.30)

|ΨS=0
2 〉 =

1

2

[(
| ↑0, ↓1〉 − | ↓0, ↑1〉

)
−
(
| ↑↓0, vac1〉+ |vac0, ↑↓1〉

)]
,

where ΨS=0
1 is degenerate with the triplet states. Because the Coulomb repulsion U can be interpreted

as an energy penalty for having two electrons on the same site, we expect the coefficients for the

“doubly-occupied-site” states in ΨS=0
0 to decrease with U , contrary to the “singly-occupied-site” states.

Indeed, in the strongly correlated regime (U � t), the diagonalized Hamiltonian matrix restricted to

the singlet states reads

[
Ĥ
]

=


−4t2/U 0 0

0 U 0

0 0 U + 4t2/U

 , (2.31)
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so that the spectrum is {−4t2/U, 0, U, U + 4t2/U} in the strongly correlated limit. The energy 0

comes from the triplet while the singlet energies are −4t2/U , U and U + 4t2/U with the associated

wavefunctions,

|ΨS=0
0 〉 =

1√
2

(
| ↑0, ↓1〉 − | ↓0, ↑1〉

)
,

|ΨS=0
1 〉 =

1√
2

(
| ↑↓0, vac1〉 − |vac0, ↑↓1〉

)
,

|ΨS=0
2 〉 =

1√
2

(
| ↑↓0, vac1〉+ |vac0, ↑↓1〉

)
, (2.32)

respectively. It is clear from Eqs. (2.30) and (2.32) that increasing U reduces “double-occupied-site”

states in the ground state. Note also that there is no charge fluctuation in the ground state of the

strongly correlated limit in contrast to the U = 0 case, thus revealing the connection between U and

the localization of the electrons.

Asymmetric Hubbard dimer

In the symmetric model, the site occupation was equal to 1 on each site. If one wants more

flexibility in the model, different on-site potentials can be introduced, thus leading to the asymmetric

Hubbard dimer with Hamiltonian

Ĥ = −t
∑
σ

(
ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ

)
+ U (n̂0↑n̂0↓ + n̂1↑n̂1↓) + v0n̂0 + v1n̂1. (2.33)

For convenience, we choose v0 + v1 = 0 and denote ∆v = v1 − v0 which gives (for two electrons),

Ĥ = −t
∑
σ

(
ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ

)
+ U (n̂0↑n̂0↓ + n̂1↑n̂1↓) + ∆v(1− n̂), (2.34)

where n̂ = n̂0 = 2− n̂1. This model is a very good laboratory for testing new methods. It can describe

various regimes of density and correlation by varying U , t and ∆v. We have already discussed the

competition between localization and delocalization dictated by the ratio U/t. It is shown in Fig. 2.5

how the insertion of a new parameter ∆v affects this competition for U � t. On the left panel of

Fig. 2.5, U/∆v > 1 and the electron-electron repulsion prevents the electron to be on the same site,

such that the occupation is strictly 1 on each site, thus featuring a Mott-Hubbard insulator state. On

the right panel, U/∆v < 1 such that the difference of potential dominates and the electrons tend to

be on the same site (charge-transfer insulator).

This model is solvable exactly. The exact energies Ei are determined by solving the following
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Figure 2.5: Mott-Hubbard and charge-transfer insulators depending on the ratio U/∆v for U �
t. Horizontal black lines represent spin orbitals. The red arrows represent the coulomb repulsion
magnitude U and the green arrows the difference in on-site potential ∆v. Black arrows are the
electrons with spin ↑ and ↓. This figure is inspired from Ref. [335].

third-order polynomial equation,

−4t2U +
(
4t2 − U2 + ∆v2

)
Ei + 2UE2

i = E3
i , (2.35)

which leads to [335]

Ei =
2U

3
+

2r

3
cos

(
θ +

2π

3
(i+ 1)

)
, i = 0, 1, 2 (singlet states)

Ei = 0, i = 3, 4, 5 (triplet state), (2.36)

where

r =
√

3 (4t2 + ∆v2) + U2, (2.37)

and

θ =
1

3
arccos

[
9U
(
∆v2 − 2t2

)
− U3

r3

]
. (2.38)

According to the Hellmann-Feynman theorem, we have access to the density (i.e. the occupation on
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site 0) of the ith state,

ni = 1− ∂Ei
∂∆v

, (2.39)

and the one-particle density matrix,

γi =

 ni γi01

γi10 2− ni

 , γi01 = −1

2

∂Ei
∂t

. (2.40)

The double occupation are not the same on site 0 and site 1, but they can still be obtained exactly

by rewriting the asymmetric Hubbard dimer with two different on-site electron-repulsion parameters

U0 and U1,

Ĥ = −t
∑
σ

(
ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ

)
+ U0n̂0↑n̂0↓ + U1n̂1↑n̂1↓ + ∆v (1− n̂) . (2.41)

Its associated energies Ei(U0, U1,∆v) can be obtained by considering an effective physical system such

that [72]:

Ueff −∆veff = U0 −∆v,

Ueff + ∆veff = U1 + ∆v, (2.42)

or, equivalently,

Ueff =
U0 + U1

2
,

∆veff = ∆v +
U1 − U0

2
, (2.43)

thus leading to

Ei(U0, U1,∆v) = Ei((U0 + U1)/2,∆v + (U1 − U0)/2). (2.44)

According to the Hellmann–Feynman theorem, the expressions for the double occupations read



di0 = 〈n̂0↑n̂0↓〉 =
∂Ei
∂U0

=
1

2

∂Ei
∂U

∣∣∣∣
U=(U0+U1)/2

− 1

2

∂Ei
∆v

=
1

2

(
∂Ei
∂U

∣∣∣∣
U=(U0+U1)/2

− (1− n)

)
,

di1 = 〈n̂1↑n̂1↓〉 =
∂Ei
∂U1

=
1

2

∂Ei
∂U

∣∣∣∣
U=(U0+U1)/2

+
1

2

∂Ei
∆v

=
1

2

(
∂Ei
∂U

∣∣∣∣
U=(U0+U1)/2

+ (1− n)

)
.

(2.45)
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The various derivatives can be expressed as follows, simply obtained by differentiating Eq. (2.35):

∂Ei
∂t

=
8t(U − Ei)

−3E2
i + 4UEi + 4t2 − U2 + ∆v2

,

∂Ei
∂∆v

=
−2∆vEi

−3E2
i + 4UEi + 4t2 − U2 + ∆v2

, (2.46)

∂Ei
∂U

=
4t2 + 2Ei(U − Ei)

−3E2
i + 4UEi + 4t2 − U2 + ∆v2

.

In the ground state of the symmetric case, the site occupation is equal to n = 1, the off-diagonal density

matrix element γ01 = 4t/U and the double occupation d = (1− U/U)/4, where U =
√
U2 + 16t2.

In addition to be solvable analytically, this model has been proven very helpful in understanding

deficiencies of DFAs, for example in the description of strong electron correlation. It has also been

used to test new ideas as a proof of concept. For example, one can cite the use of ensembles in

RDMFT [218], the benchmark of functionals in RDMFT [203, 336, 337], and the development of al-

ternative formulations of DFT such as lattice DFT [335, 338], site-occupation embedding theory [72,

270], thermal DFT [339], ensemble DFT [73–75, 340], and DFT beyond the Born–Oppenheimer ap-

proximation [341].

2.2 Site-Occupation Functional Theory

The site-occupation functional theory (SOFT), also called lattice DFT, is the discretized version of

conventional real-space DFT. In this section, I will focus on the theory originally formulated by Gun-

narsson and Schönhammer [342, 343] and on the Bethe ansatz local density approximation (BALDA).

It is worth mentioning that extensions have been investigated over the past few years by including

time- [344–346] and temperature-dependence [347, 348], as well as the steady current in connection

with steady-state transport [349, 350].

2.2.1 Density Functional Theory on a lattice

Consider a one-dimensional lattice with L sites forming a discretized space. The sites can be associated

to orthonormal orbitals centered on each nucleus (Wannier orbitals). Electron evolving on this lattice

can be described by the one-band Hubbard model in Eq. (2.16) where, for sake of generality, we

introduce an additional external potential v ≡ {vi}i,

Ĥ = T̂ + Û + V̂ ,

= −t
∑
〈ij〉

∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓ +
∑
i

vin̂i. (2.47)
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In such a system, the most intuitive analogue of the density n(r) in real space is the collection of site

occupations from which a site-occupation vector n ≡ {ni}i can be constructed as follows,

n(r) =

〈∑
σ

Ψ̂†(x)Ψ̂(x)

〉
−→ ni =

〈∑
σ

ĉ†iσ ĉiσ

〉
, (2.48)

where ni denotes the number of electrons on the ith site (or ith localized orbital). One may wonder if

the Hohenberg–Kohn theorem is still valid in this context. DFT on a lattice has been first introduced

by Chayes in 1985 [351], followed by the work of Gunnarsson and Schönhammer [342] in 1986 who

showed that there is indeed a one-to-one correspondence between the external on-site potential and

the site-occupation vector in the Hubbard model. Therefore, the variational principle,

E0(v) = min
n

{
F (n) + (v|n)

}
, (2.49)

still holds, where (v|n) =
∑
i vini and the minimization is performed over the site-occupation vector

instead of the spatial density n(r). F (n) is the analogue of the Hohenberg–Kohn functional in DFT.

It reads as follows within the Levy–Lieb constrained search formalism:

F (n) = min
Ψ→n

{
〈Ψ|T̂ + Û |Ψ〉

}
. (2.50)

Strictly speaking, F (n) is a function and not a functional of the site occupations, given that the site-

occupation vector is just a collection of discrete numbers. Nevertheless, the standard DFT terminology

will be used for convenience. As the Hohenberg–Kohn theorem is also valid for U = 0, we can

decompose the Hohenberg–Kohn functional as follows (in analogy with KS-DFT):

F (n) = Ts(n) + EHxc(n), (2.51)

where the Hxc energy functional is t- and U -dependent, but it remains universal in a sense that it

does not depend on the external potential v. In the KS decomposition in Eq. (2.51), the hopping

plays the role of a noninteracting kinetic energy,

Ts(n) = min
Ψ→n

{
〈Ψ|T̂ |Ψ〉

}
, (2.52)

thus leading to the alternative formulation of the variational principle,

E0(v) = min
n

{
min
Ψ→n

{
〈Ψ|T̂ |Ψ〉

}
+ (v|n) + EHxc(n)

}
, (2.53)
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or, equivalently,

E0(v) = min
Ψ

{
〈Ψ|T̂ |Ψ〉+ (v|nΨ) + EHxc(nΨ)

}
. (2.54)

The minimizing wavefunction in Eq. (2.54) is a monodeterminantal wavefunction satisfying the fol-

lowing self-consistent equation,

(
T̂ +

∑
i

[
vi +

∂EHxc(nΦKS

)

∂ni

]
n̂i

)
|ΦKS〉 = EKS|ΦKS〉, (2.55)

where [vi+∂EHxc(n)/∂ni] is the KS potential denoted by vKS
i (n). This potential is responsible for the

recovering of the same density than the physical system. If we denote by {ϕk}k the occupied orbitals

in ΦKS, they fulfil the following equation (in matrix representation):



vKS
0 −t 0 0 · · · 0 −t

−t vKS
1 −t 0 · · · 0 0

0 −t vKS
2 −t · · · 0 0

0 0 −t vKS
3 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · vKS
L−2 −t

−t 0 0 0 · · · −t vKS
L−1


.



ϕk(i = 0)

ϕk(i = 1)

ϕk(i = 2)

ϕk(i = 3)

...

ϕk(i = L− 2)

ϕk(i = L− 1)


= εk



ϕk(i = 0)

ϕk(i = 1)

ϕk(i = 2)

ϕk(i = 3)

...

ϕk(i = L− 2)

ϕk(i = L− 1)


, (2.56)

where the density dependence in the KS potential has been dropped for clarity. This matrix repre-

sentation can be expressed in a more compact equation that reads

L∑
j=1

(
−tij +

[
vi +

∂EHxc(nΦKS

)

∂ni

]
δij

)
ϕk(j) = εkϕk(i), (2.57)

with tij = t for j = i ± 1 and tij = 0 otherwise. Note that the site occupations for a closed-shell

system are recovered from the KS orbitals ϕk(i) as follows,

ni = 2

occ∑
k

|ϕk(i)|2, (2.58)

where ϕk(i) are either doubly or not occupied in ΦKS, and form the basis in which the N -electron

wavefunction is written as a single Slater determinant. However, the N -electron wavefunction in the

basis of sites {|i〉}i is multideterminantal.
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The one-electron state in the basis of KS orbitals are related to the one-electron state of the basis

of sites as follows,

|ϕk, σ〉 =

L−1∑
i=0

ϕk(i)|i, σ〉, (2.59)

or, in second quantization,

ĉ†kσ =

L−1∑
i=0

ϕk(i)ĉ†iσ. (2.60)

Therefore, while the KS orbitals are only not occupied or doubly occupied, the sites can be fractionally

occupied.

It is important to distinguish SOFT from the other functional theories applied to the Hubbard model,

where other quantities are used as basic variables [302]. In analogy with RDMFT, one can consider

the 1RDM γij as variable,

γij =

〈∑
σ

ĉ†iσ ĉjσ

〉
, (2.61)

as done by Pastor and co-workers [352–357]. Interestingly, one can recover the electronic density in

real space n(r) within this formalism [216, 302] (see Appendix D),

n(r) =

〈∑
σ

Ψ̂†(x)Ψ̂(x)

〉
=
∑
ijσ

ϕ∗i (r)ϕj(r)
〈
ĉ†iσ ĉjσ

〉
, (2.62)

where {ϕi(r)}i are Wannier orbitals in this context. Using the whole 1RDM as a basic variable is

appealing for various reasons. First of all, the kinetic energy is obtained exactly in terms of tij and

γij , in analogy with RDMFT. Therefore, the Hxc functional in this theory is tij- and v-independent,

and is in a sense more universal than the v-independent only Hxc functional in SOFT. However, it

remains U -dependent, as in standard DFT where the Hxc functional depends on the coulomb inter-

action. Besides, it has been shown in the early work of Schindlmayr and Godby [216] that the 1RDM

is not noninteracting v-representable, like in RDMFT. As a consequence, the KS-type scheme cannot

be straightforwardly derived. In summary, SOFT and the latter theory developed by Pastor and co-

workers are the analogues of the real-space DFT and real-space RDMFT, expressed in a discretized

real-space (a lattice of sites), respectively.

Returning to SOFT, the minimizing wavefunction in Eq. (2.54) is not expected to reproduce

anything else than the diagonal of the 1RDM. However, the Hxc energy functional and its derivatives
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allow to recover all the properties of the system, in principle1, even the two-body correlation functions

such as the double occupation and of course the ground-state energy [Eq. (2.54)]. As an illustration,

let us consider the uniform half-filled case where γii = 1 for any value of U/t. For such a system,

the density does not provide any information to discern between weakly and strongly correlated

states. This difference is governed by the off-diagonal elements of the density matrix, representing

the orbital overlaps and the competition between localization (strong correlation) and delocalization

(weak correlation) of the electrons. For instance for the symmetric half-filled Hubbard dimer,

γ̂Ψ =

 1 γΨ
01

γΨ
10 1

 U/t=0−−−−→

1 1

1 1


U/t→+∞−−−−−−→

1 0

0 1

 , (2.63)

where Ψ is the exact ground-state wavefunction of the dimer. As readily seen in Eq. (2.63), the

off-diagonal elements depend on U/t. In SOFT, the repulsion between the electrons is effectively

accounted for by a local potential, functional of the density. As a consequence, the off-diagonal

elements remain unchanged when U varies, in contrast to the exact one-particle density matrix in the

basis of sites,

γ̂ΦKS

=

1 1

1 1

 . (2.64)

Because SOFT is a monoconfigurational method, it is also obvious that the double occupation 〈n̂↑n̂↓〉

cannot be reproduced directly from the KS determinant. However, any observable is in principle a

functional of the density. According to the Hellmann–Feynman theorem in Eq. (2.45) for the double

occupation, it comes, in KS-SOFT for the symmetric Hubbard dimer,

d =
1

2

∂EHxc(n)

∂U
, (2.65)

and for the off-diagonal elements of the density matrix [see Eq. (2.40)],

γ01 = −1

2

(
∂Ts(n)

∂t
+
∂Ec(n)

∂t

)
. (2.66)

The numerical proof of these statements is given in Fig. 2.6 for the two-electron Hubbard dimer, for

which a very accurate parametrization of the correlation energy has been proposed by Carrascal et al.

1In practice, as the theory is currently formulated, one cannot extract dynamical (time-dependent) properties but
only static ground-state properties.
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Figure 2.6: Exact off-diagonal element of the 1RDM (left) and double occupation (right) of the
Hubbard dimer compared to Eqs. (2.66) and (2.65), respectively.

(see Eqs. (102)-(115) in Refs. [335, 358]). The derivatives of the Hxc energy functional with respect

to U and t used to generate the curves in Fig. (2.6) are provided in the Appendix G.

Returning to the L-site uniform 1D model, the Hxc functional is simplified as follows in the mean-

field approximation for the singlet ground state,

EHxc(n)→ U

4

∑
i

n2
i , (2.67)

which is called the Hartree energy by physicists, so that the exchange contribution is equal to 0 for

the Hubbard model. Indeed, for the one-band model, there is only one orbital per site, and given

that the interaction is on-site, only electrons with opposite spin interact with each other. However, in

quantum-chemical terminology, Eq. (2.67) is called the Hartree-exchange energy, which is decomposed

as follows,

EHx(n) = EH(n) + Ex(n) =
U

4

∑
i

n2
i , (2.68)

EH(n) =
U

2

∑
i

n2
i , (2.69)

Ex(n) =
U

4

∑
i

n2
i − EH(n). (2.70)

The correlation part remains unknown, except in some particular cases, and reads

Ec(n) = F (n)− Ts(n)− U

4

∑
i

n2
i . (2.71)
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2.2.2 Bethe Ansatz Local Density Approximation

In order to find approximations for the correlation energy in this context, it is useful to refer to a

reference system for which exact (or highly accurate) solutions can be found. For instance, the uniform

electron gas (UEG) has led to the famous local density approximation (LDA) in KS-DFT. Within

LDA, the xc energy of any inhomogeneous system is approximated locally in space by that of the

UEG. In the context of SOFT, the reference system is the one-dimensional uniform Hubbard model,

for which an exact Bethe ansatz (BA) solution exists [320] in the thermodynamic limit. It is obtained

from two coupled equations:

ρ(x) =
1

2π
+

cosx

π

∫ +∞

−∞
dy

u/4

(u/4)2 + (y − sinx)2
σ(y), (2.72)

σ(y) =
1

π

∫ +Q

−Q
dx

u/4

(u/4)2 + (y − sinx)2
ρ(x)− 1

π

∫ +∞

−∞
dy′

u/2

(u/2)2 + (y − y′)2
σ(y′), (2.73)

where n = N/L is the filling factor (the uniform density in the language of SOFT) and u = U/t the

dimensionless coupling constant. The parameter Q in Eq. (2.73) is determined from the normalization

condition
∫ +Q

−Q dxρ(x) = n while σ(y) is normalized according to
∫ +∞
−∞ dyσ(y) = n/2. The ground-state

per-site energy is then given by

eBA(n 6 1, u) = −2t

∫ +Q

−Q
dxρ(x) cosx. (2.74)

In some particular cases, a simpler analytical expression can be obtained. In the noninteracting case

(u = 0), the ground-state per-site energy reduces to the noninteracting per-site kinetic energy,

eBA(n 6 1, u = 0) = tBA
s (n 6 1) = −4t

π
sin
(nπ

2

)
(2.75)

and for any positive value of u at half-filling (n = 1), the system becomes a Mott insulator with

per-site energy

eBA(n = 1, u) = −4t

∫ +∞

0

dx
J0(x)J1(x)

x (1 + exp(xu/2))
, (2.76)

where J0(x) and J1(x) are zero- and first-order Bessel functions. The two metallic regions n < 1 and

n > 1 are connected by a hole-particle symmetry relation that reads

eBA(n > 1, u) = eBA(2− n, u) + U(n− 1). (2.77)
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Regarding the expression of the correlation energy,

eBA
c (n, u) = eBA(n, u)− eBA(n, u = 0)− U

4
n2, (2.78)

where (U/4)n2 is the per-site Hx energy, and using Eq. (2.77), it comes

eBA
c (2− n, u) = eBA

c (n, u), (2.79)

so that the per-site correlation energy is invariant under hole-particle symmetry.

In order to have an analytical expression for any density regime, Lima et al. proposed a local

density approximation based on the BA. This so-called Bethe ansatz local density approximation

(BALDA) [359–361] leads to the following per-site energy expression,

eBALDA(U, n ≤ 1) =
−2tβ(U/t)

π
sin

(
πn

β(U/t)

)
, (2.80)

where the function β(U/t) is determined by solving

−2β(U/t)

π
sin

(
π

β(U/t)

)
= −4

∫ ∞
0

dx

x

J0(x)J1(x)

1 + exp
(
U
2tx
) . (2.81)

This approximation is exact in the thermodynamic limit for U/t = 0 and U/t → +∞ at any filling,

and for any U/t at half-filling (n = 1). Plugging Eq. (2.80) into Eq. (2.78) gives the BALDA per-site

correlation energy,

eBALDA
c (n, u) = eBALDA(n, u)− eBALDA(n, u = 0)− U

4
n2, (2.82)

which has been shown to give very accurate density and energy profiles [359–361]. Promising exten-

sions have also been developed, including the spin-dependent BALDA [362] and its fully numerical

formulation [363, 364], with application on both the repulsive [365, 366] (U > 0) and attractive [367,

368] (U < 0) Hubbard models.

In spite of the aforementioned performances of the BALDA approximation, it depicts a wrong

behaviour around U = 0 away from half-filling, which appears to be important for the calculation

of the double occupation in Eq. (2.65). Indeed, since β(0) = 2 and ∂β(U/t)/∂U |U=0 = −π/(8t) it
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comes, for n ≤ 1,

∂eBA
c (n)

∂U

∣∣∣∣
U=0

=
1

4

[
sin
(πn

2

)
− n2

]
− nπ

8
cos
(πn

2

)
,

(2.83)

and, consequently,

∂

∂n

∂eBA
c (n)

∂U

∣∣∣∣
U=0

=
nπ2

16
sin
(πn

2

)
− n

2
. (2.84)

As readily seen from Eqs. (2.83) and (2.84), both BALDA correlation energy and potential will vary

linearly with U in the weakly correlated regime for n < 1, which is of course unphysical. The

manifestation of this unphysical behaviour on the double occupation will be illustrated latter in

Chap. 3 [see Fig. 3.16] showing that, away from half-filling, the BALDA approximation within SOFT

systematically underestimates the double occupation in the weakly-correlated regime.

2.2.3 Derivative discontinuity and density-driven Mott transition

Interestingly, the exact correlation potential ∂ec(n)/∂n should depict a discontinuity at half-filling,

which is related to the opening of the charge gap [359]. It can be shown by looking at the atomic

limit (t = 0), where the fully-interacting L-site uniform Hubbard Hamiltonian reads,

Ĥ(n) = Û + v(n)
∑
i

n̂i, (2.85)

with v(n) chosen to reproduce the uniform density profile with density n. Starting from the half-

filling situation (L electrons or, equivalently, n = 1), we can add an electron in order to investigate

the behavior of v(n) when n→ 1+. In order to have a total number of electrons varying continuously

from L to L + 1 or, equivalently, 1 < n < (L + 1)/L, the L- and (L + 1)-electron ground states of

Ĥ(n) must be degenerate, thus leading to the following condition,

Lv(n) = (L+ 1)v(n) + U, (2.86)

or, equivalently, v(n) = −U . Therefore we conclude that, in the thermodynamic limit (L→ +∞),

v(n)|n=1+ = −U. (2.87)
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On the other hand, if we consider the removal of an electron, the density can vary continuously in the

range (L − 1)/L < n < 1 if the (L − 1)- and L-electron ground states of Ĥ(n) are degenerate, thus

leading to the condition (L− 1)v(n) = Lv(n) and, consequently,

v(n)|n=1− = 0. (2.88)

According to Eqs. (2.87) and (2.88), the physical potential is discontinuous at half-filling. Turning to

the KS Hamiltonian with ground-state uniform density n (and t = 0),

ĤKS(n) = vKS(n)
∑
i

n̂i, (2.89)

we can similarly show that, in contrast to the interacting case, the KS potential has no discontinuity

at n = 1,

vKS(n)
∣∣
n=1+ = vKS(n)

∣∣
n=1−

= 0. (2.90)

Consequently, we recover the discontinuous behavior of the correlation potential at half-filling:

∂ec(n)

∂n

∣∣∣∣
n=1+

=

(
vKS(n)− v(n)− U

2
n

)∣∣∣∣
n=1+

= +U/2, (2.91)

and

∂ec(n)

∂n

∣∣∣∣
n=1−

=

(
vKS(n)− v(n)− U

2
n

)∣∣∣∣
n=1−

= −U/2. (2.92)

In contrast to standard LDA, which is unable to describe Mott-Hubbard phenomena in realistic

materials [369, 370], BALDA can model such a discontinuity by construction in the one-dimensional

Hubbard model. Despite this extremely appealing feature, it may lead to convergence problems when

the density gets close to half-filling. Solutions have been proposed by using finite temperature [348]

or ad-hoc parameters [345, 346, 371]. A similar derivative discontinuity, featuring the well-known

discontinuous jump in the xc potential when crossing an integral number of electron2 [130, 158],

also arises in the Anderson junction model within SOFT [372–374]. This model, consisting of two

macroscopic leads coupled to an Anderson impurity, is used to describe the electron transport through

a molecular junction.

2This derivative discontinuity will be discussed in Chap. 5 in detail
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2.3 Single-impurity Anderson model

In this section, the single impurity Anderson model [375] (SIAM), employed to describe a magnetic

impurity in a metallic host, is introduced. It is used, for instance, to model impurities in a semicon-

ductor [376], molecular junctions [372–374], and the single-electron transistor (quantum dot coupled

to two decoupled metallic leads) [377].

The SIAM Hamiltonian is given in (discretized) real space (i.e. in the basis of sites) as follows:

ĤSIAM = −t
∑
σ

L∑
i=1

(
ĉ†iσ ĉi+1σ + h.c.

)
+ V

∑
σ

[(
ĉ†1σ ĉdσ + ĉ†Lσ ĉdσ

)
+ h.c.

]
+ Un̂0↑n̂d↓ + εdn̂d, (2.93)

where the impurity is denoted by d (referring to a d-like orbital) with n̂dσ = ĉ†dσ ĉdσ and n̂d =
∑
σ n̂dσ,

and is coupled to a noninteracting bath. The term “h.c.” stands for “Hermitian conjugate”. Note

that this particular form of the SIAM Hamiltonian will be shown useful when compared to the SOET

Hamiltonian in the next chapter.

By applying the canonical transformation of Eq. (2.8) and using periodic boundary condition

ĉL+1σ = ĉ1σ, the usual SIAM Hamiltonian expression in k-space is recovered,

Ĥ =
∑
kσ

εk ĉ
†
kσ ĉkσ + εdn̂d + Un̂d↑n̂d↓ +

∑
kσ

(
Vk ĉ
†
kσ ĉdσ + h.c.

)
, (2.94)

where εk is the dispersion energy of the metallic band, like in the tight-binding model [εk = −2t cos(k)],

εd is the impurity level energy, and Vk is the coupling term between the interacting impurity and the

noninteracting bath,

Vk = 2V e−ik/2 cos(k/2)/
√
L. (2.95)

Note that εd = −U/2 in the symmetric case. The impurity Anderson model is particularly useful

to model impurities, so that it plays a major role in embedding approaches in condensed matter

physics [378], like the dynamical mean-field theory (DMFT) which is one of the most established

method for strongly correlated materials. In this approach, the physical Hamiltonian is mapped onto

a SIAM, in analogy with the KS system in DFT.

2.4 Embedding techniques

In this section, two embedding theories are described: the dynamical mean-field theory (DMFT),

formulated with Green’s function, and the frequency-independent density matrix embedding theory
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Figure 2.7: Hubbard site mapped onto a single Anderson impurity.

(DMET). They differ from the hybrid approaches described in Sec. 1.3 in a sense that they were

originally formulated to solve translational invariant systems by performing a mapping onto a smaller

subsystem, called the embedded system. It is worth mentioning that other promising embedding

techniques exist, in particular the recently developed self-energy embedding theory (SEET) by Zgid

and co-workers [379–384] which is also formulated in a Green’s function formalism.

2.4.1 Dynamical Mean Field Theory

Dynamical mean-field theory (DMFT) [369, 378, 385–391] relies on the mapping of the fully correlated

lattice problem [Eq. (2.16)] onto a correlated impurity model. In the single-site DMFT, this model is

nothing else but the SIAM [Eq. (2.94)]. The idea is to separate the lattice and the impurity problems

and to solve them self-consistently as follows: (i) in the impurity problem, the interacting electrons on

the impurity are coupled to an effective bath determined by the lattice problem [illustrated in Fig. 2.7]

(ii) the lattice problem is solved with a Green’s function approach using the self-energy obtained

from the impurity problem. Hence, (i) and (ii) are coupled and generate a self-consistent cycle,

illustrated in Fig. 2.8 and discussed in the following. This method has been able to describe the Mott-

insulator transition as well as the Kondo peak [369, 387], and is thus able to treat strongly correlated

systems. First, we describe how the impurity problem is solved. Starting from the noninteracting

SIAM Hamiltonian Ĥ(0) [Eq. (2.94) with U = 0] given in matrix representation,

[
Ĥ(0)

]
= H(0) =



εd Vk1 · · · · · · VkL

V ∗k1
εk1

0

...
. . .

... 0
. . .

V ∗kL εkL


, (2.96)
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we define the noninteracting Green’s function, solution of the following equation:

(
ω1−H(0)

)
G(0)(ω) = 1, (2.97)

leading to G(0)(ω) = (ω1 − H(0))−1. The noninteracting Green’s function of the impurity site

reads [378, 392]:

G
(0)
dd (ω) ≡ G0(ω) =

1

ω − εd −∆(ω)
, (2.98)

where the usual notation G0(ω) is used, and

∆(ω) =
∑
k

|Vk|2

ω − εk
(2.99)

is the frequency-dependent “host-impurity” hybridization function. One can then compute its asso-

ciated spectral function, related to the imaginary part of the impurity Green’s function, where the

frequency is shifted in the complex plane by an infinitesimal constant η > 0 (thus giving the so-called

“retarded” Green’s function):

A(ω) = − 1

π
Im [G0(ω + iη)] = − 1

π
Im

(
1

ω − εd − Re[∆(ω + iη)]− iIm[∆(ω + iη)]

)
= − 1

π

Im[∆(ω + iη)]

(ω − εd − Re[∆(ω + iη)])
2

+ (Im[∆(ω + iη)])
2 . (2.100)

The real part of the retarded hybridization function ∆(ω + iη),

Re[∆(ω + iη)] =
∑
k

(ω − εk)|Vk|2

(ω − εk)2 + η2

η→0+

−−−−→
∑
k

|Vk|2

ω − εk
, (2.101)

engenders a shift of the peak at position εd in the spectral function, while its imaginary part [378]3,

Γ(ω) ≡ −Im[∆(ω + iη)] =
∑
k

η|Vk|2

(ω − εk)2 + η2

η→0−−−→ π
∑
k

|Vk|2δ(ω − εk), (2.102)

is responsible for the broadening of the peak, related to the life time of the states in the continuum.

Note that η also plays a role in practice, as it avoids singularity in the Green’s function by moving

3The limit of Eq. (2.102) comes from lim
η→0

η

π(x2 + η2)
= δ(x) where δ(x) is the delta function
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its poles away from the real frequency axis. As an illustration to the noninteracting single-impurity

Anderson model, one can imagine a single orbital (with orbital energy εd) in real space coupled to

all the other orbitals in k-space by a hopping Vk (see Fig. 2.7), for which the k-dependence is usually

neglected.

Then, let us switch on the interaction U . In analogy with the Hubbard model for U/t, the ratio

U/Γ denotes the competition between the impurity to be either uncoupled or hybridized with the

bath. The interacting Anderson impurity model can be solved using many-body approaches (so-called

impurity-solver) such as exact diagonalization (ED) [393], Iterative Perturbation Theory (IPT) [385,

386, 394], Quantum Monte Carlo (QMC) [395–399], CISD [400], or DMRG [401, 402], thus leading to

the impurity Green’s function:

Gdd(ω) ≡ Gimp(ω) =
1

ω − εd −∆(ω)− Σ(ω)
. (2.103)

Note that in contrast to DFT+U where coulomb interaction is treated in static mean-field theory, the

interactions are treated explicitly in DMFT. Indeed, the impurity Green’s function contains many-

body effects, accounted for by the impurity (or local) self-energy obtained from the Dyson equation,

Σ(ω) = G−1
0 (ω)−G−1

imp(ω), (2.104)

which will be used in step (ii).

The purpose of step (ii) is to solve the lattice problem (i.e. the Hubbard model). This is usually done

by computing the interacting lattice Green’s function in k-space:

Gk(ω) =
1

ω − εk − Σk(ω)
, (2.105)

where the self-energy Σk(ω) is momentum-dependent [403], except in the case of infinite dimension

where the k-dependence disappears [385, 386]. Then, by using Fourier transform, the interacting local

Green’s function (in the basis of sites) is obtained:

Gii(ω) =
1

L

∑
k

Gk(ω) =
1

L

∑
k

1

ω − εk − Σk(ω)
. (2.106)

Of course, the k-dependent self-energy is unknown, otherwise there would be no point in mapping the

Hubbard model onto an impurity one. The DMFT approximation is first to neglect this k-dependence
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Figure 2.8: DMFT self-consistent cycle, usually initialized by setting Σ(ω) = 0.

(such that it becomes exact in the infinite dimension [385, 386]), thus leading to

Gii(ω) ≡ Gloc(ω) =
1

L

∑
k

1

ω − εk − Σ(ω)
, (2.107)

and then to require the local Green’s function in Eq. (2.107) to be equal to the impurity one of the

Anderson model,

Gloc(ω) = Gimp(ω)

1

L

∑
k

1

ω − εk − Σ(ω)
=

1

ω − εd −∆(ω)− Σ(ω)
, (2.108)

where Σ(ω) is the self-energy obtained from Eq. (2.104). By solving the DMFT condition in Eq. (2.108),

which is rigorously possible only for an infinite bath, one gets a new hybridization function ∆(ω). This

function describes a modified bath for the effective impurity model, that can be solved again to get

the impurity interacting Green’s function Gimp(ω) and the self-energy Σ(ω). These cycles continue

until the self-energy does not change or, equivalently, until the calculated local Green’s function is

equal to the impurity one. This self-consistent cycle is illustrated in Fig. 2.8. The idea behind the

equality in Eq. (2.108) is to map the physical system (represented by Gloc) onto a SIAM (represented

by Gimp) where the coupling between the impurity and the noninteracting bath is optimized through

the calculation of the hybridization function ∆(ω).

Finally, DMFT suffers from limitations due to the assumption that the self-energy is purely local.
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Extensions of DMFT to include nonlocal correlations are possible by considering an impurity cluster

instead of just a single impurity site [329, 399, 404–409], or by combining DMFT with GW [410–414]

or DFT [369, 415]. Regarding the latter approach, the double counting problem is usually removed

empirically [416, 417]. For the time being, DMFT is mostly employed in condensed matter physics,

although its generalization to quantum chemistry is not excluded [400].

2.4.2 Density-Matrix Embedding Theory

The basic idea of an embedding procedure is to extract properties of the physical system from a

subsystem. DMET belongs to this scheme, as it separates the system into multiple fragments, each

of them embedded in an approximate bath that accounts for the entanglement between itself and the

rest of the system. The idea of the DMET relies on the Schmidt decomposition (see Sec. 1.1.8 on

the DMRG), which is briefly reviewed here for clarity, with some different notations. Suppose that

the system is divided into a fragment F and the rest of the system called the environment, E. The

Hilbert space H of the system is then the tensor product of the ones corresponding to F and to E,

H = HF ⊗ HE . The size of HF (HE) is NF = 4LF (NE = 4LE ), and we denote {|Fi〉}i ({|Ej〉}j)

a basis of many-body states. LF and LE denote the number of orbitals in the fragment and in the

environment, respectively. This decomposition leads to the following exact ground-state wavefunction

expression:

|Ψ0〉 =

NF∑
i

NE∑
j

Cij |Fi〉|Ej〉, (2.109)

which can be further simplified by applying a singular value decomposition to Cij ,

|Ψ0〉 =

NF∑
i

NE∑
j

min(NF ,NE)∑
α

ŨiαλαṼ
†
αj |Fi〉|Ej〉

=

NF∑
α

λα|Fα〉|Bα〉. (2.110)

Note that NF < NE has been assumed in the second equality of Eq. (2.110). Ũiα (Ṽ †αj) rotates the

many-body basis {|Fi〉}i ({|Ej〉}j) into the new many-body basis {|Fα〉}α ({|Bα〉}α),

NE∑
i

Ũ†iα|Fi〉 = |Fα〉

NE∑
j

Ṽ †αj |Ej〉 = |Bα〉

 , (2.111)
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so-called the fragment (bath) states. It is clear from Eq. (2.110) that the number of states to be

considered has been reduced to NF bath states for the environment, while the number of states

remains unchanged for the fragment. The projected Hamiltonian onto this new many-body basis

reads

Ĥ ′ = P̂ ĤP̂ , (2.112)

where P̂ =
∑NF
αβ |FαBβ〉〈FαBβ | is the projector onto the Schmidt basis of dimension (NF )2. It is

shown that the ground-state wavefunction remains invariant under this projection,

P̂ |Ψ0〉 =

NF∑
αβ

|FαBβ〉〈FαBβ |Ψ0〉

=

NF∑
αβ

|FαBβ〉〈FαBβ |
NF∑
γ

λγ |FγBγ〉

=

NF∑
γ

λγ |FγBγ〉 = |Ψ0〉 (2.113)

where |FαBβ〉 are orthonormal, such that 〈FαBβ |FγBγ〉 = δαγδβγ . As a consequence, the embedded

Hamiltonian shares the same ground-state energy with the physical one,

H|Ψ0〉 = E0|Ψ0〉,

→ PHP |Ψ0〉 = PE0P |Ψ0〉,

→ H ′|Ψ0〉 = E0|Ψ0〉. (2.114)

According to Eq. (2.114), the ground-state solution of a small embedded problem (fragment + bath) is

the same as the one of the full system. This embedding is exact, but it requires the a priori knowledge

of the exact wavefunction of the full problem, which is of course unknown. The idea of DMET is to

construct an approximate one-electron projection operator, thus leading to single-particle bath states

|Bα〉 instead of the many-body states in Eq. (2.111). The explicit interaction will then be added

on the fragment sites, such that the fragment states will remain many-body states. The embedding

Hamiltonian is constructed from this approximate projection operator, as described in the following.

In this section, I will focus on the original formulation of DMET, where only one fragment (that

can contain multiple impurities) is considered, with application to lattice systems with translational

invariance [418]. For clarity, I will describe the theory for the uniform L-site one-dimensional Hubbard
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model,

Ĥ = −t
L∑
〈ij〉σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

L∑
i

n̂i↑n̂i↓, (2.115)

decomposed into a fragment F and an environment E with LF < LE . Note that several equivalent

derivations of DMET are available in the literature [418–424]. In addition, DMET has different

formulations: the interacting bath formulation and the noninteracting one. Besides, the convergence

criteria, which will be described in the following, is also not uniquely defined. In this thesis, we will

focus on the noninteracting bath formulation. The derivations of Refs. [420, 424] will be used. The

starting point in DMET is to determine the low-level wavefunction |Φ0(u)〉 which is used to construct

the approximate bath orbitals. It is obtained by searching for the ground state of the following

one-particle Hamiltonian,

ĥ = T̂ + û = −t
L∑
〈ij〉σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+

L∑
ijσ

uij

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
, (2.116)

where û is a one-body operator that contains the so-called correlation potential {uij}ij . The 1RDM

of |Φ0(u)〉 is idempotent and will be denoted ρ. To construct the projector P , one has to apply the

Schmidt decomposition to Φ0(u). In the following, we show how this is done in practice, following

the lines of Ref. [424]. First, we diagonalize the 1RDM of Φ0(u) to obtain the unitary transformation

matrix D of size (L× L), such that

[ĥ] = D[ε̂]D†, ρ = DnD†, (2.117)

where [ε̂] and n are (L × L) diagonal matrices. The diagonal elements of the matrix n are either 1

(occupied spin-orbitals) or 0 (empty spin-orbitals), and the number of occupied states will be denoted

nocc. We split D into its fragment and environment blocks,

D =

DF

DE

 , (2.118)

where DF is a (LF × L) rectangular matrix. DF is further decomposed into

DF =
[
Docc
F Dunocc

F

]
, (2.119)
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where Docc
F is of size (LF × nocc). Then, a singular value decomposition is performed on Docc

F ,

Docc
F = ŨD

occ

F Ṽ †, (2.120)

where Ũ and Ṽ are (LF × LF ) and (nocc × nocc) unitary matrices, respectively, and

D
occ

F = {
√
n0, 0}, (2.121)

is a (LF × nocc) diagonal matrix, with
√
n0 of size (LF ×LF ). Alternatively, one can also decompose

V into

Ṽ =
[
ṼF ṼE

]
, (2.122)

where ṼF is a (nocc × LF ) rectangular matrix, to get the diagonal matrix
√
n0,

Docc
F = Ũ

√
n0Ṽ †F . (2.123)

Note that if the fragment contains only one site, Ũ and
√
n0 become real numbers while Docc

F and Ṽ †F

are column vectors of size nocc. Finally, still following Ref. [424], the approximate projection onto the

original orbital basis is given by P of size (L× 2LF ):

P =

1
CBC

†
F

 , (2.124)

where 1 is a (LF × LF ) identity matrix and CBC
†
F is a (LE × LF ) rectangular matrix which is the

transformation from the environment to the bath, given by

CF = Ũ , CB =
Docc
E VF√
1− n0

. (2.125)

As readily seen in Eq. (2.124), the transformation of the one-particle fragment states in the original

basis is the identity. The fragment is therefore invariant under this projection. In the following, we will

show that the electron-electron repulsion is explicitly treated in the fragment, such that the fragment

part of the embedded Hamiltonian corresponds to the physical Hamiltonian, which is of course not

the case for the bath.

Once this approximate one-electron projector P is obtained or, equivalently, once the Schmidt
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decomposition of |Φ0(u)〉 is performed, the embedded Hamiltonian can be determined. In the nonin-

teracting bath formulation, the two-electron repulsion is only on the impurity sites, such that

Ĥ imp = ĥemb + U

LF∑
i

n̂i↑n̂i↓. (2.126)

Let us look at the derivation of the one-body operator ĥemb. In DMET, an effective one-body Hamil-

tonian, corresponding to the one in Eq. (2.116) but where the correlation potential acts on the envi-

ronment only, is defined as

ĥeff = T̂ +

LE∑
ij∈E,σ

uij

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
. (2.127)

This one-body Hamiltonian is then projected onto the fragment+bath representation by using the

one-electron projection operator as follows,

ĥemb = P̂ †ĥeff P̂ =

LF+LB∑
ijσ

h̃ij

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
. (2.128)

Finally, the on-site two-electron repulsion operator is simply added to ĥemb to recover the embedded

impurity problem of Eq. (2.126). This is why the correlation potential in Eq. (2.127) has to act on

the environment only in order to avoid double counting effects. This correlation potential is deter-

mined self-consistently to enforce a particular matching condition between the low-level wavefunction

|Φ0(u)〉 and the high-level one |Ψimp〉. The latter is obtained by solving the many-body problem in

Eq. (2.126), containing 2LF electrons [422], by a high-level method (typically, FCI or DMRG). Note

that the correlation potential in Eq. (2.116) is involved in the determination of the approximate bath

orbitals. Hence, it is implicitly taken into account in the embedded one-body part of Eq. (2.126), as

well as in |Ψimp〉.

In the original DMET paper [418], the correlation potential was optimized until the following two

1RDM are matched. (i) The density matrix of the embedded problem,

ρimp
ij =

∑
σ

〈ĉ†iσ ĉjσ〉Ψimp , (2.129)

and (ii) the projection of the density matrix of the reference problem, described by |Φ0(u)〉, onto the
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embedded subspace,

ρemb = P̂ †ρP̂ . (2.130)

Hence the name “density-matrix” embedding theory.

In order to perform such a matching, the correlation potential has to minimize the so-called cost

function [420, 422]:

min
u

CFx(u), (2.131)

where x denotes different definitions, which are explained in the following. In the original formulation,

the cost function is computed by summing the difference between all density matrix elements of

Eqs. (2.129) and (2.130),

CFfull(u) =

LF+LB∑
ij

|ρimp
ij − ρ

emb
ij (u)|2, (2.132)

or, alternatively, in the fragment only [419, 422, 425],

CFimp(u) =

LF∑
ij

|ρimp
ij − ρ

emb
ij (u)|2. (2.133)

Note that the minimization of these above cost functions does usually not reach 0, as the mean-field

density matrix ρemb(u) is idempotent, while the high-level one ρimp is not, in principle.

This representability issue has been highlighted by Tsuchimochi et al. [425]. In their work, they de-

cided to approximate the bath by the antisymmetrized geminal power correlated wavefunction (instead

of Hartree-Fock like the original formulation of the theory [418]), from which any N -representable den-

sity matrix can be constructed [426], thus allowing for an exact matching between the low-level and

high-level density matrices in DMET. The approximate bath states also remain many-body states. Al-

ternatively, the matching can be performed on the diagonal of density matrices [420] on the fragment,

leading to

CFdiag(u) =

LF∑
i

|ρimp
ii − ρ

emb
ii (u)|2, (2.134)

or even by recovering the proper number of electrons by using a global chemical potential only [427],

instead of the correlation potential. An illustration of the whole DMET procedure is given in Fig. 2.9

for the Hubbard model with one impurity.
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Figure 2.9: DMET procedure for the Hubbard model with a single impurity, in its non-interacting
bath formulation. The impurity site is labelled as 0.

The theory presented above was developed for a lattice system with translational invariance, so

that one fragment only is sufficient to compute the per-site quantities (energy and double occupation).

Because of the mean-field approximation which defines the starting point of the DMET calculation,

the bath states are only single-particle states so that DMET is lacking correlation effects in the bath.

In order to fix this issue, one can start the DMET procedure with a spin-unrestricted Hartree-Fock

wavefunction [420] or with the antisymmetrized geminal power correlated wavefunction [425].

In order to extend the method to quantum chemistry, the whole system (a molecule) has to

be decomposed into multiple fragments. Each of these fragments are embedded into an environment

composed of all the other fragments, which are then projected to construct new effective bath orbitals.

Hence the whole system has been replaced by multiple smaller subsystems, connected by a chemical

potential which ensures that the number of electrons in each of these subsystems sums up to the total

number of electrons. For more details about DMET for quantum chemistry, the reader is referred

to the work of Sebastian Wouters and co-workers [422]. It has also been noticed that the central

part of the fragments only are very well described, as it is surrounded by interacting orbitals like
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in the original lattice problem. The description of the fragment edges, which are in contact with

noninteracting bath orbitals, can be substantially improved by overlapping the fragments, which is

also shown to improve the convergence with fragment size. The latter idea is referred to as “Bootstrap

embedding” and is developed by Voorhis and co-workers [428]. It could also be interesting to look at

the connection between the single-site DMET (one impurity and one effective bath sites composing

the embedded problem) and the linearized DMFT from Bulla and Potthoff [429, 430], who have

approximated the mapping in DMFT onto a two-site Anderson model, i.e. one impurity and one bath

sites as well. Finally, let us stress that the embedding subspace of 2LF (spatial) orbitals (with 2LF

electrons) can play the role of an active orbital space, thus make a connection between DMET and

CASSCF [422]. Therefore, like CASSCF, dynamical correlation effects are missing in DMET. In this

respect, combining DMET with DFT is appealing. To the best of our knowledge, this combination

has not been developed yet. Such a comparable merging will be addressed in the following, in the

context of site-occupation embedding theory (SOET), which is the main topic of this thesis.





Chapter 3

Site-Occupation Embedding Theory

In the spirit of the previously described embedding schemes, only a small number of sites (referred to as

impurities) are kept interacting, while the remaining sites (referred to as the bath) are noninteracting.

This partitioning defines our impurity-interacting system. In analogy with SOFT, a mapping is made

to recover the exact density of the physical system. However, rather than considering a noninteracting

fictitious system, the impurity-interacting one becomes the new reference and a complementary bath

Hxc energy functional of the site occupations is used to perform the mapping. This is the so-called

site-occupation embedding theory (SOET) [72, 270, 300, 301]. Being still in its early stage, SOET is

applied to the one-dimensional Hubbard model only. Extensions to higher dimensions are of significant

interest and will be investigated in a near future. In contrast to DMET and DMFT, which are exact

in some particular limits only, SOET is in principle exact for any correlation and filling regimes. Of

course, approximate functionals are used in practice. In this chapter, the foundations of SOET are

introduced and exact SOET expressions are derived for the per-site energy and the double occupation

in the uniform case. Then, some required properties that an exact functional should fulfil are discussed.

Finally, we describe the approximate functionals that have been developed throughout this thesis,

which are used to solve the SOET self-consistent equation. The resulting per-site energy and double

occupation are extensively discussed.

3.1 In-principle exact formulation

Consider the one-dimensional L-site Hubbard model in an (not necessarily uniform) external potential

with periodic conditions (if not otherwise specified, the summation runs over all sites labelled from 0
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to L− 1),

Ĥ = −t
∑
iσ

(
ĉ†iσ ĉi+1σ + h.c.

)
+ U

∑
i

ĉ†i↑ĉi↓ĉ
†
i↑ĉi↑ +

∑
iσ

viĉ
†
iσ ĉiσ. (3.1)

If onlyM sites (labelled as i = 0, 1, . . . ,M−1) are explicitly interacting, the conventional Hohenberg–

Kohn functional can be decomposed as follows [301],

F (n) = F imp
M (n) + E

bath

Hxc,M (n), (3.2)

which introduces the analogue of the Levy–Lieb functional [Eq. (2.50)] for M interacting impurity

sites,

F imp
M (n) = min

Ψ→n

{
〈Ψ|T̂ + ÛM |Ψ〉

}
, (3.3)

where ÛM = U
∑M−1
i=0 n̂i↑n̂i↓ is the on-site M -impurity-interacting repulsion operator. In addition,

the complementary contribution E
bath

Hxc,M (n) in Eq. (3.2) is the bath Hxc energy functional of the site

occupations. This functional accounts for the difference in energy between theM -impurity-interacting

system and the physical one. In other words, it describes all the coupling between the interacting

impurity sites and the noninteracting bath sites. The decomposition in Eq. (3.2) leads to a new

expression for the ground-state energy as follows:

E(v) = min
n

{
min
Ψ→n

{
〈Ψ|T̂ + ÛM |Ψ〉

}
+ E

bath

Hxc,M (n) + (v|n)
}
, (3.4)

thus leading to the final variational expression,

E(v) = min
Ψ

{
〈Ψ|T̂ + ÛM |Ψ〉+ E

bath

Hxc,M

(
nΨ
)

+
(
v|nΨ

)}
, (3.5)

where nΨ ≡ {〈Ψ|n̂i|Ψ〉}i is the site-occupation vector associated with the wavefunction Ψ. The

minimizing M -impurity-interacting wavefunction in Eq. (3.5), denoted by Ψimp
M , fulfils the following

self-consistent SOET equation [301],

T̂ + ÛM +
∑
i

vi +
∂E

bath

Hxc,M

(
nΨimp

M

)
∂ni

 |Ψimp
M 〉 = E imp

M |Ψimp
M 〉 , (3.6)
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where the embedding potential

vemb
M,i (n) = vi +

∂E
bath

Hxc,M (n)

∂ni
(3.7)

is built to reproduce the exact site occupations of the physical system.

Let us now make a brief comparison between SOET [Eq. (3.6)] and other methods that may appear

very similar. The electronic repulsion on the impurity sites is treated explicitly in SOET, in contrast

to DFT+U where this contribution is incorporated implicitly as a correction factor, thus making

DFT+U not variational anymore. Interestingly, SOET can be seen as a lattice alternative to the

range-separated DFT [Eq. (1.175)], where the electronic repulsion is now separated in the discretized

real space and the electronic density is replaced by the site-occupation vector. Another interesting

difference can be made between SOET and WFT-in-DFT [Eq. (1.198)]. Apart from the fact that

WFT-in-DFT is applied to ab-initio Hamiltonian and not on a lattice, note that the kinetic operator

in SOET acts on the whole system, while it acts only inside the cluster part (analogue to the impurity

sites) in WFT-in-DFT. The impact of the latter difference will be further investigated in Chap. 4,

where practical alternative implementations of SOET are discussed.

Let us return to the expression of the complementary Hxc energy for the bath, E
bath

Hxc,M (n). The

derivation of an analytical expression for this object is far from trivial as it has to (i) account for all

the missing Hxc effects in the M -interacting-impurity system and (ii) map the physical system onto

the impurity-interacting one by recovering the exact physical density. Let us start by writing the KS

decomposition of the M-impurity-interacting Levy–Lieb functional,

F imp
M (n) = Ts(n) + Eimp

Hxc,M (n). (3.8)

Eimp
Hxc,M (n) is the impurity Hxc energy functional, which accounts for the difference of Hxc contri-

butions between the non-interacting system and the M -impurity-interacting one. Plugging Eq. (3.8)

into Eq. (3.3), and using the KS decomposition of the conventional Levy–Lieb functional F (n) =

Ts(n) + EHxc(n), it comes

E
bath

Hxc,M (n) = EHxc(n)− Eimp
Hxc,M (n). (3.9)

According to Eq. (3.9), the challenging task of developing the complementary bath Hxc functional has

been replaced by searching for both the conventional Hxc functional and the impurity Hxc functional.

For the former, The BALDA [359–361] approximation can be used, as well as other extensions already
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Figure 3.1: Illustration of the mappings between the physical system, the (M=1)-impurity-interacting
system and the noninteracting one. The system represented is the 32-site one-dimensional Hubbard
model with periodic boundary conditions.

discussed in Sec. (2.2) in the context of SOFT. Unfortunately, Eimp
Hxc,M (n) remains to be found as no

approximation to it are given in the literature. An illustration of Eq. (3.9), which relates the mapping

between the non-interacting, the impurity-interacting and the fully-interacting systems, is given in

Fig. 3.1. The Hxc energies can be decomposed even further by separating the Hartree-exchange and

the correlation part, such that

EHxc(n) =
U

4

∑
i

n2
i + Ec(n), (3.10)

and

Eimp
Hxc,M (n) =

U

4

M−1∑
i=0

n2
i + Eimp

c,M (n), (3.11)

thus leading to

E
bath

Hxc,M (n) =
U

4

L−1∑
i=M

n2
i + E

bath

c,M (n), (3.12)
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where

E
bath

c,M (n) = Ec(n)− Eimp
c,M (n). (3.13)

As readily seen in Eqs. (3.12) and (3.13), only the correlation energy functionals have to be approxi-

mate. In the following, the local density approximation (LDA) is considered.

3.2 Uniform case and Local Density Approximation

3.2.1 The per-site bath correlation energy

In the uniform case, the full correlation energy can be exactly expressed within LDA as follows,

Ec(n) =
∑
i

ec(ni), (3.14)

such that, according to Eq. (3.13),

E
bath

c,M (n) =
∑
i

ec(ni)− Eimp
c,M (n). (3.15)

By separating the contributions of the M interacting impurity sites from the L−M non-interacting

bath sites, it comes

E
bath

c,M (n) =

M−1∑
i=0

ec(ni) +

L−1∑
i=M

ec(ni)− Eimp
c,M (n). (3.16)

If we introduce the per-site analogue of Eq. (3.13) as follows [301],

ebath
c,M (n) =

1

M

[(
M−1∑
i=0

ec(ni)

)
− Eimp

c,M (n)

]
, (3.17)

the final LDA expression for the bath correlation energy functional is obtained,

E
bath

c,M (n) =

L−1∑
i=M

ec(ni) +Mebath
c,M (n). (3.18)

In the uniform case (v = 0), the occupations are all equal to n = N/L, such that n ≡ n =

{n, n, n, . . . , n}. As a consequence, Eq. (3.17) can be rewritten as

ebath
c,M (n) = ec(n)−

Eimp
c,M (n)

M
. (3.19)
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As readily seen in Eq. (3.17) or (3.19), the per-site bath energy functional measures the deviation of

the impurity functional from the conventional one.

3.2.2 Derivation of the exact per-site energy

The per-site energy for a uniform system is given within SOFT by [360],

e = E/L = ts(n) +
U

4
n2 + ec(n), (3.20)

where the exact expression for ts(n) is given in Eq. (2.75) in the thermodynamic limit (L→ +∞). In

SOET, it is desirable to have an expression for the per-site energy that combines contributions from

both (i) the many-bodyM -impurity-interacting wavefunction and (ii) the site-occupation functionals.

To do so, Eq. (3.19) is inserted into Eq. (3.20) to give

e = ts(n) +
U

4
n2 + ebath

c,M (n) +
Eimp

c,M (n)

M
. (3.21)

Then, plugging Eqs. (3.8) and (3.11) into Eq. (3.21) leads to

e = ts(n) +
1

M

(
F imp
M (n)− Ts(n)

)
+ ebath

c,M (n). (3.22)

By applying the Hellmann–Feynman theorem to the variational energy expression in Eq. (3.5), it

comes

t
∂E

∂t
= 〈Ψimp

M |T̂ |Ψ
imp
M 〉+ t

∂E
bath

c,M (n)

∂t
, (3.23)

where E = E(v = 0). By using E = F (n) together with Eqs. (3.2) and (3.23), the first term in the

right hand side of Eq. (3.23) is decomposed as follows,

〈Ψimp
M |T̂ |Ψ

imp
M 〉 = t

∂F imp
M (n)

∂t

KS−−→ t
∂Ts(n)

∂t
+ t

∂Eimp
c,M (n)

∂t
, (3.24)

thus leading to, for U = 0,

Ts(n) = t
∂Ts(n)

∂t
. (3.25)

By combining Eqs. (3.3), (3.24) and (3.25), an expression of the impurity Hxc energy functional which

involves the impurity double occupations [dimp
M,i = 〈n̂i↑n̂i↓〉Ψimp

M
= 〈Ψimp

M |n̂i↑n̂i↓|Ψ
imp
M 〉] is obtained as
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follows:

Eimp
Hxc,M (n) = F imp

M (n)− Ts(n) = 〈Ψimp
M |T̂ |Ψ

imp
M 〉 − Ts(n) + U

M−1∑
i=0

dimp
M,i

= t
∂Eimp

c,M (n)

∂t
+ U

M−1∑
i=0

dimp
M,i. (3.26)

Finally, according to Eq. (3.19), the exact expression for the per-site energy in the uniform case within

SOET reads,

e = ts(n) +
U

M

M−1∑
i=0

dimp
M,i + t

∂ec(n)

∂t
− t

∂ebath
c,M (n)

∂t
+ ebath

c,M (n). (3.27)

Note that the per-site energy expression contains contributions coming from both the many-body

impurity wavefunction and the site-occupation functionals.

However, Eq. (3.27) is not convenient in practice, because the uniform density will not be recovered

anymore when approximate functionals are used. It is therefore useful to introduce another expression

for the per-site energy, which can be rewritten as follows,

e =
1

M

M−1∑
i=0

ts(nΨimp
M

i ) + t
∂ec(n

Ψimp
M

i )

∂t
+ Udimp

M,i

+

(
ebath

c,M (nΨimp
M )− t

∂ebath
c,M (nΨimp

M )

∂t

)
,

(3.28)

such that one can use all the impurity occupations (in practice not always identical) obtained from the

M -impurity-interacting wavefunction. Let us mention that in Ref. [301], we highlighted the connection

between the derivatives of the per-site correlation energy with respect to t and U as follows,

ec(n) = t
∂ec(n)

∂t
+ U

∂ec(n)

∂U
, (3.29)

as well as for the impurity correlation energy,

Eimp
c,M (n) = t

∂Eimp
c,M (n)

∂t
+ U

∂Eimp
c,M (n)

∂U
. (3.30)

Consequently, according to Eq. (3.19),

ebath
c,M (n) = t

∂ebath
c,M (n)

∂t
+ U

∂ebath
c,M (n)

∂U
. (3.31)
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By inserting the latter expression in Eq. (3.28), the per-site energy finally reads

e =
1

M

M−1∑
i=0

ts(nΨimp
M

i ) + t
∂ec(n

Ψimp
M

i )

∂t
+ Udimp

M,i

+ U
∂ebath

c,M (nΨimp
M )

∂U
. (3.32)

3.2.3 Derivation of the exact double occupation

The double occupation of a uniform system is given by [302]

d =
1

L

∂E

∂U
. (3.33)

By applying the Hellmann–Feynman theorem to Eq. (2.54) and using the LDA, it comes

d =
n2

4
+
∂ec(n)

∂U
. (3.34)

The latter can be rewritten within SOET by inserting the decomposition of Eq. (3.19) into Eq. (3.34),

thus leading to

d =
1

M

∂Eimp
Hxc,M (n)

∂U
+
∂ebath

c,M (n)

∂U
. (3.35)

Note that the above expression is exact in the uniform case, provided that the exact functionals are

known. In practice, one has to use approximate functionals, and the double occupation in Eq. (3.35)

does not take advantage of the explicit treatment of the interaction on the M interacting impurity

sites. In order to get an exact expression which involves the many-body wavefunction, the Hellmann–

Feynman theorem is applied to the variational energy in Eq. (3.5), thus leading to

∂E

∂U
=

M−1∑
i=0

dimp
M,i +

∂E
bath

Hxc,M (n)

∂U
. (3.36)

From the decompositions in Eqs. (3.2) and (3.8), it comes

∂

∂U

[
F (n)− Ebath

Hxc,M (n)
]

=
∂

∂U

[
E − Ebath

Hxc,M (n)
]

=
∂F imp

M (n)

∂U
=
∂Eimp

Hxc,M (n)

∂U
, (3.37)

such that, according to Eq. (3.36),

∂Eimp
Hxc,M (n)

∂U
=

M−1∑
i=0

dimp
M,i. (3.38)
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Finally, by combining Eqs. (3.35) and (3.38), the following exact expression for the double occupation

in SOET with multiple impurities reads

d =
1

M

M−1∑
i=0

dimp
M,i +

∂ebath
c,M (nΨimp

M )

∂U
. (3.39)

As readily seen in Eq. (3.39), the double occupation is obtained by combining both wavefunction

and density functional contributions, in analogy with the per-site energy in Eq. (3.32). Alternatively,

Eq. (3.39) could have been derived from Eq. (3.35) by using Eq. (3.30), followed by Eq. (3.26). It

should be noted that the double occupation of the impurity sites (dimp
M,i) are in principle not identical

for all i in the fictitious M -impurity-interacting system described by Ψimp
M . Indeed, the insertion of

impurities does break the translational symmetry of the system, and the embedding potential restores

uniformity in the density profile only. Finally and according to Eq. (3.39), it is clear that the impurity

double occupations are not reproducing the exact double occupation of the physical system, such that

an additional functional contribution is required.

3.3 Exact conditions for the correlation energy functionals in

SOET

In the previous section, we have seen that the correlation energy functionals should satisfy the con-

ditions in Eqs. (3.29), (3.30) and (3.31). Before looking at approximate functionals [Sec. 3.4], more

exact conditions can be investigated. Indeed, it will be shown in Sec. 3.3.1 that the impurity cor-

relation functional has to depend on all the site occupations, even in the uniform case. Besides,

the correlation functionals should also fulfil the hole-particle symmetry relation, as demonstrated in

Sec. 3.3.2. Finally, we present how the correlation energy functionals can be determined numerically.

These numerically exact functionals will be our references to judge the accuracy of our approximated

functionals introduced in Sec. 3.4.

3.3.1 Numerical investigation of the embedding potential

The embedding potential in Eq. (3.7) is essential to ensure the in-principle-exact mapping between

the physical system and the M -impurity-interacting one. Firstly, it is primordial to verify that there

is no impurity-interacting v-representability problem in the one-dimensional Hubbard model. The

exact embedding potential can be found numerically by solving theM -impurity-interacting Legendre–
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Fenchel transform [72],

F imp
M (n) = sup

v

{
E imp
M (v)− (v|n)

}
, (3.40)

where E imp
M (v) is the ground-state energy of Ĥ imp

M (v) = T̂ + ÛM +
∑
i vin̂i. Eq. (3.40) has been imple-

mented and solved in Ref. [72] by exact diagonalization (FCI), by using the lanczos algorithm [431]1.

Due to the high computational cost required to compute E imp
M (v) exactly, a small ring of eight sites

will be studied. For simplicity, one impurity only is considered. In Fig. 3.2, the maximising em-

bedding potential (shifted so that it becomes 0 on the impurity site) is plotted (left panel). This

potential is then used to solve Eq. (3.6) in order to extract the site occupations (middle panel) and

the double occupations (right panel). As readily seen in the middle panel of Fig. 3.2, the uniform

site occupations are recovered by using the maximising embedding potential of Eq. (3.40). Hence,

no impurity-interacting v-representability problem arises. Turning to the right panel of Fig. 3.2, the

impurity double occupations dimp
M=1,i of the non-interacting bath sites (i = 1, . . . , L − 1) deviate sig-

nificantly from the physical double occupation (dashed lines). However, it seems that the double

occupation of the impurity site is very close to the physical one, except in the half-filled case where

dimp
M=1,0 ≈ 0.0715 (instead of ≈ 0.025 for N = 8 [zoomed panel]). In this case, and according to

the double occupation expression in SOET [Eq. (3.39)], the complementary per-site bath correlation

energy derivative has a significant contribution. These observations clearly highlight the impact of

the explicit treatment of the electron-electron repulsion on the impurity-interacting wavefunction.

Returning to the embedding potential (left panel of Fig. 3.2), an interesting result arises in the half-

filled case. Indeed, the embedding potential in the bath is constant and equal to U/2. Equivalently,

by applying a shift of −U/2, the exact expression for the single-impurity embedding potential at

half-filling becomes

vemb
M=1,i(n = 1) = −U

2
δi0. (3.41)

On the other hand, the potential exhibits some fluctuations in the bath away from half-filling. Thus,

the embedding potential is not trivial anymore, even for a uniform model. This is a direct consequence

of the broken translational invariance due to the insertion of an impurity. According to the exact

embedding potential expression in Eqs. (3.7) in the uniform case (v = 0), and considering Eqs. (3.12)

1This code has been provided by Masahisa Tsuchiizu (University of Women, Nara, Japan).
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Figure 3.2: Results are shown for U/t = 10 and for different number of electrons in the eight-site
ring Hubbard model. Left panel: embedding potential vemb

M=1(nΨimp
M=1) ≡ {vemb

M=1,i(n
Ψimp
M=1)}i. Middle

panel: site occupations nΨimp
M=1 ≡ {nΨimp

M=1
i }i. Right panel: double occupations dimp

M=1,i = 〈n̂i↑n̂i↓〉Ψimp
M=1

.
Dashed lines: exact double occupation of the fully-interacting system. A zoom is made around the
impurity site for the double occupation, in which the number of electrons corresponding to each dashed
lines is specified. See text for further details.
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and (3.15), it comes

vemb
M=1,i(n) =

U

2
n(1− δi0) +

∂ec(ni)

∂ni

∣∣∣∣
ni=n

−
∂Eimp

c,M=1(n)

∂ni

∣∣∣∣∣
n=n

(3.42)

By applying a shift of −Un/2− (∂ec(ni)/∂ni) |ni=n, the expression reduces to

vemb
M=1,i(n) = −U

2
nδi0 −

∂Eimp
c,M=1(n)

∂ni

∣∣∣∣∣
n=n

. (3.43)

From Eq. (3.43), it comes that the impurity correlation energy functional (or, equivalently, ebath
c,M=1(n)

according to Eq. (3.17)) has to depend on all site occupations. Otherwise, it would not account for

the fluctuations of the embedding potential in the bath. This is the price the pay to achieve an exact

embedding. In the particular case of half-filling where no fluctuations appear, this dependence can be

neglected exactly. This assumption, so-called the “impurity local density approximation” (iLDA) [72],

leads to

ebath
c,M=1(n)

iLDA−−−→ ebath
c,M=1(n0), (3.44)

where the per-site bath correlation functional depends only on the occupation of the impurity site.

While iLDA is exact at half-filling, it becomes an approximation in the other density regimes. This

approximation will be employed in the construction of all the functional approximations developed in

this thesis. In order to see the limitations of iLDA, an approximate Legendre–Fenchel transform is

introduced as follows [72]:

F imp
M=1(n0) = sup

v0

{
E imp
M=1(v0)− v0n0

}
, (3.45)

where only the potential on the impurity is optimized, while it is set to 0 in the bath. The maximising

potential in Eq. (3.45) is referred to as impurity-optimised potential, and is numerically determined

to recover the physical occupation on the impurity site. The site occupations obtained by solving

the SOET equation [Eq. (3.6)] with this impurity-optimised potential are shown in Fig. 3.3. By

construction, the impurity site occupation is indeed exact in any density and correlation regimes.

In the half-filled case, the uniform occupation on all sites is recovered, demonstrating that iLDA is

not an approximation. However, away from half-filling, the uniform occupation is not recovered and

fluctuations in the bath occupations appear. Nevertheless, those fluctuations are relatively small even

for large U/t values (right panel of Fig. 3.3). Therefore, iLDA seems to be a relevant approximation.

Note that in practice, the embedding potentials derived from approximate functionals are not expected
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Figure 3.3: Site occupations obtained with the impurity-optimised potential for U/t = 1 (left panel)
and U/t = 10 (right panel) on the uniform eight-site Hubbard ring model. Dashed lines represent the
uniform site occupation n = N/L.

to reproduce the impurity site occupation exactly, in contrast to the impurity-optimised potential.

3.3.2 Hole-particle symmetry

As readily seen in Fig. 3.3, the right panel exhibits an axial symmetry around the green line axis

corresponding to the half-filled case. It illustrates the hole-particle symmetry. In this section, we

discuss the invariance of the functionals under this particular symmetry, followed by the generalized

proof of Eq. (3.41) for multiple impurities [301].

Let us consider 2L − N electrons, so that the site-occupation vector becomes 2 − n = {2 − ni}i.

Starting with the Legendre–Fenchel transform in Eq. (3.40), its hole-particle symmetric analogue reads

F imp
M (2− n) = sup

v

{
E imp,2L−N
M (v)− 2

∑
i

vi + (v|n)
}
, (3.46)

where E imp,2L−N
M (v) is the (2L−N)-electron ground-state of theM -impurity-interacting Hamiltonian,

which is rewritten here for convenience,

Ĥ imp
M (v) = −t

∑
iσ

(
ĉ†iσ ĉi+1σ + h.c.

)
+
∑
iσ

viĉ
†
iσ ĉiσ + U

M−1∑
i=0

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓. (3.47)

In order to connect the N - and the (2L−N)-electron systems, the following hole-particle transforma-
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tion to the creation and annihilation operators is introduced:

ĉ†iσ → b̂†iσ = (−1)iĉiσ,

ĉiσ → b̂iσ = (−1)iĉ†iσ, (3.48)

and applied to the Hamiltonian in Eq. (3.47), thus leading to [301]

Ĥ imp
M (v) = −t

∑
iσ

(
b̂†iσ b̂i+1σ + h.c.

)
+ 2

∑
i

vi −
∑
iσ

vib̂
†
iσ b̂iσ

+UM − U
M−1∑
i=0

∑
σ

b̂†iσ b̂iσ + U
∑
i

b̂†i↑b̂i↑b̂
†
i↓b̂i↓. (3.49)

Then, by substituting and shifting the potential in Eq. (3.47) as follows:

ṽi = −vi − U
M−1∑
j=0

δij , (3.50)

we finally obtain

Ĥ imp
M (ṽ) = −t

∑
iσ

(
b̂†iσ b̂i+1σ + h.c.

)
+
∑
iσ

ṽib̂
†
iσ b̂iσ + U

∑
i

b̂†i↑b̂i↑b̂
†
i↓b̂i↓ + UM + 2

∑
i

vi. (3.51)

As readily seen from Eqs. (3.47) and (3.51), the (2L−N)-electron ground-state energy E imp,2L−N
M (v)

of Ĥ imp
M (v) is connected to the N -electron (or, equivalently, (2L − N)-hole) ground-state energy

E imp,N
M (ṽ) of Ĥ imp

M (ṽ) as follows,

E imp,2L−N
M (v) = E imp,N

M (ṽ) + 2
∑
i

vi +MU. (3.52)

By inserting Eq. (3.52) into Eq. (3.46), the hole-particle relation for theM -impurity-interacting Levy–

Lieb functional is obtained as

F imp
M (2− n) = sup

v

{
E imp,N
M (ṽ) + (v|n)

}
+MU

= sup
ṽ

{
E imp,N
M (ṽ)− (ṽ|n)

}
+ U

(
M −

M−1∑
i=0

ni

)

= F imp
M (n) + U

(
M −

M−1∑
i=0

ni

)
. (3.53)

In the particular case U = 0, we recover the hole-particle symmetry relation for the non-interacting
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kinetic energy,

Ts(2− n) = Ts(n). (3.54)

Then, the invariance under hole-particle symmetry of the impurity correlation energy,

Eimp
c,M (2− n) = Eimp

c,M (n), (3.55)

as well as the per-site bath correlation energy using Eqs. (2.79) and (3.17),

ebath
c,M (2− n) = ebath

c,M (n), (3.56)

are derived from Eqs. (3.53) and (3.54), (3.8) and (3.11).

Let us turn to the proof of Eq. (3.41) concerning the embedding potential at half-filling. The

maximising potential in the second equality of Eq. (3.53), denoted by ṽemb
M (n), is nothing but the

exact embedding potential vemb
M (n) in Eq. (3.40). Therefore, the two maximising potentials are equal:

vemb
M (n) = ṽemb

M (n), (3.57)

and according to the shift [Eq. (3.50)], ṽemb
M (n) is related to the maximising potential of Eq. (3.46) as

follows:

ṽemb
M,i (n) = −vemb

M,i (2− n)− U
M−1∑
j=0

δij . (3.58)

Then, from the equality in Eq. (3.57), it comes

vemb
M,i (n) = −vemb

M,i (2− n)− U
M−1∑
j=0

δij , (3.59)

finally leading to, at half-filling [301],

vemb
M,i (n = 1) = −U

2

M−1∑
j=0

δij . (3.60)

We recognize the (previously numerically determined) result of Eq. (3.41), now generalized for a system

containing multiple impurities.
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3.3.3 Derivation of the exact correlation functionals and their derivatives

As readily seen in Eqs. (3.6), (3.32) and (3.39), the derivatives of the correlation functionals with

respect to n, U and t are necessary to compute the self-consistent SOET equation, the double occu-

pation, and the per-site energy, respectively. In the following, we show how these derivatives can be

calculated exactly, without finite differences. As the derivatives with respect to t are intimately related

to the derivatives with respect to U [see Eqs. (3.29), (3.30) and (3.31)], only the latter will be described.

Starting with the fully-interacting case, the Levy–Lieb functional in Eq. (2.50) can be rewritten

as follows, as a consequence of the variational principle in SOFT [Eq. (2.49)]:

F (t, U,n) = sup
v
{E(t, U,v)− (v|n)} . (3.61)

This is the fully-interacting analogue of the M -impurity-interacting Legendre–Fenchel transform

[Eq. (3.40)]. Note that the t- and U -dependence have been introduced explicitly for clarity. From

the KS decomposition F (t, U,n) = Ts(t,n) + EHxc(t, U,n), the expression for the correlation energy

is obtained as follows:

Ec(t, U,n) = F (t, U,n)− Ts(t,n)− U

4

∑
i

n2
i , (3.62)

where Ts(t,n) = F (t, U = 0,n). In the uniform case, Eq. (3.61) reduces to the ground-state energy of

the fully-interacting Hamiltonian, F (t, U, n) = E(t, U,v = 0). Concerning the derivative with respect

to U , the Hellmann–Feynman theorem is applied to Eq. (3.61), thus leading to

∂F (t, U,n)

∂U
=
∑
i

di(t, U,n), (3.63)

where di(t, U,n) = 〈Ψ(n)|n̂i↑n̂i↓|Ψ(n)〉 denotes the double occupation of site i and Ψ(n) is the ground-

state wavefunction of the fully-interacting Hamiltonian Ĥ(t, U,v(t, U,n)), with v(t, U,n) the max-

imising (stationary) potential of Eq. (3.61). Hence, obtaining the derivative of the correlation energy

functional is straightforward and is given by

∂Ec(t, U,n)

∂U
=
∑
i

di(t, U,n)− 1

4

∑
i

n2
i , (3.64)

where the KS decomposition of F (t, U,n) together with Eq. (3.63) have been used. For a uniform
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density profile n = n, the per-site analogues of Eqs. (3.62) and (3.64) are written as follows:

ec(t, U, n) =
Ec(t, U, n)

L
=

1

L

(
F (t, U, n)− Ts(t, n)

)
− U

4
n2, (3.65)

and, according to Eq. (3.63),

∂ec(t, U, n)

∂U
= d(t, U, n)− n2

4
, (3.66)

where di(t, U, n) = d(t, U, n) is site-independent in the uniform case.

Turning to the embedded impurity problem, the impurity correlation energy is defined by

Eimp
c,M (t, U,n) = F imp

M (t, U,n)− Ts(t,n)− U

4

M−1∑
i=0

n2
i , (3.67)

where F imp
M (t, U,n) is given in Eq. (3.40) and Ts(t,n) = F imp

M (t, U = 0,n). Differentiating this

impurity correlation energy with respect to U leads to

∂Eimp
c,M (t, U,n)

∂U
=
∂F imp

M (t, U,n)

∂U
− 1

4

M−1∑
i=0

n2
i , (3.68)

where, by using the stationary potential vemb
M (U, t,n) in Eq. (3.40),

∂F imp
M (t, U,n)

∂U
=
∂E imp

M (U, t,v)

∂U

∣∣∣∣∣
v=vemb

M (U,t,n)

. (3.69)

Besides, according to the Hellmann–Feynman theorem, Eq. (3.69) becomes

∂F imp
M (t, U,n)

∂U
=

M−1∑
i=0

dimp
M,i(n), (3.70)

where dimp
M,i(n) = 〈Ψimp

M (n)|n̂i↑n̂i↓|Ψimp
M (n)〉 and Ψimp

M (n) is the ground-state wavefunction of

Ĥ imp
M (U, t,vemb

M (U, t,n)). Finally, inserting Eq. (3.70) into (3.68) leads to

∂Eimp
c,M (t, U,n)

∂U
=

M−1∑
i=0

dimp
M,i(n)− 1

4

M−1∑
i=0

n2
i . (3.71)
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3.4 Approximate correlation energy functionals of the site oc-

cupations

So far, exact properties of the functionals have been discussed, and the SOET equation has been

solved by using numerically-optimised embedding potentials. In practice, analytical expressions for

the complementary bath Hxc functional have to be developed. As already mentioned in Sec. (2.2),

there are two non trivial cases for which the correlation energy is known analytically within SOFT.

The first one is the one-dimensional half-filled Hubbard model in the thermodynamic limit (n = 1,

L→ +∞) [320], which has led to BALDA [359, 360]. The second one is the asymmetric Hubbard dimer

for which a highly accurate parametrization has been derived [335, 358]. From the decomposition of

the per-site bath correlation energy [Eq. (3.17)], it comes that both the conventional correlation energy

EHxc(n) and the impurity one Eimp
Hxc,M (n) have to be approximate. BALDA will be used to model the

former, such that only the impurity correlation functional remains to be found.

3.4.1 Exact functional for the Hubbard dimer

In order to develop approximate functionals, it is advantageous to look at systems with analytical

solutions. For instance, the two-electron system is considered to be a paradigm in RDMFT, as the

functional of the 1RDM is exactly known in this case [189, 432, 433]. We follow the same direction

by looking at the asymmetric Hubbard dimer (see Sec. 2.1.4.iii) [335, 358]. In SOET, the asymmetric

Hubbard dimer is mapped onto an impurity Hubbard dimer, which ground-state energy is simply

obtained by setting U1 = 0 and U0 = U in Eq. (2.44), thus leading to [72]

E imp
M=1(U,∆v) = E0(U, 0,∆v) = E0(U/2,∆v − U/2). (3.72)

We denote the impurity occupation by n0 = n and the bath one by n1 = 2−n. The Legendre-Fenchel

transforms are written as follows for the fully-interacting case,

F (U, n) = sup
∆v

{
E0(U,∆v) + ∆v(n− 1)

}
, (3.73)

and the single-impurity case,

F imp
M=1(U, n) = sup

∆v

{
E imp
M=1(U,∆v) + ∆v(n− 1)

}
, (3.74)

where the maximising potentials are denoted by ∆v(U, n) and ∆vemb
M=1(U, n), respectively. By apply-

ing the Hellmann–Feynman theorem to Eqs. (3.73) and (3.74), and by using the stationarity of the
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maximising potentials, it comes

∂E(U,∆v)

∂∆v

∣∣∣∣
∆v=∆v(U,n)

=
∂E imp

M=1(U,∆v)

∂∆v

∣∣∣∣∣
∆v=∆vemb

M=1(U,n)

= 1− n, (3.75)

and, according to in Eq. (3.72),

∂E(U/2,∆v)

∂∆v

∣∣∣∣
∆v=∆v(U/2,n)

=
∂E(U/2,∆v)

∂∆v

∣∣∣∣
∆v=∆vemb

M=1(U,n)−U/2
= 1− n, (3.76)

thus leading to the following scaling and shifting relation between the embedding potential and the

conventional one:

∆vemb
M=1(U, n) = ∆v(U/2, n) +

U

2
. (3.77)

Then, according to this new relation together with Eq. (3.72), it comes

F imp
M=1(U, n) = F (U/2, n) +

U

2
(n− 1) (3.78)

and, by using the KS decompositions of both Levy–Lieb functionals of Eq. (3.78) [see Eqs. (3.8) and

(2.51)],

Eimp,2L
Hxc,M=1(U, n) = E2L

Hxc(U/2, n) +
U

2
(n− 1). (3.79)

2L refers to as “two-level” (i.e. the Hubbard dimer). Deriving Eq. (3.79) with respect to (minus) n

leads to similar scaling and shifting relation as Eq. (3.77) is obtained, but between the impurity Hxc

potential and the fully-interacting Hxc potential [72]:

∆vimp,2L
Hxc,M=1(U, n) = ∆v2L

Hxc(U/2, n)− U

2
, (3.80)

where ∆vimp,2L
Hxc,M=1(U, n) = −∂Eimp,2L

Hxc,M=1(U, n)/∂n and ∆v2L
Hxc(U, n) = −∂E2L

Hxc(U, n)/∂n. Finally, from

Eq. (3.79) and by separating the Hx parts,

Eimp,2L
Hx,M=1(U, n) =

U

4
n2,

E2L
Hx(U, n) =

U

4

(
n2 + (2− n)2

)
=
U

2

(
1 + (1− n)2

)
, (3.81)
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from the correlation parts, a simple scaling relation between the impurity- and the fully-interacting

correlation functionals is obtained [72]:

Eimp,2L
c,M=1 (U, n) = E2L

c (U/2, n). (3.82)

Eq. (3.82) tells us that if the analytical expression of E2L
c (U, n) is known, so is the impurity correlation

energy. Therefore, the parametrization of Carrascal and co-workers [335, 358] can be extended to our

impurity problem by using a simple 1/2 scaling of the electronic repulsion parameter U . The deriva-

tions required to implement this correlation functional are presented in Appendix G. Consequently,

the complementary bath Hxc functional is exactly known for the asymmetric Hubbard dimer and

reads

E
bath,2L

Hxc,M=1(U, n) = E2L
Hxc(U, n)− Eimp,2L

Hxc,M=1(U, n) = E2L
Hxc(U, n)− E2L

Hxc(U/2, n). (3.83)

3.4.2 Two-level Bethe Ansatz Local Density Approximation

Returning to a larger system (L > 2), the conventional correlation energy will be modelled within

BALDA. If a single impurity is considered, the impurity correlation functional in Eq. (3.17) can be

approximated by the impurity correlation functional of the asymmetric Hubbard dimer [Eq. (3.82)]

as follows:

Eimp
c,M=1(n) −→ Eimp,2L

c,M=1 (U, n0) = E2L
c (U/2, n0). (3.84)

This is obviously an approximation, given that the exact impurity correlation functional should de-

scribe an impurity with occupation n0, surrounded by L − 1 noninteracting sites sharing N − n0

electrons. On the contrary, the 2L impurity correlation functional describes one impurity site with oc-

cupation n0 surrounded by one noninteracting site only with 2−n0 electrons. Together with BALDA,

it leads to the so-called 2L-BALDA approximation,

ebath
c,M=1(n)

2L-BALDA−−−−−−−→ eBALDA
c (n0)− E2L

c (U/2, n0). (3.85)

Note that the dependence on the bath-site occupations is neglected. While thE dependence on the

impurity occupation only is sufficient to describe the Hubbard dimer exactly, it is not the case anymore

for a larger system, as shown in Sec. 3.3.1. Hence, 2L-BALDA belongs to the (more general) iLDA

approximation [see Eq. (3.44)]. This will also be the case for all the functionals developed in the

following.
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3.4.3 Impurity Bethe Ansatz Local Density Approximation

A simple idea consists in modelling theM -impurity-interacting correlation energy within BALDA, thus

leading to the so-calledM -impurity Bethe ansatz local density approximation denoted by iBALDA(M),

Eimp
Hxc,M (n)

iBALDA(M)−−−−−−−−→
M−1∑
i=0

eBALDA
c (ni). (3.86)

According to Eq. (3.17), the per-site bath correlation functional measures the deviation of the impurity

correlation energy from the conventional one. As both terms are expressed within BALDA, it comes

ebath
c,M (n)

iBALDA(M)−−−−−−−−→ 0, (3.87)

and, according to Eq. (3.18),

E
bath

Hxc,M (n) =

L−1∑
i=M

eBALDA
Hxc (ni) =

L−1∑
i=M

(
U

4
n2
i + eBALDA

c (ni)

)
. (3.88)

Obviously, if all the sites are considered as impurities (M = L), the SOET Hamiltonian reduces to

the fully-interacting Hamiltonian and

E
bath

c,M=L(n) = 0. (3.89)

On the contrary, if there is no impurity, the SOFT Hamiltonian is recovered and

E
bath

Hxc,M=0(n) = EHxc(n). (3.90)

iBALDA(M=L) and iBALDA(M=0) fulfil the conditions in Eqs. (3.89) and (3.90), respectively. For

the latter, the Hxc functional in SOFT would be approximated within BALDA.

3.4.4 Density-functional approximations based on the SIAM

The SIAM has been briefly described in Sec. 2.3, where its Hamiltonian in the basis of sites (i.e. the

discretized real space) is given in Eq. (2.93). Turning to SOET, let us consider the (L+ 1)-site SOET

Hamiltonian at half-filling, for a single impurity,

Ĥ = −t
∑
σ

L∑
i=0

(
ĉ†iσ ĉi+1σ + h.c.

)
+ Un̂0↑n̂0↓ −

U

2
n̂0, (3.91)
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Figure 3.4: Single-impurity-interacting Hubbard model and SIAM model for L+ 1 sites, in the basis
of sites. The difference between the two models is highlighted in green.

where the exact half-filling embedding potential in Eq. (3.41) has been used. This Hamiltonian and

the symmetric SIAM one in Eq. (2.93) (where εd = −U/2 in the symmetric case) are essentially the

same if

V = −t, (3.92)

as illustrated in Fig. 3.4. Note that the single-impurity SOET Hamiltonian at half-filling and the

symmetric SIAM Hamiltonian differ by the coupling term between the first neighbours of the impurity

site (i = 1 and i = L). The latter (see Fig. 3.4 in green) will be ignored for simplicity. Guided by

the similarities between the two models, SOET could benefit from previous works on the SIAM, such

as the development of DFAs. Indeed, these DFAs could be generalized to SOET, thus providing new

approximate impurity correlation functionals such as

Eimp
c,M=1(n) −→ ESIAM

c (n0). (3.93)

Let us now investigate DFAs developed for the SIAM. For example, the perturbation expansion

through fourth order in U/Γ, developed by Yamada [434] for the symmetric SIAM, could be used in

SOET to describe the weakly correlated limit. This fourth-order correlation energy reads

ESIAM
c,U/Γ→0(U,Γ) =

U2

πΓ

[
−0.0369 + 0.0008

(
U

πΓ

)2
]
, (3.94)

where Γ is the (frequency-independent [434]) impurity-level-width parameter. In analogy with the

Hubbard model where the ratio U/t defines the correlation strength, the ratio U/Γ in the SIAM model
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is used instead. Regarding the strongly correlated limit, a correlation potential relying on the BA

solution to the strongly correlated SIAM [435, 436] has been proposed by Burke and co-workers [372,

373] as follows:

vxc(n) = α
U

2

(
1− n− 2

π
tan−1

(
1− n
σ

))
, (3.95)

where α(U,Γ) = U/(U + 5.68Γ) and σ = 8Γ/(π2U). An impurity correlation energy functional is then

obtained by integrating Eq. (3.95) with respect to the density n2, thus leading to [300]

ESIAM
c,U/Γ→∞(U,Γ, n) = α(U,Γ)

U

2

[
Ec(U,Γ, n)− Ec(U,Γ, 0)

]
, (3.96)

where

Ec(U,Γ, n) = n− n2

2
+

2

π
(1− n)tan−1

[
(1− n)

σ

]
− σ

π
ln

[
1 +

(
(1− n)

σ

)2
]
. (3.97)

Note that the latter is not restricted to the symmetric case, in contrast to the correlation energy in

Eq. (3.94). In order to get a correct description of the symmetric SIAM in all correlation regimes, a

simple interpolation between the weakly [Eq. (3.94)] and the strongly [Eq. (3.96)] correlated limits is

suggested as follows [300]:

ESIAM
c (U,Γ, n = 1) =

1

1 + f
ESIAM

c,U/Γ→0(U,Γ) +
f

1 + f
ESIAM

c,U/Γ→∞(U,Γ, n = 1), (3.98)

where f = f(U/Γ) = eU/Γ−6.876 (the parameter 6.876 simply corresponds to the crossing point between

the two functionals). With such an interpolation, the correlation functional based on the perturbation

expansion in the weakly correlated regime will dominate for U/Γ < 6.876, while the one based on the

BA solution to the strongly correlated regime will dominate otherwise. Note that ESIAM
c (U,Γ, n = 1)

becomes positive for U/Γ < 2, which is unphysical (the correlation energy should always be negative).

This artefact is actually removed by the interpolation [Eq. (3.98)] [300].

In order to generalize the DFAs based on the SIAM to SOET, we need to relate the (frequency-

independent) impurity-level-width parameter Γ to the hopping parameter t of the Hubbard model.

Now that the connection between the SOET and the SIAM Hamiltonians has been clarified in the basis

of sites by the relation in Eq. (3.92), let us consider the SIAM Hamiltonian in k-space [Eq. (2.94)].

As mentioned in the DMFT section (Sec. 2.4.1), the coupling between the impurity and the bath

2Integration from 0 to n. To find the constant of integration, we set the energy to 0 when there is no density. This
leads to a constant equal to 0.
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is characterized by a frequency-dependent hybridization function [Eq. (2.99)], which imaginary part

[Eq. (2.102)] is nothing but the frequency-dependent impurity level width Γ(ω). The latter is given

in the thermodynamic limit (L→ +∞) as follows:

Γ(ω) =
L

2

∫ π

−π
dk|Vk|2δ(ω − εk) = L

∫ π

0

dk|Vk|2δ(ω − εk) = 4V 2

∫ π

0

dk cos2(k/2)δ(ω − εk),

(3.99)

thus leading to 3

Γ(ω) =
V 2

t2

∫ 2t

−2t

dε
t− ε

2√
1− ε2

4t2

δ(ω − ε). (3.100)

The (frequency-independent) impurity-level-width parameter Γ of the SIAM is defined as the value of

the hybridization function at the Fermi level εF = −2t cos(kF ), such that

Γ = Γ(εF ) =
V 2

t2

t− εF
2√

1− ε2
F

4t2

. (3.101)

By using Eq. (3.92) and the relation between the uniform density n = N/L in the bath and kF ,

∫ N/4

0

dm =
Ln

4
=

∫ kF

0

L

2π
dk, (3.102)

(or, equivalently, n = 2kF /π) we finally obtain a t-dependent density-functional impurity level width

which connects the SIAM to the original Hubbard problem,

Γ = Γ(t, n) = t

(
1 + cos(πn/2)

sin(πn/2)

)
. (3.103)

Note that the latter expression is valid for 0 6 n 6 1. In the range 1 6 n 6 2, the hole-particle

symmetry relation Γ(t, n) = Γ(t, 2− n) is used. As readily seen from Eq. (3.103), Γ = t at half-filling.

Thanks to the relation in Eq. (3.103), it becomes now possible to develop DFAs in SOET based on

the DFAs of the SIAM, as suggested in Eq. (3.93). The first approximation is given at half-filling by

setting Γ = t in Eq. (3.98). Together with BALDA, the following per-site bath correlation functional

3By using the trigonometric relations cos2(x) =
1 + cos(2x)

2
and cos2(x)+sin2(x) = 1, together with the substitution

ε = −2t cos(k).
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is obtained,

ebath
c,M=1(n)

SIAM−−−−−−−−→
BALDA[n=1]

eBALDA
c (n0)− ESIAM

c (U,Γ = t, n = 1). (3.104)

This functional, so-called SIAM-BALDA[n=1], is restricted to half-filling. It could be possible to

extend SIAM-BALDA[n=1] away from half-filling by using Eq. (3.103). However, the interpolation

formula in Eq. (3.98) depends on f(U/t), which contains a parameter defined by the crossing point

of the functionals at half-filling only. This function f(U/t) could certainly be generalized into a n-

dependent function, assuring the correct interpolation of the two correlation functionals in any density

regime. This has not been investigated here.

Another DFA is obtained by replacing Γ by Γ(t, n) in Eq. (3.94). Together with the use of BALDA

for the conventional per-site correlation energy, this new functional will be referred to as SIAM-BALDA

(without the suffix [n=1]) in the following,

ebath
c,M=1(n)

SIAM−−−−−→
BALDA

eBA
c (n0)− ESIAM

c,U/Γ→0(U,Γ(t, n0)). (3.105)

In contrast to its [n=1] analog, SIAM-BALDA is applicable to any density regime. At half-filling,

SIAM-BALDA[n=1] is expected to be more accurate than SIAM-BALDA in the strongly correlated

regime, by construction. Interestingly, the deviation from half-filling in the original Hubbard model

can be interpreted, in the SIAM, as a rescaling of Γ, as readily seen in Eq. (3.103) by varying n. In

the low-density regime we have Γ(t, n) ≈ 4t/(πn) � Γ(t, n = 1), thus leading to weaker correlation

effects on the embedded impurity site, in comparison to the half-filled case.

3.5 Solution of the SOET self-consistent equations

SOET is a method which combines a many-body correlated impurity wavefunction with correlation

energy functional contributions. As readily seen from Eqs. (3.28) and (3.39), the determination of the

per-site energy and the double occupation expressions within SOET relies on the knowledge of the

M -impurity-interacting wavefunction. This wavefunction is the one minimizing the energy, according

to the variational principle in Eq. (3.5), and it fulfils the self-consistent equation in Eq. (3.6). For the

clarity of this section, let us rewrite this equation for the uniform model (v = 0),

T̂ + ÛM +
∑
i

∂E
bath

Hxc,M

(
nΨimp

M

)
∂ni

 |Ψimp
M 〉 = E imp

M |Ψimp
M 〉. (3.106)
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In principle, any correlated method based on the explicit calculation of many-body wavefunctions or

Green’s functions could be employed to solve Eq. (3.106). So far in this thesis, the exact diagonalization

(FCI) has been used to investigate the exact embedding potential through the implementation of the

Lieb maximisation [Sec. 3.3.1]. Due to the exponential scaling of the method, only the one-dimensional

eight-site Hubbard model has been studied. In order to approach more and more the thermodynamic

limit, we have turned to the cheaper DMRG solver [Sec. 1.1.8] to enlarge the size of the model.

From now on, the uniform 32-site ring Hubbard model is investigated using periodic (ĉLσ = ĉ0σ) and

antiperiodic (ĉLσ = −ĉ0σ) boundary conditions, when (N/2) mod 2 = 1 [i.e. N/2 is an odd number]

and (N/2) mod 2 = 0 [i.e. N/2 is an even number], respectively.

Note that approaching the thermodynamic limit has many interesting aspects. One of them is

the possibility to study all the density regime continuously. Indeed, one could then look at the

n → 1− and n → 1+ limits which are essential to observe the derivative discontinuity of the

exact correlation functionals [300], as well as the “density-driven” Mott-Hubbard transition that

will be described in chapter 4. For the eight-site model, the available uniform occupations were

n = N/L ≡ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}. Note that even numbers of electrons are considered,

given that the theory is currently restricted to singlet states. For 32 sites, one can approach the sur-

rounding of half-filling by considering 30 electrons, thus leading to a uniform density n = 0.9375. This

is much better compared to the eight-site model, even though it remains relatively far from half-filling.

In the following, Eq. (3.106) is solved with the iBALDA, 2L-BALDA, SIAM-BALDA and SIAM-

BALDA[n=1] approximations. In order to be clear on the implementation of these approximations, we

summarize each of them in Tab. 3.1. The SOET results are compared to the highly accurate DMRG

calculation (i.e. by applying DMRG to the fully-interacting Hubbard model). The convergence criteria

is imposed on the M -interacting-impurity auxiliary energy E imp
M and the occupation of one impurity

site with a threshold of 10−5 (note that in Ref. [72], we have shown that the bath occupations converge

even faster than the impurity occupation). To help convergence, the embedding potential has been

updated as follows in the self-consistent cycle,

{
vemb,n
M,i

}
i
−→

{
(1− x)vemb,n−1

M,i + xvemb,n
M,i

}
i
, (3.107)

where n is the number of iterations and x is a coefficient between 0 < x < 1 that mixes the potentials

of the nth and (n−1)th iterations. In this work, x is initialized to 0.4 and incremented by 0.2 each time

the convergence is reached, until x = 1. This scheme prevents eventual oscillations of the potential in

the self-consistent procedure, such that no convergence problem has been faced in the model studied
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SOET method DFA used for E
bath

Hxc,M (n) Correlation functional approximation

iBALDA
L∑

i=M

(
U

4
n2
i + eBALDA

c (ni)

)
Eqs. (2.80)–(2.82)

SIAM-BALDA
∑
i

(
U

4
n2
i + eBALDA

c (ni)

)
−

U

4
n2

0 − ESIAM
c,U/Γ→0 (U,Γ(t, n0))

Eqs. (2.80)–(2.82), (3.94) and
(3.103)

SIAM-BALDA[n=1]
∑
i

(
U

4
+ eBALDA

c (n = 1)

)
− U

4
−

ESIAM
c (U,Γ = t, n = 1)

Eqs. (2.80)–(2.82), (3.98) with
(3.94), (3.96) and (3.97)

2L-BALDA
∑
i

(
U

4
n2
i + eBALDA

c (ni)

)
−

U

4
n2

0 − Eimp,2L
c (n0)

Eqs. (2.80)–(2.82), (103)

Table 3.1: Summary of the DFAs used for E
bath

Hxc,M (n) in the practical SOET calculations [Eq (3.106)].
The corresponding approximate bath Hxc potentials on site i are simply obtained by taking the
derivative with respect to ni. In the half-filled case, we used the exact potential in Eq. (3.60).

in this chapter (i.e. the uniform one-dimensional 32-site Hubbard model). The convergence is reached

for approximately 10 or 20 iterations, depending on the correlation strength and the density regime.

At half-filling, the exact embedding potential [Eq. (3.60)] is used such that one iteration only is needed

to converge.

3.5.1 Density profiles

In Sec. 3.3.1, the exact embedding potential able to recover the uniform density has been calculated,

showing the absence of impurity-interacting v-representability problem in the Hubbard model within

SOET. Besides, it has been shown that an impurity-optimised potential could reproduce the exact

impurity occupation, at the expense of the uniform occupation in the bath. One may wonder if the

different approximations are able or not to reproduce a correct density profile. At half-filling, the

exact embedding potential is used so that the answer is definitely yes.

The density profiles obtained by solving the SOET equation [Eq. (3.106)] are shown in Fig. 3.5 for

N = 8 and N = 24 electrons, and a single impurity site. When no embedding potential is used, it is

clear that the uniform density profile cannot be reproduced due to the impurity site which breaks the

translational invariance of the system. As expected, the exact uniformity is not reproduced by the
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Figure 3.5: Density profile obtained after solving the SOET equations self-consistently. Left panel:
N = 8 electrons. Right panel: N = 24 electrons. The impurity located on site 16. See text for further
details.

approximate functionals in SOET, for any correlation and density regime studied in Fig. 3.5. In spite

of that, the uniformity in the bath sites is usually well recovered within all the approximations, in

contrast to the impurity site on which the strongest deviation from the exact site-occupation arises,

and is somehow echoed on its closest neighbours. Nevertheless, this deviation remains relatively small

in most cases.

To conclude, the DFAs in SOET can correctly reproduce the uniform bath occupation, even away

from half-filling. The recovering of an accurate occupation on the impurity and its closest neighbour

sites is more challenging, due to the presence of the explicit repulsion between the electrons. Never-

theless, the final occupations are very encouraging and they do not differ too much from the exact

one.

We now discuss the resulting per-site energy and double occupation within SOET.

3.5.2 Per-site energy and double occupation at half-filling

3.5.2.i Per-site energy at half-filling

Let us focus on the half-filled case, for which the exact embedding potential is used. Solving the

SOET equation [Eq. (3.106)] leads to the site-occupation vector
(
nΨimp

M ≡
{
〈Ψimp

M |n̂i|Ψ
imp
M 〉

}
i

)
and

the double occupations
(
dimp
M,i = 〈Ψimp

M |n̂i↑n̂i↓|Ψ
imp
M 〉

)
. They are used to compute the physical per-site
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energy and the physical double occupation, for which exact expressions are given in Eqs. (3.28) and

(3.39), respectively. Given that the exact embedding potential is used, the exact uniform density is

reproduced and Ψimp
M (as well as {dimp

M,i}i) will be the same for any DFAs and will only depend on

M . In addition, BALDA is exact at half-filling in the thermodynamic limit for the conventional per-

site correlation energy. In other words, the errors in the per-site energy and the double occupation

within SOET at half-filling are directly caused by the error in the approximate impurity correlation

functionals, which is the so-called functional-driven error [437].

We start by noticing that all the correlation functionals studied in Sec. 3.4 are of the form t×G(U/t).

As a consequence, they all automatically satisfy the conditions in Eqs. (3.29), (3.30) and (3.31). Hence,

passing from Eq. (3.28) to Eq. (3.32) does not induce any additional error [301]. By inserting Eq. (3.19)

into Eq. (3.32), the following convenient expression for the per-site energy is obtained:

e =
1

M

M−1∑
i=0

(
ts(n

Ψimp
M

i ) + ec(n
Ψimp
M

i ) + U〈n̂i↑n̂i↓〉Ψimp
M

)
− U

∂Eimp
c,M (nΨimp

M )

∂U
. (3.108)

This expression simplifies the understanding of the following results, as the derivative of the impu-

rity correlation energy with respect to U only has to be considered (everything else is exact in the

thermodynamic limit at half-filling). Results are shown in Fig. 3.6 for the various aforementioned

approximations. The derivatives of the impurity correlation energies with respect to U are also pro-

vided in Fig. 3.7 to assist the discussion. According to Eq. (3.108), Fig. 3.7 is entirely sufficient to

rationalize the results in Fig. 3.6, apart from a scaling factor −U .

Let us start the discussion with the per-site energy obtained with iBALDA(M=1). For one im-

purity (M = 1), it is clear from Fig. 3.7 that the derivative of the iBALDA(M=1) correlation energy

is exactly equal to the exact conventional per-site one (dashed black lines). This was expected as the

iBALDA(M=1) impurity correlation energy is modelled by BALDA, which gives the exact conven-

tional per-site correlation energy at half-filling in the thermodynamic limit. We conclude that errors

due to the size are negligible here. However, the exact per-site correlation energy is not the same as

the exact impurity one (full black lines). The deviation of iBALDA(M=1) from the latter is echoed

on the per-site energy in Fig. 3.21 with a scaling factor −U , giving a poor description of the energy.

In other words, setting the per-site bath correlation energy ebath
c,M=1(n) to 0, as done by construction

within iBALDA(M), is insufficient here.

Improvements over iBALDA(M=1) can be done in two distinct manners. (i) By using function-

als that provide a non-zero contribution for ebath
c,M=1(n) while conserving a single-impurity, or (ii) by
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increasing the number of impurity sites within iBALDA(M). Indeed, and as already mentioned in

Sec. 3.4.3, if all sites are interacting iBALDA(M) becomes exact. In Fig. 3.6, M = 2 and M = 3

impurities have been considered. While iBALDA(M=2) clearly improves over iBALDA(M=1), the

per-site energy within iBALDA(M=3) does not change much in comparison with iBALDA(M=2).

This slow convergence towards the exact solution with respect to the number of impurities has also

been observed in the context of DMET, and has been further investigated by Welborn et al. [428],

who showed that the convergence speed is given by 1/M (see Fig. 4 in Ref. [428]). In addition, the

precision gained by increasing the number of impurities is at the expense of a higher computational

cost. The above argument suggests that increasing the number of impurities might not be the route

to pursue in the context of SOET.

Turning to the first solution (i), 2L-BALDA and SIAM-BALDA can be used to improve over

iBALDA(M=1). Impressively, the 2L-BALDA per-site energy is even better than the iBALDA(M=3)

one in all the correlation range of Fig. 3.6. This lends weight to the development of single-impurity-

interacting functionals rather than increasing the number of impurities. The good accuracy of 2L-

BALDA is quite impressive as this functional is exact for the Hubbard dimer only. Concerning the

approximations based on the SIAM, SIAM-BALDA gives an extremely accurate per-site energy in the

weakly correlated regime (U 6 4t, where 4t is the bandwidth). This trend confirms the connection

between SOET and the SIAM model, as discussed in Sec. 3.4.4. Then, the approximation starts to

deviate from the exact result, which is expected as SIAM-BALDA is based on a perturbation expansion

in the weakly correlated limit (U/t→ 0). Around U ≈ 6t, the SIAM-BALDA[n=1] functional, based

on the interpolation between the weakly and the strongly correlated regimes, takes over from SIAM-

BALDA to catch up with the correct per-site energy for U > 6t.

3.5.2.ii Double occupation at half-filling

The exact expression of the double occupation in SOET is given in Eq. (3.39) and, in analogy with the

per-site energy discussed above, will be rewritten for a uniform model as follows by using Eq. (3.17):

d =
1

M

M−1∑
i=0

〈n̂i↑n̂i↓〉Ψimp
M

+
∂ec(n

Ψimp
M

i )

∂U

− ∂Eimp
c,M (nΨimp

M )

∂U
. (3.109)

The double occupation obtained with the various SOET approximations is shown in Fig. 3.8. Again,

in the particular case of half-filling, only the derivative of the approximate impurity correlation energy

with respect to U is responsible of any error in the double occupation. This observation is in complete

analogy with the per-site energy, except that the error in the double occupation is given by the error
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Figure 3.8: Double occupation at half-filling for the various DFAs in SOET, as a functional of U/t.

in the impurity derivative correlation energy with a scaling factor −1, instead of −U . Consequently,

there is no need to discuss this result differently from the previous discussion on the per-site energy,

as one can directly use Fig. 3.7 to explain Fig. 3.8. As readily seen in Fig. 3.8, increasing the number

of impurities within iBALDA(M) improves the description of the double occupation. In other words,

according to Eq. (3.39), the double occupation on the impurity sites
(
{dimp
M,i}i=0,...,M−1

)
is getting

closer to the physical double occupation, and ∂ebath
c,M (n)/∂U decreases with the number of impurities.

3.5.3 Per-site energy and double occupation away from half-filling

Although half-filling, which corresponds to the Mott–Hubbard insulator state, is one of the most

challenging cases, it is also interesting to look at its surrounding. For instance, in the high-Tc cuprates

the superconductivity arises due to carrier doping of the half-filled system. In contrast to the previous

section, the BALDA per-site correlation energy will not be exact anymore away from half-filling.

Hence, the derivative of the impurity correlation functional with respect to U [Fig. 3.7] alone will

not be sufficient to rationalize the results. Besides, none of the DFAs developed in this thesis can

reproduce the exact uniformity away from half-filling, as already illustrated in Fig. 3.5. The deviation

from uniformity thus leads to the so-called density-driven errors [437], which can either compensate

the functional-driven errors (so-called error cancellation) or accumulate onto it.
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3.5.3.i Per-site energy away from half-filling

Let us start with the per-site energy, given in Fig. 3.9 in the most challenging site-occupation domain

0.6 6 n = N/L 6 1. Only the U/t = 1 and U/t = 5 cases will be shown, as the qualitative discussion

of the results do not change by passing from U/t = 5 to U/t = 10, except for SIAM-BALDA which

is not physical anymore in the strongly correlated regime [300, 301]. It appears that the results are

easier to analyse by using the exact SOET expression for the per-site energy in Eq. (3.28), that we

recall here for convenience,

e =
1

M

M−1∑
i=0

ts(nΨimp
M

i ) + t
∂ec(n

Ψimp
M

i )

∂t
+ Udimp

M,i

+

(
ebath

c,M (nΨimp
M )− t

∂ebath
c,M (nΨimp

M )

∂t

)
. (3.110)

According to Eq. (3.110), the correlation energy functionals as well as their derivative with respect to

t are needed to have a full understanding of the result in Fig. 3.9. They are provided in Figs. 3.10 and

3.11, respectively. Let us stress that the iBALDA(M=1) curves in Figs. 3.10 and 3.11 are equivalent

to the BALDA approximation to the conventional per-site correlation energy and its derivative with

respect to t, respectively.

Functional-driven error away from half-filling

In a first step, we discuss the per-site energies obtained by plugging the exact density n = n ≡

{ni = n = N/L}i in the functional contributions in Eq. (3.110) (see full lines in Fig. 3.9), so that the

total error is interpreted as a functional-driven error only. As readily seen in the weakly correlated

regime of Fig. 3.9 (top panel), the iBALDA(M) approximation is the most accurate in the domain

0.6 6 N/L 6 0.75, being almost on top of the exact per-site energy. On the contrary, the 2L-BALDA

and SIAM-BALDA approximations slightly underestimate the per-site energy. At first glance, this

result is counter intuitive. Indeed, as readily seen in the top panels of Figs. 3.10 and 3.11, the

iBALDA(M=1) impurity correlation energy and its derivative with respect to t are far from accurate

in contrast to the 2L-BALDA and SIAM-BALDA ones. The accuracy of iBALDA(M) can be explained

by error cancellation. Indeed, both the per-site bath correlation functional and its derivative appear

in the expression of the per-site energy in Eq. (3.110). For the iBALDA(M=1) approximation, those

contributions are set to zero by construction. Then, judging by Figs. 3.10 and 3.11, the exact per-site

correlation energy and the exact impurity one are very close to each other away from half-filling, as

well as their derivatives. Hence, the difference of the two quantities [according to Eq. (3.19)] leads

to per-site bath correlation functional which is almost equal to 0, lending weight to the iBALDA(M)

approximation. Indeed, the errors on the impurity correlation energy within iBALDA(M=1) are al-
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most exactly compensated by the errors made by BALDA on the conventional per-site correlation

energy. The same happens for their derivatives. On the contrary, within 2L-BALDA, the error made

on the conventional per-site correlation energy is absolutely not compensated by the one made on

the impurity correlation energy. As a consequence, and despite its better accuracy for the impurity

correlation energy, 2L-BALDA is less accurate than iBALDA(M=1) away from half-filling.

Still in the domain 0.6 6 N/L 6 0.75, let us increase the correlation strength to U/t = 5 (bottom

panels of Figs 3.9, 3.10 and 3.11). In this regime of correlation and density, both iBALDA(M) and

2L-BALDA per-site energies are very close to each other. This can be simply explain by looking at

the bottom panels of Figs. 3.10 and 3.11, where BALDA (labelled by iBALDA(M=1)) is now be-

coming very accurate for the description of both the full per-site correlation energy and the impurity

correlation energy. This is also the case for 2L-BALDA, which is even on top of the exact impurity

correlation functional in this regime. Obviously, SIAM-BALDA does not exhibit the same feature. As

a consequence, iBALDA(M) and 2L-BALDA are reproducing the correct per-site energy (and with

almost no error cancellation), while SIAM-BALDA underestimates the per-site energy. Note that, in

contrast to the half-filling case discussed previously, increasing the number of impurities has no true

impact on the per-site energy, because ebath
c,M (n) is close to zero already for M = 1.

Turning to the density regime 0.75 > N/L > 1 in Fig. 3.9, the per-site energy within iBALDA(M=1)

starts to deviate from the exact curve, both for U/t = 1 (top panel) and U/t = 5 (bottom panel). By

looking at the exact results for the full per-site correlation and the impurity correlation functionals

in Fig. 3.10 (and 3.11 for their derivatives with respect to t), it becomes clear that they differ more

and more from each other as the density moves towards n = 1 (half-filling). This tendency shows

that the bath correlation functional ebath
c,M=1(n) is not negligible anymore. Therefore, iBALDA(M=1)

is not appropriate and deteriorates the per-site energy within SOET. In this domain of density, and

above all very close to the half-filling case, increasing the number of impurities improves the descrip-

tion of the per-site energy. Alternatively, 2L-BALDA also improves over iBALDA(M) by providing

a better approximation to ebath
c,M=1(n) in the very close vicinity of half-filling. This is also the case of

SIAM-BALDA at half-filling, but as soon as we deviate from the half-filled case, SIAM-BALDA has

the poorer performance.

Self-consistent results

For now, only the functional-driven error has been discussed. The total error is the sum of this

error with the so-called “density-driven error”. The latter defines the error in energy due to the

deviation of the occupation from the exact one. This deviation can arise as soon as we solve the
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Figure 3.12: Left panel: impurity occupation obtained self-consistently. For the iBALDA(M=2),
the two impurities have the same occupation by symmetry. Right panel: Same as left panel for the
iBALDA(M=3) approximation. The occupation of the central impurity site (nΨimp

M=3
1 , in red) is not

equal to the occupation of its first neighbour impurity sites (nΨimp
M=3

0 = n
Ψimp
M=3

2 , in blue).

SOET equation self-consistently with an approximate functional. The per-site energy obtained self-

consistently is shown in Fig. 3.9 (dashed lines). The difference between those lines and the DMRG

per-site energy corresponds to the total error. The density-driven error is the difference between this

total error and the functional-driven error (which itself is the difference between the full lines and the

DMRG results). Therefore, if the total error appears to be smaller than the functional-driven one,

it means that the self-consistency has improved over the not converged results (i.e., using the exact

density). This is manifested by a negative density-driven error. Starting with the weaker correlation

regime (top panel of Fig. 3.9), only the per-site energy within the iBALDA approximation contains

density-driven errors. For SIAM-BALDA and 2L-BALDA, the full and dashed lines are almost on top

of each other, which means that the error is driven by the energy functional only.

This can be rationalized with the help of the converged impurity occupation and the impurity

correlation potential in Figs. 3.12 and 3.13, respectively. As readily seen in Fig. 3.12, the impurity

occupation is generally well reproduced in the weakly correlated regime (top left panel) for all oc-
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cupation filling. However, by taking a closer look to the impurity occupation within iBALDA(M),

we see that it is underestimated for N/L 6 0.6 and overestimated otherwise. This explains why the

per-site energy contains density-driven errors within iBALDA(M) and not within 2L-BALDA and

SIAM-BALDA. This deviation from uniformity can be rationalized by looking at the impurity corre-

lation potential in Fig. 3.13. The impurity correlation potential is part of the embedding correlation

potential, which reads as follows for all the DFAs considered in this thesis:

vemb
c,i (ni) =

∂ec(ni)

∂ni
−
M−1∑
j=0

δij
∂Eimp

c,M (nj)

∂nj
. (3.111)

Within iBALDA(M), this correlation potential is always equal to 0 on the impurity sites, and to

∂ec(ni)/∂ni in the bath. I recall that the iBALDA(M=1) correlation potentials in Fig. 3.13 also

correspond to BALDA, used to model the conventional correlation potential. Focusing on the weakly

correlated regime (top panel of Fig. 3.13), the correlation potential is strongly attractive (negative) in

the bath for n 6 0.6, thus leading to a charge transfer between the impurities and the bath, inducing

a depletion of the density on the impurity sites [301]. The opposite situation happens for 0.6 6 n < 1,

as reflected in the impurity occupation in the top panels of Fig. 3.12. Such an unphysical feature of

the BALDA potential in the weakly correlated regime (already observed in Ref. [366]) is also present

in the 2L-BALDA and SIAM-BALDA embedding potentials. However, ∂ec(n)/∂n appears on all sites,
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and is not cancelled on the impurity like in iBALDA(M). This has strong consequences, as we could

in principle shift the potential by −∂ec(n)/∂n in the uniform case, hence keeping only the impurity

correlation potential in Eq. (3.111). If the latter is accurate (like in 2L-BALDA and SIAM-BALDA)

the correct occupation is recovered on the impurity. In the case of iBALDA(M), the impurity corre-

lation potential is not accurate for U/t = 1.

Let us now look at the moderate correlation regime (U/t = 5). By construction, the exact occu-

pation is recovered for N/L = 1 for all DFAs. The impurity occupation (bottom panel of Fig. 3.13)

within iBALDA(M) remains relatively accurate except in the vicinity of half-filling. On the contrary,

the 2L-BALDA impurity occupation is accurate around half-filling, in this regime of correlation. In

the case of SIAM-BALDA, the impurity occupation deviates strongly from the exact one in the mid-

range occupation filling, while it remains very accurate around half-filling. All these informations

extracted from Fig. 3.12 are in complete adequacy with Fig. 3.9 for the per-site energy. A more

detailed discussion is provided in Ref. [301].

3.5.3.ii Double occupation away from half-filling

In analogy with the per-site energy, it is interesting to look at the double occupation away from

half-filling, as shown in Fig. 3.14. For clarity, we recall the exact double occupation expression within

SOET:

d =
1

M

M−1∑
i=0

〈n̂i↑n̂i↓〉Ψimp
M

+
∂ebath

c,M (nΨimp
M )

∂U
, (3.112)

where ebath
c,M (n) measures the coupling between the impurities and the bath, and is given in Eq. (3.17).

To facilitate the interpretation of the results, we also provide the derivative of the impurity correlation

energy functionals with respect to U in Fig. 3.15. Starting with the iBALDA(M) approximation, the

density-functional contribution in Eq. (3.112) reduces to zero by construction, so that only the bare

impurity double occupations remain. It could be seen as a drastic approximation. However, as readily

seen in Fig. 3.15 for U/t = 1 (top panel), the derivative of the conventional per-site correlation

energy (∂ec(n)/∂U) is almost equivalent to the impurity one (∂Eimp
c,M=1(n)/∂U), making the iBALDA

approximation relevant. This observation has already been made for the per-site energy, with the

derivative with respect to t. Hence, the bare impurity double occupation is sufficient to properly

describe the physical double occupation away from half-filling. As a consequence, iBALDA(M) will

be accurate for any M such that there is absolutely no need to increase the number of impurities.

Returning to a single impurity, the 2L-BALDA and SIAM-BALDA approximations do not generally
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improve over iBALDA, except at half-filling. Again, and in complete analogy with the per-site energy,

the deficiency of 2L-BALDA here is not the 2L approximation to the impurity correlation energy, but

the BALDA one for the conventional per-site correlation energy. By construction, 2L-BALDA does

not benefit from the error cancellation which is present in iBALDA. This is the exact reason why

the double occupation is poorly reproduced by both SIAM-BALDA and 2L-BALDA for the weakly

correlated regime. Indeed, as shown in Fig. 3.16, the double occupation within SOFT (BALDA) cannot

reproduce the exact double occupation even for U/t = 0, due to the wrong behaviour of BALDA in

the weakly correlated limit, mentioned in Sec. 2.2.2 [Eq. (2.83)]. Unfortunately, all the functionals for

which the impurity correlation functional is not based on BALDA will inherit this deficiency, which

is the case of every functionals developed in this thesis apart from iBALDA(M). Indeed, the double

occupation within iBALDA(M=1) is almost on top of the physical one in Fig. 3.16 for any U/t. This

is one of the main improvement of SOET over SOFT, because SOET takes advantage of the explicit

treatment of the electronic repulsion on the impurity sites. For the 2L-BALDA approximation, the

correct double occupation is recovered when entering the strongly correlated regime (U/t > 4), at least

in the quarter-filling shown in Fig. 3.16. Finally, the effect of self-consistency can be rather strong

in the 2L-BALDA and SIAM-BALDA double occupation for U/t = 5, in contrast to iBALDA(M)

for which no density-driven error is observed. For the latter, the double occupation is approximate

by the bare double occupation on the impurity sites only, without any site-occupation functional
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contribution. We can conclude that the change in density does not have a significant impact on the

M -impurity-interacting wavefunction Ψimp
M (as same as on dimp

M,i) in contrast to the DFAs. Interestingly,

judging by Fig. 3.14, the self-consistency improves the resulting double occupation in 2L-BALDA. No

similar conclusion can be made about SIAM-BALDA, which is the DFA that leads to the poorer

double occupation.

3.5.4 Derivative discontinuity at half-filling

Returning to the correlation potential, we proved in Sec. 2.2.3 that ec(n) depicts a derivative disconti-

nuity at half-filling in the thermodynamic limit. A similar proof has been provided in Appendix D of

Ref. [300], showing that ebath
c,M=1(n) does not contain a derivative discontinuity neither on the impurity

site, nor in the bath. Alternatively, according to the expression of ebath
c,M (n) in Eq. (3.17), the impurity

correlation energy functional exhibits a derivative discontinuity on the impurity site, but not in the

bath. From the exact expression of the embedding potential in Eq. (3.7) and the decomposition of

the bath Hxc energy functional in Eq. (3.18), we conclude that the embedding correlation potential

should be discontinuous in the bath and smooth on the interacting impurity sites. An intuitive ex-

planation of this result could be that the derivative discontinuity, which is related to the opening of

the Mott-gap [360], is already taken into account by the explicit treatment of the electron-electron

interaction on the impurity sites, while it has to be described by discontinuous correlation potentials

in the bath. According to Fig. 3.13, iBALDA(M=1) and SIAM-BALDA exhibit such a discontinuity

at half-filling due to the hole-particle symmetry condition, as soon as U > 0. On the other hand, even

though the 2L-BALDA impurity correlation potential also fulfils the hole-particle symmetry condition,

it smoothly tends to 0 when approaching n = 1. As a consequence, the potential does not manifest a

derivative discontinuity at half-filling when U/t is finite. It only does when U/t→ +∞ (See Ref. [72]

for U/t = 100, which is close enough to the atomic limit to reveal the presence of a discontinuity).

As discussed by Dimitrov et al. [438], the dimer functional reproduces an intra-system steepening and

not an inter-system derivative discontinuity. In other words, the change in density in the dimer (2L)

functional does not correspond to a change in the total number of electrons. The latter is indeed

fixed to N = 2 in the dimer. Only the number of electrons on the impurity site varies. The problem

becomes equivalent to describing an inter-system derivative discontinuity only when the impurity can

be treated as an isolated system, which is indeed the case in the atomic limit.

Nevertheless, from a practical point of view, exhibiting a derivative discontinuity is not necessarily

an advantage. Indeed, it may lead to convergence issues around half-filling, as already observed in

KS-SOFT in the description of inhomogeneous models [360]. Practical solutions to this problem have
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been proposed for conventional KS calculations by using either a finite temperature [348] or ad-hoc

parameters [345, 346, 371], and could be considered also in SOET. This is left for future work. One

could think that 2L-BALDA would not be concerned by convergence issues as it does not exhibit a

discontinuity in the impurity correlation potential (except in the atomic limit). However, the BALDA

correlation potential is still employed on the bath sites within 2L-BALDA, which means that conver-

gence problems will appear as soon as bath occupations are close to 1. For now, no such situation has

been observed in SOET, simply because only 32 sites were considered, such that the closest uniform

occupation to half-filling is obtained for 30 electrons, i.e. n = 0.9375. This occupation is far enough

from the half-filling to avoid any problem.

Convergence issues are expected to arise when approaching the thermodynamic limit since the

density can then be much closer to 1. Unfortunately, this limit cannot be reached as the current

implementation of SOET does not allow a decrease of the computational cost in comparison to a fully

many-body treatment of the problem. Nevertheless, because only the impurity sites are explicitly

interacting, we expect SOET to be cheaper than WFT. The following chapter deals with alternative

implementations of SOET, by using a SIAM-solver or a projection method based of the Schmidt

decomposition, possibly enabling the treatment of much larger Hubbard rings.





Chapter 4

Towards an efficient implementation

of the self-consistent impurity problem

in SOET

In contrast to the usual embedding approaches, SOET treats all the bath sites explicitly as the kinetic

operator in Eq. (3.6) acts on the whole system. Although this explicit treatment is appealing, the

current implementation of SOET in the previous chapter did not allow a decrease in computational

cost in comparison to WFT. This can be contrasted with WFT-in-DFT [Eq. (1.198)] for which the

wavefunction is only built on the cluster, thus reducing the size of the Hilbert space and the com-

putational cost. Given that only a small number of sites are explicitly interacting within SOET, it

could be possible to find a more efficient impurity solver, thus leading to a computational cost in

between DFT and WFT. In this chapter, two different implementations are discussed. The first one

is a reformulation of the impurity problem in SOET into a (not necessarily symmetric) SIAM, which

can be solved by using Green’s function methods, as discussed in Sec. 4.1. The second one presented

in Sec. 4.2 makes use of the Schmidt decomposition (in analogy with DMET) thus leading to the

so-called projected SOET (P-SOET).

4.1 Single-Impurity Anderson Model solver

In the previous chapter, we investigated the connection between the SOET Hamiltonian at half-filling

and the symmetric SIAM (see Sec. 3.4.4). Note that this connection was not exact as the coupling

term between the two neighbours (i = 1 and i = L) of the impurity site in the SIAM was ignored.
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In this section, a rigorous transformation of the SOET Hamiltonian into the SIAM Hamiltonian is

provided. By doing so, SIAM-solver (also called impurity-solver) can then be employed to solve the

SOET equations by using Green’s function techniques. Note that this work is currently in progress

and a draft is in preparation, in collaboration with Matthieu Saubanère in Montpellier (France).

4.1.1 From the SOET to the SIAM Hamiltonian

Let us start by rewriting the SOET Hamiltonian for a single impurity as follows,

ĤSOET = −t
∑
iσ

(ĉ†iσ ĉi+1σ + h.c.) +
∑
i

[
vi +

∂E
bath

Hxc (n)

∂ni

]
n̂i + Û0 (4.1)

= ĥ0 + ĥ0b + ĥb + Û0, (4.2)

where Û0 = Un̂0↑n̂0↓ is the on-site repulsion operator on the impurity,

ĥ0 =

[
v0 +

∂E
bath

Hxc (n)

∂n0

]
n̂0 (4.3)

is the one-body embedding potential operator on the impurity,

ĥ0b = −t
∑
σ

(ĉ†0σ ĉ1σ + h.c.) (4.4)

is the hopping Hamiltonian between the impurity and its nearest neighbouring sites, and

ĥb = −t
∑
i 6=0,σ

(ĉ†iσ ĉi+1σ + h.c.) +
∑
i 6=0

[
vi +

∂E
bath

Hxc (n)

∂ni

]
n̂i (4.5)

is the remaining part that contains only bath contributions, with the embedding potential vemb
i (n) =

vi + ∂E
bath

Hxc (n)/∂ni. Note that the reference to the number of impurities (M) has been omitted for

convenience, given that only one impurity site is considered in this section. Getting rid of the two-body

part of the Hamiltonian, only the one-body part,

ĥSOET = ĥ0 + ĥ0b + ĥb, (4.6)
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remains, which matrix representation is of size L× L and reads

[
ĥSOET

]
=

 h0 h†0b

h0b hb

 =



h0 h†0b

vemb
1 −t 0

−t vemb
2 −t

h0b −t
. . . . . .
. . . −t

0 −t vemb
L−1


. (4.7)

Now, the idea is to recover the SIAM Hamiltonian in the “k-space”. To do so, a canonical transfor-

mation using a unitary matrix Pb is employed to diagonalize the block matrix of the bath,

PbhbP†b = D, (4.8)

thus leading to a new one-body Hamiltonian, keeping the impurity site unchanged,

[
ĥSOET
P

]
= P

[
ĥSOET

]
P†

=

1 0

0 Pb

 h0 h†0b

h0b hb

1 0

0 P†b



=

1 0

0 Pb

 h0 h†0bP†b

h0b hbP†b

 =

 h0 h†0bP†b

Pbh0b PbhbP†b︸ ︷︷ ︸
D

 . (4.9)

The eigenvalues of the diagonal matrix D are denoted by ε̃k. In addition, the column vector Pbh0b

contains the couplings between the impurity and the bath, denoted by Ṽk, in analogy with the SIAM.

The transformed one-body Hamiltonian now reads

ĥSOET
P =

∑
kσ

ε̃k ĉ
†
kσ ĉkσ + εdn̂d +

∑
k

Ṽk(ĉ†dσ ĉkσ + h.c.), (4.10)

which is nothing but the one-body part of the SIAM Hamiltonian [see Eq. (2.94)], with the substi-

tutions εk → ε̃k, Vk → Ṽk and εd → vemb
0 . To adopt the same notation as in the SIAM, we used

ĉdσ = ĉ0σ, with n̂d = n̂d↑ + n̂d↓ and n̂dσ = ĉ†dσ ĉdσ. By using the canonical transformation given by

the unitary matrix P on the two-body impurity-interacting SOET Hamiltonian [Eq. (4.1)], it comes

ĤSOET
P = P̂ ĤSOETP̂ † = P̂

(
ĥSOET + Û0

)
P̂ † = ĥSOET

P + Û0, (4.11)
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where the transformation does not affect the impurity site. The full expression of the transformed

Hamiltonian thus reads

ĤSOET
P =

∑
kσ

ε̃k ĉ
†
kσ ĉkσ + εdn̂d +

∑
k

Ṽk(ĉ†dσ ĉkσ + h.c.) + Un̂†dn̂d. (4.12)

Note that the Hamiltonian in Eq. (4.12) is the same as the Hamiltonian in Eq. (4.1), written in a

new basis. This basis is analogue to the basis of k-states. As one can pass from the Hamiltonian in

Eq. (4.12) to the SOET Hamiltonian by applying the unitary transformation in the bath, and vice-

versa, solving one or the other is completely equivalent and no information is lost. Therefore, once

the analytical embedding potentials are calculated, one has to apply the canonical transformation

to get a SIAM-like Hamiltonian, where the band energies ε̃k and coupling values Ṽk are determined

numerically by the transformation. This Hamiltonian could then be solved by any impurity-solver

method, also used in DMFT (see Sec. 2.4.1). In practice, due to the use of DFAs for the embedding

potential, this procedure has to be reiterated until occupations in the bath and on the impurity are

converged. Also, if the impurity-solver is not exact, additional errors might appear.

4.1.2 Second-order perturbation theory

In Sec. 2.4.1, we have shown how the SIAM Hamiltonian can be solved by using Green’s function tech-

niques in the DMFT framework. The procedure described here is different, as there is no mapping on

an impurity Green’s function. This section provides the basic idea to be implemented, as well as an

explicit expression for the self-energy based on second-order perturbation theory (SOPT). We want to

build the retarded impurity-interacting Green’s function, from which the occupations and the double

occupation are obtained. In the following, I will always consider the retarded quantities (Green’s

functions, self-energies and hybridization functions). Let us separate the impurity-interacting Hamil-

tonian into an unperturbed part, corresponding to the one-particle Hamiltonian, and a perturbation

containing the electron-electron repulsion operator,

Ĥ = Ĥ0 + Ĥ1, (4.13)

with

Ĥ0 =
∑
kσ

ε̃k ĉ
†
kσ ĉkσ +

∑
k

Ṽk(ĉ†dσ ĉkσ + h.c.) + εdn̂d (4.14)
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and

Ĥ1 = Uĉ†d↑ĉd↑ĉ
†
d↓ĉd↓. (4.15)

As a starting point, the noninteracting Green’s function is considered. This Green’s function is solution

of the noninteracting SIAM. Consider the following impurity (or host) noninteracting Green’s function:

G
(0)
dd (z) =

1

z − ε̃d −∆(z)
, (4.16)

where z = ω + iη with η → 0+ is a infinitesimal positive number, and

∆(z) =
∑
k

|Ṽk|2

z − ε̃k
=
∑
k

|Ṽk|2

ω − ε̃k
− iπ

∑
k

|Ṽk|2δ(ω − ε̃k) (4.17)

is the “host-impurity” retarded hybridization function, already discussed in Sec. 2.4.1. Usually, the

k-dependence of the coupling term Ṽk is neglected, which will not be the case in our theory. The host

Green’s function is then used to compute the following conduction electron Green’s function:

G
(0)
kk′(z) =

δkk′

z − ε̃k
+

Ṽ ∗k
z − ε̃k

G
(0)
dd (z)

Ṽk′

z − ε̃k′
, (4.18)

as well as the Green’s function of the conducting electrons coupled to the impurity,

G
(0)
kd (z) =

Ṽk
z − ε̃k

G
(0)
dd (z), (4.19)

for each frequency z. This is different from DMFT where only the impurity Green’s function was

calculated. In practice, two grids have to be defined. One for the k-values,

k ∈ [−π, π], k = 2πm/L, m = −L
2
, . . . ,

L

2
, δk =

2π

L− 1
, (4.20)

which is as large as the number of sites L, and δk is the interval between two k-points. The second

one corresponds to the frequency domain of ω,

ω ∈ [Emin, Emax], δE =
Emax − Emin

NE − 1
, (4.21)

where NE is the number of points on the grid, and δE is the interval between two points on the

frequency grid. Eqs. (4.16), (4.18) and (4.19) give the matrix elements of the Green’s function in

“k-space”, denoted by G
(0)
k (z). Once this zeroth-order Green’s function is calculated, correlation
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coming from the perturbed Hamiltonian has to be included. This is done by computing the impurity-

interacting Green’s function, given by the Dyson equation as follows:

[GRel(z)]
−1 =

[
G

(0)
Rel(z)

]−1

−ΣRel(z), (4.22)

or, equivalently,

GRel(z) = G
(0)
Rel(z) + G

(0)
Rel(z)ΣRel(z)GRel(z). (4.23)

The real-space Green’s function is related to the k-space one by the previously introduced canonical

transformation,

GRel(z) = P†Gk(z)P, (4.24)

and ΣRel(z) is the real-space self-energy that accounts for all the missing impurity correlation effects,

further described in the following. Note that the site occupations are given by

ni = 2

∫ µ

−∞
ρii(ω)dω, (4.25)

where the factor 2 originates from the spin, and ρii(ω) is the diagonal part of the spectral function

ρij(ω) = − 1

π
ImGRel

ij (z). (4.26)

This density is then introduced again in the DFAs to compute the embedding potential in the SOET

Hamiltonian [Eq. (4.1)] which is then transformed into the SIAM-like Hamiltonian and solved again

by the impurity solver. This procedure is repeated until convergence is reached.

Turning to the expression of the self-energy, note that a non-local (k-dependent) self-energy is in

principle needed to solve the Hamiltonian in Eq. (4.12). It is common to make a local (k-independent)

approximation to the self-energy, which is an exact assumption in infinite dimension, like in DMFT

(see Sec. 2.4.1). We don’t make this assumption here. A non-local self-energy has been proposed

by Schweitzer and Czycholl [439], who have used the limit of infinite dimension to determine the

k-dependence, by taking into account corrections from nearest neighbour contributions to the self-

energy. They introduced a notation R representing the distance between the impurity site and a bath
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site, such that

ΣRel =



ΣRel
R=0 ΣRel

R=1 . . . ΣRel
R=N

ΣRel
−R=1

... 0
ΣRel
−R=N


=



ΣRel
00 ΣRel

01 . . . ΣRel
0N

ΣRel
10

... 0
ΣRel
N0


, (4.27)

where ΣRel
ji = ΣRel∗

ij . From Eq. (SC-17) in Ref. [439], the SOPT self-energy is given by

ΣRel
R (z) = U2

∫
dξ1

∫
dξ2

∫
dξ3 ρR(ξ1)ρR(ξ2)ρ−R(ξ3)

×f(ξ1)f(ξ2)(1− f(ξ3)) + (1− f(ξ1))(1− f(ξ2))f(ξ3)

z − ξ1 − ξ2 + ξ3
, (4.28)

where f(ξ) is the Fermi function at T = 0K,

f(ξ) =

 1 if ξ ≤ µ

0 otherwise
, (4.29)

and µ is the chemical potential. The calculation of µ is subtle. Although it is well known in the nonin-

teracting (electron independent) picture like in metals, it is not uniquely defined for semi-conductors

or insulators due to the opening of the band gap. Indeed, if all the valence band is filled, the chemical

potential can take any value inside the gap. In other words, it lies in between the valence and the

conduction bands. In practice, it could be defined thank to the following function,

N(ξ) = −
∫ ξ

−∞

2

π
ImTr [GRel(ω)] dω (4.30)

which gives the total number of electrons N when ξ = µ. Another definition is the average of the

LUMO and HOMO orbital energies of the noninteracting system. Note that Eq. (4.28) requires a triple

integral over the frequencies, which is computationally expensive. One can reduce this computational

cost by employing another expression of the self-energy, in Eq. (SC-18) of Ref. [439],

ΣRel
R (z) = U2(−i)

∫
dλ eiλz

(
A2

R(λ)B−R(−λ) +B2
R(λ)A−R(−λ)

)
, (4.31)
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with

AR(λ) =

∫ +∞

−∞
dξ ρR(ξ)f(ξ)e−iλξ, (4.32)

BR(λ) =

∫ +∞

−∞
dξ ρR(ξ)(1− f(ξ))e−iλξ, (4.33)

or, equivalently, for T = 0K,

AR(λ) =

∫ µ

−∞
dξ ρR(ξ)e−iλξ, (4.34)

BR(λ) =

∫ +∞

µ

dξ ρR(ξ)e−iλξ. (4.35)

In practice, the implementation is initialized by using the noninteracting Green’s function to compute

the spectral functional in Eq. (4.26).

Note that the k-space and the real-space self-energies are related as follows, as same as for the

Green’s function in Eq. (4.24):

Σk(z) = PΣRel(z)P
†. (4.36)

To summarize the above discussion, an algorithm is provided in Fig. 4.1 and illustrated in Fig. 4.2.

This algorithm has been implemented and tested. For the time being, decent density profiles have

been obtained in the weakly correlated regime U/t ≈ 1 only. This is due to the SOPT approximation.

In order to check if the above implementation is correct, it would be interesting to improve the self-

energy calculation by considering more involved impurity solvers, like in DMFT. Actually, another

PhD student in our lab, Laurent Mazouin, is working on the formulation of SOET using Green’s

function, and on the development of self-energies adapted to the impurity problem in SOET. With

his help, a more detailed and formal connection between SOET and DMFT could be derived.

4.2 Projected Site-Occupation Embedding Theory

Let us now turn to another strategy to reduce the computational cost of SOET. We have seen in

Sec. 2.4.2 that DMET uses the Schmidt decomposition to project the original lattice problem onto a

much smaller embedded one. This decomposition is appropriate for the development of embedding

schemes, as it is based on the separation of the whole system into two subsystems. In analogy with

DMET, the Schmidt decomposition will be incorporated in our SOET scheme, leading to the so-called

projected SOET (P-SOET).
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Algorithm 1 SOET/SIAM solver
1: input : L,N, t, U,v,n
2: do while ∆n0,∆E ≥ threshold
3: vemb(n)
4: HSOET

P = PHSOETP†, Eq. (4.11)
5: do for ω in frequency grid, Eq. (4.21)
6: G

(0)
k (z), Eqs. (4.16),(4.18),(4.19)

7: G
(0)
Rel(z) = P†G

(0)
k (z)P, Eq. (4.24)

8: ρ
(0)
R (ω), Eq. (4.26)

9: ΣRel(z), Eq. (4.31)
10: GRel(z), Dyson Eq. (4.22)
11: ρii(ω), Eq. (4.26)
12: end do
13: ni, Eq. (4.25)
14: E, 〈n̂↑n̂↓〉 Ref. [440]
15: end do

Figure 4.1: Algorithm to solve the SOET equation using a SIAM solver. ∆n0 and ∆E denote the
difference in the impurity occupation and the energy between two successive iterations, respectively.

Figure 4.2: Illustration of the self-consistent SOET procedure based on the SIAM solver (see algorithm
in Fig. 4.1 and text for further details).
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4.2.1 Construction of the embedded-impurity problem

In complete analogy with DMET, the first thing to do is to compute the bath states by performing

the Schmidt decomposition on a given wavefunction. Given that SOET is a DFT-based method, it

seems natural to use the KS-SOFT wavefunction as a starting point, in contrast to the Hartree-Fock

one in DMET. The procedure to obtain this projector is the same as in DMET and is detailed in

Sec. 2.4.2. In the particular case of the uniform Hubbard model, the bath states coming from the KS

Slater determinant or the Hartree–Fock one are identical. Obviously, the projector is therefore also

identical in both method in this case. We start by projecting the SOET Hamiltonian onto the new

embedded-impurity problem as follows,

Ĥ imp = P̂ †ĤSOETP̂ , (4.37)

where, in the uniform case, the SOET Hamiltonian reads,

ĤSOET = T̂ + ÛM +

L−1∑
i=0

 ∂Ebath

Hxc,M (n)

∂ni

∣∣∣∣∣
n=n

Ψ
imp
M

0

 n̂i, (4.38)

where M is the number of impurities.

In contrast to the SOET Hamiltonian in Eq. (3.6), note that the bath Hxc potential is now

calculated by setting n = n
Ψimp
M

0 ≡
{
n

Ψimp
M

0 , n
Ψimp
M

0 , . . . , n
Ψimp
M

0

}
, instead of the usual site-occupation

vector
{
n

Ψimp
M

0 , n
Ψimp
M

1 , . . . , n
Ψimp
M

L−1

}
. In other words, only the occupation on the impurity site labelled

as 0 is used, which is convenient in an embedding formalism. Indeed, like in DMET, the projection

leads to an embedded-impurity problem of 2 ×M sites. When this embedded-impurity problem is

solved, only the occupation of the 2×M sites will be accessible. In order to formulate a self-consistent

procedure similar to SOET, we decided to select a given occupation between these 2×M sites, chosen

to be the impurity site “0”, and to assume n = n
Ψimp
M

0 . In the uniform case, note that setting n = n
Ψimp
M

0

in Eqs. (3.6) and (4.38) leads to the same embedding potential, providing that the exact bath Hxc

functional is known. Indeed, all sites have the same occupation in the uniform case (in principle) such

that n ≡ {n0, n1, . . . , nL−1} = {n, n, . . . , n}. However, when it comes to practical use of DFAs, the

embedding potential will not be the same in both Hamiltonians simply because the resulting density

profile is (unfortunately) not uniform anymore.

Let us rewrite the projected Hamiltonian in Eq. (4.37) as

Ĥ imp = ĥemb + ÛM =

2M−1∑
ij=0

∑
σ

hemb
ij

(
ĉ†iσ ĉjσ + h.c.

)
+ U

M−1∑
i=0

n̂i↑n̂i↓, (4.39)
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where ĥemb = P̂ †ĥSOETP̂ is the projection of ĥSOET, which is the one-body part of the impurity-

interacting SOET Hamiltonian containing the kinetic energy operator, as well as the density-functional

embedding potential operator. In the particular case of a single impurity (M = 1), the embedded

problem consists of one interacting site embedded into one bath site only (describing the environment).

In other words, an impurity-interacting Hubbard dimer (equivalent to an Anderson dimer) is obtained

and can be solved analytically. Indeed, according to Ref. [72] and Sec. 3.4.1, the impurity-interacting

ground-state energy of the dimer is related to the physical one by a simple scaling and shifting relation

[Eq. (3.72)],

E imp
M=1(U, t,∆v) = E0(U/2, t,∆v − U/2), (4.40)

where E0 is given in Eq. (2.36). Given that our Hubbard dimer is obtained by projection, we have

∆v ≡ hemb
11 − hemb

00 and t ≡ −hemb
01 > 0. The impurity occupation is recovered by applying the

Hellmann–Feynman theorem as follows (in analogy with Sec. 2.1.4.iii for the conventional Hubbard

dimer):

n0 = 1−
∂E imp

M=1(U, t,∆v)

∂∆v

∣∣∣∣∣
t=−hemb

01

,

= 1− ∂E(U, t,∆v)

∂∆v

∣∣∣∣
U=U/2,t=−hemb

01 ,∆v=∆v

, (4.41)

where ∆v = ∆v−U/2. Similarly, and according to Eq. (2.45), the double occupation on the impurity

site reads

dimp =
1

2

(
∂E(U, t,∆v)

∂U

∣∣∣∣
U=U/2,t=−hemb

01 ,∆v=∆v

− (1− n)

)
. (4.42)

For more than one impurity, the system cannot be solved analytically anymore, and DMRG will be

employed as an impurity solver. Once the impurity occupation nΨimp
M

0 = 〈Ψimp
M |n̂0|Ψimp

M 〉 is obtained,

it is inserted into the embedding potential in the SOET Hamiltonian in Eq. (4.38), and the procedure

is reiterated until the impurity occupation converges.

The P-SOET approach is illustrated in Fig. 4.3. As readily seen in this figure, two starting points

are considered. The first one is the fully-interacting Hubbard model. It defines the true physical

system to be solved, for a given U and t and N electrons. This problem is mapped onto an impurity-

interacting Hubbard model, given by the Hamiltonian in Eq. (4.38) where the embedding potential

is always calculated by using the occupation of the impurity site. Then, a projector is calculated
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Figure 4.3: Projected-SOET procedure for a single impurity site labelled as 0. The projector is
computed only once, by performing the Schmidt decomposition on the KS-SOFT lattice problem with
the exact uniform density.

only once, by performing the Schmidt decomposition on the KS-SOFT lattice problem. This projec-

tor is then applied on Eq. (4.38) to obtain the embedded-impurity Hamiltonian in Eq. (4.39). The

occupation and the double occupation of the impurity sites are then obtained by solving the embedded-

impurity problem, either analytically for M = 1 by using Eqs. (4.41) and (4.42), or numerically using

the DMRG solver forM > 1. Finally, the occupation on the impurity site 0 is inserted into Eq. (4.38),

such that the procedure can be reiterated until the impurity occupation converges. Note that the

exact uniform density of the physical problem is used to initialize the embedded potential at iteration

0. For a more general case (not studied in this thesis), the exact density is unknown and we could use

the density obtained from the KS-SOFT calculation, which is in principle exact.

Let us now investigate the performance of P-SOET. The 400-site uniform Hubbard model is stud-

ied, hence demonstrating that P-SOET is a very low-cost approach able to treat large systems. Indeed,

one iteration in P-SOET has exactly the same computational cost than one DMET iteration. In the

regimes where P-SOET converges, the number of iterations needed to reach convergence is small,

usually less than 10 iterations for iBALDA, and less than 20 for 2L-BALDA. My guess is that DMET

needs much more iterations to optimize the correlation potential. Note that the expressions for the

per-site energy and the double occupation in Eqs. (3.28) and (3.39), respectively, will be used.
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Nbr. electrons N = 2 N = 4 N = 6 N = 8 N = 10 N = 12
Uniform occ. n = 0.16667 0.33333 0.5 0.66667 0.83333 1

U = t 0.16559 0.33174 0.49883 0.66618 0.83329 1
U = 2t 0.16377 0.32854 0.49613 0.66488 0.83305 1
U = 3t 0.16209 0.32520 0.49296 0.66307 0.83251 1
U = 4t 0.16068 0.32223 0.48990 0.66104 0.83167 1
U = 5t 0.15954 0.31972 0.48719 0.65904 0.83057 1
U = 6t 0.15861 0.31765 0.48489 0.65718 0.82930 1
U = 7t 0.15784 0.31593 0.48296 0.65553 0.82796 1
U = 8t 0.15720 0.31449 0.48134 0.65409 0.82663 1
U = 9t 0.15666 0.31327 0.47997 0.65284 0.82537 1
U = 10t 0.15621 0.31224 0.47881 0.65177 0.82421 1
U = 100t 0.15141 0.30184 0.46785 0.63440 0.81267 1

Table 4.1: Occupation of the impurity site obtained within P-SOET by using the exact embedding
potential from SOET for the 12-site Hubbard ring with a single impurity.

4.2.2 Errors due to the projection

In contrast to the original formulation of SOET, P-SOET is not in-principle exact anymore, due to

the approximate description of the bath states. In order to quantify the error due to this projec-

tion, let us start by using the exact embedding potential, obtained numerically by Legendre–Fenchel

transform on the 12-site ring Hubbard model (see Sec. 3.3.1 for the 8-site ring model), and see if the

uniform density is recovered when solving the (projected) embedded-impurity problem. The resulting

density is given in Tab. 4.1. Interestingly, by using the exact embedding potential from SOET, the

half-filling occupation can be exactly recovered when applying P-SOET. However, this is not the case

away from half-filling, as readily seen in Tab. 4.1. The deviation of the impurity occupation from

the exact uniform one increases with U/t, showing that the exact embedding potential in SOET does

not reproduce the uniform density when it is projected onto the embedded subsystem. Despite this

unfortunate result, the error in the occupation is around 2 × 10−2 or less for U = 10t and up to

4× 10−2 for U = 100t, which remains relatively small in comparison to the final density obtained by

solving the embedded problem within SOET and its various DFAs (chapter 3).

Let us investigate the effect of the projection on the impurity double occupation dimp, which is

an essential quantity involved in the calculation of the per-site energy and the true physical double

occupation in SOET. In the case of half-filling for a single impurity, dimp has been calculated within

SOET using the exact diagonalization, and within P-SOET according to Eq. (4.42). The exact

embedding potential has been used in both cases. Results are shown in Fig. 4.4 for the 12-site Hubbard

ring. Note that the impurity double occupation has been plotted with respect to U/(4t+U), which is

equal to 0 for U = 0, equal to 1 for t = 0, and equal to 1/2 for U = 4t, so that the noninteracting limit,
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Figure 4.4: Impurity double occupation in SOET and in P-SOET for a single-impurity at half-filling.
The exact diagonalization has been used within SOET.

the atomic limit and the medium correlation strength are considered, respectively. Given that the

exact diagonalization is used to solve the SOET Hamiltonian with the exact potential, the resulting

impurity double occupation is exact as well (in a sense that it is calculated from the exact impurity

wavefunction, but it does still not correspond to the true physical double occupation). In contrast

to the impurity occupation [Tab. 4.1], the impurity double occupations obtained in SOET and in

P-SOET are not identical at half-filling. Nevertheless, the difference remains small.

4.2.3 BALDA potential at half-filling

In the previous chapter, the exact embedding potential has been used in the half-filled case, for a

finite system. Let us recall that this potential is equal to 0 on the impurity sites and U/2 in the bath

(or, equvialently, −U/2 on the impurity sites and 0 in the bath). According to Eq. (3.43), satisfying

this condition is equivalent to set the impurity correlation potential to 0 at half-filling. For the 2L-

BALDA approximation, based on the asymmetric Hubbard dimer, this condition is fulfilled. But

for functionals which are developed in the thermodynamic limit, such as iBALDA(M) and SIAM-

BALDA, the impurity correlation potential at half-filling is not defined due to the presence of a

derivative discontinuity in the impurity correlation energy functional.

For convenience, the BALDA (or equivalently, iBALDA) correlation potential,

∂eBALDA
c (n < 1)

∂n
= −2t cos

(
πn

β(U/t)

)
+ 2t cos

(πn
2

)
− Un

2
, (4.43)
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will take the following value at half-filling,

∂eBALDA
c (n 6 1)

∂n

∣∣∣∣
n=1

→ ∂eBALDA
c (n 6 1)

∂n

∣∣∣∣
n=1−

= −2t cos

(
π

β(U/t)

)
− U

2
, (4.44)

which is equal to 0 for U = 0 only (with β(0) = 2). This choice is made in order to have a continuous

embedding potential in the range 0 ≤ n ≤ 1, and not in the range 0 ≤ n < 1 only like in chapter 3.

Indeed, the half-filling iBALDA correlation potential was previously set to the exact correlation po-

tential for a finite system, i.e. ∂eBALDA
c (n 6 1)/∂n|n=1 = 0. This choice was made for practical

reason. As mentioned in the very end of chapter 3, convergence issues may arise around half-filling,

when either the impurity or the bath occupations are very close to 1. If the iBALDA correlation

potential in Eq. (4.44) were used to solve the SOET self-consistent equation, the occupations in the

whole system would have fluctuated around 1 and no convergence would have been reached.

In P-SOET, the situation is different. All the bath occupations are set to the impurity occupation in

the theory. Hence, there are no fluctuations and all occupations are the same, such that this particular

convergence issue at half-filling can be avoided (as shown in the following section). Therefore, we can

use the definition of the correlation potential in Eq. (4.44) at half-filling. In order to make a difference

between the latter potential and the (exact) one used in iBALDA at half-filling, we referred to it as

the iBALDA approximation. The difference between the two approximations is made clear in Fig. 4.5.

Also, let us stress that enlarging the size of the system to 400 sites allows us to study the whole

range of the density regime. Therefore, we can approach the n = 1− limit very accurately. Indeed,

taking 398 electrons in 400 sites leads to n = 0.995, against n = 0.9375 for the 32-site Hubbard model

studied in SOET. As already mentioned, approaching the half-filled case can lead to convergence

issues due to the derivative discontinuity in the embedding potential, even within P-SOET. This will

be shown in the next section, where per-site energies and double occupations are calculated in different

correlation and density regimes.

4.2.4 Double occupation and per-site energy at half-filling

4.2.4.i Double occupation at half-filling

Turning to the exact double occupation expression in SOET [Eq. (3.39)], the 2L-BALDA, iBALDA(M)

and the new iBALDA(M) functionals are tested on the 400-site ring Hubbard model. The Bethe

Ansatz (BA) [320] results obtained by solving Eq (2.74) are used as a reference1. Let us focus on the

half-filled case, which is the only case where iBALDA(M) and iBALDA(M) differ. In Fig. 4.6, the
1The BA code has been written by Matthieu Saubanère, CNRS at the Institut Charles Gerhardt Montpellier

(FRANCE).
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Figure 4.5: 2L-BALDA and iBALDA correlation potential with respect to n for U/t = 8. At half-
filling, the iBALDA correlation potential is exact and equal to 0, while the iBALDA correlation
potential is given in Eq. (4.44). Note that this BALDA potential is also used in the bath.

Figure 4.6: Double occupation for the various functionals at half-filling, within P-SOET. For the
iBALDA(M) approximation, the full lines represent the result at the first iteration while the dashed
lines are the one obtained after convergence. The red dot and the black dashed line correspond to the
correlation regime from which iBALDA(M) starts to converge.
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double occupation has been plotted with respect to the correlation strength. First of all, it is clear that

all approximations are exact in the U = 0 and t = 0 limits. Then, the iBALDA(M) and 2L-BALDA

double occupations are quasi identical to the SOET results [Fig. 3.8] presented in the previous chapter.

Hence, the same conclusions still hold, e.g. the double occupation is improved when using non-zero

per-site bath correlation functional (2L-BALDA here, as compared to iBALDA(M=1)), and when

increasing the number of impurities. For the latter, the improvement is at the expense of a much

higher computational cost, as passing from M = 1 to M = 4 is equivalent to solve a 8-site Hubbard

model instead of a Hubbard dimer for the embedded problem.

Note that for 2L-BALDA and iBALDA(M), the exact embedding potential is used such that there

are no density-driven errors and the problem converges to the exact density in one iteration only (see

Tab. 4.1). For this reason, and because there is no bath correlation energy functional of the density

in DMET, the iBALDA(M=1) double occupation (corresponding to dimp
M=1) is exactly the same as the

single-impurity DMET one [418, 420]. Indeed, in both P-SOET and DMET theories, the correlation

potential is the same at half-filling for a single impurity, so that there is absolutely no difference

between the two approaches. In other words, the impurity wavefunctions are identical in both meth-

ods at half-filling. Then, if bath correlation functionals are used, P-SOET improves over DMET, as

shown by the 2L-BALDA double occupation. If the matching is performed on the diagonal of the

1RDM of the fragment only, DMET [see the noninteracting (NI) bath formulation in Ref. [420] and

the Fig. 2 therein] is similar to iBALDA(M) for the calculation of the double occupation. To improve

over iBALDA(M) (or, equivalently, NI in Ref. [420]), DMET can match not only the diagonal but

all the 1RDM of the fragment, while the improvement of P-SOET relies on the development of new

M -dependent functionals. Alternatively, constructing more accurate bath orbitals by starting with

the antisymmetrized geminal power wavefunction [425] or the unrestricted Hartree-Fock one [420] is

also a way to increase the performance of DMET as well as P-SOET.

Let us now turn to the new iBALDA approximation for M = 1. The only difference with

iBALDA(M) is in the embedding potential at half-filling. This potential is still 0 on the impu-

rity by construction, but instead of being U/2 in the bath it becomes equal to the one in Eq. (4.44)

computed with the occupation of the impurity, and is thus no more exact for a finite system. Sur-

prisingly, at the first iteration using the exact uniform density (full lines in Fig. 4.6), iBALDA(M=1)

performs better than iBALDA(M=1) for U/(4t + U) > 0.3 (or, equivalently, U > 1.8t), and even

better than 2L-BALDA and iBALDA(M=4) in the strongly correlation regime U > 4t. Given that

there is no functional contribution in the expression of the double occupation within iBALDA(M) or
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Figure 4.7: Same as Fig. 4.6 but for the per-site energy.

iBALDA(M) [see Eq. (3.39)], it means that the impurity double occupation dimp
M=1 gets much closer

to the true physical double occupation when using the potential in Eq. (4.44). Therefore, the em-

bedding potential has a strong influence on the resulting impurity double occupation. For U < 1.8t,

iBALDA(M) is however not better than iBALDA(M) (for M = 1 and M = 4). Interestingly, as

shown in Fig. 4.6 by the red dots and the dashed black line, this is exactly the regime in which the

iBALDA(M) shows self-consistent convergence problems. This can be explained as follows: in the

weakly correlated regime, the deviation from the half-filling is small, so that the embedding potential

remains close to the discontinuity and starts to oscillate. On the contrary, in the strongly correlated

regime, the deterioration of the density is strong enough to remain far from the discontinuity, so

that it becomes possible to converge. Impressively, iBALDA(M=4) gives the best double occupa-

tion for U > 1.8t, and is even on top of the exact double occupation for U > 4t. In analogy with

the SOET results presented in the previous chapter, the density-driven error is almost absent in the

double occupation. This is because the double occupation within iBALDA(M) does consider the

bareM -interacting-impurity double occupation only, without any contribution from a complementary

functional of the density.

4.2.4.ii Per-site energy at half-filling

Let us now turn to the per-site energy at half-filling, shown in Fig. 4.7. We start by analysing the

per-site energy [Eq. (3.28)] in which the exact uniform density has been inserted (full lines). In anal-

ogy with the double occupation, we notice that P-SOET is exact in both the non-interacting and the
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atomic limits, for all functionals. The 2L-BALDA and iBALDA(M) results are very similar to the per-

site energy obtained within SOET [see Fig. 3.6 in the previous chapter]. For a single impurity, both of

them feature a positive per-site energy in the strongly correlated regime, although 2L-BALDA remains

constantly better than iBALDA(M=1). By increasing the number of impurities in iBALDA(M=4),

we recover a negative per-site energy. It should be noted that, in contrast to the double occupation,

the per-site energy within iBALDA(M) is not calculated the same way in P-SOET and in DMET,

such that they are not directly comparable. Returning to P-SOET, even though iBALDA(M=4) is

already relatively accurate in all the correlation regime, it is outperformed by iBALDA(M=1) with a

single impurity only, as soon as U/(4t+U) > 0.4. Impressively, iBALDA(M=1) is highly accurate in

the strongly correlated regime (U/(4t+U) > 0.7), and increasing the number of impurities to M = 4

leads to a per-site energy which is almost on top of the exact one in all regimes of correlation, from

U = 0 to U → +∞.

Turning to the per-site energy obtained by using the converged density for iBALDA(M) (I recall

that the other approximations have no density-driven error at half-filling, because the exact embedding

potential is employed), the density starts to deviate from the half-filled one as soon as U/(4t+U) > 0.4,

and does not converge for U < 1.8t. It is clear from the dashed lines in Fig. 4.7 that the deterioration

of the density is not in favour of a better accuracy. Indeed, huge density-driven errors arise when

the correlation increases, thus making iBALDA(M) not exact anymore in the atomic limit after

convergence. Note that by increasing the number of impurities, this error is less pronounced.

4.2.5 Double occupation and per-site energy away from half-filling

4.2.5.i Double occupation away from half-filling

Away from half-filling (0 6 n < 1), the iBALDA(M) and iBALDA(M) approximations are exactly

the same. In order to have smooth potentials in the range 0 6 n 6 1, iBALDA(M) is used instead of

iBALDA(M). Therefore, we focus on the iBALDA(M) approximation in the following. Let us first

take a look at the 2L-BALDA double occupation in Fig. 4.8. We start by using the exact density at

iteration 0 (full lines). The physical 2L-BALDA double occupation [see Eq. (3.39)] (in green) and its

bare double occupation dimp (in yellow) differ by ∂ebath
c,M=1(n)/∂U . The latter leads to a significant

overestimation of the double occupation. In other words, it does not account for enough correlation

effects. Very surprisingly, this is not anymore the case when considering the iBALDA(M) double

occupation (which is only given by the bare impurity double occupation). Indeed, the impurity double

occupation becomes highly accurate in the whole density domain, and overcomes the performance of

the physical 2L-BALDA double occupation (in green), which is already relatively good considering
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Figure 4.8: Double occupation for the 2L-BALDA and iBALDA(M) approximations in P-SOET (L =
400). The bare impurity double occupation of 2L-BALDA (yellow lines) is plotted as a comparison
to the bare impurity double occupation of iBALDA(M=1). Full lines: results obtained at iteration
0 using the exact density. Dashed lines: results obtained after reaching convergence. See text for
further details.

only one impurity. I recall that this behaviour could not been really observed previously, as the

number of sites was not sufficient to sample the whole density domain.

Increasing the number of impurities does slightly improves the double occupation. However, this

small improvement is not worth it, considering the already high accuracy and the low computational

cost of iBALDA(M=1). The good performance of iBALDA(M=1) can be rationalized as follows.

According to Fig. 4.5, the impurity correlation potential in iBALDA(M=1) is becoming more and

more negative when approaching n = 1, while the 2L-BALDA one increases towards 0 for 0.75 . n ≤ 1.

Therefore, and according to Eq. (3.43), the embedding potential is much more repulsive on the impurity

site within iBALDA(M=1) than within 2L-BALDA, leading to a decrease of the impurity double

occupation in the density domain 0.75 . n ≤ 1 [see Fig. 4.8].

Considering the final converged results (dashed lines) in Fig. 4.8, the impurity double occupation

in iBALDA(M) is not much affected by density-driven errors. For M = 4, this error on the double

occupation is even very close to zero, as the dashed line and the full line are almost indiscernible. This

has to be distinguished from the 2L-BALDA double occupation, for which the error in the density

significantly improve the double occupation in the vicinity of half-filling, even for the bare impurity

double occupation. This error in the impurity occupation is indeed very large in this case, as shown

in Fig. 4.9 which shows the densities obtained self-consistently. Within 2L-BALDA, the impurity
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occupation deviates from the exact uniform occupation, and is significantly underestimated. This

underestimation of the impurity occupation close to the half-filled case also leads to an underestimation

of the impurity correlation potential in Fig. 4.5, functional of the density. In other words, the impurity

correlation potential becomes more attractive or, according to Eq. (3.111), the embedding potential

becomes more repulsive. This leads to a decrease of the impurity double occupation which gets closer

to the exact one.

4.2.5.ii Per-site energy away from half-filling

Let us now discuss the per-site energy [Eq. (3.27)] in Fig. 4.10. Starting with the iteration 0 using the

exact density (full lines), the same conclusions than for the double occupation can be made. Although

2L-BALDA gives relatively accurate results, it is significantly outperformed by iBALDA(M) in the

vicinity of half-filling. Indeed, iBALDA(M=1) is an excellent approximation to the per-site energy.

iBALDA(M=4) is even better, as it becomes almost indiscernible from the exact per-site energy in

the range of 0.6 6 N/L 6 1.

However, and as already discussed in the context of SOET in the previous chapter, the density-

driven errors can be important for the per-site energy. Turning to the converged results in Fig. 4.10

(dashed lines), the density-driven error is now becoming very important for the iBALDA(M) approx-
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imation in the vicinity of half-filling, even for M = 4. Indeed, in contrast to the double occupation,

the per-site energy within iBALDA(M) does include density-functional contributions. According to

Fig. 4.9, it is clear that the density-driven error in the per-site energy follows the same trends as

the error in the impurity occupation, which is quite expected. For all functionals, it leads to a de-

crease of the per-site energy close to half-filling. While it improves the performance of 2L-BALDA, it

deteriorates the iBALDA(M) energies.

4.2.6 Opening of the charge gap at half-filling

The question we now wish to address is whether one could describe the opening of the charge gap

at half-filling. In the 1D Hubbard model, no Mott transition arises as a function of U , as the model

becomes an insulator at half-filling for any U > 0. However, there is another Mott transition which is

a “density-driven” Mott transition, i.e. the transition from a metal (n < 1) to an insulator (n = 1), for

any finite non zero value of U [329]. In order to see this transition, we plot the density as a function

of the chemical potential. The chemical potential is a shift in the external potential that fixes the

number of electrons in the system,

Ĥ −→ Ĥ(µ) = Ĥ − µN̂, (4.45)
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where N̂ =
∑
i n̂i is the counting operator. The total number of electrons varies with µ, except if

µ is in the charge gap. Indeed, the half-filled one-dimension Hubbard model is an insulator, such

that it depicts the splitting of the d band in semi-conductors (see Fig. 2.3). Assuming that we are in

the thermodynamic limit, if the chemical potential varies inside of the valence band, the number of

electrons will vary continuously with it. But if the chemical potential varies in the band gap, then

the number of electrons will always be the one that fills the valence band completely (so n = 1 in

the Hubbard model), such that the chemical potential is not uniquely defined anymore. This is also

related to the discontinuity in the correlation potential at half-filling. Alternatively, this behaviour

can be observed by looking at the compressibility dN/dµ [418], which vanishes when entering the

charge gap. In order to find the number of electrons associated with a given chemical potential, it

comes from Eq. (4.45) that we have to solve the following (per-site) minimization within P-SOET:

min
N

{
eP-SOET(N/L)− µN/L

}
, (4.46)

where the exact density n = N/L in the P-SOET per-site energy is used in a first step. The minimizing

number of electrons in Eq. (4.46) is the one corresponding to the given and fixed chemical potential

µ, denoted by N(µ). Therefore, for each value of µ, we perform the minimization in Eq. (4.46) to

find the minimizing density n(µ) = N(µ)/L, where L = 400 in our case. Given that the per-site

energy in P-SOET has been calculated for any even electron number N , the minimization is done

over 200 points. Note that such a minimization would have been irrelevant in the original imple-

mentation of SOET, where only the 32-site Hubbard model was studied. The results are shown in

Fig. 4.11 for U = 8t, such that it can be directly compared to the DMET results in Figs. 3 and

4 of Refs. [418] and [420], respectively. First, let us discuss the exact curve of this plot, obtained

with BA calculations. As readily seen in the BA curve, increasing the chemical potential leads to

a continuous increase of the number of electrons in the metallic domain N/L < 1. As soon as the

system becomes half-filled (N/L = 1), the number of electrons is not influenced by the change in

chemical potential anymore. Hence, the compressibility dN(µ)/dµ vanishes, thus manifesting the

opening of the gap. The size of the gap is then determined by the size of the plateau at N/L = 1.

Turning to P-SOET at iteration 0 with the exact density (full lines), iBALDA(M) is almost on top

of the BA curve, even for a single impurity. This is one of the most important result in this thesis,

in my opinion. Indeed, this density-driven gap opening is neither obtained in single-site DMFT [329]

nor in single-site DMET [418, 420] for the one-dimensional Hubbard model, while it is obtained al-

most exactly in P-SOET within iBALDA(M=1) (using the exact density). This very nice feature of

P-SOET (and, more generally, SOET) is clearly due to the fact that all the missing correlation in
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single-site DMET and single-site DMFT can in principle be included in the SOET bath correlation

functional. In contrast to iBALDA(M), 2L-BALDA is faced to difficulties when approaching half-

filling. At first sight, it seems that it does describe the opening of the gap, even though the position

of the gap is displaced. In fact, it does not describe a gap at half-filling. Indeed, the constant plateau

is reached for N = 398, equivalent to n = 0.995 ! Note that this would also be the case if one uses the

iBALDA(M) approximation instead of iBALDA(M) (not shown). Apparently, iBALDA(M) and 2L-

BALDA approximations do not describe the insulating state with enough precision to account for the

density-driven Mott transition correctly. This is most certainly due to the fact that 2L-BALDA does

not depict any discontinuity in the potential, and that iBALDA(M) set the impurity correlation po-

tential to 0 at half-filling, instead of using Eq. (4.44) [see Fig. 4.5). A deeper analysis is still in progress.

Let us now look at the results obtained with the converged density (obtained self-consistency),

inserted in Eq. (4.46) as follows,

min
N

{
eP-SOET
M (n

Ψimp
M

0 )− µN/L
}
, (4.47)

where eP-SOET
M (n

Ψimp
M

0 ) denotes the per-site energy obtained by solving the N -electron/M -impurity-

interacting problem self-consistently within P-SOET. The results are shown in dashed lines in Fig. 4.11.
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Clearly, the density-driven error has a huge impact on the compressibility. In contrast to DMET and

DMFT which always give a good representation of the compressibility in the doped region (n .

0.7) [329, 418, 420], the P-SOET compressibility is subject to strong density-driven errors. As a

consequence, even though iBALDA(M) exhibits a plateau at N/L = 1, the position of the density-

driven Mott transition is misplaced and is strongly overestimated. For 2L-BALDA, it is not even clear

if a plateau is reached or not here. In order to check the opening of a Mott gap in 2L-BALDA, we

could treat a much larger system to have more precision around half-filling.

4.3 Summary and Perspectives

Let us highlight what SOET and its alternative formulations bring to the condensed matter physics

community. To summarize, SOET in its original formulation (Chap. 3) is an in-principle exact theory,

that relies on a mapping of the physical fully-interacting problem onto an embedded one, composed of

interacting impurities surrounded by noninteracting effective bath sites. Within the exact formalism

and using Legendre transforms, we have seen some very interesting features of the embedding po-

tential. Away from half-filling, the breaking of translational symmetry due to the explicit treatment

of the impurity sites leads to fluctuations of the embedding potential in the bath. While this state-

ment is quite intuitive, it highlights the fact that the bath correlation functional (or, equivalently, the

impurity one) has to depend on all sites occupation, and not only on the impurity one(s), as it has

been assumed throughout the various approximations developed in this thesis. This gives an idea of

the difficult task of achieving an exact embedding, even for a uniform model. Then, exact expres-

sions for the double occupation and per-site energy have been derived for the uniform model within

SOET, involving both wavefunction and density-functional contributions, hence showing that SOET

is indeed a true combination of the two approaches. We have also seen how significant is the per-site

bath correlation contribution around the half-filled case, where the density-driven Mott transition

arises. This contribution, for which we provided some exact numerical values and approximate ana-

lytical expressions, can actually help in understanding the missing correlation in DMET. A connection

with the single-impurity Anderson model has also been investigated, throughout the development of

SIAM-based functionals. This connection has been further investigated by transforming the SOET

Hamiltonian onto a SIAM Hamiltonian, which can then be solved by impurity-solver techniques using

Green’s function. However, despite this rewriting of the SOET Hamiltonian, it is not obvious if it

leads to a decrease of the computational cost, except if we use approximate solver like second-order

perturbation theory. In our group, Laurent Mazouin is actually working on a Green’s function-based

formulation of SOET, and we hope to get a mapping of the type of DMFT (with a single impurity
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Green’s function), but where the mapping is performed on the density. This is currently in progress.

A clearer connection with DMFT could then be investigated, in the spirit of the projected version of

SOET, which is closely related to DMET. Within this projected formulation, the computational cost

has become almost negligible, as the problem now reduces to the diagonalization of a (L× L) matrix

to create the projector, used to project the physical problem onto a 2LF size problem (where LF is the

number of impurities). This (now approximate) formulation of SOET has been shown very promising,

and highly accurate results for the per-site energy, the double occupation, and the density-driven Mott

Hubbard transition have been obtained.

Let us now turn to future works. First of all, it is clear that new functionals should be developed.

This could be done by looking, for example, at the perturbation expansion of the embedding potential

by Görling-Levy perturbation theory [78, 97], or by adapting the Sham-Schlüter equation [224] to

SOET. The latter approach has been recently investigated by Laurent Mazouin up to second-order,

and the obtained embedding potential is shown to partially compensate the Friedel-like oscillations

of the density that arise when interacting impurities are “inserted” in the model [Fig. 3.5]. A second-

order correlation energy functional could then be obtained from the self-energy. This would only be

sufficient in the weakly correlated regime, but it would be the first step toward the development of a

functional that depends on all the site occupations. This is currently in progress.

Also, multiple-impurity functionals that account for the per-site bath correlation functional (in

contrast to iBALDA) could also be developed. This is left for future work. Of course, it would

also be interesting to extend SOET to higher dimensions like the 2D Hubbard model that contains a

Mott–Hubbard transition as a function of U/t, as well as superconducting states to model the high-Tc

cuprates. But this extension requires the development of appropriate functionals that we have not

investigated yet. For this purpose, an automated way of constructing functionals in SOET is of major

importance, and is also left for future work. Finally, a grand canonical formulation of SOET (to be

contrasted to the canonical formulation of SOET) is also of interest. The so-called partition DFT [299]

could bring an answer to this problem.



Chapter 5

Unified formulation of fundamental

and optical gap problems in ensemble

DFT

In the previous chapters, the Mott transition has been introduced in the context of the Hubbard

model, and is manifested by the opening of a gap between the valence and the conduction band. This

chapter deals with the fundamental gap (or, equivalently, twice the hardness [441]), which is one of the

most challenging quantities to describe in quantum chemistry for molecules [2], as well as in condensed

matter physics for solids [442]. There are several sorts of gaps, which has sometimes led to confusion

in the literature [443]. For instance, the optical gap, given by the lowest excitation energy (neutral

excitation) is completely different from the fundamental gap, obtained by the difference between the

ionization potential and the electronic affinity (charge excitations). We can find different terminology

in the literature, such as the transport gap, the electronic gap, the band gap (for solids) and the charge

gap, all identical to the fundamental gap. These energy gaps between the highest occupied and lowest

unoccupied electronic levels determine the electronic, optical, redox, and transport properties of a

material, such as semiconductors and photovoltaic materials. The determination of the fundamental

gap remains one of the biggest challenge in density-functional theory (DFT) [2].

In this chapter, we first review how the optical and fundamental gap can be extracted from a DFT

calculation, followed by an unified formulation of these two different gaps at a formal level, in the

context of ensemble DFT.
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PROBLEMS IN ENSEMBLE DFT

5.1 Optical gap in ensemble DFT

This section focuses on the extraction of the exact optical gap in ensemble DFT, which is essential to

understand the outcomes of the approach presented in the following, so-called N -centered ensemble

DFT [75].

In DFT, the KS gap is given by the difference between the lowest unoccupied molecular orbital

(LUMO, denoted by L) and the highest occupied molecular orbital (HOMO, denoted by H),

EKS
g = εKS

L − εKS
H . (5.1)

Although this gap gives a first and relatively good approximation to the optical gap in molecules, it

contributes only to about 60% of the optical gap in solids [444]. The correction is commonly provided

by linear response, i.e. the xc kernel in time-dependent DFT (TDDFT) [445], which has been widely

and successfully employed over the last thirty years (see for instance reviews in Refs. [255, 296] and

references therein). Unfortunately, TDDFT does not give an accurate description of charge transfer

excitations [446] when local or semi-local functionals are used. Even worse, multiple excitations are

completely absent from the spectra [254]. Note that some progress regarding these issues have been

made recently [447–449]. Alternatively, and originated from solids state physics, the more involved

many-body perturbation theory (MPBT) within GW together with the Bethe Salpeter equation [450,

451], which relies on the two-particle Green’s function, can be used.

It is desirable to have access to the whole excited spectrum of the system by a time-independent

approach that remains computationally cheap. The Gross–Oliveira–Kohn (GOK) DFT for canonical

ensemble [257–259] is such a theory, proposed in the late 1980s and which generalizes the seminal

work of Theophilou [452]. In the following, we focus on ensembles consisting of two nondegenerate

states,

Ew = (1− w)E0 + wE1, (5.2)

where w0 = 1 − w is the weight associated to the ground-state energy E0 and w1 = w is the one

associated to the first excited state E1. Ew is called the ensemble energy and can be expressed

variationally as follows,

Ew = min
Γ̂w

Tr
[
Γ̂wĤ

]
= Tr

[
Γ̂w0 Ĥ

]
. (5.3)
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where Γ̂w = (1 − w)|Ψ0〉〈Ψ0| + w|Ψ1〉〈Ψ1| is the ensemble density matrix operator, and Ψ0 and Ψ1

denote ground- and first-excited state orthonormal trial wavefunctions, respectively. This energy is

linear with respect to w and its derivative gives rise to the first excitation energy, i.e. the optical gap,

Ω = E1 − E0 =
dEw

dw
. (5.4)

Turning to GOK-DFT, the exact ensemble energy in Eq. (5.3) can be rewritten as follows [257–259],

Ew = min
n

{
Fw[n] +

∫
drvext(r)n(r)

}
, (5.5)

where

Fw[n] = min
Γ̂w→n

{
Tr
[
Γ̂w
(
T̂ + Ŵee

)]}
(5.6)

is the analogue of the Levy–Lieb functional for ensembles. Note that the minimization is over the

whole set of ensemble density matrix operators with density n(n). Then, the noninteracting ensemble

kinetic energy and the ensemble weight-dependent Hxc energy are introduced by performing the KS

decomposition as follows,

Fw[n] = Tws [n] + EwHxc[n]. (5.7)

The noninteracting ensemble kinetic energy can be rewriting in a Legendre–Fenchel transform,

Tws [n] = sup
v

{
EwKS[v]−

∫
drv(r)n(r)

}
, (5.8)

and EwKS[v] is the ensemble energy, obtained by averaging theN -electron ground- and first-excited-state

energies of T̂ +
∫

drv(r)n(r) as follows,

EwKS[v] = (1− w)

N∑
i=1

εi[v] + w

(
N−1∑
i=1

εi[v] + εL[v]

)
=

N−1∑
i=1

εi[v] + (1− w)εH[v] + wεL[v]. (5.9)

Returning to the KS expression for the exact ensemble energy, combining Eqs. (5.5) and (5.7) gives

the variational expression

Ew = min
Γ̂w

{
Tr
[
Γ̂w
(
T̂ + V̂ext

)]
+ EwHxc[nΓ̂w ]

}
, (5.10)

where V̂ext =
∫

drvext(r)n̂(r), and the minimizing noninteracting ensemble density matrix operator
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Γ̂wKS reproduces the physical interacting density nΓ̂wKS
(r) = nΓ̂w0

(r). It is constructed from a single set

of orbitals which fulfil the following self-consistent KS equations,

(
−∇

2

2
+ vext(r) +

δEwHxc[nΓ̂wKS
]

δn(r)

)
ϕwi (r) = εwi ϕ

w
i (r). (5.11)

Finally, using Eq. (5.10) together with the Hellmann–Feynman theorem, followed by Eq. (5.11) leads

to the final GOK-DFT expression for the optical gap [258],

Ω = εwL − εwH + ∆w
xc, (5.12)

where ∆w
xc = ∂Eαxc[nw]/∂α|α=w is so-called derivative discontinuity (DD) contribution to the optical

gap [453, 454]. The Hartree contribution is weight-independent. When w → 0,

Ω = εL − εH + ∆w→0
xc = EKS

g + ∆opt
xc , (5.13)

and ∆opt
xc is the DD that corresponds to the jump in the xc potential when moving from w = 0 (N -

electron ground-state) to w → 0 (ensemble of N -electron ground and excited states), and should not

be confused with the conventional ground-state DD, which will be extensively discussed in the follow-

ing. As readily seen in Eq. (5.12), the KS gap for ensembles is weight-dependent. This dependency

has to be counterbalanced by the ensemble DD to obtain a physically relevant weight-independent

optical gap.

Despite the in-principle exact and time-independent formulation of GOK-DFT, the theory is not

standard in quantum chemistry or in condensed matter physics, due to the highly complicated task of

developing weight-dependent xc energy functionals. It has however gained increasing interest recently,

first of all by considering the weight-independent functional as a first approximation [261], leading to

curvature in the ensemble energy with respect to w (or, equivalently, to a weight-dependent optical

gap, which is unphysical). A way to deal with this problem is to find an optimal w value [455], or

to use Boltzmann weights [261] (which is not mandatory). Alternatively, we have recently suggested

a linear interpolation between the ground-state (w = 0) and equi-ensemble state (w = 1/2), which

circomvent the selection of a given weight [263, 264]. This interpolation method has been shown to

give very accurate excitation energies on atoms and small molecules, and to catch charge transfer

and double excitation energies (see also Ref. [340]). To go beyond weight-independent functionals,

the so-called generalised adiabatic connection for ensembles (GACE) has been proposed by Franck

and Fromager [260]. Since the last two years, the number of papers on ensemble DFT is increasing
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significantly. For instance to fix the infamous problem of “ghost-interaction” [266, 456, 457] (which is

the ensemble analogue to the self-interaction in KS-DFT), to extract individual energies from GOK-

DFT [458], and to develop weight-dependent functionals from the Hubbard dimer [73, 74], based on

perturbation expansions to the weakly correlated limit and to the symmetric case [74]. Finally, note

that a general formula for the weight-dependent Hx functional has been proposed [459] and was shown

to provide accurate charge transfer excitations [460] on an asymmetric two-electron diatomic model.

5.2 Fundamental gap and the derivative discontinuity

Let us turn to charge excitations instead of neutral excitations, leading to the famous fundamental

gap. This gap is defined as the difference between the ionization potential,

IN = EN−1
0 − EN0 , (5.14)

and the electronic affinity,

AN = EN0 − EN+1
0 = IN+1, (5.15)

thus leading to

ENg = IN −AN = EN−1
0 + EN+1

0 − 2EN0 . (5.16)

In contrast to the optical gap, for which the number of electrons remains constant (hence the term “neu-

tral” excitation), the fundamental gap describes ionization processes (so-called “charge” excitations)

Experimentally, this gap can be determined via photoelectron spectroscopy and electron attachment

spectroscopy [443]. In contrast, the optical gap is a measure of the absorption spectroscopy, as it

describes the lowest possible neutral excitation in the system. The difference is subtle, and is made

clearer by looking at Fig. 5.1. In this illustration, we see that the optical gap is obtained by exciting

one electron from the valence band to the conduction band thanks to a photon absorption. In this

case, the jump of the electron creates a hole behind, that is bound to the electron, forming what we

call an exciton. This exciton-binding energy is the difference between the optical and the fundamental

gap. In the latter, the hole and the electron are not bound together. Indeed, this gap is defined

by ionization processes, such that the electron is first entirely removed from the system (ionization

potential, thus creating an unbinding hole) and then added in the conduction band (electronic affinity,

thus creating an unbinding electron). Note that in molecules, we usually refer to the hardness, which
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Figure 5.1: Left: Artistic view of the optical gap and the fundamental gap in solids. Right: Illustration
of the energy gaps in molecules. The discrete energy levels S0 and S1 denote the singlet ground-state
and the lowest singlet excited state, respectively. This figure is inspired from Ref. [443].

corresponds to half of the fundamental gap [441]. Now, we shall see how this gap can be obtained

through DFT calculation.

As readily seen in Eq. (5.16), three N -electron ground-state energies (with N ≡ {N−1, N,N+1})

are in principle needed to compute the fundamental gap. In practice, we know (as discussed in the

first chapter) that an accurate determination of the energy is expensive in term of computational cost,

such that WFT can be applied to very small systems only. One could also do three different calcu-

lations using DFT or Hartree–Fock, thus leading to the so-called ∆SCF [461] method that produces

reasonable results for atoms and molecules. But concerning the calculation of the band gap in solids,

it cannot be straightforwardly applied. Indeed, a solid is considered by a unit cell which is infinitely

replicated. Removing or adding an electron to that unit cell is also repeated on all the replica, such

that the N − 1- and N + 1- ground-state energies are not possible to compute directly. This issue is

usually avoided by introducing a compensating uniform background to the unit cell [462].

Therefore, it is desirable to extract the fundamental gap from one calculation on the neutral system

only. In Hartree–Fock theory and DFT, this is done by approximating the fundamental gap by the

simple difference between the LUMO and the HOMO orbital energies, like the KS gap in Eq. (5.1).

Hence, the optical gap and the fundamental gap are totally equivalent in both theories, which is of

course not the case in reality, as extensively discussed in Refs. [443, 444]. According to Eq. (5.13), the

KS gap differs from the optical gap by a DD. In fact, the term “derivative discontinuity” in KS-DFT

originates from the seminal work of Perdew and Levy in 1983 [130] on the fundamental gap, in the

continuity of the DFT for fractional number of electrons [158]. In the latter work, they showed that

the energy should be piecewise linear with respect to the number of electronsM whereM is fractional,
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N − 1 N N + 1
M

E(M)

EN−1
0

EN0

EN+1
0

−IN

−AN

•

•
•

Figure 5.2: Piecewise linearity of the energy with respect to the (fractional) number of electrons. The
slope when approaching N from the left gives the ionization potential, while approaching from the
right gives the electronic affinity. The blue dashed line corresponds to the convex behaviour of local
and semi-local DFAs.

and that its slope between N − 1 < M < N gives rise to (minus) the ionization potential, while its

slope between N < M < N + 1 is (minus) the electronic affinity. This is illustrated in Fig. 5.2. As

readily seen in Fig. 5.2, the derivative of the energy with respect to the number of electrons (which is

nothing but the chemical potential) is discontinuous at each integral number of electrons. In KS-DFT,

this discontinuity is manifested in the xc potential, such that the fundamental gap for a N -electron

system reads

ENg = εNL − εNH +
δEHxc[n]

δn(r)

∣∣∣∣
N−δ
− δEHxc[n]

δn(r)

∣∣∣∣
N+δ

= EKS
g + ∆N

xc, (5.17)

where ∆N
xc is the infamous xcDD, which is not equal to ∆opt

xc . Standard xc functionals do not exhibit

such a DD, such that this discontinuous behaviour has been the subject of extensive discussions in the

literature [130, 224, 438, 463–476]. According to Eq. (5.17), it is in principle sufficient to extend the

domain of definition of the conventional xc functional to fractional electron numbers in order to account

for the DD. Unfortunately, this task is far from trivial and, despite significant progress [442, 477–491],

no clear strategy has emerged over the past decades. It is even argued that invoking fractional number

of electrons is maybe not the correct route to pursue [444, 475, 476]. In the latter works by Baerends

and co-workers [444, 475, 476], an extensive discussion is made on the exact and approximate KS gap
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for both molecules and solids. It is stressed that this gap should not be interpreted as a representation

of the fundamental gap. Baerends also suggests to compute the correction ∆N
xc from the response part

of the xc potential, based on an integral number of electrons approach [475].

In practice, both chemistry and physics communities have turned to generally more expensive “post-

DFT” for the computation of the charged excitations, such as DFT+U [159–161, 492–494] or the even

more involved Green’s function-based methods like GW [223, 231–234, 495]. Hybrid functionals can

also be used [496–499], as they correct for the delocalization error (related to the self-interaction error)

in DFT due to their portion of Hartree–Fock exchange [442, 477]. Note that this correction is due to

an error cancellation between convex (DFT, delocalization error) and concave (HF, localization error)

components, which does not provide a general solution for the description of the band gap [477], and

can even give poorer optical gaps than without HF exchange [444].

5.3 Fundamental gap in N-centered ensemble DFT

Quite recently, Kraisler and Kronik made the formal connection between non-neutral excitations and

GOK-DFT more explicit by introducing a grand canonical ensemble weight, thus paving the way

to the construction of more reliable xc functionals for ionization and affinity processes [500, 501].

Unfortunately, as the total (fractional) number of electrons varies with the weight, the analogy with

GOK-DFT can only be partial. It will be shown below that with an appropriate choice of grand

canonical ensemble, informations about non-neutral excitations can be extracted, in principle exactly,

from a canonical (time-independent) formalism. As a remarkable result, the optical and fundamental

gap problems become formally identical, even though the physics they describe is completely different.

Although it had not been realized yet, advances in GOK-DFT should therefore be beneficial to the

description of fundamental gaps too.

5.3.1 Single-weight N-centered ensemble DFT

In the conventional DFT formulation of the fundamental gap problem, a grand canonical ensemble

consisting of (N − 1)- and N -electron ground states is considered, thus leading to a total number

of electrons that can be fractional. By analogy with the time-ordered one-particle Green’s function,

which contains information about the (N − 1)-, N -, and (N + 1)-electron systems, we propose instead

to consider what we will refer to as an N -centered grand canonical ensemble. The latter will be

characterized by a central number N of electrons and an ensemble weight ξ, in the range 0 ≤ ξ ≤ 1/2,

that is assigned to both (N − 1)- and (N + 1)-electron states. In the following, the ensemble will be
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denoted as {N, ξ}. It is formally described by the following ensemble density matrix operator,

Γ̂{N,ξ} = ξΓ̂N− + ξΓ̂N+ + (1− 2ξ)Γ̂N , (5.18)

which is a convex combination of N -electron density matrix operators Γ̂N with N ∈ {N−, N,N+}.

Note that, for sake of compactness, we used the shorthand notations N− = N−1 and N+ = N+1 (not

to be confused with left- and right-hand limits). If pure states are used (which is not compulsory) then

Γ̂N =
∣∣ΨN 〉〈ΨN ∣∣ where ΨN is an N -electron many-body wavefunction. Although the N -centered

ensemble describes the addition (and removal) of an electron to (from) an N -electron system, the

corresponding N -centered ensemble density,

nΓ̂{N,ξ}(r) = ξnΨN− (r) + ξnΨN+ (r) + (1− 2ξ)nΨN (r), (5.19)

integrates to the central integral number of electrons N . Thus we generate a canonical density from

a grand canonical ensemble. This is the fundamental difference between conventional DFT for open

systems and the N -centered ensemble DFT derived in the following. Note that, in a more chemi-

cal language, the deviation of the N -centered ensemble density from the N -electron one nΨN (r) is

nothing but the difference between right and left Fukui functions [502] scaled by the ensemble weight ξ.

For a given external potential vext(r), we can construct, in analogy with Eq. (5.18), the following

N -centered ground-state ensemble energy,

E
{N,ξ}
0 = ξE

N−
0 + ξE

N+

0 + (1− 2ξ)EN0 , (5.20)

where EN0 is the N -electron ground-state energy of Ĥ = T̂ + Ŵee +
∫

dr vext(r)n̂(r), and n̂(r) is the

density operator. The operators T̂ and Ŵee describe the electronic kinetic and repulsion energies,

respectively. Note that the N -centered ground-state ensemble energy is linear in ξ and its slope is

nothing but the fundamental gap. From the following extension of the Rayleigh–Ritz variational

principle,

E
{N,ξ}
0 = min

Γ̂{N,ξ}
Tr
[
Γ̂{N,ξ}Ĥ

]
= Tr

[
Γ̂
{N,ξ}
0 Ĥ

]
, (5.21)

where Tr denotes the trace, we conclude that the Hohenberg–Kohn theorem [67] applies to N -centered

ground-state ensembles for any fixed value of ξ. Let us stress that, unlike in DFT for fractional electron

numbers, the one-to-one correspondence between the N -centered ensemble density and the external
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potential holds up to a constant, simply because the former density integrates to a fixed central number

N of electrons. We can therefore extend DFT to N -centered ground-state ensembles and obtain the

energy variationally as follows,

E
{N,ξ}
0 = min

n→N

{
F {N,ξ}[n] +

∫
dr vext(r)n(r)

}
, (5.22)

where the minimization is restricted to densities that integrate to N . As readily seen from Eq. (5.20),

conventional (N -electron) ground-state DFT is recovered when ξ = 0. The analog of the Levy–Lieb

functional for N -centered ground-state ensembles reads

F {N,ξ}[n] = min
Γ̂{N,ξ}→n

Tr
[
Γ̂{N,ξ}

(
T̂ + Ŵee

)]
, (5.23)

where the minimization is restricted to N -centered ensembles with density n. Let us consider the KS

decomposition,

F {N,ξ}[n] = T {N,ξ}s [n] + E
{N,ξ}
Hxc [n], (5.24)

where

T {N,ξ}s [n] = min
Γ̂{N,ξ}→n

Tr
[
Γ̂{N,ξ}T̂

]
(5.25)

is the non-interacting kinetic energy contribution and

E
{N,ξ}
Hxc [n] =

1

2

∫∫
drdr′

n(r)n(r′)

| r− r′ |
+ E{N,ξ}xc [n] (5.26)

is the ξ-dependent analog of the Hartree-xc (Hxc) functional for N -centered ground-state ensembles.

Interestingly, even though the electronic excitations described in N -centered ensemble DFT and GOK-

DFT [258] are completely different, the two theories are formally identical. Indeed, by rewriting the

noninteracting kinetic energy in Eq. (5.25) into the following Lieb maximisation,

T {N,ξ}s [n] = sup
v

{
E{N,ξ}KS [v]−

∫
drv(r)n(r)

}
, (5.27)

where E{N,ξ}KS [v] is the N -centered ground-state ensemble energy of T̂ +
∫

dr v(r)n̂(r), and using

Eq. (5.20), it comes

E{N,ξ}KS [v] =

N−1∑
i=1

εi[v] + (1− ξ) εH[v] + ξεL[v]. (5.28)
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According to Eqs. (5.9) and (5.28), the non-interacting kinetic energy functionals used in both theories

are actually equal. This is simply due to the fact that, in a non-interacting system, the fundamen-

tal and optical gaps boil down to the same quantity. This is of course not the case for interacting

electrons, which means that each theory requires the construction of a specific weight-dependent xc

functional.

For that purpose, we propose to extend to N -centered ground-state ensembles the generalized

adiabatic connection formalism for ensembles (GACE) which was originally introduced in the context

of GOK-DFT [73, 260]. In contrast to standard DFT for grand canonical ensembles [500], the ensem-

ble weight ξ can in principle vary in N -centered ensemble DFT while holding the density constant.

Consequently, we can derive the following GACE formula,

E{N,ξ}xc [n] = Exc[n] +

∫ ξ

0

dα ∆{N,α}xc [n], (5.29)

where, unlike in conventional adiabatic connections [503], we integrate over the ensemble weight

rather than the two-electron interaction strength. The GACE integrand ∆
{N,α}
xc [n] = ∂E

{N,α}
xc [n]/∂α

quantifies the deviation of the N -centered ground-state ensemble xc functional from the conventional

(weight-independent) ground-state one Exc[n] = E
{N,ξ=0}
xc [n]. As shown in Ref. [75], the GACE

integrand is simply equal to the difference in fundamental gap between the interacting and non-

interacting systems with N -centered ground-state ensemble density n (and weight α):

∆{N,α}xc [n] = E{N,α}g [n]−
(
ε
{N,α}
L [n]− ε{N,α}H [n]

)
. (5.30)

Let us now return to the variational ensemble energy expression in Eq. (5.22). Combining the

latter with Eqs. (5.24) and (5.25) leads to

E
{N,ξ}
0 = min

Γ̂{N,ξ}

{
Tr
[
Γ̂{N,ξ}

(
T̂ + V̂ext

)]
+ E

{N,ξ}
Hxc [nΓ̂{N,ξ} ]

}
, (5.31)

where V̂ext =
∫

dr vext(r)n̂(r). Note that the minimizing density matrix operator Γ̂
{N,ξ}
KS in Eq. (5.31)

is the non-interacting N -centered ground-state ensemble one whose density equals the physical inter-

acting one n
Γ̂
{N,ξ}
0

(r). It can be constructed from a single set of orbitals which fulfill the following

self-consistent KS equations [the latter are simply obtained from the stationarity condition associed

to Eq. (5.31)],

[
−∇

2

2
+ v
{N,ξ}
KS (r)

]
ϕ
{N,ξ}
i (r) = ε

{N,ξ}
i ϕ

{N,ξ}
i (r), (5.32)
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where v{N,ξ}KS (r) = vext(r) + v
{N,ξ}
Hxc [n

Γ̂
{N,ξ}
0

](r) and v{N,ξ}Hxc [n](r) = δE
{N,ξ}
Hxc [n]/δn(r). In the particular

case of pure non-interacting N -electron states,

n
Γ̂
{N,ξ}
0

(r) =

N−∑
i=1

∣∣∣ϕ{N,ξ}i (r)
∣∣∣2 + (1− ξ)

∣∣∣ϕ{N,ξ}H (r)
∣∣∣2 + ξ

∣∣∣ϕ{N,ξ}L (r)
∣∣∣2 , (5.33)

where L (i = N+) and H (i = N) refer to the LUMO and HOMO of the N -electron KS system,

respectively. By inserting the latter density into Eq. (5.30) and taking α = ξ, we finally deduce from

Eq. (5.32) the analog of the GOK-DFT optical gap expression for the fundamental gap,

ENg = ε
{N,ξ}
L − ε{N,ξ}H +

∂E
{N,ξ}
xc [n]

∂ξ

∣∣∣∣∣
n=n

Γ̂
{N,ξ}
0

. (5.34)

This is the central result of this chapter. Note that, when ξ = 0, the famous formula of Perdew and

Levy [130][Eq. (5.17)] is recovered with a much more explicit density-functional expression for the

DD.

5.3.2 Two-weight generalization of the theory

5.3.2.i Extending the Levy–Zahariev shift-in-potential procedure to ensembles

In order to establish a connection between N -centered ensemble DFT and the standard formulation

of the fundamental gap problem in DFT (which relies on fractional electron numbers), we propose in

the following to extend the theory to N -centered ensembles where the removal and the addition of an

electron can be controlled independently. For that purpose, we introduce the generalized two-weight

N -centered ensemble density matrix operator,

Γ̂{N,ξ} =
∑
ν=±

ξν Γ̂Nν +

[
1−

∑
ν=±

ξν
Nν
N

]
Γ̂N , (5.35)

where ξ ≡ (ξ−, ξ+) and the convexity conditions ξ− ≥ 0, ξ+ ≥ 0, and ξ−N−+ ξ+N+ ≤ N are fulfilled.

Note that, by construction, the N -centered ensemble density associated to Γ̂{N,ξ} still integrates to

N , and the single-weight formulation of N -centered ensemble DFT discussed previously is simply

recovered when ξ− = ξ+ = ξ. The ensemble energy now reads

E
{N,ξ}
0 =

∑
ν=±

ξνE
Nν
0 +

[
1−

∑
ν=±

ξν
Nν
N

]
EN0 . (5.36)
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Interestingly, if we extend the Levy–Zahariev shift-in-potential procedure [504] to N -centered ground-

state ensembles as follows [note that the superscripts ξ in Eq. (5.32) should now be replaced by ξ in

the generalized two-weight theory],

ε
{N,ξ}
i → ε̃

{N,ξ}
i = ε

{N,ξ}
i + C{N,ξ}

[
n

Γ̂
{N,ξ}
0

]
, (5.37)

where the density-functional shift reads

C{N,ξ}[n] =
E
{N,ξ}
Hxc [n]−

∫
dr v

{N,ξ}
Hxc [n](r)n(r)∫

dr n(r)
, (5.38)

the N -centered ground-state ensemble energy can be written as a simple weighted sum of shifted KS

orbital energies. Indeed, according to Eq. (5.31) [where ξ is replaced by ξ], the N -centered ground-

state ensemble energy can be written as follows,

E
{N,ξ}
0 = Tr

[
Γ̂
{N,ξ}
KS

(
T̂ + V̂ext

)]
+ E

{N,ξ}
Hxc

[
n

Γ̂
{N,ξ}
KS

]
(5.39)

= Tr
[
Γ̂
{N,ξ}
KS

(
T̂ + V̂

{N,ξ}
KS

)]
+ E

{N,ξ}
Hxc

[
n

Γ̂
{N,ξ}
KS

]
−
∫
dr v

{N,ξ}
Hxc

[
n

Γ̂
{N,ξ}
0

]
(r) n

Γ̂
{N,ξ}
KS

(r),

where

V̂
{N,ξ}
KS =

∫
dr v

{N,ξ}
KS (r) n̂(r) (5.40)

and n
Γ̂
{N,ξ}
KS

(r) = Tr
[
Γ̂
{N,ξ}
KS n̂(r)

]
. Since the two densities n

Γ̂
{N,ξ}
KS

and n
Γ̂
{N,ξ}
0

are equal and integrate

to N , we obtain from Eqs. (5.32) and (5.38),

E
{N,ξ}
0 =

∑
ν=±

ξν

Nν∑
i=1

ε
{N,ξ}
i +

[
1−

∑
ν=±

ξνNν
N

]
N∑
i=1

ε
{N,ξ}
i +NC{N,ξ}

[
n

Γ̂
{N,ξ}
0

]
. (5.41)

Finally, by rewriting the last term in the right-hand side of Eq. (5.41) as follows,

NC{N,ξ}
[
n

Γ̂
{N,ξ}
0

]
=
∑
ν=±

ξν

Nν∑
i=1

C{N,ξ}
[
n

Γ̂
{N,ξ}
0

]
+

(
1−

∑
ν=±

ξνNν
N

)
N∑
i=1

C{N,ξ}
[
n

Γ̂
{N,ξ}
0

]
, (5.42)

and by using the definition of the shifted KS orbital energies in Eq. (5.37), it comes

E
{N,ξ}
0 =

[
1 +

ξ− − ξ+
N

] N∑
i=1

ε̃
{N,ξ}
i − ξ−ε̃{N,ξ}H + ξ+ε̃

{N,ξ}
L . (5.43)
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In the non-interacting limit, it is readily seen from Eq. (5.43) that, unless ξ− = ξ+ = ξ, the N -

centered ensemble does not describe a single-electron excitation from the HOMO to the LUMO. In

other words, the generalized two-parameter N -centered ensemble non-interacting kinetic energy is not

equal anymore to its GOK-DFT analog. Interestingly, in the (very) particular case N = 2, the latter

is actually recovered if the weight assigned to the first excited state is set to ξ+ (see Appendix A in

Ref. [75]).

5.3.2.ii Exact extraction of individual energies

We will now show that, by using the shift-in-potential procedure introduced previously and exploiting

the linearity in ξ of the ensemble energy, it becomes possible to extract individual N -electron ground-

state energies. Starting from Eq. (5.36) and noticing that EN0 = E
{N,ξ=0}
0 , we can express the exact

N -electron energy in terms of E{N,ξ}0 and its derivatives as follows,

EN0 = E
{N,ξ}
0 −

∑
ν=±

ξν
∂E
{N,ξ}
0

∂ξν
. (5.44)

Moreover, as readily seen from Eq. (5.36), the N+- and N−-electron energies can be extracted sepa-

rately from the ensemble energy as follows,

E
N±
0 =

N±
N

EN0 +
∂E
{N,ξ}
0

∂ξ±
. (5.45)

Note that, for convenience, Eqs. (5.44) and (5.45) will be compacted into a single equation,

EN0 =
N
N
E
{N,ξ}
0 +

∑
ν=±

[
(N −N)(N −N−ν)

2
− N ξν

N

]
∂E
{N,ξ}
0

∂ξν
, (5.46)

where N ∈ {N−, N,N+}.

Applying the Hellmann–Feynman theorem to the variational ensemble energy expression in Eq. (5.31)

[with the substitution ξ → ξ] gives

∂E
{N,ξ}
0

∂ξ±
= Tr

[[
∂ξ± Γ̂

{N,ξ}
KS

] (
T̂ + V̂

{N,ξ}
KS

)]
+
∂E
{N,ξ}
xc [n]

∂ξ±

∣∣∣∣∣
n=n

Γ̂
{N,ξ}
0

, (5.47)
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where

∂ξ± Γ̂
{N,ξ}
KS =

∣∣∣Φ{N,ξ}N±

〉〈
Φ
{N,ξ}
N±

∣∣∣− N±
N

∣∣∣Φ{N,ξ}N

〉〈
Φ
{N,ξ}
N

∣∣∣ ,
(5.48)

and the KS potential operator is defined in Eq. (5.40). Note that the N -electron Slater determinants

Φ
{N,ξ}
N in Eq. (5.48) are constructed from the KS orbitals ϕ{N,ξ}i (r) in Eq. (5.32). Consequently,

Eq. (5.47) can be simplified as follows,

∂E
{N,ξ}
0

∂ξ±
= ± 1

N

N∑
i=1

(
ε
{N,ξ}
N+ 1

2±
1
2

− ε{N,ξ}i

)
+
∂E
{N,ξ}
xc [n]

∂ξ±

∣∣∣∣∣
n=n

Γ̂
{N,ξ}
0

. (5.49)

Since the shift introduced in Eq. (5.37) does not affect KS orbital energy differences,

ε
{N,ξ}
j − ε{N,ξ}i = ε̃

{N,ξ}
j − ε̃{N,ξ}i , (5.50)

we finally deduce from Eqs. (5.43), (5.46), and (5.49) the following exact expressions,

EN0 =

N∑
i=1

ε̃
{N,ξ}
i +

∑
ν=±

[
(N −N)(N −N−ν)

2
− N ξν

N

]
× ∂E

{N,ξ}
xc [n]

∂ξν

∣∣∣∣∣
n=n

Γ̂
{N,ξ}
0

. (5.51)

Eq. (5.51) is the second key result of this work. As a direct consequence, the ionization potential (IP),

denoted IN , and the electron affinity (EA), denoted AN = IN+ , can now be extracted, in principle

exactly, as follows,

IN+ 1
2±

1
2 = ±

(
EN − EN±

)
= −ε̃{N,ξ}

N+ 1
2±

1
2

+
∑
ν=±

(
ξν
N

+
N−ν −N±

2

)
∂E
{N,ξ}
xc [n]

∂ξν

∣∣∣∣∣
n=n

Γ̂
{N,ξ}
0

. (5.52)

As readily seen from Eq. (5.51), individual state properties can be extracted exactly from the

ensemble density. There is in principle no need to use individual state densities for that purpose.

Nevertheless, in practice, it might be convenient to construct N -centered ground-state ensemble xc

DFAs using individual densities, in the spirit of the ensemble-based approach of Kraisler and Kro-

nik [500]. Since the individual densities are implicit functionals of the ensemble density, an optimized

effective potential would be needed. A similar strategy would apply if we want to remove ghost-

interaction-type errors [456] by using an N -centered ensemble exact exchange (EEXX) energy.

Finally, if we consider the conventional N -electron ground-state KS-DFT limit of Eq. (5.51), i.e.
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Figure 5.3: Exact and approximate N -centered ground-state ensemble energies plotted as a function
of ξ for N = 2 and U/t = 5 in the symmetric (left panel) and asymmetric (right panel) Hubbard
dimers. See text for further details.

ξ = 0, we recover the Levy–Zahariev expression EN0 =
∑N
i=1 ε̃

{N,ξ=0}
i [504] for the N -electron energy

and, in addition, we obtain the following compact expressions for the anionic and cationic energies,

E
N±
0 =

N±∑
i=1

ε̃{N,ξ=0}
i +

1

N±

∂E
{N,ξ}
xc [nΨN0

]

∂ξ±

∣∣∣∣∣
ξ=0

 , (5.53)

where nΨN0
denotes the exact N -electron ground-state density. As well known and now readily seen

from Eq. (5.53), it is impossible to describe all N -electron ground-state energies with the same po-

tential. When an electron is added (+)/removed (−) to/from an N -electron system, an additional

shift (second term in the right-hand side of Eq. (5.53)) is applied to the already shifted KS orbital

energies. Interestingly, we also recover from Eq. (5.52) a more explicit form of the Levy–Zahariev IP

expression [504],

IN = −ε̃{N,ξ=0}
H +

∂E
{N,ξ}
xc [nΨN0

]

∂ξ−

∣∣∣∣∣
ξ=0

, (5.54)

where the second term in the right-hand side can be interpreted as the shifted Hxc potential at position

r→∞ [504]. Similarly, the electronic affinity reads

AN = −ε̃{N,ξ=0}
L −

∂E
{N,ξ}
xc [nΨN0

]

∂ξ+

∣∣∣∣∣
ξ=0

. (5.55)

5.3.3 Application to the asymmetric Hubbard dimer

As a proof of concept, we apply in the following N -centered ensemble DFT to the asymmetric Hubbard

dimer (see Sec. 2.1.4.iii), Thus, we illustrate the fact that the theory applies not only to exact ab initio
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Hamiltonians but also to lattice ones, which might be of interest for modeling extended systems. In

this case, the density reduces to a single number n = n0 which is the occupation of site 0, and

n1 = N − n. In the following, the central number of electrons will be set to N = 2 so that the

convexity condition reads ξ+ ≤ (2 − ξ−)/3. It can be shown that the N -centered non-interacting

kinetic and EEXX energies can be expressed analytically as follows [75],

T {N,ξ}s (n) = −2t
√

(ξ+ − 1)2 − (n− 1)2,

E{N,ξ}x (n) =
U

2

[
1 +

ξ+ − ξ−
2

+

(
1− 3ξ+ + ξ−

2

)(
n− 1

ξ+ − 1

)2
]
− EH(n), (5.56)

where the Hartree energy reads EH(n) = U
(
1 + (n− 1)2

)
. On the other hand, the correlation en-

ergy can be computed exactly by Lieb maximization [73, 75]. As readily seen from Eq. (5.56), an

N -centered ensemble density n is non-interacting v-representable if |n− 1| ≤ 1− ξ+. In Fig. 5.3, the

total N -centered ground-state ensemble energy is plotted as a function of ξ− = ξ+ = ξ for various

approximate density-functional xc energies [exact densities were used]: E{N,ξ}x (n) only [EEXX], the

“conventional” weight-independent N -electron ground-state (GS) xc functional E{N,ξ=0}
xc (n) [GSxc],

and E{N,ξ}x (n) +E
{N,ξ=0}
c (n) [GSc]. The accurate parameterization of Carrascal et al. [335, 358] was

used for E{N,ξ=0}
c (n) (see Appendix G.1). In the symmetric case, all energy contributions are linear

in ξ since n = 1 [see Eq. (5.56)]. Nevertheless, the correct slope is reproduced only when the weight

dependence is taken into account in both exchange and correlation energies. This becomes even more

critical in the asymmetric case [bottom panel] where approximations in the xc energy induce cur-

vature, thus leading to a weight-dependent fundamental gap, which is of course unphysical. More

insight into the weight dependence is given by the GACE integrand in Eq. (5.30), and is not shown in

this thesis. The reader is referred to as Ref. [75] for a more detailed discussion on the GACE integrand.

Turning to the calculation of the IP, Eq. (5.54) was verified by calculating each (density-functional)

contribution separately [75]. Results obtained for the asymmetric dimer are shown in Fig. 5.4. As soon

as the on-site repulsion is switched on (and up to U/t ≈ 4), both the shifted KS HOMO energy and the

DD (second term in the right-hand side of Eq. (5.54)) contribute substantially to the IP. Interestingly,

in this regime of correlation and density, the shift-in-potential procedure is not crucial. The unshifted

KS HOMO energy varies with U through the density. Note that the situation would be completely

different in the symmetric case [not shown] where IN (∆vext = 0) = −t − EN0 (∆vext = 0) and the

unshifted KS HOMO energy equals −t. By construction, the latter energy becomes 1
2E

N
0 (∆vext = 0)

[which is U -dependent] after shifting. As a result, in the symmetric case, the shift and the DD equally

contribute [by −( 1
2E

N
0 (∆vext = 0) + t)] to the IP. Returning to the asymmetric case in Fig. 5.4, the
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Figure 5.4: Exact shift-in-potential (difference between dashed and full red lines) and density-
functional DD (full blue line) contributions to the IP [see Eq. (5.54)] plotted as a function of U/t
for ∆vext/t = 5. The EEXX contribution to the DD is shown in dashed blue line.

IP reduces to the DD in the strongly correlated regime (U/t > 10), thus illustrating the importance

of weight dependence in both exchange and correlation energies.

5.4 Summary and perspectives

We have shown that the fundamental gap problem, which is traditionally formulated in grand canon-

ical ensemble DFT, can be recast into a canonical problem where the xc functional becomes ensemble

weight dependent. As a remarkable result, modeling the infamous DD becomes equivalent to modelling

the weight dependence, exactly like in the optical gap problem. This key result, which is depicted in

Eq. (5.34), opens up a new paradigm in the development of DFAs for gaps which are computationally

much cheaper than conventional time-dependent post-DFT treatments. Fig. 5.5 is a summary illus-

tration of the difference between DFT for fractional number of electrons and the N -centered ensemble

DFT. As readily seen in Fig. 5.5 and as already mentioned, the jump in the xc potential has to be

modelled in DFT in order to recover the fundamental gap with only one calculation. This is still a

major challenge in DFT. Otherwise, one can do two DFT calculations to get the ionization potentials

IN and IN+1 = AN , which are in-principle exactly given by (minus) the HOMO KS orbital energy

of the N - and N + 1-electron systems, respectively, according to the ionization potential theorem. In

the herein proposed N -centered ensemble DFT, this xcDD is simply modelled by a weight-derivative
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Figure 5.5: Left panel: DFT for fractional number of electrons. The fundamental gap is obtained by
looking at the left limit of the N - and N + 1-electron energy, which defines the xcDD in Eq. (5.17).
The xc potential is uniquely defined for fractional number of electrons [158]. Right panel: N -centered
ensemble DFT. The fundamental gap is obtained through the weight-dependence of the xc energy
functional, whose ensemble density integrates to the central number of electrons N . The KS orbital
energies are fixed by the shift introduced in Eq. (5.37).

of the ensemble xc energy functional. Therefore, accounting for the DD is straightforward, providing

that weight-dependent functionals are accessible. In the spirit of our previous work in GOK-DFT [74],

in the context of the Hubbard dimer, weight-dependent correlation energy functionals can be devel-

oped by performing Taylor expansions around the noninteracting (U = 0) and the symmetric (n = 1)

limits. Seeking further into GOK-DFT, a linear interpolation [263] could also be considered, even by

using weight-independent functionals. A natural step forward would be to apply the approach, for

example, to a finite uniform electron gas [505], thus providing an ab initio local DFA that incorporates

DDs through its weight dependence. Work is currently in progress in this direction.





Chapter 6

SOET and the ab-initio Hamiltonians

In the spirit of his predecessors, e.g. DMFT [400], DMET [419, 422] as well as SEET [380], the exten-

sion to quantum chemistry will be investigated in SOET. Such an extension is not straightforward, as

it faces several fundamental issues like representability problems, the universality of the functionals,

and the dependence on the molecular orbital basis. This chapter intends to give general thoughts

and perspectives about this generalization to quantum chemistry, which has finally led us to an exact

formulation of RDMFT based on a seniority-zero wavefunction, for which an article is currently in

preparation.

6.1 Extension of SOET to Quantum Chemistry

The extension of SOET to quantum chemistry has been formally explored by Fromager, leading to

the complete active space site-occupation functional theory (CASSOFT) [270]. In this context, the

impurities in SOET play the role of the active orbitals in the CAS. I recall that the basic variable in

SOFT and in SOET is the site-occupation vector, which corresponds to the diagonal of the 1RDM,

i.e. the orbital-occupation vector in quantum chemistry.

Let us start by rewriting the second-quantized form of the Hamiltonian in the basis of molecular

orbitals {ϕp(r)}p,

Ĥ = ĥ+ Ŵee =
∑
pq

∑
σ

hpq ĉ
†
pσ ĉqσ +

1

2

∑
pqrs

∑
σσ′

〈pq|rs〉ĉ†pσ ĉ
†
qσ′ ĉsσ′ ĉrσ, (6.1)

where ĉ†pσ (ĉpσ) is the creation (annihilation) operator of an electron of spin σ in the pth orbital, and

〈pq|rs〉 =

∫∫
drdr′

ϕ∗p(r)ϕ∗q(r
′)ϕr(r)ϕs(r

′)

|r− r′|
. (6.2)
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Then, a CAS is introduced in which the interactions between the active orbitals are treated explicitly,

like the impurity sites in SOET,

Ŵee −→ ŴCAS =
1

2

active∑
uvxy

∑
σσ′

〈uv|xy〉ĉ†uσ ĉ
†
vσ′ ĉyσ′ ĉxσ. (6.3)

In the spirit of SOET, a complementary functional of the orbital occupation should be introduced in

order to recover the missing (dynamical) correlation. This is not an easy task, already because SOET

can be formulated in any orbital basis [270]. Hence, the complementary functional will depend on the

choice of the orbitals, as well as on the active space such that it is not universal anymore and seems

highly complicated to model. One has to choose a given orbital basis in which this generalization

of SOET will be formulated. A “natural” choice would be the natural orbitals which diagonalize the

1RDM. Indeed, all the informations of the 1RDM are now concentrated into the occupation numbers

of these orbitals, corresponding to the basic variable in SOET. In addition, we would benefit from

previous works in RDMFT (usually formulated in the natural orbital basis as well, see Sec. 1.2.2). Of

course, one first needs to optimise the orbitals to find the natural orbital basis that diagonalizes the

1RDM, such that the whole 1RDM can be constructed. In conclusion, the generalization of SOET

to quantum chemistry requires to work within RDMFT. Let us recall that, in RDMFT, the universal

interaction functional [70] is given by

W (D) = min
Ψ→D

〈Ψ|Ŵee|Ψ〉, (6.4)

and the ground-state energy is obtained variationally as follows,

E(h) = min
D

{
(h|D) +W (D)

}
, (6.5)

where D ≡ {Dpq}pq =
{
〈
∑
σ ĉ
†
pσ ĉqσ〉

}
pq

and (h|D) =
∑
pq hpqDpq.

It has already been mentioned in Sec. 1.2.2 that the 1RDM is not pure-state noninteracting v-

representable [180, 216] because of its idempotent property. Let us assume that the 1RDM is pure-state

CAS-representable, such that a CAS-interacting functional could be introduced as follows,

WCAS(D) = min
Ψ→D

〈Ψ|ŴCAS|Ψ〉, (6.6)

as well as the following decomposition in the spirit of SOET,

W (D) = WCAS(D) +W
CAS

(D), (6.7)
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where W
CAS

(D) is the complementary functional of the 1RDM. According to Eqs. (6.5), (6.6) and

(6.7), the following exact expression for the ground-state energy is obtained,

E(h) = min
D

{
(h|D) +WCAS(D) +W

CAS
(D)

}
, (6.8)

or, equivalently,

E(h) = min
Ψ

{
〈Ψ|ĥ+ ŴCAS|Ψ〉+W

CAS
(DΨ)

}
. (6.9)

Turning to the natural orbital representation D ≡ (κ,n), where κ denotes the orbital rotation (see

Sec. 1.1.4) and n is the natural orbital-occupation vector given by the diagonal of the 1RDM, Eq. (6.9)

can be rewritten as

E(h) = min
Ψ

{
〈Ψ|ĥ+ ŴCAS|Ψ〉+W

CAS
(κΨ,nΨ)

}
. (6.10)

It is still unclear how such an approach could be implemented. However, if the exact natural orbitals

were known, they could be used as a basis such that

E(h) = min
C

{
〈Ψ(C)|

∑
p

hppn̂p + ŴCAS|Ψ(C)〉+W
CAS

(nΨ(C))
}
, (6.11)

where |Ψ(C)〉 =
∑
I CI |I〉 is a normalized wavefunction expanded in the basis of Slater determinants

{|I〉}I constructed in the fixed natural orbital basis. Therefore, the minimization in Eq. (6.10) is

reduced to optimize the CI coefficients {Ci}i only. The minimizing wavefunction Ψemb in Eq. (6.11)

describes a fictitious system whose CAS has been embedded in order to reproduce the exact occupation

numbers of the natural orbitals, and fulfils the SOET-like self-consistent equation:

(∑
p

hppn̂p + ŴCAS +
∑
p

∂WCAS(nΨemb

)

∂np
n̂p

)
|Ψemb〉 = Eemb|Ψemb〉 . (6.12)

In practice, however, the exact natural orbitals are not known (except for the uniform electron gas and

the symmetric Hubbard dimer, for instance). In addition, the previous assumption that the 1RDM is

pure-state CAS-representable, leading to Eq. (6.6), is most certainly not valid. Indeed, ŴCAS allows

for the hopping of the electrons inside the CAS, but not on the totality of the orbital space. Hence

the noninteracting orbitals outside the CAS will have occupation equal to 0 (virtual orbitals) or 2

(core orbitals), thus leading to pure-state v-representability problem. Ensembles are thus needed to

recover the fractional occupation numbers of the exact physical 1RDM, which we would like to avoid.
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Indeed, using ensembles, we would have many degenerate determinants to handle which would be a

nightmare to implement and to solve numerically.

In practice, one could think about matching the active part of the 1RDM only, which would be

pure-state CAS-representable, in the spirit of the iLDA approximation in SOET [see Eq. (3.44)]. In

order to add more flexibility, multiple CAS could be defined and solved separately, but would still

be coupled together in some manner, in the spirit of DMET for quantum chemistry where multiple

fragments are defined using localized orbitals [419, 422]. This has not been investigated yet and

deserves more thinking. Of course, the most challenging part would still be the development of

complementary functionals that are CAS- and orbital-dependent. Another way to look at the problem

is to add partial interactions in the whole molecular orbital space. This has been investigated by using

a seniority-zero interacting Hamiltonian, as shown in the following.

6.2 Seniority-zero Hamiltonian

Before entering into the newly formulated approach which will be detailed in the next section, it

is important to provide a brief overview of the existing methods based on geminals, which describe

the physical behaviour of a pair of electrons. We have seen in the first chapter that the mean-

field approximation is insufficient to describe strongly correlated systems. An alternative consists in

excitation-based configuration selection procedures (CISD, CCSD, . . .) based on a single-determinant

reference as a zeroth-order wavefunction, which have been proven highly accurate in the description of

dynamical correlation. However, when strong static correlation arises, due to the multiconfigurational

character of the system, these methods are not accurate anymore and the orbital picture breaks down.

One example of strongly correlated system is a superconductor, which is not correctly described by

a single Slater determinant, but can be alternatively described by a wavefunction built from Cooper

pairs [506], which are geminals. This idea of using two-electron functions as building block for many-

body wavefunctions is old, and the reader is referred to Ref. [507] which gives a good chronological

overview of the theory of geminals, from the early 1950s to the late 1990s. In order to go beyond

the independent particle scheme, given by the product of orbitals forming a Slater determinant, a

product of geminals forming a more general wavefunction termed antisymmetrized product of geminals

(APG) [508, 509] is considered as follows,

|ΨAPG〉 =

NP∏
x

K∑
pq

Gxpq ĉ
†
p↑ĉ
†
q↓|vac〉, (6.13)
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where NP is the number of electron pairs (labelled by x), ĉ†p↑ĉ
†
q↓ is the electron-pair creation operator

with associated geminal coefficient Gxpq, and K is the number of basis functions. Unfortunately, the

APG method remains extremely expensive in term of computational cost, due to factorial scaling.

Then, many wavefunction ansätze have been derived to reduce the computational cost of the

method, while keeping its most interesting feature, i.e. the description of strong correlation. Most

of them are seniority-zero wavefunctions. In quantum chemistry, the concept of seniority has been

introduced recently by Scuseria and co-workers [510], and it consists in partitioning the FCI Fock

space into subspaces defined by the seniority number operator,

Ω̂ =

K∑
p

(n̂p↑ + n̂p↓ − 2n̂p↑n̂p↓) . (6.14)

This operator simply counts the number of unpaired electrons. In Ref. [510], the authors have shown

that the seniority-zero sector
(
〈Ω̂〉 = 0

)
contributes significantly to the static correlation energy. A

FCI calculation in the seniority-zero subspace, which consists in all possible configurations in which

orbitals are either empty or doubly occupied (i.e., wavefunctions constructed solely by closed-shell

determinants), leads to the so-called doubly occupied configuration interaction (DOCI) [511]. The

DOCI (or, equivalently, seniority-zero) Hamiltonian reads

ĤS0 =
∑
p

hppn̂p +
∑
p>q

〈pq|pq〉n̂pn̂q −
∑
p>q

∑
σ

〈pq|qp〉n̂pσn̂qσ +
∑
pq

〈pp|qq〉P̂ †p P̂q, (6.15)

where n̂p = n̂p↑ + n̂p↓, n̂pσ = ĉ†pσ ĉpσ, and P̂ †p = ĉ†p↑ĉ
†
p↓ is the creation operator of a pair of electrons

in the pth orbital. During the last decade, several wavefunction ansätze have been proposed to solve

this Hamiltonian in the most efficient manner. Starting with the antisymmetric product of interacting

geminals (APIG) proposed by Silver in 1969 [512], which is an excellent approximation to DOCI [513],

one had to find better practical and tractable ways to solve the problem, for instance by using the anti-

symmetrized geminal power (AGP) wavefunction [514]. Another promising approximation to APIG is

the so-called antisymmetric product of one-reference-orbital geminals (AP1roG) [214, 513], which has

been shown to be exactly equivalent to the pair-coupled cluster (pCCD) method with pair-excitations

only [515–517]. Together with orbital-optimization, AP1roG (or pCCD) is a size-consistent approach

for which accurate energies have been obtained in the strongly correlated regime [518]. Although

they are based on a single closed-shell reference determinant, they have been shown to be a very good

approximation to the APIG and DOCI references, in contrast to CCD, CCSD and CCSD(T) when not

restricted to the seniority-zero subspace [515]. In spite of this extremely satisfying results, AP1roG

and related geminal-based wavefunctions are not appropriate to describe dynamical correlation. In-
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deed, this type of correlation cannot be described by electron-pair states and need to be included

a posteriori using perturbation theory [507, 519–524], coupled-cluster [525, 526], extended random

phase approximation [527], or DFT [528, 529]. For the latter, the double counting problem is handled

by separating the Coulomb repulsion in two parts, one treated by the pCCD wavefunction, while the

other is treated by DFT, thus leading to a hybrid scheme (such as presented in the last section of

Chap. 1). One of the main advantage of this multideterminantal DFT approach is that pCCD has a

low polynomial scaling, in contrast to usual multiconfigurational wavefunction methods, such that it

is expected to treat relatively large systems.

In the following, an in-principle exact combined WFT-RDMFT theory is introduced, where the

physical ab-initio problem is mapped onto a seniority-zero interacting wavefunction which, thanks to

an appropriate interaction energy functional of the 1RDM, reproduces the physical natural orbitals

and occupation numbers of the fully-interacting system exactly.

6.3 RDMFT based on a Seniority-zero wavefunction

The following work is still in progress, in collaboration with Naoki Nakatani (Tokyo, Japan) [530]. A

draft is currently in preparation.

6.3.1 Theory

Let us consider the seniority-zero analogue of the interaction functional,

WS0(D) = min
Ψ∈S0→D

〈Ψ|Ŵee|Ψ〉, (6.16)

where the minimization is now restricted to (normalized) seniority-zero wavefunctions. If we denote

W
S0

(D) = W (D)−WS0(D) (6.17)

the complementary interaction energy contribution which is not described by a seniority-zero wave-

function (like, for example, interpair nondynamic correlation [201]), it comes from Eqs (6.4) and (6.5)

that, for any trial seniority-zero wavefunction Ψ,

〈Ψ|Ŵee|Ψ〉+W
S0
(
DΨ

)
+ Tr

[
hDΨ

]
≥W

(
DΨ

)
+ Tr

[
hDΨ

]
≥ E0, (6.18)
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thus leading to the exact variational expression for the ground-state energy,

E0 = min
Ψ∈S0

{
〈Ψ|Ĥ|Ψ〉+W

S0
(
DΨ

)}
. (6.19)

Let us now use the natural orbital representation D ≡ (κ,n). In such a representation, Eq. (6.16) is

rewritten as follows,

WS0(κ,n) = min
Ψ∈S0(κ)→n

〈Ψ|Ŵee|Ψ〉,

= min
Ψ∈S0(0)→n

〈Ψ(κ)|Ŵee|Ψ(κ)〉, (6.20)

where |Ψ(κ)〉 = e−κ̂|Ψ〉, and κ = 0 denotes the unrotated molecular orbital basis. The minimization

on the first line of Eq. (6.20) is restricted to seniority-zero wavefunctions |Ψ(κ)〉 =
∑
I(κ) CI(κ)|I(κ)〉,

where |I(κ)〉 are closed-shell Slater determinants that are constructed in a molecular orbital basis

which rotates with κ. Such wavefunctions belong to the seniority-zero subspace denoted by S0(κ),

and fulfil the following density constraint,

nΨ(κ) ≡
{
〈Ψ(κ)|n̂p(κ)|Ψ(κ)〉 = np

}
p
. (6.21)

Turning to the second line of Eq. (6.20), the minimization is now restricted to linear combina-

tions |Ψ〉 =
∑
I∈S0(0) CI |I〉 of closed-shell determinants {|I〉}I that are constructed in the unro-

tated molecular orbital basis. The wavefunctions |Ψ〉 belong to the seniority-zero subspace S0(0).

Note that the orbital occupation constraint should then be considered in the unrotated orbital basis,

nΨ ≡ {〈Ψ|n̂p|Ψ〉 = np}p, which is equivalent to the constraint in the rotated basis. Indeed,

〈Ψ(κ)|n̂p(κ)|Ψ(κ)〉 =
∑
σ

〈Ψ(κ)|ĉ†p(κ)σ ĉp(κ)σ|Ψ(κ)〉 =
∑
σ

〈Ψ|eκ̂e−κ̂ĉ†pσeκ̂e−κ̂ĉpσeκ̂e−κ̂|Ψ〉

= 〈Ψ|n̂p|Ψ〉. (6.22)

Let us now see if the domain of minimization can be extended to any trial wavefunctions, and not only

the one restricted to seniority-zero wavefunctions. We start with the following equivalent expression

of Eq. (6.20),

WS0(κ,n) = min
Ψ∈S0(0)→n

〈Ψ|Ŵee(κ)|Ψ〉, (6.23)
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where

Ŵee(κ) = eκ̂ Ŵee e
−κ̂ =

1

2

∑
pqrs

〈pq|rs〉κ
∑
σσ′

ĉ†pσ ĉ
†
qσ′ ĉsσ′ ĉrσ, (6.24)

and 〈pq|rs〉κ = 〈p(κ)q(κ)|r(κ)s(κ)〉. According to Eq. (6.24), the rotation has been incorporated into

the electronic integrals, while the creation and annihilation operators act in the unrotated molecular

orbital basis.

By introducing the projection of Ŵee(κ) onto S0(0),

ŴS0
ee (κ) =

∑
I,J∈S0(0)

〈I|Ŵee(κ)|J〉|I〉〈J |, (6.25)

it comes

WS0(κ,n) = min
Ψ∈S0(0)→n

〈
Ψ
∣∣∣ŴS0

ee (κ)
∣∣∣Ψ〉 . (6.26)

Interestingly, the ground-state wavefunction of ŴS0
ee (κ) +

∑
p εpn̂p (where n̂p acts in the unrotated

molecular orbital basis) belongs to S0(0) and, by analogy with DFT, we should have a one-to-one

correspondence between the occupation of the unrotated orbitals and the one-electron energies {εp}p.

Consequently, for any normalized wavefunction Ψ (including those that do not belong to S0(0)), the

following inequality is fulfilled,

〈
Ψ

∣∣∣∣∣ŴS0
ee (κ) +

∑
p

εp(n)n̂p

∣∣∣∣∣Ψ
〉
≥

〈
ΨS0(0)
κ (n)

∣∣∣∣∣ŴS0
ee (κ) +

∑
p

εp(n)n̂p

∣∣∣∣∣ΨS0(0)
κ (n)

〉
, (6.27)

where Ψ
S0(0)
κ (n) is the minimizing wavefunction of Eq. (6.26), and {εp(n)}p are the one-electron

energies, functionals of the density n. Note that the natural orbitals of Ψ
S0(0)
κ (n) are the unrotated

orbitals, by construction. Since

WS0(κ,n) = 〈ΨS0(0)
κ (n)|ŴS0

ee (κ)|ΨS0(0)
κ (n)〉, (6.28)

inserting the condition Ψ→ n into Eq. (6.27) leads to

WS0(κ,n) = min
Ψ→n
〈Ψ|ŴS0

ee (κ)|Ψ〉, (6.29)

where, as pointed out previously, the occupation constraint is written in the unrotated orbital basis.

In contrast to Eq. (6.26), the domain of the minimization is now extended to any trial wavefunction
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Ψ that reproduces n. Note that this minimization could have been written over the CI coefficient

C ≡ {CI}I instead of the wavefunction, given that the orbitals are fixed. We now have everything

we need to formulate a variational principle where the minimization is performed over both orbital

rotations and trial wavefunctions Ψ (or, equivalently, C).

The following exact variational expression for the energy is then obtained,

E0 = min
κ,n

{
WS0(κ,n) +W

S0
(κ,n) + (h(κ)|n)

}
(6.30)

where (h(κ)|n) =
∑
p hp(κ)p(κ)np. Inserting Eq. (6.29) into Eq. (6.30), it comes

E0 = min
κ,n

{
min
Ψ→n

{
〈Ψ|ŴS0

ee (κ)|Ψ〉
}

+W
S0

(κ,n) + (h(κ)|n)

}
, (6.31)

or, equivalently,

E0 = min
κ,n

{
min
Ψ→n

{
〈Ψ|ŴS0

ee (κ)|Ψ〉+W
S0

(κ,nΨ) +
(
h(κ)

∣∣nΨ
)}}

. (6.32)

By introducing the operators

ĥS0(κ) =
∑
p

hp(κ)p(κ)n̂p (6.33)

and ĤS0(κ) = ĥS0(κ)+ŴS0
ee (κ) [see Eqs. (6.15) and (6.25)], we obtain the final variational expression

for the energy,

E0 = min
κ

{
min

Ψ

{
〈Ψ|ĤS0(κ)|Ψ〉+W

S0
(κ,nΨ)

}}
. (6.34)

where κ and Ψ are independent variables. Thus, the minimizations in Eq. (6.34) leads to a set of two

equations. The first one is obtained by searching for the minimizing wavefunction denoted by ΨS0 ,

which fulfils the following self-consistent equation,

(
ĤS0(κ) +

∑
p

∂W
S0

(κ,n)

∂np

∣∣∣∣∣
n=nΨS0

n̂p

)∣∣ΨS0
〉

= ES0
∣∣ΨS0

〉
. (6.35)

The second one is the stationarity condition, fulfilled when the orbitals are optimized,

∂ĤS0(κ)

∂κpq
+
∂W

S0
(κ,n)

∂κpq

∣∣∣∣∣
n=nΨS0

= 0. (6.36)
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Although this method has not been implemented yet, due to the lack of any analytical form of the

complementary functional, it could be done by following these steps:

1. Solve the system with Hartree–Fock to get the starting natural orbitals and occupation numbers

2. Solve Eq. (6.35) to get the CI coefficients, the seniority-zero wavefunction and the new set of

occupation numbers

3. Optimise the natural orbitals by solving the stationarity condition in Eq. (6.36). which is fulfilled

for κ = 0 (for convenience)

4. Go back to step 2 with the new sets of natural orbitals and occupation numbers until convergence

is reached.

Note that steps 2 and 3 are similar to a MCSCF calculation. Within this theory, the exact 1RDM

should in-principle be recovered provided that the exact complementary functional is known, which

is a long-term undertaking.

6.3.2 Adiabatic Connection

The adiabatic connection [see Sec. 1.2.1.iv] is an appropriate tool that gives some informations about

the form of the complementary functional and its importance. Let us consider the λ-dependent

Hamiltonian expressed in the natural orbital basis of the true physical system,

Ĥλ(ε) = ĤS0 + λ
(
Ĥ − ĤS0

)
=
∑
p

εpn̂p + ŴS0
ee + λ

∑
p 6=q

hpqn̂pq + Ŵee − ŴS0
ee

 , (6.37)

where n̂pq =
∑
σ ĉ
†
pσ ĉqσ. Note that Dλ=1

pq = Dλ=0
pq = 0 in this basis, but this is not anymore true for

intermediate values of λ. The ground-state wavefunction Ψλ(n) of the Hamiltonian Ĥλ(ελ) reproduces

the exact natural occupation numbers n of the physical system for any λ, and ελ can be obtained from

the following Legendre–Fenchel transform [68] (see, for instance, Eq. (1.104) for the noninteracting

kinetic energy functional in KS-DFT),

Wλ(n) = sup
ε

{
Eλ(ε)− (ε|n)

}
= Eλ(ελ)− (ελ|n), (6.38)

where Eλ(ε) is the ground-state energy of Ĥλ(ε). Note that this construction reproduces the diagonal

of the density matrix Dλ=1
pp . For λ = 1, it represents the occupation numbers of the physical system

in the natural orbital basis and ελ=1
p = hpp. When λ = 0, the seniority-zero wavefunction ΨS0
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with natural orbital occupancies n is recovered. By construction, it also shares the same set of

natural orbitals with the physical wavefunction, which is in principle not the case for the previously

described seniority zero wavefunction ansatz (DOCI, APIG, AP1roG). For 0 < λ < 1, the 1RDM is

not constrained to be diagonal. Indeed, the system is considered in the natural orbital basis of the

fully-interacting system, which is a priori not the natural orbital basis of the partially-interacting

system.

Let us now investigate the adiabatic path that connects the seniority-zero system to the physical

fully-interacting one, by considering the physical interaction energy,

W (D) ≡W (n) = Wλ=1(n) = Wλ=0(n) +
(
Wλ=1(n)−Wλ=0(n)

)
= Wλ=0(n) +

∫ 1

0

dλ
dWλ(n)

dλ

=
〈

ΨS0(n)
∣∣∣ŴS0

ee

∣∣∣ΨS0(n)
〉

+

∫ 1

0

dλWλ

c (n), (6.39)

where, according to the Hellmann–Feynman theorem, the complementary correlation integrand equals

Wλ

c (n) = 〈Ψλ(n)|Ŵee − ŴS0 |Ψλ(n)〉+
∑
p 6=q

hpq〈Ψλ(n)|n̂pq|Ψλ(n)〉. (6.40)

Therefore, according to Eqs. (6.17) and (6.28), the complementary energy functional is given by

W
S0

(n) =

∫ 1

0

dλWλ

c (n). (6.41)

By construction, Wλ=0

c (n) = 0. Note the presence of the nonzero contribution from the off-diagonal

part of the 1RDM. We have observed that this contribution is negligible, as assumed by Pernal in a

similar context in Ref. [531].

Let us highlight some similarities and differences between this work and the recent one of Per-

nal [531]. In the latter work, the density matrix is assumed to be diagonal and equal to Dλ=0
pq = δpqnp

along the whole adiabatic connection path, such that the natural orbitals are assumed to be the same

set of orbitals as the seniority zero reference system. In our approach, we want to reproduce the

exact occupation numbers of the physical system, Dλ
pp = Dλ=1

pp = np, while the off-diagonal elements

are free to vary (and be non-zero) except when λ = 0, by construction. The integrand in Ref. [531]

is obtained by the extended random phase approximation. In our work, this quantity is exactly de-

termined through the determination of the potential restoring the occupation number [Eq. (6.38)].

The Lieb maximization of Eq. (6.38) is calculated within the highly accurate DMRG method. We
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will show that the integrand has a quadratic behaviour with respect to λ in our context. The linear

approximation in λ of the integrand proposed in Ref. [531] could be used in practice.

6.3.3 Results

Let us now look at the correlation integrand as a function of the coupling constant λ. Because the

Legendre–Fenchel transform in Eq. (6.38) is evaluated by the highly accurate DMRG method, we are

limited to small systems as well as relatively small basis sets. Geminals are exact for a 2 electrons

system, like the hydrogen molecule. In order to get a non-zero form of the complementary interacting

functional, we need to study system which are not well described by the seniority-zero Hamiltonian

[Eq. (6.15)], i.e. those for which dynamical correlation effects are important. Therefore, we are

currently looking at the Beryllium atom, the Helium dimer [24] the transition of H4 from D2h to D4h

geometry [201], the H2 dimer, the LiH, the N2 and hydrogen molecular chains. Given that the work is

still in progress, only few results on the Helium dimer and the chain of eight hydrogens H8 are shown

in this thesis.

Eq. (6.38) has been solved for different λ values in both of these systems, using DMRG. It leads

to the maximizing “local” potentials
{
ελp
}
λ
that reproduce the exact occupation number of the true

physical natural orbitals, as well as the eigenfunction Ψλ(n) of Ĥλ(ελ). Hence, the integrand in

Eq. (6.40) can be computed and is plotted in Figs. 6.1 and 6.2 for the H8 molecular chain and the

Helium dimer in the cc-pVDZ basis set (see Appendix H), respectively. According to Figs 6.1 and

6.2, the integrand is quadratic in λ, which somehow shows that the assumption of Pernal in Ref. [531]

is not always valid. Interestingly, the integrand for H8 is much larger than in Fig. 2 of Ref. [531].

This can be explained by the orbital basis that we use. Indeed, it is known that the optimization of

the orbitals in seniority-zero approaches has huge importance [518, 532]. Hence, using the (frozen and

delocalized) natural orbitals of the fully-interacting Hamiltonian as a basis set for our seniority-zero

Hamiltonian is not optimal, and does not minimize the energy. This is of course not a problem in the

exact theory, since the complementary functional of the occupation numbers is supposed to contain

the missing correlation energy. Hence, the complementary functional, given by the integration of the

correlation integrand according to Eq. (6.41), contributes significantly to the energy. As a conse-

quence, using the natural orbital basis of the fully-interacting Hamiltonian could be problematic in

practice, when approximate functionals are used. This feature also arises in Fig. 6.3, representing the

dissociation curve of the Helium dimer in the natural orbital basis of the fully-interacting Hamiltonian.

λ = 1 (left panel) corresponds to the DMRG energy of the fully-interacting system, while λ = 0 (right

panel) is the DMRG energy in the seniority-zero subspace only. The latter is completely unable to

describe the small dissociation energy of He2, and gives a particularly wrong (overestimated) energy.
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Figure 6.1: Correlation integrand [Eq. (6.40)] for the H8 molecular chain with interatomic distance
R = 1.8 Å in the cc-pVDZ basis. The energy is in atomic unit (hartree).
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Figure 6.2: Correlation integrand [Eq. (6.40)] for the He2 molecule with interatomic distance at
equilibrium Req = 2.973 Å and close to dissociation R = 10 Å, in the cc-pVDZ basis. The energy is
in atomic unit (hartree).
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Figure 6.3: Dissociation energy curve of the Helium dimer obtained by solving Eq. (6.37) in the natural
orbital basis of the fully-interacting Hamiltonian, for λ = 1 (left panel) and λ = 0 (right panel) in
cc-pVDZ basis set.

As a consequence, the complementary energy functional should in-principle compensate for this huge

error. At first sight, this result is very surprising. Indeed, as seen in Fig. 1 of Ref. [526], it is clear

that the energy obtained from the antisymmetrized product of strongly orthogonal geminals (APSG)

remains in the scope of the exact energy, even though the dissociation energy is not well described.

Consequently, the wrong energy in our Fig. 6.3 (right panel) is clearly due to the fact that the true

exact natural orbitals are used instead of being reoptimized. It remains unclear if the herein approach,

as formulated in this section, could be successfully implemented, as the reference wavefunction is not

good enough when the physical natural orbitals are used.

The reoptimization of the natural orbitals in our scheme should be investigated, and is left for

future work. In the spirit of Pernal’s approach [531], we could also apply the extended random phase

approximation [531]. Turning to the development of the complementary functionals of the 1RDM that

contain intergeminal correlation, one could look at the recent work of van Meer et al. [533], which

aims at generating new functionals containing non-geminal dynamical correlation, in the context of

RDMFT. Alternatively, another kind of adiabatic connection could be formulated, by gradually in-

creasing the seniority number until the full configuration space is recovered, in the spirit of Refs [510,

534].

To end this last chapter, I would say that having a variational multi-configurational method able to

treat both static and dynamical correlation effects with a cheap computational cost remains the holy

grail of quantum chemistry. Numerous novel ideas and directions are still emerging, but no method

has yet appeared as the method of choice for describing strongly correlated molecular systems.



Conclusion

The description of strong electronic correlation effects in both quantum chemistry and condensed

matter physics has been extensively discussed throughout this thesis. The combination of wavefunction

theory (WFT) with methods based on reduced quantities as a basic variable (electronic density, one-

particle reduced density matrix, or Green’s function) has been investigated. In particular, we focused

on the combination of WFT with density functional theory (DFT), which aims to treat both static

and dynamical correlations at a reasonable computational cost. Indeed, WFT is computationally

expensive and is usually lacking of dynamical correlation [535], while the low-cost Kohn–Sham DFT

together with density-functional approximations miss static correlation effects [2]. Given that the

two approaches are formulated in a completely different language, it remains extremely challenging to

merge them in an efficient manner, and to avoid any double counting of the correlation. Despite the

increasing gain of interest in hybrid methods, none of them has emerged as the true solution yet.

During this thesis, we have brought our own contributions to this large and active field of research,

in both fields of quantum chemistry and condensed matter physics. The methods presented herein do

not claim to be a general solution to the treatment of strongly correlated systems. Nevertheless, they

pave the way towards the efficient description of such systems. The first method that we described

is the so-called site-occupation embedding theory (SOET). The formulation of SOET relies on the

in-principle-exact mapping of the physical system onto a partially-interacting one, thus leading to a

rigorous combination of WFT with DFT [Eq. (3.6)]. Being in its early stages, the theory has been

applied to the one-dimensional uniform Hubbard model only, and an exact expression has been derived

for both the per-site energy [Eq. (3.32)] and the double occupation [Eq. (3.39)]. Several approximate

functionals have been developed in this context, by looking at the exact analytical expressions to the

Hubbard dimer, the one-dimensional half-filled Hubbard model and the symmetric single-impurity

Anderson model (SIAM). Promising results have been obtained in the whole range of correlation and

density.

In spite of these successful results, more efficient implementations of SOET needed to be explored in

order to reduce the computational cost. First, we transformed the SOET Hamiltonian onto the SIAM
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Hamiltonian, which can then be solved by using impurity-solvers. Second, we employed the Schmidt

decomposition, thus leading to the so-called projected SOET (P-SOET). The latter share similarities

(as well as differences in many aspects) with the density matrix embedding theory (DMET), but SOET

contains an additional contribution coming from a functional of the density. Thanks to this analytic

functional, the density-driven Mott–Hubbard transition, which denotes the opening of the charge gap,

has been successfully described with a single impurity only. In my opinion, this is one of the most

striking results in SOET. The next step forward would be to study the two-dimensional Hubbard

model, which contains a Mott–Hubbard transition in U/t and can model the physics in the high-Tc

cuprates. In order to move in this direction, new functionals have to be considered. As in standard

DFT, an automated way of developing functionals would definitely increase the domain of application

of SOET, which would eventually become a standard and popular embedding approach [4].

The charge gap (or fundamental gap) has then been studied within the ensemble DFT formalism.

By considering a particular choice of ensemble, we provided a complete reformulation of the fun-

damental gap problem in DFT. This reformulation consists in rewriting the derivative discontinuity

(previously formulated within DFT for fractional number of electrons) into a derivative of the weight-

dependent exchange-correlation functional [Eq. (5.34)], in complete analogy with the extraction of the

optical gap in ensemble DFT for excited states.

In other words, the fundamental gap problem (traditionally formulated in grand canonical ensemble

DFT) has been recast into a canonical problem where the xc functional is ensemble-weight-dependent.

We called this theory the N -centered ensemble DFT. When combined with the ensemble analogue of

Levy–Zahariev shift in the potential, and together with a generalization of the ensemble weights, the

extraction of individual energies [Eq. (5.53)] (as well as ionization potential and electronic affinity)

has been rendered possible. As a proof of principle, the method has only been applied to the Hubbard

dimer yet. An obvious step forward would be the development of weight-dependent functionals for

model Hamiltonian as well as ab-initio Hamiltonian.

Finally, we discussed the extension of SOET to quantum chemistry. This would in principle lead

to a complete active space DFT (CAS-DFT) approach defined in the orbital space only [Eq. (6.12)],

where the active orbitals play the role of the interacting impurities in the original formulation of

SOET. However, this formulation is facing difficulties, such as the CAS-dependence of the functional,

as well as pure-state v-representability issues. Alternatively, a new theory based on a seniority-zero

reference wavefunction has been proposed, in which a complementary functional of the natural orbitals

and occupation numbers should in-principle recover all the missing correlation effects [Eq. (6.35)]. We

have derived an adiabatic connection and shown the quadratic behaviour in λ of the correlation

integrand. The importance of the orbital optimization has also been highlighted.
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To conclude, new ideas and in-principle-exact methods have been derived throughout this thesis,

dealing with significant and actual problems in DFT: the description of strongly correlated systems

and the extraction of the fundamental gap. These methods shed a new light on the treatment of

strongly correlated systems. By extending and investigating them further, we feel in our bones that

they could be useful for the large community of theoretical chemists and physicists. Many challenging

tasks must however be faced, in particular the development of appropriate functionals.





Appendices

A Functional calculus

Let F be a function of f , itself a function of x. Hence, F is called a functional of f . The functional

derivative is given by:

δF [f ] = F [f + δf ]− F [f ] =

∫
δF [f ]

δf(x)
δf(x)dx. (42)

If f is also a functional of another function g(x), then F
[
f [g]

]
has a functional derivative given by

the chain rule:

δF [f ]

δg(x)
=

∫
δF [f ]

δf(x′)

δf(x′)

δg(x)
dx′. (43)

If F is a function of f(x), then the functional derivative with respect to f(x′) is

δF (f(x))

δf(x′)
=

dF (f(x))

df
δ(x− x′), (44)

where δ(x− x′) is the delta function.

B Lagrangian multipler method

In DFT, the ground-state energy is given by the following variational principle:

E0 = min
Φ

{
〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]

}
= min

Φ

{
E[{ϕi}]

}
, (45)

where

E[{ϕi}] =

N∑
i=1

∫
ϕ∗i (r)

(
−1

2
∇2 + vne(r)

)
ϕi(r) + EHxc[n], (46)
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and n(r) =
∑N
i=1 |ϕi(r)|2 =

∑N
i=1 ϕ

∗
i (r)ϕ(r). The minimization consists in finding the set of KS

orbitals that minimizes the energy E0, with the orthonormal constraint 〈Φi|Φj〉 = δij . Because the KS

orbitals are eigenfunctions of a self-adjoint operator, one can always find an orthogonal set of orbitals,

so that only to normalization constraint can be considered by writting the following Lagrangian:

L[{ϕi}] = E[{ϕi}]−
N∑
i=1

εi

(∫
ϕ∗i (r)ϕi(r)dr− 1

)
. (47)

Considering the stationarity of the Lagrangian with respect to a small change in the orbitals {ϕi} →

{ϕi + δϕi} leads to

δL[{ϕi}] = L[{ϕi + δϕi}]− L[{ϕi}] = 0. (48)

Considering a small change ϕ∗k → ϕ∗k + δϕ∗k, we get

δL[{ϕi}] =

∫
(ϕ∗k(r) + δϕ∗k(r))

(
−1

2
∇2 + vne(r)

)
ϕk(r)dr

−
∫
ϕ∗k(r)

(
−1

2
∇2 + vne(r)

)
ϕk(r)dr + EHxc[n{ϕk+δϕk}]− EHxc[n{ϕk}]

−εk
(∫

(ϕ∗k(r) + δϕ∗k(r))ϕk(r)dr−
∫
ϕ∗k(r)ϕk(r)dr

)
=

∫
δϕ∗k(r)

(
−1

2
∇2 + vne(r)

)
ϕk(r)dr + EHxc[n{ϕk+δϕk}]− EHxc[n{ϕk}]

−εk
∫
δϕ∗k(r)ϕk(r)dr. (49)

Then, by identifying

EHxc[n{ϕk+δϕk}]− EHxc[n{ϕk}] = δEHxc[n[{ϕk}]]

=

∫
δEHxc[n]

δϕ∗k(r)
δϕ∗k(r)dr, (50)

we obtain

δL[{ϕi}] =

∫ [(
−1

2
∇2 + vne(r)− εk

)
ϕk(r) +

δEHxc[n]

δϕ∗i (r)

]
δϕ∗i (r) = 0. (51)

Using the formula for the functional derivative in Eq. (42), one gets

δL[{ϕi}i] =

∫
δL[{ϕi}]
δϕ∗i (r)

δϕ∗i (r)dr, (52)
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so that

(
−1

2
∇2 + vne(r)− εk

)
ϕk(r) +

δEHxc[n]

δϕ∗i (r)
= 0. (53)

Finally, using the chain rules in Eq. (43), we have

δEHxc[n]

δϕ∗k(r)
=

∫
δEHxc[n]

δn(r′)

δn(r′)

δϕ∗k(r)
dr′, (54)

where n =
∑N
i=1 |ϕi(r)|2 so that

δn(r′)

δϕ∗k(r)
= ϕk(r)δ(r− r′), (55)

with δ(r− r′) is the delta function. Therefore, Eq. (54) becomes

δEHxc[n]

δϕ∗k(r)
=
δEHxc[n]

δn(r)
ϕk(r), (56)

and Eq. (53) turns to the self-consistent KS equations:

(
−1

2
∇2 + vne(r) +

δEHxc[n]

δn(r)

)
ϕi(r) = εiϕi(r). (57)

C Real-space and orbital-space Second Quantization

Starting with the Schödinger theory, the quantum state of a single electron in the so-called “r-

representation” is written as:

|Ψ〉 =

∫
drΨ(r)|r〉, (58)

where Ψ(r) = 〈r|Ψ〉 is the one-electron wavefunction which is continuous in the coordinate space, and

|r〉 is the quantum state describing the electron at position r. In Pauli theory where the spin σ of

the electron is considered as an additional degree of freedom, the quantum state of a single electron

is written as:

|Ψσ〉 =

∫
drΨ(r)|r, σ〉, (59)

where |r, σ〉 denotes the quantum state describing the electron at position r with spin σ, with σ =

{↑, ↓}. In Eq. (1.5), the electronic Hamiltonian has been written in the first quantization formalism.
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An alternative and more compact formulation is provided by the second quantization [3, 536]. This

second quantization can be formulated in different manner. First of all, we focus on the real-space

second quantization, where the creation and annihilation operators are field operators Ψ̂†σ(r) and

Ψ̂σ(r), which creates or destroys an electron at position r with spin σ, respectively, so that

|Ψσ〉 =

∫
drΨ(r)|r, σ〉 =

∫
drΨ(r)Ψ̂†σ(r)|vac〉, (60)

with Ψ̂†σ(r)|vac〉 = |r, σ〉. These operators are satisfying several rules, such as Ψ̂†σ(r)|r, σ〉 = Ψ̂σ(r)|vac〉 =

0: it is impossible to create an electron at position r with spin σ if one is already there, as well as it is

impossible to destroy an electron that does not exist. In order to enforce the Pauli exclusion principle,

these operators fulfill the following anticommutation relations:

[
Ψ̂†σ(r), Ψ̂†σ′(r

′)

]
+

= 0,[
Ψ̂σ(r), Ψ̂σ′(r

′)

]
+

= 0, (61)[
Ψ̂†σ(r), Ψ̂σ′(r

′)

]
+

= δ(r− r′)δσσ′ ,

where δσσ′ and δ(r − r′) are the Kronecker delta and the Dirac delta function, respectively. Within

the real-space second quantization, the Hamiltonian reads:

Ĥ = T̂ + V̂ne + Ŵee,

T̂ = −1

2

∫ ∫
drdr′δ(r− r′)∇2

∑
σ

Ψ̂†σ(r)Ψ̂σ(r′),

V̂ne =

∫
dr vne(r)

∑
σ

Ψ̂†σ(r)Ψ̂σ(r),

Ŵee =

∫ ∫
drdr′

∑
σ,σ′

Ψ̂†σ(r)Ψ̂†σ′(r
′)Ψ̂σ′(r

′)Ψ̂σ(r)

|r− r′|
, (62)

where we define the density matrix operator:

γ̂(r, r′) =
∑
σ

Ψ̂†σ(r)Ψ̂σ(r′), (63)

the density operator:

n̂(r) = γ̂(r, r) =
∑
σ

Ψ̂†σ(r)Ψ̂σ(r), (64)
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and the pair density operator:

n̂(r, r′) =
∑
σ,σ′

Ψ̂†σ(r)Ψ̂†σ′(r
′)Ψ̂σ′(r

′)Ψ̂σ(r), (65)

in real-space second quantization. The expectation value of each of these operators gives the one-

particle density matrix,

γ(r, r′) =
∑
σ

〈Ψ|Ψ̂†σ(r)Ψ̂σ(r′)|Ψ〉, (66)

the electronic density,

n(r) =
∑
σ

〈Ψ|Ψ̂†σ(r)Ψ̂σ(r)|Ψ〉, (67)

and the pair density (which is the diagonal of the 2RDM in real-space),

n(r, r′) =
∑
σ,σ′

〈Ψ|Ψ̂†σ(r)Ψ̂†σ′(r
′)Ψ̂σ′(r

′)Ψ̂σ(r)|Ψ〉, (68)

respectively. The expectation value of the Hamiltonian is given in Sec. 1.2.2 in the context of RDMFT

[Eq. (1.129)].

Alternatively when working in a given orbital basis set {|ϕi〉}i one can use creation (ĉ†iσ) and

annihilation (ĉiσ) operators to create or destroy an electron of spin σ in the ith orbital, respectively,

so that ĉ†iσ|vac〉 = |ϕi〉 ⊗ |σ〉 = |ϕi, σ〉. These operators are orbital-space operators and also fulfill the

anticommutation rules: [
ĉ†iσ, ĉ

†
jσ′

]
+

= 0,[
ĉiσ, ĉjσ′

]
+

= 0, (69)[
ĉ†iσ, ĉjσ′

]
+

= δijδσσ′ . (70)

In contrast to the field operator which act in the real space by creating or annihilating electrons at a

given position, these new operators create and annihilate electrons in orbitals which are delocalized
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in space. The quantum state of one electron can therefore be rewritten as

|Ψσ〉 =
∑
i

Ci|ϕi, σ〉. (71)

In this basis, the wavefunction is now represented by the coefficients Ci forming a vector column. In

principle, the basis set should be infinite, but in practice it will be finite so that the column vector

will have a finite dimension. Note that in the “r-representation”, the wavefunction cannot be written

as a vector column as it is continuous in the coordinate space. Within this orbital-space second

quantization, the Hamiltonian reads:

Ĥ = ĥ+ Ŵee,

ĥ =
∑
ijσ

hij ĉ
†
iσ ĉjσ, (72)

Ŵee =
1

2

∑
ijklσσ′

Uijklĉ
†
iσ ĉ
†
kσ′ ĉlσ′ ĉjσ

where ĥ denotes the one-electron operator of the Hamiltonian, containing the kinetic operator and

the nuclei potential operator, and

hij = 〈ϕi|ĥ|ϕj〉 =

∫
drϕ∗i (r)ĥϕj(r), (73)

Uijkl = 〈ij|kl〉 =

∫∫
drdr′

ϕ∗i (r)ϕ∗j (r
′)ϕk(r)ϕl(r

′)

|r− r′|
(74)

are the one and two-electron integrals, respectively. The summations and indices in the Hamiltonian

in Eq. (1.5), written in first quantization, refer to the electrons, such that this Hamiltonian depends

on the number of electrons in the system. On the contrary, the indices in Eq. (72), written in orbital-

space second quantization, are orbital indices and the number of electrons is no more specified. The

former formalism (first quantization) can be seen as an answer to the question : “Who occupies what

?”, while the latter (second quantization) rather answers to “What is occupied ?”1.

D Passing from the real space to the orbital space

Based on the second quantization presented in the previous section, the connection between the real

space and the orbital space is studied, through the expression of the real-space density and the real-

1From a lecture of Emmanuel Fromager in the ISTPC Summer School, Aussois (FRANCE), 2017
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space one-particle density matrix in the orbital space. Thanks to the identity relation,

∑
i

|ϕi〉〈ϕi| = 1, (75)

we define |r〉 =
∑
i |ϕi〉〈ϕi|r〉 =

∑
i ϕ
∗
i (r)|ϕi〉 which connects the real-space to the orbital-space second

quantized operators:

Ψ̂†σ(r)|vac〉 = |r, σ〉 = |r〉 ⊗ |σ〉

=
∑
p

ϕ∗i (r)|ϕi〉 ⊗ |σ〉 =
∑
p

ϕ∗i (r)|ϕi, σ〉 =
∑
p

ϕ∗i (r)ĉ†iσ|vac〉. (76)

One can therefore pass from one space to another by a simple change of basis:

Ψ̂†σ(r) =
∑
i

ϕ∗i (r)ĉ†iσ, Ψ̂σ(r) =
∑
i

ϕi(r)ĉiσ. (77)

Note that plugging this change of basis in Eq. (60) allows one to recover Eq. (71) where Ci =∫
drϕ∗i (r)Ψ(r) = 〈ϕi|Ψ〉. The reverse transformation is of course possible and reads:

ĉ†iσ =

∫
drϕi(r)Ψ̂†σ(r), ĉiσ =

∫
drϕ∗i (r)Ψ̂σ(r). (78)

Plugging Eq. (77) into the real-space electronic density in Eq. (67),

n̂(r) =
∑
σ

Ψ̂†σ(r)Ψ̂σ(r)

=
∑
σ

∑
ij

ϕ∗i (r)ϕj(r)ĉ†iσ ĉjσ, (79)

we find that the real-space density is defined by taking all the density matrix elements Dij =

〈Ψ|
∑
σ ĉ
†
iσ ĉjσ|Ψ〉,

n(r) =
∑
ij

ϕ∗i (r)ϕj(r)Dij . (80)

Therefore, we need the whole orbital-space density matrix to recover the real-space density. Please

note that Dij is the analog of γ(r, r′) but in the orbital-space. Indeed, plugging Eq. (77) into the

real-space density matrix in Eq. (66) leads to

γ̂(r, r′) =
∑
σ

∑
ij

ϕ∗i (r)ϕj(r
′)ĉ†iσ ĉjσ, (81)
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so that

γ(r, r′) =
∑
ij

ϕ∗i (r)ϕj(r
′)Dij . (82)

Passing from γ(r, r′) to Dij is also possible using Eq. (78):

∑
σ

â†i âjσ =
∑
σ

∫
dr

∫
dr′ϕi(r)ϕ∗j (r

′)Ψ̂†σ(r)Ψ̂σ(r′), (83)

so that

Dij =

∫
dr

∫
dr′ϕi(r)ϕ∗j (r

′)γ(r, r′). (84)

The only case where the diagonal of the orbital-space density matrix is sufficient is when the basis set

is composed of natural orbitals. For instance, in KSDFT, the basis set is constituted of orthonormal

KS orbitals forming a single Slater determinant. In this basis, the density matrix is diagonal and its

diagonal coefficients are the occupation number of the KS orbitals, that are either equal to 2 or 0 in

the spin-restricted formalism. Because it is diagonal, the density of the KS system is written as

n(r) = 2

N/2∑
i=1

|ϕKS
i (r)|. (85)

The summation goes up to all the occupied orbitals, so N/2 orbitals in the case of a spin-restricted

closed-shell system. This is the case for any theory written in the basis forming a single Slater

determinant.

E Derivatives of BALDA

E.1 Derivative with respect to U and t

As readily seen in Eq. (3.39), the derivative of the complementary bath per-site correlation energy

functional with respect to U is necessary to compute double occupation in SOET. According to

Eq. (3.19), it implies the derivative of the conventional per-site correlation energy, modelled with

BALDA, which reads

∂eBALDA
c (n 6 1, U/t)

∂U
=
∂β(U/t)

∂U

[
−2t

π
sin

(
πn

β(U/t)

)
+

2tn

β(U/t)
cos

(
πn

β(U/t)

)]
− n2

4
, (86)
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and then for n > 1,

∂eBALDA
c (n > 1, U/t)

∂U
=

∂β(U/t)

∂U

[
−2t

π
sin

(
π(2− n)

β(U/t)

)
+

2t(2− n)

β(U/t)
cos

(
π(2− n)

β(U/t)

)]
+(n− 1)− n2

4
, (87)

where ∂β(U/t)/∂U = (∂β(U/t)/∂(U/t))/t, is computed with finite differences by solving Eq. (2.81)

for β(U/t).

The derivative with respect to t are calculated according to Eq. (3.29).

E.2 Derivative with respect to n

To get the correlation embedding potential, the derivatives of the correlation functionals with respect

to n is necessary. The derivative of the convention per-site density-functional correlation energy reads

∂eBALDA
c (n 6 1)

∂n
= −2t cos

(
πn

β(U/t)

)
+ 2t cos

(πn
2

)
− Un

2
, (88)

and

∂eBALDA
c (n > 1)

∂n
= 2t cos

(
π(2− n)

β(U/t)

)
− 2t cos

(
π(2− n)

2

)
+ U − Un

2
. (89)

F Derivatives of SIAM-BALDA

The derivatives of the SIAM-BALDA impurity correlation functional [Eq. (3.94) combined with

Eq. (3.103)] are given with respect to U for n 6 1 as follows,

∂ESIAM
c,U/Γ→0(U,Γ(t, n))

∂U
= −2× 0.0369

π

(
U

Γ(t, n)

)
+

4× 0.0008

π3

(
U

Γ(t, n)

)3

. (90)

The derivative with respect to t is given according to Eq. (3.30). Then, the impurity correlation

potential is determined by the derivative of the functional with respect to the occupation number n,

∂ESIAM
c,U/Γ→0(U,Γ(t, n))

∂n
=
∂Γ(t, n)

∂n

∂ESIAM
c,U/Γ→0(U,Γ)

∂Γ

∣∣∣∣∣
Γ=Γ(t,n)

, (91)

where

∂ESIAM
c,U/Γ→0(U,Γ)

∂Γ
=

0.0369

π

(
U

Γ

)2

− 3× 0.0008

π3

(
U

Γ

)4

, (92)
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and

∂Γ(t, n)

∂n
= t

−π2 sin2(πn/2)− (1 + cos(πn/2))
π

2
cos(πn/2)

sin2(πn/2)


= −πt

2

(
1 + cos(πn/2)

sin2(πn/2)

)
= − πΓ(t, n)

2 sin(πn/2)
. (93)

If n > 1, the particle-hole formalism imposes to use Γ(t, 2−n) instead of Γ(t, n). The derivatives with

respect to n should be changed accordingly.

G Derivatives of 2L-BALDA

G.1 Parametrization of the correlation energy of the dimer

In this section, we summarize the parametrization of the Hubbard dimer correlation energy by Car-

rascal and co-workers [335, 358], necessary to understand the following derivations. The equations

coming from their paper are referred to as (&N), where N is the number of the equation. We start

from the definition of the correlation energy, where n is the occupation of the site 0 and u = U/2t is

a dimensionless parameter,

E2L
c (U, n) = f(g, ρ)

∣∣∣g=g(ρ,u)
ρ=|n−1|

− Ts(n)− EHx(U, n), (94)

where 2L refers to “two-level”, and

Ts(n) = −2t
√
n(2− n), EHx(U, n) = U

(
1− n

(
1− n

2

))
. (95)

To account for particle-hole symmetry of the functional, the variable ρ = |n − 1| is used rather than

n directly. We now simply follow the guidelines from Eq.(&102) to (&107), leading to

f(g, ρ) = −2tg + Uh(g, ρ), (96)

and

h(g, ρ) =
g2
(

1−
√

1− ρ2 − g2
)

+ 2ρ2

2(g2 + ρ2)
. (97)
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Then, they proposed a first approximation to g(ρ, u), denoted by the label 0:

g0(ρ, u) =

√
(1− ρ)(1 + ρ(1 + (1 + ρ)3ua1(ρ, u)))

1 + (1 + ρ)3ua2(ρ, u)
, (98)

where

ai(ρ, u) = ai1(ρ) + uai2(ρ), i = 1, 2 (99)

and

a21(ρ) =
1

2

√
ρ(1− ρ)

2
, a12(ρ) =

1

2
(1− ρ), a11(ρ) = a12

(
1 +

1

ρ

)
, a22(ρ) =

a12(ρ)

2
. (100)

Plugging g = g0(ρ, u) into f(g, ρ) leads to the first parametrization of E2L
c (n) in Eq. (94). In this

work, we implemented the more accurate parametrization, given in Eq.(&114) [358]:

g1(ρ, u) = g0(ρ, u) +

(
u
∂h(g, ρ)

∂ρ

∣∣∣∣
g=g0(ρ,u)

− 1

)
q(ρ, u), (101)

and where q(ρ, u) is given in Eq. (&115) by [358]:

q(ρ, u) =
(1− ρ)(1 + ρ)3u2[(3ρ/2− 1 + ρ(1 + ρ)3ua2(ρ, u))a12(ρ)− ρ(1 + (1 + ρ)3ua1(ρ, u))a22(ρ)]

2g0(ρ, u)(1 + (1 + ρ)3ua2(ρ, u))2
.

(102)

The accurate parametrization of E2L
c (n) is obtained by plugging this g1(ρ, u) into f(g, ρ), instead of

g0(ρ, u).

In order to obtain the impurity correlation energy, a simple scaling of the interaction parameter U

has to be applied on the conventional correlation energy, as demonstrated in Ref. [72], leading to

Eimp,2L
c (U, n) = E2L

c (U/2, n) = f(g, ρ)
∣∣∣g=g(ρ,u/2)
ρ=|n−1|

− Ts(n)− EHx(U/2, n). (103)

G.2 Derivative with respect to U and t

We compute the derivative with respect to the dimensionless parameter u = U/2t. The ρ- and u-

dependence of g(ρ, u) will be omitted for readability. Besides, many functions will be introduced,

aiming to make the implementation and its numerical verification easier. Starting with

∂E2L
c (n)

∂U
=

1

2t

∂f(g, ρ)

∂u

∣∣∣∣g=g(ρ,u)
ρ=|n−1|

−
(

1 + n

(
1

2
n− 1

))
, (104)
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the impurity correlation functional reads, according to Eq. (103),

∂Eimp,2L
c (n)

∂U
=

1

4t

∂f(g, ρ)

∂u

∣∣∣∣g=g(ρ,u/2)
ρ=|n−1|

− 1

2

(
1 + n

(
1

2
n− 1

))
, (105)

with

∂f(g, ρ)

∂u
= −2t

(
∂g

∂u
− h(g, ρ)− u× ∂h(g, ρ)

∂u

)
. (106)

The derivative of h(g, ρ) is quite easy, as its only u-dependence is contained in g, so that:

∂h(g, ρ)

∂u
=
∂g

∂u

∂h(g, ρ)

∂g
, (107)

with

∂h(g, ρ)

∂g
= g

g4 + 3g2ρ2 + 2ρ2
(
ρ2 − 1− Y (g, ρ)

)
2 (g2 + ρ2)

2
Y (g, ρ)

, (108)

where the function Y (g, ρ) =
√

1− g2 − ρ2 has been introduced. For the first approximation, g = g0

and

∂g0(ρ, u)

∂u
=
∂
√
G(ρ, u)

∂u
=
∂G(ρ, u)/∂u

2
√
G(ρ, u)

, (109)

where G(ρ, u) = N(ρ, u)/D(ρ, u) and

N(ρ, u) = (1− ρ)
[
1 + ρ

(
1 + (1 + ρ)3ua1(ρ, u)

)]
, (110)

D(ρ, u) = 1 + (1 + ρ)3ua2(ρ, u). (111)

Their respective derivative with respect to u reads

∂N(ρ, u)

∂u
= (1− ρ)ρ(1 + ρ)3

(
a1(ρ, u) + u

∂a1(ρ, u)

∂u

)
, (112)

∂D(ρ, u)

∂u
= (1 + ρ)

3

(
a2(ρ, u) + u

∂a2(ρ, u)

∂u

)
, (113)

with

∂a2(ρ, u)

∂u
= a22(ρ),

∂a1(ρ, u)

∂u
= a12(ρ). (114)
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Turning to the second approximation g = g1 implemented in this work, one get from the derivative of

Eq. (101),

∂g1

∂u
=

∂g0

∂u
+

(
∂h(g, u)

∂g

∣∣∣∣
g=g0

+ u
∂

∂u

(
∂h(g, u)

∂g

∣∣∣∣
g=g0

))
q(ρ, u) +

(
u
∂h(g, u)

∂g

∣∣∣∣
g=g0

− 1

)
∂q(ρ, u)

∂u
.

(115)

For convenience, we introduce two functions w(g, u) and v(g, u) so that

∂

∂u

(
∂h(g, u)

∂g

)
=

(
∂w(g, u)

∂u
v(g, u)− w(g, u)

∂v(g, u)

∂u

)/
w(g, u)2, (116)

with

w(g, u) = g
[
g4 + 3g2ρ2 + 2ρ2

(
ρ2 − 1− Y (g, ρ)

)]
, (117)

v(g, u) = 2Y (g, ρ)
(
g2 + ρ2

)2
, (118)

and

∂w(g, u)

∂u
=

∂g

∂u

[
g4 + 3g2ρ2 + 2ρ2

(
ρ2 − 1− Y (g, ρ)

)
+ g

(
4g3 + 6gρ2 +

2ρ2g

Y (g, ρ)

)]
, (119)

∂v(g, u)

∂u
= g

(
g2 + ρ2

) ∂g
∂u

[
−2
(
g2 + ρ2

)
Y (g, ρ)

+ 8Y (g, ρ)

]
. (120)

Finally, the last term in Eq. (115) reads, for q(ρ, u) = j(ρ, u)k(ρ, u)/l(ρ, u):

∂q(ρ, u)

∂u
=

(
∂j(ρ, u)

∂u
k(ρ, u) + j(ρ, u)

∂k(ρ, u)

∂u

)
l(ρ, u)− j(ρ, u)k(ρ, u)

∂l(ρ, u)

∂u

l(ρ, u)2
(121)

with

j(ρ, u) = (1− ρ)(1 + ρ)3u2, (122)

k(ρ, u) =
(
3ρ/2− 1 + ρ(1 + ρ)3ua2(ρ, u)

)
a12(ρ)− ρ

(
1 + (1 + ρ)3λua1(ρ, u)

)
a22(ρ) (123)

l(u) = 2g0(u)
[
1 + (1 + ρ)3λua2(ρ, u, λ)

]2
, (124)
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and their derivative with respect the u:

∂j(ρ, u)

∂u
= 2(1− ρ)(1 + ρ)3λu

∂k(u)

∂u
= a12(ρ)

[
ρ(1 + ρ)3

(
a2(ρ, u) + u

∂a2(ρ, u)

∂u

)]
− a22(ρ)

[
ρ(1 + ρ)3

(
a1(ρ, u) + u

∂a1(ρ, u)

∂u

)]
∂l(u)

∂u
= 4g0(u)

[
1 + (1 + ρ)3ua2(ρ, u)

]
(1 + ρ)3

(
a2(ρ, u) + u

∂a2(ρ, u)

∂u

)
+2

∂g0

∂u

[
1 + (1 + ρ)3λua2(ρ, u)

]2
. (125)

The derivative with respect to t is given according to Eq. (3.30).

G.3 Derivative with respect to n

Regarding the derivative with respect to n which is necessary to get the embedded correlation potential,

it comes

∂Eimp,2L
c (n)

∂n
=
∂ρ

∂n

f(g, ρ)

∂ρ

∣∣∣∣g=g(ρ,u/2)
ρ=|n−1|

− ∂Ts(n)

∂n
− U

2
(126)

where ∂ρ/∂n = sign(n− 1) and

∂Ts(n)

∂n
= − 2t(1− n)√

n(2− n)
. (127)

We start with

∂f(g, ρ)

∂ρ
= −2t

∂g

∂ρ
+ U

∂h(g, ρ)

∂ρ
, (128)

where, for the first parametrization using g = g0(ρ, u),

∂g0

∂ρ
= =

1

2g0D(ρ, u)

(
∂N(ρ, u)

∂ρ
− g2

0

∂D(ρ, u)

∂ρ

)
, (129)

with

∂N(ρ, u)

∂ρ
= −1 + (1− 2ρ)

(
1 + (1 + ρ)3ua1(ρ, u)

)
+ ρu(1− ρ)(1 + ρ)2

(
3a1(ρ, u) + (1 + ρ)

∂a1(ρ, u)

∂ρ

)
,

∂D(ρ, u)

∂ρ
= u(1 + ρ)2

(
3a2(ρ, u) + (1− ρ)

∂a2(ρ, u)

∂ρ

)
, (130)
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and

∂a1(ρ, u)

∂ρ
=

∂a11(ρ)

∂ρ
+ u

∂a12(ρ)

∂ρ
, (131)

∂a2(ρ, u)

∂ρ
=

∂a21(ρ)

∂ρ
+ u

∂a22(ρ)

∂ρ
(132)

∂a12(ρ)

∂ρ
= 2

∂a22(ρ)

∂ρ
= −1

2
, (133)

∂a21(ρ)

∂ρ
=

1− 2ρ

2
√

(1− ρ)ρ/2
, (134)

∂a11(ρ)

∂ρ
=

∂a21(ρ)

∂ρ

(
1 +

1

ρ

)
− 1

ρ2
a21(ρ). (135)

(136)

Then, the right term in the right hand side of Eq. (128) is derived as:

∂h(g, ρ)

∂ρ
=

1

2(g2 + ρ2)

(
4ρ+ 2g

∂g

∂ρ
(1− Y (g, ρ)) + g2 g(∂g/∂ρ) + ρ

Y (g, ρ)

)
−g(∂g/∂ρ) + ρ

(g2 + ρ2)2

(
2ρ2 + g2 (1− Y (g, ρ))

)
. (137)

Turning to the second parametrization g = g1, the derivative with respect to ρ leads to

∂g1

∂ρ
=
∂g0

∂ρ
+

(
u
∂h(g, ρ)

∂g

∣∣∣∣
g=g0

− 1

)
∂q(ρ, u)

∂ρ
+ u

∂

∂ρ

(
∂h(g, ρ)

∂g

∣∣∣∣
g=g0

)
q(ρ, u) (138)

with

∂

∂ρ

(
∂h(g, ρ)

∂g

)
=
−(∂g/∂ρ)(g2 + ρ2) + 4g(g(∂g/∂ρ) + ρ)

(g2 + ρ2)3

(
2ρ2 + g2(1− Y (g, ρ))

)
− g

(g2 + ρ2)2

(
4ρ+ 2g

∂g

∂ρ
(1− Y (g, ρ)) + g2 g(∂g/∂ρ) + ρ

Y (g, ρ)

)
−g(∂g/∂ρ) + ρ

(g2 + ρ2)2

(
2g(1− Y (g, ρ)) +

g3

Y (g, ρ)

)
+

1

2(g2 + ρ2)

(
2
∂g

∂ρ
(1− Y (g, ρ)) +

2gρ

Y (g, ρ)
+

5g2(∂g/∂ρ)

Y (g, ρ)
+ g3 g(∂g/∂ρ) + ρ

Y (g, ρ)3

)
.

(139)

Finally,

∂q(ρ, u)

∂ρ
=

(
∂P (ρ, u)

∂ρ
Q(ρ, u)− P (ρ, u)

∂Q(ρ, u)

∂ρ

)/
Q(ρ, u)2, (140)
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with

∂P (ρ, u)

∂ρ
=

(
3(1− ρ)(1 + ρ)2 − (1 + ρ)3

)
u2

[(
3ρ

2
− 1 + ρ(1 + ρ)3ua2(ρ, u)

)
a12(ρ)

−ρ
(
1 + (1 + ρ)3ua1(ρ, u)

)
a22(ρ)

]
+(1− ρ)(1 + ρ)3u2

[(
3

2
+ 3u(1 + ρ)2ρa2(ρ, u) + u(1 + ρ)3

(
a2(ρ, u) + ρ

∂a2(ρ, u)

∂ρ

))
a12(ρ)

+

(
3ρ

2
− 1 + ρ(1 + ρ)3ua2(ρ, u)

)
∂a12(ρ)

∂ρ
−
(
ρ
∂a22(ρ)

∂ρ
+ a22(ρ)

)(
1 + (1 + ρ)3ua1(ρ, u)

)
−ρa22(ρ)

(
3(1 + ρ)2ua1(ρ, u) + (1 + ρ)3u

∂a1(ρ, u)

∂ρ

)]
(141)

∂Q(ρ, u)

∂ρ
= 2

∂g0

∂ρ

(
1 + (1 + ρ)3ua2(ρ, u)

)2
+ 4g0

(
1 + (1 + ρ)3

× ua2(ρ, u))u

(
3(1 + ρ)2a2(ρ, u) + (1 + ρ)3 ∂a2(ρ, u)

∂ρ

)
. (142)

H Atomic orbitals and Basis set

An exact analytic solution of the Schrödinger equation for an atom or a molecule with more than one

electron is not known. In order to approach numerically the exact solution for such systems, one has

to construct molecular orbitals ϕi(r) based on a linear combination of atomic orbitals (LCAO) χµ(r):

ϕi(r) =

m∑
µ=1

cµiχµ(r). (143)

For instance, the 1s atomic orbital of the hydrogen atom is given by a Slater-type orbitals function

χ1s(r) = (1/
√
π)e−r. Slater-type orbitals (STO) centered on the nucleus at position RA are usually

a better approximation to the atomic orbital:

fSlm(ξ; r−RA) = NS
l (ξ)plm(x, y, z)e−ξ|r−RA|, (144)

where NS
l (ξ) is a normalization constant and plm(x, y, z) is a polynom representing spherical harmon-

ics. Atomic orbitals described by such functions form a so-called STO basis set. The STO have the

advantage to correctly describe the nuclear cusp. However, it directly leads to computational issues,

which are usually solved by approximating the STO by Gaussian-type orbitals (GTO):

fSlm ∼
k∑
i=1

fGlm (145)
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with

fGlm(α; r−RA) = NG
l (α)plm(x, y, z)e−α|r−RA|2 , (146)

where NG
l (α) is a normalization constant and the exposant α (as well as ξ in Eq. (144)) results from

an optimisation of isolated atoms. Such an assembling of primitive Gaussian functions leads to a

so-called contracted function. The whole set of contracted functions describing the atomic orbitals is

called the contracted basis set, which is easier to handle numerically in comparison to the (larger) basis

set composed of primitive functions. The approximated functions in Eq. (145) form a basis set called

STO-kG, where k is the number of Gaussian functions used to describe the STO. Usually, k = 3 and

go up to k = 6 and the basis is called minimal basis, because each atomic orbital is described by only

one (approximate) STO. Those basis sets are however not sufficiently efficient to describe electronic

correlation, and are only used for very big systems (in huge organic molecules or biochemical systems)

where larger basis are out of reach in term of computational cost. To improve the performance of the

basis, the next step is to multiply the number of approximate STO to describe the valence atomic

orbitals. This leads to the valence double zeta (VDZ), triple zeta (VTZ), quadruple zeta (VTZ) basis

set, etc. In a different notation introduced by Popler and coworkers, the VDZ basis set can be written

as k-mnG, where k, m and n are contraction length of the core atomic orbitals and of the each “zeta”

of the valence atomic orbitals, respectively. This notation has the advantage to specify the different

contraction lengths used in the approximate STO functions describing valence atomic orbitals. One

example is the VDZ basis 6-31G or the VTZ basis 6-311G. The improvement over the STO-kG

basis sets is significant, but is often still insufficient. To add more flexibility, polarisation function

are added, which are functions corresponding to a higher angular momentum l. Such corrections

leads to the pVDZ, pVTZ and pVQZ basis sets. Using Popler’s notation, one can specify the type

of polarization function added, for instance 6-31G(d) for the carbon atom (or, equivalently, 6-31G∗).

Other improvements can be considered by adding diffuse functions (with a weak exponent α) and using

atomic basis that already contain correlation effects between the electrons of the same atom leading

to aug-cc-pVDZ, etc, where “aug” means augmented by diffuse functions and “cc” means correlation

consistent.
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