On the formalization of foundations of geometry

par Pierre Boutry

Thèse de doctorat en Informatique

Sous la direction de Pascal Schreck.

Le président du jury était Gilles Dowek.

Le jury était composé de Thierry Coquand, Assia Mahboubi, Julien Narboux.

Les rapporteurs étaient Gilles Dowek, Predrag Janičić.

  • Titre traduit

    Sur la formalisation des fondements de la géométrie


  • Résumé

    Dans cette thèse, nous examinons comment un assistant de preuve peut être utilise pour étudier les fondements de la géométrie. Nous débutons en nous concentrant sur les façons d’axiomatiser la géométrie euclidienne et leurs relations. Ensuite, nous exposons une nouvelle preuve de l’indépendance de l’axiome des parallèles des autres axiomes de la géométrie euclidienne du premier ordre. Cela nous amène à affiner la classification des plans de Hilbert de Pejas en considérant les propriétés de décidabilité. Mais, notre intuition nous amène souvent à négliger leur utilisation. Un assistant de preuve nous permet d’utiliser un outil parfait qui ne possède aucune intuition : un ordinateur. De plus, les assistants de preuve nous laissent exploiter les capacités de calcul des ordinateurs. Nous démontrons comment utiliser de méthodes algébriques de déduction automatique en géométrie synthétique. Enfin, nous présentons une procédure spécifique destinée à automatiser des preuves d’incidence.


  • Résumé

    In this thesis, we investigate how a proof assistant can be used to study the foundations of geometry. We start by focusing on ways to axiomatize Euclidean geometry and their relationship to each other. Then, we expose a new proof that Euclid’s parallel postulate is not derivable from the other axioms of first-order Euclidean geometry. This leads us to refine Pejas’ classification of parallel postulates. We do so by considering decidability properties when classifying the postulates. However, our intuition often guides us to overlook uses of such properties. A proof assistant allows us to use a perfect tool which possesses no intuition: a computer. Moreover, proof assistants let us leverage the computational capabilities of computers. We demonstrate how we enable the use of algebraic automated deduction methods thanks to the arithmetization of geometry. Finally, we present a specific procedure designed to automate proofs of incidence properties.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.