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Abstract

Last decades have witnessed an important increase in the use of X-ray based imaging

technologies during minimally invasive procedures. Consequently, the exposure to

ionizing radiation of both clinical staff and patients has significantly increased. Even if

the dose absorbed during a single procedure can be low, long-term exposure to radiation

can lead to negative effects in the body such as skin damage, eye cataracts and even

cancer. The inability to visually perceive X-rays and the lack of immediate effects to

exposure hinder the optimal use of protective measures. Also, several patient, equipment

and/or procedure dependent factors affect the magnitude and spatial distribution of

radiation inside the Operating Room (OR), which makes irradiated areas and the amount

of radiation hard to forecast. In this thesis, we therefore propose novel methods to

improve the overall radiation safety during X-ray guided procedures, by acting in two

complementary directions. First, we propose an approach for estimating and monitoring

patient and staff radiation exposure, along with the propagation/intensity of scattered

radiation for the current room context and imaging protocol. In-situ visual feedback of

the ongoing radiation dose is then provided by means of Augmented Reality (AR) to

increase the awareness of personnel to harmful radiation and reinforce the proper use of

protective equipment. Second, we propose to act on the X-ray device positioning with

an optimization approach for recommending an angulation reducing the dose deposited

to both patient and clinical staff, while maintaining the clinical quality of the outcome

image. Both approaches rely on the perception and modeling of the lay-out of the OR,

which is achieved thanks to multiple ceiling-mounted Red-Green-Blue-Depth (RGBD)

cameras. This information is then exploited by Monte Carlo-based simulation methods

to compute in real-time the propagation of radiation and the dose to patient and staff.

These simulation approaches have been validated experimentally using dosimeters and

a real-time demonstrator of the AR visualization system has been implemented in an

interventional room containing a robotized X-ray imaging device. We hope that the

approaches presented in this thesis can contribute to reduce the overall radiation exposure

during interventional procedures, increase the acceptance of X-ray imaging devices and

make the benefits of image-guided procedures accessible to a wider population.
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pour deux angulations différentes de l’imageur: pour une acquisition RAO
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Part IIntroduction
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1 Clinical motivation and context

To keep the body in good health is a duty...

otherwise we shall not be able to keep our mind storing and clear.

– Gautama Buddha

(a) The first known X-ray image,
taken from Röntgen’s wife left hand
[Reed 2011].

(b) Three-dimensional volume-rendered
CT image depicting normal coronary
arteries [Kuchynka 2015].

Figure 1.1: A century of technological improvements in X-ray imaging.
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Chapter 1. Clinical motivation and context
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1.2.2 Factors affecting radiation propagation . . . . . . . . . . . . . . . . 12

1.3 Strategies to reduce radiation dose to patients and clinical staff . . . . . . 14

1.3.1 Radiation safety guidelines . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Reduction of the imaging device’s effective doses . . . . . . . . . . 15

1.3.3 Radiation exposure monitoring . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Protective equipment . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Summary and thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Summary of the medical context . . . . . . . . . . . . . . . . . . . 18
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The use of X-ray based medical imaging has revolutionized the diagnostic of diseases

and the practice of numerous surgical treatments. It has also been a key factor in the

paradigm shift from traditional to minimally invasive surgery. Nowadays, X-ray imaging

is fundamental to several fields of medicine such as interventional radiology/cardiology,

orthopedics, urology, neuroradiology and radiation therapy to name a few. Even if it

is hard today to envision medicine without having the capacity to visualize internal

structures and bones through X-ray imaging, X-rays were discovered just slightly more

than a century ago. It was in 1895 that Wilhelm Conrad Röntgen performed the first

radiography (shown in figure 1.1a) while working with a cathode-ray tube in his laboratory

at Würzberg University in Germany [Reed 2011]. The discovery of this new kind of ray,

which could penetrate the body and give the capability to record its inner structure

without any visible damage, is considered one of the most momentous events in science

and medicine. It was not hard for Röntgen’s contemporaries to see the enormous potential

of such a discovery. Only a month after, radiographs were being produced in the United

States as well as in Europe; within 6 months after this discovery, they were being used at

the frontline in battlefields to help locate bullets in wounded soldiers [Reed 2011]. Other

advances came quickly such as the invention of the fluoroscope by Thomas Edison and the

appearance of contrast agents to further look within body structures. Even though a sea
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of technical developments has been made ever since Röntgen’s first radiography, there is a

core issue related to X-ray imaging which still remains the same even a century later. We

refer to the risks associated with the exposure to the ionizing radiation generated during

the image acquisition process. At first, there was understandably very little concern

about the unintended consequences that could occur from the use of these invisible

rays. But after some time, workers exposed to X-rays noted that repeated exposures

seemed to make hair fall out, cause skin inflammations, sores, loss of limbs and even

death [Linton 1995]. It took several years for scientists to realize that X-rays’ shorter

wavelength than light’s along with their high energy could penetrate and break chemical

bonds in living tissues, which results in the alteration of the structures and functions of

cells [Reed 2011]. Indeed, much of the early collection of information related to radiation

damage was gained at great personal expense. However, the large efforts of scientists

to develop radiation safety protocols, to devise protection methodologies, to learn to

control and assess X-ray production are also considered a major progress in this century

of X-ray imaging history [Linton 1995].

In this dissertation, we propose methods to contribute to the effort that radiation

scientists have performed throughout the past century to decrease the risks of exposure

to ionizing radiation when X-rays are used for medical purposes. We focus on modern

applications of X-ray imaging, namely on the use of X-rays for guidance during minimally

invasive procedures. In the following sections, we discuss about minimally invasive X-ray

guided interventions, including the different image modalities which are used. Then, we

present the negative effects associated with the exposure to ionizing radiation, along with

a description of the current radiation protection practices. The last section of this chapter

provides an overview of the work carried out throughout this thesis to improve radiation

safety in the operating room (OR) and also presents the outline of this dissertation.

1.1 X-ray imaging in today’s medicine

In order to improve patient care, surgical procedures are evolving to become minimally

invasive. As a consequence, medical imaging devices are now fundamental to the

performance of today’s procedures. In this section we first give an overview of the growth

of minimally invasive surgery (MIS). Then, we introduce interventional procedures, a

kind of MIS generally involving important doses of ionizing radiation. We close this

section with a summary of the imaging modalities used in MIS and which cause radiation

exposure.

1.1.1 Minimally invasive procedures

Driven by last decades’ significant technological improvements in medical and imaging

equipment, minimally invasive procedures (also known as MIS) are progressively replacing

traditional open surgery procedures in today’s hospitals [Nikodemová 2011]. Open surgery

requires a large incision and can incur significant trauma to soft tissue, which can be

painful for the patient, can take more time to heal and can lead to potential complications.
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Minimally invasive surgery encompasses imaging and catheterization techniques that limit

the size of the needed incisions. Reported benefits of MIS include less pain for the patient,

reduced risk of infections, quick recovery time and reduced blood loss [Fuchs 2002].

Furthermore, MIS is also associated with decreased postoperative complication rates and

shorter hospital stays, which can lead to reduced healthcare costs [Xu 2015]. Therefore,

these kinds of procedures are used by a rapidly growing number of healthcare providers

in a wide range of medical specialties.

MIS was pioneered in the 1960’s by interventional radiologists. They introduced

techniques such as injecting arteries with dye, visualizing these via X-ray imaging and

introducing catheters to open up blockages, with the aim of finding safer and better

ways to treat atherosclerotic vascular diseases [Lakhan 2009]. Such developments not

only led to the replacement of conventional procedures with minimally invasive ones, but

also stimulated surgeons to reevaluate conventional approaches. For instance, coronary

artery stent insertion became rapidly a more popular alternative than the traditional

coronary artery bypass, and from 1996 to 2000 its rate of performance doubled from 157

to 318 per 100,000 adults in the United States [Miller 2005]. In Europe, the number of

interventional cardiovascular procedures increased from 350,000 in 1993 to more than 1

million in 2001 [Picano 2013].

The spectrum of minimally invasive procedures performed today is extremely large.

They are typically classified according to the means used for guidance and visualization

of the interior of the patient’s body. On the one hand, endoscopic, laparoscopic and

arthroscopic procedures rely on the use of a camera inserted through a small incision or

through natural orifices, enabling to get live color images of the inside of the patient. On

the other hand, interventional and several orthopedics procedures are performed using

medical imaging devices such as fluoroscopic X-ray systems, Computed Tomography

(CT) or Magnetic Resonance Imaging (MRI) scanners for guidance and visualization

of internal anatomical structures. Interventional procedures, presented in the following

section, are becoming more frequent and complex and are the focus of this thesis. This

is due to the fact that several reports have documented that the dosage of ionizing

radiation among interventional physicians is the highest registered by any medical staff

using X-rays [Roguin 2013].

1.1.2 Interventional surgical procedures

Because of the many aforementioned benefits of minimally invasive procedures, both their

popularity and complexity have increased in the past years. This is directly connected

to the technological progress in highly sophisticated imaging equipment used for these

purposes, which enables clearer visualizations of fine internal anatomical structures of the

patient (see Figure 1.1b). Nowadays, in European countries more than 400 types of X-ray

guided interventional procedures are identified, with a 12 % increase in the number of

procedures performed every year [Nikodemová 2011]. Furthermore, 657,000 fluoroscopy

guided percutaneous transluminal angioplasty (PTA) procedures were performed in

adults in 2002 in the United States [Miller 2005], with a tendency to increase in the
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following years.

Interventional practices are nowadays most common in the fields of interventional

cardiology (IC), radiology (IR) and neuroradiology. IC is the specialized branch of

cardiology performing conventional coronary angiography, stenting and other procedures

on coronary arteries, along with various kinds of therapies to unblock clogged arteries sup-

plying blood to the heart, to stop heart attacks and/or relieve chest pain [Lakhan 2009].

The duties of IR practitioners are more varied. These include the performance of an-

giographies on other peripheral arteries (renal, popliteal, femoral...) and the use of

percutaneous access to treat diseases or perform biopsies [Lakhan 2009]. The results

of a study on the frequency of IR procedures in six different EU countries (see Figure

1.2a) presented in [Nikodemová 2011], indicate that angiographies are just half of IR

practitioners’ workload; the other half corresponds to embolization and Endoscopic

Retrograde Cholangiopancreatography (ERCP) procedures. Interventional neuroradiol-

ogy (also known as Endovascular Surgical Neuroradiology (EVS)) is a subspecialty of

radiology also making use of minimally invasive catheter-based technology and radio-

logic imaging to treat and diagnose diseases of the central nervous system, head, neck

and spine [Lakhan 2009]. Common EVS interventions include treating carotid artery

stenosis, intracranial/extracranial aneurysms and performing vertebroplasty/kyphoplasty

procedures.

All interventional procedures hitherto mentioned rely on the use of medical imaging

equipment for diagnosis or therapy delivery (X-ray devices, CT, MRI, Positron Emission

Tomography (PET) scanners, and/or ultrasound probes). Several of these devices

generate ionizing radiation during the imaging process, and, therefore, cause risks of

radiation exposure to patients and clinicians. Such risks vary according to the complexity

of the procedure. Hence, as the frequency, complexity and diversity of interventional

procedures is increasing, so is the radiation dose to patients and healthcare personnel

[Miller 2005]. Indeed, interventional practitioners are performing more procedures than

ever, which usually last longer, resulting in more exposure to radiation than in the

past [Roguin 2012]. Studies [Roguin 2013] have reported that the dosage of ionizing

radiation among interventional practitioners are the highest registered for any medical

staff using X-ray, especially since most of interventional procedures are performed under

fluoroscopy guidance (continuous X-ray imaging). Additionally, staff is obliged to remain

close to the patient during interventional procedures, therefore, their exposure to radiation

cannot be fully avoided. This can be observed in Figure 1.2b, which shows an example of

a fluoroscopy-guided interventional procedure performed by an interventional practitioner

at Strasbourg’s University Hospital.

1.1.3 X-ray imaging modalities

There exist many types of medical imaging modalities, each relying on different technolo-

gies and techniques. Ultrasound imaging makes use of high frequency sound waves to

visualize soft tissues, such as muscles and internal organs. MRI relies on radio waves and

magnetic fields to produce images. Unlike ultrasound and MRI, projection radiography

7



Chapter 1. Clinical motivation and context

(a) Digital Subtraction Angiography (DSA), Percu-
taneous Transluminal Angioplasty (PTA), Carotid
(Ca), brain (Ce), lower limbs (LL) and renal arter-
ies (Re) angiographies.

(b) Interventional room at the Strasbourg’s
University Hospital during the execution of
a fluoroscopy guided vertebroplasty.

Figure 1.2: Frequency of IR procedures in 6 EU’s hospitals reported in [Nikodemová 2011]
(1.2a) and Strasbourg’s University Hospital IR department (1.2b).

(commonly called standard X-ray), CT, fluoroscopy, and nuclear medicine procedures

all rely on ionizing radiation to generate images of the body [FDA 2010]. We discuss

relevant facts about these imaging modalities below.

Projection radiography procedures, which include chest X-rays and mammography,

involve relatively low amounts of radiation (a typical chest X-ray exposes the patient to

0.02 mSv1 [Conti 2014]). During a CT scan (also called a CAT scan) a rotating source

passes X-rays through a patient’s body to produce several cross-sectional images of a

particular area. These two-dimensional images can also be digitally combined to produce

a single three-dimensional image for better visualization. Hence, organ doses from CT

scanning are considerably larger than those from corresponding conventional radiography.

For instance, a conventional anterior-posterior (AP) abdominal X-ray results in 0.25 mSv

of equivalent dose, which is at least 50 times less than the corresponding stomach dose

from an abdominal CT scan [Brenner 2007].

Continuous X-ray imaging or live fluoroscopy is the preferred modality among inter-

ventional practitioners since it allows to image the surgical site in real-time and gain

a better 3D understanding. This is useful to observe the movement of an object or

substance inside the patient’s body. When fluoroscopy is continuous, around 30 X-ray

images per second are obtained and as a consequence the amounts of radiation generated

are significantly higher [Kaplan 2016]. Pulsed fluoroscopy obtains 1 to 6 images per

second and can be a less irradiating alternative, yet, it does not allow clinicians to benefit

from the same real-time feedback.

Other procedures involving radiation are nuclear medicine procedures, such as PET

or Single Photon Emission Computed Tomography (SPECT) examinations. These are

relevant imaging techniques that provide functional and quantitative information about

1For a detailed description of radiation dose units, see appendix A.1
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the organ of interest for diagnostic and therapeutic applications. A patient is given a

small amount of a radioactive substance, called a radiopharmaceutical or radiotracer,

and a detector outside the body is then used to obtain an image of the radioactive

material as it moves throughout the body [FDA 2010]. The extremity dose of workers

in nuclear medicine can be a concern since the procedures require the handling of

radiopharmaceuticals at contact and/or very close to the extremities (hands and fingers)

[Vanhavere 2008]. According to the literature, technicians working in PET facilities receive

slightly higher doses than those working in conventional diagnostic nuclear medicine

departments, however, these doses are generally below the limits [Vanhavere 2008]. In

general, the doses involved in nuclear medicine procedures are significantly smaller than

during a fluoroscopic intervention or a CT scan [FDA 2010].

Because CT, fluoroscopy, and nuclear medicine procedures involve repeated or ex-

tended exposure to ionizing radiation, they are associated with a higher radiation dose

than projection radiography. Among these modalities, interventional fluoroscopy is the

one which causes the highest exposure to clinical staff and, for several kinds of procedures,

to the patient too [FDA 2010]. Due to the excellent image quality of CT images, these

are rather used for pretreatment imaging and treatment planning. Despite providing the

ability to see structures in 3D, CT is not often used for direct guidance since its real-time

performances are not as high as fluoroscopy’s [Wong 2008]. Indeed, no post-processing

or reconstruction is required for fluoroscopy, so users can see in real-time changes in

the patient or the transit of tools and catheters inserted into the patient. Also, the CT

scanner environment offers less work area that fluoroscopy because of the large gantry.

Therefore, fluoroscopy is preferred for intraoperative guidance during interventional

procedures, which highly exposes clinical staff and patients to ionizing radiation.

1.2 Exposure to ionizing radiation during X-ray guided

procedures

The benefits of X-ray guided MIS come at a price: the exposure to ionizing radiation

of staff and patient. While a patient’s exposure can be justified by medical indication

and usually happens in a single episode, medical staff providing patient care can be

chronically exposed for many years on a daily basis. In this section, we discuss the

risks of exposure to ionizing radiation for patient and clinical staff during X-ray guided

procedures. We also describe the many factors that affect radiation’s magnitude and

propagation, which render the monitoring of exposure complex to achieve.

1.2.1 Radiation exposure risks

Recent studies have reaffirmed the hypothesis that any radiation dose carries with it

an associated risk of negative biological effects and that such a risk increases with an

increasing dose [Roguin 2013]. Indeed, it is generally accepted that there is no low

dose threshold, namely no amount of ionizing radiation should be considered absolutely

safe [Miller 2005]. Negative effects of radiation exposure are classified in two categories:
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deterministic and stochastic. On the one hand, deterministic effects occur once a dose

threshold has been exceeded and their severity increases with the magnitude of the dose.

The most common are skin and eye injuries. Stochastic effects, on the other hand, come

with no minimal threshold dosage and their adverse outcomes, such as cancer, can take

up to several decades to manifest. The likelihood of stochastic effects increases with

the total radiation energy accumulated over time, but the severity of such effects is

independent of the dose [Kirkwood 2014].

Studies have reported the average dose of a patient in IC to range from 10 to 50

mSv per procedure [Morrish 2008]. On average, a coronary angiography exposes the

patient to a dose equivalent to 300 chest X-rays, and a cardiac radiofrequency ablation

to 750 chest X-rays [Picano 2013]2. Effective staff/operators dose range from 0.02 to 30

µSv [Morrish 2008], and can reach higher values for complex procedures, such as up to 200

µSv in a single endovascular thoracoabdominal aneurysm repair [Picano 2013]. However,

the repetitive nature of staff’s exposure, even when the dose is low, increases the long-term

risk of developing negative biological effects. The most active interventional cardiologists

can have an annual exposure equivalent to around 5 mSv (under the lead apron) per year,

which is two to three times higher than diagnostic radiologists’ exposure [Picano 2013].

We discuss more thoroughly radiation exposure risks for patient and clinical staff below,

after explaining radiation’s effects on living tissue.

1.2.1.1 Effects of ionizing radiation on living tissue

X-rays are electromagnetic radiation of the same nature as light but with a much shorter

wavelength. This shorter wavelength is what gives them the capability of penetrating

materials that light cannot, such as living tissue [Reed 2011]. The damage caused by

the exposure to ionizing radiation occurs at the cellular level and rapidly replicating

cell components such as DNA and cell membranes are the most susceptible to be

damaged [Kaplan 2016]. Since these electromagnetic waves are of high energy, they

have the ability to break chemical bonds, which may incur in both direct and indirect

damage. Direct damage occurs as energy is absorbed and molecular bonds are broken,

which can result in cell necrosis or distorted replication (deterministic effects). Indirect

damage occurs when water molecules are ionized into free radicals. This has the ability of

disrupting bonds, and it is thought to be responsible for the long-term effects of radiation,

namely stochastic effects [Kaplan 2016].

1.2.1.2 Risk to patients

In the case of patients, the benefits of a proper usage of X-ray devices (either for

diagnosis or therapy), outweighs the experienced radiation risks, especially in the older

age groups [Roguin 2014]. The patient is exposed to primary radiation, namely radiation

between the X-ray source and the image intensifier. Short-term risks are radiation-

2More statistics about radiation doses for common X-ray examinations can be found in appendix
A.2.1.
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induced skin damages (erythema, epilation and even dermal necrosis)3, which result

from acute radiation doses beyond 2 Gy [Miller 2005]. The extent of the injury may not

be apparent for weeks and repeated procedures increase the risk of skin damage, since

previous exposures sensitize the skin. At lower dose, exposure to the eye lens can cause

lens opacity and cataracts that can take years before manifesting. Long term effects

include the potential risk of cancer, which for patients is less common since in most cases

they are not exposed repetitively to radiation.

1.2.1.3 Risk to healthcare providers

During the X-ray imaging process, X-rays which are not absorbed or do not interact with

any material on their path, are deflected and continue their trajectory with an attenuated

energy. Such a pattern of deflection, known as scattered radiation or scatter, produces a

field of radiation which is responsible for most of clinical staff’s exposure [Kaplan 2016].

Therefore, occupational exposure is directly linked to patient dose since it results from

this secondary scattered radiation that is produced. Moreover, the exposure of clinicians

performing X-ray guided interventional procedures cannot be fully avoided due to the

required proximity to the patient, the complexity of the procedure and the need for

performing a large set of acquisitions with varying parameters [Schueler 2006]. As

mentioned earlier, reports have documented the dosage of radiation among interventional

physicians as the greatest registered among any medical staff working with X-rays

[Roguin 2013]. As highlighted by [Picano 2013], cumulative doses after 30 years of

working life are in the range of 50 to 200 mSv, corresponding to a whole-body dose

equivalent of 2,500 to 10,000 chest X-rays.

Even if most of the clinicians’ body is shielded with lead protective clothing (see

section 1.3.4), studies have shown that the dose delivered to unprotected body parts such

as hands, eyes and legs, can approach the maximum established limits [Nikodemová 2011].

Especially the hands are at danger since these remain close to the patient i.e. close to

the radiation source. Indeed, skin doses to the hands can reach 1 mSv per procedure

and can even be higher if bad practices are followed [Carinou 2011]. A rise in reported

skin changes on the hands, and an expected increase in late effects such as lens injuries,

cataracts and possibly cancer have been reported in [Miller 2005]. Additionally, results

from a study of reported cases of brain cancers among interventional cardiologists have

shown that in 85 % of the studied cases, the malignancy was located in the left side

of the brain [Roguin 2013]. This is due to the usual layout of an interventional room

where the practitioner operates from the right side of the patient, thus, the scatter

radiation comes predominantly from the patient on his/her left side [Picano 2013].

Clinicians’ heads can be at best incompletely protected and annual head exposure among

interventional cardiologists has been reported to be nearly 10 to 20 times higher than

the whole-body dose recorded below apron [Roguin 2013, Picano 2013]. Concerning

eye exposure, studies have found a dose-dependent increased risk of posterior lens

3Reported dose thresholds before radiation-induced tissue damage can be found in appendix A.2.2.
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opacities for interventional cardiologists and nurses during IC procedures [Roguin 2012].

Indeed, eye cataracts can be observed in one-third of staff after 30 years of work in IC

departments [Picano 2013]. It was recently reported that exposure to the eye lens may

induce lens opacities and cataracts at substantially lower adsorbed doses than previously

considered. As a consequence, the threshold for radiation-induced cataracts has been

revised from 2 to 0.5 Gy [Omar 2017]. Furthermore, the International Commission on

Radiological Protection (ICRP) has recently recommended a reduction of the occupational

dose limit for the eye lens from 150 mSv to 20 mSv, averaged over 5 years, with no single

year exceeding 50 mSv [Principi 2016]. Ionization radiation exposure also affects the

reproductive health of exposed clinicians. Reports highlight that the cumulative gonad

dose (below the lead apron) for interventional cardiologists is in the range of 0.5-1 Sv

over a professional lifetime of 30 years, and this can cause significant risks of reproductive

health problems [Picano 2013].

The common radiation protection principles with regard to time, distance, and

shielding are difficult for operators to fully implement in interventional procedures due to

examination complexity, the required proximity between clinician and patient, and the

need to maintain a sterile field [Schueler 2006]. Increases in interventional procedures’

difficulty, volumes, and workload per clinician contribute to increase the risk of appearance

of adverse outcomes for staff exposed to scattered radiation [Roguin 2012]. Therefore,

exposure to ionizing radiation during such interventions is further becoming a concern

for healthcare providers.

1.2.2 Factors affecting radiation propagation

The propagation of X-rays and their interactions with matter are complex phenomena.

Hence, large-scale efforts have been performed to develop methodologies and tools for

better understanding the factors affecting it, either through large dose measurement

campaigns (e.g. ORAMED project4 [Nikodemová 2011]) or by means of computer-based

simulations [Koukorava 2011,Santos 2015,Principi 2016]. A patient is exposed to the

primary X-ray beam, hence, his/her exposure depends on: the imaging parameters (tube

voltage (kV), current (mA), collimation...), his/her own physical characteristics (sex, body

weight, age...) and the irradiated region of the body. However, occupational exposure is

more challenging to assess since staff is mostly exposed to the photons scattered by the

patient, table and/or equipment, and also because the propagation and magnitude of such

a scatter are affected by several simultaneously changing factors [Koukorava 2011]. Some

of them, such as the patient’s characteristics (e.g. abdominal thickness) or the complexity

of the procedure, are beyond clinicians’ control. For instance, complex procedures

requiring long fluoroscopy time and higher tube current, such as complex endovascular

procedures, incur in higher potential dose [Kirkwood 2014]. Also, it has been reported

4ORAMED was a large consortium-based collaborative project (2008-2011), supported by the European
Commission within its 7th Framework Program, aiming at the development of methodologies for
better assessing and reducing radiation exposure to medical staff performing interventional procedures
[ORAMED 2011].
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that operators’ body height has a major impact on the amount of scatter radiation to

different parts of their body [Picano 2013]. Other factors, such as the personnel’s position

with respect to the patient, the imaging parameters or the disposition of protective

equipment can be partially controlled but are usually altered during the procedure.

Indeed, many studies can be found in the literature on the influence of the different risk

factors of staff/patient exposure. We discuss below some relevant examples:

Patient size For patients with a thicker layer of adipose tissue, the automatic exposure

control (AEC) of modern X-ray equipment increases the tube’s voltage in order to

compensate for the increase of beam attenuation by the patient’s body, with the aim of

producing clinically useful images [Santos 2015]. Such an increase of the source’s potential

results in scattered X-rays with higher energy, and, as a consequence, in a significant

increase in the levels of scattered radiation [Schueler 2006]. This can be observed in

figure 1.3, where the scatter values at the level of the operator’s legs are almost doubled

for a 5 cm increase of a patient’s abdominal thickness [Schueler 2006].

(a) Scatter levels calculated with a phantom
of 29 cm of thickness.

(b) Scatter levels calculated with a phantom
of 34 cm of thickness.

Figure 1.3: Effect of increasing patient abdomen thickness on operator exposure, courtesy
of [Schueler 2006]. The drawings illustrate scattered radiation isodose curves calculated
with a phantom simulating abdomen thicknesses. A 5 cm increase almost doubles staff
exposure.

X-ray imaging parameters Parameters of the image acquisition protocol, such as

the field-of-view (FOV) size, the tube tension (or kilovoltage) and the beam filtration,

significantly affect radiation dose. A larger FOV enables to visualize a larger region

of a patient’s anatomy in the image. However, the doses are higher since more scatter

is produced and a larger part of the patient is irradiated [Koukorava 2011]. Moreover,

adding filtration (e.g. copper spectral beam filtration) to the X-ray beam reduces both

the patient dose and the levels of scatter [Schueler 2006]. Yet, the use of copper filtration

will reduce the proportion of low energy photons and can degrade image contrast.

X-ray source position During a procedure, a radiographer operates the X-ray imaging

device according to instructions from the operating surgeon or the clinical radiologist,

for acquiring the right image for navigation or therapy delivery. This is achieved
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through changes in the X-ray beam projection (also known as angulation). Changing

the angulation means changing the position of the X-ray source with respect to the

patient, and thereby has a significant effect in both patient and staff dose. Indeed,

studies have shown that the highest rate of scatter is always produced between the X-ray

source and the patient (i.e. backscattering effect) [Carinou 2011]. Hence, it is commonly

recommended to keep the X-ray source below the table (undercouch) since both the

patient dose and scatter levels are lower. In such configurations, the patient’s spine and

the surgical table result in a beam filtration of low energy photons. This contributes

to decrease the intensity of the transmitted radiation and to lower the energy values

absorbed by the sensitive organs located in the patient’s thoracic region [Santos 2015].

Operator dose is also significantly lowered as opposed to the case when the source is

above the operating table (overcouch). Indeed, in overcouch configurations, the dose

to the clinicians’ eyes and hands can be up to 6 times higher [Koukorava 2011]. This

is due to the fact that in such projections, X-rays are scattered above the table. If no

ceiling-mounted shields are used, sensitive body-parts (head, thyroid, eyes...) of the

attending personnel can be dangerously exposed. This is why many recommendations to

avoid such configurations can be found in the literature [Carinou 2011].

Operator’s position Staff must avoid standing close the X-ray source during the

imaging process as the levels of scattered radiation are the highest [Carinou 2011].

In several IC procedures such as angiographies and PTA, radial access has become

a more popular approach than femoral access since this approach has been shown

to reduce complication rates and hospital stay [Ertel 2012]. However, radial access

requires longer fluoroscopy times and a closer positioning of the operator to the X-ray

source [Carinou 2011]. A comprehensive study reported the operator’s doses to be 5-7

times higher than when standing in the position for femoral access [Nikodemová 2011]. In

general, the operator’s distance to the patient’s skin entrance site is crucial because the

level of scatter radiation is inversely proportional to the distance squared (inverse-square

law) [Picano 2013].

1.3 Strategies to reduce radiation dose to patients and clin-

ical staff

X-ray imaging has many important clinical uses and can provide significant benefits. This

is why the healthcare professional community seeks to support the benefits of medical

imaging while reducing the risks. To this end, several major strategies have been adopted

and the most common ones are herein described5.

5Other commercially available systems for reducing patient/staff dose are presented in section 2.1.
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1.3.1 Radiation safety guidelines

For years, national and international radiation protection organizations have recom-

mended the adoption of a non-threshold dose-response relationship for the purposes of

radiation protection, such that radiation dose has to be kept at levels which are As

Low As Reasonably Achievable (ALARA) [NCRP 1990]. Following such a principle, the

procedures involving radiation must be medically indicated, justified and optimized by

following defined dose protocols. Therefore, all examinations using ionizing radiation

should be performed only when necessary to answer a medical question, help treat a

disease, or guide a procedure, and by administering the lowest radiation dose that yields

an image quality adequate for diagnosis or therapy [FDA 2010]. Furthermore, radiation

protection organizations designate a certified radiation safety officer in any organization

approved for the use of ionizing radiation. This person is in charge of identifying radiation

safety problems, recommending or approving corrective actions, verifying the radiation

safety program for adherence to ALARA, performing reviews of occupational exposures

and dose levels, and organizing briefings and educational safety sessions.

1.3.2 Reduction of the imaging device’s effective doses

Imaging devices’ manufacturers work towards keeping the effective dose low while pro-

viding the best possible image quality. This is achieved through technical innovation

and optimized design of the equipment. For instance, Philips’ ClarityIQ low-dose X-

ray imaging technology [Philips 2017a] combines image-processing with hardware to

obtain patient dose reductions of up to 80 % while maintaining image quality. Similarly,

while PET/CT scanning is usually accompanied by substantial radiation dose for the

patient [Huang 2009], Siemens’ Biograph mCT [Siemens Healthcare 2017a] achieves dose

reductions of 60 % with technology reducing the scanning time. Toshiba’s fluoroscopy

devices now include a feature called Spot Fluoroscopy [Toshiba 2017], which enables

fluoroscopy to be performed within a region of interest while holding the last image

outside this region. This function reduces the patient input dose area and the scatter dose

to the clinicians, and is particularly useful in applications requiring prolonged fluoroscopy.

While technical innovation and optimization of the design of medical imaging equipment

enable to reduce the patient dose during image acquisition, occupational exposure is

affected by many dynamic factors and is thereby more challenging to monitor.

1.3.3 Radiation exposure monitoring

Three main types of recording devices are used to monitor radiation: film badges,

Thermoluminescent dosimeters (TLD), and active personal dosimeters (APD). Film

badges consist of a small sealed film packet inside a plastic holder than can be clipped to

clothing; radiation striking the emulsion causes darkening, and the energy values can be

measured afterwards with a densitometer [Singer 2005]. TLDs contain a chip of lithium

fluoride, a crystal exhibiting thermoluminescence in response to ionizing radiation. Unlike

film badges or TLDs, which measure accumulated exposure, APDs measure ongoing
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levels of exposure (current dose and dose rate). Such dosimeters are usually calibrated to

measureHp(10) dose, which is the individual equivalent dose penetrating a depth of 10 mm

under the skin [Fardid 2011]. The standard method consists on wearing a TLD dosimeter

usually at chest level. Yet, the placement of such a dosimeter can be controversial. First

of all, for a person wearing it over the lead apron, the reported measure will be higher than

the actual one, and inversely for someone wearing a dosimeter under the apron. Because

of this, the ICRP actually recommends wearing two dosimeters: one over the apron to

provide an assessment of the dose of the tissues that are not protected and the other

under the apron, to provide an assessment of the dose of protected tissues [Fardid 2011].

Second, comprehensive dose measurement campaigns [Nikodemová 2011] have reported

that the dose at the body extremities significantly varies during IC/IR procedures. This

is due to the many parameters affecting radiation propagation. Such studies also highlight

the fact that operators receive higher doses at the left side extremities, since these are

closer to the X-ray source. In the same way, [Roguin 2012] reported that the left side

of an operator’s head is exposed twice as much as the right one. Since dosimeters can

only measure personal dose at a single location on the body, they cannot provide a

complete estimation of the full-body exposure. For this reason, wearing dosimeters on

the eyes and wrists is recommended in the literature [Carinou 2011], yet, this can be

unpractical. As highlighted by [Vanhavere 2008], extremity dose monitoring may impede

the manipulations carried out by the staff, cause problems with the sterilizations and the

wearing of gloves. The use of ring dosimeters is recommended in the literature too, yet,

its placement is also difficult to choose since the type of procedure and the manipulations

of the staff affect the dose distribution. For IR procedures, the recommended placement

of a ring dosimeter is the little finger, however, during percutaneous procedures, the tips

of the fourth and middle fingers may receive 20-30 % higher doses [Vanhavere 2008].

Imaging devices also provide an estimation of the dose during the imaging process

estimations, such as the dose area product (DAP)6, which is sometimes used as an

estimation of the likely staff dose during the procedure. Nonetheless, recent studies have

reported poor or even bad correlations between the DAP values and the actual measured

staff exposure since such estimations do not consider the parameters affecting scattered

radiation propagation, which are external to the device [Vanhavere 2008,Carinou 2011].

For instance, moving away from the operating table during an image acquisition decreases

the staff dose significantly while the DAP is unaffected [Vanhavere 2008]. Therefore,

operators cannot use such values as an indicator of their likely radiation exposure.

1.3.4 Protective equipment

Current practice to mitigate the risk of exposure to ionizing radiation consists in the use

of room and personal protective equipment. This includes ceiling suspended shields for

the protection of the upper part of the operator’s body, the lateral shield for protection

during lateral beam projections and the table shield for the protection of the legs

6For a detailed description of the most common radiation metrics, see appendix A.3.
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[Nikodemová 2011]. Shielding drapes placed around the patient are also used to reduce

scattered radiation [Ertel 2012]. Personal protective equipment includes aprons, thyroid

collars and skirts which usually contain lead or similar light-weight materials that

attenuate scattered X-rays. A lead-equivalent thickness of at least 0.5 mm is typically

required, which attenuates over 95 % of scattered X-rays that strike it [Kaplan 2016].

Also, recognition of the sensitivity of the eyes to radiation damage has led to mandatory

use of leaded eyewear [Roguin 2014]. Shielded gloves are also available for protecting the

hands, yet, these can produce greater scatter and exposure to the hand within the glove

if the hand is placed directly in the X-ray beam [Kaplan 2016].

Despite the use of personal protective equipment, the operators’ legs, arms, neck,

and head remain not fully protected [Nikodemová 2011]. However, as reported in

[Carinou 2011], the proper use of a ceiling suspended shield reduces the doses to the

hands by half and a table shield reduced the doses to the legs up to 5 times. Even though

protective equipment can provide high protection, often its usage is not practical and

can impede the operator’s work. A large study across six different EU countries reported

that in 23 % of the IR procedures performed in the hospitals concerned by the study, no

room protective equipment was used [Nikodemová 2011]. The results of such a study can

be seen in the graphs from figure 1.4. Wearing lead protective clothing can also be tiring

for operators working standing and wearing them repeatedly over many years. Especially,

those over the age of 35 can frequently develop orthopedic problems, such as aches and

pains in the neck, back, hips, knees and ankles that range in severity [Roguin 2012]. As

shown in figure 1.4b, 1 % of the personal did not use any kind of personal protective

equipment and only 25 % used all protective means available, namely apron, collar and

glasses [Nikodemová 2011].

(a) Use of room protective equipment. (b) Use of personal protective equipment.

Figure 1.4: Use of radiation protection equipment in hospitals in Europe as reported
by [Nikodemová 2011].
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1.4 Summary and thesis overview

1.4.1 Summary of the medical context

Modern X-ray imaging systems greatly improve healthcare providers’ abilities for diagnos-

tic and performance precision during clinical procedures. They have become fundamental

for MIS and for medical disciplines such as IR and IC, enabling to reduce the patient’s

risk and recovery time for several types of surgical procedures. However, the growing

use and increasing complexity of X-ray guided procedures have been accompanied by

a renewed focus on the monitoring and reduction of the ionizing radiation produced

by X-ray imaging devices. Indeed, continuous exposure to ionizing radiation can lead

to short- and long-term negative effects, ranging from cataracts to cancerous growths

(section 1.2.1). Fluoroscopy-guided procedures incur high levels of patient exposure. This

also results in a significant exposure for interventional practitioners who have to operate

near the patient and are exposed to scattered radiation. The repetitive nature of this

exposure, even when the dose is low, increases the risk of developing negative biological

effects and such a risk increases with the dose accumulated over time [Kirkwood 2014].

Technical enhancements and the use of radiation protection equipment help reducing

radiation exposure. The monitoring of staff’s exposure is currently achieved by means

of dosimeters usually worn at chest level. Still, dosimeters do not provide a measure of

the exposure of other body-parts such as hands and head which can be highly exposed

(section 1.3.3). Furthermore, no means currently exist to intraoperatively depict the

3D propagation and magnitude of radiation fields. Indeed, the many factors that affect

radiation’s magnitude and propagation render the monitoring of exposure complex to

achieve and also make irradiated areas and the amount of radiation hard to forecast

(section 1.2.2). Moreover, the inability to visually perceive X-rays and the lack of

immediate adverse effects to X-ray exposure lead to reduced awareness and concern about

the risks of long-term exposure. As reported in [Katz 2017a], a considerable proportion

of unnecessary exposure results from a lack of awareness and poor knowledge about

radiation propagation behavior.

1.4.2 Contributions

During this thesis, we have proposed new methods to improve the overall radiation safety

during X-ray guided procedures in two complementary directions. (1) First, we have

developed a system capable of estimating and monitoring the propagation of radiation

in the current 3D environment in a non-disruptive fashion. Such a system can help

increasing clinicians’ awareness to radiation since it provides in-situ visual feedback of

the current propagation of scattered radiation and of the exposure of staff and patient by

means of augmented reality (AR). The system has been demonstrated in an interventional

room containing a robotized X-ray imaging device at the IHU of Strasbourg [IHU 2017].

It renders the current diffusion of scattered radiation visible by means of AR, and the

visualizations are updated in real-time as the C-arm parameters change. It can also show

18



1.4. Summary and thesis overview

a patient’s 2D and 3D dose map and a visualization of the staff’s radiation exposure.

(2) Second, we have proposed to act on the X-ray device positioning with an optimization

approach enabling to suggest a configuration reducing the dose deposited on both patient

and clinical staff during image acquisition. We have proposed to formulate such a problem

as the search for a configuration that minimizes a cost function modeling the different

radiation exposures. An approach to perform the optimization of such a cost function in

near real-time has also been introduced.

Furthermore, novel approaches in the fields of X-ray Simulation, Medical Robotics and

Computer Vision have been developed to make the aforementioned output applications

possible. The overall contributions of this thesis are summarized below:

❼ Two radiation simulation approaches applying Monte Carlo methods have been

proposed. They enable to compute the 3D propagation of scattered radiation along

with the patient and medical staff dose by taking into account the current imaging

protocol and room layout. Our latest radiation simulation approach exploits the

computing capabilities of GPUs to achieve quasi real-time performances. Also,

novel simulation strategies based on approximations of the behavior of scattered

radiation have been introduced to further reduce simulation time, while maintaining

the simulation’s accuracy.

❼ AR visualization methods to provide in-situ visual feedback about information

related to radiation safety have been introduced. These can also be applied to teach

intuitively about the diffusion effects of radiation. Our visualization approaches

enable a user to visualize in an intuitive manner the current patient and staff

dose, along with the 3D distribution and intensity of scattered radiation. To our

knowledge, this is the first work demonstrating the use of augmented reality to

make ionizing radiation visible in a hybrid OR.

❼ A mobile AR visualization system relying on a new camera relocalization approach

based on multiple RGBD cameras has been proposed and evaluated in a clinical

scenario. For such an evaluation, a large multi-RGBD camera dataset7 providing

the ground-truth pose of a camera moving inside an operating room was generated.

To the best of our knowledge, this is the first dataset for mobile AR/camera

relocalization evaluation recorded in an OR. This dataset has been made publicly

available online.

❼ An approach to optimize the pose of an angiographic C-arm in order to reduce the

exposure to radiation of staff and patient, while also preserving the visibility of

the targeted anatomical structure in the outcome image has been introduced. It is

based on the optimization of a cost function we have proposed to model the overall

radiation exposure in the considered scenario.

7A complete description of this publicly available dataset can be found in appendix B.
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❼ Validations of our radiation simulation approaches and of our C-arm pose optimiza-

tion method have been performed through extensive dose measurements acquired

in clinical conditions using a robotized X-ray imaging device. Such experimental

results showed that the error between the dose measured under different irradiation

protocols and the dose simulated with our approaches is in agreement with the in-

trinsic error of the dosimetric system we use. Moreover, dose measurements allowed

us to verify that the C-arm poses recommended by our optimization approach

achieve a real decrease in the potential exposure of a clinician in the scene.

❼ A prototype radiation awareness system for providing in-situ visual feedback of

radiation inside a hybrid OR has been developed and has been demonstrated to

our clinical and industrial partners. It relies on a framework for perceiving and

modeling the lay-out of the OR, composed of multiple registered ceiling-mounted

RGBD cameras. Such a framework is also used to keep track of the X-ray device

configuration and/or of the positioning of equipment and clinicians in the room,

since this is relevant information that must be considered in the computation of

radiation propagation.

The work carried out in this thesis can contribute to improve the monitoring of

the exposure of clinical staff and patient to ionizing radiation. Intraoperatively, these

approaches can assist the radiographer in adjusting the positioning of the imaging device to

reduce patient and staff dose. Postoperatively, they can help improving the understanding

of radiation propagation and help making the workflow of X-ray guided procedures safer

in terms of radiation exposure. This can be particularly useful for radiation safety

officers, for helping them recommending corrective actions and identifying radiation

safety problems in their organizations. Furthermore, several methods herein proposed

can be applied to develop a tool to teach trainees about the effects of the different

parameters affecting radiation propagation. We hope that the novel approaches proposed

in this thesis can help increasing the acceptance of X-ray imaging devices and rendering

the benefits of MIS accessible to a wider population.

1.4.3 Outline

This dissertation is organized in three parts. The first part introduces the medical context

and motivations of this work (chapter 1). It also includes a literature review of both

commercially available systems and works carried out by the research community to

improve radiation safety in X-ray guided procedures (chapter 2).

The second part contains the main body of the dissertation. Chapter 3 describes the

framework for perceiving and modeling the lay-out of the OR that we have developed,

which relies on multiple registered ceiling-mounted RGBD cameras. Chapter 4 introduces

our approaches for simulating with Monte Carlo methods the propagation/intensity of

scattered radiation along with the dose to patients and medical staff. It also presents

evaluations to assess their performances in terms of accuracy and speed. Then, chapter

5 describes the different visualization methods we have developed to provide in-situ
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visual feedback about current radiation exposure. The combination of the approaches

outlined in chapters 3, 4 and 5 has led to works published in [Loy Rodas 2014,Loy Ro-

das 2015a,Loy Rodas 2015b,Loy Rodas 2017a,Loy Rodas 2018a,Loy Rodas 2018b], to a

book chapter submission [Loy Rodas 2018c] and to a patent application [Padoy 2014]. Fur-

thermore, chapter 6 presents our X-ray imaging device’s pose optimization approach for

recommending a configuration reducing patient/staff dose while maintaining the clinical

quality of the output image. Such an approach has been published in [Loy Rodas 2017b]

and has also led to a recent patent application [Padoy 2017].

Finally, the third part of this thesis concludes this work by first discussing existing

and potential clinical applications of the proposed approaches in chapter 7. Then, a

summary of this dissertation is provided in chapter 8, along with discussions about

directions for future work.

21





2 Systems for improving radiation

safety: Related work

Learn as much as you can from those who know more than you do,

who do better than you, who see more clearly than you.

– Dwight Eisenhower

Figure 2.1: Toshiba’s Dose Tracking System [Rana 2013,Kuhls-Gilcrist 2017] for the
visualization of the cumulative skin dose distribution overlaid over a patient’s generic
model during X-ray imaging.
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Chapter Summary
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Radiation safety in X-ray guided interventions is crucial for patient care quality

assurance as well as for the safety of physicians chronically exposed to scattered radiation

on a daily basis. As presented in the previous chapter, exposure, even to low doses of

radiation, is accompanied by a risk of negative biological effects that can lead to the

appearance of cancers. Large-scale efforts have been made to develop methodologies for

improving radiation safety standards, optimizing the working procedures with respect

to radiation protection, improving the knowledge on radiation behavior, optimizing the

use of conventional protective measures, and devising new kinds of measures to reduce

the exposure of patient and staff. Therefore, a large variety of works can be found in

the literature looking to contribute to the effort of improving radiation protection in the

OR. In this section, we review the ones which are the most relevant in the context of

this thesis. We first review systems developed by companies and which have been made

commercially available or have been implemented in modern imaging devices (section

2.1) for monitoring and/or reducing radiation exposure. Then, in section 2.2, we discuss

other works carried out by the research community showing potential to become future

clinical applications.
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2.1 Commercially available systems for monitoring and/or

reducing radiation exposure

We hereby review several commercial systems for monitoring radiation doses and reduce

the exposure of staff and patient. For assessing the patient’s dose, besides the standard

dose metrics provided by modern fluoroscopic imaging systems, other more comprehensive

dose tracking solutions have been developed. To reduce occupational exposure, online

dose monitoring systems are starting to gain popularity and to make their way into the

interventional rooms. Moreover, robotized systems are now available enabling clinicians

to perform some X-ray guided surgical tasks remotely, namely far from the irradiated

areas.

2.1.1 Patient’s exposure

International radiation protection commissions (e.g. ICRP) have emphasized the impor-

tance of monitoring patient skin dose during and after fluoroscopically guided interventions.

This is important in order to predict the likelihood and severity of negative effects and

also to identify which patients may require follow-up for the detection of possible skin

injuries [Kwon 2011]. Historically, fluoroscopy time has been used as an indication for

clinical radiation dose management, often in conjunction with a count of the number of

performed acquisitions. Some interventional imaging equipment include a five-minute

fluoroscopy timer that emits an audible alert for increasing awareness to the amount

of fluoroscopy used during the course of a procedure [Kuhls-Gilcrist 2017]. Today’s

state-of-the art imaging devices provide a multitude of dosimetric indications, such as

the reference air kerma (RAK1) or the DAP, to assess the current levels of ionizing

radiation delivered. Both DAP and RAK are actually surrogate measures of the amount

of energy/dose delivered to the patient in the current imaging conditions [Kwon 2011].

However, the accuracy of these metrics can be limited because of the following reasons.

First, they consider radiation dose as if it occurred at a single point in space, hence,

changes in the table’s position and C-arm angulation, which tend to distribute the dose

across the patient’s skin surface, are not considered [Kuhls-Gilcrist 2017]. Second, RAK

is computed at the patient’s entrance reference, which is always considered to be 15 cm

away from the X-ray source. Thus, such an estimation may not correspond to the actual

position of the patient’s skin. Third, these metrics are measured free-in-air, namely

they do not take into account attenuation and scattering effects of the patient table and

mattress or tissue absorption and backscatter effects [Kuhls-Gilcrist 2017].

Therefore, imaging device’s manufacturers have proposed patient dose assessment

systems to provide a more precise monitoring of the cumulated patient dose during a

procedure. For instance, Toshiba’s Dose Tracking System [Rana 2013,Kuhls-Gilcrist 2017]

allows to visualize in real-time the estimated accumulated dose deposited on the patient’s

skin during image acquisition. Such a system calculates the intraoperative radiation dose

1More information about radiation dose metrics such as RAK and DAP can be found in appendix A.3.
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to the patient’s skin by acquiring exposure and geometry parameters (beam orientation,

table height and position, tube tension...) directly from the imaging device. Then, a color-

coded graphic representation of the cumulative skin dose distribution is overlaid over a

patient’s model (manually chosen from a set of generic human models). The visualization

interface is shown in figure 2.1. The cumulative dose and dose rate are computed

using the exposure parameters from the imaging device and an exposure calibration

data file. The latter is generated beforehand through measurements performed with

an ionization chamber [Rana 2013]. Each implementation of the system is thereby

calibrated on-site, and the skin dose estimation under typical clinical conditions can be

estimated within a range of ± 20 % [Kuhls-Gilcrist 2017]. Similarly, GE HealthCare’s

DoseMap [Bordier 2014] is a system integrated to GE’s X-ray angiographic systems,

for visualizing in real-time the estimated accumulated dose deposited on the patient’s

skin during an exam. The patient’s shape is approximated as a cylindrical envelope

computed from patient data input by the user. A ray tracing approach is applied to

determine the points of the envelope intersecting with the X-ray beam. Then, the local

dose is estimated using the air kerma value provided by the imaging device, by applying a

distance correction factor (estimated X-ray source to patient distance) and a backscatter

factor (to account for the backscatter from the patient and attenuation effects from

the table). Such a backscatter factor is determined from experimental measurements

performed beforehand on a phantom. As reported in [Bordier 2014], this method has

been shown to have an accuracy within 25 %.

While such systems help assessing the patient’s exposure and limiting overexposure

risks, they do not provide precise skin and organ dose measurements. Indeed, the dose

calculations do not consider the real room context, operators’ positions and patient

parameters. They are either based on estimations provided by the imaging device (e.g.

DAP) or rely on calibration files generated experimentally beforehand.

2.1.2 Occupational exposure

2.1.2.1 Real-time staff dose assessment

The traditional film and TLD are passive dosimeters measuring the accumulated dose

over time. Hence, they cannot provide an assessment of the ongoing exposure of staff

during a procedure. This is why recently introduced active personal dosimeters (APD),

which are capable of immediate dose measurement, have been received with great interest

among clinicians. For instance, the RaySafe i2 [RaySafe 2017] personal dosimeters

enable the monitoring of personal dose equivalent (Hp(10)) in real-time when worn

by the staff during an intervention. Furthermore, in-room qualitative feedback of the

current dose rate (dose/second) is provided through color-coded bars shown in a screen

to give each user insight about his/her current exposure. The accumulated dose per

user is also captured and displayed, and all measurements are saved with time-stamps

for offline analysis. Through a partnership with Philips Healthcare, such a system has

been integrated to the DoseWise Portal software [Philips 2017b], a web-based solution
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that collects, analyzes and reports patient and staff radiation exposure. Such a system

automatically registers patient and staff dose for each procedure by combining radiation

dose structured reports from the X-ray system, containing data such as the DAP and

acquisition type, with the real-time staff dose measurements from the APDs [Sailer 2017].

This enables a comprehensive dose analysis, which can help finding correlations between

the patient/staff dose and the type of procedure for improving radiation safety practices.

Despite the possibility of assessing dose in real-time, the use of APDs for the legal dose

record after interventional procedures is not recommended and the reference personal

equivalent dose must still be given by a passive dosimeter [Clairand 2011]. Indeed, because

of their semiconductor-based construction, active dosimeters are angle-dependent and

measurements can vary up to ±30 % within a ±50◦ range. As a part of the ORAMED

project [ORAMED 2011], the performance of APDs was evaluated against the traditionally

used passive dosimeters under different clinical setups, and the results showed that the

APD response is roughly within ±30 % of the TLD measurements [Struelens 2011].

Because of such a variability in the dose estimations, additional studies or new technical

developments are recommended in the literature [Struelens 2011] before officially adopting

APDs for assessing occupational exposure in clinical practice. Additionally, as mentioned

in section 1.2.1.3, a clinician’s exposure can significantly vary from one body-part to

the other [Nikodemová 2011], especially for the body areas closer to the irradiation field.

Hence, providing a complete picture of the full body exposure of a practitioner solely

by means of dosimeters would be unpractical due to the need of wearing a multitude of

them on various parts of the body.

2.1.2.2 Staff exposure reduction

Interventional practitioners cannot avoid being exposed to radiation since they are obliged

to remain next to the patient while performing any X-ray guided surgical task. For this

reason, tele-operated assistance systems have been introduced as an alternative to enable

clinicians to remotely carry out parts of the procedure. By driving the clinician away

from the patient, his/her exposure to scattered radiation is significantly reduced. We

hereby present several commercially available systems for this purpose.

Catheter ablations are the standard IC procedures for treating various kinds of cardiac

arrhythmias [Nguyen 2010]. Such procedures require a precise catheter manipulation

inside the vascular system and cardiac chambers, which is performed under prolongated

fluoroscopic guidance [Proietti 2013]. This results in significant X-ray exposure for both

patients and medical staff. Therefore, remote navigation systems have been recently

developed and some of them are commercially available. The use of such systems allows

operators to maneuver the catheters inside the cardiovascular system with enhanced

precision from a remote workstation [Nguyen 2010]. Hence, not only their exposure to

radiation is dramatically reduced, but they can also be relieved from the orthopedic burden

of wearing lead aprons. For instance, the Niobe system from Stereotaxis [Stereotaxis 2017]

allows to remotely operate a magnetically-enabled catheter through magnetic forces

generated by two large permanent magnets positioned on each side of the patient’s
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(a) Niobe system from Stereotaxis [Stereo-
taxis 2017].

(b) Magellan Robotic system [Hansen Medi-
cal 2017a].

Figure 2.2: Commercially available tele-operated navigation systems for interventional
procedures.

body [Nguyen 2010]. These large magnets are visible in figure 2.2a. Using joysticks,

the surgeon can manipulate the motion of the catheter tip thanks to variations in the

orientations of the magnets altering the magnetic field. Studies have reported that the

use of this system for electrophysiology procedures such as atrial fibrillation ablation,

significantly reduces the incidence of surgical complications and decreases the time

the patient is exposed to fluoroscopy [Proietti 2013]. Similarly, the Sensei Robotic

System [Hansen Medical 2017b] from Hansen Medical is a robotic navigation device

which also allows an operator to precisely manipulate a catheter while being comfortably

seated at a remote workstation [Kaplan 2013]. The system performs catheter navigation

through steerable sheaths, where any conventional catheter can be inserted, and these

are manipulated via a pull-wire mechanism by a robotic arm fixed at the operating

table [Nguyen 2010]. Hospital trials have reported a 35 % reduction in radiation time when

using the Sensei system in electrophysiology procedures and also a decrease in procedure

time [Kaplan 2013]. With a similar construction, Hansen Medical also introduced the

Magellan Robotic system [Hansen Medical 2017a] intended for tele-operated catheter

navigation in peripheral vessels for endovascular procedures. Its remote-control panel

is shown in Figure 2.2b. Besides electrophysiology and endovascular procedures, robot

assistance systems for Percutaneous Coronary Interventions have also been developed

and are now commercially available. Indeed, the CorPath GRX system by Corindus

Vascular Robotics [Corindus 2017] enables a robotic-assisted control of coronary guide

wires, balloons and stents with millimetric precision. As the devices mentioned before,

the CorPath GRX is composed of a bedside unit, consisting of an articulated arm, the

robotic drive, and a single-use cassette in which wires, balloons, and stents are loaded,

and a remote workspace surrounded by a radiation shield [Maor 2017]. From there,

the operator can control and manipulate guide wires, balloon, and stents using a set of

joysticks and touch screens, while being protected from scattered radiation.
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2.2 Research projects for improving radiation safety

The research community has also proposed a large variety of methodologies and systems

for better understanding, assessing and decreasing medical ionizing radiation. We dedicate

this section to review relevant works on this topic. For the clarity of the presentation,

we classify them into two categories. We make a separation between the works looking

to reduce radiation exposure in an active way, namely lowering the doses by having some

influence on the imaging process, from others addressing this issue in a passive manner,

i.e. by helping to improve the awareness and/or understanding of radiation propagation.

2.2.1 Systems enabling an active reduction of radiation exposure

We hereby present research projects proposing systems for reducing radiation exposure

by actively influencing the X-ray guided procedure. Indeed, enabling surgical staff to

perform an X-ray guided gesture away from the patient (thus far from scattered radiation)

is an example of an active influence on the procedure’s execution allowing to decrease

radiation dose. Some examples of research prototypes developed for this purpose are

discussed below. Moreover, a second example of an action during a procedure that yields

a decrease in radiation dose is the reduction of the needed amount of X-ray acquisitions

or fluoroscopy time. Hence, in section 2.2.1.2, we study systems which aim at achieving

this by improving the visualization and guidance during an intervention.

2.2.1.1 Robotized surgical assistance

Similarly to the systems presented in section 2.1.2.2, the medical robotics research

community has been actively working on robotized assistance devices enabling clinicians

to carry out complex surgical tasks, which are usually performed under X-ray guidance, in

a remote manner. The design of such devices targets a particular task, and, this is why a

multitude of such robotic assistance systems can be found in the literature. For instance,

vertebroplasty is the standard interventional procedure to treat vertebral fractures by

injecting bone cement into the vertebral body. The cement injection phase is a crucial

part and is carefully performed under fluoroscopic guidance in order to avoid cement

leakage, damage to the vertebrae and other complications. Therefore, in order to lower

the exposure of radiologists performing such procedures, a tele-operated cement injection

device was proposed in [Lepoutre 2016], enabling them to carry out the procedure from

a console outside the irradiated area. A key aspect of the system is that force feedback

is provided through the master console, allowing the clinician performing the injection

to supervise the viscosity of the cement and to minimize the risk of leakage. In the

same way, percutaneous needle insertion is also a complex surgical task performed under

fluoroscopic guidance. Whereas a commercially available system enabling to perform

needle grasping, insertion and manipulation in a tele-operated way cannot be found yet,

a prototype system for achieving such tasks has been proposed by [Piccin 2016]. Such a

system has not yet been demonstrated in clinical practice, still, it is a promising advance

towards enabling surgeons to perform percutaneous needle insertion and manipulation
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while avoiding radiation exposure. Similarly, in orthopedic surgery, minimally invasive

joint fracture treatment requires a careful fracture manipulation which is performed

under fluoroscopy. Robotized fracture manipulators have been developed [Dagnino 2017]

to enable surgeons to perform fracture reduction procedures from a workstation, which

can be placed away from the irradiated area.

The development of complex tele-operated robotized devices targeting specific surgical

gestures is a possible path in order to decrease radiation exposure. However, this is

technically complex and may not be possible to achieve in a near future for all kinds of

tasks performed today under X-ray guidance.

2.2.1.2 Enhanced surgical guidance

X-ray imaging and fluoroscopy provide a visualization of the body’s inner anatomy,

which is crucial for properly guiding a catheter or a needle to a target in MIS. However,

nowadays AR can also be used to provide an enhanced visualization of a patient’s inner

anatomical structure. Several works can be found in the literature where, by facilitating

the surgical navigation through an enhanced non-irradiating visualization, the amount

of performed X-ray shots and/or the fluoroscopy time are reduced. As a consequence,

the exposure to radiation of both patient and staff can be significantly lowered. For

instance, [Müller 2013] and [Seitel 2016] propose to use AR to facilitate the navigation

during percutaneous needle insertion. They rely on a registration of a preoperative

patient’s CT model to the user’s viewpoint, which is achieved either by means of fiducial

markers [Müller 2013] or by using the depth data from an RGBD camera and surface

matching algorithms [Seitel 2016]. Information such as the insertion trajectory or the

target’s position can be overlaid onto a video stream serving as guidance visualization

during the needle insertion. Figure 2.3a shows the setup from [Seitel 2016], where the

navigation system is used for a percutaneous needle insertion during a porcine trial.

Similarly, fluoroscopy guidance is crucial during orthopedic and trauma surgery to guide

joint replacements or for the treatment of fractures. To facilitate guidance during such

procedures, [Navab 2010] propose to augment a mobile angiographic C-arm with a

video camera and mirror construction, since this enables to have a direct overlay of

the X-ray images over the video stream. After a calibration procedure [Chen 2013],

such a design enables both the camera and the X-ray source centers to be virtually

aligned, and therefore to provide a precise X-ray and video overlay to perform AR-guided

fluoroscopy. The system setup and examples of augmented clinical images can be seen

in figure 2.3b. Augmenting X-ray images with coregistered live video helps surgeons to

intuitively depict the spatial relations between patients and medical images. Studies

have reported that such an intuitive intraoperative overlay allows surgeons to reduce the

number of X-ray acquisitions performed, and thereby radiation exposure, for orthopedic

and trauma procedures and for several clinical tasks such as skin incision, entry point

localization and X-ray device positioning [Navab 2012,Chen 2013]. Also, clinicians can

see in the augmented image whether their hands are directly in the imaging area, so

that they can move them away during the X-ray or fluoroscopic image acquisition and
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thereby avoid being exposed to primary radiation. However, since the video camera

and the X-ray source are placed on the same side and the optical view of the real

scene must be captured from the top in order to see the patient and the surgical site,

the system requires the X-ray source to be positioned above the patient table. As

explained in section 1.2.2, such a configuration highly exposes surgical staff to scattered

radiation. To cope with this, [Wang 2016] propose to mount an RGBD camera to the

image intensifier of the C-arm instead. Then, after a calibration procedure, an inverse

visualization approach is applied to visualize the X-ray images over the reconstructed

3D data from the camera when the device is in undercouch position. Augmenting a

C-arm with an RGBD camera was also proven to be useful to improve the quality of

Cone-Beam Computed Tomography (CBCT) by capturing and incorporating surface

information from the patient into the reconstruction process [Fotouhi 2017]. The RGBD

sensor is also used to track and correct the reconstruction from any rigid movement in

the scene. As reported in [Fotouhi 2017], such an approach enables to perform CBCT

reconstructions with fewer X-ray projections and to avoid repeated scans by correcting

accidental patient movements, hence contributing to reduce radiation exposure.

(a) Navigation system for guiding percu-
taneous needle insertions proposed in [Sei-
tel 2016] during a porcine trial.

(b) CamC: the upper images show the sys-
tem’s setup and the lower ones the aug-
mented visualization [Navab 2012].

Figure 2.3: Examples of systems providing an enhanced visualization to improve surgical
guidance and reduce radiation exposure.
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2.2.2 Systems to understand, teach and/or increase awareness to radi-

ation exposure

2.2.2.1 Assessing radiation through computer simulations

In clinical practice, dose levels are affected by a large number of parameters that change

simultaneously. Assessing the influence of each of them separately cannot be achieved

solely by means of dose measurements [Koukorava 2011]. Also, modeling of X-ray photon

propagation and interaction with matter is heavily complex and not possible to achieve

analytically. Therefore, computer simulations are a valuable tool to describe the transport

of ionizing radiation since they are inexpensive, safe and can provide information that

would be almost impossible to measure experimentally.

The theoretical study of radiation transport problems is based on the Boltzmann

Transport Equation, equation devised in 1872 initially to describe the diffusion of gases

from a statistical mechanics viewpoint. X-ray particle transport can be considered as

a special linear variant of the Boltzmann equation [Razani 1972]. Essentially, it is an

integrodifferential equation that is a restatement of the equation of continuity in terms

of radiation transport and can only be solved analytically in simple and semi-finite

geometries. However, probabilistic (stochastic) solutions can be found to approximate

the radiation transport problem, and there is general agreement that the Monte Carlo

(MC) method is the most accurate computational approach currently available for this

purpose [Razani 1972,Badal-Soler 2008]. The physical process of particle transport is

described by the Boltzmann equation and the MC methods are used to describe random

walks of particles [Razani 1972]. A detailed Monte Carlo simulation can in fact yield

the exact solution to the transport equation for a given interaction model and within

the statistical uncertainty inherent to the method [Badal-Soler 2008]. Such a simulation

is based on a random sampling of a large number of independent particle tracks (or

histories) and in the subsequent estimation of certain quantities of interest obtained by

averaging the contribution from each history. For a sufficiently large number of histories,

the statistical uncertainty of the approximation is significantly reduced, and for this

reason MC simulations typically require the computation of a huge number of histories

and, thus, long execution times. Several general-purpose Monte Carlo codes have been

developed and have been extensively applied for medical physics’ applications, such

as PENELOPE [Baró 1995], MCNPX [Pelowitz 2005] and Geant4 [Agostinelli 2003]

(further described in chapter 4). To cope with the long computational times associated

with MC methods, frameworks relying on GPU-accelerated computations such as MC-

GPU [Badal 2009] and GGEMS [Lemaréchal 2015,GGEMS 2017] (further described in

chapter 4) have also been introduced.

MC simulations have been largely applied in the last decades in the fields of radiation

therapy, dosimetry and radiation protection. In radiation therapy, MC simulations enable

to compute the optimal positioning of radioactive seeds in order to treat tumors while

sparing healthy tissue [Lemaréchal 2015]. Furthermore, even though the ORAMED

project [ORAMED 2011] gathered extensive dose data during various types of IR/IC
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procedures in several hospitals in Europe, it was only through MC simulations that a

thorough study of the influence of the many parameters affecting radiation dose could be

performed. In [Koukorava 2011], extensive simulations using the MCNPX [Pelowitz 2005]

framework were carried out while varying parameters such as the imaging device’s

angulation and the operators’ positions (modeled as anthropomorphic phantoms). Such

a study enabled the authors to provide specific guidelines concerning the radiation

protection of the occupationally involved personnel in interventional procedures. A

similar setup is applied by [Principi 2016] to study the variation of eye lens exposure for

changing operator position, height and body orientation with respect to the patient and

the X-ray tube. The results were applied to devise practical recommendations to reduce

eye lens dose for interventional practitioners, such as the statement that a rotation of

the head of 30◦ away from the tube can reduce the eye lens dose by approximately 50

%. In the same way, [Santos 2015] study the effect of the beam angulation and the use

of lead protections on the exposure of patient and staff through MC simulations. The

reported results highlight the fact that when the X-ray source is located above the table,

more scattered radiation reaches the middle and upper portions of a physician’s trunk,

where most of the radiosensitive organs are located. Recently, [Alnewaini 2017] proposed

an approach to simulate the distribution of scattered radiation by using MC methods

to compute the scatter generated by the patient, table, ceiling and floor. The exposure

of a clinician to such a scatter is simulated by projecting the scattered particles into a

cylinder placed at different positions around the table. To speed-up the computations,

the scattered particles’ properties are pre-computed and saved into files for a given room

setup. As expected, the results consistently show that a clinician is highly exposed when

standing close to the X-ray source.

Computer-based simulations are indeed an important tool to provide useful information

regarding radiation safety in a safe manner. While such recommendations can be useful

for clinical staff to learn about the best practices to reduce radiation exposure, it can be

difficult to keep them in mind while performing the procedure at hand, which requires

their full attention.

2.2.2.2 Virtual training systems

Since training with real radiation is dangerous and thereby prohibited, current radiation

safety teaching is usually based on courses, videos, lectures and presentations of theoretical

aspects rather than hands-on training [Katz 2017a]. A review about simulation-based

training in radiology [Desser 2007] concluded that it will play an increasingly important

role in procedural training in the future and that IR promises to be the radiologic

subspecialty in which simulators will have the biggest impact. Several computer-based

training systems have been introduced since, looking to help improving education on

C-arm operation and minimizing radiation exposure on interventional procedures. Two

relevant examples of such systems are discussed below.

VirtX [Bott 2009,Bott 2011] is a computer-based training system designed to teach

trainees the skills needed to obtain X-ray images of sufficient quality for the surgical
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situation in as short a time as possible and with a minimal level of radiation exposure.

The system’s user interface (shown in figure 2.4a) presents the trainee a 3D scene of

an OR, where he/she can set the positioning/adjustment of interactive models of a

C-arm, patient, and table. Simulated digitally reconstructed radiographs (DRR) are

displayed to provide visual feedback about the image which would be obtained in such

a scenario. This offers trainees the opportunity to practice different C-arm adjustment

tasks from the daily operation workflow in a virtual environment with no X-ray exposure.

By using an electromagnetic tracking system with sensors mounted on the radiation

source of a real C-arm and on a patient manikin, the system can also be used to train

inside an OR [Bott 2011]. Moreover, the corresponding intensity and distribution of

scattered radiation can also be displayed through a color-coded visualization, which is

visible in figure 2.4a. This enables the trainee to understand the effect that altering the

room configuration has on the behavior of scattered radiation. MC methods are applied

to simulate the propagation of scattered radiation. The initial approach, described

in [Wagner 2009], relied on the Geant 4 toolkit [Agostinelli 2003] to simulate the X-ray

particles’ propagation and interaction on a simplified modelization of a user-defined OR

scene. While in [Wagner 2009] the simulation times were too long for an application

during interactive lectures (up to several minutes), an extension applying GPU-accelerated

calculations was presented in [Wagner 2012]. Such an approach enabled to reduce the

simulation times up to a few seconds, which was deemed acceptable for an interactive

course. The virtX system was evaluated amongst OR personnel in [Bott 2009], where

75 % of the 77 participants agreed that their understanding of the effect of the position

of the image intensifier on scattered radiation was improved thanks to the qualitative

visualization of X-ray distribution. However, to the best of our knowledge, the results of

the simulation framework and the visualizations have not been validated experimentally

yet. Also, the position of the physician is not taken into account and the system is rather

designed to be used as an offline training tool. Even if the possibility of training inside the

room using sensors is mentioned in [Bott 2011], it would be challenging and unpractical

to track by means of sensors every operator and medical equipment in the room that

could have an effect on radiation propagation, and then incorporate this information into

the radiation simulation.

Recently, [Katz 2017a,Katz 2017b] introduced a different kind of simulator for teaching

good practices to interventional cardiologists for reducing their exposure to ionizing

radiation. A low-fidelity simulator built around the “Wizard of Oz” concept is proposed,

namely where a human trainer controlling and supplying online feedback is incorporated

into the training process. Through a user interface (shown in figure 2.4b), the user

chooses among different pre-set C-arm configurations and acquisition parameters, and the

information console then displays current and cumulative radiation exposure dose values

of patient and operator (dose to the head and torso). Such estimations are computed using

data obtained beforehand from multiple dose measurements using phantoms. Prediction

models are calculated from the experimental data, which are later applied by the simulator

to compute the displayed dose values. The system is evaluated by means of a knowledge
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exam given to 20 interventional cardiologists in [Katz 2017a,Katz 2017b], and the results

suggest that their knowledge on radiation exposure improves after simulator training.

The authors highlight that simulator training improves knowledge on the distribution

and behavior of scattered radiation and teaches the users methods to reduce radiation

scatter during a procedure.

(a) User interface of the virtX training sys-
tem [Wagner 2012]. The simulated scattered
radiation for the current user-defined imag-
ing and scene configuration is shown.

(b) Simulator training system proposed by
[Katz 2017b]. The patient and staff dose are
displayed for several pre-set C-arm configu-
rations.

Figure 2.4: Examples of computer-based training systems to teach about C-arm operation
and radiation exposure.

Simulators are an interesting alternative to teach about radiation safety since they

provide an engaging game-like learning environment and are risk free for both patients

and doctors. Additionally, simulations enable immediate feedback to maximize learning

and minimize the introduction of errors. However, virtual simulators are meant to be

used outside the operating room and they cannot cover every possible scenario that could

take place during a real intervention. In this thesis, we propose instead to use AR to

teach about radiation protection in order to bring the training inside the operating room,

allowing trainees to learn in real clinical conditions. Providing in-situ visual feedback

about current exposure can have a stronger impact on increasing clinicians’ awareness

and understanding of scattered radiation.

2.2.2.3 Computational systems for increasing radiation awareness

Studies evaluating radiation awareness have reported a considerable proportion of unnec-

essary exposure and risk underestimation resulting from a lack of awareness and poor

knowledge on radiation behavior [Katz 2017a]. [Picano 2013] highlights the fact that

the practice of IC is sometimes accompanied by a sub-optimal perception of radiation

risk and by negligent use of radiation protection tools. This is partially due to the

invisible nature and complex behavior of ionizing radiation. However, an appropriate

feedback of the current distribution of scattered radiation can increase the awareness of

clinical staff and reduce the risk of overexposure. To this end, computer-based systems
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combining radiation simulation, person tracking and visualization of radiation in virtual

environments have been developed. We hereby present some examples of such systems

which have settled the foundations for the work performed in this thesis.

[Ladikos 2010] presents a system to sensitize physicians and allow them to review

their radiation exposure after a procedure. A radiation simulation framework using Geant

4 [Agostinelli 2003] is used to simulate scattered radiation and the results are displayed

as a color-coded heat map overlaid over a 3D mesh representation of a person’s shape. 16

optical cameras mounted on the ceiling are used together with a background subtraction

and shape-from-silhouette approach to reconstruct and track the 3D mesh of a person.

The position of the C-arm is determined offline and the distribution of radiation in the

environment is computed by placing detector spheres around the scene in the simulation

and registering the energy of the particles which fall onto them. Such an irradiation

volume is pre-computed and is later composed with the tracked physician’s mesh in

order to accumulate the radiation received by each vertex and, by interpolation, the

radiation received by the whole mesh. As shown in figure 2.5a, the exposure of a person

moving around the room can be visualized this way. While this work has introduced the

concept of visualizing the radiation risk overlaid on a person, the simulations neither

take all parameters of the scattered radiation production nor the room configuration

into account. For instance, the simulation model does not include the operating table

which also affects the scattered radiation distribution. The real X-ray source parameters

(peak kilovoltage, filtration, field-of-view) are not fully considered, and results are shown

for a single C-arm configuration only. The validity of the proposed visualizations is also

not verified experimentally. Moreover, the system is not designed for intraoperative use.

Such a tracking approach based only on color images would not always be possible in a

real interventional scenario since many procedures are carried out with the lights off for

a better visibility of the X-ray images displayed on the screen. The dynamic nature of

that environment along with the possible multiple occlusions would also be a challenge

for the background subtraction approach and for the precise mesh tracking required by

the proposed visualization.

Similarly [Badal 2013] propose a patient/staff dose monitoring system combining

GPU-accelerated Monte Carlo simulations along with person tracking using a single

depth camera. Tracking is performed with the OpenNI library [OpenNI 2013]. The

MC-GPU [Badal 2009] simulation code is used to estimate the dose distribution on

the skin and the internal organs of both the patient and the medical staff, modeled as

computational phantoms. The imaging parameters (kVp, filtration, collimation, gantry

position and angulation) are manually input by a user to the system’s interface, and the

depth-camera tracking provides the centroid and orientation of the tracked person. A

generic phantom of a standing human is introduced at that location within the simulation

model. Then, the simulations are launched and the patient and operator’s dose are

computed in a few seconds (when simulating in parallel on 14 GPUs). The paper describes

the underlying computer architecture and communication protocols that enable fast

parallel computations, but without providing details about the radiation simulation
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model and the parameters used. Furthermore, it shows only a single tracking result from

OpenNI for a person standing in an office. Therefore, it is unclear whether the results,

computed for four different locations of the person in a room, are obtained in a real

interventional room with a camera or solely in a virtual environment by adjusting the

phantom’s positions in the simulation model. The presented results are similar in nature

to the simulations using virtual phantoms placed at femoral and radial access from the

ORAMED project [Koukorava 2011]. These are displayed offline overlaid to a phantom

in a virtual visualization. The simulation considers realistic irradiation parameters, yet,

the results have not been validated with real dose measurements and the system has not

been demonstrated in a real interventional environment.

More recently, [Leucht 2015] applied a similar pipeline with the aim of providing a

visualization of the staff body-part radiation exposure by means of AR. The proposed

approach relies on two RGBD cameras physically mounted to a mobile C-arm, which are

used to capture and model the scene. One of the cameras is facing the table for modeling

the patient’s size and shape as a volume. The second camera, which faces the scene and

has a better view of the surgeon, is used to approximate the surgeon’s shape through a

background subtraction approach. A simulation built using Geant 4 [Agostinelli 2003] is

applied to compute the 3D radiation distribution, by incorporating the scene information

provided by the cameras. As shown in figure 2.5b, the simulation results are shown by

coloring the surgeon’s tracked shape on the point cloud obtained from the RGBD data.

The skeleton tracking approach from OpenNI [OpenNI 2013] is used to accumulate the

simulated dose at the estimated surgeon’s body-joints positions (shown as pink spheres

in figure 2.5b). The simulation results are verified experimentally by comparing them

to measurements obtained from a dosimeter. However, such an experimental validation

was performed for a single configuration of the C-arm, namely no angulation or imaging

parameters were changed. Furthermore, mounting cameras to the C-arm’s detector for

tracking the patient and operator only works for a PA configuration, namely when the

source is under the table. A rotation of the C-arm would render the scene invisible for

the cameras. Moreover, in clinical practice, the view of such cameras may be occluded

by medical equipment or ceiling-suspended shields.

2.3 Thesis positioning

Exposure to ionizing radiation is accompanied by an inherent risk of negative biological

effects that can lead to the appearance of cancers. As reviewed in this chapter, large-

scale efforts have been made to improve current radiation safety standards, to increase

the understanding of radiation behavior, to optimize the use of radiation monitoring

systems, and to develop new systems to reduce the exposure of patient and staff. Indeed,

we have listed a large variety of commercially available systems and works from the

research community, all aiming at improving the overall radiation safety during procedures

involving X-ray radiation. We summarize below several key points from this review that

should be highlighted to illustrate the relevance of the work presented in this thesis.
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(a) System proposed by [Ladikos 2010] to
visualize radiation exposure overlaid over a
3D mesh representation of a person’s shape.

(b) Visualization of a surgeon’s body radi-
ation exposure from the system proposed
in [Leucht 2015].

Figure 2.5: Systems for providing feedback of radiation exposure for increasing clinicians’
awareness.

Current monitoring of the patient’s and staff’s radiation exposure is either based on

dose metrics provided by the X-ray imaging device (e.g. DAP), or on the use of dosimeters

to measure radiation dose. However, the accuracy of the estimations provided by the

imaging device are limited since they are based on assumptions such as the position of the

patient, and are measured free-in-air. Hence, they do not take into account attenuation

and/or scattering effects. Furthermore, since the exposure per body-part of a clinician

can significantly vary, especially for the parts closer to the irradiated area, assessing a

person’s full-body exposure by means of dosimeters is hard. In this thesis we propose to

simulate the X-ray propagation by considering the real OR context, namely the device’s

configuration along with the patient and clinicians’ positions. If a preoperative patient

model is available, our radiation simulation approach allows the computation of precise

organ and tissue dose values, which can complement the information provided by current

patient dose monitoring systems. On the staff’s side, we propose to combine our radiation

simulation with a clinician tracking approach to assess a person’s full-body exposure,

thereby complementing the information provided by the dosimeter worn at chest level.

We also reviewed in this chapter systems enabling to actively reduce radiation

exposure. Several tele-operated robotized assistance devices now allow surgical staff

to perform an X-ray guided gesture removed from the patient (thus far from scattered

radiation). However, these are designed for specific surgical gestures and even if the

research community is actively working on this topic, devices for performing other

more complex fluoroscopy-guided tasks in a tele-operated manner have not yet been

developed. Furthermore, we also listed systems allowing to reduce the needed amount of

X-ray acquisitions or fluoroscopy time (hence radiation exposure) by enhancing surgical

guidance and/or navigation. Indeed, having an influence on the imaging parameters (in

this case imaging time) is a good alternative to reduce radiation doses. Acting on other
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imaging parameters such as the device configuration also has an impact on radiation

propagation. Yet, to the best of our knowledge, no system for proposing a device’s

configuration safer in terms of exposure to X-ray radiation can be found. In this thesis,

we propose an approach to assist the C-arm’s manipulator by recommending an imaging

projection enabling to reduce radiation exposure of patient and staff, while maintaining

the visibility of the target in the output image.

Moreover, as discussed in section 2.2.2.2, computer-based training and simulation

systems have proven to be useful to improve education on C-arm operation and on mini-

mizing radiation exposure. Such systems incorporate simulations of scattered radiation

computed for a set of user-defined parameters. Visualization of radiation color maps

are then provided over a virtual operating room scenario to illustrate the effects that

altering parameters such as the imaging device’s angulation can have on scatter. Virtual

simulators are a good step for moving from the theory to the practice, yet, these are

meant to be used outside of the operating room. Moreover, it is not possible to simulate

every possible scenario that could take place during a real intervention. We rather

propose to make use of AR to provide a direct feedback about the behavior of radiation

for the current room configuration and staff positioning. This could be applied to teach

about radiation protection and bring the training inside the operating room, allowing

trainees to learn in real clinical conditions. Indeed, an AR based teaching tool could

be used in conjunction with interventional surgery training courses or during surgical

training involving animals, for trainees to learn in-situ the effects of the parameters

affecting radiation propagation.

As unnecessary exposure to radiation can result from a lack of awareness, poor knowl-

edge on radiation behavior and underestimation of the risks, computer-based systems have

been developed to improve the monitoring of patient/staff radiation dose. These combine

radiation simulations, person tracking, and visualization to show the 3D dose distribution

or the staff’s exposure. However, no system has yet been designed for intraoperative use

since they all consider either laboratory setups or virtual interventional environments.

Even when Monte Carlo-based simulations are used for computing radiation propagation,

these systems neither consider all parameters affecting radiation production nor the

room layout into account. Furthermore, previous works do not give any experimental

validation of the simulated scattered radiation and person exposure values2. To the best

of our knowledge, we were the first to propose a radiation awareness system relying on

MC-based simulations and AR visualizations of radiation, where the simulations were

validated in clinical conditions using dosimeters.

2Works published subsequently such as [Leucht 2015] and [Alnewaini 2017] evaluate the accuracy of
Monte Carlo simulation models using dosimeters, citing our works [Loy Rodas 2014,Loy Rodas 2015b] as
reference.
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3 OR context perception through a

multi-RGBD camera system

There are things known and there are things unknown,

and in between are the doors of perception.

– Aldous Huxley

Figure 3.1: Views from a multi-RGBD camera system installed in an experimental
interventional room at IHU Strasbourg, featuring an Artis Zeego X-ray imaging device
(Siemens Healthcare, Forchheim, Germany).
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As outlined in section 1.2.2, the propagation of X-rays and their interactions with

matter are complex phenomena affected by several factors. The exposure values of patient

and staff not only depend on the imaging parameters (tube voltage (kV), current (mA),

fluoroscopy time, etc...), but also on the room layout. In particular, clinicians are exposed

to the photons scattered by patient, table and/or equipment, with an energy attenuated

by the particles’ interactions with matter in their trajectories [Nikodemová 2011,Kouko-

rava 2011]. Such an exposure increases when standing close to the X-ray source, as

the levels of scattered radiation are inversely proportional to the squared distance [Pi-

cano 2013] and the highest rate of scatter is always produced between the X-ray source

and the patient [Carinou 2011]. Therefore, a global radiation awareness system, capable of

properly monitoring the propagation of scattered radiation propagation and the full-body

exposure of staff and patient must keep track of the current OR context and imaging

parameters. Because of the strict sterilization requirements of medical environments and

of the fact that the surgical workflow should not be disrupted, cameras are currently one

of the least intrusive options that can be conveniently installed in the room to sense the

environment.

One of the contributions of this thesis is the development of an intraoperative system

for estimating and providing feedback about the propagation of scattered radiation in

the current 3D environment. Such a system relies on a registered multi-RGBD camera

system for tracking the layout of an interventional room. The cameras are mounted on

the ceiling of the room using articulated arms in a configuration allowing them to capture

key views around the operating table. After a one-time installation, such a setup can be

used to keep an up-to-date picture of the room layout in a non-disruptive manner. Figure

3.1 shows an example of the views captured from one of the multi-camera systems we

have installed in an interventional room at IHU Strasbourg [IHU 2017]. In this chapter

we first describe such a setup along with the calibration/registration approaches involved.

Then, we discuss the approaches we have explored to track the OR’s layout and clinicians’
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positions as required for an up-to-date simulation of the current radiation behavior.

Acknowledgments: The setup and approaches described below were developed in

collaboration with fellow colleagues from Research Group CAMMA [Research Group

CAMMA 2017]. Therefore, I would like to acknowledge and give proper credit to:

❼ Laurent Goffin and Dr. Antonio De Donno for contributing to the core software

used for streaming and merging the images from the multi-RGBD system.

❼ Dr. Fernando Barrera for proposing and developing the approaches for the multi-

camera system calibration and fusion.

❼ Dr. Abdolrahim Kadkhodamohammadi for proposing and developing the ap-

proaches used for human pose estimation.

3.1 Camera setup and calibration

We use consumer-grade RGBD cameras in our setup since this type of camera allows

to capture an environment simultaneously through both color and depth sensors. In

this section, we first provide a short description of these cameras. Then, we describe

the different calibration and registration procedures enabling to reconstruct the 3D

environment from the multi-camera system’s images.

3.1.1 RGBD sensors

RGBD sensors combine a color camera and a depth sensor. A color image represents the

color intensity on the objects’ surfaces while a depth image encodes surface distances

with respect to the sensor. These devices provide direct depth sensing and video

capture, thereby delivering rich information about the scene structure without intensive

processing. Not surprisingly, many researchers have taken advantage of this opportunity

and we have seen a proliferation of research projects that rely on this technology

[Badal 2013, Leucht 2015, Seitel 2016, Fotouhi 2017]. Two types of such sensors were

available at the time when we were first designing our setup: the Kinect for Xbox 360

(Microsoft Corp., Redmond WA) and ASUS XtionPRO (ASUSTEK Computer Inc.,

Taipei, Taiwan). Both cameras use the depth sensor and processing chip developed by

PrimeSense LTD (Tel-Aviv, Israel). A continuous infrared structured light is projected

in the scene and captured by the sensor in order to generate textured depth maps. This

depth-sensing technology is based on the use of an infrared laser and a holographic filter

to project a known pattern towards the room. A video camera with an optical filter to

block visible light is used to record the scene in the infrared range. A microprocessor chip

in the camera post-processes the infrared image to estimate the distance of the objects

in front of each pixel. Therefore, the lack of texture on the surfaces, color similarities

between the surfaces or illumination changes do not affect the depth image computation.

According to the sensor’s technical sheet, objects must be located at a distance of between

45



Chapter 3. OR context perception through a multi-RGBD camera system

0.5 and 5 meters approximately from the camera for their depth to be accurately sensed.

However, studies have reported that the depth resolution degrades dramatically above a 3

m distance [Sturm 2012]. Also, the sensor fails on reflective and transparent surfaces. The

depth data is transmitted to the computer as a 640× 480 pixel image (VGA resolution)

at a frequency of 30 Hz, where each pixel value corresponds to the distance of the object

behind that pixel. The depth value is computed with 11-bit precision (2048 levels) and it

can be observed that the depth estimations have a noticeable level of noise (jitter) of

the order of ±1 mm [Badal 2013]. The main advantages of these two consumer-grade

cameras are the price and the fact that there is a large community of developers creating

freely-available libraries and applications that simplify the programming of new tools. In

our setup, we use the ASUS camera instead of the Kinect because of the smaller physical

size, lightweight and the lack of an external power supply requirement. These properties

make such cameras convenient to be fixed at the ceiling to capture a global view of an

interventional room.

3.1.2 Camera calibration

The camera parameters (focal length, principal point offsets, skew value and lens distortion

coefficients) of each color camera in our setup are computed by applying Zhang’s method

[Zhang 2011] on a set of images capturing several views of a known checkerboard pattern

being moved in front of the camera. Such a dataset is also used to compute correction

factors to reduce the inaccuracies of the depth measurements similarly to [Sturm 2012].

In [Sturm 2012], a unique factor is applied to every pixel. We decide to estimate a pair

of linear coefficients α{0,1} per pixel instead, since this provides improved results in our

experiments. For each raw depth measurement d we compute its corrected value dc as:

dc = d · α0 + α1 (3.1)

The coefficients α{0,1} are computed by applying a linear regression between a set

of measured points di and their correspondences on a known plane dip. The initial

depth measurement errors estimated from this dataset are shown in Figure 3.2a. As

expected, we observe that the error increases with the camera-to-plane distance. Indeed,

as in [Sturm 2012], we measure errors of 5 cm for distances to the camera d beyond 3 m.

The evaluation of the proposed depth correction approach on a different set of images,

presented in figure 3.2b, shows a higher improvement of the depth measurement errors

than when a unique correction factor is applied as in [Sturm 2012]. Indeed, measurement

inaccuracies are reduced up to 3 cm with our method when d is close to 3 m. This is

relevant to our application since the ceiling cameras are approximately positioned at

such a distance from the scene. Besides this depth correction approach, no further depth

camera calibration is performed.
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Figure 3.2: Evaluation of the depth measurement error and of depth correction approaches.

3.1.3 Multi-camera system registration

While a single camera can be limited in terms of field of view, multiple ones can be placed

around an object or a scene to improve the coverage. Therefore, we fix three cameras

to the ceiling of the OR and register them to the same global room coordinate system

R. This enables to merge the 3D scene information coming from each of the cameras

into the same reference frame. The positions of the cameras from one of our setups in an

experimental interventional room at IHU Strasbourg [IHU 2017] are visible in figure 3.3a.

The rigid transformations TR
C{1,...,3}

between the cameras C{1,...,3} and the coordinate

system R are obtained in a two-step calibration procedure. In a first step, inspired

by [Svoboda 2005], the extrinsic parameters are computed from a calibration dataset

recorded in the room using a laser pointer. A ping-pong ball is attached to the tip

of the laser to make it more visible from the different camera viewpoints. A first

sequence is acquired while continuously moving the laser pointer inside the room in

the dark. Correspondences across views are obtained from this sequence, which are

used for computing an initialization up to a scale factor of the camera poses using an

8-point algorithm. These poses are refined using bundle adjustment. Then, a second

sequence is recorded while moving two lasers fixed to a rig at a known distance one from

the other, which enables the estimation of the scale factor. This method was better

suited than standard calibration methods using a checkerboard, due to the challenge of

simultaneously capturing a given pattern or marker with all three cameras inside the

room. The extrinsics are computed with respect to an arbitrary point in space; therefore,

an extra calibration step is necessary for registering the multi-camera system to the room

coordinate frame. It was decided to use the operating table as room reference. Hence,

in a second step, the transformation from each camera to the left corner of the table is

computed by clicking in the 3D model or by using a pattern seen by one camera. We

then update the extrinsics of the other cameras accordingly. This calibration procedure

is performed once per camera setup since the position of the motorized table can be
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(a) Positions of the ceiling-mounted RGBD
cameras installed at an experimental inter-
ventional room at IHU Strasbourg marked
in red.

X Y

Z

(b) 3D reconstructed model obtained by fus-
ing the point clouds from each RGBD cam-
era. The global room reference frame R is
shown.

Figure 3.3: Registered multi-camera system for performing a 3D reconstruction of an
interventional room.

re-obtained from the X-ray imaging device system and the cameras remain fixed to the

ceiling of the room. The reconstructed room model is obtained by fusing the colored

point clouds from all the cameras as shown in Figure 3.3b.

3.2 Visual perception of the room environment

A recording system developed within our research group [Research Group CAMMA 2017]

using the OpenNI framework [OpenNI 2013], is applied to stream synchronized RGBD

data from the cameras in real-time. We obtain a 3D point cloud reconstruction of the

environment by merging the color and depth images from all cameras while applying

the registration parameters computed with the aforementioned approach. Such a 3D

reconstructed model is exploited by a radiation simulation framework (described in

chapter 4) to compute the propagation of radiation for the current room context and

device parameters. Also, as explained in chapter 5, it is used for providing visual feedback

about the current behavior of radiation by coloring the points according the dose at that

location.

In this thesis, we define room layout as the 3D positions of the bed, patient/phantom

representing the patient, clinicians, wireless dosimeters1 (if present in the scene), and

of the X-ray imaging device. In this section we first describe how the room layout is

modeled from the reconstructed 3D point cloud. Second, we discuss three approaches

investigated for detecting clinicians and monitoring their full-body radiation exposure.

Third, we describe an approach applied in this thesis to detect the imaging device’s pose

from the images.

1In the case when dosimeters are used for validation purposes as for the scenarios discussed in Chapter
4.
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3.2.1 Room layout tracking

The positions and orientations of the X-ray tube and detector/image intensifier (II)

can either be detected from the 3D reconstruction, read from the operating screen or

obtained automatically from the application programming interface (API) of the imaging

system, if available. Currently, ceiling-suspended screens, table-mounted lead curtains

and medical equipment in the scene are not considered because of the difficulty of tracking

them using purely vision-based approaches. On the one hand, ceiling-suspended lead

shields are usually transparent for clinicians to be able to see through them when used for

upper-body protection. Hence, they are invisible to structured light depth cameras. On

the other hand, medical equipment such as respiratory or endoscopy towers are subject

to occlusions in the ceiling views. Yet, such kind of equipment is rarely present during

interventional procedures. Still, a tracking system could be used to accurately track the

positions of lead protective walls, ceiling-suspended shields and medical equipment using

markers. Also, instrumenting the arms holding the shields with optical encoders could

allow to obtain their 3D positions. Tracking the positions of lead protective shields would

be necessary for an intraoperative radiation monitoring system since their positioning

has a significant impact in the diffusion of ionizing radiation. As discussed in section 8.2,

tracking the lead shields is one of the perspectives of this thesis.

3.2.2 Patient registration

Registering a patient/phantom model into the room layout model is important for

simulating the propagation of scattered radiation and also the patient/staff dose. To

achieve this, if a 3D model of the patient/phantom involved in the study is available, its

pose can be computed by applying an Iterative Closest Point (ICP) approach between

the virtual model and the room’s 3D point cloud. Knowledge of the table’s position

is applied in that case to initialize the ICP algorithm by coarsely placing the patient’s

model over the bed in the 3D reconstruction. If a 3D model is not available, the patient’s

shape can be approximated as a volume coarsely positioned in the point cloud. The

table’s position is known by the calibration of the multi-camera system since the global

room reference system R is attached to it. If the table is displaced or rotated during a

procedure, its pose can be re-obtained from the X-ray imaging device system.

3.2.3 Clinicians tracking

The monitoring of occupational radiation exposure requires to detect the positions of

clinicians in the room during the irradiation process, and incorporate this information

into the radiation simulation framework. Moreover, the tracking of clinicians is also

necessary to provide visual feedback about their current radiation exposure. In this

thesis, we have explored three different approaches for this purpose, which are described

below.
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(a) Foreground mask obtained with a back-
ground subtraction approach applied on the
depth image.

(b) Color-coded radiation map overlaid over
the tracked clinicians’ bodies in the fused
point cloud.

Figure 3.4: Background subtraction approach to track the 3D positions of clinicians in
an interventional room and provide a visualization of their current full-body exposure.

Bounding-box tracking

In [Loy Rodas 2015b], the positions of the clinicians are tracked with an implementation

of the Gaussian mixture model for background subtraction, applied on the depth images.

A foreground mask (shown in figure 3.4a) is computed on each of the multi-camera

system’s views, and the positions of each person in the scene is approximated by the

centroid of the corresponding blob in the foreground map. The results are averaged

over all views to obtain the mean 3D position of each operator per frame. As opposed

to [Ladikos 2010], this method can work even when the room lights are off since the

tracking is carried out on the depth images. Furthermore, this approach enables to track

a bounding-box around a clinician and to show an estimation of the scattered radiation

values inside that box. As discussed in chapter 4, this bounding-box is used to model

the clinicians in the radiation simulation. Then, the points of the fused point cloud

corresponding to the tracked person’s shape, are colored according to the simulated

radiation exposure value at each of its 3D locations. As it can be observed in figure 3.4b,

this allows a qualitative visualization of the whole-body clinician’s exposure. However,

tracking the centroid of a person in the images does not provide the position of each

individual body joint, which is required to compute the accumulated radiation exposure

per body-part.

Multi-view human pose estimation

Results have been presented in [Kadkhodamohammadi 2017b] of the combination of a

multi-view human pose estimation approach with our radiation simulation framework

to compute and visualize the exposure of a clinician’s body parts on RGBD frames

obtained with the same multi-camera setup. A body part detector combined with a 3D

pairwise deformation model is used to recover body poses in each view. These detections
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Figure 3.5: Courtesy of [Kadkhodamohammadi 2017b]: (left) the detected clinician’s
upper-body poses on an image from an interventional room at Strasbourg’s University
Hospital and (right) the simulated radiation exposure per body joint (modeled as water
spheres), where red indicates higher dose.

are then back-projected to 3D and merged across views with an optimization approach

[Kadkhodamohammadi 2017a]. The body-part pose information can be included in the

radiation simulation to compute the dose deposited. In figure 3.5 we show an example of

the detected upper-body poses with the approach from [Kadkhodamohammadi 2017a],

and the corresponding body-part exposure represented as color-coded spheres overlaid

over a generic clinician’s model. The exposure values were computed with the simulation

approach described in section 4.3. Each detected body-joint is modeled in the simulation

model as a sphere of water. The lower body-parts are not detected by this approach, but

these can be approximated by projecting the 3D positions of the hips on the direction

pointing to the floor. In figure 3.5, we show the normalized simulated exposure per

body-joint. It can be observed that the person’s left arm is highly exposed since it is

being moved close from the irradiated area on the considered frame. Such an approach

provides a clear visualization of the fact that staff receives higher doses at the left side

extremities during interventional procedures (section 1.3.3). However, this multi-view

human pose estimation approach is not real-time and cannot be used in an intraoperative

application yet. Still, such an approach can be useful for monitoring offline and generate

reports of the accumulated dose per body-part of clinical staff, by using recordings of an

interventional procedure performed with our multi-RGBD camera system.

Real-time person pose estimation

We have included an open-source implementation of the approach from [Cao 2017] in our

radiation awareness demonstrator system evaluated in an interventional room at IHU

Strasbourg [IHU 2017] (see Chapter 7). Such an approach enables to estimate in real-time

the pose of multiple persons in individual RGBD frames by simultaneously predicting
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Figure 3.6: (Left) Real-time person pose estimation using the approach from [Cao 2017],
and its usage for the visualization of the body radiation exposure of clinicians (right).

detection confidence maps and affinity fields that encode part-to-part association using

deep convolutional neural networks. It has shown state-of-the-art accuracy on multiple

public benchmarks, and we have applied it to detect in real-time person poses in a single

view of a camera from our setup. In our real-time implementation, the detections are

used to compute a foreground mask corresponding to the tracked clinicians’ shapes.

Then, we color the pixels inside the mask according to the simulated radiation value at

that 3D location. In figure 3.6, we show captures from our real-time radiation awareness

demonstrator system, depicting the body-part tracking of a group of clinicians in an

experimental setup. We also show the visualization of the body exposure of clinicians

at a different moment. This is a promising approach also to compute the accumulated

dose per body-part of clinicians and provide dose data for reporting purposes. While

it is prone to be affected by occlusions since it is designed for single view detection, an

extension to multiple views may be possible.

3.3 X-ray device configuration detection

The imaging parameters (tube tension, filtration, FOV...) and angulation have a major

influence on the patient/staff radiation dose. Hence, these parameters must be updated in

the radiation simulation framework to compute the ongoing dose values. While they can

be read directly from the DICOM images or obtained automatically via the device’s API,

access to either of them may not always be available. Moreover, a direct communication

with the imaging device through software is not always feasible, as for mobile C-arms for

instance. This is why in this thesis we also investigated an approach to detect the pose

of the imaging device from our ceiling-mounted cameras, to automatically obtain the

current C-arm angulation from it.

We presented in [Loy Rodas 2017a] an approach to perform 3D pose estimation

of medical equipment using RGBD cameras. This estimation is not only necessary to

correctly simulate the propagation of radiation, but it can also be useful for context-

aware systems to have a full understanding of the 3D position of equipment in the OR.
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Moreover, surgical activity recognition systems such as [Twinanda 2015,Twinanda 2016]

can benefit from the knowledge of the interactions between clinicians and equipment.

In the same way, medical equipment’s 3D pose estimation can be applied for collision

avoidance with automated devices in an interventional room [Ladikos 2008]. For our

radiation monitoring application, we need to detect an X-ray imaging device which

is large. Therefore, among the spectrum of methods available for object detection in

RGBD images, we apply a template matching approach from [Hinterstoisser 2012b] and

adapt it to our needs. Coined LineMOD, this method has proven to be fast and efficient

when dealing with poorly textured objects [Hinterstoisser 2012a] and it can deal with

large-sized objects as required for our application.

LineMOD relies on matching templates generated from a multitude of synthetic

renderings from a 3D model of the object, which cover for all the possible views that can

be encountered at test time. For our application, if a 3D model of the X-ray imaging

device is not available, it can be generated by scanning it with an RGBD camera and

using a reconstruction software such as [RecFusion 2015]. Then, using such a model, we

apply the same viewpoint sampling scheme as in [Hinterstoisser 2012b] in order to equally

sample a set of virtual camera viewpoints around it. This is achieved by dividing the space

into a polyhedron, where each vertex represents a viewpoint from where synthetic color

and depth images are generated. By repeating this process for polyhedrons of different

sizes, we obtain images at different scales. This process is illustrated in figure 3.7a, where

each virtual camera viewpoint around the model is represented by a red pyramid. A

LineMOD template is then generated per image pair by densely computing color gradients

and surface normals. Color gradients are uniformly computed only on the silhouette of

the object since this method has been designed for objects with little texture. In contrast,

surface normal features are computed on the interior of the object’s silhouette and are

discretized according to their orientation. We refer the reader to [Hinterstoisser 2012b]

and [Hinterstoisser 2012a] for more information about the feature computation and

encoding. Each template is labeled with the corresponding relative camera-to-object

transformation. Therefore, when a template is matched at test time, it provides a coarse

estimation of the object’s pose, which is further refined using ICP. The registration of

the ceiling cameras to the room reference system R described in section 3.1.3, provides

the approximate distance of the cameras to the scene. From this information, we select

the parameters and range of scales to consider in the viewpoint sampling scheme for

the template generation. At the training stage, each template is also labeled with the

X-ray imaging device projection angle it corresponds to. Hence, at test time, when a

template is detected by one of the ceiling views, the information about the current C-arm

projection can be recovered directly. From this, the position of the X-ray source and

of the detector are computed and updated in the radiation simulation model. In figure

3.7b, we show an example of the detection of the imaging device’s angulation from one

of the ceiling-camera views, where the device’s 3D model is overlaid over the color image,

projected using the detected pose. Whenever the imaging device is occluded in one side

of the operating table, another view from one of the remaining cameras of the system
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(a) Synthetic color and depth images generated
by equally sampling a set of virtual camera view-
points (in red) around a 3D model of the imaging
device.

(b) Detection of the X-ray device’s pose in
one of the ceiling camera views: the 3D
model is overlaid on the image to the de-
tected pose.

Figure 3.7: Automatic detection of the X-ray imaging device configuration from views of
the ceiling-mounted multi-camera system.

can be used to perform the detection.

Our equipment detection approach was also applied to perform camera relocalization

for mobile AR visualization purposes as presented in [Loy Rodas 2017a], where its

performance was evaluated on large and challenging RGBD dataset recorded in an OR. A

detailed description of such a dataset is included in appendix B. Furthermore, a summary

of the evaluation results of the detection of the X-ray imaging device’s pose with our

equipment detection approach on this dataset is provided in appendix C.4.1. From

such an evaluation, the pose of imaging device could be recovered with a mean rotation

error (averaged over all axis) of 4.71◦. This is the mean error over all sequences, namely

including those featuring rotations of the imaging device and partial occlusions in the

camera view. For the sequences where the X-ray device is static, the rotation error is

reduced to 1.3◦ ± 0.3◦. Hence, for situations where the imaging device’s pose cannot be

obtained automatically from its API, an equipment detection approach on the images

from our multi-camera setup yields an acceptable precision for the sake of the application.

3.4 Conclusion

In this chapter, we describe a registered multi-RGBD camera setup used for perceiving

the layout of an interventional room. Such a system is a core part of the intraoperative

radiation awareness system developed during this thesis. The cameras are mounted on

the ceiling of the room using articulated arms in a configuration allowing them to capture

key views around the operating table. We describe the calibration and registration

procedures enabling us to obtain a 3D reconstruction of the scene by merging the color

and depth images from each camera. Furthermore, we discuss the use of ceiling cameras

for keeping an up-to-date picture of the room layout. This information is then exploited by

a radiation simulation framework (described in chapter 4) to compute the propagation of

radiation for the current room context and device parameters. Furthermore, we presented
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several vision-based approaches for tracking the positions and body pose of clinicians,

enabling our system to provide feedback about their current full-body radiation exposure.

Also, in cases where the X-ray device’s API is not available, an equipment detection

approach applied on the images from the multi-camera system allows to estimate the

C-arm’s angulation, as needed to simulate radiation.
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Essentially, all models are wrong, but some are useful.

– George E. P. Box

(a) Representation of the X-ray imaging process: primary X-ray
cone beam (red), photons reaching the detector (orange) and
scattered rays (green).

(b) Digitally reconstructed ra-
diography (DRR), simulated
using Monte Carlo methods.

Figure 4.1: Representation of the X-ray imaging process and simulated output radiogra-
phy.
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Modeling of X-ray photon propagation and interaction with matter is heavily complex

and not possible to fully achieve analytically (see section 2.2.2.1). However, computer-

based calculations allow to simulate these processes in an inexpensive manner. Monte

Carlo methods have become the gold standard for these purposes and have been widely

applied in the literature to simulate the behavior of ionizing radiation [Ladikos 2010,

Koukorava 2011,Zhang 2014,Santos 2015,Leucht 2015,Principi 2016]. They are based

on random sampling and can be made arbitrarily accurate by increasing the number of

simulated samples.

In this chapter, we describe two simulation approaches developed in this thesis

for the simulation of X-ray radiation propagation and patient/staff dose. The first

approach, presented in [Loy Rodas 2014,Loy Rodas 2015b], was built using the Geant 4

library [Agostinelli 2003], and is described in section 4.2. We also present in section 4.2.3

the results of its experimental validation performed using dose measurements acquired in

an OR. The second, presented in [Loy Rodas 2017b], relies on GPU-accelerated Monte

Carlo calculations to compute X-ray transport in near real-time. It was developed through

a collaboration with the LaTIM laboratory [LaTIM 2017] and makes use of the GGEMS

library [GGEMS 2017]. Such an approach along with its experimental evaluation is

presented in section 4.3. Before discussing our radiation simulation framework, we briefly

describe the X-ray imaging process in section 4.1, to familiarize the reader with the

58



4.1. X-ray imaging modeling

parameters and physics effects which are involved. It also allows us to explain concepts

common to the two simulation approaches developed in the context of this thesis.

4.1 X-ray imaging modeling

4.1.1 Imaging process

Both fluoroscopy and CT utilize X-rays for the image acquisition process. X-rays are

generated inside what is known as the X-ray tube, by accelerating electrons and directing

them towards a metal target. The electrons rapidly decelerate upon encountering

this material, and X-rays are created from the conversion of their kinetic energy into

electromagnetic radiation [Bushberg 2011]. Depending on the elemental composition of

the target electrode and the applied X-ray tube voltage, two types of X-rays are created:

bremsstrahlung (braking radiation) and characteristic X-rays.

Primary X-ray photons, represented in red in figure 4.1a, travel in straight lines from

the X-ray source. Given the typical particles’ energies involved in fluoroscopy and CT,

they interact with the patient through three main physics effects: photoelectric effect,

Rayleigh and Compton scattering. These mechanisms are dependent on the X-ray energy,

the elemental composition of the tissue and the tissue density. Due to these effects,

human body structures with a higher content of calcium and phosphorus (such as bones)

will be more attenuating than soft tissues. Similarly, tissues with low density (such as

lungs) will be less attenuating than fat or muscle [Wong 2008]. This can be observed

in the radiograph shown in figure 4.1b, where the lungs look brighter than the bones

and other surrounding structures. As shown schematically in orange in figure 4.1a, only

a part of the photons output by the source reach the detector. When the detector is

struck, different intensity patterns or images are produced corresponding to the materials

penetrated in the photons’ trajectories. These patterns are then converted into light and

then into electric signal, and this is why X-ray images are often described as shadowgrams

or projection images (an example is shown in figure 4.1b).

Photons interacting through the photoelectric effect are absorbed inside the patient

and do not reach the detector. They consume all of their energy to eject an electron from

an atom and then, these ejected electrons will move around and ionize neighboring atoms.

Each time an atom is ionized by ejected electrons, free radicals that can damage DNA are

created. Compton scattered photons ionize atoms but do not consume all of their energy

and are thereby scattered in any direction with an attenuated energy [Bushberg 2011].

Rayleigh scattering occurs when a low-energy X-ray photon is scattered from an atom

without any energy loss, namely there is no energy exchange from the X-ray to the

medium. Photons scattered through these effects (represented in green in figure 4.1a)

are responsible for most of the medical staff’s radiation exposure.

In this thesis, we focus on modeling the radiation generated during X-ray radiography

or fluoroscopy since these imaging techniques are largely used for guidance during
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interventional procedures (see section 1.1.3). A 3D model of a fluoroscopy system1 is

shown in figure 4.1a. In such systems, the X-ray source and detector are mounted facing

each other on a C-shaped arm. This is why they are commonly known as C-arms. The

operating table lies between the source and the detector, and the arm can be rotated

around it in order to acquire X-ray images from any angle. Mobile C-arms are manually

operated and positioned, whereas robotized ones can be programmed to follow complex

trajectories and even to generate CT-like 3D images. The X-ray beam projection in a

C-arm imaging device is defined using two rotation angles: the left/right anterior oblique

(LAO/RAO) and the caudal/cranial (CAUD/CRAN) angles [Wang 2014] (also referred to

in the literature respectively as angular and orbital rotation angles [Wang 2012]). During

a procedure, the operator adjusts their values to obtain different image projections,

enabling to capture X-ray images in both the transverse and the sagittal plane. These

projections, named based on the location of the detector with respect to the patient, are

shown in figure 4.2. The tube-to-isocenter and the tube-to-detector distances can also be

modified to alter the magnification coefficient of the output image.

(a) Angulations in the transverse plane:
PA, LAO at 90➦ , AP and RAO at 90➦

(b) Angulations in the sagittal plane: CAUD and
CRAN.

Figure 4.2: Visualization of the X-ray source position and nomenclature for imaging
projections in the transverse plane (left) and in the sagittal plane (right). The position
of the source is represented by the red circle with an arrow pointing in the direction of
the X-ray beam.

The simulation of the X-ray imaging process and of radiation transport involves

physical and geometrical operations. The first includes the computation of distances

between particle interactions and the sampling of particle states after such interactions.

In the second, the interface crossings and particle displacements inside a volume are

calculated. These processes are performed by simulating the aforementioned physics

effects (photoelectric effect, Compton and Rayleigh scattering) and by taking into

consideration the patient’s organ/tissue composition and imaging parameters.

1Artis Zeego from Siemens Healthcare, Forchheim, Germany.
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The energy spectrum of the generated X-ray particles depends on the simulated

imaging parameters, which can incur in lower or higher energy photons absorbed and/or

scattered by the patient. We further discuss the impact of the X-ray energy spectrum in

our simulation approaches in the section below.

4.1.2 X-ray energy spectrum

The quality of the obtained projection image, along with the patient/staff dose depend

on several imaging parameters that influence the characteristics of the generated X-rays.

There are two primary means by which the X-ray beam produced by the tube can be

changed: altering the current (mA) or altering the voltage (kV). The current across the

tube determines how many electrons are released to strike the anode, with a consequent

linear increase in the number of photons produced. The voltage across the X-ray tube

affects the velocity of the electrons as they strike the anode and this affects the energy

of the photons produced by the tube [Bushberg 2011]. It is important to note that, in

clinical practice, these parameters are automatically altered according to the thickness of

the examined region of the patient by the X-ray device’s AEC. Higher energy particles

are more prone to reach the detector, therefore, tube voltage is usually automatically

increased in order to compensate for the increase of beam attenuation by the patient’s

body to produce a clinically useful image [Santos 2015]. As dose is energy per mass

of tissue, higher energy photons can incur in higher dose. Also, the higher the energy,

the more X-rays undergo Compton scattering, which means that more photons may be

scattered into the environment during the imaging process [Bushberg 2011]. Furthermore,

thin metal filters placed in the beam are used to remove low-energy (soft) X-rays, since

these have a higher probability to be absorbed by the patient and have no effect on

the diagnostic quality of the image. Depending on the application, layers of aluminum,

copper, or other materials can be added to the beam to allow more or less of the low-

energy photons to reach the patient [Wong 2008]. Also, some imaging devices are built

with inherent permanent filters.

For the sake of simplicity and also since the technology of the X-ray tubes of commercial

imaging devices is often private, we do not simulate the generation of X-rays. Instead,

we model the X-ray beam as a primary generator producing a user-defined number of

photons from a fixed point with the shape of a collimated cone beam. Still, to account

for the influence of the imaging parameters, the energies of the simulated photons are

randomly sampled from an energy spectrum computed beforehand. Such a spectrum

is generated from the peak tube voltage and filtration conditions from the considered

imaging protocol. In figure 4.3 we show an example of a spectrum corresponding to

a tube tension of 85 kV and a 0.4 mm layer of Aluminum filtering. There are several

tools applying physics models and attenuation data to generate such spectra. We rely

on [Siemens Healthcare 2017b] for this purpose.
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Figure 4.3: Simulated X-ray spectrum (85 kV - 0.4 mm Al filtration) using the online
X-ray spectra simulator from Siemens [Siemens Healthcare 2017b].

4.2 Monte Carlo simulations of X-ray transport with Geant4

In this section, we describe the first simulation approach explored in this thesis. Such a

simulation framework was developed using Geant 4 [Agostinelli 2003] to estimate the

propagation of scattered radiation for the current operating room layout. Geant 4 is a

C++ based toolkit initially developed at CERN, which is widely used for simulating the

passage of particles through matter using Monte Carlo methods. We rely on the multi-

RGBD camera system described in chapter 3 to obtain a 3D point cloud reconstruction

of the current room layout. The positions of the clinicians, patient, table and C-arm

are obtained as previously described and are used to build a coarse simulation model

for the computation of the 3D dose distribution in the room. To compensate for the

approximations introduced in the simulation model, we propose to use real-time wireless

dosimeters placed at key locations in the room to provide dose measurements used

both for calibrating the simulations and for evaluating the results’ accuracy. We herein

describe the simulation approach and its experimental evaluation in an operating room.

4.2.1 Simulation approach

A Geant 4 simulation requires the definition of the geometry of the simulation environment,

namely the physical layout for the experiment. Within this geometry, the framework

iteratively computes the trajectories and interactions between a given set of particles and

the atoms from the materials defined in the scene. Using the information provided by our

multi-camera system, we build a coarse simulation model representing the OR (see chapter

3). An example can be seen in figure 4.4a. To reduce computational time, we model each

of the considered objects with a rectangular geometry, by adding rectangular volumes

having the same material composition and pose with reference to the room coordinate
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system as in the real-world setup. Areas of these geometries are defined as sensitive

to every interaction with impacting particles and the energy deposition is measured

during a simulation. Similar to [Wagner 2009], the interventional room is modeled by

a volume filled with the material air. The X-ray tube and detector are represented as

iron volumes since this has the effect to block radiation above the detector and below

the source [Ladikos 2010]. Their position and orientation are adapted according to the

simulated beam projection. A carbon parallelepiped is added for the operating table

and a cubic volume filled with water is included to represent the phantom used for the

experiments. As in [Wagner 2009] and for decreasing the calculation time, water is used

to simulate the scatter factor of a human body. Hence, if clinicians are present in the

room, they are modeled as 0.4 × 0.4 × 2 m3 water-filled boxes placed in the positions

obtained from the tracking performed in the ceiling views (section 3.2.3).

To reduce potential errors introduced by the approximations in the simulation, the

simulation results are calibrated using measurements from a subset of the dosimeters

placed in the room. We refer to them as calibration dosimeters. A correction factor

defined as the mean ratio between the measured and simulated doses from such dosimeters

is applied to all simulation results. As shown in section 4.2.3, this linear correction is

effective enough for obtaining low simulation errors. We use active personal dosimeters

(previously described in section 2.1.2.1) for this purpose. These are calibrated in Hp(10)

namely the personal dose equivalent in soft tissue at a 10 mm depth below the position

where it is worn, with a resolution of one measurement per second. Despite the possible

imprecision in the measurements and the limited angular resolution, their portability

and real-time sampling capability make them the best available solution for our system.

Figure 4.4b shows an example of a real OR setup where the C-arm is set for a posterior-

anterior (PA) beam projection (0➦ rotation angle), a water-filled slab phantom is placed

over the table and eight dosimeters are distributed around the table. The corresponding

simulation model is shown in figure 4.4a where the material of each solid is specified.

The dosimeters are modeled as 45 × 45 × 20 mm3 volumes of ICRU [ICRU 1980]

soft tissue equivalent material (1 g.cm−3 density and mass composition: 76.2 % oxygen,

11.1 % carbon, 10.1 % hydrogen and 2.6 % nitrogen). These are placed inside the main

volume in the same positions as in the real-world setup. The Hp(10) values are then

evaluated by placing sensitive cells of 45× 45× 0.5 mm3 inside the dosimeters’ models at

a 10 mm depth from the outer surface. The total energy deposited in these cells after a

simulation run is divided by the volume’s mass (obtained from the material’s definition),

for estimating the personal dose equivalent. The simulated dosimeters are sensitive to

any incident particle since we do not model the angular resolution of the real dosimetric

system we use.

As mentioned in section 4.1.2, the energies of the simulated photons are randomly

sampled from spectra generated for the considered imaging parameters. Their moment

direction is randomly sampled inside a cone having the studied X-ray FOV as diameter,

thus approximating the angular distribution of the particles as isotropic. The aforemen-

tioned physics effects leading to the generation of scattered radiation are also modeled.
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(a) Simulation model of the current OR lay-
out considering the physical properties of
each object.

(b) Real-world setup: robotized C-
arm, water-filled phantom and dosimeters
sparsely distributed around the table.

Figure 4.4: Simulation model and setup of the experimental validation.

The room model is divided into cubic voxels forming a 3D grid and, during a simulation

run, the dose deposited in each one of them is computed. Hence, it is possible to estimate

the spatial dissemination of scattered radiation during the irradiation process by checking

the accumulated dose in the corresponding voxels. The material from each voxel is

adjusted according to the solid it intersects with. The resolution and the coverage of

the simulated radiation map depends respectively on the size of each voxel and on the

number of considered voxels. The radiation shields are not modeled, therefore, the system

will provide an estimate of the maximum dose that could be received in a worst-case

scenario irradiation.

Simulations are performed for a large number of particles n. The number of simulated

particles has an impact only on the statistical error since the computed doses are

normalized by n at the end of each run. The particles are grouped into several batches

and executed in parallel on different computing kernels on a multiprocessor computer.

The results yielded by the independent runs of the same code are combined a posteriori

to obtain a single final result with a reduced statistical uncertainty.

4.2.2 Visualization of simulated radiation risk maps

The simulation module computes the 3D dissemination of scattered radiation inside a

voxelized representation of the room for a given set of irradiation parameters and layout.

This information can be combined with the generated room 3D model for showing the

amount and distribution of scattered radiation in an augmented reality manner. This

novel visualization of ionizing radiation is further described in chapter 5, where several

qualitative visualizations of the simulated radiation maps and exposure of patient/staff

are provided. In the same way, other visualizations useful for teaching about the diffusion

of scattered radiation can be generated with this simulation approach. In figure 4.5, we

provide two examples of 2D radiation isomaps generated from simulations where the
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C-arm was positioned for a PA and AP projections. The position of the X-ray source for

each of these configurations can be observed in figure 4.2. Each of the proposed results

was generated by simulating the deposited dose in a voxel grid of 28 × 28× 18 voxels

of side length 150 mm namely covering a volume of 4.2× 4.2× 2.7 m3. Then, we sum

the computed 3D risk maps along the x-axis (same reference frame as in figure 4.4a) to

generate the isomaps. One can clearly observe how the scatter is concentrated under or

over the bed depending on the case. These results suggest that blocking the radiation

coming from the surroundings of the X-ray source is a good method to reduce the dose

to the operators. The results also show that increasing the distance between the operator

and the X-ray source is an effective method to reduce the radiation exposure.

(a) Radiation isomap for an PA imaging
projection (X-ray source under the bed).

(b) Radiation isomap for a AP imaging pro-
jection (X-ray source over the bed).

Figure 4.5: 2D Isomaps obtained by summing the radiation risk maps along the x-axis
for two imaging configurations (red indicates higher dose).

4.2.3 Experimental validation using dosimeters

The performance of a new Monte Carlo code is typically evaluated by simulating cases

that are reproduced with laboratory experiments [Leucht 2015, Alnewaini 2017]. To

validate the simulation approach herein presented, a set of experiments were performed

in an interventional room using an Artis Zeego robotized X-ray imaging device, a

calibrated multi-RGBD camera system and a set of RaySafe wireless active personal

dosimeters [RaySafe 2017]. We hereby present the methodology and setup for these

experiments along with the results obtained.

4.2.3.1 Validation methodology

Nobody was irradiated in any of the performed experiments. Instead, a phantom of

20× 20× 24 cm3, with 10 mm thick plexiglas walls and filled with water was irradiated

under different imaging protocols for the generation of scattered radiation. Dosimeters

were either placed over the operating table or taped to drip rods and placed around

the work area at different positions depending on the experiment. The experimental

setup is shown in figure 4.4b. Various clinical imaging conditions typical of interventional
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procedures were reproduced and the generated scattered radiation levels were measured

by the dosimeters at sparse locations around the work area. The same scenarios were

simulated and the simulations corrected using the measurements from the calibration

dosimeters. The relative errors between the computed dose values and the ones measured

by the validation dosimeters were computed to verify the accuracy of the simulated dose

distribution. As explained in section 2.1.2.1, the intrinsic response error from this kind of

dosimeters can go up to 30 % [Struelens 2011], hence, we consider a simulation as correct

when the obtained error is close or inferior to that value. Five runs of 500 million X-ray

particles were simulated per test and the results were normalized by that number. The

statistical uncertainty of the simulated dose values was below 1 % in all the simulation

runs. Two complementary sets of experiments are hereby presented: in the first one,

referred to as configuration test, the imaging parameters were kept constant while the

positions of the dosimeters were modified. In the second set, called tube parameters’

test, the position of the dosimeters was kept constant, while a large number of images

for different tube voltages, filtration conditions, field-of-views and beam projections was

acquired.

Configuration test: seven configurations of six dosimeters placed around the source

were tested. The initial one is shown in Fig. 4.6a; after each irradiation, the radii r1 and

r3 along with the distances d2 were increased of 30 cm, thus increasing progressively the

distance of the dosimeters to the source of scattered radiation. At each tested distance,

three PA projections using a 82 kV peak tube voltage, 0.4 mm Al filtration and 42 cm

field size were acquired, making a total of 21 irradiations. The same conditions were

simulated and the Hp(10) doses at the positions of the dosimeters were computed for

the different tests. Measurements from a single dosimeter were used for calibrating the

simulations; the computed correction factor was applied to the rest of the simulation

results and compared to the five other dosimeters’ measurements.

Tube parameters’ test: it aimed at testing the simulation’s accuracy when changing

the X-ray tube parameters and projection angle for a single configuration of calibra-

tion/validation dosimeters (shown in Fig. 4.6b). Four beam projections were examined:

PA, LAO at a 90➦ angle, AP and RAO at a 90➦ angle. The position of the X-ray source

for each of these projections is shown in figure 4.2a. For each angulation, the tube

voltage was chosen between 80 and 117 kV, the amount of copper spectral beam filtration

between 0.0 and 0.9 mm and the FOV between 11 and 42 cm, for a total of 32 tested

irradiations, namely 8 per beam projection. The detailed imaging parameters that

were tested are given in table 4.3. We used eight wireless dosimeters for measuring the

scattered radiation at different points of the room. These were disposed symmetrically

with respect to the operating bed in order to obtain measurements for every tested beam

projection while also covering the entire workspace. The simulation was calibrated by

computing a correction factor using measurements from two dosimeters. The error was

then computed by comparing the results with the other six. To cope with the angular
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resolution of the dosimeters, each one of them was oriented towards the phantom and

placed at least at table height or higher. This way, we attempt to maximize the number

of incident particles that are inside their measurement range for every configuration.

Figure 4.6b shows the configuration of the dosimeters for this set of experiments, where

the z value denotes the height with respect to the table, which is null if not specified.

One dosimeter per table side is used for calibration in order to equally consider the entire

work area. All sixteen possible pairs of combinations of dosimeters 1, 3, 5 and 6 (right

side) with 2, 4, 7 and 8 (left side) were tested for calibration purposes while evaluating

the accuracy of the results with the remaining six measurements.
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(a) Configuration test : radii r1 and r3 along
with distance d2 were increased by 30cm
after each set of irradiations.
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(b) Tube parameters’ test : irradiations with
different exposure parameters and beam pro-
jections were carried out.

Figure 4.6: Position of the dosimeters with respect to the C-arm isocenter (S) for the
two sets of experiments presented.

4.2.3.2 Results and discussion

Configuration test: A mean simulation error of 19.3 % ± 4.3 % was obtained when

testing all combinations of one calibration dosimeter against five others. The lowest error

of 14.7 % ± 5.5 % is obtained when calibrating with dosimeter 1. A summary of the

mean testing errors for that case is presented in table 4.1. No apparent relationship

between the simulation error and the dosimeters’ distance to the source can be found.

The errors remain low for a constant set of default imaging parameters when the positions

of the measuring dosimeters are changed. Indeed, the simulation results remain close to

the measured values even further than 2 meters away from the isocenter of the imaging

device.

Tube parameters’ test: A mean error of 37.4 % ± 7.4 % was obtained for all tested

irradiation protocols and possible combinations of calibration/validation dosimeters. The

lowest mean error, 29.2 % ± 4.1 %, was obtained when calibrating with number 6 and 8.
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Table 4.1: Simulation errors for the configuration test when using dosimeter 1 for
calibration.

Distance(m) Error per dosimeter (%)

r1 d2 r3 2 3 4 5 6 Mean

0.5 0.4 0.6 03.1 01.1 10.9 31.6 29.6 15.3

0.8 0.7 0.9 10.7 46.2 23.5 25.6 19.7 25.1

1.1 1.0 1.2 10.7 16.7 04.6 16.5 25.9 14.9

1.4 1.3 1.5 0.35 48.5 01.1 06.7 18.2 15.6

1.7 1.6 1.8 18.8 07.3 09.7 03.5 01.1 08.1

2.0 1.9 2.1 03.9 15.9 13.3 03.7 36.4 14.6

2.3 2.2 2.4 06.3 14.3 04.9 04.6 16.1 09.3

08.2 21.4 09.7 13.2 21.0 14.7

These were consequently considered the best positioned for measuring correct scattered

radiation doses at every configuration. The dosimetric system we use has been calibrated

during manufacturing for usage at chest level height, which, interestingly, is close to the

height of the aforementioned dosimeters (1.30 m from the floor). Table 4.2 shows error

values for each beam projection and test dosimeter when calibrating with dosimeters 6

and 8. It can be observed that higher errors are obtained for the lateral projections (LAO

and RAO). For these angulations, the accuracy of the measurements could have been

affected by the spatial distribution of the dosimeters used for this set of experiments.

Moreover, the orientation of the dosimeters was kept constant during the experiments

and it is possible that the precision of the measurements could have been influenced by

the dosimeters’ angular resolution. Table 4.3 provides the mean test error for each of the

irradiation protocols that were evaluated.

Table 4.2: Mean simulation errors per validation dosimeter and per configuration for the
tube parameters’ test, when calibrating with dosimeter 6 and 8.

Error per dosimeter (%)

Projection 1 2 3 4 5 7 Mean

PA 19.2 39.2 33.0 14.4 12.3 24.5 23.8

LAO 90➦ 20.7 21.9 35.3 40.4 30.6 52.7 33.6

AP 18.2 12.7 16.1 16.9 17.4 19.7 16.8

RAO 90➦ 59.0 11.8 43.9 51.4 55.7 34.0 42.7

29.3 21.4 32.1 30.8 29.0 32.7 29.2

The results herein presented show that our system can be used to simulate the global

propagation and intensity of scattered radiation for different X-ray tube configurations.

Such an extensive evaluation of our simulation framework against experimental data,

is a major difference with respect to previous works applying MC methods to simulate
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Table 4.3: Mean simulation errors per irradiation protocol when calibrating with dosimeter
6 and 8 in the tube parameters’ test.

Projection FOV (cm) kVp (kV) mm Cu Error (%)

PA 42 81 0.0 29.2

42 96 0.0 23.0

42 117 0.0 24.5

42 86 0.3 25.2

42 95 0.6 20.0

42 102 0.9 23.3

22 92 0.0 25.1

11 91 0.0 19.9

LAO 90➦ 42 81 0.0 40.2

42 96 0.0 32.0

42 117 0.0 53.8

42 81 0.3 32.3

42 81 0.6 19.3

42 86 0.9 21.6

22 81 0.0 42.1

11 92 0.0 27.5

AP 42 81 0.0 19.1

42 96 0.0 20.1

42 117 0.0 20.6

42 84 0.3 15.1

42 93 0.6 09.2

42 100 0.9 12.0

22 94 0.0 17.8

11 92 0.0 20.8

RAO 90➦ 42 81 0.0 45.3

42 96 0.0 53.3

42 117 0.0 50.9

42 81 0.3 36.5

42 81 0.6 28.1

42 87 0.9 40.5

22 81 0.0 45.8

11 91 0.0 40.7

radiation. We obtain simulation errors which are in agreement with the technical error

of the dosimeters when testing the results for different room layouts and X-ray tube

parameters. The obtained errors can be mostly explained by the dosimetric system used

for correcting our simulation results: APDs have proven to be at least ±30 % less precise
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than TLDs because of their internal semiconductor based construction [Struelens 2011],

required to generate instantaneous measurements. The use of an approximated X-ray

source model in the simulation framework can also introduce errors to the results. Indeed,

we model the X-ray tube as a collimated source of photons due to restricted access to

the actual geometry and parameters of the imaging device used in our experiments.

Currently, all results are computed offline after recording synchronized data from

dosimeters and RGBD cameras. Our simulation framework is based on CPU computations

hence long computational times that go up to several hours are required to compute a full

3D radiation map of the room. Pre-computing such simulation maps may be acceptable

for a radiation awareness system applied for training or teaching purposes. Yet, this

becomes unpractical when many imaging and/or room parameters are altered since a new

simulation is required each time. For a clinical application, the simulations of radiation

should be performed in real-time while considering the real room conditions and imaging

parameters. Furthermore, a fast radiation simulation would also be useful for a radiation

awareness training system showing radiation exposure for several clinical scenarios. In the

following section, we describe the work we performed to make our radiation simulation

faster by incorporating GPU-accelerated MC methods and by proposing approximations

enabling to reduce computation time, while maintaining the results’ accuracy.

4.3 GPU-accelerated radiation simulation

Monte Carlo methods are associated with long execution times, which is one of the

major issues preventing their use in routine clinical practice. A potential solution to the

intensive computational issues is the use of computer clusters, although this solution

may be less realistic within a routine clinical environment given the associated cost and

logistics issues. Recently, graphics processing units (GPU) have become in many different

domains a low cost alternative solution for the acquisition of high computation power.

Their architecture is able to provide any conventional computer with the computation

power of a small cluster. This power has been exploited to speed-up Monte Carlo

simulations and one can now find in the literature various MC codes implemented on

GPU such as [Badal 2009,Wagner 2012, Bert 2013]. In this thesis, we also propose

a simulation approach for computing in quasi real-time the exposure of patient and

staff during an X-ray imaging procedure, and also for simulating the 3D propagation

of scattered radiation for the current room and imaging conditions. To achieve this,

we rely on an implementation of MC methods on GPU architectures i.e. the GGEMS

library [GGEMS 2017]. Written in the CUDA language, such a framework has been

validated in [Bert 2013], showing equivalence with the reference MC library Geant

4 [Agostinelli 2003], with a speed-up factor in simulation time of up to 90. It is developed

and maintained by the LaTIM laboratory [LaTIM 2017], having radiotherapy and patient

dosimetry as main target applications [Bert 2013,Lemaréchal 2015]. We herein propose

extensions to this framework that benefit from its fast MC computation capabilities to

simulate the exposure of clinicians at their current position with respect to the patient,
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along with the 3D dissemination of scattered radiation in quasi real-time. Furthermore,

since we were among the first external users of the framework, we also contribute with

testing, providing feedback and assisting in the documentation writing of this toolkit

intended to be released soon. In this section, we first describe the proposed approaches

for speeding-up our radiation simulations, along with a set of experiments carried out

to evaluate its performances. All results and experiments henceforth presented were

obtained using an Nvidia GeForce GTX Titan X GPU card.

4.3.1 Simulation approach

In implementations of Monte Carlo simulations on GPU, the simulation is typically

divided into different kernels representing specific processes that will be performed

in parallel by all the particles tracked within a voxelized geometry. Indeed, such an

implementation strategy is particularly adapted to the specifications and constraints

of a GPU’s architecture. GGEMS is based on a similar strategy where one computing

thread is used per particle, i.e. a thread handles a given particle from its ‘birth’ to its

‘death’ [Bert 2013]. Therefore, using thousands of processing units, thousands of particles

can be simulated in parallel by executing the same code on the GPU. This is equivalent

to processing in parallel a stack of particles. For an efficient implementation, particles are

simulated in different stages of processing stacks. These stages are associated with particle

generation, navigation, physics interaction and extraction. The simulation executes all

these stages in a loop until it simulates the total number of particles specified by the

user. The computational codes involved in the estimation of the physical interactions of

photons with matter along with the particle tracking have been extracted from Geant 4

and adapted for the GPU environment in [GGEMS 2017]. By including the models from

Geant 4, this framework is flexible in terms of the applications that can be developed

with it.

In Geant 4, the simulation is initialized by defining the geometry of the simulation

environment and of a set of volumes sensitive to impacting particles. However, in GGEMS

the structure of the simulation has only three main components: a source, a phantom and

a detector. Every element of the simulation is positioned with respect to the simulated

isocenter. The source is the source of photons in the simulation, and the phantom is a

voxelized volume where the materials’ composition of each voxel is defined. The detector

is a sensitive volume which records the information of the particles striking it. The

parameters of these three elements are defined according to the application to simulate.

We describe below the proposed strategies to simulate patient/staff dose and the 3D

propagation of scattered radiation with GGEMS.

4.3.1.1 Patient exposure

Initially, applications making use of the GGEMS library were targeting radiotherapy

procedures [Lemaréchal 2015]. As required by these applications, efficient approaches

adapted to GPU architectures for simulating the particle navigation/interaction inside
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voxelized structures were included in the library. Indeed, these allow to accurately

simulate the dose deposited inside each voxel of a voxelized phantom, as needed to

simulate the correct positioning of radioactive seeds and its effects on the surrounding

tissues for radiotherapy procedures. We benefit from these features to accurately compute

a patient’s organs dose maps when simulating an X-ray projection.

An X-ray spectrum is generated as described in section 4.1.2 from the tube voltage and

filtration conditions of the considered imaging protocol. In the simulation environment,

the 3D location of the X-ray source is determined according to the imaging projection to

simulate (defined as in figure 4.2) and to the tube-to-isocenter distance. A first stage of

the simulation handles the particles generation and photon physics effects. A photon cone

beam emits particles with energies randomly sampled from the spectrum with an aperture

angle α. By altering the value of α and the tube-to-detector distance, one can modify the

size of the X-ray beam impacting the patient. A patient-equivalent voxelized phantom is

included, centered at the simulation’s isocenter. For the experiments presented in this

thesis, we use a phantom generated from a generic thoracic patient CT by transforming

Hounsfield units into density values of the materials in each voxel. The resulting phantom

is composed of 288 × 241 × 164 voxels of 41 materials (human skeleton and organs

surrounded by tissue-equivalent material), with a spacing of 1.27× 1.27× 2.0 mm3. In a

real clinical scenario, if a patient’s preoperative CT volume is available, it can be used to

generate the phantom for the simulation. A second phase of the simulation concerns the

transportation of the emitted particles within the voxelized patient phantom and the

recording of the energies deposited on each of the phantom’s voxels. From the energy

deposition map, the dose to each organ can be estimated using its material properties.

A flat detector in front of the phantom placed at the tube-to-detector distance is also

included. Such a detector enables to measure the energies of the particles exiting the

phantom in order to reconstruct the obtained 2D projection images (e.g. figure 4.1b).

We show in figure 4.7 several color-coded visualizations of the simulation results of a

patient exposure during an X-ray image acquisition. These are generated with a volume

rendering approach, by mapping the simulated energy/dose to color and transparency

values through pre-defined transfer functions (see section 5.1.2.2 for more information

about patient dose map rendered visualization). With such a visualization approach, one

can observe clearly in 3D the exposure of the internal organs and soft tissues of a patient.

Figure 4.7a shows the energy deposited in each voxel of the voxelized thoracic phantom

previously described. These values are converted to dose units by dividing the energy

by the mass of each voxel (computed from the volume and density of each of the voxels’

materials). The results were computed for an AP X-ray image, by applying the following

imaging parameters: 70 kV tube tension, 0.4 mm Al filtration and 8➦ of aperture angle.

It can be observed in figures 4.7 that highly irradiated areas correspond to where the

X-ray beam strikes the phantom’s chest. Bones absorb high energy values, thus, the

spine is colored in red in both figures. However, soft tissues struck by the beam absorb

high dose values. This can be depicted in figure 4.7b: the lungs are rather colored in

yellow and light green, while they appear as dark green in the energy map.
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These patient exposure maps were obtained from a simulation of 108 particles. The

simulation time was of 2 minutes and 15 s (with revision 420 of GGEMS), and the

statistical uncertainty for the peak skin organ doses was 2 %. As opposed to the

commercial systems for visualizing a patient exposure described in section 2.1.1, this

approach enables to see the dose to the organs and internal structures of a patient.

Furthermore, while commercial systems depend on radiation metrics approximated by

the imaging device or on calibration files obtained via dose measurements, our approach

relies on Monte Carlo simulations of X-ray transport, which take into account the real

patient anatomy, imaging parameters and physics effects. For clinical procedures where

the device positioning is not constantly changed, such visualizations could be computed

in a couple of minutes, providing an insight of the current patient organ dose.

(a) Patient energy map. (b) Patient dose map.

Figure 4.7: Patient’s energy and dose maps simulated for an AP X-ray projection, 70 kV
tube tension, 0.4 mm Al spectrum 8➦ of aperture angle.

As a consequence of the stochastic nature of Monte Carlo methods, the results have

an associated statistical uncertainty σ. Yet, for sufficiently large number of simulated

histories, the MC simulation can approximate the exact solution. This logically comes

with a trade-off in computation time. The number of simulated particles also has an

impact on the quality of the visualization. When more particles are simulated, more

voxels are impacted, thus more data per voxel is recorded. We show in table 4.4, for

different amounts of simulated particles, the corresponding simulation times and mean

statistical uncertainty. In our experiments, 108 simulated particles yields an acceptable

trade-off between simulation time and uncertainty. The resulting quality of the volume

rendered visualization is also good (e.g. figures 4.7). The simulation time can be further

reduced if more GPU cards are used in parallel. In clinical practice, for procedures

where the device’s angulation values are standard and known beforehand, a database

of procedure-specific patient exposure maps can be pre-computed for default imaging

parameters using a patient-specific model if available, or a generic patient-equivalent

phantom otherwise. These maps could then be loaded and displayed intraoperatively for

the current imaging parameters.
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Table 4.4: Patient radiation exposure maps: simulation times and mean statistical
uncertainty in function of the number of particles emitted.

Number of particles Simulation time Statistical
uncertainty σ (%)

106 1 s 370 ms 48.6

107 13 s 473 ms 13.1

108 2 min 15 s 2.1

109 22 min 57 s 0.81

1010 3 h 50 min 0.25

4.3.1.2 Staff exposure

Computing staff’s radiation exposure requires to simulate an X-ray acquisition (as

described above) and to measure the exposure of a clinician at his/her current position

to the particles scattered by the patient. Particles scattered by the patient’s body after

each image acquisition travel with a given energy and momentum depending on their

previous interactions with matter (determined by the MC simulation). Since simulating

the complete trajectories and interactions of each particle emitted from the source to

the patient can be time-consuming (e.g. table 4.4), we propose instead to save the

information of the particles after they are scattered. Indeed, we can assume that the

3D dissemination and magnitude of scattered radiation will be the same if the imaging

parameters and patient are not changed. Thus, there is no need to simulate the full

image acquisition for each new position of a clinician. Approaches where the information

about scattered particles are saved for speeding up subsequent calculations can be found

in the literature [Badal 2013,Alnewaini 2017]. Usually, information such as the energy,

position and direction of scattered particles are saved into what is known as phase-space

files (PSF). However, since these files contain information about millions of particles,

they can be significantly large in size (up to several GB), which makes them slow to

load and memory-consuming. When exposure maps for different imaging parameters

and patient-models have to be pre-computed, the storage of these PSF also becomes an

issue. Instead, we propose an approach to characterize the “behavior” of the particles

scattered by the patient for a given X-ray image acquisition and save it in a compact

manner, which we define as scatter maps. As described below, such maps can then be

rapidly loaded to compute online a clinician’s exposure to the scattered particles at

his/her current position in quasi real-time.

Scatter maps generation When simulating an X-ray projection, the scattered par-

ticles are projected onto a sphere of radius r, centered at the device’s isocenter and

enclosing the patient (as shown in figure 4.8a). Inspired by [Kläser 2008], we cluster the

particles intersecting the sphere by dividing its surface into a n-sized regular polyhedron

where each of its faces is considered as a bin. The number of particles intersecting each

74



4.3. GPU-accelerated radiation simulation

bin (hits) along with their energies, positions and directions are stored. Instead of saving

the data of millions of particles into a PSF, we propose to smartly compress the scatter

information before saving it as a scatter map. First, by assuming that the particles

clustered together have similar energies and momentum, we compute the mean energy,

position and momentum per bin. Second, similarly to [Zhang 2014], we “parametrize”

the dissemination of the scattered particles with a probability distribution computed

using the number of hits per bin. A scatter map is then built by saving only the mean

information along with the corresponding probability value per bin. In the end, the size

of the scatter map file depends on the number of bins considered and not on the number

of simulated particles. Therefore, a higher number of histories can be simulated (thus

achieving lower statistical uncertainty), without affecting the size of the file. In a clinical

application, a set of scatter maps can be pre-computed simultaneously to the patient

exposure maps during surgery planning, by considering the different device angulations

and imaging parameters that will be applied in the upcoming procedure.

(a) Scattered particles’ information
saved in a spherical detector during sim-
ulation the simulation of X-ray imaging.

(b) The exposure of a clinician at his/her 3D position
estimated by loading the corresponding pre-computed
scatter map.

Figure 4.8: Generation of scatter maps and their use for a fast computation of a clinicians’
radiation exposure.

Online computation of a clinician’s exposure Tracking of the clinical staff oper-

ating near the patient can be performed with ceiling-mounted cameras as described in

section 3.2.3. Such an approach enables to estimate online the 3D position of a bounding-

box surrounding a tracked clinician as in [Loy Rodas 2015b], or the 3D position of the

body-parts with human pose estimation methods [Kadkhodamohammadi 2017a,Cao 2017].

A clinician is represented as a voxelized slab phantom in the simulation environment.

At run-time, the scatter map corresponding to the considered imaging parameters is

loaded. Then, the pseudo-random number generator from GGEMS and the probability

distribution of the scatter map are used to randomly sample the locations, energies

and momentum of the particles to simulate. The particles are projected into the slab’s

surface with a ray casting approach and the clinician’s exposure is approximated by
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(a) X-ray device’s pose for the current position of a clinician
in a virtual setup.

(b) Simulated dose to the clinician’s
body, modeled as composed by wa-
ter.

Figure 4.9: Generation of scatter maps and their use for a fast computation of a clinicians’
radiation exposure.

summing the deposited energies at each voxel. An approximation of the clinician’s dose

is calculated by dividing the energy values by the voxels material composition (in this

case approximated as water). This process is illustrated in figure 4.8b, where we show

a representation of the scatter map for the current device configuration and the mean

direction of the particles per bin. The colors of the sphere denote the amount of particles

clustered in each bin. For this configuration, a particle has a high probability to be

projected under the bed, as depicted by the red/yellow bins on the lower side of the

sphere. These visualizations along with the rest of the results presented in the following

sections were computed by using a sphere of 500 mm of radius divided into a polyhedron

with n = 40960 faces. Indeed, these parameters, determined empirically, yielded a good

trade-off between simulation time and accuracy.

Figure 4.9 shows an example of the online computation of a clinician’s exposure.

First, figure 4.9a depicts a clinical scenario, where the C-arm is placed for an RAO at 10➦

projection, and an operator is standing 50 cm away from the table in front of the patient.

The primary X-ray beam generated for this acquisition is also represented as a red cone.

Then, we provide in figure 4.9b, the corresponding exposure map for the operator in this

scenario. One can observe than in this case, his/her lower-body is more exposed due to

backscattering. Therefore, it would be recommended for him/her to position the table

mounted lead shield accordingly for protection.

Since this approach is a deterministic one, i.e. not based on MC techniques, it allows

to compute the exposure of an operator at his/her current position in quasi real-time.

However, it relies on an approximation of the behavior of scattered radiation. The effect

that these approximations have on the simulation results and times are evaluated in

section 4.3.2.1.
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4.3.1.3 Scattered radiation propagation

The 3D propagation of scattered radiation is calculated similarly as described in section

4.2.1. When simulating an X-ray image acquisition, we place a voxelized volume in

the simulation model, which is centered at the isocenter of the device and covers the

space around the table. Once the simulated particles are emitted from the X-ray source,

we track the path of the ones which are scattered by the patient and we keep a score

of the voxels crossed in their trajectory. For each voxel, we accumulate the particles’

energies which traversed it in order to obtain a 3D fluence map corresponding to the

current imaging/patient parameters. To achieve this, we implemented a GPU kernel

function for performing the particle navigation inside a voxelized structure efficiently. As

opposed to our previous implementation on CPU, the use of a GPU architecture enables

us to simulate larger voxelized grids with smaller voxels in a few minutes. These finer

scattered radiation maps result in a more aesthetic visualization of the 3D dissemination

of scattered radiation when applying volume rendering (see section 5.1.2).

4.3.2 Experimental validation

We evaluate our GPU-accelerated simulation framework in a twofold manner. As the

patient exposure computation involves mainly the physics processes implemented in the

GGEMS library and these were thoroughly validated in [Bert 2013,Lemaréchal 2015],

we focus henceforth on the validation of the staff exposure and scattered radiation

computation approaches. First, in order to assess the impact of the approximations we

propose for a fast computation of an operator’s exposure, we compare our simulations to

standard methods, namely to simulations without approximations and to the use of PSF.

Second, similarly to section 4.2.3, we compare our simulation results to measurements

performed in an OR using dosimeters.

4.3.2.1 Clinician exposure validation

We herein evaluate the impact on simulation time and accuracy when approximating

scattered radiation as scatter maps as proposed in section 4.3.1.2. We compare our

approach to estimating an operator’s exposure using a full Monte Carlo simulation, namely

by simulating the complete X-ray imaging process and tracking the resulting scattered

particles which impact the operator at his/her current position. As expected, this

approach results in longer simulation times, yet, since no approximations are performed,

it yields more accurate results. Moreover, we also compute an operator’s exposure with a

common approach from the literature [Badal 2013,Alnewaini 2017], where the information

of the scattered particles is saved in the form of PSF. These files are pre-computed for

different imaging parameters and are then loaded for computing a person’s exposure at

his/her current position.

First, we evaluate the simulation time and the practicality of each approach for a

single set of imaging parameters and a single position of a clinician. The results were

computed with the same computer and are summarized in table 4.5. For the approaches
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relying on PSF and scatter maps, we report the time required to pre-compute each kind

of file (Simulation), and the time it takes to load the pre-computed data, project the

particles and compute online the clinician’s exposure (Casting). We also provide, for

increasing amounts of simulated particles, the respective size of a PSF and scatter map

file per set of imaging parameters. For the full Monte Carlo method (MC in table 4.5),

only one simulation time is reported since the results are obtained in a single simulation

run. Relying on pre-computed phase-space files is actually equivalent to perform a full

MC simulation in a two-step manner, thus, the accuracy is maintained. However, as we

can observe from table 4.5, both the size (without any compression) and the computation

time for each PSF increase importantly with the number of simulated particles. In our

approach, since we smartly compress the scattered particles’ information directly in the

simulation, the size of each file remains constant for any amount of simulated particles.

Indeed, the scatter maps’ size depends only on the number of faces of the polyhedron

placed around the patient during their computation. Also, since less data is loaded into

the GPU, the casting process takes less time than when loading a large PSF. With all

three approaches, the uncertainty in the exposure values is below 1 % when simulating

106 histories or more. Using our approach, the clinician exposure can be updated every

378 ms in that case. Therefore, our simulation approach enables to simulate a clinician’s

exposure at his/her current position at a rate of almost 3 frames-per-second. Even on

GPU, a full MC simulation takes a few seconds for this task. The use of pre-computed

data seems to be an appropriate approach for reaching near real-time performances for a

staff dose simulation approach. Since for a clinical application it would be necessary to

pre-compute patient-specific scattered particles’ data for a large set of imaging protocols,

the use of scatter maps to smartly compress these files seems to be an appropriate

solution in terms of practicality and speed.

Table 4.5: Simulation times of clinician exposure with the three approaches evaluated: a
full Monte Carlo simulation (MC) without approximations, with pre-computed PSF and
scatter maps.

Particles MC
Phase-space files Scatter maps

Casting Simulation Size Casting Simulation Size

106 3.4 s 2 s 4 s 40 MB 378 ms 3 s 3.1 MB

107 34 s 15 s 1 min 40 s 400 MB 3 s 41 s 3.1 MB

108 6 min 30 s 3 min 20 s 12 min 30 s 4.3 GB 35 s 7 min 3.1 MB

109 58 min 3 s 41 min 38 s 2 h 30 min 45 GB 6 min 2s 1 h 15 min 3.1 MB

Whereas scatter maps can be convenient in terms of speed and file size, they are based

on approximations of the scattered particles’ behavior. Hence, we also evaluated the loss

in simulation accuracy caused by these approximations. To do so, we performed extensive

simulations considering different C-arm angulations and positions of an operator with

all the three approaches and compared the obtained operator’s exposure values. We

considered a full C-arm rotation in the LAO/RAO plane, simulating an X-ray projection

every 5➦ rotation. For each angulation, we simulated the exposure of a virtual clinician for
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a total of 16 positions on one side of the table. These positions were equally distributed

in a 0.4× 0.4 m2 surface. This way, we evaluate the accuracy of the clinician’s exposure

computation when the X-ray source is on the same side as him/her and also when it is

on the opposite side of the table. Taking the complete Monte Carlo simulation approach

(with no approximations) as reference, we compute the mean relative error between the

energy values obtained for each of the 1168 simulated experiments with both the PSF

and our approach. These results were computed for 108 particles and are summarized

in table 4.6. As expected, the exposure values yielded by the MC simulation and the

approach using pre-computed phase space files are close. The 0.7 % difference may be

explained by the different random seeds used on each simulation and by the statistical

uncertainty of the simulations. Approximately, an 8 % difference in the simulation results

is obtained when using scatter maps. Figure 4.10a shows a plot of the mean simulated

energy per C-arm rotation angle computed with the three approaches. When the rotation

angle is above 180➦ the X-ray source is on the clinician’s side, thus, the exposure values

are higher. Interestingly, the errors introduced by the approximations from the scatter

maps are higher for these cases too, as depicted in the graph. Still, a mean 8 % difference

is acceptable since these approximations enable a faster computation of a clinician’s

exposure (35 s with our approach for 108 particles against 3 and 6 min respectively for

the PSF and MC methods).

Table 4.6: Mean relative difference of a clinician’s exposure obtained with the PSF and
scatter maps methods, compared with a full MC simulation and pre-computed PSF as
references.

❳
❳
❳

❳
❳
❳
❳
❳
❳
❳
❳

Method
Reference

Monte Carlo Phase-space files

Phase-space files 0.7 % -

Scatter maps 8.2 % 8.0 %

4.3.2.2 Evaluation with experimental measurements

We also performed a set of dose measurements in an interventional room using an Artis

Zeego robotized X-ray imaging device, a calibrated multi-RGBD camera system and a

set of RaySafe wireless active personal dosimeters [RaySafe 2017] for evaluation purposes.

A plexiglas phantom of 20× 20× 24 cm3, with 10 mm thick plexiglas walls and filled with

water was irradiated under different imaging protocols. Eight dosimeters were either

placed over the operating table or taped to drip rods and placed around the work area.

This setup is shown in figure 4.10b. The main goal of this measurements campaign

was to obtain dose data to evaluate our C-arm pose optimization approach presented

in chapter 6. Therefore, the imaging protocols performed were chosen accordingly, as

it is further explained in section 6.4. Indeed, the tube tension and filtration were kept

constant (100 kVp and 0.4 mm Al respectively), but the C-arm projection angles were

varied in the two rotation planes i.e. LAO/RAO and CAUD/CRAN (represented in
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(a) Deposited energy per rotation angle computed
with the three approaches: full MC simulation,
pre-computing PSF and scatter maps.

(b) Setup for experimental validation per-
formed at IHU Strasbourg: PA imaging pro-
jection, water-filled slab phantom and wire-
less dosimeters.

Figure 4.10: (Left) Results of the simulation of a clinician’s energy for a full rotation of
a C-arm in the LAO/RAO plane computed with a MC simulation, using pre-computed
PSF or using scatter maps. (Right) Experimental setup for the experimental validation
with measurements from dosimeters in an OR.

figure 4.2). The same experimental conditions were simulated with our GPU-accelerated

approach and the results were corrected using the measurements from two calibration

dosimeters. The relative errors between the simulated dose values and the ones measured

by the validation dosimeters were computed to verify the accuracy of the simulated dose

distribution. A total of 15 C-arm configurations were considered for this experiment. A

simulation with 108 particles was performed for each of them, and the energy values at the

dosimeters’ positions could be simulated in approximately 30 s with our GPU-accelerated

approach. The errors calculated using the measurements from the 6 remaining dosimeters

are reported in table 4.7. The mean error obtained for all experiments was of 18.7 %. As

in section 4.2.3.2, we consider this error acceptable since it is within the range of possible

measurement inaccuracies from the type of dosimeters we use. Moreover, approximations

in the X-ray source model in the simulation framework may introduce further errors to

the results. Hence, the simulation approach presents promising performances in terms of

simulation time while remaining accurate when compared to real dose measurements.

4.4 Conclusions

In this chapter, we presented two radiation simulation approaches developed during this

thesis. Both of them enable to compute the 3D propagation of scattered radiation along

with the patient and staff dose, by taking into account the current imaging parameters and

room layout. As further explained in chapter 5, displaying the simulated dose distribution

maps through augmented reality enables to provide in-situ visual feedback about the

current radiation exposure in an intuitive fashion. Both radiation simulation approaches

80



4.4. Conclusions

Table 4.7: Mean simulation errors per irradiation protocol with two calibration dosimeters.

X-ray device angulation
Error (%)

LAO/RAO CAUD/CRAN

30 30 19.9

40 36 20.3

35 0 29.8

8 0 27.6

6 -10 22.1

185 0 18.6

190 7 13.8

27 29 19

37 35 20.7

88 0 14.2

98 -2 13.2

45 -25 11.8

-47 -35 14

-37 -24 16

-41 -34 19.7

Mean 18.7

were validated through extensive experiments performed in an interventional room using

a robotized X-ray imaging device. The results have shown that the error between the

simulated and measured dose values is in agreement with the intrinsic error of the

dosimetric system we use, for different irradiation parameters and setups. Furthermore,

both approaches have been crucial to the development of the two targeted applications of

this thesis, which were discussed afore in section 1.4.2. Our GPU-accelerated approach,

introduced in section 4.3, presents promising performances in terms of simulation speed

and accuracy. As presented in chapter 7, such an approach has been incorporated into a

radiation awareness system demonstrated in a hybrid room. Additionally, novel simulation

strategies have been introduced to enable a quasi real-time simulation, as necessary for a

clinical application. For instance, an intraoperative system for monitoring occupational

exposure requires a fast simulation as clinicians are moving during a procedure and the

system has to update accordingly the simulation model. Moreover, simulations for a large

amount of varying imaging parameters and room configurations can be pre-computed

fast with our approach, and the results can be conveniently compressed and saved as

scatter maps. Such data can be used by a training system to teach about radiation

exposure on standard clinical scenarios. As it is further discussed in chapter 6, our

simulation approach is also well suited to be applied in an optimization loop. A cost

function modeling radiation exposure can be repeatedly evaluated for many parameters

and the optimization can converge to an answer in a reasonable time thanks to the fast
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computation capabilities granted by our GPU-accelerated approach.
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5 Intuitive visual feedback of ioniz-

ing radiation

Blessed are those who have not seen and yet have believed.

– John 20:29, The Bible

Figure 5.1: AR visualization of the 3D propagation of scattered radiation (left) and of a
clinician’s full-body exposure (right), during a RAO at 135➦ X-ray imaging projection.
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The invisible nature of ionizing radiation and the lack of immediate effects of exposure

lead to reduced awareness and hinder the optimal use of the available protective equip-

ment during a procedure. Radiation simulation approaches provide quantitative dose

estimations that are useful for monitoring the exposure of patient and staff and/or for

generating dose statistics and reports. However, the impact they can have on increasing

awareness to radiation depends on how these results are presented to the clinical staff. In

this thesis we propose to provide an intuitive visual feedback of the simulated radiation

exposure corresponding to the current room conditions by means of augmented reality.

Through AR, ionizing radiation can be rendered visible, which can have a major visual

impact on the person looking at it. This can contribute not only to increase awareness to

ionizing radiation but also to improve the understanding about its behavior. For instance,

the use of AR can provide a clear understanding of the 3D dissemination of scattered

radiation and show intuitively how highly irradiated areas on and around the patient

change according to the imaging device’s positioning. To the best of our knowledge, we

were the first to demonstrate an AR visualization system for improving radiation safety

in [Loy Rodas 2014,Loy Rodas 2015b].

We dedicate this chapter to describing our approaches for providing intuitive visu-

alizations of X-ray radiation. We begin by discussing in section 5.1.1 the benefits and

motivations behind the use of AR visualization. Then, in section 5.1.2, we introduce the

different visualization modes that we propose. The next sections describe different AR

approaches that were investigated. Indeed, AR visualization is achieved by overlaying

virtual objects over images of the world. For our application, the appearance and colors of

these virtual objects should convey relevant information concerning the current behavior

of ionizing radiation and the dose values. Hence, we have explored different alternatives

concerning the origin of the support images employed for the visualization. First, we have

made use of the stream of images from our ceiling-mounted RGBD cameras to provide a
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global visualization of the OR from a fixed point-of-view. This approach, presented in

section 5.2.1, is the one we implemented in our radiation awareness prototype system

demonstrated in an interventional room (see section 7.1). Second, we have proposed an

approach relying on a hand-held screen to display directly in the user’s view information

related to radiation safety in a mobile AR manner. This is further discussed in section

5.2.2. Third, we have also worked with a commercial optical see-through head-mounted

display (OST-HMD), as a different mean to show relevant information regarding radiation

exposure to the user. This approach, presented in [Loy Rodas 2018a], is further discussed

in section 5.2.3. For each of the presented visualizations, we provide several examples

enabling a qualitative assessment of their clinical relevance for our application.

5.1 Augmented reality visualization of ionizing radiation

The last decades have seen numerous medical augmented reality systems looking to

facilitate the visualization and integration of all the information available during a

procedure by displaying it intuitively to the user. Nowadays, AR medical environments

have successfully been applied for diagnosis [Berlage 1997], interventional planning

and surgical navigation [Feuerstein 2008], and for in-situ visualization of intraoperative

imaging data [Navab 2010,Chen 2013]. In this thesis, we propose to make use of AR for

a different kind of medical application besides assisting the surgeon in the immediate

execution of a procedure. We refer to the use of AR to increase awareness to radiation

and to reduce the exposure to ionizing radiation of clinical staff and patient during

surgical procedures involving X-rays. We discuss below several benefits of using AR for

this purpose, followed by a description of the three modes of visualization we propose.

5.1.1 Benefits of X-ray radiation’s AR visualization

Studies evaluating radiation awareness have reported a considerable proportion of unnec-

essary exposure and risk underestimation resulting from a lack of awareness and poor

knowledge of radiation behavior [Katz 2017b]. This is partially due to the invisible nature

and complex behavior of ionizing radiation. However, appropriate feedback of the current

distribution of scattered radiation can increase the awareness of clinical staff and reduce

the risk of overexposure. As described in section 2.2.2, several computer-based systems

combining radiation simulation and visualizations of radiation in virtual environments

have been developed to cope with these challenges [Bott 2009,Ladikos 2010,Badal 2013].

Following this line, we apply AR as a mean to render intraoperative ionizing radiation

visible. AR enables to provide the user with an in-situ visual feedback about the current

radiation diffusion in an intuitive and non-disruptive fashion. We provide two examples

of such a visualization in figure 5.1 for an RAO at 135➦ angulation of a C-arm. In this

configuration, the X-ray source is positioned over the bed (overcouch). We show in the

left figure a visualization of the 3D distribution of scattered radiation. Such a direct

visualization enables a clear understanding of the highly irradiated areas around the oper-

ating table and can help optimizing the use of protective measures to avoid overexposure.
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In the right image, we show an example of an AR visualization of the full-body radiation

exposure of an attendee. The highest exposure to scattered radiation can be depicted

in the person’s upper-body, especially in the chest and thyroid. As reported in the

literature, overcouch configurations can generate up to six times more exposure to highly

sensitive body-parts such as thyroid and head, and should be avoided [Koukorava 2011].

This kind of visualizations provide an intuitive way to apprehend an otherwise purely

theoretical safety recommendation. Also, by looking at any of these two images, a user

would be more inclined to place a ceiling-mounted shielding screen in front of his/her

chest for a better protection.

Standard radiation protection reports teach about the behavior of irradiation fields

with isodose or floor graphs. We provided in figure 1.3 (chapter 1) an example of the kind

of images one can find in the literature for learning about the propagation of scattered

radiation for different clinical conditions. However, these 2D figures can severely change

when any of the factors affecting radiation propagation is modified (see section 1.2.2).

The examination’s complexity makes it also difficult for clinicians to keep such figures

in mind and to be aware of their exposure while they are busy performing a surgical

task. An intraoperative system capable of estimating and displaying the propagation of

scattered radiation for the current OR configuration in an intuitive and non-disruptive

fashion can therefore importantly increase the awareness of physicians to radiation risks.

This could also be particularly interesting for novices since the system could also be used

as a teaching tool to impart knowledge regarding scattered radiation behavior.

5.1.2 Visualization methods

AR visualization facilitates the understanding of the behavior of ionizing radiation by

making its propagation visible to the user’s eyes. Since such a behavior is heavily affected

by various factors, the different visualizations must be updated according to the current

imaging and patient parameters. As described in chapter 4, parameters such as the

X-ray tube voltage, the patient model or the positions of clinicians are input to our

radiation simulation approach. This way, the generated visualizations can also convey

information about the effects that variations in the imaging parameters have on radiation

exposure. As explained in section 3.1.3, we register our multi-RGBD camera system

to a global room reference frame placed at a known position over the operating table.

Such a reference frame is used for correctly positioning virtual elements with respect to

the imaging device. We present below three visualization methods applied to intuitively

display the results from the simulations to a user.

5.1.2.1 3D propagation of scattered radiation

It concerns the visualization of the 3D dissemination and intensity of the radiation

scattered by the patient during an X-ray image acquisition. As described in chapter 4,

we first compute 3D radiation distribution maps by recording the energy deposited at

each voxel of a 3D grid placed around the patient when simulating an X-ray projection.

86



5.1. Augmented reality visualization of ionizing radiation

Figure 5.2: AR visualization of the 3D diffusion of scattered radiation for two imaging
projections: an RAO at 120◦ projection (left) and a PA projection (right). Red indicates
higher dose.

Next, color and transparency transfer functions are applied to map the simulated

dose values inside each voxel element into RGB and opacity values. The obtained

colored volume is then visualized with a volume rendering approach. We provide an

example of this visualization in figure 5.2, showing rendered 3D isosurfaces overlaid

over images from ceiling-mounted cameras for two different C-arm angulations. Depth

data from the cameras is used to detect and filter out occlusions in the visualization

for a consistent display of the virtual elements. Such a visualization provides a clear

understanding of the 3D dissemination of scattered radiation and shows intuitively how

highly irradiated areas around the patient change according to the device’s positioning.

As explained in section 1.2.2, the highest rate of scatter is always produced in the entrance

surface side of the patient, namely closest to the X-ray source (i.e. backscattering effect)

[Carinou 2011]. In the left image, which corresponds to a RAO at 120◦ projection, most of

the scatter propagates above the table. In the right one, corresponding to an undercouch

configuration, the scatter is mostly diffused under the bed, showing why undercouch

configurations are preferred in clinical practice. Additionally, these visualizations suggest

that standing without protection close to the X-ray source should be avoided, which also

matches the radiation safety recommendations from the literature [Koukorava 2011].

In case the poses of the table- or the ceiling-suspended lead screens are known,

they can be included in the simulation model and the effect they have on stopping

scattered radiation can be visualized. Examples illustrating the use of protective shields

for protection against scattered radiation are provided in figures 5.3 and 5.4. The 3D

dose maps for these figures were computed by manually positioning the lead shields in

the simulation, according to their positions in the scenarios depicted. These maps are

then displayed by applying the aforedescribed AR visualization approach. In figure 5.3,

one can observe for two over-couch C-arm configurations (LAO at 90◦ and AP), how

the ceiling-suspended shields stop the propagation of scattered radiation, which would
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otherwise be directed to the person’s upper-body. The shape of the scatter field is also

affected since X-ray particles are refracted by the shields. For both angulations depicted

in figure 5.3, radiation is rather scattered towards the ceiling of the room when the shields

are present. We also show an example of this visualization on images captured with our

camera setup installed at Strasbourg’s University Hospital IR department. Figure 5.4

shows the scattered radiation that would be generated in the scenarios depicted. One

can also observe how the use of table- and ceiling-suspended shields blocks the scatter in

the right image, when compared to a scenario without shielding (left image).

Figure 5.3: AR visualization of the propagation/intensities of scattered radiation for
two C-arm angulations (AP and LAO at 90◦), illustrating the effect of table- and
ceiling-suspended protective shields for radiation protection.

AR visualization provides useful knowledge about the variations of the 3D distribution

of the highly irradiated areas for the current C-arm configuration and room layout. Hence,

it can have a strong impact on increasing clinicians’ understanding and awareness of

scattered radiation. It can also help trainees to learn intuitively about radiation’s diffusion

effects and about the best safety practices. Our collaborating clinicians have shown a

strong interest in such visualizations because of the immediate visual feedback about
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high-risk areas they grant and also since most of them have never seen scattered radiation

in 3D before.

Figure 5.4: AR visualization overlaid a posteriori for visualization purposes, to show
the scattered radiation that would be generated if the X-ray device was used in such a
situation: no lead protective shields (left) and with a ceiling-suspended shield (right)
(Strasbourg’s University Hospital).

5.1.2.2 Patient exposure visualization

The patient exposure maps obtained from our radiation simulation approach contain

clinically relevant information such as the dose to the skin and to each organ deposited

after each irradiation. Similarly to the previous visualization mode, we apply volume

rendering to show a patient’s 3D dose map in a virtual environment. As shown in figure

5.5a, this visualization enables to see the trajectory of the X-ray primary beam inside a

patient’s internal structures and also provides information about the dose deposited in

each organ/tissue. We also apply color and opacity transfer functions to color the surface

of a generic patient model using the dose values simulated at the patient’ skin. This

permits to see the location of the peak skin dose for the current C-arm angulation. The

example provided in figure 5.5a was simulated for an RAO at 135➦ radiography. We can

observe the left side of the model’s chest is colored in red, indicating higher exposure in

the areas corresponding to the X-ray beam’s entry point. In clinical practice, this kind of

visualizations can be useful to avoid overexposing certain skin areas and/or to sensitize

clinicians about the ongoing patient’s exposure. The irradiated patient’s model can also

be shown in an AR manner over an image of the operating scene. This is achieved by

registering the model to the viewer’s point-of-view and projecting it accordingly in 2D.

We show an example of this visualization in figure 5.5b, corresponding to a visualization

with our mobile AR approach described in section 5.2.2.

5.1.2.3 Staff exposure visualization

This visualization mode relies on the clinician tracking approaches described earlier in

section 3.2.3. These approaches are applied to track the position of clinical staff in the
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(a) Organs and peak skin dose respectively visualized over
a patient’s CT and over a generic model.

(b) AR visualization of a patient’s
skin exposure.

Figure 5.5: Visualization of a patient radiation exposure (to skin and organs) on a virtual
environment (left) or through a mobile AR (right), for an RAO at 135➦ C-arm projection.

room, to then compute and display an estimation of the current full-body radiation

exposure of each attendee. The points corresponding to the tracked person’s shape

are colored according to the simulated exposure value at each of its 3D locations. We

discussed earlier an example of this visualization shown in figure 5.1. Two additional

examples of the staff exposure visualized using AR are provided in figure 5.6. The left

image corresponds to a mobile AR visualization, where the C-arm is positioned for a

PA projection. Therefore, the clinician’s lower-body is more exposed since radiation is

majorly diffused under the operating table (i.e. backscattering effect). The right image is

obtained by coloring the clinicians’ shapes in the images’ stream from the ceiling-mounted

cameras. In this case, the C-arm is positioned for an AP projection and it is the clinicians’

upper-body which is the most exposed. Thus, this kind of visualization enables to see

clearly how the highest irradiated parts of the body change according to the position of

the person with respect to the source of scatter and to the orientation of the imaging

device. Moreover, while dosimeters are limited to measure the dose absorbed at the point

of placement, this visualization is able to provide a full picture of the complete body

exposure.

5.2 Augmented Reality visualization approaches

As clinicians can already be overwhelmed by the large amount of data and information

available during a surgery, key questions to be asked are what would be the best way to

present the information for radiation safety while least affecting the clinical workflow,

and to whom it should be shown (operators, assistant personnel, radiation protection

officers . . . ). As an attempt to answer the first of these questions, we have explored three

different AR visualization approaches presented in this section. Since precision is not

a critical factor for our clinical application, we do not present results of an evaluation1

1An extensive quantitative evaluation of our marker-less mobile AR approach (section 5.2.2) was
performed and is presented in appendix C.
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Figure 5.6: (Left) Mobile AR visualization of a clinician’s exposure during a PA projec-
tion. (Right) Ceiling-view AR visualization of the exposure of two clinicians for an AP
projection.

of the registration accuracy of the virtual elements overlaid in the images. We rather

provide qualitative results to illustrate the potential in improving radiation safety of

these visualizations.

5.2.1 Ceiling-view AR visualization

In this visualization approach, the virtual elements are overlaid over the color images

from the RGBD cameras mounted to the ceiling. The depth maps from the camera

are used to filter out occlusions in the visualization for a proper display of the virtual

information. Any of the three visualization modes described in section 5.1.2 can be

displayed with this approach on a screen inside the OR. This enables clinicians or trainees

(if the visualizations are used for training purposes) to have an overview of the current

propagation/intensity of radiation in the room and also to select the viewpoint from

where to look at the scene. Moreover, this approach is convenient for an intraoperative

application since it does not require a user to manipulate the screen or the device used

to show the augmented images. Figures 5.2, 5.4 and 5.6 (right) are examples of the

ceiling-view AR visualization.

5.2.2 Mobile AR using a hand-held screen

We also developed an approach2 where a hand-held screen is used to display directly in the

user’s view information related to radiation safety in a mobile augmented reality manner.

As shown in figure 5.7, this enables the user to move freely around the table and to see the

3D propagation of radiation, the medical staff’s exposure and/or the doses deposited on

the patient’s surface “as seen through her/his own eyes”. To achieve this, we attached an

RGBD camera to the screen and proposed a marker-less camera tracking/relocalization

2I thank Dr. Fernando Barrera for collaborating with me in the development and evaluation of our
mobile AR approach.
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approach. Since in this chapter we focus on visualization approaches to improve radiation

safety, we present the technical details of the tracking/relocalization pipeline in appendix

C.2. Still, we provide below a brief description of this AR approach below.

Our approach computes the pose of the camera attached to the screen with respect

to the global room coordinate system at each time step. Instead of using markers,

we propose to track the observer’s viewpoint with an approach relying on the use of

multiple RGBD cameras, combining equipment detection for tracking initialization with

a KinectFusion-like approach [Newcombe 2011] for frame-to-frame tracking. We use

two of the ceiling-mounted cameras from our setup described in chapter 3 and a third

one which is attached to the hand-held screen. The ceiling cameras keep an updated

model of the room’s layout, which is applied to exploit context information and improve

the relocalization procedure. Our approach allows the system to recover from tracking

failure caused by vast motion or changes in the scene just by looking at an equipment.

Also, it enables the user to benefit from a large AR visualization area. We performed an

extensive evaluation of our camera relocalization approach in [Loy Rodas 2017a], with a

multi-camera dataset generated inside an operating room and containing ground-truth

poses of the hand-held screen. The results of such an evaluation can be found in appendix

C.4. To the best of our knowledge, such a dataset is the first multi-RGBD camera dataset

recorded in an OR with a robotized X-ray imaging device for evaluation of SLAM/AR

systems. It includes a wide variety of sequences with different scene configurations,

occlusions, motion in the scene and abrupt viewpoint changes and it is representative of

the challenges a tracking system could encounter in a medical environment. A complete

description of this dataset3 is provided in appendix B.

We show in figures 5.1, 5.5b and 5.6 (left) qualitative results of the different visualiza-

tion modes displayed through a hand-held screen. Visualizing the patient’s skin dose

with this approach is more convenient than through the ceiling views since it allows the

user to stand close to the patient/phantom and to benefit of a detailed visualization of

the skin dose values. Furthermore, enabling the user to move freely around the operating

table and see these kinds of visualizations from the perspective of a hand-held screen

can be useful specially for radiation safety training sessions. Trainees can learn in an

intuitive way about the effects that different orientations of the imaging device have on

the diffusion of scattered radiation or can visualize the exposure of the colleague standing

next to them (e.g. figure 5.6). For an intraoperative application, the hand-held screen

can be replaced with a screen fixed to an articulated arm. An operator could then adjust

the visualization perspective by displacing the articulated arm.

5.2.3 Mobile AR using a HoloLens

The development of robust algorithms for facing the challenges encountered by mobile

AR technologies (indoor mapping, tracking, relocalization...), along with the advances in

optics designs and embedded computational power have enabled the advent of commercial

3The xawAR16 dataset has been made publicly available online and can be found here: http:
//camma.u-strasbg.fr/xawar16-dataset
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Figure 5.7: Mobile AR visualization for radiation awareness using a hand-held screen. The
user visualizes the propagation of scattered radiation for the current device configuration
directly in his own view.

head-mounted displays (HMD) suitable for medical applications. Indeed, the attempts to

deploy HMD in the operating room have been under continuous investigation for years.

Yet, nowadays we see more off-the-shelf devices with an increasing number of applications

in clinical scenarios. A recent study showed that displays such as Microsoft’s HoloLens

are now suitable enough in terms of contrast perception, task load and frame rate, for

mixed reality surgical interventions [Qian 2017]. Furthermore, another commercial device,

the ODG-R7, has been used at Johns Hopkins Hospital to augment fluoroscopic images

directly into the surgeon’s view for some types of orthopedics procedures [Qian 2017].

An optical see-through head-mounted display (OST-HMD) is a kind of HMD capable

of displaying virtual elements over an unhindered view of the scene. This is particularly

adapted to clinical scenarios where even if the display malfunctions, a direct vision of

reality would not be affected allowing the surgeon to safely continue the operation. We

have investigated the use of an OST-HMD, namely Microsoft’s HoloLens, to display

information related to radiation safety to the user4. As opposed to a visualization over a

screen (static or mobile) where the user’s attention must switch back and forth between

the scene and the screen, here the virtual elements are visually aligned to the scene when

the user is wearing the device.

4We acknowledge Pamir Ghimire for developing during an internship the applications herein presented.
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We have implemented the three visualization modes described in section 5.1.2 as

HoloLens applications. To visualize virtual information related to the room context,

an initial registration of the OST-HMD is achieved by placing a marker at a known

position in the scene at detecting it in the application. Figure 5.8a shows a user wearing

a HoloLens in an operating room to visualize radiation safety information. We show

in figure 5.8b what the user is seeing through the HoloLens in this scenario, namely a

phantom model colored according to the skin dose values and registered over the real

phantom in the table. In this patient exposure application, the user can select the

model to be displayed from a database simulated for a large set of imaging parameters

and C-arm angulations. Similarly, an application enabling the visualization of volume

rendered scattered radiation maps was implemented. An example is shown in figure

5.8c. The user also selects from a database of pre-computed 3D radiation maps the one

corresponding to the current C-arm angulation. For a third application targeting the

visualization of staff body-part exposure, we rely on a wireless communication between

the HoloLens and a computer streaming/processing the images from our ceiling-mounted

multi-RGBD camera setup. The current pose of an operator is detected on one of the

ceiling cameras with the real-time human pose estimation approach described in section

3.2.3. The pose information is then transmitted to the device and a colored skeleton is

overlaid over the tracked person in the HoloLens view. A short sequence of qualitative

results of this visualization is shown in figures 5.9. The person seen in figure 5.9a is a few

steps away from the irradiated area and his skeleton is mostly colored in blue. However,

in figure 5.9b, the person is closer to the patient and his right arm is positioned directly

in the X-ray primary beam’s path. One can observe how the exposed parts are colored

in red in the skeleton displayed by the HoloLens (indicating higher exposure), while the

rest of the body remains blue.

An OST-HMD can be a useful tool for teaching radiation safety in an engaging,

game-like and risk-free learning environment. With the aforementioned visualization

approaches, teaching can be performed in real clinical conditions inside an OR. However,

the use of an HMD also enables to train anywhere (hospital, school or even at home).

Therefore, we also worked on Virtual Reality (VR) applications enabling to show virtual

color-coded radiation safety information using a HoloLens, that a user can use for learning

at any location. First, a virtual surgical scene composed by models of the X-ray imaging

device, patient and clinicians, is displayed. Then, the user interacts with the scene to set

the C-arm angulation and imaging parameters. Virtual patient and clinicians’ models

colored according to their ongoing exposure levels or the 3D propagation of scattered

radiation for the current scene configuration are shown. Such models are pre-computed

for a large set of imaging parameters with our radiation simulation approach. We show

in figure 5.10 visualization examples of this VR training application. In figure 5.10a one

can observe a virtual C-arm positioned for a PA projection. A clinician model in the

scene is colored in red mainly in his lower-body, showing that radiation is being scattered

under the table in this configuration. Figure 5.10b shows a visualization of irradiated

virtual patient models: the user can select different imaging parameters (aperture angles,
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(a) User wearing a HoloLens inside an ex-
perimental OR at IHU Strasbourg.

(b) Visualization of a phantom’s skin expo-
sure as seen through a HoloLens.

(c) Visualization of the 3D propagation of
scattered radiation.

Figure 5.8: Using Microsoft’s HoloLens to display radiation exposure information.

(a) The person’s exposure is low (blue skele-
ton) when standing a few steps away from
the patient.

(b) The person’s right side of the body is
highly irradiated (red skeleton) when ap-
proaching the patient.

Figure 5.9: HoloLens visualization of a clinician’s body-part exposure: the person’s pose
is computed in images from a ceiling-camera and transmitted wirelessly.
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tube voltage, filtration...) and the corresponding skin dose is shown color-coded over the

model’s surface. These VR radiation safety training applications provide an immediate

feedback to maximize learning about the effects that altering imaging parameters can

have on radiation exposure.

(a) A virtual C-arm (PA projection) is
shown: the clinician and patient models are
colored according to their current exposure.

(b) Visualization of an irradiated virtual
patient model: the position of the peak skin
dose values for an AP projection are visible.

Figure 5.10: VR radiation training application: a virtual interventional scene is displayed
to the user with information related to radiation safety through a HoloLens for learning
purposes.

HMDs are valuable tools for medical AR applications and are starting to make their

way into the operating theater. We have investigated the use of a HoloLens to display

information related to radiation safety to the user5. While such a device may be too

heavy for a clinician to wear during a long procedure (579g as reported in [Qian 2017]), it

can still be used as a tool to teach radiation safety to trainees. Other lighter commercial

HMD devices such as the ODG-R7 or Moverio’s BT-200 are available which may be more

adapted for intraoperative usage. Furthermore, since protective eyewear is commonly

used in interventional radiology/cardiology procedures, a light OST-HMD could be

designed in the future specifically to simultaneously protect the eyes while also providing

an enhanced AR visualization for radiation awareness.

5.3 Conclusions

We have presented in this chapter approaches for improving radiation safety by making

ionizing radiation visible through different visualization modes. These approaches rely

on the multi-camera setup and the tracking/registration methods described in chapter 3,

and also on the radiation simulation approaches presented in chapter 4. Through AR, a

user can visualize the current patient and staff dose, along with the 3D distribution and

intensity of scattered radiation. Intraoperatively, this can contribute to increase radiation

5A video of our applications for radiation safety training using a HoloLens can be found at: https:
//youtu.be/lflbEWC5VsA.
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awareness and reduce overexposure risks for both patients and staff. Also, clinicians can

adapt their positioning and the disposition of the protective equipment with the provided

visual feedback. Preoperatively, it has the potential to be applied as an intuitive training

tool to teach about radiation behavior and about the best safety practices. Besides AR

visualization, other means to provide feedback about radiation exposure such as light

patterns projected on the floor, holograms or acoustic signals could be envisaged. The

technical feasibility and smooth integration into the clinical workflow were the criteria

we considered in our work to choose visual feedback as the more adapted solution for a

radiation awareness system.

Moreover, a key question we could ask ourselves is to which actor involved in the

procedure should the visualizations be addressed to. Indeed, they could either be shown

directly to clinicians/surgeons, so they can adapt their positioning and/or the positioning

of the room shielding to better protect themselves during the execution of fluoroscopy-

guided gestures. Also, since clinicians may be busy performing the procedure at hand, the

visualizations could be displayed only to radiographers who are in charge of maneuvering

the X-ray imaging device. Then, they could make suggestions to optimize radiation

protection during the procedure or adjustments to the imaging device configuration. In

the same way, recordings of procedures with radiation information overlaid in an AR

manner could be examined postoperatively by the hospital’s radiation safety officers. This

way, they could identify steps of the surgery where potential risks of overexposure occurred.

The use of AR to provide feedback about ionizing radiation opens up possibilities for

several clinical applications. We discuss more about such potential applications in section

7.2.
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6 Optimization of an X-ray imaging

device’s pose

The day before something is truly a breakthrough, it’s a crazy idea.

– Peter Diamandis

Figure 6.1: X-ray imaging device’s pose optimization concept: from an initial configura-
tion, considering clinician, imaging and patient parameters, a recommended device’s pose
lowering patient/staff radiation exposure and maintaining the visibility of the targeted
anatomical structure in the output image is computed through an optimization loop.
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As discussed in section 2.2, one can find in the literature several systems for assessing

and/or decreasing medical ionizing radiation either in a passive or an active manner.

Reducing radiation exposure in a passive way can be achieved by improving medical staff

awareness and/or the understanding of radiation propagation. Lowering the doses by

having an actual influence on the imaging process is considered as an active way to achieve

it. Up until now, we have presented approaches using cameras and radiation simulations

to provide intuitive visual feedback about radiation behavior, with the aim of increasing

awareness and improving radiation safety. Now, in this chapter, we investigate a new

approach aiming to reduce radiation dose by having an active influence on the X-ray

imaging device configuration. Our concept was first presented in [Loy Rodas 2017b] and

is summarized in figure 6.1. Such an approach focuses on the optimization of a C-arm’s

pose for recommending a configuration which minimizes the dose to both patient and

clinical staff, while also maintaining the visibility of the targeted anatomical structure in

the output image. This is a complex problem where several factors must be considered

(patient dose, staff dose, X-ray image quality, clinical workflow, C-arm kinematics...).

Some of these factors can even be inherently conflicting with one another and this hinders

the finding of an optimal solution. We herein propose an approach to model such a

complex problem and approximations to make it computationally tractable.
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In this chapter, we first motivate the need for C-arm maneuvering assistance systems

in section 6.1 and present several related works from the literature (since this topic

was not addressed in the Related Work chapter). Then, in 6.2, we describe our pose

optimization approach and our modeling of this problem as the minimization of a cost

function. In section 6.3, we present a set of experiments performed on simulated clinical

setups for evaluating the potential and the limitations of the proposed approach. An

evaluation with real dose measurements is then described in section 6.4. Finally, the

conclusions of this chapter are presented in 6.5.

6.1 C-arm positioning assistance

6.1.1 Context

Last decades have witnessed significant developments in medical robotics and imaging

systems. These were driven by a combination of technological improvements, advances

in medical imaging and an increase in the surgeon/patient acceptance of robotized

devices within the OR [Beasley 2012]. Minimally invasive procedures are now routinely

performed thanks to the integration of such devices into the interventional suite. Despite

the numerous benefits of MIS (see section 1.1.1), the exposure to harmful ionizing

radiation still remains an issue in procedures employing X-ray based medical imaging

systems. The adverse effects of radiation exposure, reviewed in section 1.2, are a major

concern for health-care providers. Substantial efforts are directed towards improving the

current radiation protection practices, albeit further actions to actively reduce exposure

in the context of the procedure should be taken.

Particularly, fluoroscopy-guided interventions generate the highest radiation exposure

to clinicians [Roguin 2013]. These procedures are generally performed using mobile or

robotized angiographic C-arms, which can be seen as a C-shaped end-effector (X-ray

source and flat detector) mounted at the end of a kinematic chain. Such a known

articulated construction is exploited for positioning the X-ray source and freely acquire

images of a patient from different projection angles and planes. Also, in the case of

robotized C-arms, it allows to program complex trajectories in order to generate CT-like

3D-images. The maneuvering of a mobile (or robotic) C-arm into the surgeon’s desired

position is performed today in an open-loop manner, where the aim is to acquire the right

picture for navigation or for therapy delivery [Fallavollita 2014]. Moving the C-arm into

the best viewing projection is sometimes based on a mental mapping to pre-operative

data, which can be complex to achieve. Moreover, manually maneuvering the C-arm can

also be difficult due to the complex kinematic chain defining mobile/robotic C-arms and

the complexity to find the best viewing projection in regard to the patient’s anatomy.

All these factors can lead to the acquisition of unnecessary images and thereby to higher

radiation exposure to patient and medical staff [Navab 2006].

Whereas the imaging device’s positioning is performed today by the operator in an

open-loop manner and hence requires time, skill and additional radiation, the integrated

C-arm kinematic chain can also be exploited to achieve a semi-automatic re-positioning.
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Chapter 6. Optimization of an X-ray imaging device’s pose

Therefore, we propose to take advantage of these robotic capabilities to design an approach

to optimize the pose of an angiographic C-arm for imaging a targeted anatomical structure,

while simultaneously reducing the exposure to ionizing radiation of both patient and

staff.

6.1.2 Related work

Several systems providing automatic assistance to operators in the positioning of angio-

graphic C-arms can be found in the literature [Navab 2006,Wang 2012,Wang 2014,Fallavol-

lita 2014]. [Navab 2006] presents an approach for speeding-up and facilitating the po-

sitioning of an imaging device by means of a camera augmented C-arm (the CamC

previously described section 2.2.1.2) and CT visible markers placed on the patient’s

skin. A visual servoing algorithm is applied to compute the C-arm pose and the joints’

displacements required to align the CamC’s optical camera view to a target image. The

system then provides step-by-step guidance to surgical staff until the final position is

achieved. This way, the C-arm repositioning can be performed without the need of

additional X-ray acquisitions. Similarly, [Wang 2012] propose an approach based on

closed-form inverse kinematics for obtaining the C-arm’s joint displacements in order to

facilitate the positioning of the device at a desired pose. In [Fallavollita 2014], a system

to assist an operator with the maneuvering of an angiographic C-arm is introduced. The

user selects through a tablet PC the desired image outcome from a set of simulated

X-ray images and the system automatically computes the device’s positioning relative

to the patient’s anatomy through inverse kinematics and CT-to-patient registration. A

virtual C-arm displayed on the screen shows the resulting configuration along with the

device control parameters enabling to reach the desired position. The full pipeline of the

approach presented in [Fallavollita 2014] is shown in figure 6.2. Furthermore, [Wang 2014]

presents a method for determining the optimal viewing angle to observe topological

vasculature information in angiography images. A CT volume with vessel data is used to

simulate 2D angiograms under different viewing angles, and an optimization approach

is applied to estimate the projection which maximizes the visibility of a given vessel

structure. The aim of [Wang 2014] is to facilitate the diagnosis of coronary diseases, hence,

purely geometrical constraints such as the avoidance of foreshortening and overlapping

of vessel structures in the images are considered in the optimization.

The aforementioned works enable the reduction of the number of acquired X-ray images

by facilitating the C-arm positioning and/or recommending an optimal configuration for

a particular clinical need. However, the clinical staff and patient’s radiation exposure are

factors that are not taken into account when determining such an optimal configuration.

These approaches are solely directed towards obtaining the best visibility of a target

for surgical navigation. The approach we herein present aims at assisting the C-arm’s

manipulator not only by recommending an optimal viewing projection, but also by

recommending one which is safer in terms of exposure to X-ray radiation.
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6.2. Imaging device’s pose optimization

Figure 6.2: “Desired View” pipeline from [Fallavollita 2014]: the user chooses the desired
outcome image and, based on simulated X-rays from pre-operative CT data, the system
computes the required positioning of the imaging device.

6.2 Imaging device’s pose optimization

There are currently no means to intraoperatively estimate radiation exposure for an

upcoming X-ray acquisition [Kirkwood 2014]. An operator cannot know if a small change

in the device’s pose, for which the target visibility would be maintained, can in fact

reduce the exposure of the people in the room. Hence, a system capable of estimating

the overall radiation exposure for the current device’s pose and finding the optimum

in a neighborhood of close configurations, can assist the radiologist in choosing a less

irradiating projection and thereby contribute to reduce the dose delivered to patient

and clinical staff. This is not a trivial task because such a system has to keep track

of the context and lay-out of the room, while also considering all parameters affecting

radiation propagation. Still, recommending an imaging configuration resulting even in a

small reduction of the exposure per image acquisition can make a difference for clinicians

attending several procedures on a daily basis. Also, it can contribute to reduce the

probability of stochastic effects manifesting in the long term for patients and medical

staff.

We describe below our pose optimization approach. We propose to formulate this

problem as the search for a configuration that minimizes a cost function modeling the

different radiation exposures. This cost function relies on the current OR context and

estimates the exposure of patient and clinicians by simulating X-ray propagation using

our quasi real-time radiation simulation approach (presented in section 4.3). When

applied in an optimization loop, our approach converges to a solution in a reasonable time

for the sake of the application. The recommended configuration can either be suggested

on a screen or the device’s inverse kinematics can be used to compute the corresponding

joint displacements for its automatic re-positioning.
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Chapter 6. Optimization of an X-ray imaging device’s pose

6.2.1 Problem statement

The X-ray beam projection in an angiographic imaging device is defined using two

rotation angles, which we note as the couple C = (θ, φ). These are illustrated in figure

6.3 and are respectively defined as the left/right anterior oblique (LAO/RAO) and the

caudal/cranial (CAUD/CRAN) angles [Wang 2014] (also referred to in the literature

respectively as angular and orbital rotation angles [Wang 2012,Fallavollita 2014]). During

a procedure, the operator adjusts their values to obtain different image projections. We

also refer the reader to figures 4.2a and 4.2b for a clear representation of both LAO/RAO

and CAUD/CRAN rotation planes with respect to the patient. The tube-to-isocenter

and the tube-to-detector distances (respectively TID and TDD in figure 6.3) determine

the magnification coefficient and are usually kept constant during image acquisition. In

the rest of the chapter, all values are referred to the coordinate system centered at the

device’s isocenter shown in figure 6.3.

Figure 6.3: Parametrization of an angiographic C-arm: a projection is determined by
the angles θ (right/left anterior oblique) and φ (caudal/cranial). TID (tube-to-isocenter
distance) and TDD (tube-to-detector distance) determine the image’s magnification.

We can assume that the image obtained with the configuration Cǫ = (θ + ǫθ, φ+ ǫφ)

will be similar to the one from the initial nominal projection Cnom if ǫθ and ǫφ are small

variations of θ and φ. However, the device’s configuration Cǫ may generate less exposure

to radiation for staff and patient. In that case, it would be recommended for the operator

to switch to such a configuration in order to keep the doses As Low As Reasonably

Achievable (and follow the common ALARA radiation protection principle [NCRP 1990]).

Therefore, we want to determine the projection angles Copt = (θopt, φopt) which enable to

preserve the visibility of the targeted structure while minimizing the radiation exposure

of both patient and clinical staff. Such an optimal configuration is obtained by searching
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6.2. Imaging device’s pose optimization

C ∈ S which minimizes the cost function defined as:

f(C, T,K, P ) = α · v(C,K,P ) + β · h(C, T,K, P ) (6.1)

Where:

❼ C is the evaluated imaging device configuration.

❼ S is the range of close angles generating similar views to the nominal one, referred

to as visibility range.

❼ T = [Tx, Ty, Tz]
T is the 3D position of a clinician in the scene with respect to the

device’s isocenter.

❼ K = [TID, TDD,E]T corresponds to the imaging parameters: tube-to-isocenter,

tube-to-detector distance and energy spectrum of the emitted X-ray particles

(computed from the tube voltage and filtration values).

❼ P represents the patient parameters, such as the composition and pose of the

patient model.

❼ v is the term computing the patient’s exposure.

❼ h estimates the exposure of a clinician in the scene.

❼ α and β are respectively the weight coefficients applied to the patient and clinician

exposure in the final cost.

The visibility of the targeted anatomical structure is here guaranteed by constraining

Copt to be in the vicinity of Cnom, in other words within the visibility range S: Copt ∈ S.

However, it would also be possible to replace such a constraint by adding a geometric

term into the cost function for assessing the target visibility in the outcome image as

in [Wang 2014].

We describe below how the terms h and v are defined and propose an effective solution

for their fast computation in an optimization loop, which takes the current OR context

and device parameters into account.

6.2.2 Fast computation of cost function

We apply our GPU-accelerated radiation simulation approach previously described in

section 4.3 to compute the terms modeling radiation exposure in the cost function 6.1.

Optimizing the pose of the imaging device is challenging since the context, the imaging

parameters, the patient and the staff’s positioning must be considered in the simulations.

Even running on GPU, our simulation approach can take from several minutes up to

hours depending on the level of granularity considered (see table 4.4), which would be too

slow to be computed within an optimization loop. Indeed, the C-arm operator may not

105



Chapter 6. Optimization of an X-ray imaging device’s pose

be willing to wait for several minutes before obtaining a recommended device’s angles.

Hence, we introduce several approximations to keep the optimization computationally

tractable and we also propose a novel approach to compute function 6.1 in quasi-real-time.

These concepts are further described below and the benefits of such approximations are

evaluated in section 6.3.

6.2.2.1 Patient exposure term v

A simulation of an X-ray image acquisition is performed to compute the term v(C,K,P )

of function 6.1. For this, we apply the patient exposure simulation approach described

in section 4.3.1.1. An X-ray photon cone beam source in configuration C and with

parameters K is placed in a simulation environment, along with a patient-equivalent

voxelized phantom of parameters P and centered at the device’s isocenter. Particles with

energies sampled from a spectrum computed from K are emitted from the X-ray source’s

position and the energies deposited on each of the phantom’s voxels are saved. As a

result, we obtain an energy deposition map from which the dose to each organ can be

estimated using its material properties. However, an accurate computation of a patient’s

exposure, which takes all real parameters into account, is challenging to perform and

would be too time-consuming for an online optimization loop. Therefore, we propose

instead to pre-compute v(C,K,P ) for a set of values of C ∈ S and for fixed imaging and

patient parameters. Since for a given examination the device’s angulation values are

standard and known beforehand, a database V of procedure-specific patient exposure

maps can be pre-computed for default imaging parameters K using a patient-specific

model with properties P if available, or a generic patient-equivalent phantom otherwise.

6.2.2.2 Clinical staff exposure term h

Similarly, computing h(C, T,K, P ) requires simulating an X-ray acquisition (as described

above) and to measure the exposure of a clinician at position T to the particles scattered

by the patient. However, in this case, pre-computing h for all possible positions of

a person in the room and for all considered imaging device’s configurations would be

impractical. Also, as opposed to the patient, it is not possible to assume a constant

staff positioning during an interventional procedure or to know beforehand the number

of persons standing around the patient. However, as explained in section 4.3.1.2, we

can assume that the 3D dissemination and magnitude of scattered radiation will be the

same if the imaging parameters and patient are not changed. Thus, there is no need to

simulate the full image acquisition for each new position of a clinician. Instead, we apply

our approach described in 4.3.1.2 to characterize the “behavior” of the particles scattered

by the patient for a given X-ray image acquisition and save it in a compact manner as

scatter maps. As described in section 4.3.1.2, such maps can then be rapidly loaded

to compute online a clinician’s exposure to the scattered particles at his/her current

position. Therefore, for a given procedure, a set of scatter maps M is pre-computed at

the same time as the patient exposure maps V for the considered visibility range S.
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6.2. Imaging device’s pose optimization

Tracking of the clinical staff operating near the patient can be performed with ceiling-

mounted cameras as described in section 3.2.3. Such an approach enables to estimate

online the 3D position T of a bounding-box surrounding a tracked clinician, which

is represented as a voxelized water slab phantom in the simulation environment. At

run-time, the scatter map for parameters (C,K,P ) is loaded and used to compute the

term h in quasi real-time for the current clinician’s position.

6.2.3 Optimization approach

Due to the complex nature of radiation propagation and the use of Monte Carlo simulations

to approximate its behavior, function 6.1 is not convex and an analytical expression of it is

difficult to obtain. Exhaustive search strategies, where all possible solution combinations

are evaluated, may be too slow for a clinical application because of the high number

of computations of the cost function that must be performed at each iteration. Local

optimization approaches may not be able to always find a global minimum, yet they

can provide a solution in a reasonable time, which guarantees to reduce the radiation

exposure. Hence, for comparison purposes, we have implemented two optimization

algorithms: greedy first search and gradient descent. Starting from the nominal C-arm

pose Cnom, on the one hand, the greedy best-first search approach iteratively explores all

possible neighboring configurations to find the one which reduces the cost. A summary

can be found in algorithm 1. On the other hand, the gradient descent algorithm relies

on a numerical differentiation of function 6.1 to decide the next best configuration

reducing the cost. The general steps of such a process can be found in algorithm 2. The

optimization loop stops when the relative exposure reduction ∆f reaches a threshold th,

if the evaluated pose reaches the boundaries of the allowed search space S, or after a

maximum number of iterations (itermax).

6.2.4 Imaging device’s re-positioning in clinical application

We propose in figure 6.4 a pipeline for the potential clinical application of the approach

herein described. The visibility of the targeted anatomical structure in the output image

is considered to be maintained by constraining the optimization to look only for close

C-arm configurations. In addition to this, after the optimization approach converges

to a recommended device configuration, we propose to display a digitally reconstructed

X-ray image obtained with Copt to the operator. Such an image can be simulated in a

few milliseconds with a conventional ray casting approach on GPU [Tornai 2012], either

using preoperative CT volume data as in [Fallavollita 2014] or a with a generic phantom

model registered to the patient. Also, the statistics regarding the estimated radiation

exposure reduction achieved with such a configuration are displayed to the operator.

This way, he/she can evaluate the target visibility with the recommended pose along

with the benefits it would bring to the people in the room in terms of delivered dose.

The recommended projection angles are displayed on the screen for the operator to

manually maneuver the C-arm in case it is decided to adopt such a configuration. If
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Algorithm 1: Greedy best-first pose optimization approach for a C-arm imaging
device
Input: Nominal X-ray device projection Cnom, visibility range S, exposure reduction

threshold th, maximum number of iterations itermax

Data: Patient exposure maps V and scatter maps M pre-computed for all C ∈ S, and for
P and K

Output: Recommended device configuration Copt, relative radiation exposure reduction
∆f

begin
Compute cost function for the initial configuration:
fnom ← f(Cnom, T,K, P )
minf = fnom
Cmin = Cnom

while ∆f < th and Ck ∈ S and iter < itermax do
Exhaustive list of all nC neighboring configurations to the current one :
N = {C0, C1, ..., CnC

} where Ci = Cnom ± 1◦

for Ci ← C0 to CnC
do

Compute cost: fCi
← f(Ci, T,K, P )

if minf < fCi
then

minf = fCi

Cmin = Ci

end

end
New cost: fCk

← f(Cmin, T,K, P )
∆f ← (fnom − fCk

)/fnom
iter ← iter + 1

end
Copt ← Ck

end

Algorithm 2: Gradient descent pose optimization approach for a C-arm imaging
device
Input: Nominal X-ray device projection Cnom, visibility range S, exposure reduction

threshold th, convergence rate α, maximum number of iterations itermax

Data: Patient exposure maps V and scatter maps M pre-computed for all C ∈ S, and for
P and K

Output: Recommended device configuration Copt, relative radiation exposure reduction
∆f

begin
Compute cost function for the initial configuration:
fnom ← f(Cnom, T,K, P )
while ∆f < th and Ck ∈ S and iter < itermax do

Numerical differentiation of cost function:
df
dC
≈ (f(Ck + ǫ, T,K, P )− f(Ck, T,K, P ))/ǫ

Ck ← Ck − α× df
dC

New cost: fCk
← f(Ck, T,K, P )

∆f ← (fnom − fCk
)/fnom

iter ← iter + 1
end
Copt ← Ck

end
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available, closed-form inverse kinematics solutions [Wang 2012] can be applied to obtain

the required C-arm joints’ displacements for reaching the recommended angulation. If

not, these can also be approximated numerically [Farzan 2013]. In case the angiographic

C-arm is robotized and its API is connected to the system, inverse kinematics also enable

to automatically re-position the device.

Figure 6.4: Pose optimization pipeline: from an initial nominal projection Cnom, our
approach suggests a close configuration Copt for which the radiation exposure of staff and
patient is reduced. A simulated X-ray image along with exposure reduction statistics are
displayed to the operator for him/her to decide to adopt or not the recommendation. If
the device’s API is available, its re-positioning can be performed automatically through
inverse kinematics.

6.3 Experiments in a simulated environment

We evaluate different aspects of our approach in a virtual setup by simulating clinically

relevant imaging conditions from interventional procedures. The aim of such an evaluation

is to assess the relative exposure reduction that can be achieved with the proposed

approach along with the execution times. We consider a Siemens Artis Zeego robotized

C-arm as imaging system since it is the device used in our project. However, our approach

can also be applied to mobile or other robotized C-arms.
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6.3.1 Experimental setup

We evaluate our system on six standard imaging device’s configurations (Cnom) specific to

interventional radiology procedures performed on a C-arm angiographic system (presented

in table 6.1). For each of them, a set of close imaging projections is considered in the

optimization process, defined as S = {Cnom ± 10◦} as advised by our collaborating

radiologists. The PA, AP and Lat are angulation sets close respectively to the posterior-

anterior, anterior-posterior and lateral C-arm configurations. V1 and V2 correspond

to projections typically employed during vascular intervention procedures. Ver is a

projection set used during Vertebroplasty procedures. The cost function is computed

as described in section 6.2. A set of patient exposure maps V is simulated per imaging

angles, using a phantom generated from a generic thoracic patient CT by transforming

Hounsfield units into materials’ density values. The resulting phantom is composed of

288× 241× 164 voxels of 41 materials (human skeleton and organs surrounded by tissue-

equivalent material), with a spacing of 1.27× 1.27× 2.0 mm3. The patient parameters

P are in this case the phantom’s composition and pose, which we assume aligned and

centered at the device’s isocenter. In a real scenario, if a patient’s preoperative CT volume

is available, it can be used to generate the phantom for the simulations. Concerning the

imaging parameters K, we set the tube-to-isocenter and tube-to-detector distances to

70 and 120 cm respectively. Particles sampled from an energy spectrum simulated for a

tube voltage of 120 kVp and a 2 mm Al (0 mm Cu) filtration are emitted in order to

mimic a typical clinical configuration.

We pre-compute v(C,K,P ) for all configurations C ∈ S as presented in table 6.1. A

one degree spacing is considered between each configuration since this is the minimum

rotation step of most mobile and robotized C-arms. Each X-ray image acquisition is

simulated by emitting 108 photons. The simultaneous computation of the patient’s

exposure and the generation of the scatter map per configuration takes around six

minutes on a Titan X GPU card for the considered parameters. The latter are computed

with a sphere of 500 mm of radius divided into n = 40960 faces. With these parameters,

the mean statistical uncertainty measured per bin in the scatter maps is below 1.5 %

and of 2 % for the peak skin patient organ dose (as described in section 4.3.1.1). As

mentioned earlier, all v(C,K,P ) and scatter maps from S can be pre-computed before a

given procedure. However, the computation of the staff’s exposure and the optimization

of the device’s pose is performed online by using the pre-simulated databases V and M .

A tracked clinician is approximated with a voxelized bounding box of 1000× 2000× 1000

mm3, with voxels of 100× 100× 100 mm3 size. Using the simulation approach described

in section 4.3.1.2, a person’s current exposure for a given device’s configuration can be

simulated in a few milliseconds for 106 photons, with less than 1 % of uncertainty per

voxel. All results are normalized by the number of photons simulated. All coordinates

are referred to the frame depicted in figure 6.3.

We present below the results of four different experiments. For each, since we

are looking to assess the potential of our approach to reduce radiation exposure, the

maximum allowed number of iterations (itermax) in the optimization loop was the only
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Table 6.1: Imaging configurations typical in interventional radiology procedures evaluated
with our approach along with the considered ranges for the sets S.

Projection Cnom = (θ, φ) S = {Cmin, Cmax}

Posterior-Anterior (PA) (0, 0) (−10, 10,−10, 10)
Anterior-Posterior (AP) (180, 0) (170, 190,−10, 10)

Vascular 1 (V1) (30, 30) (20, 40, 20, 40)
Vascular 2 (V2) (−45,−25) (−55,−35,−35,−15)

Vertebroplasty (Ver) (35, 0) (25, 45,−10, 10)
Lateral (Lat) (90, 0) (80, 100,−10, 10)

stop criteria considered. Namely, the optimization loop is not stopped after reaching

a given exposure reduction threshold th, but only after a maximum of itermax = 10

iterations or after reaching the limits of the configurations range S. First of all, we

compare the performances of the two optimization algorithms described in section 6.2.3.

Second, we perform a trade-off analysis of the potential increase/decrease of patient/staff

radiation exposure when varying the weights (α, β). Third, we compare our approach

based on approximations allowing a fast computation of cost function 6.1, against

computing it with a full Monte Carlo simulation (without approximations). Finally,

we evaluate our optimization approach’s potential to reduce the exposure to sensitive

body-parts of clinical staff on a fourth experiment.

6.3.2 Optimization algorithm evaluation

To compare the performances of the two optimization algorithms described in section

6.2.3, we consider a virtual scene with a patient and two clinicians (each standing on

opposite sides of the table). A first clinician is standing 1 m away from the patient

and aligned with the device’s isocenter (T1 = [−1000, 0, 0]T ). A second one is placed

at the opposite side of the operating table at T2 = [700, 0, 500]T , to mimic an operator

positioned for right femoral access. This scenario is depicted in figure 6.5. For this

experiment, we set the cost function coefficients (α, β) to (1, 1) to give the same weight

to both patient and staff exposure terms. We consider each of the angulation sets from

table 6.1. Starting from the same nominal C-arm configuration, we provide the suggested

C-arm’s pose Copt yielded by each optimization algorithm. The results are summarized

in table 6.2. For each configuration, the achieved relative radiation exposure reduction

for the patient (∆v) and for both clinicians (∆h), along with the optimization time is

provided.

As expected, the greedy best-first search algorithm is able to converge to recommended

configurations yielding a higher exposure reduction for patient and clinicians. However,

this comes at the expense of the optimization time which is consistently higher since the

cost function has to be computed more times when evaluating all possible neighboring

configurations. In most cases, the gradient descent approach converges to configurations

which are close but for which the exposure reduction is slightly inferior. Still, the
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algorithm yields a solution in half the time than when using the greedy approach. In

table 6.2, the results for projection V1 are highlighted to illustrate this fact. Indeed,

the configuration output by the greedy best-first search respectively reduces of 2.31 %

and 1.49 % the patient and clinicians’ dose. Gradient descent is two minutes faster in

yielding a close configuration which spares the patient 2.54 % less dose and 1.04 % for the

clinicians. The results for the Ver projection are also highlighted since they illustrate the

complexity of this multi-objective optimization problem, where reducing the exposure

of the patient can be in conflict with reducing the staff’s. Specially in the scenario we

consider (figure 6.5) where clinicians stand on both sides of the table, the one closer to

the X-ray source will always be the most exposed to scattered radiation. This is the case

for the Ver projection, where both optimization algorithms converge to configurations

increasing clinicians’ exposure (-2.53 % and -3.32 %). Still, both output Copt achieve

high patient’s exposure reductions (3.49 % and 3.86 %) which enable to have a reduction

in the final cost function value. These experiments not only allow us to compare the

performances of the two optimization algorithms, but they also illustrate the possible

intricacies of this problem that hinder the finding of a C-arm pose to recommend. We

refer to the trade-off between either reducing patient dose or staff dose, when it is not

possible to achieve both.

Figure 6.5: Virtual setup illustrating the two clinicians’ scenario for the experiments
presented in sections 6.3.2 and 6.3.3.

Even if the gradient descent approach may converge to a local minimum, it still

guarantees that the recommended configuration reduces the overall radiation exposure

with respect to the initial one. Moreover, the optimization is performed in significantly

less time. For a potential clinical application, we favor optimization time since it is
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Table 6.2: Optimization of the X-ray device’s pose with two algorithms: greedy best-first
search and gradient descent. A scenario with two clinicians is considered, where clinician
#1 is at position T1 = [−1000, 0, 0]T and #2 at T2 = [700, 0, 500]T . The recommended
configuration Copt, the relative exposure reduction of the patient (∆v) and of both
clinicians (∆h), along with the optimization time are given.

Proj. Cnom
Greedy best-first Gradient descent

Copt ∆v(%) ∆h(%) Time(s) Copt ∆v(%) ∆h(%) Time(s)

PA (2, 0) (1,−10) 0.63 0 255 (2,−10) 0.6 0 107
AP (181, 3) (190, 10) 1.64 2.03 219 (188, 10) 1.49 1.75 92
V1 (31, 29) (28, 39) 2.31 1.49 255 (29, 39) 2.54 1.04 121
V2 (−43,−27) (−42,−35) 2.15 0.17 230 (−43,−35) 2.15 0 100
Ver (33, 0) (38,−10) 3.49 -2.53 230 (39,−10) 3.86 -3.23 101
Lat (88, 0) (98, 3) 3.58 1.38 249 (98,−2) 3.53 1.38 110

preferable that the time an operator has to wait for the system to output a recommended

device configuration is as low as possible. Therefore, for the rest of the experiments we

apply the gradient descent based optimization algorithm.

6.3.3 Cost function weights trade-off analysis

In essence, the problem herein studied is a multi-objective optimization where we wish

to minimize both the patient and the staff dose while not affecting the clinical relevance

of the output X-ray image. Each of these objectives may be conflicting with each other

depending on the considered scenario. We transform the problem into a single objective

optimization by aggregating the first two objectives into a weighted cost function (6.1)

and by transforming the third one into a constraint. However, the drawback of this

approach is that the solution found will only be as good as the selection of the weights

in the cost function [Ngatchou 2005] (α and β in function 6.1). In general, a priori

information about the objectives to minimize is required to set the weights. For our

application, choosing the weights can be complex due to the ethical issues it implies. On

the one hand, one can think about giving a higher priority to reduce staff dose since

clinicians can be exposed to radiation daily. On the other hand, one can also privilege

reducing patient dose since patients are exposed to higher dose values, which can cause

radio-induced skin injuries.

In this section, we study the impact that the weights (α, β) have on the recommended

C-arm configuration and on reducing the exposure of patient/staff with the recommended

device configuration. For this experiment, we consider two clinically relevant C-arm

projection sets S from table 6.1, corresponding respectively to angulations typically used

for vascular (V1) and for vertebroplasty (Ver) procedures. The same scenario with

two clinicians at opposite sides of the operating table (i.e. figure 6.5) is simulated. We

randomly set an initial C-arm angle pair Cnom from each set, and apply our optimization

approach with three different pairs of (α, β) coefficients: (10, 1), (1, 1) and (1, 10). This

way, we evaluate the results when giving more or the same weigh to either of the cost
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function terms. We carried out this experiment for ten different Cnom in each angulation

set. The results are represented through the graphs in figure 6.6, which are plots of

the radiation exposure reduction for the patient (∆v) and for the two clinicians (∆h)

achieved for each of the configurations output by the optimization approach. These

graphs illustrate the trade-off that occurs between the terms of cost function 6.1. First,

for both the V1 and Ver sets, the exposure of the two clinicians is actually increased

with the recommended C-arm configuration when more weight is given to the patient

term. This is illustrated by the negative ∆h obtained when α > β (red circles in plots

6.6). However, the dose delivered to the patient is importantly reduced with this setup

(almost up to 6 %). Second, when α = β, ∆h is still negative for some recommended

configurations for the Ver set, which means that the optimization still does not converge

to a solution reducing clinicians’ dose (blue asterisks in graphs 6.6b). Yet, for the V1

set, the dose for patient/staff is consistently reduced with this configuration. Third,

when α < β, the dose to clinicians is almost always reduced, but with a trade-off on the

patient’s dose. Negative ∆v are yielded by some of the output configurations for the Ver

projections set. Still, these remain inferior to the potential staff’s exposure decreases

that can be obtained when α < β (magenta points in graphs 6.6). For the graph 6.6a

corresponding to the V1 angulations, the patient’s exposure is consistently reduced with

the optimization approach for all evaluated weight values, and staff’s exposure when

α <= β.
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Figure 6.6: Trade-off analysis when varying the weights (α, β) from cost function 6.1.

In the case of multi-objective optimization problems, these kinds of graphs are typically

used to identify the Pareto optimal solutions (Pareto front) [Ngatchou 2005], namely

the solutions for which no better compromise can be found for conflicting objectives.

These optimal solutions should appear as points in the top right corner of the plots, i.e.

configurations yielding high exposure reductions for both patient and clinicians. From

this trade-off analysis, we can observe that no weights guarantee to obtain points on
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this area of the plot. Furthermore, this problem is affected by several simultaneously

changing factors that would have to be considered in such an analysis. The graphs

from figures 6.6 correspond to a single set of clinicians’ positions (T ), patient (P ) and

imaging parameters (K). Variations in any of these parameters would affect the trade-off

between the cost function terms. Still, the results from this trade-off analysis, when

combined with a priori knowledge from radiation safety recommendations, can justify

our hypothesis that clinical staff’s exposure is more affected to variations of the C-arm

angulations. While a patient will always be exposed up to some degree during an X-ray

image acquisition, a few degrees of rotation may make a difference between an operator

fully avoiding being irradiated or not. Since no optimal weights set-up can be easily be

found, for the rest of our experiments we set (α, β) to (1, 10) to give a higher weight to

reducing clinicians’ dose in the cost function.

6.3.4 Evaluation of the cost function computation approach

We herein evaluate the impact that the approximations enabling a fast computation of the

cost function can have on the recommended C-arm configuration. For this, we consider

a simple scenario with one clinician standing 1 m away from the patient and aligned

with the device’s isocenter (T = [−1000, 0, 0]T ). We compare computing the terms h

and v with our fast simulation approach against using a full Monte Carlo simulation of

108 particles, namely without any of the approximations or without using pre-computed

scatter maps. In table 6.3, we present the results obtained with both approaches on

each of the studied configuration sets. We provide the suggested C-arm’s pose Copt, the

obtained relative overall radiation exposure reduction ∆f (computed as described in

algorithm 2) and the corresponding optimization times. We assess the accuracy of the

results obtained with our approach by computing the absolute difference between the

normalized values of the cost computed with each method (Diff in table 6.3).

The results show that our approach is able to converge on each considered scenario

to a recommended pose in a few seconds, for which the overall delivered dose (patient

and clinician) can be reduced from 4 % to 19 %. Moreover, a difference below 5 % is

obtained between the computed dose values across both simulation approaches for the

studied parameters. Even if both approaches perform the same number of computations

of the cost function in the optimization loop, the simulation without approximations

consistently takes more than four hours to converge to a solution and achieves similar

exposure reduction ratios. This is consistent with the results presented in section 4.3.2.1

where the use of pre-computed scatter maps enables to importantly reduce the simulation

time while having a relatively low impact on accuracy. This approach enabling an

accurate radiation exposure computation in quasi real-time is thereby suitable for to

be applied in an optimization loop. Indeed, as shown in table 6.3, important exposure

reductions are achieved after a few seconds, which can be promising for a potential

intraoperative use of the system.

In table 6.4 we present results of a different study where two clinicians are considered

in the same configuration as for the evaluations from sections 6.3.2 and 6.3.3. However,
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Table 6.3: Results of the optimized C-arm’s pose for each S and comparison with the
computation of function (6.1) with no approximations (Full MC ). The absolute difference
of Ours and Full MC (Diff ), the recommended configuration Copt, the achieved relative
exposure reduction ∆f and the execution times are provided.

Projection Cnom Copt Diff (%) Method ∆f (%) Time (s)

PA (0, 0) (−10,−10) 1.3
Full MC 5.9 15017
Ours 4.1 41

AP (180, 0) (190, 10) 2.3
Full MC 2.6 15745
Ours 4.5 40

V1 (30, 30) (20, 40) 3.6
Full MC 18.2 15837
Ours 11.1 39

V2 (−45,−25) (−55,−35) 0.5
Full MC 17.9 15557
Ours 19.6 41

Ver (35, 0) (25,−10) 2.8
Full MC 18.1 15486
Ours 10.5 38

Lat (90, 0) (100, 0) 4.4
Full MC 3.1 15478
Ours 6.5 37

for this experiment we consider only the clinicians’ head exposure when computing the

term h, since this sensitive body-part usually remains un-protected during a procedure.

Besides ∆f , we also provide the achieved relative reduction of the patient’s exposure ∆v

and of each clinician separately, respectively ∆h1 and ∆h2 . We observe that the patient’s

exposure is less affected by small changes in the device’s pose, which is consistent with

the results from section 6.3.3. Nevertheless, the patient’s dose can still be reduced up to

5 % for some cases. Higher reductions of the dose deposited to the clinicians’ heads are

obtained, which can go up to 20 % as for the configurations V2 and Lat. Interventional

practitioners can be exposed on a daily basis and studies have shown that there is a

high risk for them to develop radiation-induced brain cancers [Roguin 2013]. Lowering

the dose delivered to the head is therefore important to reduce the likelihood of such

negative effects. The fact that reducing patient and staff dose can conflict with each

other is also illustrated in these experiments since for some cases the optimal pose was

more beneficial for the patient or for one of the clinicians. For the Ver setup for instance,

the optimal configuration generates an increase in the exposure of the clinician standing

in the opposite side (∆h2 = −0.9 %). Yet, the absolute dose values simulated at such

positions are low when compared to ones on the side closest to the X-ray source and

have therefore a lower weight on the total cost. This is why the final overall exposure

reduction ∆f is still positive for the pose suggested by our approach.

In our experiments, we were looking for the highest exposure reduction achievable

from the evaluated set of parameters. Yet, in practice, the convergence rates can be

set for the algorithm to provide a recommended configuration in a few seconds, for

instance by stopping once ∆f ≥ 5 %. Such computation times are suitable for an

intraoperative use of the system since, during an intervention, the C-arm may be kept
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Table 6.4: Device’s pose optimization with two clinicians in the scene, where clinician
#1 is at position T1 = [−1000, 0, 0]T and #2 at T2 = [700, 0, 500]T . The recommended
configuration Copt, the relative exposure reduction of the patient (∆v(%)) and of both of
the clinicians’ heads (∆h1 and ∆h2) are provided.

Projection Cnom Copt ∆v (%) ∆h1 (%) ∆h2 (%) ∆f (%)

PA (8, 0) (1,−8) 0.5 1.3 0.6 0.5
AP (185, 0) (190, 5) 1.1 10.7 6.6 6.3
V1 (27, 29) (36, 39) 4.9 2.4 13.9 8.2
V2 (−37,−24) (−48,−34) 3.8 21.5 5.7 11.3
Ver (40, 0) (38,−9) 0.3 4.5 -0.9 1.2
Lat (88, 0) (98,−2) 3.5 15.9 20.4 15.1

in the same position for several minutes while a surgical task is performed or an X-ray

image is observed. Furthermore, depending on the considered projection, we obtain

exposure reductions of up to 11 %. The highest ones are achieved for the vascular

projections V1 and V2, for which the X-ray source is tilted diagonally with respect

to the patient. In these configurations, the clinician can be closer to the X-ray source

and small angulation changes can have a higher influence on his/her body exposure.

As expected, the optimization algorithm attempts to drive the X-ray source away as

far as possible from the clinician, since the scattered radiation is always higher on the

source’s side [Schueler 2006]. This is why for some of the evaluated projections when

a single operator is considered, the recommended angulations yield higher exposure

reductions since they are consistently close or in the limits of S, namely corresponding

to configurations where the X-ray source is on the opposite side of the table.

6.4 Evaluation with dose measurements

The previous evaluations were performed with simulated data in a virtual environment

mimicking a clinical scenario. In this section, we evaluate our optimization approach with

real data gathered through a dose measurement campaign performed in an experimental

hybrid OR at IHU Strasbourg. The aim of this evaluation is, first, to assess experimentally

the impact that a few degrees of change in the X-ray device’s angulation can have on

radiation exposure and, second, to evaluate the exposure reduction achieved with the

poses recommended by our algorithm.

6.4.1 Experimental setup

A setup similar to the ones described in sections 4.2.3 and 4.3.2.2 was used. A phantom

of 20× 20× 24 cm3 with 10 mm thick plexiglas walls and filled with water was irradiated

under different imaging protocols with an Artis Zeego robotized X-ray imaging device.

RaySafe wireless active personal dosimeters [RaySafe 2017] were used to record dose

data during the different image acquisitions. Such a setup is shown in figure 6.7. To

simulate a clinician’s radiation exposure, four dosimeters were taped over a drip rod at
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different heights as shown in the right picture of figure 6.7. This “dummy” clinician

was positioned next to the operating table at position T = [−1000, 0, 0]T . Several pairs

of X-ray image acquisitions were performed and the doses at the clinician’s position

were recorded with the dosimeters. Each pair consisted first of one acquisition with

the C-arm positioned at a given nominal pose (Cnom) and second, of one with the

pose recommended by our optimization approach (Copt). Each acquisition was carried

out twice and the measurements from the four dosimeters were averaged to obtain a

single measure per C-arm configuration. The relative radiation exposure change (∆h

(measured)) was computed from the mean dose measured at Cnom and at Copt. As

explained below, the list of C-arm configuration pairs executed during the measurement

campaign were determined beforehand with our optimization approach. A total of forty

X-ray image acquisitions was performed, all with the same nominal tube tension and

filtration respectively 100 kVp and 0.4 mm Al/0.0 mm Cu.

Figure 6.7: (Left) Setup for the dose measurements performed in a hybrid OR at IHU
Strasbourg using a Siemens’ Artis Zeego X-ray imaging device and RaySafe dosimeters.
(Right) Four dosimeters taped to a drip rod used to obtain dose measurements over a
“dummy” clinician’s body.

Our cost function computation approach described in section 6.2.2 was slightly

modified for the considered experimental scenario. First, a cubic water-filled phantom

was considered for the computation of the patient exposure term v. Second, the clinician

was replaced by four voxelized volumes with the same dimensions as a RaySafe dosimeter,

each one placed in the simulation at the same height as in their real positioning on the

drip rod. The staff exposure term h was then computed by summing the dose simulated

at each of these volumes. The nominal C-arm poses were randomly selected from each

of the projections sets S from table 6.1. Our optimization approach was executed for

each considered configuration in order to determine the recommended pose Copt. These
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C-arm configurations were then reproduced in the real OR. Figure 6.8 shows an example

of images captured from our ceiling-mounted multi-camera system showing the position

of the X-ray imaging device for a pair of (Cnom, Copt) configurations. One can observe

that a few degrees of rotation on each of the (θ, φ) planes are barely visible in the images.

Yet, as it will be presented below, it can actually have a considerable impact on the

measured/simulated dose.

6.4.2 Evaluation results

Figure 6.8: Images captured by our ceiling-mounted multi-camera system during the
dose measurements performed at IHU Strasbourg. The nominal configuration (Cnom)
and the one recommended by our C-arm pose optimization approach (Copt) are shown.

The results of this evaluation are summarized in table 6.5. The angles for the

evaluated C-arm configuration pairs (Cnom, Copt) are listed, along with the relative

clinician exposure reduction as computed from the dose measurements (∆h (measured))

and as predicted by the optimization approach (∆h (simulated)). One can observe

from the measured ∆h values that a small C-arm angulation shift can in fact decrease

the exposure of a clinician standing next to the table. We also provide in table 6.5

the absolute difference between the percentages of exposure reduction predicted by our

optimization approach and the measured ones. No calibration dosimeters were used

to correct the simulations since ∆h is a relative metric independent of the absolute

difference between the simulated and the measured dose values. For all experiments, a

mean 6.9 % absolute difference between the predicted and measured exposure reduction

percentages is obtained. The lowest differences (highlighted in the table) are obtained

for configurations where the X-ray source is close or on the same side as the drip rod,

namely exposing the dosimeters to higher scatter radiation intensities. The highest errors

are produced for poses positioning the X-ray source on the opposite side of the table,

for which the dosimeters may measure low dose values. Indeed, APDs have a given

angular resolution beyond which no measurements are possible. Such a resolution is not

considered in the simulations and this may also explain the fact that the simulations

tend to predict higher exposure reduction ratios. Indeed, incident particles striking the

simulated dosimeters from any angle are considered in the Monte Carlo simulations,

while these are not captured by these semiconductor-based dosimeters.

This experimental evaluation enabled us to verify experimentally that a few degrees
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Table 6.5: Evaluation of the C-arm pose optimization approach with real dose measure-
ments: the evaluated configuration pairs (Cnom, Copt), the relative clinician exposure
reduction as computed from the dose measurements (∆h (measured)) and as predicted
by the optimization approach (∆h (simulated)) along with the absolute difference (Diff.)
between them are provided.

Proj. Cnom Copt ∆h (measured)(%) ∆h (simulated) (%) Diff. (%)

PA (−1,−8) (−8, 0) 1.47 12.1 10.6

(6,−10) (8, 0) 1.16 7.15 5.99

AP (180,−1) (190,−5) 6.14 5.21 0.93

(185, 0) (190, 7) 4.94 15.2 10.2

V1 (30, 30) (40, 40) 1.86 5.50 3.64

(27, 29) (37, 35) 13.4 2.52 10.8

V2 (−27, 29) (−36, 33) 14.7 6.12 8.58

(−47,−35) (−45,−25) 0.34 7.48 7.14

Vert (40, 0) (38, 9) 4.80 14.9 10.1

Lat (88, 0) (98, 2) 0.12 0.82 0.7

Mean 6.97

of change in the X-ray device’s pose can actually contribute to reduce the exposure of

operators. This information is promising for approaches aiming at reducing staff dose

by acting on the C-arm’s configuration. We can also conclude from the results that the

poses recommended by our optimization approach achieve a real decrease in the potential

exposure of a clinician in the scene. For the considered scenario and imaging protocols, a

7 % difference between the dose reduction percentages predicted by our approach and

the ones measured with the dosimeters is obtained.

6.5 Discussion and conclusions

Modern imaging devices are nowadays essential to the performance of minimally-invasive

procedures. Yet, despite their articulated construction and kinematic properties, they

are still positioned in an open-loop manner by an operator looking to capture the best

view of a targeted anatomical structure. As improving radiation safety during X-ray

guided interventional procedures is now becoming a priority for healthcare providers, we

propose an approach to actively reduce radiation exposure by exploiting the articulated

construction of mobile/robotized C-arms and perform an optimization of their pose.

Such an approach is able to suggest a less irradiating device’s pose while preserving the

visibility of the target in the image outcome. It can also provide useful radiation exposure

statistics in near real-time during a procedure, which are related to the immediate OR’s

context, imaging device’s configuration and staff positioning. These statistics can assist

the attending personnel in adapting the use of radiation protection measures accordingly.

This is a complex problem, aiming at minimizing several objectives which can be
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conflicting with each other in some scenarios. Several relevant approximations and

hypotheses were carried out in the scope of this work since at this stage the goal is

to assess the potential of a C-arm pose optimization approach. This is a first attempt

to address such a complex problem which has room for further improvements. Indeed,

additional terms can be added to the cost function 6.1 for a more detailed optimization.

For instance, the 3D position of equipment in the scene can be included to avoid collisions

with the suggested configuration. This can be particularly interesting for automated

imaging devices. Also, the algorithm can be set to minimize the dose received at a specific

organ or skin area of the patient, which can be beneficial specially to patients that have

been previously irradiated at some body locations. Similarly, for tasks requiring long

exposure times with the same X-ray source positioning, our approach can be applied to

optimize the 3D position of a clinician around the patient to reduce his/her exposure to

scattered radiation. An additional term applying geometrical constraints to quantitatively

assess the target visibility in the outcome X-ray image can also be included. This would

allow to also optimize the visibility of the targeted anatomical structure in the outcome

image at the same time. Moreover, even if for now a clinician in the scene is approximated

as a voxelized water slab, an articulated human detection approach, such as the ones

presented in section 3.2.3, could be applied to accurately track his/her body-parts. This

would allow not only to simulate more accurately a person’s exposure, but it could

also be used in the optimization algorithm to suggest a pose which minimizes the dose

delivered specifically to sensitive and/or unprotected operators’ body-parts. Furthermore,

the positioning of the lead protective shields should be included in the computation of

radiation exposure. Such information could also be incorporated and considered in the

optimization loop.

The potential of our approach was evaluated through two types of experimentation.

First, experiments considering a simulated clinical environment enabled to evaluate its

capabilities to suggest a less irradiating configuration in a few seconds, and to assess the

impact that the approximations allowing a fast computation of the cost function have on

the simulated values. Second, a study with real dose measurements acquired in an OR

was performed to verify that the dose reduction ratios predicted by our approach are

close to the real ones. It also enabled us to confirm the fact that even a small change in

a C-arm pose can contribute to decrease the dose to a clinician.

In this chapter, we propose an approach to optimize the pose of an angiographic C-arm,

where we focus on the task of reducing the overall exposure to harmful ionizing radiation

during X-ray guided interventional procedures. Our method takes into account the

OR’s context, the imaging parameters and the clinical staff’s positioning to estimate the

exposure to radiation of the persons in the room. It is then able to suggest a configuration

preserving the visibility in the image outcome while reducing the dose delivered to patient

and staff. Our optimization algorithm applies Monte Carlo simulations to compute in near

real-time radiation exposure statistics at each iteration, which correspond to the current

room lay-out and acquisition parameters. We envision two potential clinical applications

of this approach. First, as proposed in figure 6.4, it could be used intraoperatively
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to suggest a less irradiating C-arm pose for the current room context. Second, the

optimization approach could also be applied to develop a tool for the preoperative

planning of a procedure. Such a tool, further discussed in section 7.2.2, could determine

the optimal C-arm configurations and imaging protocols that would minimize the dose

delivered to the patient for the upcoming procedure.
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perspectives
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7 Clinical applications

If you are not embarrassed by the product when you launch, you’ve launched too late.

– Reid Hoffman

Figure 7.1: Graphical User Interface (GUI) of our radiation awareness prototype system
XAware-Live.
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In this chapter, we discuss existing and potential clinical applications of the methods

proposed in this thesis. We first present a radiation awareness prototype system we

have developed, coined XAware-Live. Such a system, described in section 7.1, has been

installed in an experimental hybrid OR at IHU Strasbourg and has been successfully

demonstrated to several of our clinical and industrial partners. Its graphical user interface

(GUI) is shown in figure 7.1. Then, in section 7.2, we discuss concepts for several potential

clinical applications which can be made possible thanks to the approaches proposed in

this thesis.

7.1 XAware-Live: a global radiation awareness system

XAware-Live1 is the culmination of the approaches presented in chapters 3, 4 and 5 into

a single clinical application. A working prototype capable of providing in-situ visual

feedback about radiation exposure in the surgical room has been developed2 and installed

in an experimental hybrid room at IHU Strasbourg. We herein describe the features of

the system and we present screen captures of its GUI acquired during its real usage as

means to qualitatively assess its performances.

7.1.1 General description of the system

The system relies on a registered multi-RGBD camera setup (as described in chapter 3)

installed in an experimental OR at IHU Strasbourg. Such a setup was shown earlier in

figure 3.3a. Its GUI, depicted in figure 7.1, is divided in two main parts. The left part

shows the live feed from the ceiling-mounted cameras, and the right one shows a virtual

representation of the OR lay-out. A direct communication with the angiographic C-arm’s

(Siemens’ Artis Zeego) API, enables the system to have access to the device’s current

kinematic parameters. These are applied to update the pose of the displayed virtual

1A video demonstrating XAware-Live can be found in: https://youtu.be/JpATPDrXvu8
2I thank Dr. Abdolrahim Kadkhodamohammadi for collaborating with me on the development of

XAware-Live.
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C-arm model accordingly and also to display radiation safety information corresponding

to the actual C-arm configuration. In a typical usage of the system, its GUI is shown

on a surgical screen inside the OR for the user to interact with it and be able to choose

among the different proposed features through the icons located on its lower part.

The views from the ceiling-mounted cameras are employed to perceive the current

environment; this information is then applied by the system for providing consistent

visualizations. As mentioned in section 3.2.3, we have included an open-source implemen-

tation of the approach from [Cao 2017] for a real-time human pose estimation in one of

the ceiling cameras’ view. The upper-body joints’ poses from the people in the room are

displayed in 2D over the color image and their current 3D position is also shown in the

virtual visualization (see figure 7.2). As explained below in section 7.1.2, this information

is used for providing feedback of the attending persons’ radiation exposure. However,

such a 3D understanding of the current persons’ positions can also potentially be applied

for other clinically relevant applications such as the detection of potential collisions with

the robotized imaging device.

Figure 7.2: Clinician tracking in XAware-Live: the 2D body-joints’ positions are overlaid
over the color image (left) and the persons’ 3D positions are shown in a virtual environment
(right).

Our GPU-accelerated simulation approach described in section 4.3 is applied to

compute the 3D scattered radiation distribution maps and patient’s organs/skin dose

maps (i.e. section 4.3.1.1) displayed by the system. In its current version, these simulation

maps are pre-computed for different sets of imaging parameters and angulations, and are

loaded upon the initialization of the system. They are computed for several standard

X-ray particles’ energy spectrums (i.e. from X-ray tube voltage and filtration values),

for every 5◦ projection in a full C-arm rotation in both LAO/RAO and CAUD/CRAN

planes. Online, the current C-arm angulation is obtained directly from its API and

the corresponding radiation map to display is loaded. Since for now only kinematic

information is provided by the current API’s version, the user selects through the GUI

the X-ray imaging parameters to visualize.
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7.1.2 System’s features and visualizations modes

Several of the visualization modes described in chapter 5 have been implemented into

the system to intuitively display the simulated radiation maps to the user. These are

updated in quasi real-time as the C-arm parameters change to illustrate the effects

that altering the projection angles and/or the imaging protocol have on the behavior

of radiation. Two types of visualizations are provided: a visualization of color-coded

information shown over a virtual representation of the room (right part of the GUI) and

an AR visualization achieved by overlaying registered virtual elements over the color

images from the ceiling-mounted cameras (left part).

Visualization in a virtual environment

Relevant information related to the current radiation propagation is shown in a virtual

environment. This enables the system to be also applied in rooms without ceiling-mounted

cameras if access to the imaging device’s API is available. The point-of-view of the

virtual visualization can be modified by the user for looking at the scene from different

perspectives. As it can be seen in figures 7.1 and 7.2, 3D models of the C-arm and

operating table, the 3D propagation of scattered radiation and the 3D position of the

persons in the room are displayed. Furthermore, the 3D dose deposition over the patient’s

organs and skin is shown in an additional virtual visualization window. As depicted

in figure 7.3, the user can open such a visualization through the system’s GUI and the

displayed patient exposure map is updated according to current imaging projection and

protocol. The approach described in section 5.1.2.2 is applied for an intuitive display of

the simulated dose maps as color-coded rendered volumes.

Figure 7.3: Visualization of the patient’s dose to the internal structures and to the skin
for the current X-ray imaging device’s projection and imaging protocol on XAware-Live.
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AR visualization

The 3D scattered radiation propagation for the current C-arm angulation is shown in an

AR manner over the ceiling cameras’ color images. The approach presented in 5.1.2.1

is applied to register rendered volumes over the images for this visualization mode. As

illustrated in figure 7.4, such a visualization provides the user with a direct feedback of

the highly irradiated areas for the current C-arm angulation and imaging parameters.

Figure 7.4: AR visualization of the intensities and of the 3D propagation of scattered
radiation for the current C-arm projection with XAware-Live.

Similarly, the human poses’ information is applied to segment the attending persons’

shapes on the color images. The obtained foreground masks are then colored according

to the simulated radiation intensity at each 3D location to provide feedback about the

exposure to the persons’ body-parts. An example is shown in figure 7.5, where it can

be observed that the clinician standing on the X-ray source’s side is more exposed to

scattered radiation. His left arm, which is positioned directly on the beam’s path, is

colored in orange/red.

7.1.3 Demonstrations and feedback about the system

Demonstrations3 of XAware-Live have been performed to our collaborating clinical and

industrial partners. Initial feedback has been positive since the system provides in-situ

feedback about radiation exposure in an OR in an intuitive manner. We show in figures 7.6

pictures of two of these demonstrations: one to representatives of our industrial partner

Siemens Healthcare, and the other to a group of medical fellows from IHU Strasbourg.

The potential of the system to be employed as a tool to teach about radiation’s diffusion

effects has also been acknowledged in the demonstrations. Indeed, using XAware-Live

would enable to teach trainees intuitively in real clinical conditions. We also presented

3We thank Dr. Konstanze Gunzert and Dr. Bruno Mutet for kindly helping us organizing the
demonstrations of XAware-Live, along with Mourad Bouhadjar and all radiology staff from IHU for their
assistance.
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Figure 7.5: AR visualization of the current personnel’s body radiation exposure with
XAware-Live.

the system to one of the radiation safety officers4 from Strasbourg’s University Hospital.

He was also enthusiastic about the fact that visual feedback can render more intuitive

the current training sessions, as these are based on students gathering and comparing

measurements from dosimeters for different room lay-outs and C-arm configurations. He

suggested that educational videos featuring our system in practice could be distributed

and shown to students during training lectures.

Figure 7.6: Demonstrations of XAware-Live to our industrial partners (left) and to IHU
Strasbourg’s medical fellow staff (right).

7.1.4 Future developments

As discussed before, our system has the potential to become a teaching tool that could

be used in conjunction with interventional surgery training courses or during surgical

training involving animals. This would allow trainees to learn in-situ the effects of

the parameters affecting radiation propagation. However, to fulfill the full potential of

XAware-Live, further technical improvements have yet to be performed. First of all, the

system currently shows the worst-case scenario of radiation propagation, namely when no

4We thank Dr. Nicolas Clauss for his feedback about the system.
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lead protective shields are present. Yet, to teach about the proper use of lead protection,

such screens should be tracked and be included in the simulations and visualizations. For

a teaching system, it would be acceptable to place markers on the lead screens for their

tracking. This would allow the system to provide visualizations of the room shielding’s

effect on scattered radiation during training sessions, such as the ones previously shown

in figure 5.3. Second, the simulations of the scattered radiation propagation should

be performed online while considering the current room lay-out and lead equipment

disposition. As explained in section 4.3.1.2, such simulations can be performed in a few

milliseconds with our GPU-accelerated approach. Nevertheless, for this to be feasible,

the system should be able to obtain the imaging protocol information directly from

the device, which is not possible through the API’s license we currently have access to.

Third, in the current prototype, the clinician tracking and the AR visualizations have a

framerate of 4 fps. Increasing such a framerate can be possible by re-implementing several

of the current approaches on GPGPU and by executing them in parallel on multiple

GPUs. Fourth, integrating an OST-HMD (e.g. HoloLens) to the system to provide visual

feedback directly in the user’s view can be a promising step to make the training sessions

more intuitive and engaging.

7.2 Potential clinical applications

The approaches presented in this thesis have set the foundations to potential clinical

applications for reducing radiation exposure in medical environments. We dedicate this

section to present concepts for several applications. Note that the potential lines of

research spawn from the work of this thesis are presented in section 8.2. Following the

same paradigm of reducing radiation exposure either in an “active or passive” manner,

we first present applications for increasing intraoperative awareness to radiation and,

second, for optimizing the C-arm poses within or before a procedure.

7.2.1 Intraoperative radiation awareness

We hereby outline three potential clinical applications we can foresee, which are based

on the approaches presented in chapters 3, 4 and 5.

Virtual dose visualization tool

As raised by one of our industrial partners, fixing cameras to the ceiling of an OR may

not always be convenient or even permitted. As a possible alternative, an intraoperative

system could show in real-time the patient’s dose along with the scattered radiation around

the patient in a virtual environment. This would provide useful information to raise

awareness to patient exposure and inform about the irradiated areas around the patient.

A radiation simulation would incorporate data from the current C-arm configuration,

imaging protocol and patient parameters for simulating in real-time the dose maps to

display. We show in figure 7.7 a concept for a GUI for this application. Such a system

would allow clinicians and radiographers to visualize intraoperatively and in real-time the
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current scattered radiation along with the instantaneous and/or accumulated dose to the

patient’s organs and skin. This tool could be directly integrated to modern X-ray imaging

devices for them to give a more complete and accurate radiation dose feedback during

the imaging process than the metrics currently provided (see section 2.1.1). However,

for such a system to present accurate patient dose and scatter information, it would be

necessary to use a patient-specific preoperative model in the Monte Carlo simulations.

Such a model would have to be registered to the real patient’s pose, which could either

be performed manually, using information from the robotized table’s pose or by using an

X-ray image acquired in the beginning of the procedure.

Figure 7.7: Concept of a GUI for an intraoperative tool displaying the current scattered
radiation and patient dose in a virtual environment.

Postoperative radiation exposure review tool

A setup of multiple RGBD cameras installed in an interventional room could be used to

obtain recordings of X-ray guided procedures, synchronized with data from the imaging

device and from the active personal dosimeters worn by the medical staff during the

procedure. A postoperative radiation exposure review system could process this data to

provide objective statistics about radiation events. It would help verifying that the safety

guidelines such as the disposition of protective equipment, the personnel’s positioning

during the irradiations, and the dose protocols are properly respected. Indeed, as

illustrated in figure 7.8, this tool would be particularly useful for the hospital’s radiation

safety officer to easily identify potential radiation safety risks and to visualize moments

where atypical dose values were registered by the staff’s dosimeters. Surgical activity

recognition approaches [Twinanda 2016] could be integrated to precisely assess the dose

generated at each step of a procedure or exam. Statistics could be generated to compare

practices among personnel, procedures, protocols and hospitals regarding radiation safety.

Hence, such a system could contribute to devise safer surgical workflows and to determine

the best practices for reducing radiation exposure while obtaining high-quality images.
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Figure 7.8: Postoperative review of atypical dose events recorded by dosimeters during
an X-ray guided procedure, with an AR visualization of the propagation of scattered
radiation during such events.

Intraoperative context-aware radiation monitoring

A version of XAware-Live suitable for intraoperative use could assist medical staff in

remaining aware to ongoing radiation exposure levels. Such a context-aware system

would have to integrate information about the current positions of the lead protective

shields, medical equipment and attending personnel into real-time radiation simulation

and visualization frameworks. If a preoperative model if not available, the patient’s

shape could be reconstructed with cameras, as required for the simulation of scattered

radiation and of the patient skin and organ dose.

7.2.2 Clinical applications of a C-arm pose optimization approach

We presented in chapter 6 an optimization approach to estimate a C-arm pose reducing

radiation exposure while maintaining the clinical quality of the output X-ray image. In

section 6.2.4 we described a potential workflow (summarized in figure 6.4) of how it

could be applied intraoperatively to recommend optimal X-ray angulations minimizing

the patient and staff exposure in the current context. However, since such an approach

enables to explore several close C-arm configurations and determine the one which causes

the least radiation exposure, it could also be incorporated into a preoperative planning

tool. Such a tool could assist clinicians in defining an optimal planning in terms of C-arm

angles and parameters minimizing patient dose for an upcoming procedure. This would

be similar to existing systems in radiotherapy applications, which are used for planning
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Figure 7.9: Concept for a preoperative procedure planning application to determine the
optimal C-arm poses yielding the lowest dose to the patient in an upcoming procedure.

the optimal positioning of radioactive seeds using simulations [Lemaréchal 2015].

We present in figure 7.9 a conceptual GUI for such a preoperative C-arm pose planning

system. For each step of the procedure, the user inputs the standard/nominal C-arm pose

and the system recommends through an optimization approach a configuration enabling

to reduce patient dose. For each recommended pose, a simulated digital radiography is

displayed along with patient dose statistics computed in real-time. With this information,

the user could decide whether to include the recommended pose to the planning or to

keep the standard one. Moreover, information about previously irradiated body-areas

of the patient could be integrated into the optimization. Indeed, obtaining the optimal

C-arm configurations for an upcoming procedure would allow avoiding unnecessary image

acquisitions and/or reducing patient overexposure risks.

7.3 Conclusions

We presented in this chapter our system XAware-Live, which is, to the best of our

knowledge, the first radiation awareness system demonstrated in an interventional room.

Such a system provides real-time feedback about the current propagation of scattered

radiation along with the current patient and attending personnel dose. Moreover,

we outlined in section 7.2 additional potential clinical applications of the approaches

presented in this thesis, which could contribute to improve radiation safety.
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8 Conclusions and perspectives

The time is gone, the song is over, thought I’d something more to say...

– Time, Pink Floyd (Roger Waters)

Chapter Summary

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

In this chapter, we conclude this dissertation by summarizing the contributions of

our work. We also discuss the possible directions of future research in order to address

the current limitations and improve the performance of the methods.

8.1 Conclusions

Medical imaging devices involving ionizing radiation are associated with the noxious

adverse effects of radiation exposure. As the popularity of image-guided minimally

invasive surgery increases, radiation exposure further becomes a concern for health care

providers. There is an inherent need to improve radiation safety when X-rays are used

for diagnostic or therapy delivery. Exposure to ionizing radiation can lead to negative

effects such as cancers, and currently there are no means to intraoperatively depict the

3D propagation and magnitude of ionizing radiation. Indeed, several patient, equipment

and/or procedure dependent factors affect the magnitude and spatial distribution of
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radiation inside the OR, which render irradiated areas and the amount of radiation

hard to predict. The invisible nature of X-rays and the lack of immediate effects to

exposure also lead to reduced awareness and concerns about such risks. Therefore, we

have presented throughout this thesis novel approaches to improve X-ray radiation safety

for patients and medical staff, by acting in two complementary directions. First, we have

proposed methods to improve radiation monitoring and to increase staff’s awareness

of radiation risk and patient dose, by providing in-situ visual feedback of the current

radiation exposure. Second, we have introduced an approach to recommend X-ray

device’s configurations which are less irradiating for both patient and clinical staff in a

given surgical task, determined through an optimization approach considering the current

room context. We presented in the previous pages all the approaches and methods

developed during this thesis for making the two aforementioned applications possible. In

the paragraphs below, the main contributions from each chapter are recapitulated.

Our radiation monitoring approaches rely on the real-time perception of the layout of

the surgical room. We described in chapter 3 the framework we developed for perceiving

and modeling the OR context as required for such approaches. Our setup is composed of

multiple registered ceiling-mounted RGBD cameras, which are also used for keeping track

of the X-ray device configuration and/or of the positioning of equipment and clinicians

in the room.

Moreover, we described in chapter 4 two radiation simulation approaches developed in

this thesis. Both apply Monte Carlo methods to compute the propagation of X-rays and

the deposited dose for a given imaging protocol and room lay-out. They have been crucial

for the development of the two targeted applications of this thesis. Also, these approaches

have been validated experimentally with measurements from dosimeters acquired in a

hybrid room during several clinically relevant scenarios. The obtained results showed

that the error between the simulated and measured dose values is in agreement with the

intrinsic error of the dosimetric system we use. Our latest radiation simulation approach

exploits the computing capabilities of GPUs to achieve quasi real-time performance in

the simulation of the 3D propagation of scattered radiation and patient dose, as necessary

for potential clinical applications.

We have presented in chapter 5 our approach for improving radiation safety by making

ionizing radiation visible through different visualization modes. These visualizations rely

on our multi-camera setup and tracking/registration methods, along with the radiation

simulation approaches. We propose to use AR for giving a user the capability to

visualize the current patient/staff dose and the 3D distribution and intensity of scattered

radiation. Intraoperatively, this can contribute to increase radiation awareness and reduce

overexposure risks for both patients and staff. Also, clinicians can adapt their positioning

and the disposition of the protective equipment thanks to the provided visual feedback.

Preoperatively, these visualizations have the potential to be included into training tools

to teach about radiation behavior and about the best safety practices intuitively.

Furthermore, we described in chapter 6 a novel approach to actively reduce radia-

tion exposure in the context of the OR by exploiting the articulated construction of
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mobile/robotized C-arms. Such an approach takes into account the OR’s context, the

imaging parameters and the clinical staff’s positioning to estimate the overall exposure

to radiation and perform an optimization of the C-arm’s pose. Indeed, our approach

suggests a configuration preserving the visibility in the image outcome while reducing

the dose delivered to patient and staff. It relies on an optimization algorithm applying

Monte Carlo simulations to compute in near real-time radiation exposure statistics at

each iteration, which correspond to the current room lay-out and acquisition parameters.

Such an approach could actively participate as a decision support tool during X-ray

guided procedures to suggest a less irradiating C-arm pose for the current room context.

Relying on our GPU-accelerated radiation simulation methods, it can also provide useful

radiation exposure statistics in near real-time that can assist the attending personnel

in adapting the use of radiation protection measures accordingly. The potential of our

approach was first evaluated through simulations reproducing a clinical environment.

These experiments helped assessing our method’s capabilities to suggest a less irradiating

configuration in a few seconds. Second, a study with real dose measurements acquired in

a hybrid room was performed to verify that the dose reduction ratios predicted by our

approach are close to the real ones. It also enabled us to confirm the fact that even a

small change in a C-arm pose can contribute to decrease the dose to a clinician.

Finally, in chapter 7 we discussed an existing and several potential clinical applications

of the aforementioned approaches. We first described a real-time radiation awareness

demonstrator that has been implemented in an interventional room containing a robotized

X-ray imaging device. Such a system relies on our multi-camera setup along with our

radiation simulation and visualization approaches to provide real-time visual feedback

about the current radiation exposure. Thanks to a direct communication with the

robotized imaging device’s API, the system is able to show the current propagation of

scattered radiation along with the patient and attending personnel dose. This prototype

system has the potential to be used as a teaching tool to teach about ionizing radiation

diffusion effects or to be further improved to be applied to monitor radiation exposure

intraoperatively. We also laid out other exciting potential clinical applications that can

be spawn from the approaches presented in this dissertation. For instance, an application

relying on our C-arm pose optimization method to assist clinicians in the preoperative

planning of an X-ray guided procedure. Such a tool could automatically recommend the

optimal C-arm configurations reducing patient dose for the upcoming procedure.

In this thesis, we have presented novel approaches to contribute to the minimization

of radiation exposure during interventional procedures, which we hope can lead to the

improved health of surgeons, interventional radiologists, radiographers and patients.

Indeed, these approaches can help improving medical staff’s awareness to radiation

exposure risks, assist them in the proper usage of protective equipment and on the

optimization of the overall clinical workflow to improve radiation safety. Being able to

monitor radiation exposure more precisely can also make surgeons in the hybrid operating

room less apprehensive of radiation risks. Furthermore, better awareness and reduced

exposure can also lead to greater acceptance of minimally invasive procedures and hybrid
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rooms that heavily depend upon the use of X-ray technologies, and are planned to be

routinely utilized by clinicians from a variety of disciplines. By way of consequence,

improving radiation safety can facilitate greater and safer access to X-ray-based minimally

invasive surgery options to a wider population.

8.2 Perspectives

With hindsight, several possible lines of research spawn from the work presented in this

dissertation. These open up possibilities for exciting research problems and/or for the

further development of new applications for tomorrow’s OR. Several perspectives of our

work are outlined below.

Radiation awareness training One of the most pertinent perspectives concerns the

development of a working prototype of a radiation awareness system to be used during

training sessions in a hybrid operating room. Such a tool will enable quick and effective

instruction of radiation safety to untrained staff members, and also to have a visual tool

to assess the radiation risks in different real situations. It will also allow to teach and to

understand potential safety issues associated with a procedure by reviewing the procedure

postoperatively. A prototype system has already been developed (i.e. XAware-Live).

However, as discussed in section 7.1.4, it still is subjected to certain limitations that have

to be addressed (visualization/clinicians’ tracking frame-rate, pre-computed radiation

maps, etc...). Moreover, the pose of the lead protective shields should be tracked and

this information included in the simulations. This would allow to show in real-time

during a training session the effect that the positioning of the lead shields have on

the diffusion of scattered radiation, and to teach about their optimal positioning for

each C-arm angulation. Educational videos recorded in centers where such a radiation

awareness training system would be installed could also be diffused to trainees from other

institutions or used by international radiation protection agencies. Furthermore, the

use of an HMD could also be considered to teach about radiation safety in an engaging

game-like manner. This would allow to immerse the user in a virtual OR environment,

where he/she could learn about the best safety practices safely and anywhere.

Validation studies The impact of a radiation awareness training system should be

demonstrated and evaluated during radiation safety teaching/training sessions for hybrid

procedures. Experiments to collect formal feedback from clinicians and staff on the

usability of the system in order to improve its interface and visualizations should be

performed. The benefits of the AR/VR visualizations and the opinions of trainees and

supervisors should be quantitatively and qualitatively assessed and validated.

Extensions to the radiation simulation approach One could also foresee a number

of future lines of research in the context of our radiation simulation approach. First,

as Monte Carlo-based radiation simulations compute dose data relative to the number
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of simulated particles and to the approximations in the simulation, the best way to

calibrate the simulations should be further investigated. Relative dose data may be good

enough for a radiation awareness system, yet, absolute dose values would be required for

other applications (e.g. patient/staff dose review). Using the radiation metrics provided

by the X-ray imaging device (e.g. DAP or Kerma Air) for calibrating the simulations

may be feasible, however, these measures can be prone to errors since they are based on

approximations. Pre-computing calibration factors per imaging device through extensive

measurement campaigns using ionization chambers may also be a less practical but more

precise alternative. Second, the best approach to model a practitioner in the simulation

remains an open question. As in the literature, we model staff as water-filled volumes.

However, for providing feedback about the exposure per body-part for a given practitioner,

it would be necessary to include an articulated human model in the simulation and

deform it according to the person’s current pose. This model could include the person’s

lead clothing too to be able to compute the dose over/under the lead apron or to simulate

the particles scattered by clinicians. Further investigation could be done to determine if a

generic water-filled model would be enough or a person-specific model with organ/tissue

information is required. Third, a simulation strategy to simulate fluoroscopy in real-time

should be further investigated. While the simulation of a patient dose map for a single

radiography takes several seconds even on GPU, the simulation approach should still

be further accelerated to reach the fluoroscopy rates of several frames per second. The

accumulated patient dose during fluoroscopy could then be obtained directly with such an

approach. Fourth, for an intraoperative radiation awareness system relying on real-time

simulations computed on-the-fly, it would be interesting to investigate smart approaches

to simulate only new imaging scenarios not seen before by the system. Indeed, during

a procedure, a given room lay-out or imaging protocol may be repeated several times

and therefore it would not be necessary to simulate it again. A dynamic lookup table

could be built on-the-fly with previous patient/scatter dose maps simulated online, which

would be reload when necessary.

Patient model’s influence Our current radiation simulation approaches require a

patient model (generic or preoperative CT) for the dose computation. For scenarios

where a preoperative model of the patient may not be available, it would be interesting

to determine what the actual influence of the patient model in the simulated dose values

is. Indeed, the use of a generic model chosen from a discrete set of patient weight/height

ranges, may possibly be enough for simulating patient dose and scattered radiation

with a precision acceptable for a radiation safety application. Otherwise, it may also

be interesting to investigate the feasibility of capturing the patient’s 3D shape using

the reconstruction from the multi-camera system and including this information in the

simulation.

Monitoring of staff’s accumulated dose Occupational radiation risk is primarily

due to chronic exposure, whose noxious effects can take years to manifest (e.g. eye
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cataracts and cancers). Monitoring the accumulated dose per body-part of interventional

radiologists and attending personnel is thereby significantly important. Nevertheless,

this requires to individually track the 3D trajectory of each person’s body-parts during a

procedure, which can still be challenging to achieve for vision-based approaches due to

occlusions and cluttered medical environment. Still, if it is achieved, radiation simulations

would provide useful information to assess the daily/monthly/yearly exposure of clinicians

to unprotected body-parts for which suitable dosimeter options are still not available.

This exposure data would also be useful for a hospital’s radiation safety officer to review

the medical staff’s dose levels and recommend actions to reduce overexposure risks.

Surgical workflow and radiation exposure Surgical activity recognition approaches

[Twinanda 2016] could be applied to correlate parts of the procedure’s workflow to radia-

tion exposure values, and also to precisely assess the radiation dose generated at each

step of a procedure or exam. It would then be possible to identify the riskiest steps

of a given procedure for the patient and the attending clinicians in terms of radiation

exposure. Such information would thereby contribute to devise safer workflows for

image-guided interventions and recommend optimal positioning of room shielding/lead

protections. Furthermore, statistics could be generated to compare practices among per-

sonnel, procedures, protocols and hospitals regarding radiation safety. The best practices

for reducing radiation exposure while achieving the required high-quality images could be

determined thanks to these approaches. Moreover, this knowledge can contribute to the

development of context-aware decision support tools to assist in the optimization of the

layout of operating/examination rooms and/or suggest imaging device’s configurations

which minimize the radiation doses delivered to each of the persons involved.

X-ray pose and image optimization As discussed in section 6.5, our approach

to recommend a safer X-ray imaging device’s pose in terms of radiation exposure can

be further extended to include additional relevant information for a more complex

optimization. Indeed, the 3D position of personnel and equipment in the scene could be

included to avoid collisions with the suggested configuration. This would be particularly

interesting for robotized imaging devices since it would allow them to perform automated

trajectories more rapidly. Also, an algorithm to minimize the dose received at a specific

organ or skin area of the patient could be beneficial specially to patients that have been

previously irradiated at some body locations and/or for tasks requiring long exposure

times with the same X-ray source positioning. Data from a patient’s previous exposures

could be included in the optimization for cases when balancing the trade-off of reducing

patient and staff dose is complex. Indeed, a person’s dose record (staff or patient) could

be applied to determine optimal weights for the patient and staff exposure terms in the

cost function. Furthermore, our approach could also be extended to optimize the 3D

position of a clinician around the patient to reduce his/her exposure to scattered radiation

or to optimize the positioning of the lead protective shields for a given fluoroscopy-guided

surgical task. Also, an additional term applying geometrical constraints to quantitatively
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assess the target visibility in the outcome X-ray image could be included. This would

allow to also optimize the visibility of the targeted anatomical structure in the outcome

image directly in the optimization loop. A C-arm pose optimization system could not

only be useful as a decision support tool in the context of the procedure, but also

preoperatively to optimize a procedure’s planning to minimize patient dose.

Extension to other disciplines Awareness systems can address needs from other

disciplines involving exposure to noxious elements. Similar approaches could be developed

for monitoring exposure coming from naturally occurring sources of radiation or from

industrial applications (e.g. nuclear power plants). In the medical field, similar simulation

and visualization approaches could be envisaged for nuclear imaging procedures or for

monitoring the exposure to the electromagnetic fields generated by MRIs.

Global radiation monitoring As healthcare is changing towards adopting a person-

alized and predictive model, we envision that radiation safety will follow the same trend

and dose monitoring will be decentralized from the OR to a person’s entire life. Tomorrow,

a person’s radiation dose monitoring will be performed in a global way for both patients

and medical staff. A personalized 3D model could be used to store the dose values

received by the organs during all exposures to ionizing radiation from medical devices

throughout one’s lifetime. This will be possible thanks to fully context-aware operating

and examination rooms where all devices are connected and their signals analyzed and

interpreted by a central system acting as surgical control tower [Maier-Hein 2017]. Precise

dosimetry computations will be performed by using the knowledge of the imaging device’s

configuration, the layout of the room and the person’s pose and physiological information.

Skin and organ doses delivered to both patient and personnel, respectively exposed to

direct radiation and scatter, will be then accumulated in their personalized 3D irradiated

model. Moreover, data analysis of a person’s lifetime radiation exposure and medical

records will be crucial to improve the current dose-response models. Not only it will

allow to accurately predict the probabilities of occurrence of adverse effects but also to

justify and optimize following exams by providing precise dose and imaging protocols. In

case of risk, the use of an alternative non-irradiating modality could be suggested instead.

On the personnel’s side, occupational exposure will be fully assessed and the amount of

interventional procedures and diagnostic exams performed by nurses, radiologists and

clinicians will be automatically managed to optimize their yearly accumulated exposure.
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A Radiation dose information

A.1 Radiation dose measurements

Radiation dose is a measure of the amount of exposure to radiation. There are three

kinds of dose used in radiological protection: absorbed dose, equivalent dose and effective

dose.

Absorbed dose is the amount of physical energy that is deposited in a unit of matter

[Kaplan 2016], and the units Gray (Gy) and Rad are used to measure it. Equivalent dose

is used to estimate the biological damage from the different types of radiation that is

absorbed by tissues, and the units Sievert (Sv) and Roentgen equivalent man (Rem) are

used to measure it. A given radiation dose value will have different effects depending on

the type of radiation and the composition of the tissue affected. Therefore, to determine

the equivalent dose (Sv), absorbed dose must be multiplied by a quality factor W that is

unique to each type of radiation [Kaplan 2016]. For X-ray radiation, W = 1. Effective

dose (whole-body dose) is calculated for the whole-body and is expressed in millisieverts

(mSv). It is the sum of the equivalent dose to all organs, each adjusted to account for

the sensitivity of the organ to radiation [ICRP 2017].

A.1.1 Conversions between radiation dose units

❼ 1 Gy = 1 Joule per Kg of matter

❼ 1 Gy = 100 Rads

❼ 1 Sv = 100 Rem

❼ 1 Sv = 1 Gy ×W

❼ For X-ray radiation: 1 mSv = 1 mGy
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A.2 Radiation dose values, thresholds and occupational

limits

A.2.1 Radiation dose values for common exams

Table A.1: Typical organ radiation dose from various radiologic studies, as reported
in [Brenner 2007], [FDA 2010] and [Conti 2014].

Study type Organ/Exam Equivalent Dose (mGy)

Dental radiography Brain 0.005

PA chest radiography Lung 0.01

Lateral chest radiography Lung 0.15

AP abdominal radiography Stomach 0.25

Screening mammography Breast 3

Adult abdominal CT Stomach 10

Barium enema Colon 15

CT Coronary Angiography 16

Neonatal abdominal CT Stomach 20

Interventional Fluoroscopy Transjugular Intrahepatic
Portosystemic Shunt Placement

70

USA natural dose (annual) 3.6

A.2.2 Radiation exposure thresholds

The X-ray beam is typically directed to a relatively small patch of skin and the length of

time such a patch is exposed can be high especially when fluoroscopy is used [Miller 2005].

In some cases, the dose to the irradiated skin area can be high enough to cause damage.

Table A.2 presents threshold doses for potential radiation effects with related time of

onset (time it takes for the effect to manifest), as reported in [Miller 2005].

Table A.2: Threshold doses for potential radiation exposure effects, as reported in
[Miller 2005].

Effects Threshold dose (Gy) Time of onset

Skin
Early transient erythema 2 2-24 hours
Main erythema reaction 6 ≈1.5 weeks
Temporary epilation 3 ≈3 weeks
Permanent epilation 7 ≈3 weeks
Dermal necrosis >12 ≈52 weeks

Eye
Lens opacity (detectable) >1-2 >5 years

Lens cataract >5 >5 years
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A.2.3 Dose limits as recommended by the ICRP

The following dose limits are currently recommended by the ICRP in [ICRP 2017] for

both medical staff working with X-rays and the public. Exceeding a dose limit is contrary

to regulations in most countries.

Table A.3: Dose Limits Recommended by the ICRP in [ICRP 2017].

Type Occupational exposure Public
exposure

Effective Dose 20 mSv per year, averaged over 5 years,
with no single year exceeding 50 mSv

1 mSv in a year

Equivalent Dose to the
Lens of the Eye

20 mSv per year, averaged over 5 years,
with no single year exceeding 50 mSv

15 mSv in a year

Equivalent Dose to the
Skin

500 mSv in a year 50 mSv in a year

Equivalent Dose to the
Hands and Feet

500 mSv in a year -

The limits on effective dose are designed to avoid a risk of stochastic effects and

the limits on equivalent dose to an organ, to prevent the occurrence of deterministic

effects [ICRP 2017].

A.3 Radiation exposure metrics

The most used dosimetric indications to monitor the likely exposure of a patient during

a procedure are the following:

Fluoroscopy time: measure in minutes, is the total amount of time that fluoroscopy

is utilized during an imaging or interventional procedure [Kuhls-Gilcrist 2017].

Number of radiographic images: is a count of the number of digital acquisitions

or cine recordings.

Air Kerma: is the energy extracted from an X-ray beam per unit mass of air in a

small irradiated air volume. For diagnostic X-rays, it corresponds to the dose delivered

to that volume of air [Kwon 2011].

Reference Air Kerma (RAK): also known as reference dose, cumulative dose, or

cumulative dose at a reference point, is the air kerma accumulated at a specific point in

space (the patient entrance reference point) relative to the fluoroscopic gantry. For C-arm

fluoroscopic systems, the patient entrance reference point is a point along the central ray

of the X-ray beam, 15 cm back from the isocenter toward the focal spot [Kwon 2011]. It

is an actual indication of the radiation output from the X-ray tube.
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Dose Area Product (DAP): also known as Kerma Air Product (KAP), is the integral

of air kerma across the entire X-ray beam emitted from the X-ray tube [Kwon 2011]. It is

a surrogate measurement for the entire amount of energy delivered to the patient by the

X-ray beam and is most often utilized in estimating stochastic risk [Kuhls-Gilcrist 2017].

Peak Skin Dose (PSD): the greatest absorbed skin dose at any point on the patient’s

skin. PSD can be measured using film or dosimeters placed on the patient. However,

these require prior planning and must be placed accurately at the site. Approaches for

estimating PSD through regression formulas using the RAK and PSD can be found in

the literature [Kwon 2011].
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B xawAR16 dataset

B.1 A multi-RGBD camera dataset for camera relocaliza-

tion evaluation in the operating room

Figure B.1: Sample images from the xawAR16 dataset recorded with three RGBD
cameras (two ceiling-mounted and a mobile one) in an OR, with ground-truth pose
information of the mobile camera.

xawAR161 is a large multi-RGBD camera dataset we generated inside a hybrid

operating room (IHU Strasbourg, France) containing a robotized X-ray imaging device,

an operating table and other medical equipment in the background. Such a dataset has

been designed to evaluate the tracking/relocalization of a hand-held camera which is

moved freely at both sides of the operating table under different scene configurations. It

can also be used for the evaluation of SLAM or mobile AR applications inside an OR.

To our knowledge, this is the first multicamera dataset of its kind, since similar existing

datasets [Sturm 2012] were recorded in controlled environments such as offices or empty

halls using a single RGBD camera.

The dataset is composed of 16 sequences of time-synchronized color and depth images

1I would like to thank Dr. Fernando Barrera and Vikram Mohanty for assisting me in recording and
compiling the xawAR16 dataset.
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in full sensor resolution (640Ö480) recorded at 25 fps, along with the ground-truth poses

of the moving camera measured by the tracking device at 30 Hz. Each sequence shows

different scene configurations and camera motion, including occlusions, motion in the

scene and abrupt viewpoint changes. Sample frames from each camera view are shown

in figure B.1. This dataset was presented in [Loy Rodas 2017a], where it was used to

evaluate our marker-less mobile camera relocalization approach described in appendix C.

To encourage the development of novel methods for visual odometry, 3D reconstruction

and/or SLAM for medical applications, we have made this dataset publicly available2.

B.2 Dataset description

The recording setup is shown in figure B.2. Three RGBD cameras (Asus Xtion Pro

Live) were used to record this dataset. Two of them are rigidly mounted to the ceiling

(C1 and C2) in a configuration allowing them to capture views from each side of the

operating table. A third one is fixed to a display (M), which is held by a user while he

moves around the room. A reflective passive marker is attached to the moving camera

and its ground-truth pose is obtained with a real-time optical 3D measurement system

(infiniTrack system from Atracsys [Atracsys 2015]). The ceiling-mounted cameras and

the optical tracking system have been registered to a global room reference frame R

(represented in figure B.2) through a calibration procedure described in section B.3.

Figure B.2: xawAR16 dataset recording setup: Two RGBD cameras are rigidly mounted
to the ceiling (C1 and C2), a third one is fixed to a display (M) held by a user. A
reflective passive marker is attached to the moving camera and its ground-truth pose is
obtained with the infiniTrack tracking system.

The sequences from this dataset include several scenarios and challenges that can be

typically encountered in a clinical environment. Four different kinds of sequences are

featured in the dataset, which are divided according to the complexity for tracking the

2The xawAR16 dataset can be downloaded from this link: http://camma.u-strasbg.fr/xawar16-dataset
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B.3. Optical tracking system calibration

mobile display on the images:

❼ Smooth: the moving camera is moved in a smooth trajectory including several loop

closures and without occlusions in the view (good for debugging purposes).

❼ Clinician: Smooth sequence with a clinician operating near the patient and therefore

occluding the view of the moving camera.

❼ Challenging: sequence of type Clinician but in which the trajectory of the moving

camera is interrupted by large motions and abrupt viewpoint changes.

❼ Device rotation: the X-ray imaging device moves during the sequence in order to

change to a new image projection or to acquire a 3D image. The mobile display’s

trajectory can be either Smooth or Challenging.

Moreover, each type of sequence is repeated for several configurations of the X-ray

imaging device. We use the standardized naming convention in interventional radiology

for referring to the ongoing imaging device’s angulation per sequence: PA, AP, LAO and

RAO (at 45➦ or 135➦). With this variety of scenarios, this dataset can be used to assess

the performance of an SLAM/AR approach when facing various possible challenges that

could be encountered in a clinical environment. The list of included sequences along with

useful statistics (length, mobile camera speed of motion...) are presented in table B.1.

B.3 Optical tracking system calibration

A calibration procedure using a checkerboard pattern enabled us to obtain the registration

between the infiniTrack’s reference frame and our system’s frame R for each recording

setup. In a first step, the pattern was positioned in a configuration where it could be

simultaneously seen by one of the ceiling cameras and by the tracking device. Then,

we obtained the transformation between both systems by detecting the pattern in the

color image from the camera and in the infrared images from the infiniTrack. Similarly,

in a second step, the pattern was positioned to be visible by the tracking system and

the camera attached to the mobile display. By considering the tracked marker’s pose,

we compute the transformation between the passive marker and the RGB optical frame

from the moving camera. The obtained calibration matrices allowing to transform the

mobile camera’s ground-truth pose into reference system R are provided in the dataset.

B.4 Additional information

❼ Files for the synchronization between the color and depth images per camera are

provided per sequence. Also, a file to synchronize the images of the three cameras

is provided per sequence, which takes as reference the moving one and it gives the

corresponding synchronized frame indices for the other two cameras.

❼ All calibration and pose matrices (extrinsics, moving camera pose and ground-truth

registration) are provided as 4× 4 homogeneous transformation matrices.
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Table B.1: Evaluation dataset: each sequence is categorized according to the side of
the operating table where the mobile display was held, the type of sequence (Smooth,
Clinician, Challenging or Device rotation) and the ongoing X-ray device projection. The
average rotation velocity (deg/s) and translation velocity (m/s) is also provided.

OR side Description Sequence name Length (s) Trans. Vel.
(m/s)

Rot. Vel.
(deg/s)

Right Smooth R PA Smooth 91.4 0.15 ± 0.07 16.9 ± 11.1

R AP Smooth 41.1 0.13 ± 0.07 17.7 ± 11.3

R RAO135 Smooth 57.5 0.16 ± 0.07 16.8 ± 11.2

Clinician R PA Clinician 125 0.18 ± 0.10 19.7 ± 13.1

R AP Clinician 27.8 0.23 ± 0.12 19.5 ± 13.2

Device rotation R CT Challenging 64.5 0.13 ± 0.07 19.5 ± 11.6

Challenging R PA Challenging 96.1 0.18 ± 0.13 20.2 ± 14.1

R RAO135 Challenging 107 0.24 ± 0.15 22.9 ± 15.5

Left Smooth L PA Smooth 47.5 0.13 ± 0.08 14.2 ± 9.99

L RAO45 Smooth 53.8 0.17 ± 0.07 14.7 ± 11.2

L RAO135 Smooth 60.5 0.18 ± 0.07 15.8 ± 11.2

Clinician L PA Clinician 65.7 0.21 ± 0.13 16.5 ± 12.7

L CT Clinician 46.2 0.24 ± 0.15 20.0 ± 14.2

Device rotation L CT Smooth 91.9 0.12 ± 0.07 16.7 ± 11.7

Challenging L PA Challenging 83.1 0.23 ± 0.15 17.7 ± 14.3

L RAO45 Challenging 57.2 0.19 ± 0.17 21.1 ± 16.7

❼ A set of MatLab sample scripts are provided to show the correct use of the provided

data: (1) sample scripts illustrating how to apply the different transformations

(extrinsics, calibration. . . ), which enable to register the ground-truth moving camera

poses with the global room reference frame, and (2) scripts showing how to evaluate

the tracking of the moving camera and the ground-truth poses with the metrics

used in [Loy Rodas 2017a].
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C Camera relocalization approach

for a markerless mobile AR

(a) Tracking initialization: estimation of the
pose of M with respect to R at t0 using a
simultanous detection of equipment E in a
static camera and in the moving camera.

(b) Frame-to-frame tracking: KinectFusion
yields at each time step t the relative pose
of M with respect to K, which is applied to
estimate tTR

M
.

Figure C.1: The two steps of our approach for markerless camera relocalization and
tracking, applied for a mobile AR application.

C.1 Introduction

A common challenge faced by medical AR systems is how to provide an accurate

registration of the viewer’s point-of-view, necessary for the visualization, while interfering

the least possible with the clinical workflow. To cope with this, current systems rely mostly

on tracking markers placed in the scene or on the surgical tools [Sauer 2000,Sauer 2001,

Das 2006,Wendler 2007]. Yet, this can be intrusive and interfere with the procedure

at hand. Moreover, it requires an unobstructed line-of-sight between the markers and

the tracking device, which makes such systems sensitive to occlusions and crowded

scenarios. Other works also propose the estimation of the viewpoint’s pose by registering

a reconstructed mesh to an a priori model of the scene [Glocker 2015,Seitel 2016]. These,
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however, often require precise manual initializations and are limited to static scenes and

to a set of viewpoints.

To cope with the aforementioned challenges, we proposed in [Loy Rodas 2017a] a

novel markerless approach for mobile AR applications. Such an approach was applied

to display directly in the user’s view information related to radiation safety through

hand-held screen (as shown in figure 5.7). This enables the user to see the 3D propagation

of radiation, the medical staff’s exposure and/or the doses deposited on the patient’s

surface as seen through his own eyes. In this appendix, we describe a markerless camera

relocalization approach we developed to make this application possible, and we present

results of its evaluation on the xawAR16 multi-camera dataset introduced in appendix B.

C.2 Method

C.2.1 Overview

Our approach relies on the use of a multi-camera setup composed of three RGBD sensors

as shown in figure B.2. Two of the sensors are ceiling-mounted and a third one is attached

to the hand-held screen, which is used in our application as the AR display. At each time

step, the mobile camera’s pose with respect to the room coordinate system is computed

in order to correctly overlay the virtual radiation safety information on the screen. Our

approach is summarized in the figures C.1 and is explained in the sections below.

Instead of tracking external markers, we propose to combine the results of a simul-

taneous equipment detection in all views obtained using the state-of-the-art template

matching approach LineMOD [Hinterstoisser 2012b,Hinterstoisser 2012a]. Detecting the

same equipment in one static camera (registered to the room) and in the moving one,

enables the estimation of the global pose of the moving device. We choose to detect the

X-ray imaging device since it is large enough to be seen in all views and it is the main

focus point of X-ray based interventional procedures. The camera motion is then tracked

in a frame-to-frame fashion using KinectFusion [Newcombe 2011]. The use of the two

ceiling cameras allows the system to keep an up-to-date picture of the room layout as

needed for camera relocalization when a rapid camera motion or a change in the scene

causes loss of tracking. In such cases, a new equipment detection enables a fast recovery

from tracking failure. In other words, the system makes use of the equipment in the

room as a “natural marker” to localize the moving device.

Our approach allows the user to move freely around the operating table and benefit

from the radiation awareness AR visualization at each position while also being robust to

motion in the scene and possible occlusions. The typical approaches adopted by medical

AR systems can be limited when coping with these challenges. First, it is not practical

to have markers placed all around the scene. Moreover, these would need to remain

visible from all viewpoints and not to be occluded by the equipment or other clinicians.

Second, changes in the scene, such as an X-ray device rotation, would invalidate any

a priori model used by marker-less approaches. We address these particularities by

proposing a marker-less approach which is non-intrusive and allows the tracking of the
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mobile display in a large area. Such an approach is divided into two phases which

are illustrated in the figures C.1 and are described below : tracking initialization (fig.

C.1a) and frame-to-frame tracking (fig. C.1b). The overall workflow of our approach is

summarized in figure C.2. We describe each stage of the pipeline in the sections below,

using the naming conventions from figures C.1a, C.1b and C.2.

Figure C.2: Overview of our approach’s workflow. In practice, the data streams from the
cameras (C1, C2 and M) are processed simultanously by processes executed on separate
threads.

C.2.2 Tracking approach

C.2.2.1 Tracking initialization/relocalization

To estimate tTR
M, namely the pose of the AR display M with respect to R at time step

t, equipment detection is performed on the RGBD images from our system. Indeed,

equipment detection provides a relative transformation from the detected equipment E

to the camera, i.e. t0TE
M if the detection was performed at instant t0 in M or t0TE

C1

for C1. Whenever E is simultaneously detected in at least one static camera (C1 in this

case) and in the moving one, we can express the pose of M with respect to R as:

t0TR
M = t0TE

M(t0TE
C1

)−1TR
C1

(C.1)

As shown in figure C.1a, this procedure is executed to initialize the tracking or to recover

from tracking failure.

C.2.2.2 Frame-to-frame tracking

Once the tracking has been initialized through the camera relocalization procedure

(“Frame-to-frame tracking” in fig. C.2), we apply KinectFusion [Newcombe 2011] to

track the AR display’s motion. KinectFusion uses the depth stream from the camera

attached to the screen to build an implicit surface model in real-time while the camera

scans the room. The camera pose at time step t is then obtained by using ICP to match

the current depth frame to the model. The obtained transformation tTK
M is relative

to the previous frame and referred to the reconstructed surface model K as shown in
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figure C.1b. In order to compute the global pose of M at the current frame, we apply

the initialization provided by the equipment detection at t0 in the following way:

tTR
M = tTK

M(t0TK
M)−1t0TR

M, (C.2)

where t0TK
M is a constant transformation that maps the relative initial pose of the

reconstructed model to M . The system compares the ICP error to a threshold for

detecting the loss of tracking. This may occur in cases of motion or changes in the

scene and can cause an invalid AR visualization which would negatively affect the user

experience. In such cases, looking towards an equipment with the display allows a fast

tracking recovery.

C.2.3 Equipment detection in the OR

During a procedure, the attention of clinicians is focused on the imaging device and

surroundings of the patient. This area is also the most irradiated when an X-ray image

is acquired. Hence, we can consider that a user holding the visualization display will

be looking near this region to obtain information about the potential propagation of

radiation. Detecting the X-ray imaging device for localization purposes is therefore the

best choice. However, the following constraints should be considered by the detection

method:

(1) The equipment to detect and the camera attached to the display may be simultane-

ously moving.

(2) The X-ray imaging device is large, thus it might not be fully visible in every frame.

(3) Other clinicians or equipment in the view may occlude the imaging device.

To cope with these challenges, we apply LineMOD [Hinterstoisser 2012b] and adapt

the training and testing stages to fit our requirements. As explained in the upcoming

sections, we generate separate template databases for the ceiling cameras and the mobile

display’s camera. We also propose approaches to handle possible occlusions of the

equipment to detect and to dynamically sub-sample the template database to accelerate

the detection process.

C.2.3.1 Template databases’ generation

LineMOD relies on matching templates generated from a multitude of synthetic renderings

from a 3D model of the object, which cover for all the possible views that can be

encountered at test time. In practice, we generate a 3D model of the X-ray imaging device

by scanning it with an RGBD camera and using the software RecFusion [RecFusion 2015]

to obtain a reconstructed model. Then, we apply the same viewpoint sampling scheme

as in [Hinterstoisser 2012b] in order to equally sample a set of virtual camera viewpoints

around the model. This is achieved by dividing the space into a polyhedron where
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each vertex represents a viewpoint from where synthetic color and depth images are

generated. By repeating this process for polyhedrons of different sizes, we obtain images

at different scales. A LineMOD template is then generated per image pair by densely

computing color gradients and surface normals. Color gradients are uniformly computed

only on the silhouette of the object since this method has been designed for objects

with little texture. In contrast, surface normal features are computed on the interior of

the object’s silhouette and are discretized according to their orientation. We refer the

reader to [Hinterstoisser 2012b] and [Hinterstoisser 2012a] for more information about

the feature computation and encoding. Each template is labeled with the corresponding

relative camera-to-object transformation. Therefore, when a template is matched at test

time, it provides a coarse estimation of the object’s pose which is further refined using

ICP.

C.2.3.2 Ceiling cameras template database

The parameters of the viewpoint sampling scheme are determined from the registration of

the static cameras to R. Indeed, these transformations provide the approximate distance

of the cameras to the scene, from where we select the range of scales to consider.

C.2.3.3 Moving camera template database

To cope with challenge (1), the template database must consider all possible changes

of the orientation of the equipment and simultaneously all possible camera viewpoints

that can occur. To achieve this, we generate separate template databases for a set of

orientations of the equipment. We use a priori information about the potential user’s

regions of motion to remove several views that would never appear at test time, and hence,

reduce the size of the template database. We refer as non-filtered to the original sampled

views and filtered to those which are kept for training after removing the irrelevant ones.

C.2.3.4 Occlusion handling

As opposed to the ceiling cameras which have a broader view of the scene, the view of the

moving camera may often be occluded. Moreover, the imaging device is large and it will

not be entirely visible on every frame. To cope with this challenge, we detect its parts

instead. We split the X-ray device’s 3D model by half: the bottom half including the

radiation source and the top half containing the flat-panel detector. Then, we generate

separate template databases for a set of orientations of each part. The full equipment

can therefore be correctly detected even if it is not fully visible.

C.2.4 Dynamic template database sub-sampling

We make further use of the ceiling cameras to speed-up and improve the detection on

the moving camera. First, the identified X-ray device projection from the static views is

applied to load “on the fly” the subset of templates corresponding to the equipment’s

part which is currently visible and to its ongoing orientation. We consider that the part
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located over the bed will be the most visible one for a user holding the screen at chest

level or higher. Second, a coarse estimation of the user’s positions in the room is obtained

by applying a multi-view motion detection approach on the ceiling cameras (“Motion

Detector” process in figure C.2). By this means, the number of templates to match can

be reduced by searching only those which are potentially visible from such positions. To

perform the motion detection, we rely on a GPU implementation of the Gaussian mixture

model for background subtraction from [Pham 2010]. Motion is first segmented in the

color images and the corresponding depth value is used to project the motion pixels in

3D. A discretization of the room volume V is then applied to quantify the amount of

motion per voxel. We consider the 3D regions with large accumulations of motion as

potential positions of the user. Using this information, the system dynamically loads

only the templates which are visible from such positions, thereby, drastically reducing

the search space for the template matching. In a typical usage of our system, other types

of motion come from an X-ray device rotation or from another clinician in the scene.

Even if the areas where these events occur are detected as potential positions of the user,

the amount of templates to match is still largely reduced.

C.3 Evaluation with the xawAR16 dataset

C.3.0.1 Evaluation metrics

As proposed by [Sturm 2012], we apply the relative pose error (RPE) and the absolute

pose error (APE) as evaluation metrics. For a given sequence of length n, we note the

poses to evaluate as P1, . . . ,Pn ∈ SE(3) and the ground-truth poses as Q1, . . . ,Qn ∈

SE(3). RPE measures the drift of a trajectory as it computes its local accuracy over a

time interval ∆. It is a suitable metric to evaluate the quality of the tracking. Since it

does not require both trajectories to be expressed in the same coordinate system, it is

not affected by possible errors coming from the calibration stages. It is computed as

follows:

Ei := (Q−1
i Qi+∆)

−1(P−1
i Pi+∆) (C.3)

Similarly, by applying the calibration presented in section B.3, we can also compute the

absolute distances between both trajectories. If S is the transformation that maps the

poses to the same coordinate system, APE is computed as:

Fi := Q−1
i SPi (C.4)

APE is better suited to evaluate the relocalization part of our approach since this one is

performed independently at time step i and does not depend on any consecutive frames.

To evaluate a full sequence, we compute the mean error over all poses for the rotational

and translational components of Ei or Fi depending on the considered metric.
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C.3.0.2 System settings

The experiments were performed using a computer equipped with an i7-3930K 6-core

processor along with a GeForce GTX Titan GPU card. The hand-held screen and

all RGBD cameras are directly connected to the computer respectively through VGA

and active USB extension cables. Our frame-to-frame tracking approach is based on

the open-source implementation of KinectFusion KinFu, which is included in the PCL

libraries [PCL 2015]. We apply the default parameters from KinFu with a TSDF

volume of 8 m per side and composed of 5123 voxels. A coarser 3D grid of same size

divided in 643 voxels is used for the motion detection approach. Furthermore, our

equipment detection approach is based on the publicly available LineMOD source code

from OpenCV [OpenCV 2015]. The templates are computed using the synthetic data

generated as described in C.2.3.1, using the feature extraction parameters recommended

in [Hinterstoisser 2012b].

C.4 Evaluation Results

We evaluate the following aspects of our system:

❼ the equipment detection and the efficacy of the proposed approaches to speed-up

the tracking initialization

❼ the overall performance of the system by looking at the tracking accuracy on all

sequences of the dataset

❼ the accuracy of the camera relocalization

C.4.1 Equipment detection

We first study the impact of the viewpoint sampling parameters in the template generation

stage. This is important to balance the trade-off between the coverage of the object for

detection accuracy and the number of training views for efficiency.

We generate four template databases for each considered part of the X-ray imaging

device with different viewpoint sampling parameters. For each, we keep both the non-

filtered and the filtered versions. We evaluate on four sequences: two per bed side and

each for a PA and AP projection. The part positioned over the bed is respectively the

flat-panel detector in the PA sequences and the radiation source in the AP ones. These

sequences allow us to separately evaluate the detection accuracy for each considered

equipment part. We assess the relocalization performance by constantly setting the

tracking as lost at each frame. Hence, we evaluate the relocalization error for different

positions of the user in the room and for different views of the equipment.

The results of this evaluation are presented in table C.1. As can be expected, the

best detection results are achieved when more views of the object are used for template

generation. However, we show that using a priori information for filtering the template

database allows us to maintain the same detection performance with a 60 % reduction of
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the detection time per frame. Also, we evaluate the impact of applying the user tracking

framework presented in section C.2.4 to reduce the templates to match in the moving

view. The results show that this additional subsampling achieves a better relocalization

accuracy while reducing by half the detection time. Hence, to dynamically subsample the

templates to match using the ceiling cameras is a good action to speed-up the tracking

initialization while maintaining detection robustness. In practice, the detection speed

intervenes only during tracking initialization and afterwards KinectFusion runs at frame

rate. Still, initialization speed is an important aspect for a smoother user experience and

a faster tracking recovery.

For the reasons described above, the filtered version of template database #4 contain-

ing 9593 templates (cf. table C.1), in combination with the dynamic template selection

approach (section C.2.4), are used for equipment detection in the rest of the experiments.

Table C.1: APE when relocalizing with different template databases. Non-filtered :
templates generated from synthetic views covering the full sphere of viewpoints around
the object. Filtered : sets where a priori information has been used to filter-out irrelevant
views. User tracking : using the detected user’s position to load the templates to match.
The number of training views as well as the mean translation error (T) in mm, rotation
error (R) in degrees, detection speed (S) in seconds and mean values for all the evaluated
sequences are provided.

Template database and number of training views

Non-filtered Filtered

1 (462) 2 (1782) 3 (7062) 4 (28182) 1 (169) 2 (645) 3 (2449) 4 (9593) User tracking

Sequence T R S T R S T R S T R S T R S T R S T R S T R S T R S

R PA S 196 5.76 0.35 188 4.44 0.41 161 5.50 0.64 128 4.70 1.13 283 8.14 0.36 195 6.41 0.37 185 6.34 0.42 126 3.96 0.53 125 3.75 0.30
L PA S 166 4.15 0.31 159 4.05 0.39 139 3.62 0.62 168 3.95 1.34 210 6.72 0.27 166 4.87 0.34 151 4.21 0.42 147 3.99 0.42 134 3.77 0.27
R AP S 341 8.73 0.25 292 8.08 0.32 284 7.67 0.45 257 8.24 1.12 348 9.66 0.26 277 7.84 0.29 230 6.93 0.35 196 6.44 0.55 186 7.82 0.27
L AP S 445 9.55 0.31 261 6.15 0.38 266 6.39 0.53 257 6.54 1.19 519 11.36 0.30 274 6.34 0.33 248 6.52 0.42 176 6.19 0.54 148 3.52 0.27

Mean 287 7.05 0.30 224 5.68 0.37 212 5.79 0.56 202 5.86 1.20 339 8.96 0.30 227 6.36 0.33 203 6.00 0.40 161 5.14 0.51 148 4.71 0.27

C.4.2 Moving camera tracking

In this part, we evaluate in all sequences the full performance of the system to track

the motion of the mobile display while performing the camera relocalization procedure

whenever tracking is lost. We calculate both the RPE and the APE introduced in C.3.0.1.

For estimating the RPE, we fix a ∆ of 25 to evaluate the drift of the trajectory per

second. Detailed results of the evaluation of all sequences are presented in table C.2. It

also provides the mean errors per type of sequence (Smooth or Challenging).

From the obtained results, we conclude that our system is able to correctly track the

motion of the mobile display even in the presence of occlusions and motion in the scene.

We obtain in the case of the Smooth sequences a mean RPE of 53 mm in translation

and 2.6➦ in rotation, and for the Challenging ones 86 mm and 2.8➦. As mentioned in

3.1.1, depth measurement inaccuracies can be up to 50 mm with these kind of sensors

so these errors are acceptable for our application where precision requirements are not

particularly strict. On the sequences of type Challenging, Device rotation and Clinician,

tracking is lost more often than in the Smooth sequences. Still, the difference between

the measured errors is small which means that the system is able to correctly recover
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from loss of tracking in challenging conditions. Higher errors are obtained for the APE

metric. However, these are also affected by the multi-camera system calibration error

(which we estimate to be of 33.2 mm and 3➦) and by the errors from the registration

of the infiniTrack to our room coordinate frame. The obtained results are good for

visualization purposes and equipment detection is therefore a promising alternative to

the use of markers for our application. Plots of the estimated and the ground-truth

trajectories for two sequences (Smooth and Challenging) are provided in figure C.3 to

offer an insight about the amplitude of the mobile display’s motion on the dataset. We

can observe how our tracking approach is able to follow the abrupt changes from the

ground-truth trajectory which are more prominent in the Challenging sequence.

Setup Description Sequence name Ev.
Frames

RPE T
(mm)

RPE R
(deg.)

APE T
(mm)

APE R
(deg.)

Right Smooth R PA Smooth 1184 43.3 ± 31.1 1.37 ± 0.37 113 ± 20.9 2.16 ± 0.08

R AP Smooth 858 81.8 ± 100 2.33 ± 0.48 134 ± 75.9 5.15 ± 0.78

R RAO135 Smooth 970 59.5 ± 79.3 2.06 ± 0.31 149 ± 51.3 4.93 ± 0.13

Clinician R PA Clinician 1481 54.9 ± 65.2 1.84 ± 0.08 148 ± 59.5 3.26 ± 0.16

R AP Clinician 501 63.7 ± 63.1 1.83 ± 0.48 114 ± 46.8 4.31 ± 0.66

Device rotation R CT Challenging 1151 86.8 ± 119 2.28 ± 0.65 166 ± 95.8 3.97 ± 0.34

Challenging R PA Challenging 1141 126 ± 264 4.12 ± 0.87 124 ± 170 3.28 ± 0.73

R RAO135 Challenging 1953 152 ± 253 6.53 ± 1.57 146 ± 177 5.90 ± 1.40

Left Smooth L PA Smooth 882 48.8 ± 71.2 1.38 ± 0.29 184 ± 38.8 4.59 ± 0.35

L RAO45 Smooth 817 42.3 ± 33.8 1.48 ± 0.09 149 ± 54.6 4.71 ± 0.45

L RAO135 Smooth 895 45.2 ± 34.9 1.79 ± 0.78 146 ± 62.1 11.1 ± 0.45

Clinician L PA Clinician 1067 36.3 ± 45.8 1.30 ± 0.36 154 ± 73.2 4.29 ± 0.71

L CT Clinician 554 117 ± 153 3.60 ± 0.40 197 ± 160 7.04 ± 0.86

Device rotation L CT Smooth 1672 44.7 ± 48.4 1.61 ± 0.15 184 ± 69.5 5.53 ± 0.28

Challenging L PA Challenging 788 89.7 ± 83.2 2.56 ± 0.24 161 ± 79.8 4.83 ± 0.18

L RAO45 Challenging 687 95.1 ± 136 2.74 ± 0.38 146 ± 105 4.32 ± 0.25

Smooth Mean 53.3 ± 58.3 2.62 ± 0.38 135 ± 50.6 4.11 ± 0.37

Challenging Mean 86.6 ± 123 2.84 ± 0.51 154 ± 103 4.67 ± 0.55

Table C.2: Evaluation of our full approach on all sequences from the dataset with the
evaluation metrics described in C.3.0.1. The number of evaluated frames (Ev. frames)
corresponds to the frames with ground-truth available. Mean errors per sequence type
(Smooth AR display’s trajectories or Challenging for sequences including occlusions,
clinicians and/or large/sudden camera viewpoint changes) are provided.

C.4.3 Relocalization

Table C.3 presents the results of evaluating our approach for camera relocalization

when compared to ICP. Our system waits for two simultaneous equipment detections

with matching scores higher than a given threshold before initializing the tracking.

Relocalization therefore succeeds when the imaging device is detected in two views. For

the sake of comparison, even though ICP can provide a result on every frame, we present

the error values for the frames where a relocalization was obtained with our approach

and where ground-truth information is available (Ev. Frames on table C.3). ICP is

performed between the point cloud obtained by merging the color and depth images from
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Figure C.3: Estimated mobile AR display ’s trajectories with our tracking approach,
compared to the ground-truth trajectories for two sequences of the dataset.

the moving camera and the registered point clouds from the static ones. Random noise is

applied to the ground-truth pose (±6➦ and ±5 cm per axis) for initializing ICP on each

frame and the maximum number of iterations is set to 500.

A mean APE of 163 mm and 5.9➦ is obtained with our approach against 223 mm

and 6.8➦ when using ICP. The difficulties of the Clinician and Challenging sequences are

reflected in the errors which are consistent across both approaches. To further explore

the performance of our method, we also compute the percentage of frames for which

tracking was successfully recovered. We consider a frame as correctly relocalized if the

APE is within 15 cm in translation and 7➦ in rotation. We can observe from table C.3

that our approach also performs better than ICP: 41 % against 28 %. Our method fails

to achieve an accurate detection if the equipment is significantly occluded or if none of its

learned parts are visible. Also, false positives can be introduced in bad frames such as the

ones acquired during a rapid camera motion or when the user stands closer to the area of

interest than the sensor’s depth measurement range. These cases were not excluded from

the evaluation. However, this can be avoided in practice since, when tracking is lost, the

user will point the visualization display towards the imaging device and he therefore has

an influence on the frames where relocalization is performed. ICP converges in all frames,

yet, it requires a large number of iterations, which is not suitable for online use. Even

with an initialization derived from the ground-truth, its relocalization accuracy is not

as good as the one we obtain with our equipment detection-based approach. Moreover,

the success rate of ICP remains similar when evaluated in all frames (25 % of recovered

frames and an APE of 228 mm and 7➦).

Our method is therefore better suited for an online mobile AR application since

it provides a faster and more accurate relocalization. Equipment detection can be an

interesting alternative to perform automatic initial registration for mobile AR systems

such as [Glocker 2015,Seitel 2016], which currently rely on a rough manual alignment as

initialization of ICP.
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Table C.3: Evaluation of our relocalization approach compared to ICP with initialization:
Ev. Frames is the number of frames per sequence where a relocalization was performed
and which also has ground-truth available. We evaluate by computing APE on the
relocalized frames (T for the translation error in mm and R for the rotation error in
degrees). %Rel corresponds to the percentage of recovered frames (APE within 15 cm in
translation and 7➦ in rotation).

ICP Our approach

Sequence Ev. Frames T R % Rel. T R % Rel.

R PA Smooth 147 186 7.24 12.2 121 3.63 78.2
R AP Smooth 30 279 7.53 0 186 6.82 30

R RAO135 Smooth 152 237 6.48 7.2 118 5.81 63.1
R PA Clinician 279 249 7.04 5.3 149 4.88 63.8
R AP Clinician 39 306 7.41 3.2 198 7.35 19.3

R CT Challenging 48 284 6.01 4.1 197 6.92 31.2
R PA Challenging 188 239 7.37 5.8 110 3.95 74.4

R RAO135 Challenging 336 234 7.26 5.3 176 5.52 56.2
L PA Smooth 134 183 5.82 41 145 4.93 47

L RAO45 Smooth 139 114 4.84 84 175 5.25 15.8
L RAO135 Smooth 72 327 9.33 0 175 10.9 4.2
L PA Clinician 95 234 6.42 63.1 161 5.42 31.5
L CT Clinician 78 154 7.58 32.2 149 6.87 39.7
L CT Smooth 102 166 5.43 84.3 148 4.76 47

L PA Challenging 77 241 7.38 48 157 5.29 38.9
L RAO45 Challenging 50 144 5.91 66 240 6.07 20

Mean 223 6.81 28.9 163 5.90 41.3

C.5 Conclusions

We herein present an approach relying on the use of commodity RGBD sensors and

equipment detection to perform markerless mobile AR. We show that it is able to deal

with dynamic environments and is a less invasive alternative to the use of markers.

Detection of medical equipment in the OR is difficult since the objects are large and

can also be moving or occluded. To cope with this challenge, we propose to use a

priori information during training in combination with a part-based detection scheme.

Furthermore, the use of two ceiling-mounted cameras enables the system to account for

changes in the layout of the scene, allowing for a fast camera relocalization.

The evaluation of our approach on a dataset representative of the conditions that can

be encountered in the surgical room shows that it can track the motion of the visualization

display with a mean relative error of 7 cm in translation and 2➦ in rotation (mean APE

of 14 cm and 4➦ respectively). We consider this tracking accuracy to be sufficient for

AR visualization in our clinical application where precision is not a critical factor. This

error is affected by noise in the depth values from the cameras which can be up to 5

cm [Sturm 2012]. Tracking accuracy can potentially be improved by using more precise
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depth sensors. The highest errors are obtained in the difficult sequences containing

strong motion and/or large viewpoint changes, which are reflected as deviations in the

positioning of the displayed virtual information. Nevertheless, when this occurs, the

overall aspect of the visualization is maintained and information such as the scattering

direction is still correctly transmitted to the user. In practice, the user can also manually

re-initialize tracking when the virtual elements are not properly registered in the view.

Qualitative results of the use of this approach for mobile AR visualization can be

found in figures 5.1, 5.5b, 5.6(left) and 5.7. These show that the system is able to provide

convincing visualizations for radiation awareness and for teaching purposes.

166
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Abstract

L’utilisation accrue des systèmes d’imagerie interventionnelle à rayons X lors des chirurgies

mini-invasives entrâıne une forte augmentation de l’exposition du personnel aux radiations

ionisantes. Même si les doses absorbées lors d’une procédure peuvent être faibles,

l’exposition chronique aux rayons X peut causer des effets nocifs comme les cancers

radio-induits. Dans cette thèse, nous avons proposé de nouvelles méthodes pour améliorer

la sécurité vis-à-vis des radiations ionisantes dans la salle opératoire hybride dans

deux directions complémentaires. Premièrement, nous avons développé des méthodes

permettant au personnel médical d’être plus conscient de son exposition et de celle

du patient, grâce à des visualisations des irradiations par réalité augmentée (AR).

Deuxièmement, nous avons proposé une nouvelle méthode d’optimisation capable de

suggérer une configuration de l’imageur qui minimise l’exposition aux radiations des

cliniciens et du patient, tout en maintenant la visibilité de la cible dans l’image acquise.

Ces deux applications ont été possibles grâce à de nouvelles approches proposées pour

percevoir l’environnement 3D de la salle grâce à des caméras RGBD et pour simuler

en temps-réel la propagation des radiations et la dose reçue par le patient et par les

cliniciens. Ainsi, nous espérons que ces travaux puissent non seulement contribuer à la

réduction des expositions aux radiations, mais aussi à améliorer la compréhension de la

propagation des radiations et l’acceptation des systèmes d’imagerie à rayons X.

D.1 Introduction

L’imagerie par rayons X est aujourd’hui fondamentale pour le diagnostic des maladies ainsi

que pour l’exécution de chirurgies guidées par l’image. En effet, les systèmes d’imagerie

par rayons X sont largement utilisés dans plusieurs domaines de la médecine comme la

radiologie/cardiologie interventionnelle, l’orthopédie, l’urologie, la neuroradiologie et la

radiothérapie. Néanmoins, le patient, les chirurgiens et le personnel médical présents sont

chroniquement exposés aux radiations ionisantes causées par l’utilisation de ces systèmes.

De nombreuses études ont montré que toute dose de radiation reçue peut avoir des effets

nocifs sur le corps telles que des brûlures cutanées, des cataractes oculaires ou même

des cancers [Roguin 2013]. Même si l’exposition aux irradiations dans le cas du patient

se fait de façon ponctuelle et peut être justifiée par un besoin médical, le personnel

médical effectuant des procédures guidées par rayons X peut être exposé de façon répétée.

Cette exposition chronique augmente le risque d’apparition d’effets négatifs sur le long

terme. De plus, en chirurgie interventionnelle, une partie importante des procédures sont

guidées par fluoroscopie, c’est-à-dire par l’acquisition de plusieurs clichés à des intervalles

réguliers. Ceci permet au chirurgien d’observer en direct l’anatomie interne du patient

mais augmente significativement la dose de radiation. Lorsque la fluoroscopie est utilisée

pour guider un geste chirurgical, le chirurgien se doit de rester à côte du patient et donc

son exposition ne peut pas être évitée (voir figure D.1). Ainsi, des études ont montré

que, parmi les praticiens qui travaillent avec des radiations ionisantes, les chirurgiens

interventionnels sont ceux qui sont exposés aux doses les plus importantes [Roguin 2013].
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Malgré l’utilisation de vêtements et parois plombés pour réduire leur exposition, plusieurs

parties de leurs corps (mains, tête et yeux) restent non protégées et peuvent recevoir des

doses importantes [Nikodemová 2011]. Même si des dosimètres portés par le personnel

médical au niveau de la poitrine sont utilisés pour monitorer les doses de radiation reçues

lors d’une chirurgie, ils ne donnent pas une mesure complète de la dose perçue dans tout

le corps. En effet, des études [Carinou 2011,Roguin 2013,Picano 2013] montrent des

différences importantes entre les doses reçues dans les différentes parties du corps des

cliniciens, notamment des doses supérieures mesurées dans la partie gauche de leur corps

qui correspond à celle qui est le plus proche des zones irradiées.

Figure D.1: Chirurgie mini-invasive guidée par fluoroscopie au service de radiologie
interventionnelle du Nouvel Hôpital Civil de Strasbourg.

Dans cette thèse, nous avons donc proposé des méthodes pour réduire l’exposition

du patient et du personnel aux radiations ionisantes dans la salle opératoire hybride en

agissant dans deux directions complémentaires. (1) Tout d’abord, nous avons développé

un système capable de calculer la propagation et l’intensité des irradiations, et de donner

un retour visuel par réalité augmentée (AR). Pour ceci, des approches pour simuler

en temps réel les radiations ainsi que pour visualiser des cartes de dose en 3D ont été

développées. En rendant les radiations visibles, ce système permet au personnel d’être

plus conscient de son exposition et de celle du patient. Un prototype de ce système a

été démontré dans une salle hybride à l’IHU Strasbourg. (2) Puis, nous avons proposé

une méthode pour optimiser le positionnement d’un imageur à rayons X. Cette méthode

est capable de recommander une pose de l’imageur qui réduit simultanément la dose du

patient et du personnel, tout en conservant la qualité clinique de la radiographie obtenue.

Dans ce résumé des travaux réalisés dans le cadre de cette thèse, nous présentons
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d’abord de façon synthétique les méthodes de radioprotection réactive au contexte qui ont

été proposées pour la simulation des radiations et leur visualisation par AR. Ensuite, nous

décrivons l’approche proposée pour optimiser la pose d’un imageur afin de réduire la dose

patient/personnel. Puis, nous présentons un prototype de système de radioprotection

installé dans une salle opératoire expérimentale à l’IHU Strasbourg. A la fin de ce résumé,

les conclusions et perspectives de cette thèse sont présentées.

D.2 Radioprotection réactive au contexte

La nature invisible et la complexité de la propagation des radiations rendent difficile,

pour les chirurgiens interventionnels, de rester conscients de leur exposition pendant une

procédure. Ce manque de conscience ainsi que la sous-estimation des risques peuvent

causer des expositions inutiles [Katz 2017b] et une mauvaise utilisation des moyens de

radioprotection [Nikodemová 2011]. Un retour intuitif sur les zones irradiées et sur la dose

actuelle permettrait aux praticiens de rester conscients de la propagation des radiations

ainsi que de leur exposition et de celle du patient. Afin d’aider le personnel médical

à prendre conscience de l’exposition aux rayons X, nous avons proposé des méthodes

permettant de percevoir la disposition de la salle opératoire, puis de calculer et de

visualiser les radiations ionisantes [Loy Rodas 2014,Loy Rodas 2015a,Loy Rodas 2015b,

Loy Rodas 2017a]

D.2.1 Perception de la salle opératoire par des caméras RGBD

Un suivi global de la configuration actuelle de la salle opératoire est effectué grâce à des

caméras RGBD fixées au plafond. Le positionnement des caméras est visible dans la

figure D.2. Des informations comme la position 3D du personnel ou de l’imageur peuvent

ainsi être déterminées à partir des images capturées par ces caméras qui fournissent une

vue globale de la salle (voir figure D.3).

D.2.2 Méthodes de simulation des radiations

Des méthodes de simulation ont été proposées pour calculer la propagation des radiations

dans le scénario actuel, c’est-à-dire pour la configuration de l’imageur (angle d’incidence

et paramètres de l’image) et pour les positions actuelles des cliniciens dans la salle. Ces

simulations appliquent des méthodes de type Monte Carlo pour calculer les trajectoires des

rayons X produits par l’imageur, leurs interactions avec le patient et/ou l’environnement

ainsi que les doses absorbées. Une approche de calcul sur GPU basée sur [Bert 2013,

GGEMS 2017] a été conçue pour calculer la dose absorbée par les organes et la peau du

patient, la diffusion en 3D des radiations et l’exposition actuelle du personnel en quasi

temps réel. En utilisant un modèle du patient (CT spécifique au patient ou générique),

notre approche de simulation peut calculer en quelques secondes une carte de dose aux

organes de patient comme celle qui est présentée dans la figure D.4a. De plus, nous avons

proposé une méthode pour caractériser le comportement des particules diffusées par le

patient lors de l’acquisition. Elle permet ainsi de calculer en quelques millisecondes,
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Figure D.2: Positions des trois caméras RGBD qui sont installées au plafond d’une salle
opératoire expérimentale au IHU Strasbourg (en rouge).

Figure D.3: Vues du système multi-caméra utilisé pour percevoir la salle opératoire.

l’exposition des différentes parties du corps d’un clinicien et d’obtenir des cartes de dose

comme celle de la figure D.4b.

Nos méthodes de simulation ont été validées expérimentalement dans une salle

opératoire grâce à des mesures acquises avec des dosimètres. Après une calibration

utilisant une partie des mesures, l’erreur entre les mesures et les simulations varie de

5 à 20 % pour différent scénarios cliniques. Vu qu’aujourd’hui il n’y a aucune autre

estimation intraopératoire de la propagation de dose en 3D et que par ailleurs la précision

des dosimètres cliniques peut varier de 5 à 30 % selon leur type [Struelens 2011], la

précision de nos modèles de simulation est considérée acceptable.
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(a) Carte de dose aux organes d’un patient
calculée avec notre méthode de simulation
sur GPU.

(b) Exposition d’un clinicien aux radiations,
calculée en temps réel avec nos méthodes de
simulation.

Figure D.4: Méthodes de simulation Monte Carlo de la propagation 3D des radiations et
des doses au patient et personnel médical.

D.2.3 Visualisations des radiations par réalité augmentée

Les résultats des simulations sont montrés par AR afin de donner un retour visuel intuitif

aux utilisateurs. Trois types de visualisation ont ainsi été développées :

❼ Grâce à du rendu volumique, la propagation et les intensités du diffusé de radiation

sont montrées en recalant un volume coloré aux images capturées par les caméras

du plafond. Cette visualisation est mise à jour quand des paramètres comme

l’angle d’incidence sont modifiés, permettant ainsi aux utilisateurs de voir l’effet

du positionnement de l’imageur sur la diffusion des rayons. Deux exemples de la

visualisation de la propagation du rétrodiffusé de radiation par réalité augmentée

pour deux angulations de l’imageur sont proposés dans la figure D.5. On peut

ainsi observer que pour des configurations où la source de rayons se trouve sur

le lit, les parties supérieures du corps des cliniciens présents seront exposées à

une dose plus importante. De même, en intégrant dans la simulation la position

de protections, comme les suspensions plafonnières et/ou les paravents plombés,

l’effet de ces dernières sur la propagation des irradiations peut être visualisé. Nous

montrons dans la figure D.6 un exemple de visualisation du rétrodiffusé de radiation

dans des scénarios avec ou sans protections plombées. Ces visualisations peuvent

être utilisées pour enseigner de façon intuitive les bénéfices de l’utilisation de ce

type de protection pour arrêter les radiations et donc des bonnes pratiques de

radioprotection.

❼ Les informations de la position des cliniciens fournies par les caméras RGBD sont

utilisées pour calculer et visualiser par AR l’exposition du staff dans tout leur corps.

Ceci permet de compléter les mesures des dosimètres qui fournissent la valeur de
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Figure D.5: Visualisation par AR de la propagation en 3D du rétrodiffusé de radiation,
pour deux angulations différentes de l’imageur: pour une acquisition RAO à 120◦ (gauche)
et une PA (droite).

Figure D.6: Visualisation par AR de la propagation en 3D du rétrodiffusé de radiation,
pour deux angulations différentes de l’imageur, avec un sans utilisation de protection
plombées (suspension plafonnière et paravent plombé).
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dose en un point uniquement. Deux exemples de ces visualisations sont fournis

dans la figure D.7.

Figure D.7: (Gauche) Visualisation par AR mobile de l’exposition aux radiations des
cliniciens lors d’une acquisition PA. (Droite) Visualisation par AR effectuée avec les vues
des caméras fixées au plafond de la salle, illustrant l’exposition de deux cliniciens lors
d’une acquisition AP.

❼ La dose absorbée par le patient est aussi montrée soit en recalant aux images

un modèle 3D du patient où la peau est colorée d’après la dose simulée, soit en

affichant un modèle virtuel montrant par transparence le degré d’exposition des

organes. Ce type de visualisation permet de sensibiliser les cliniciens à l’exposition

du patient lors d’une procédure. Des exemples de visualisations de la dose patient

sont proposés dans la figure D.8.

Figure D.8: Visualisation de la dose aux organes et à la peau du patient calculée avec
nos méthodes de simulation Monte Carlo.

Les méthodes présentées dans cette section (perception, simulation et visualisation)

ont été intégrées dans un système de radioprotection. Ce système, décrit dans la section
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D.4, est actuellement installé dans une salle opératoire hybride expérimentale à l’IHU de

Strasbourg.

D.3 Optimisation de la pose d’un capteur plan

La plupart des chirurgies guidées par fluoroscopie sont effectuées grâce à des systèmes de

type “C-arm”. Dans ces systèmes, qui peuvent être robotisés ou manuels, la source de

rayons X et le détecteur sont embarqués sur un arceau en forme de C qui est monté au

bout d’une châıne articulée. Cette construction permet de modifier le positionnement

de l’arceau afin de capturer des radiographies sous différents points de vue ou même

d’effectuer une rotation autour du patient pour générer une image 3D. Malgré leur

architecture semblable à celle d’un manipulateur robotique, le positionnement de l’arceau

se fait en boucle ouverte. En effet, les radio-manipulateurs cherchent à le positionner de

façon à acquérir l’image avec le meilleur point de vue dans le contexte de la procédure

en cours [Fallavollita 2014]. Dans cette thèse, nous avons donc proposé une méthode

pour optimiser le positionnement d’un capteur plan afin de garantir, non seulement une

bonne visibilité de l’organe cible, mais aussi de réduire la dose délivrée au patient et au

personnel [Loy Rodas 2017b].

Des travaux visant à optimiser le positionnement d’un C-arm pour atteindre un

point de vue désiré existent [Navab 2006, Fallavollita 2014]. Néanmoins, l’exposition

aux radiations n’est pas un critère qui est considéré dans ces travaux. En effet, il n’est

pas possible aujourd’hui d’estimer la dose patient/personnel pour une radiographie à

venir lors d’une procédure. Le radio-manipulateur ne peut donc pas savoir si un léger

changement dans le positionnement de l’arceau peut réduire la dose tout en gardant une

bonne visibilité d’un organe cible dans l’image obtenue. Nous avons donc proposé une

méthode capable d’explorer des positionnements proches du positionnement actuel et de

calculer la dose patient/personnel pour chacun d’entre eux, afin de recommander une

configuration réduisant les doses.

Nous formulons ce problème comme la recherche d’une configuration de l’arceau qui

minimise une fonction de coût modélisant l’exposition aux radiations du patient et du

personnel dans le contexte actuel de la procédure. Ainsi, à partir d’une configuration

initiale et en prenant en compte les positions actuelles du staff ainsi que les paramètres de

l’acquisition et du patient, notre méthode cherche une configuration optimale en termes

de dose patient/staff et de qualité clinique de l’image. Pour ceci, nous avons proposé

une approche basée sur des simulations Monte Carlo sur GPU pour calculer en temps

réel la fonction de coût, adaptée à son calcul itératif dans une boucle d’optimisation.

L’optimisation est contrainte à chercher dans un espace de configurations proches à

l’initiale pour ainsi garantir que la visibilité de l’organe cible dans l’image est maintenue.

Quand une pose réduisant la dose est trouvée, le modèle géométrique inverse peut être

appliqué pour repositionner automatiquement l’imageur à la pose recommandée (en cas

d’un capteur plan robotisé). Notre approche est ainsi illustrée dans le schéma de la figure

D.9.
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Figure D.9: Méthode d’optimisation de la pose d’un C-arm: à partir d’une configuration
initiale et en prenant en compte les positions actuelles du staff, les paramètres de
l’acquisition et du patient, notre méthode cherche la configuration optimale qui réduit la
dose patient/staff tout en conservant la qualité clinique de l’image.

Une première évaluation sur des scénarios cliniques simulés a montré qu’en quelques

secondes notre méthode est capable de recommander une pose de l’imageur qui peut

réduire l’exposition du patient et des cliniciens de 5 à 15 %. Une deuxième évaluation

avec des mesures de dose obtenues dans une salle opératoire a confirmé le potentiel de la

méthode. Ces mesures ont été effectuées d’abord pour diverses configurations initiales,

puis pour les recommandées par notre méthode. Les valeurs obtenues ont montré que

des légères variations de la pose de l’imageur peuvent effectivement réduire la dose

patient/personnel. De plus, une différence moyenne de 10 % entre les réductions prédites

par notre méthode et celles mesurées par les dosimètres a été trouvée.

Notre méthode d’optimisation est capable de recommander une pose du capteur plan

réduisant la dose patient et personnel en quelques secondes. En rajoutant des éléments

additionnels à la fonction de coût, il serait possible d’adapter l’optimisation à d’autres

objectifs qui peuvent être aussi pertinents (minimiser la dose à un organe du patient en

particulier par exemple). Cette méthode pourrait aussi être appliquée lors du planning

chirurgical pour déterminer les configurations optimales de l’imageur qui minimisent la

dose absorbée par le patient dans la procédure à venir. Ainsi, nous proposons dans la

figure D.10 un concept d’interface pour cette potentielle application clinique de notre

méthode. Un modèle préopératoire du patient serait utilisé pour simuler les doses de

radiations et les radiographies qui seraient obtenues avec les configurations recommandées

par le système.

D.4 Application clinique: XAware-Live

Nous avons intégré nos méthodes de perception par caméras RGBD, de simulation des

radiations et de visualisation par réalité augmentée dans un prototype d’application
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Figure D.10: Concept pour l’interface utilisateur d’une application de planning
préopératoire pour déterminer les configurations optimales de l’imageur qui minimisent
la dose au patient.

clinique de radioprotection. Ce système, nommé XAware-Live1, a été installé dans

une salle opératoire expérimentale à l’IHU de Strasbourg. Il propose des visualisations

des radiations en temps réel, qui sont mises à jour d’après la configuration actuelle de

l’imageur ou des positions du personnel dans la salle.

Une communication directe entre le C-arm robotisé installé dans la salle (Artis

Zeego) et le système permet de mettre à jour les visualisations montrées d’après le

positionnement actuel de l’imageur. L’interface utilisateur du système montre d’une part

les images capturées par les caméras installées au plafond (côté gauche), et d’autre part,

une visualisation virtuelle de la salle. Des cartes de dose précalculées (dose patient ou

propagation 3D des radiations) pour des paramètres standard d’image et pour chaque

projection obtenue tous les 5◦ d’une rotation complète dans chaque plan, sont chargées

lors de l’initialisation du système.

Les trois types de visualisations décrits auparavant dans la section D.2 ont été intégrés

dans le système pour visualiser les simulations. Nous montrons dans la figure D.11, un

exemple de la visualisation par AR de la propagation du diffusé de radiation montrée

par XAware-Live. Comme mentionné précédemment, cette visualisation est mise à jour

en temps réel lorsque l’angle d’incidence de l’imageur est modifié. Ceci permet alors aux

cliniciens d’avoir un retour visuel des zones les plus irradiées à tout moment. De même,

la figure D.12 montre la visualisation de la dose absorbée par le patient (peau et organes)

proposée par le système.

1Une vidéo illustrant le système et ses différentes fonctionnalités peut être trouvé à partir de ce lien:
https://youtu.be/JpATPDrXvu8
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Figure D.11: Visualisation par réalité augmentée de la propagation et intensité du
rétrodiffusé de radiation pour l’angle d’incidence courant du capteur plan, proposée par
le système XAware-Live.

Figure D.12: Visualisation de la dose à la peau et aux organes du patient pour l’angle
d’incidence courant du capteur plan, proposée par le système XAware-Live.

De plus, nous avons intégré l’approche de [Cao 2017] pour l’estimation en temps

réel des poses des cliniciens présents dans la salle sur les images couleur des caméras du

plafond. Grace à cette approche, le système peut montrer les poses des personnes sur les

images couleur, ainsi qu’une représentation de la position 3D des personnes autour de la

table dans la visualisation virtuelle de la salle (voir figure D.13). Le système utilise ces

informations pour montrer par réalité augmentée l’exposition aux irradiations sur les

différentes parties du corps des personnes présentes dans la salle pour l’angle d’incidence

actuel du C-arm. La figure D.14 montre un exemple de cette visualisation, où l’on peut

observer que les parties du corps qui sont les plus proches de la source des radiations et
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donc exposées à une dose plus importante, sont colorées en orange/rouge.

Figure D.13: Estimation en temps réel de la pose des cliniciens présents dans la salle,
grâce à l’intégration de l’approche de [Cao 2017] à XAware-Live.

Figure D.14: Visualisation par réalité augmentée de la dose sur les différentes parties du
corps des cliniciens présents dans la salle pour l’angle d’incidence courant du capteur
plan, proposée par le système XAware-Live.

Nos partenaires cliniques et industriels ont montré un grand intérêt pour ce système

car il permet de montrer de manière intuitive les radiations dans la salle opératoire. En

effet, ce système a le potentiel de servir comme outil pour enseigner intuitivement à des

étudiants le comportement des radiations ainsi que les bonnes pratiques pour réduire la

dose patient/personnel.

D.5 Conclusions

Nous avons proposé dans cette thèse de nouvelles méthodes pour contribuer à l’amélioration

de la sécurité vis-à-vis des radiations dans des procédures guidées par rayons X. Ces

méthodes ont été appliquées au développement d’un système de suivi et de visualisation
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des radiations dans une salle opératoire, qui permet à des utilisateurs de voir la prop-

agation du rayonnement en 3D dans la configuration actuelle de la salle. Ce système

peut ainsi contribuer à aider les cliniciens à prendre conscience de leur exposition aux

radiations, et il est aussi particulièrement adapté à l’enseignement des bonnes pratiques

de radioprotection. Nous avons aussi proposé une nouvelle approche pour optimiser le

positionnement d’un imageur à rayons X, afin de recommander une pose en quelques

secondes qui réduit la dose du patient et du personnel présent. Nous espérons qu’en

contribuant des méthodes ayant le potentiel de réduire l’exposition aux irradiations, cette

thèse puisse aussi aider à rendre les bénéfices des chirurgies guidées par image accessibles

à une plus grande population.

D.6 Perspectives

Parmi les perspectives de nos travaux, la plus immédiate est le développement d’un

système éducatif de radioprotection à partir de nos méthodes de simulation et visualisa-

tions des radiations. Les limitations actuelles de notre prototype XAware-Live, comme

le fait que les cartes de radiation sont précalculées ou que les protections plombées ne

sont pas prises en compte actuellement, doivent être alors adressées. De plus, des études

pour valider l’impact d’un système de réalité augmentée dans l’enseignement des bonnes

pratiques de radioprotection doivent être réalisées. Ceci peut être accompli à travers des

questionnaires qui serviraient à valider la pertinence du système. Une autre perspective

de nos travaux est l’utilisation des caméras RGBD pour reconnaitre automatiquement

les activités dans la salle opératoire et ainsi trouver des corrélations entre les activités

chirurgicales et l’exposition aux irradiations. En effet, ceci permettrait d’identifier les

étapes d’une chirurgie qui génèrent les doses de radiation les plus importantes et de

recommander des workflows plus sûrs en termes d’exposition aux rayons X.
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[Omar 2017] A. Omar, N. Kadesjö, C. Palmgren, M. Marteinsdottir, T. Segerdahl and

A. Fransson. Assessment of the occupational eye lens dose for clinical staff in

interventional radiology, cardiology and neuroradiology. Journal of Radiological

Protection, vol. 37, no. 1, page 145, 2017. (Cited on page 12)

[OpenCV 2015] Open source Computer Vision. OpenCV. http://opencv.org/, 2015.

(Cited on page 161)

[OpenNI 2013] OpenNI. PrimeSense NiTE library. https://structure.io/openni, 2013.

(Cited on pages 36, 37, and 48)

[ORAMED 2011] ORAMED. Optimization of RAdiation protection for MEDical staff.

http://www.oramed-fp7.eu/, 2011. (Cited on pages 12, 27, and 32)

189

http://opencv.org/
https://structure.io/openni
http://www.oramed-fp7.eu/


References

[Padoy 2014] N. Padoy and N. Loy Rodas. Method for estimating the spatial distribution

of the hazardousness of radiation doses, 2014. US Patent App. 15/501,319, World

Patent App. PCT/EP2015/067,639. (Cited on page 21)

[Padoy 2017] N. Padoy, N. Loy Rodas, J. Bert, M. de Mathelin and D. Visvikis. Method

for determining a configuration setting of a source of ionizing radiation, 2017. EU

Patent Appplication. (Cited on page 21)

[PCL 2015] PCL. Point Cloud Libraries. http://www.pointclouds.org, 2015. (Cited on

page 161)

[Pelowitz 2005] D. Pelowitz. MCNPX User’s Manual, Version 2.5.0, Los Alamos Na-

tional Laboratory, 2005. (Cited on pages 32 and 33)

[Pham 2010] V. Pham, P. Vo, V. T. Hung and L. H. Bac. GPU Implementation of

Extended Gaussian Mixture Model for Background Subtraction. In Computing and

Communication Technologies, Research, Innovation, and Vision for the Future

(RIVF), 2010 IEEE RIVF International Conference on, pages 1–4, Nov 2010.

(Cited on page 160)

[Philips 2017a] Philips. ClarityIQ X-ray imaging technology. http://www.philips.ng/

healthcare/product/HCNOCTN163/alluraclarity-with-clarityiq-technology, 2017.

(Cited on page 15)

[Philips 2017b] Philips. DoseWise Portal radiation dose management solution. https:

//www.usa.philips.com/healthcare/product/HC895001, 2017. (Cited on page 26)

[Picano 2013] E. Picano, M. G. Andreassi, E. Piccaluga, A. Cremonesi and G. Guagli-

umi. Occupational Risks of Chronic Low Dose Radiation Exposure in Cardiac

Catheterisation Laboratory: the Italian Healthy Cath Lab Study. EMJ Int Cardiol,

pages 50–58, 2013. (Cited on pages 6, 10, 11, 12, 13, 14, 35, 44, and 169)

[Piccin 2016] O. Piccin, J. Sieffert, F. Schmitt, L. Barbé, L. Meylheuc, F. Nageotte and
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Nicolas Loy Rodas

Context-Aware Radiation Protection 
for the Hybrid Operating Room

Summary

The use of X-ray based imaging technologies during minimally-invasive procedures exposes both 
patients and medical staff to ionizing radiation. Even if the dose absorbed during a single procedure 
can be low, long-term exposure can lead to noxious effects (e.g. cancer). In this thesis, we therefore 
propose methods to improve the overall radiation safety in the hybrid operating room by acting in two 
complementary directions. First, we propose approaches to make clinicians more aware of exposure
by providing in-situ visual feedback of the ongoing radiation dose by means of augmented reality. 
Second, we propose to act on the X-ray device positioning with an optimization approach for
recommending an angulation reducing the dose deposited to both patient and clinical staff, while 
maintaining the clinical quality of the outcome image. Both applications rely on approaches proposed 
to perceive the room using RGBD cameras and to simulate in real-time the propagation of radiation 
and the deposited dose. We hope that this thesis can contribute to the overall reduction of radiation 
exposure and to make the benefits of image-guided procedures available to a wider population.

Key-words: Medical Robotics, X-ray Guided Procedures, Radiation Safety, Augmented Reality, 
Monte Carlo Simulations, Computer-Assisted Interventions.

Résumé 

L’utilisation de systèmes d’imagerie à rayons X lors de chirurgies mini-invasives expose patients et
staff médical à des radiations ionisantes. Même si les doses absorbées peuvent être faibles, 
l’exposition chronique peut causer des effets nocifs (e.g. cancer). Dans cette thèse, nous proposons
des nouvelles méthodes pour améliorer la sécurité vis-à-vis des radiations en salle opératoire 
hybride dans deux directions complémentaires. Premièrement, nous présentons des approches pour 
rendre les cliniciens conscients des irradiations grâce à des visualisations par réalité augmentée. 
Deuxièmement, nous proposons une méthode d'optimisation pour suggérer une pose de l’imageur 
réduisant la dose au personnel et patient, tout en conservant la qualité de l’image. Pour rendre ces
applications possibles, des nouvelles approches pour la perception de la salle grâce à des caméras 
RGBD et pour la simulation en temps-réel de la propagation et doses de radiation ont été proposées.
Nous espérons que cette thèse puisse contribuer à réduire l’exposition aux radiations et à rendre les 
bénéfices des chirurgies guidées par image accessibles à une plus grande population.

Mots-clés : Robotique Médicale, Chirurgies Guidées par Rayons X, Radioprotection, Réalité 
Augmentée, Simulations Monte Carlo, Chirurgie Assistée par Ordinateur.
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