'\ SORBONNE

UNIVERSITE é cnNnes

CREATEURS DE FUTURS .
DEPUIS 1257 CENTRE NATIONAL D'ETUDES SPATIALES

UNIVERSITE PIERRE ET MARIE CURIE
CNES - DIRECTION DES LANCEURS

Ecole doctorale ED 386
Unité de recherche Laboratoire Jacques Louis Lions
Thése présentée par Antoine OLIVIER
Soutenue le 4 octobre 2018

En vue de 'obtention du grade de docteur de I'Université Pierre et Marie Curie

Discipline Mathématiques Appliquées

Spécialité Contréle Optimal

Controle optimal et robuste de

I’attitude d’un lanceur

Aspects Théoriques et Numériques

Thése dirigée par Emmanuel TRELAT directeur
Thomas HABERKORN co-directeur
Eric BOURGEOIS co-directeur

David-Alexis HANDSCHUH  co-directeur

Composition du jury

Rapporteur Jean-Baptiste CAILLAU

Ezaminateurs Pascal FrREY président du jury
Hasnaa ZI1DANI

Directeurs de thése Emmanuel TRELAT
Thomas HABERKORN
Eric BOURGEOIS
David-Alexis HANDSCHUH


mailto:antoine.olivier@upmc.fr




'\ SORBONNE

UNIVERSITE é cnNnes

CREATEURS DE FUTURS .
DEPUIS 1257 CENTRE NATIONAL D'ETUDES SPATIALES

UNIVERSITE PIERRE ET MARIE CURIE
CNES - DIRECTION DES LANCEURS

Doctoral School ED 386
University Department Laboratoire Jacques Louis Lions
Thesis defended by Antoine OLIVIER
Defended on 4t® October, 2018
In order to become Doctor from Université Pierre et Marie Curie

Academic Field Applied Mathematics

Speciality Optimal Control

Optimal and robust attitude control of a

launcher

Theoretical and numerical aspects

Thesis supervised by Emmanuel TRELAT Supervisor
Thomas HABERKORN Co-Supervisor
Eric BOURGEOIS Co-Supervisor

David-Alexis HANDscHUH ~ Co-Supervisor

Committee members

Referee Jean-Baptiste CAILLAU

Ezaminers Pascal FREY Committee President
Hasnaa ZIDANI

Supervisors Emmanuel TRELAT
Thomas HABERKORN
Eric BOURGEOIS
David-Alexis HANDSCHUH


mailto:antoine.olivier@upmc.fr




Mots clés: controle optimal, controle d’attitude, phase balistique, méthode de continuation,
méthodes directes, méthodes indirectes, controle robuste, contrainte intermédiaire

Keywords: optimal control, attitude control, ballistic phase, continuation method, direct
methods, indirect methods, robust control, intermediate constraint






Cette thése a été préparée au laboratoire suivant, avec le soutien financier de la FSMP.

Laboratoire Jacques Louis Lions

4 Place Jussieu
75005, PARIS
France

Fondation Science Mathématiques de Paris

11 rue Pierre et Marie Curie . FS M P

75231F Paris Cedex 09 Fondation Sciences
Mathématiques de Paris
France







Remerciements

ix



Remerciements




Résumé xi

CONTROLE OPTIMAL ET ROBUSTE DE L’ATTITUDE D’UN LANCEUR
Aspects Théoriques et Numériques

Résumé

L’objectif premier de cette thése est d’étudier certains aspects du contréole d’attitude d’un corps rigide,
afin d’optimiser la trajectoire d’un lanceur au cours de sa phase balistique. Nous y développons un
cadre mathématique permettant de formuler ce probléme comme un probléme de contréle optimal avec
des contraintes intermédiaires sur I’état. En paralléle de I’étude théorique de ce probléme, nous avons
mené 'implémentation d’un logiciel d’optimisation basé sur la combinaison d’une méthode directe et
d’un algorithme de point intérieur, permettant a 1’utilisateur de traiter une phase balistique quelconque.
Nous entendons par 1a qu'’il est possible de spécifier un nombre quelconque de contraintes intermédiaires,
correspondant & un nombre quelconque de largages de charges utiles.

En outre, nous avons appliqué les méthodes dites indirectes, exploitant le principe du maximum de
Pontryagin, a la résolution de ce probléme de contréle optimal. On cherche dans ce travail a trouver des
trajectoires optimales du point de vue de la consommation en ergols, ce qui correspond & un cotit L'.
Réputé difficile numériquement, ce critére peut étre atteint grace & une méthode de continuation, en se
servant d’un cofit L? comme intermédiaire de calcul et en déformant progressivement ce probléme 2.
Nous verrons également d’autres exemples d’application des méthodes de continuation.

Enfin, nous présenterons également un algorithme de controle robuste, permettant de rejoindre un état
cible a partir d’un état perturbé, en suivant une trajectoire de référence tout en conservant la structure
bang-bang des controles. La robustesse d’un controle peut également étre améliorée par ’ajout de va-
riations aiguilles, et un critére qualifiant la robustesse d’une trajectoire & partir des valeurs singuliéres
d’une certaine application entrée-sortie est déduit.

Mots clés : controle optimal, controle d’attitude, phase balistique, méthode de continuation, méthodes
directes, méthodes indirectes, controle robuste, contrainte intermédiaire

OPTIMAL AND ROBUST ATTITUDE CONTROL OF A LAUNCHER
Theoretical and numerical aspects

Abstract

The first objective of this work is to study some aspects of the attitude control problem of a rigid body,
in order to optimize the trajectory of a launcher during a ballistic flight. We state this problem in a
general mathematical setting, as an optimal control problem with intermediate constraints on the state.
Meanwhile, we also implement an optimization software that relies on the combination of a direct method
and of an interior-point algorithm to optimize any given ballistic flight, with any number of intermediate
constraints, corresponding to any number of satellite separations.

Besides, we applied the so-called indirect methods, exploiting Pontryagin maximum principle, to the
resolution of this optimal control problem. In this work, optimal trajectories with respect to the con-
sumption are looked after, which corresponds to a L' cost. Known to be numerically challenging, this
criterion can be reached by performing a continuation procedure, starting from a L? cost, for which it
is easier to provide a good initialization of the underlying optimization algorithm. We shall also study
other examples of applications for continuation procedures.

Eventually, we will present a robust control algorithm, allowing to reach a target point from a perturbed
initial point, following a nominal trajectory while preserving its bang-bang structure. The robustness of
a control can be improved introducing needle-like variations, and a criterion to measure the robustness
of a trajectory is designed, involving the singular value decomposition of some end-point mapping.

Keywords: optimal control, attitude control, ballistic phase, continuation method, direct methods,
indirect methods, robust control, intermediate constraint

Laboratoire Jacques Louis Lions

4 Place Jussieu — 75005, PARIS — France
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Introduction générale au probleme de
controle d’attitude

Positionnement du probléme

L’accés autonome & ’espace est un axe de développement national et européen majeur depuis
la fin de la seconde guerre mondiale. Les enjeux géopolitiques sont plus importants que jamais.
Un élément clé de cette politique est la disponibilité d’un lanceur, c’est & dire d’un véhicule
ayant la capacité d’emporter des charges utiles (satellite commercial ou institutionnel, sonde
d’exploration, cargo vers la station spatiale internationale...) vers une orbite depuis laquelle elles
pourront réaliser leur mission.

La fonction principale d’un lanceur est alors d’injecter un satellite sur une orbite, avec un état
cinématique requis. Nous entendons par 14 qu’il est nécessaire de pouvoir assurer la séparation
du satellite dans une certaine orientation, avec une certaine vitesse angulaire. Ces données d’at-
titude ! sont d’une importance cruciale dans la pratique ; citons quelques exemples de contraintes
qui imposent d’étre capable de controler ’attitude au moment de la séparation :

e [’orientation par rapport au soleil pour des besoins thermiques, ou énergétiques en présence
de panneaux solaires.

e L’orientation par rapport a la terre, afin d’assurer une visibilité depuis les stations au sol
recevant, les données télémétriques.

e La mise en rotation des charges utiles lors de leur séparation. En effet, sous certaines
conditions géométriques, un corps rigide tournant selon son axe principal présente des
propriétés de stabilité.

Géométrie générale d’un lanceur Ariane 5

Dans cette partie, on souhaite donner rapidement quelques éléments sur la géométrie d’un
lanceur Ariane. Le dernier vol du lanceur Ariane 4 ayant eu lieu en 2003, c’est actuellement le
programme d’Ariane 5 qui est exploité, et c’est sur celui ¢i que 1’on se concentre. Ce programme
a été voté en 1987, pour un premier vol en 1996. Il est actuellement prévu que les lancements se
poursuivent jusqu’au début des années 2020. Ce lanceur ayant été congu afin de rester compétitif
au cours de cette longue période, plusieurs versions successives ont vu le jour. Mentionnons par
exemple (Source : CNES) :

e Ariane 5 G,
e Ariane 5 G+,

1. Nous reviendrons dans la suite sur une définition de ce terme d’attitude. Pour instant il est suffisant de
savoir qu’il désigne a la fois ’orientation du lanceur ou du satellite dans ’espace, ainsi que sa vitesse angulaire.
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e Ariane 5 GS,
e Ariane 5 ES,
e Ariane 5 ECA.

Ces différentes versions ont permis 'introduction de modifications (allant du remplacement d’un
moteur au remplacement d’un étage complet) permettant par exemple d’augmenter la perfor-
mance du lanceur (i.e., d’augmenter sa capacité a envoyer des charges utiles de plus en plus
lourdes en orbite), ou d’acquérir de la versatilité pour ’étage supérieur (possibilité de rallumage
en orbite). Aujourd’hui, la performance mise en avant par le CNES et Arianespace est d’une
dizaine de tonnes en orbite géostationnaire pour la version "ECA” (Source : CNES).

De part la grande variabilité au sein de cette famille de lanceur, nous nous contenterons de
donner des éléments de géométrie qui nous paraissent représentatifs du programme de dévelop-
pement Ariane 5, et permettent de donner une idée générale de la chronologie d’un lancement
Ariane. Sur la Figure 1, nous donnons une vue globale d’un lanceur Ariane 5. Dans les prochains
paragraphes, nous donnerons plus de détails sur les différents composants du lanceur.

EAP et EPC. Ariane 5, dans sa partie basse, est composée de son Etage Principal Cryotech-
nique au centre, entouré de deux Etages d’Accélération a Poudre (EAP), comme représenté sur
la Figure 2.

Les EAP fournissent 92% de la poussée au moment du décollage. Dotés d’une propulsion
solide, une de leurs particularités est de ne pas pouvoir étre éteints aprés leur mise a feu. Lorsque
Pordinateur de bord détecte une baisse significative de la poussée, environ deux minutes aprés le
décollage, ils sont séparés du lanceur et retombent dans 'océan.

L’EPC quant  lui est allumé 7 secondes avant le décollage. Méme s’il ne fournit que les 8% de
poussées restants au moment du décollage, le moteur Vulcain qui I’équipe assure seul ’essentiel
de la poussée du lanceur des que les EAP sont séparés. Il fonctionne alors environ 7 minutes
supplémentaires, avant de s’éteindre et 'EPC peut étre séparé a son tour.

Ces données proviennent du manuel utilisateur d’Ariane 5 [ |, qui contient largement
plus de détails sur la conception et la composition des EAP et de 'EPC.

Composite supérieur. Posée sur 'EPC, la partie supérieure d’Ariane 5 est représentée sur la
Figure 3 dans différentes versions. Ce composite est formé de 1’étage supérieur (avec notamment
ses réservoirs et son moteur), la case a équipement du lanceur (contenant notamment toute
Pavionique d’Ariane 5), 'adaptateur de charges utiles, la ou les charge(s) utile(s), 1’éventuel
systéme de lancement double (sur lequel nous nous attardons au paragraphe suivant) et la coiffe
protégeant tous ces éléments. Notons que bien que faisant partie du composite supérieur, la coiffe
est séparée avant ’EPC. En effet, sa vocation est de protéger les charges utiles des frottements
avec atmosphére lors du décollage. Lorsque ces frottements deviennent suffisamment faibles, la
coiffe est larguée afin d’alléger le lanceur. L’un des organes essentiels de 1’étage supérieur pour
ce travail de thése est le systéme de controle d’attitude du lanceur. Nous reviendrons plus en
détails dans la section suivante.

Lancement double Ariane. Dans ce paragraphe, on souhaite insister sur un élément par-
ticulier du composite supérieur, le SYstéme de Lancement Double Ariane (SYLDA), qui a été
utilisé pour la premiére fois en 2000. Son introduction a été d’une grande importance pratique,
car il permet de réaliser de maniére systématique des lancements doubles, en placant deux satel-
lites en orbite. En effet, en placant deux charges utiles en orbite par vol d’Ariane 5, le cott de
lancement d’un satellite est diminué. Cela impose alors de concevoir des phases balistiques plus
complexes, avec plus de contraintes provenant, entre autres, des différents largages. Lorsqu’elle
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RUAG Space, Switzerland, fairing

ASL, France, dual launch structure (SYLDA)

AIRBUS DS, Spain, adapters
RUAG Space, Sweden, adapters

AIRBUS DS, Spain, LVA 3936

ASL, Germany, vehicle equipment bay

ASL, Germany, upper stage

ASL, France, engine of cryogenic upper stage

AIRBUS DS, Spain, inter stage structure

MT Aerospace, Germany, forward skirt of main cryogenic stage and solid
propellant motor cases

ASL, France, main cryogenic stage

Europropulsion, France, solid rocket motors and boosters

Avio, Italy, solid rocket insulation
Regulus, French Guiana, solid propellant

SABCA, Belgium, forward and rear skirts of boosters

ASL, France, engine of main cryogenic stage
and nozzles of solid rocket motor

FIGURE 1 — Vue éclatée d’un lanceur Ariane 5 (Source : Manuel utilisateur Ariane 5).
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FI1GURE 2 — Représentation de la partie basse d’Ariane 5, avec les deux EAP et 'EPC.
Source : CNES.

ARIANE 5 ARIANE 5
Générigue Générique plus

FI1GURE 3 — Représentation de la partie haute d’Ariane 5. Source : CNES.

est utilisée, cette structure doit également étre séparée, aprés le largage du premier satellite, et
avant d’entamer les manceuvres menant a la séparation du second satellite. Ce systéme est bien
visible sous la coiffe d’Ariane 5 ECA, & la Figure 3.

Chronologie d’un lancement Ariane 5. La Figure 4 récapitule les différentes étapes de la
phase propulsée d’un lancement Ariane 5 (c’est-a-dire, jusqu’a I’extinction du moteur principal
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de I’étage supérieur). Il s’agit de valeurs moyennes, données pour un lancement vers une orbite
de transfert géostationnaire (GTO).

Evénement

Début de la « séquence finale lanceur ».

Le « cerveau » d'Ariane gére les derniéres opérations de
démarrage des moteurs et du décollage.

HO Allumage du moteur Vulcain 2 de Iétage principal (EPC).

HO+7,05s Allumage des étages d'accélération a poudre ou « boosters »
(EAP). Décollage.

2min20s Séparation des étages d'accélération & poudre (EAP).

3min20s Largage de la coiffe.

8min58 s Extinction de I'étage principal cryotechnique (EPC) puis séparation.
9min 08 s Allumage du moteur HM7 de I'étage supérieur (ECA).

25mins Extinction du moteur de |'étage supérieur.

FIGURE 4 — Chronologie d’un vol Ariane 5 ECA. Source : CNES.

Cette phase de vol, dite phase propulsée, constitue en soit un sujet de recherche a part entiére,
riche en questions mathématiques diverses. Néanmoins, le centre d’intérét de cette thése est la
phase de vol suivante, dite phase balistique, qui va permettre de séparer sur 'orbite souhaitée
les satellites. Nous nous attardons plus en détails sur cette phase balistique dans la sous-section
suivante.

Phase balistique

Rappelons pour commencer que la fonction d’un lanceur est de séparer une ou plusieurs
charges utiles sur une orbite donnée, dans un état d’attitude prescrit. L’atteinte de l'orbite visée
est assurée par les phases propulsées du vol. Il s’agit des phases o1, successivement, les EAP,
le moteur principal de 'EPC, puis celui de 1’étage supérieur sont actifs. Il suit une phase dite
balistique durant laquelle le controle de I’attitude du lanceur est assuré par le Systéme de Controle
d’Attitude (SCA), en vue de la séparation des charges utiles. Par opposition aux phases de
poussées, cette phase désigne la période pendant laquelle les moteurs principaux sont éteints. Le
role du SCA est donc d’orienter I’étage supérieur et ses charges utiles afin d’atteindre une attitude
donnée permettant de satisfaire les différentes contraintes liées au lanceur ou au(x) satellite(s).

Le SCA est 'ensemble des composants assurant la génération de la poussée nécessaire a la
réalisation des objectifs de la phase balistique : le moteur principal du lanceur est éteint, et de
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petites poussées sont réalisées par un ensemble de tuyéres réparties sur l’engin.

Nous représentons sur la Figure 5 un schéma du SCA, comme considéré dans les travaux de
ce travail de thése. Il est constitué d’un ensemble de tuyéres (14 sur le schéma) dont le nombre
peut varier d’un lanceur & I'autre. L’alimentation du SCA différe également entre les différentes
versions du développement d’Ariane 5. Par exemple, pour Ariane 5 ECA; il est alimenté par
du dihydrogéne gazeux ou du dioxygéne gazeux; sur Ariane 5 ES, de I’hydrazine est également
utilisée. Il est possible d’ouvrir ou de fermer chaque tuyére afin de produire une force de poussée
et un couple, mais on n’en controéle ni le débit, ni 'orientation. C’est donc le SCA qui nous permet
d’exercer un contréle sur le systéme. Précisons que sur un lanceur de type Ariane 5, deux tuyéres
sont généralement utilisées pour les contraintes d’éloignement entre les corps. Sur la Figure 5, il
s’agit des tuyéres 13 et 14, représentées en rouge. Ces tuyéres n’étant pas strictement utilisées
pour faire du controle d’attitude, nous les omettrons parfois dans la suite de la thése.

T4
T1 1 T12

(a) Vue du dessus (b) Vue de profil

FIGURE 5 — Schéma du Systéme de Controle d’Attitude

C’est également lors de la phase balistique que sont réalisées les manceuvres nécessaires aux
dispositions de fin de vie et de passivation du composite supérieur. Ces exigences sont liées 4 la
Loi sur les Opérations Spatiales, relatives notamment & la sécurité des personnes et au respect
de 'environnement orbital.

Objectifs de la thése. La recherche d’une séquence d’activation des tuyéres permettant
d’amener le lanceur dans les états d’attitude souhaités est conditionnée au respect d’un cer-
tain nombre de contraintes physiques provenant de la conception du lanceur. Par exemple, la
quantité d’ergols disponibles pour effectuer les manceuvres est limitée. La durée d’ouverture des
tuyéres ou la durée totale de la phase balistique sont également sujettes & des bornes que 1’on
ne doit pas dépasser. Nous reviendrons, lors de la formulation du probléme de controle optimal,
sur le choix d’un cotit permettant d’intégrer ces contraintes.

Bien que concue de facon spécifique pour chaque analyse de mission, la phase balistique n’a
pas jusqu’a présent fait I’objet & notre connaissance d’une méthode d’élaboration systématique
et déposée, sa conception reposant essentiellement sur le savoir-faire des analystes de mission.

C’est donc la recherche de la trajectoire du lanceur au cours de la phase balistique que
I'on étudie dans cette thése. Nous y développons un cadre mathématique précis permettant de
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formuler ce probléme comme un probléme de controle optimal. L’objectif de la thése est de
concevoir et d’'implémenter une méthode mathématique permettant d’automatiser et d’optimiser
I’élaboration et la planification d’une phase balistique.

Modélisation du probléme de controéle d’attitude

Evolution de l’'orientation d’un lanceur.

On se donne un repére mobile (ng(t), 75(75),?4@)), attaché au lanceur en son centre de

gravité, ainsi qu’un repére inertiel (X;, Y, Z;). Repérer l'attitude du lanceur revient & repérer
la position du repére mobile par rapport au repére inertiel, c’est-a-dire calculer I’expression de
la matrice de passage entre le repére mobile et le repére inertiel :

(X, %) (Xot), Yo (Xut), Z2)
Vo), X) (Vo) Ys) (Vo). Z2) |
(Z.), %) (Zu#), Y5 (Zut), Z)

R(t) =

2

qui est un élément de SO3(R).
Le vecteur de vitesse angulaire du lanceur est défini, en repére lanceur, par [of] L= (pq,r).
C’est & dire que
W= p)z + q?e + T’Z .

Suivant ses caractéristiques géométriques, un lanceur présente généralement un axe principal

d’inertie : sur la Figure 5, il s’agit de ’axe X ;. Dans la suite de ce travail de thése, on appel-
lera parfois vitesse de roulis la vitesse angulaire suivant cet axe (c’est-a-dire p), et on utilisera
I’appellation vitesses angulaires transverses pour les composantes g et r.

L’équation décrivant I’évolution de 'orientation du lanceur est alors

0 r  —q
Rty=[-r 0 p |R(@®),
g -p 0

qui exprime la rotation du repére ()_(>g(t), 74(0, 75(75)) a la vitesse angulaire [J], = (p, ¢, 7).

Evolution de la vitesse angulaire

Paramétrisation de SO3;(R). Dans ce travail de thése, on a choisit de repérer la position des
axes du lanceur par trois rotations, dont les angles sont parfois désignés angles de Cardan, et qui
counstituent une variation des angles d’Euler. Le repére lanceur (X, Y, Z;) est obtenu a partir
du repére inertiel (?i, 71, 71) par la série suivante de rotations, représentée a la Figure 6 :

e d’angle 0 autour de l'axe ?i, qui donne le repére (?1, 71, ?1),
e d’angle ¢ autour de 'axe 71, qui donne le repére (Yg, 72, 72),
e et enfin d’angle ¢ autour de 'axe ng, qui donne le repére (X}l, ?l, 71),

. . e . > >
Rappelons que la vitesse angulaire est définie, en repére lanceur, par o= pXp + qﬂ +rZy.
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2p =21

i

Q2
[N)

Y1 =192
Yr

xT9 =T

FIGURE 6 — Séquence des trois angles d’attitude.

Or, en utilisant la séquence de rotations précédemment introduite, on a également
T =07, +0Y1 + ¢Xs
=071 + 01 +$X;
= 0(—sin 7/197; + cos 1/)2;) + 1/1?2 + sz
= (¢ — sin )Xy + Vs +  cos v Zo
= (¢ — Osin 1/)))72 + 1b(cos @?g — sin ng) + 0 cos 1 (sin cp?g + cos wZ)
=(p— ésind))z + (O cospsing +1/}c08<,0)2 + (0 cos 1 cos @ — z[;singp)z

Ainsi, en identifiant les termes, on obtient ’expression suivante pour la vitesse angulaire

D 1 0 —sinp @
gl =10 <cosp cosysing |- |¥
r 0 —sing cosycosyp 6

Le calcul du déterminant de la matrice donne :

1 0 —sing
det [0 cose costysing | = cos? pcost + sin? pcosth = cos .
0 —siny costcosyp

Cette représentation par des angles de Cardan introduit donc une singularité quand cosy = 0,
ie, ¥ =m/2 (mod 7). Si ¢ # w/2 (mod 7) la matrice est inversible et on obtient les équations
d’évolution pour les angles 8, ¥ et ¢ :

%) 1 sinptanty cosyptany D
v|l=10 cos ¢ —sing |-|q]. (1)
0’ 0 sin ¢ cos ¢ r

cos Y cos
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Remarque 0.1: Représentation de SO3(R)

Le choix de la série de rotations pour repérer la position des axes du lanceur n’est pas unique. La
matrice R(¢) introduite au paragraphe précédent est un élément de SO3(R), une sous-variété
de M3(R) de dimension 3, et de maniére plus générale, il existe plusieurs représentations
possibles pour SO3(R). Mentionnons par exemple les représentations classiques :

e avec trois parameétres, les angles d’Euler, les paramétres de Rodrigues.
e avec quatre paramétres, les quaternions, la représentation angle/axe.

Notons que les représentations a trois parameétres ne sont pas globales : par exemple, quelle que
soit la séquence choisie pour les angles d’Euler, une singularité apparaitra. Quant aux repré-
sentations & quatre paramétres, elles ne présentent pas de propriété d’unicité : par exemple, si g
est un quaternion unitaire représentant une attitude R € SO3(R), le quaternion —g représente
la méme attitude.

L’article [Ceall] et le livre [BET06] évoquent plus en détails le probléme du choix d’une
représentation pour SO3(R).

Equations pour la vitesse angulaire. On va maintenant établir les équations d’évolution
pour la vitesse angulaire @ = (p,q,7), en s’inspirant de la présentation de [D.10]. Soit ﬁg le
moment cinétique par rapport au centre de gravité du lanceur, qui s’exprime

He =13,

ou I désigne la matrice d’inertie du lanceur. Le théoréme du moment cinétique affirme que la
dérivée du moment cinétique est égale & la somme des moments (par rapport au centre de gravité)
des forces s’exercant sur l'objet :

En outre, le repére lanceur étant attaché de maniére rigide au lanceur, on peut également exprimer
la dérivée du moment cinétique
d I d

at YT

ﬁc-ﬁ-w/\ﬁg.

rel

Le premier terme du membre de droite désigne la dérivée dans le repére mobile du moment
cinétique, c’est-a-dire que

d

= He =13,

rel

et on obtient finalement en regroupant les équations précédentes
. —
D+ 313 =3 Ma(f).

Une tuyere, placée au point A; par rapport au centre de gravité G, et produisant a l'instant ¢
une force de poussée ?(t) induit un couple sur le lanceur ?(t) A A;G. Comme on ne controle ni
le débit d’ergols, ni 'orientation de la tuyeére, la poussée peut s’écrire ? = u(t)?, ol ? est un
vecteur constant de R? et la fonction u(-) est une fonction constante par morceaux, avec u = 1
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_)
si la tuyére est ouverte et u = 0 si la tuyére est fermée. Le couple peut alors se réécrire ub;, ol
%
b; = PA Aj& est un vecteur constant de R3. En notant m le nombre de tuyéres sur le lanceur,
I’équation d’évolution pour la vitesse angulaire s’écrit donc :
. m _>
T&(t) + W) ATT(t) =D ult)b;. (2)

Jj=1

En regroupant les équations (1) et (2), on obtient les équations d’Euler complétes pour 'at-

titude d’un corps rigide :

sin p(t) cos p(t)
Cosi(t) q(t) + cgs i(t) ’I"(t)

= cosp(t) - q(t) —sinp(t)

o(t)
l/J(t) -r(t) (3)
Lp(t) = p(t) + sin(t) tanvp(t) - q(t)_)—i— cos @(t) tan ) (t) - r(¢)

Id(t) TE () AN D(E) + 30 ult)b;

Dans la suite, on utilisera souvent la notation x = (0,9, ,p,q,r) pour désigner 1’état du
lanceur, v = (u;)1<i<m pour désigner le controle, et on notera la dynamique sous la forme

condensée

(t) = f(x(t), u(t)),

ou encore, afin de faire apparaitre le caractére affine par rapport aux controles,
m
(1) = fole() + D ui(t)fi (b)),
j=1

ou fo correspond aux équations libres du mouvement, et pour j > 1, f;(«(t)) est un champ de

2. N %
vecteurs constant, égal & (Ogs, b;).

Cas d’une matrice d’inertie diagonale. Si les axes du repére mobile sont alignés avec les
axes principaux du lanceur, la matrice d’inertie est diagonale

I

8

I =

oo
oo
STo o

Dans ce cas, les équations pour la vitesse angulaire dans (3) deviennent

Lp= (I, - L)gr+ Y _ u(t)b}
j=1

Ijg= (L. — L)pr+ Y _u(t)b?
j=1

Li = (I, — I,)pg + Y _u(t)b?.

j=1
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En introduisant les coefficients numériques

I,— L L-1I, L—1,
Ta ag = Iy ) az = Iz )

a1 =

et avec un léger abus de notation, car on gardera ’écriture b j pour désigner le couple normalisé

It b produit par une tuyeére j, on peut écrire les équations sous la forme

p=aqr+ Z u(t)b
- z

30

F=aspq+ »_ u(t)b.

Jj=1

Cette simplification est justifiée en pratique par la géométrie du lanceur, qui présente (presque)
une symétrie le long de son axe principal. Dans la suite de ce travail de thése, et sauf mention
du contraire, c’est le cadre que 1’on considére.

Equations d’attitude d’un corps rigide - Matrice d’inertie diagonale

0) = SEe@ad) + ()

U(t) = cosp(t) - q(t) —singp(t) - r(t)

o) = p(t)+sing(t)tan(t) - q(t) + cos p(t) tanp(t) - r(t) (4)
pt) = axg(t)r(t) + X7, u(t)b;

qt) = ap(®)r(t) + XL ut)ly

H(t) = asp(t)g(t) + 3250, u(t)br.

Controéle optimal.

Outre la recherche de trajectoires respectant les équations de la dynamique (3.3.1) et permet-
tant d’amener le lanceur dans I’état d’attitude souhaité, on cherche des trajectoires optimales
pour un certain critére. Le choix de ce critére revét une importance particuliére dans la modéli-
sation et la formulation d’un probléme de controle optimal. En effet, nous verrons au Chapitre 2
que l'expression des conditions nécessaires du principe du mazimum de Pontryagin peut conduire
a des controles présentant des structures bien différentes.

Une des contraintes imposée par la conception du SCA est de ne permettre 'utilisation de
controles ne prenant que les valeurs 0 ou 1. Dans la littérature, de tels controles sont généralement
qualifiés de bang-bang. Le cout que 'on cherche & minimiser lors de la phase balistique est la
consommation en ergols du lanceur, qui est proportionnelle & la durée d’ouverture totale des
tuyéres (et dont nous verrons au Chapitre 2 qu’il méne bien & des controles bang-bang) :

| S mwia
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Le temps final ¢ étant destiné & étre laissé libre, la minimisation de ce seul critére peut conduire
& obtenir une suite de trajectoires en temps tendant vers +oco. Afin de s’en prévenir, on ajoute

une pondération
ty M
/ S Juy (8] dt + Aot (5)
0 =1

ou A\g dépend de I'importance que ’on souhaite donner au temps final.

Le probléme de controle optimal consiste alors, étant donné un point initial xy et un point
final x ¢, & trouver un controéle u(-), optimal pour le cott (5), tel que la trajectoire associée z(-)
vérifie £(0) = xg et x(t5) =y :

min o7 S [ug(8)] dt + Nt
&(t) = f(x(t),u(?)),
(OCP) < Vie[l,m], 0<wu;(t)<1 p.p.on[0;ts],
.’E(O) = Xo,
l‘(tf) =Ty.

On a beaucoup insisté dans I'introduction sur le fait que la conception du SCA impose d’avoir
des controles dans {0,1}™. Or, dans I’écriture du probléme (OCP), on donne la contrainte sur
les controles

Vie[l,m], 0<u(t) <1

Cela se justifie par le fait qu’il est commode de choisir un ensemble convexe pour appliquer les
résultats usuels du controle optimal. En outre, nous montrerons au Chapitre 2 que le choix d’un
critére L' tel que (5) méne bien a des controles bang-bang.

Nous verrons aussi au Chapitre 3 que nous ajouterons & cette formulation des contraintes
intermédiaires sur 1’état, qui s’écrivent génériquement sous la forme :

c(z(t1)) = 0.

Structure du manuscrit et description des contributions

Ce travail de thése combine plusieurs études théoriques sur le controle optimal de systémes non
linéaires en dimension finie et la mise en ceuvre numérique des algorithmes de résolution. Cette
partie numérique comprend entre autres le développement d’un logiciel & destination du CNES
capable d’optimiser la trajectoire d’un lanceur pour différentes situations de phase balistique, a
chaque fois par la méthode numérique la plus appropriée.

Les chapitres 1 et 2 serviront & présenter un état de ’art rapide sur des résultats déja existants
de la théorie du controle.

Dans le chapitre 1, nous commencerons par rappeler en détails la preuve du résultat de
controlabilité pour les équations d’attitude d’un corps rigide. Cela signifie que pour toute don-
née initiale et toute donnée finale, et sous certaines hypothéses sur la géométrie du lanceur, et
notamment la disposition des tuyéres, il existe un controle permettant de réaliser le transfert
entre ces deux états. De maniére générale, des résultats de controlabilité existent lorsqu’il n’y a
pas de contraintes sur le controle. Citons par exemple les critéres de Kalman pour des systémes
de controle linéaires autonomes ou non autonomes, ou la méthode du retour | | pour des
systémes non linéaires. Lorsqu’il y a des contraintes sur le controle (ce qui est le cas dans ce tra-
vail de thése), la question de la controlabilité peut étre plus délicate. Cependant, les techniques
du controle géométrique permettent de répondre & cette question lorsque le systéme présente
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une structure affine en les controles. La controlabilité d’un systéme de controle affine peut alors
s’obtenir par la combinaison de deux éléments : la stabilité au sens de Poisson introduite par
Poincaré dans [ |, et une condition de rang sur 'algébre de Lie engendrée par les champs
de vecteurs constituant la dynamique. Ce chapitre suivra en grande partie la démonstration
présentée dans [ l.

Le chapitre 2 présentera les éléments théoriques usuels en théorie du contréle optimal. On
cherche alors & trouver des controles qui sont optimaux vis & vis d’un certain critére. Dans cette
theése, il s’agit d’une combinaison linéaire entre le temps mis pour effectuer la manceuvre et la
consommation en ergols. Le résultat clé de la théorie du contréle optimal est le Principe du
Maximum de Pontryagin (PMP) | | qui énonce un ensemble de conditions nécessaires
pour qu’un controle soit optimal. Méme si ces conditions ne sont pas suffisantes, on se limite
souvent dans la pratique & la recherche de solutions les satisfaisant. Les méthodes dites indirectes
exploitent le PMP pour réduire le probléme a la recherche des zéros d’une certaine fonction. Les
méthodes directes quant a elles reposent sur une discrétisation totale du probléme de controle
optimal pour se ramener & un probléme d’optimisation en dimension finie. A la fin du chapitre 2 ,
nous montrerons comment nous avons eu recours a une méthode de continuation afin de résoudre
le probléme (OCP) par une méthode indirecte. L’utilisation d’une telle technique est désormais
un procédé standard, voir par exemple les travaux [ , , , , ]. Dans
le cas d’'une phase balistique simple avec un seul largage de corps, nous avons développé pour
le CNES un logiciel en C implémentant cette méthode de continuation, afin d’étre capable de
résoudre génériquement ce type de probléme de controle. Nous illustrerons également le principe
des méthodes directes en résolvant un probléme de controle d’attitude avec des contraintes sur
I’état.

Lors du traitement de phases balistiques complexes, notamment avec plusieurs largages de
charges utiles, 'utilisation du logiciel précédemment mentionné n’est plus suffisant. En effet,
les différents largages induisent des contraintes aux instants des séparations successives, qui ne
concernent pas nécessairement les 6 composantes décrivant ’état du lanceur. C’est par exemple
le cas lors d’une séparation d’un corps spiné selon son axe principal d’inertie : I’état ¢ est
généralement laissé libre.

Au chapitre 3, nous utiliserons le formalisme des systémes de controle hybrides de [ ,

| pour résoudre un probléme de controle optimal avec des contraintes dites intermédiaires.
Il s’agit de contraintes sur ’état & un certain instant au cours de la trajectoire. Nous y montrerons
des principes du maximum pour cette classe de problémes. A la différence du PMP usuel présenté
au chapitre 2, le vecteur adjoint n’est plus absolument continu et présente des discontinuités aux
instants des contraintes intermédiaires. Méme si on peut trouver des principes du maximum
similaires dans la littérature, par exemple dans [ |, nous n’avons pas trouvé de travaux
généraux sur leur mise en ceuvre numérique appliquée & des exemples non académiques. Nous
proposons dans ce chapitre une procédure numérique permettant de résoudre, avec la grande
précision offerte par les méthodes indirectes, un probléme de controle optimal avec une contrainte
intermédiaire. La contrainte intermédiaire est d’abord introduite par pénalisation dans le cofit.
Une fois que la pénalisation est suffisamment contraignante, la résolution d’un ultime probléme
de tir permet de satisfaire de maniére exacte une contrainte de type c(z(t1)) = 0.

Nous verrons également dans ce chapitre que lorsque le nombre de contraintes intermédiaires
devient trop important (c’est par exemple le cas lorsque le CNES traite une phase balistique
complexe) cette procédure peut ne plus suffire, et nous montrerons dans 'appendice A comment
les méthodes directes permettent de résoudre, relativement simplement mais au prix d’une perte
de précision, un tel probléme. Un logiciel en C (qui utilise un algorithme de point intérieur) a
d’ailleurs été développé pour le CNES permettant de résoudre par une méthode directe et en
toute généralité une phase balistique compléte, avec un nombre quelconque de séparations, et
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également un nombre quelconque de contraintes intermédiaires & chaque largage. L’appendice A
est ainsi complémentaire du chapitre 3, ces deux parties du manuscrit s’adressant aux mémes
classes de problémes, mais par des approches différentes.

Les techniques présentées aux chapitres 2 et 3 permettent de donner des stratégies de controle
pour des systémes idéalisés. On entend par 1a qu’il n’y a pas d’incertitudes dans la dynamique,
ni de perturbations au cours du mouvement. Dans le cas du systéme de controle d’attitude
étudié avec le CNES dans cette thése, les conditions réelles de vol ne sont jamais nominales,
et appliquer en boucle ouverte une stratégie de controle préalablement calculée ne permettrait
pas de contrer une éventuelle dérive au cours de la mission. Au chapitre 4, nous proposons un
algorithme de contréole robuste, permettant de faire face & des perturbations. L’originalité de notre
approche réside dans la préservation de la structure bang-bang des controles par cet algorithme.
Nous identifions également un critére permettant de quantifier la robustesse d’un controle bang-
bang. Alors que la littérature sur les systémes de controle robustes est extrémement riche?,
nous n’avons pas connaissance d’une théorie générale permettant de traiter des perturbations
par des variations du contrdle qui préservent sa structure bang-bang. Découle également de
notre approche une stratégie pouvant permettre de rendre un contréle nominal plus robuste. De
maniére informelle, les temps de commutation des controles peuvent étre vus comme des degrés
de liberté dans la commande du systéme. Avec cette vision, plus il y a de degrés de liberté dans
la commande, plus le pilote a de possibilités pour lutter contre les perturbations. Nous verrons
d’ailleurs que notre stratégie pour “robustifier” les controles consiste & ajouter des temps de
commutation additionnels.

Enfin, au chapitre 5 nous présenterons les résultats de travaux avec Camille Pouchol. L’ori-
ginalité de ce chapitre est la combinaison d’une méthode de continuation, comme celles pré-
sentées aux chapitres 2 et 3, avec une méthode directe. On y étudie un systéme d’équations
intégro-différentielles structurées en phénotype représentant I’évolution au cours du temps de
populations de cellules saines et cancéreuses. Dans ce systéme, le controle est ’administration ou
non de deux types de médicaments, cytotoxiques ou cytostatiques, et on cherche & minimiser le
nombre de cellules cancéreuses. L’étude théorique de ce type de systéme est difficile et il n’existe
pas actuellement (& notre connaissance) de résultats dans le cas le plus général. La difficulté
vient notamment de la présence de plusieurs contraintes sur I’état, qui rendent d’ailleurs 1'uti-
lisation de méthodes indirectes délicate. Dans le cas sans diffusion, des résultats ont cependant
été obtenus dans | |]. On propose dans ce chapitre une procédure permettant de résoudre
numériquement le probléme de contréle optimal correspondant. Le systéme est d’abord grande-
ment simplifié pour permettre d’appliquer un principe du maximum en dimension infinie, puis
on se raméne au probléme initial par une continuation. Méme si le cadre de ce chapitre s’éloigne
du probléme de controle d’attitude, nous souhaitons insister sur le fait que la technique générale
s’appliquerait & une classe beaucoup plus vaste de problémes, par exemple en aérospatial, quand
le systéme est trop compliqué pour permettre une initialisation du programme d’optimisation
sous-jacent.

Nous conclurons cette thése en donnant quelques perspectives et en mentionnant certains
problémes ouverts.

2. Mentionnons par exemple les approches Ha et Hoo, ou la théorie linéaire quadratique permettant de “suivre”
des trajectoires. Il existe également des papiers ou 1’algorithme de contréle robuste préserve bien la structure bang-
bang des controles, mais pour des systémes bien particuliers pour lesquels la démarche ne se généralise pas. Nous
ferons un état de ’art plus détaillé sur le sujet au début du Chapitre 4.
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Contributions principales de la thése

Résumons ici les contributions principales qui ont été apportées dans ce travail de thése :

e Au chapitre 3, I’étude d’une procédure numérique permettant de résoudre par une mé-
thode indirecte un probléme de controle optimal avec des contraintes intermédiaires.

e Au chapitre 4, la conception d’un algorithme de controle robuste permettant de traiter
des perturbations tout en préservant la structure bang-bang des controles. Nous y pro-
posons également un critére pour quantifier la robustesse des trajectoires, ainsi qu’une
heuristique pour “robustifier” un controle de référence.

e Au chapitre 5, la combinaison de méthodes directes et d’une continuation pour résoudre
un probléme de controle optimal pour une équation aux dérivées partielles. Pour initiali-
ser la continuation, nous y montrons un résultat sur la structure des controles optimaux
en appliquant un PMP en dimension infinie.

e En paralléle & ces travaux “théoriques”, la conception et I’écriture d’un logiciel en C pour
le CNES, n’utilisant que des librairies “open source”. Il permet :

— pour une phase balistique simple avec un seul largage, de calculer la trajectoire opti-
male du point de vue de la consommation. Il implémente la méthode de continuation
présentée a la fin du chapitre 2.

— pour une phase balistique complexe, avec un nombre quelconque de largages et de
contraintes intermédiaires, de trouver par une méthode directe la solution optimale
du point de vue de la consommation. C’est I’objet de 'appendice A.
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In this first chapter, we shall start by showing that the problem of interest in this thesis is well
posed, that is, the attitude equations for a rigid body are controllable. It means that for every
initial condition zy = (8o, Yo, Yo, Po, go, 7o) and every final condition z; = (67, ¢, 05, pr, 5, 77),
there exist a final time ¢y and a control u(-) defined on [0, ¢¢] such that the associated trajectory,
solution to the Cauchy problem

{ i(t) = fla(t), u(t)),
z(0) = o,

is well-defined on [0, ¢;] and satisfies z(t;) = xy.

To do so, we follow the presentation made in [BFT06], where controllability is shown for
an attitude control system equiped with opposite gaz jets. Mathematically, it means that the
control can take the values {—1,0,1}.

Recall that in the setting of this thesis, the controls in the attitude equations (3.3.1) can only
take the values {0,1}. However, the results presented in this chapter will still be sufficient to
conclude to the controllability of this system, as some thrusters are placed in order to produce
opposite torques. On Figure 1.1, we give again a representation of the "SCA”, drawing in red the
pairs of thrusters that yield a control taking its values in the set {—1,0,1}.

17
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e KT

(a) View from above (b) Side view

Figure 1.1 — Scheme of the SCA. Some pairs of thrusters create opposite torques.

Note also that we are going to show the controllability of the system (3.3.1) while considering
the attitude of the launcher as an element R(t) € SO3(R), and the dynamics as a differential
system on the submanifold SO3(R) x R? (of dimension 6) of R'2. In that case, the differential
equations describing the evolution of the state y(t) = (R(t), & (t)) € R™? is

R(t) = S(J(t)R(),
Lp(t) = (I, — L)gr+ Y70 ui(t)bl, (1.1)
Li(t) = (L — L)p(Or(t) + X7 (1), '
Li(t) = (I — I)p(t)q(t) + X272, ui(t)b},
where
0 T —q
S(@)y=|-r 0 p
qg -p O

(In this chapter, we will denote the state of the system with the letter y, in order to emphasize
the fact that it belongs to the space SO3(R) x R3, and is therefore different from the state

z=(0,9,¢,p,q,7) € R%)
Note that this system is a control-affine system that can be written under the form

y(t) = foly(t)) + Zuj(t)fj(y(t))~ (1.2)

The vector field fj gives the dynamics for the free (uncontrolled) system y(¢) = fo(y(t)), and for
each j € [1,m], the vector field f; is constant, equal to (Ogs, b;).
The proof for the controllability of this system is based on the combination of two elements:
e The Poisson stability of the vector field fj, corresponding to the uncontrolled dynamics.

This stablity means that for almost every initial condition, the free system will come back
arbitrarily close to the initial condition, in a time arbitrarily long.
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e A rank condition on the Lie algebra spaned by the vector fields (fo, f1,.- -, fm)-

1.1 Poisson stability of a vector field

Let us start by defining the Poisson stability for a vector field, for which we make the as-
sumption that the associated trajectories, solutions to the differential equation y(t) = X (y(t))
are well-defined on R.

DEFINITION 1.1 (POISSON STABILITY FOR A VECTOR FIELD). — Let X(-) be a vector
field. We say that X is Poisson stable if for almost every initial condition yq, every neighborhood
V of yo and every time T > 0, there exist times t1,t2 > T such that y(t1,yo0) € V and y(—ta,yo) €
V.

In the previous definition, we denoted y(t,yo) the solution at time ¢ to the Cauchy problem:

{Z)(t) = X(y@)),
y(0) = yo.

This notion was introduced by H. Poincaré, following a work by S. D. Poisson, in his paper
Sur le probleme des trois corps et les équations de la dynamique | ], where he undertook a
study of the trajectories of the planets in the solar system.

The ingredients to have a Poisson stable vector field are the following:

e A finite measure p on the phase space Y.

e A flow ¢ that preserves the measure p, that is, for every A € Y, u(p(4)) = p(A).

For the free part of the attitude equations

R(t) = S(@@®)R(),
Iacp(t) = (Iy - Iz)Q(t)r<t)7 (1.3)
IyQ(t) = (Iz - Ix)p(t)r(t)a
Lit) = (I —I,)p(t)q(t),

that we write under the condensed form

y(t) = foly(t)),

The kinetic energy I = (I,p? + I,q* + I.,r%)/2 remains constant over time. Indeed,

() = Lp(t)p(t) + Lyg(t)q(t) + Lr(t)i(t)
= (Iy — L)p@)a(t)r(t) + (I — L)p(t)q(t)r(t) + (1o — Iy)p(t)q(t)r(t)
=0,

Besides, the term R(t) remains bounded as well. Let us define

J(t) = Tr(R(R(®)") = | Rt
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where ||-||  denotes the Frobenius norm of the matrix R(t). It holds

J(t) = Te(RE)RMH)T + Rt)R(t)T)
= Tr(S(J ()RR + RERE)"S(W(t)")

as the matrix S(w) is skew-symmetric, and the Frobenius norm of the matrix R(t) is constant.
Therefore, the trajectories of the differential equations (1.3) remain bounded over time.
We now show that the flow associated to the dynamics (1.3) preserves the Lebesgue measure.

DEFINITION 1.2 (FLOW OF A VECTOR FIELD). — Let X be a vector field. Under regularity
assumptions on X, for all initial condition yo € R™ there exist a unique solution y(t,yo) to the
Cauchy problem

{ y(t) = X(y(1)),
y(o) = Yo,
that we denote exp(tX)(yo) := y(t, yo).

In order to show that the flow preserves the Lebesgue measure, we are going to use a more
general result, stating that the flow associated to a differential system ¢(¢) = X (y(t)) preserves
this measure as soon as the divergence of the vector field X is zero. In the literature, this result
is known as Liouville’s Theorem. We state this theorem now and give the proof in Appendix B.

PROPOSITION 1.1 (LIOUVILLE’S THEOREM). — Let exp(tX) be the flow of a non-linear
differential equation §(t) = X (y(t)) such that the divergence of the vector field X is zero:

V- X(y) = Tr(dX(y)) = 0.
Then the flow preserves the Lebesgue measure.

It is then easy to check that the vector field f corresponding to the uncontrolled dynamics
(1.3) has zero divergence. Indeed, in the expression of the differential dfy(y), all the diagonal
coefficients are zero. It follows that the flow associated to the free part of the attitude equations
preserves the Lebesgue measure.

We are now set, to show the Poisson stability for the vector field fy, which is sometimes stated
as Poincaré’s recurrence Theorem.

THEOREM 1.1 (POINCARE’S RECURRENCE THEOREM). — The vector field fy in the
system (1.2) is Poisson stable.

Proof. Let exp(tfp) be the flow for the uncontrolled equations (1.3). We already know that
this flow preserves the Lebesgue measure, as it has zero divergence. Let A be a connected and
bounded open set in R'2, As the trajectories are bounded, there exists a compact set Y such
that every trajectory starting from A (in positive or in negative time) remains in Y.

As Y is compact, his Lebesgue measure is finite:

Y] < +o0.

For p e N, let U, := U::;} exp(—kfo)(A). Then, as U, is a subset of Y, his Lebesgue measure is
also finite:
|Up| < +00.
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Besides, we have that U, C Uy = A U (U{> exp(—kfo)(A4)). But il also stands true that
U, = exp(—pfo)(Up) and the preservation of the Lebegue measure by the flow exp(—pfy) yields

|Up| = |Uo| .
From this, we deduce that
[Up\Uo| =0,
that is,
{y € Uo,y £ Up}| = 0.
As A is a subset of Uy, it follows that

‘{y S A’y ¢ Up}l == 0,
Hy € A,k > p,exp(kfo)(y) € A}| = 0.

Taking the countable reunion of those sets for p € N, the measure remains zero. Thus, we have
shown that for almost every point ¢ € A and for all p € N, there exists an integer k1 > p such
that exp(k1fo)(y) € A. With the same reasonning, for almost every y € A we can construct an
integer ko > p such that exp(—kafo)(y) € A: it is exactely the Poisson stability of the vector
field fo. O

1.2 Lie algebra spanned by vector fields and controllability

In this section, we are going to detail geometric conditions on the vector fields fo, f1,- .-, fm,
that are necessary and sufficient to conclude to the controllability of a control-affine system under
the form (1.2), as in [ |:

y(t) = fo(y(t)) + Zuj(t)fj(y(t))
= f(y(@®), u(t)),

on a connected submanifold M.
Let us start by introducing some definitions, that will be useful to study the controllability
of the system y(t) = f(y(t),u(t)). We define the set of vector fields D by

D= {f(au) |V7’E [[Lmﬂvule{_lvoal}} (14)
We also define
S(D) ={expt; X10---oexptpX; | k€ N,t; > 0,X; € D}. (1.5)

With this definition, the set of reachable points starting from yo is S(D)(yo). The system will
be controllable if for all yo € M, S(D)(yo) = M.

Intuitively, in order to have results for global controllability, it is necessary to be able to move
in every direction of the tangent space of the submanifold M. In the case of the attitude control
problem, it means being able to move in every direction of the tangent space of SO3(R) x R3.
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Of course, it is possible to move in the directions given by
m
fo+ Z u;
j=1

where u; € {—1,0,1}. However, we will now see that other directions are also available, combin-
ing properly the previous vector fields.

1.2.1 Lie bracket and Lie algebra

Given two vector fields X and Y, the main notion to describe the directions available when
moving along the vector fields X and Y is the Lie bracket of X and Y. We now give a definition
and a property of this object.

PROPOSITION 1.2 (LIE BRACKET). — The Lie bracket for the vector fields X and Y is the
vector field, denoted by [X,Y], such that

e X oW oetX o ety(yo) =40 Yo + tQ[X, Y(yo) + 0(t2).

Besides, we have
[X, Y](yo) = dY (y0) - X(yo) — dX (yo) - Y (v0)-

If follows from this definition that [X,Y] = 0 if the vector fields X and Y commute locally.
In the definition, it appears clearly that one needs to be able to move in the direction X and
—X (and Y and —Y) in order to be able to move in the direction of the Lie bracket [X,Y], as
shown on Figure 1.2.

Yo)

e \. §(t) = Y (y(1)) e (4o)
Yo

Figure 1.2 — Crochet de Lie [X,Y] de deux champs de vecteurs X et Y.
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Given the differential system g(t) = f(y(t),u(t)), we recall the definition 1.4 of the set of
vector fields D,
D ={f(,u) | Vie[l,m],u; € {=1,0,1}},

which corresponds to the set of vector fields one gets by applying constant controls. We can then
define the Lie algebra spanned by D.

DEFINITION 1.3 (LIE ALGEBRA). — The Lie algebra spanned by D, denoted by Lie(D), is
the set of vector fields such that

e Forall X € D, X € Lie(D).
e For all X,Y € Lie(D), [X,Y] € Lie(D).

We are now able to give a first controllability result, as soon as the Lie algebra spanned by
D is of maximal dimension, that is, for all yo € M, Lie(D)(yo) = Ty, M, and D is symmetric,
that is for all X € D, —X € D.

THEOREM 1.2 (SYMMETRIC CASE). — Assume that the Lie algebra spanned by D is of
mazimal dimension, and that D is symmetric. Then the system is controllable.

Proof. The proof of this result is easy when M = R? and D contains two vector fields X and Y,
and can give a good insight to the proof in the general case. Assume that the vector fields X,
Y and [X,Y] are linearly independent at every point ¢ € R3. Let A € R, yo € R? and ¢ be the
application:

©: (t1,ta,t3) — exp(AX) o exp(t3Y) o exp(—AX) o exp(t2Y) o exp(t1 X)(yo).
Then, using the Baker-Campbell-Haussdorff formula, we get that
p(tr,ta,t3) = exp(t1 X + (t2 —3)Y + M3[X, Y] + .. .)(yo)
Thus,

90l S X 22 =) 22| = X Y) — Y (o) + o),
1l =0 3 lt3=0
and when A is small enough, those three vectors are linearly independant and the differential
dp(t1,ta,t3) is invertible. From this, we deduce that S(D)(yo) is a neighborhood of yo. Besides,
as we will soon see it the following, the set S(D)(yo) is closed, and as M = R? is connected, we
get that S(D)(yo) = R3.
This proof can be generalized if M is any connected submanifold. O

Let us end this section by giving a local result on the set of reachable points from yg, which
does not assume a symmetry hypothesis on the set D. The proof of this result can be found
in | .

PROPOSITION 1.3. — Assume that the Lie algebra spanned by D is of mazimal rank. Then,

for every yo € M and all neighborhood V of yo, there exists an non-empty open set U™ contained
in VNS(D)(yo)-

Note that in the previous proposition, S(D)(yo) stands for the reachable points from yp, in
positive time. We could give a similar result replacing this set by the set of reachable points in
negative time S~(D)(yo). Then for every neighborhood V' of yo, there exists a non empty open
set U~ contained in V N .S~ (D)(yo).
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1.2.2 Results in the non-symmetric case

The controllability result in Proposition 1.2 assumes a strong symmetry hypothesis on the
system, namely that if a vector X belongs in D, then —X also belongs to D. This hypothesis is
not satisfied in the case of a control-affine system with drift

9(t) = foly() + Y u;(0) fi(y (1)),
j=1

because of the drift term fy corresponding to the uncontrolled movement. Indeed, the vector
fields fo+ f1 or fo— f1 are in the set D, but the vector field — fy— f1 is not in D. The controllability
of the system can however be obtained thanks to the Poisson stability of the vector field fj.

Enlargement of the set D

Let us start by giving an important corollary of the Proposition 1.3: the system is controllable
if and only if S(D)(yg) = M for every yo € M. Indeed, saying that the system is controllable
means that S(D)(yo) = M, and we then also have that S(D)(yo) = M. Reciprocally, assume
that S(D)(yo) = M. Let y € M. Following Proposition 1.3, for every neighborhood V of ¢,
there exists a non-empty open set U~ such that U~ C V N .S™(D)(y). As S(D)(yo) = M,
we get that the intersection S(D)(yo) N U~ is not empty: there exists a point y; such that
y1 € S(D)(yo) NU~. Thus y; is reachable in positive time from yy, and in negative time from y,
i.e., y is reachable is positive time from y;. We deduce that y is reachable in positive time from
Yo, that is, S(D)(yo) = M and the system is controllable.

With that in mind, we denote D the bigger (in the sense of the inclusion) set of vector fields
such that

S(D)(yo) = S(D)(yo)-

It consists in the reunion of all the sets of vector fields D’ such that S(D)(yo) = S(D’)(yo). The
following result shows how the Poisson stability compensates for the lack of symmetry in the
family D.

PROPOSITION 1.4. — (i) If X € D and X is Poisson stable, then —X € D.
(ii) If X,Y € D, then X +Y € D.

Proof. Let us start by proving (7). Let X be a vector field that is Poisson stable. We wish to
show that

S(DU{=X})(yo) = S(D)(yo)-
The sense D is clear, and we have to show that S(DU{—X})(vo) C S(D)(yo). It is enough to

show that S(DU{—=X1})(yo) C S(D)(yo). Let y € S(DU{—X})(yo). First, we assume that y is
obtained from gy as

y = exp(—tX)yo,

with ¢ > 0. Let V be a neighborhood of y. As X is Poisson stable, there exists a time T' > ¢
such that exp(TX)y € V. It follows that

exp(TX)oexp(—tX)yo €V
exp((T —t)X)yo € V.

It means that y € S(D)(yo). The general case, when there exist an integer k € N, non-negative
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times ¢; > 0 and vector fields X; € D U{—X} such that
y = exp(t1.X1) o - - exp(tp Xk)yo

can be obtained by applying the same reasoning to each piece of the trajectory where the vector
field X is equal to —X.

Finally, to show (ii), we use the Baker-Campbell-Haussdorff that leads to
exp(LX) o exp(LY) = exp(L(X +¥) +O(S))
xp(— xp(—Y) = exp(— —)).
P P P n?
Composing this relation n times, it follows that

TT exp(-x) o exp(L¥) = exp(t(X +¥) + 0(%)).

. n
1<isn

Letting n — 400, we get that X +Y € D. O

Controllability of a control-affine system

THEOREM 1.3. — On the submanifold M, let us consider the control-affine system
9(t) = foly(®)) + > us(t)f;(y(1))-
j=1

Assume that the vector field fo is Poisson stable, ant that the Lie algebra Lie(fo, f1,..., fm) is
of maximal rank. Then the system is controllable

Proof. The vector field fy is Poisson stable and belongs to the set D, therefore, according to
Proposition 1.4, —f, € D. Besides, for all j € [I,m], fo £ f; € D thus, also according to
Proposition 1.4,

foEx fi+(=fo) €D,

ie., £f; € D. It follows that D contains the set of vector fields {£fo, £ f1,...,%fm}, which
is symmetric and satisfies the rank condition : Lie(+fo,+f1,...,%fm) is of maximal rank.
According to Theorem 1.2, we get that the control-affine system is controllable. O

Remark 1.1: Analytic case

In the case when the system is analytic, this condition is also necessary accroding to Sussmann’s
theorem [SJ72]. We will use this fact in the next section.
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1.3 Controllability of the attitude of a rigid body

In this section, we are going to apply the result of Theorem 1.3 to the attitude control system
equiped with opposite gaz jets (1.1)

R(t) = S(T0)R(),
Lpt) = (I, — L)gt)r(t) + Z;n=1 Uj (t)bj,
Iq(t) = (L — L)p(t)r(t) + 370 ui ()b,
Li(t) = (Lo = I)p(t)a(t) + 7%, ui ()b

We are going to show that, under some geometric conditions on the placement of the thrusters,
the system can be controlled with only one thruster producing a torque b. Therefore, we start
by considering the case m = 1:

9(t) = foly(t)) + () f(y(2)),

with y = (R, &),
I,—I, I.—1I, I,—I,

I

Pq),

and f; is the constant vector field (ORQ,E), where we still denote b the normalized torque I~ 1b.

We have shown in Theorem 1.1 that the vector field fy is Poisson stable. Thus, following
Theorem 1.3, the system is controllable if and only if the Lie algebra Lie(fy, f1) is of dimension
6 at every point y € SO3(R) x R3. For this condition to hold, it is necessary that the Lie algebra
spanned by the vector fields ((Iy — I.)/I.qr, (I. — I,)/Iypr, (I — I,)/1.pq) and b is of dimension
3 at every point of R3.

Let us set
I, -1, I,—1, I, — I,
= = , a3 = )
I,

and let us define the vector field @ = (aigr, aspr,aspq). Note that when chosing the order of
the axis, without loss of generality, one may always chose to have I, > I, > I.. In that case,
it follows that a;,a3 > 0 and as < 0. In what follows, we are actually going to assume that
I, > I, > I, which yields ai,a3 > 0 and as < 0. At the end of the chapter, we will make a
remark on what may happen when some of the inertia coefficients are identical. Geometrically,
it corresponds to the case of a body with symmetry properties.

=,

1.3.1 Dimension of Lie(Q,b)

Let us point out first that Q(0) = Ogs and dQ(0) = O, (r), and that each component of @Q is

-,

a polynomial of degree 2. Thus, the Lie algebra Lie(@Q, b) is of dimension 3 if and only if the Lie
algebra spanned by the constant vector fields is itself of dimension 3. With a formal calculation
software, like Maple or Mathematica, we can compute the constant vector fields:

b= (0", 5%b"), (1.6)
[Q7 gl]a gl] = (2a1b2b3; 2a2b1b37 2a3b1b2) )

(Q,91], 92]

= (2a1b1(a2(b3)2 + a3 (b?*)?), 2a9b (a1 (b*)* + az(b')?), 2a3b° (a1 (b*)? + ag(bl)Q)) .

g1
g2 ‘= [
93 := | (1.8)



1.3. Controllability of the attitude of a rigid body 27

and the next Lie brackets do not span new directions in R3:

a1b3b2 (alag(b3)2 + 2a2a3(b1)2 + alag(b2)2)
[[Q,g1], 93] = 2 | agb'b® (a1a2(b®)? + azas(b')? + 2a1a3(0%)?) |,
a3b1b2 (2@1&2([)3)2 + a2a3(b1)2 + a1a3(b2)2)

= A\g3 + 2a1a2a3b1b2b35,
= \gs + 2a1a2a3b'b*b’ g1,
with A = alag(bS)Q + a2a3(b1)2 —+ alag(b2)2.

[[Q’ 92] ) 92] = 8@1@2@3[)1()2[)391 .

bt ((6%)%(a1 (b°)® + a3(b!)?) + (b%)(a1(b%)? + az(b1)?))
(@, g2], 93] = darazas | b2 E(bl)Q(az(b‘"’)2 +as(b?)?) + (6°)* (a1 (b2)° + a2(b1)?)) | ,

= {191 + H29g2,

with 1 = 4ajagasz(a; (b?63)? + ax(b'6®)? + a3(b'b?)?) and s = 4ajazazb b?v3.

b2b3 al(b3)2 + a3(b1)2) al(b2)2 + a2<b1)2
[[Q, g5, 93] = 8araszaz | b'0% (a1(b%)% + az(b')?) (a2(b®)? + as(b?)?) | ,
b'0% (a1 (%)% + az(b')?) (a2(b®)? + as(b?)?
= p3g1 + Hag2 + (1593,
with ps = 8aiazasb'b?b®(a1a2(b?)?+agas(b)? +a1a3(b?)?), pa = 4ayazas(ay (b°6*)* +az (b'0%)* +
az(b*6?)?) and us = —4ajazazbb?v3.
Besides, thanks to Jacobi identity,

[[Q; g2], 91] = —l[92, 91], Q] — [[91, Q] 92]
=@, g1], g2]
= 93,
[[Q, 93], g2] = —[[93, 92, Q] — [[g2, Q] 93]
[[Q, g2], g3]-

-

Those computations show that the Lie algebra Lie(Q,b) has the same dimension than the
space spanned by the vectors g1, go and g3. The determinant of those three vectors is

det(g1, g2, 93) = 4 (az(b")? — a1 (b*)?) (a3(b")*(b*)* — a2as(b*)?(b1)? — a1a2(b*)*(6°)* + aras(b*)?).
Therefore, the determinant is equal to zero if and only if az(b*)? = a;(b®)?, or
a%(bl)Q(bB)S — a2a3(62)2(bl)2 - alag(b2)2(bs)2 + a1a3(b2)4 =0.

We have made the assumption that a; and a3 are positive and as is negative. Thus, this last
quantity is equal to zero when

az(b)2(0)® = agas(b*)?(b1)? = aras(b*)?(b%)? = aya3(b*)* = 0,
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ie.,
B = (F)200)° = (BR0P = () =0,
that is when b2 = 0, and one of the real numbers b' and b? is zero.

We have therefore shown that the vectors g, go and g3 are linearly independant unless
az(bt)? = a1(b)?, or b2 = 0 and one of the real numbers b' and b? is zero. We have found the
condition for the Lie algebra Lie(Q, 5) to be of dimension 3 at every point of R?, that we give in
the following lemma.

LEMMA 1.1. — The Lie algebra Lie(Q, I;) is of dimension 8 at every point of R® unless \/a;b® =
:l:\/@bl, or b> = 0 and one of the real numbers b' et b3 is zero.

1.3.2 Dimension de Lie(fy, f1)

Let us now study the dimension of the Lie algebra Lie(fo, f1), under the geometric condi-
tions of Lemma 1.1, that is when the vectors g1, g» and g3 previously introduced are linearly
independant.

A first computation yields the expression of the following constant vector fields:

f1 = (Oro,91) , [[fo, f1], f1] = (Ome, g2) , [[fo, f1], [[fo, f1], f1]] = (Owe, g3).

Thus, as soons as the vectors ¢;, go and g3 are linearly independant, the constant vector fields
f1, [[fo, f1], f1] and [[fo, f1], [[fo, f1], f1]] are also linearly independant, and the space they span
matches Vect((Ogs, F1), (Oge, E2), (Ore, E3)) where (E1, Eq, E3) stands for the canonical basis of
R3.

Let us then compute the following vector fields, denoting by (r;;)1<i,j<3 the components of
the orientation matrix R.

0 —T31 21
0 —T32 22
0 —T33 T3
31 0 —T11
32 0 —T12
-~ 733 _ 0 _ —T13
[fo, (Oge, E1)] = — N B [fo, (Oge, E2)] = — ; [fo, (Ope, E3)] = — 0
21 T11
—T22 T12 0
—T23 713 0
0 air a1q
asT 0 asp
asq asp 0

Those vector fields are linearly independant at every point of SO3(R) x R? if and only if the
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vector fields

0 —T31 21
0 —T32 22
0 —T33 723
31 0 —T11
rs2 | 0 y | —7r2
733 0 —T13
—T21 T11 0
) r12 0
—Ta3 r13 0

are linearly independant at every point of SO3(R), which is indeed the case.

We deduce from the following computations that under the conditions of Lemma 1.1, the
vector fields fl: Hf07 fl]? fl}: Han fl}? [[f07 f1]7 fl]]a [f07 (0R97E1)]7 [f()? (0R97 E2)] and [fOu (OR97 E3)]
are linearly independant at each point of SO5(R). It follows that the Lie algebra Lie(fo, f1) is
of dimension 6.

1.3.3 Controllability condition

The vector field fj is Poisson stable, and using Theorem 1.3 we can conclude to the control-
lability of the attitude equations by means of opposite gaz jets.

THEOREM 1.4 (CASE m = 1). — The atlitude equations are controllable by means of one
pair of opposite gaz jets except when /a1b> = £./azb', or b> = 0 and one of the real numbers b
and b is zero.

Let us now analyse what the condition of non-controllability in Theorem 1.4 means. If two of
the real numbers b (including b?) are zero, for instance b' and b2, the equations for the angular
velocity become

D = aiqr,
q = aapr,
r = aspq+ bu,

and the line {p = ¢ = 0} is invariant under the action of any control u.

If \/aib® = +./azb!, for instance \/a;b® = ,/azb, then the vector b belongs to the plane of
equation {\/air = /azp}. It is then easy to check that if o= (p,q,r) belongs to this plane,
then the vector Q(W) also belongs to this plane, that is, this plane is invariant. In that case,
whatever the control v may be, the plane of equation {\/chr = \/@p} is invariant.

We now have everything to state the controllability condition for the attitude equations in
the general case, when m > 1.

THEOREM 1.5 (CASE m > 1). — The attitude equations are controllable by means of
opposite gaz jets producing the torques {b1,..., b} unless the space spanned by the vec-
tors (b ;)1cicm matches one of the invariant line of equation {p =q=0}, {p=r=20} or
{q = r =0}, or matches one of invariant the plane of equation {\/Er = :I:\/chp}.
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Remark 1.2:

Implicitely, when making the assumption I; > Iy > I3, we used several times in the proof of
Theorem 1.4 the coupling between the equations for the angular velocity. Indeed, it implies
that a1,a3 > 0 and ay < 0, and it enabled us to give a simple condition for the vectors g;, g2
and g3 to be linearly independant. The fact that a1, as and ag are non-zero enables to use the
coupling in

p = aqr,
Yy = agpr,
r = aspq.

If the three coefficients are zero (i.e., I, = I, = I.), we easily get from the equations (1.6), (1.7)
and (1.8) that only the vector g; is non zero. At least three torques (linearly independant)
are thus required to control the attitude equations.

If one of the coefficient a; is zero, for instance a; = 0, az < 0 and a3 > 0, then

det(g1,92,93) = (b')*azas (az(b*)? — as(b*)?) .

As az > 0 and ay < 0, this determinant is zero if and only if b' = 0 or b3 = b? = 0. Thus, as
soon as two of the real numbers b° (including b') are non zero, the attitude equations remain
controllable by means of only one torque.

1.4 Conclusion of the chapter

In this chapter, we recalled the result of Theorem 1.5 which gives necessary and sufficient
conditions to be able to control the attitude equations by means of pairs of opposite thrusters.
Under some geometric hypothesis on the placement of the thrusters, the attitude can be controlled
with only one pair of opposite gaz jets.

For the system presented in this thesis, the design of the SCA schematized on Figure 1.5
allows to consider some pairs of thrusters as opposite jets. The controllability of the equations
presented in this thesis follows.

Nevertheless, the proof of the controllability is not constructive, and no effective control
strategy has yet been exhibited. The proof uses the Poisson stability of some vector fields, which
can yield very long transfer times. In the following chapter, in the setting of optimal control
theory, we will study ways to numerically compute control strategies.
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The purpose of this chapter is to give a brief insight of optimal control theory in finite
dimension. The term “finite dimension” refers to the fact that the state vector z(-) belongs
to the finite dimensional space R™. However, it is important to keep in mind that solving an
optimal control problem in finite dimension like (OCP) requires being able to solve an infinite-

dimensional optimization problem.

In chapter 1, we have shown that the attitude equations studied in this thesis are controllable.
We are now interested in computing effectively control strategies, asking also for them to be

optimal with respect to a given criterion.

We will first recall a classical result in optimal control theory, namely Pontryagin Maximum
Principle, and we will then focus on numerical methods. At the end of the chapter, we will
show how those methods can be implemented to solve numerically an attitude control problem

corresponding to the separation of one satellite.
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2.1 General setting

In this chapter, we wil consider the following general control problem: given My and M;
two submanifolds of R™ we aim at controlling the nonlinear system

o(t) = f(t,(t), u(t)) on [0;ty], (2.1)

while minimizing the cost

Cltgou) = / " POt (), ult)) dt + gltg. (tp)), (2.2)

and such that
LL‘(O) € My, x(tf) e M.

In this description, f is an application R x R® x R™ — R", f0 : R x R® x R™ — R and
g : R xR"” — R. It is usual to assume the applications f, fy and g to be of class C!, even if
this assupmtion can be weakened. The control u(-) belongs to the set L>°([0;tf],Q) where Q is
a convex subset of R™ and the final time ¢; can be left free or not. In the following we will use
the notation t; when it is free, and 7" when it is fixed.

We will say that a control u(-) defined on [0;¢] is admissible when the associated trajectory
of the control system (2.1) is well-defined on [0;%].

Remark 2.1: Existence of an optimal solution

It is far from obvious that there exists a solution to the previous optimal control problem. In
the literature, the general existence results depend in particular on the compacity of the set Q2
in which the control takes its values. In the case of the attitude control problem, the set € is
compact. With that in mind, let us denote ¢ the set of admissible controls u € L>°([0;t¢], §2)
that steer the system from My to M; in time ¢(u). We assume that regularity assumptions
on the applications f, fo and g are fulfilled, and that the following assumptions hold:

(i) There exists C; > 0 such that for all u € U, t(u) < C,

(if) There exists Cy > 0 such that for all u € U, ||z, ()|, < Ca,

(iii) For all (¢,z) € R x R”, the set

V(t,z) = {( foéf’;ﬁl;‘lv ) lueqy> o}

loo

is convex.

Then there exists a solution u* defined on an interval [0, ¢(u*)] to the optimal control problem.
The proof of this result, as well as some extensions can be found in [Tré05a, LM67a, BC03a].
Hypotheses (i) — (i¢) ensure enough compacity to be able to extract converging (for the weak-
star topology) subsequences in L>([0;¢f],€2). Hypothesis (iii) allows to use the fact that
closed (for the strong topology) convex sets are also weakly closed. Let us mention that this
result can be generalized to the case of a control problem with state constraints.
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2.2 Pontryagin Maximum Principle

In this section, we give a statement of Pontryagin Maximum Principle. It expresses necessary
conditions for a pair (z(-),u(-)) to be optimal.

Analogy with optimization in finite dimension. It is crucial to keep in mind that the
conditions in Pontryagin Maximum Principle are a set of necessary conditions: they consist in
conditions of order 1. In a similar way, Lagrange Theorem, when applied to an optimization
problem in finite dimension gives a set of necessary conditions. To be more specific, let us
simplify the general optimal control stated in the previous section 2.1 before going further in the
analogy. We assume that the submanifolds are singletons

Mo = {960} , My = {301}7

and that the final time T is fixed.
Given two applications in finite dimension J : R? — R and g : R? — R*, Lagrange Theorem
states that if a point z* is a solution to the finite-dimensional optimization problem

min  J(z), (2.3)

s.t. g(x)=0
then there exists a pair (A, \) € R x R* of Lagrange multipliers such that
A0V (@) + (A, g(a™)) = 0.

We shall now introduce the definition of the end-point mapping, that we will use again further
in the thesis (notably in chapter 4). It allows us to rewrite the optimal control under a form
close to (2.3).

DEFINITION 2.1 (END-POINT MAPPING). — Let u(-) € L>([0;ts],Q) be an admissible
control. The end-point mapping is defined as the response of the system to the control u:

By r(u) = zu(T),

where x,,(-) is the solution to the ordinary differential equation (2.1) with initial condition x,,(0) =
Zo-

Therefore, solving the previous optimal control problem amounts to solving the optimization
problem in infinite dimension
min C(T,u). (2.4)

s.t. Bz r(u)=z1

In a similar way to Lagrange Theorem in finite dimension, if a control v* is optimal, then there
exists a pair (¢°,9) € R x R™ such that

aC ) .
1/10%(T7u )+ dEg, r(u*) = 0.

Pontryagin Maximum Principle, that we we will present in details in the following paragraph,
can be seen as a development of this last equality.

Statement of the PMP. Let us now give a precise statement of the PMP. A proof of this
result can be found in [ , , , ]. Before going forward, let us point
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out that a key ingredient in the proof is the use of needle-like variations of the control, an idea
that we will use again in Chapter 4.

DEFINITION 2.2 (HAMILTONIAN). — The Hamiltonian of the system is defined in the fol-
lowing way

7 RxR"xR”xR"xR — R

a (tz,u,p,p°) = (p, fta,u) +p° fOt @, u)

THEOREM 2.1 (PONTRYAGIN MAXIMUM PRINCIPLE). — Let (z(-),u(-)) be a trajectory
of the system (2.1), optimal with respect to the cost (2.2). Then there exists a non-trivial pair
(p(+),p°) such that :

e pY <0.
o p(-) is absolutely continous on [0;ty].

e For almost every t € [0;],

(0) = G (1,20, u(e) p0).0°), (25
5(0) = =5 (1, 2(0), u(0) ), 1) (2.0

o For almost every t € [0;ts], the control u(t) mazimizes the Hamiltonian H :

H{(t,(t), u(t), p(t),p") = max H(t, «(t), v, p(t), p°). (2.7)

e The adjoint vector p(-) satisfies the transversality conditions.
p(0) L Ty(0) Mo, (2.8)
pts) — 192 (17, 2(t7)) L Taey Mo, (29)
where T, M is the notation for the tangent space of the submanifold M at point x.

o If the final time ty is free, there is an additional transversality condition

0
max H(ty, o(t;), v, p(ts), p") = —poafi(tf,w(tf)) (2.10)
DEFINITION 2.3 (EXTREMAL). — We call extremal a tuple (z(-),u(-), p(-), p°) that is solution

to the equations (2.5), (2.6) and (2.7). Ifp° < 0, the extremal is said to be normal, and abnormal
if p° = 0.

Note that the couple (p(-),p") in the statement of Theorem 2.1 is defined up to a positive
multiplicative constant. Therefore, if p° < 0, i.e., if the extremal is normal, one can always set
0
p’ =—1.
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Remark 2.2: Sufficient conditions for optimality

We wish to emphasize once more that the PMP gives a set of necessary conditions. If one
wants to check the optimality status (at least locally) of a given extremal (x(-),u(-),p(-),p°),
the following condition, known as the strong Legendre condition, is sufficient : there exists
«a > 0 such that for each v € R™,

0’H

Sz (tx(®),u(t), p(t), p°) - (v,v) < = [lo]]*.

From a practical point of view, it can be satisfactory to find a trajectory satisfying the necessary
conditions of the PMP. This is what we will do in the sequel.

There exists in the literature a wide variety of variations for the PMP, for more general control
systems than the one in the statement of Theorem 2.1. Let us mention for instance the following
generalizations:

e In [AS04], the author shows a maximum principle for a control system where both the state
and the control belong to submanifolds, that is when the dynamics can be written under
the form

@(t) = f(x(t), u(t)),

where f: M x N = TM, with M (resp. N) a submanifold of R” (resp. R™). In this
setting, the adjoint vector p(t) is an element of the dual space of Ty1yM, in order to give
a meaning to the quantity (p(t), f(«(¢),u(t)). Note that in the case of the attitude control
problem for a rigid body, the result may be of importance when considering the dynamics
as a differential equation on SO3(R) x R3, as we did in Chapter 1.

e The papers [DIK08, D11, GP05a] state maximum principles for hybrid control systems,
where the dynamics can change over time. Inequality or equality constraints at times when
the dynamics changes can also be dealt with in this setting.

o In [Cla90], Clarke considers state-constrained control problems, where the constraint on
the state is written under the form

c(xz) <0 almost everywhere on [0,¢].

A major difficulty arises when solving such problems: the adjoint vector p(-) becomes
a measure and is not anymore absolutely continuous. There are jumps in the evolu-
tion of the adjoint vector every time the state meets the fronteer of the allowed domain,
{z € R" | ¢(z) = 0}. Numerically, one way to tackle this issue may be to penalize the state
constraint in the cost.

e Finally, let us mention the existence of maximum principles for control systems in infinite
dimension. In [LLY95], a statement is given for an evolution equation

y(t) = Ay(t) + f(t,y(1), u(t),

where for each ¢, y(t) € X and u(t) € U, with X a Banach space and U a separable metric
space. In chapter 5, it is the setting we will consider to derive the structure of the controls
for an evolution problem for populations of cells structured in phenotype.

In chapter 3, we will show two maximum principles for a control problem with via-point
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constraints, as in [ ]. Tt will consist in ponctual constraints under the form
c(z(t1)) <0,

with ¢1 € [0;¢7]. We will see that such constraints can be dealt with using the formalism
of | , | for hybrid control systems.

2.3 Numerical methods in optimal control

Amongst the existing numerical methods to solve an optimal control problem, it is usual to
make the distinction between direct methods and indirect methods. Indirect methods exploit the
necessary conditions stated by the PMP to reduce the problem of finding an optimal trajectory
to finding the zeros of some function in finite dimension. This is then often done by Newton-like
methods. Direct methods, for their part, consist in discretizing totally the state and the control
to end up with an optimization problem in finite dimension. Such a problem can then be solved
by means of the usual optimization techniques.

We will now give more details on this two families of numerical methods, starting first with
the direct methods and moving on then to the indirect ones. The survey paper | | gives a
state of the art for numerical methods in optimal control, putting the emphasis on aerospace
applications.

2.3.1 Direct methods

The main idea behind a direct method is to undertake a complete discretization of the op-
timization space: let 0 =ty < t; < --- < ty = ts be a subdivision of the time interval [0;¢¢]
(for the sake of simplicity, we will consider here that the discretization is uniform. We de-
note h := t; —top = t;/N the step of this subdivision. The dynamics is also discretized using
some numerical scheme. In our case, we have considered an explicit/implicit scheme: for each
ie[0,N —1],

T(tivs) = x(t:) + g (f(tiso(ts), u(ts) + f (i1, 2(tigr), ultir)) -

Let us denote z; € R™ (resp. u; € R™) an approximation of z(t;) (resp. u(t;)), and let z" €
R™(N+1) be the vector (zg,x1,...,zx), and u € R™*N+1) he the vector (ug,u1,. .., uy). We
also consider some discretization of the integral cost (2.2), for instance thanks to the rectangle
method:

—

C(ty,u) = Ch(tf,uh) =h- TOts, x4, u).
i=0
Numerically, solving the optimal control problem amounts to solving the finite-dimensional
optimization problem:
minimize C™(t,u")
under the constraints

Tivi = xi + % (F(t xiw) + (b, @i, i), Vi€ [0,N —1],
u; € Q, Vi € [0, N,
xo € My,
TN € My.
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Numerical aspects. Eventually, when performing a direct method, one is left with solving
some optimization problem in finite dimension under the form

mi f(X).

9(X)

)

0
h(X) <0

AP

(Assuming that the constraints on the control v € Q and on zy and xy can be written under
the form of an equality or an inequality constraint.)

The literature is full of various numerical methods to tackle such a problem. To perform the
numerical simulations in this thesis, we chose the open-source solver IPOPT [WB06a], based on
the implementation of some interior-point algorithm.

Let us mention that the solver IPOPT can be used jointly with the modelling language
AMPL [FGIK93]. The interface provided by AMPL allows for a very easy implementation of the
optimization problem, with an intuitive syntax. For instance, AMPL uses automatic differenti-
ation to compute the derivatives of the constraints and of the cost function. In constrast, if one
wishes to solve efficiently an optimal control problem using only the solver IPOPT (for instance
through the C, C++ or Fortran interfaces), it is required to implement as well the methods
computing the derivatives.

When compared to the indirect methods we are going to present hereafter, direct methods
offer the possibility to tackle, at a low computational cost, constraints on the state variable.
This can be of importance in practice, for instance if the CNES wishes to forbid some angular
domain during the whole ballistic phase, or control the transverse angular velocities, as we
will show at the end of the chapter.

2.3.2 Indirect methods

In contrast with direct methods where a full discretization of the optimal control problem is
undertaken first, indirect methods exploit the duality and the necessary conditions stated in the
PMP.

We denote z := (x, p) the pair formed by the state variable x and the adjoint vector p. Under
usual regularity assumptions, the maximization condition (2.7) allows to express the control u as
a function of z: u = u(z,p), and the dynamics (2.5)-(2.6) can then be written under the closed
form z(t) = F(t,2(t)). We will denote z(¢, z9) the solution at time ¢ to the Cauchy problem

{Z'(t) = F(t,z(1)),
2(0) = 2.

We also denote R(zo,2(tf)) the transversality conditions stated in the PMP, as well as the
initial and final constraints on the state. Finding an extremal satisfying the set of equations of
the PMP amounts to finding an initialization zo and a final time ¢ (if it is not fixed) such that
R(z0,2(z0,t5)) = 0.

We denote G(zo,t5) := R(20,2(%0,ts)). It follows that finding an extremal satisfying the set
of equations of the PMP boilds down to finding a zero of the function G. In the literature, the
function G is often named a shooting function, and looking for a zero of this function is a shooting
problem.
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Remark 2.4: Resolution of a shooting problem

Solving a shooting problem, i.e., finding a zero of the shooting function is usually done by
means of a Newton-like method. Those methods are famous for having very fast convergence
rates, while having a potentially small convergence domain. It means that the initialization
of the shooting problem can be very intricate. Therefore, being able to design a good enough
initialization ensuring the convergence of the Newton method is a challenge when solving an
optimal control problem with an indirect method. In Section 2.4.1 we will detail a numerical
procedure to adress this issue, deforming continuously the optimal control problem at hand.

2.3.3 Comparison between the methods

We are now concluding this section by putting together some of the elements of the previous
paragraphs, in order to give some elements of comparison between direct and indirect methods.
The survey paper [Tré¢12] also compares those two families of methods.

Based on a full discretization of the optimization problem, direct methods are often described
as robust methods, in the sense that they do not require much knowledge a priori on the structure
of the solution, (even if obviously, carefully chosing the initialization of the optimization algorithm
can increase the speed of convergence). Besides, they allow to take into account all type of
constraints, including state constraints. However, the discretization of the optimization problem
can be a cause for the apparition of local minima, and the user of the optimization software can
not have the guarantee to obtain a global solution. Such a problem may arise for instance when
the discretization is too fine. Moreover, when compared with indirect methods, the numerical
accuracy obtained with direct methods may be not as good. Aerospace is a field often put forth
as a domain of application requiring high-level of numerical precision.

As for indirect methods, they rely on writing a maximum principle and solving some shooting
problem. This resolution is often done by means of Newton-like methods, and therefore indirect
methods inherit from the strengths and weaknesses of Newton methods: the rate of convergence
is quadratic, and the method is both fast to converge and very precise. Note also that the
integration of the differential system in the shooting function can be done using a numerical
integrator, which can be very precise. However, the domain of convergence of the method can
be very small, making its initialization difficult. It is therefore often required to have a priori
knowledge on the structure of the solution (for instance the number of switchings of the control,
or the number of fronteer arcs, as in [BFLT03]). Besides, using an indirect method to solve an
optimal control problem with state constraints imply to use a PMP including such constraints,
which can be very intricate.

Roughly speaking, it is often said that direct methods discretize the problem first before
applying a dual method, whereas indirect methods first exploit the duality in the PMP before
discretizing the problem.

Let us mention the existence of a large family of methods, namely hybrid methods, based on
the combination of direct and indirect methods. For instance, when an optimal control problem
is solved with the solver IPOPT, the output contains the value of the Lagrange multipliers for
the underlying finite-dimensional optimization problem. Up to the sign, those multipliers are an
approximation of the adjoint vector p(-) in the statement of the PMP. Therefore, they can be
used to build the initialization of the adjoint vetor p(0). With such a procedure, one can hope
to benefit from the strength of both direct methods - little knowledge a priori on the structure
of the solution - and indirect methods with a fast and precise convergence.
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2.4 Application to the attitude control problem for a rigid
body

In this section, we aim at showing how the two families of numerical methods presented in the
previous Section 2.3 can be implemented to solve the attitude control problem with minimization
of the consumption (OCP) we stated in the Introduction:

min gf P 1|uj()|dt+)\otf,

() = fo(x(t) + 252, uy(6) £ (x(1)),
(OCP) ¢ Vie[l,m], 0< ul(t) <1 p.p. on [0;tf],

2(0) = xo,

x(tf) = SCf.

Note that the term accounting for the final time in the cost can be written under the form

ty
Aoty = /\0/ 1dt
0

if one wishes to have no function ¢ in the general cost (2.2). This is what we do in the following.

2.4.1 With an indirect method

As explained in Remark 2.4, one of the difficulty when solving a shooting problem is the
initialization of the underlying Newton-like method to find a zero of the shooting function. It is
well-known that the problem of minimizing the consumption is part of the problems for which
this initialization is indeed difficult, as in [ , , , ]

Continuation procedure

A common technique to overcome this difficulty is the use of a continuation procedure (some-
times also named homotopy procedure). The idea is to introduce a parametrization in the
expression of the optimal control problem, in order to deform the initial problem, deemed to be
hard to solve, into an easier problem for which an initialization can easily be provided, either
because one has a priori knowledge on the structure of the solution, or because the convergence
domain of the Newton method is wide enough.

This deformation can be introduced as a change in the expression of the cost, in order to
benefit from convexity properties. This is what is done for instance in [ , ,

]. In our case, for o € [0,1], we introduce the optimal control problem (OCP)

min afg j"'luj() dt + (1 —a) [i7 S0 ui (t)] dt + Aoty
2(t) = fo(z(t)) + 2272, ui (1) f3(2(t),
(OCP).{ Vie[lm], 0<u(t)<l p.p. on [0;t/],
x(o):xO;
x(tf):acf.

Thus, when o = 0, one recognizes the initial problem (OCP), and when o = 1, it consists in the
problem of minimizing the energy:

minimize / Z u] 2dt + Aoty
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We recall that in order to be exploitable by the "SCA” of Ariane 5, the control has to be
bang-bang, i.e., has to take its values in {0,1}. However, it is not obvious at first that the above
control problems yield bang-bang controls. We will see in the following that it is not the case
when « # 0. However the computation of those regular controls will allow us to eventually solve
(OCP). At the end, the procedure will result in bang-bang controls.

Application of the PMP to (OCP),

We shall start by detailing the application of the PMP to the optimal control problem
(OCP),. The Hamiltonian of the system writes

H(x,u,p,p°) = (p, f(z,w) +p° | a D> u;(t)? + 1faZ|uj )+ X |,

We denote p = (pg, Py, Py, Pps Pq, Pr) the adjoint vector. If a trajectory (z(-),u(-)) is optimal,
then there exists a non trivial pair (p(-),p?) with p° < 0 such that the dynamics of p(-) are given
by

pe = 0,

Py = —Do S‘ié;‘zwq + Cocsg’;jliwr> — py (sinpg + cos pr) (1 + tan?¢) ,

Po = Dol cosd— Sg;ir> — py(—sinpg — cos¢r) — p,(cos ¢ tan g — sin p tan ¢r),
pp = —a2pqT — a3prq — Py,

Pg = —@1ppT — a3prD — Pooms — py cOS P — Py sin g tan ¢,

Pr = —@1Ppq — A2PgP — Po o — Py SINY — Py cOS @ tan .

Besides, because of the maximization condition (2.7), for all j € [1,m], each component u;
of the control maximizes almost everywhere the quantity

ui (0)(p(t), £5) + (0w () + (1 — a)u; (1)) -

In what follows, we restrict ourselves to finding normal extremals, i.e., extremals with p® < 0. It
can then be assumed that p° = —1.

Case a # 0. In that case, the control maximizes almost everywhere the quadratic function

ui (){p(1), f3) — o () — (1 — a)u;(t),

over the interval [0, 1]. This function reaches its maximum at the unique point where its derivative
vanishes, or on the boundary of the interval. We get that, for almost every time ¢,

S (Qmm (1, (p(t), £;) — (1 - a))) |

2

Therefore the control has the same regularity as the adjoint vector p(-). In particular, as soon
as p is continuous, the control is a continuous function of the time. However, such a control does
not fulfill the requirement, imposed by the design of the "SCA”, to be bang-bang.
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Case a = 0. In that case, each component u; of the control can be obtained by minimizing
the affine function

ui(t){p(t), f5) — ui(t).
It follows that
u;(t) = sign ((p(?), fj) — 1),

where sign(-) is the sign function defined by:

. 1 if >0,
Sign() =9 o i s <o

The function t — (p(t), f;) —1 can sometimes be found under the name switching function in the
literature, as its sign will decide if the thruster j is to be closed or opened. Let us point out that
u; is undetermined when the switching function vanishes. If it happens on a countable subset of
the time interval, it has no effect as the maximization condition (2.7) of the Hamiltonian stands
almost everywhere. However, when there exists a time interval [¢1, %3] on which the switching
function vanishes, the control u; can not be computed directly'. Such a control is then often
said to be singular.

Algorithmic procedure

First, recall that solving an optimal control problem with an indirect method as explained in
Subsection 2.3.2 boils down to finding the zeros of some shooting function 2.3.2. For the optimal
control problem (OCP),, the transversality conditions (2.10) on the final time in the PMP and
the constraints on the state at final time write

max Ho (t7, (ts), v,p(ts),p°) =0,
{E(tf) —xy = 0.

As the initial and terminal submanifolds are singletons My = {zo} and My = {z}, the transver-
sality equations on the adjoint vector (2.8) and (2.9) are trivial.

In the problem of interest, the initial state of the launcher is fixed, with x(0) = xg. Therefore,
the switching function only depends on the initialization of the adjoint vector p(0) and on the
final time t¢, and we denote it Go(po,tr). We will also denote Z the variable of the function
G, and Z,, a zero of the function G,. We emphasize that the dimension of the variable Z is 7
(6 components for py and one for ty), and the function G, also has 7 components (one equation
for the transversality condition on the final time, and 6 equations for the constraint on the final
state z(ty) — 2y = 0). Therefore, the shooting problem is well-posed.

Simple continuation procedure. Our final goal is therefore to find a zero of the function
Gy, which corresponds to the shooting function for the problem (OCP), with minimization of
the consumption. To do so, we look for a sequence of parameters (ax)xeqo,n] such that ap = 1
and ay = 0, and such that for each k& € [0, N], we know a zero Zak of the shooting function
Gla,- The interest of the procedure lies in the fact that for each k € [0, N — 1], we can use the
solution Z,, of the problem (OCP),, to initialize the search for a zero of the shooting function

Gayyy- An implicit assumption is made that we are able to compute the solution at the first step

1. The usual technique to derive the expression of the control is to differentiate the relation (p(t), f;) —1=0
a number of times sufficient for the control u; to appear explicitely. Generically, the resulting controls are not
bang-bang, and can not be used to solve the control problem at hand in this thesis
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of the continuation procedure, namely a zero Z; of Gy, the shooting function for the problem
(OCP);. Hereafter at Algorithm 1, we give in pseudo-code the algorithmic principle of a simple
continuation, and the Figure 3.1 schematizes this procedure.

Algorithm 1 General principle of the continuation procedure

. Z=27 > Initialization for a = 1
2: step € [0, 1] > Reference step
3: step,, € [0, step] > Minimal step
4: while o > 0 et step > step,, do

5: step < min(step, «)

6: @ = a — step > a decreases
7: Look for Z, zero of the function G4(Z), with Z serving as an initialization.

8: if success then

9: a4~
10: Z 7 > We move on
11: else
12: step « =<2 > We decrease the step and start again
13: end if

14: end while

This algorithm could be improved in many ways. For instance, in case of a success in the
resolution, it can be decided to increase the step in order to improve the speed of convergence of
the algorithm. We refer to the book [ | for more details on the numerical implementation
of a continuation procedure. Besides, they are many existing softwares available online, as the
open source HamPath | .

In the next paragraph, we will present an improvement of the Algorithm 1, introduced to
decrease its runtime.

Continuation procedure with linear prediction. Behind this method is the idea that we
can do better than just using Zo as an approximation of Z,_aa when initializing the shooting
problem. Assume that we have already made two successive resolutions, yielding Z,1aq, and Z,,
for two values a+ Aa; and «. Assuming some regularity on the path of zeros, an approximation
of ZQ_AQQ for a new value a — Aqy is given by

. - Aoy ( ~ .
ZO(*AOCQ ~ Za - TOQ (ZaJercl - Zoc) )
as displayed on Figure 2.2.

This is the procedure we used throughout this thesis each time a continuation is performed
(in the context of indirect methods), as we could experimentally witness an improvement in the
runtime of the algorithm.

Numerical results

We give here some numerical results of the implementation of the continuation procedure
with linear prediction applied to the attitude control problem. We used the following numerical
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Z

1

Figure 2.1 — General principle of the continuation procedure. The
resolution of (OCP),, is used to initialize the resolution for o — Aa.

values for the initial and final conditions

(007 1/)07 %0, Po, 40, TO) = (0047 006a 777 700277 0? 0)7
(Gf, wf, (pf,pf, Qf, Tf) = (0.63, 0.82, 7.0, —0.008, 0, 0),

and we chose the following expression for the cost

Ja(“)O‘/Of;uj(t)thJr(la)/ofjglug’(tﬂdwrg,

i.e., we set the parameter \g = 1/2. Note that the angles are expressed in radians, and the
angular velocity in radians per second.

The integration of the differential system to compute the shooting function G, is done using
the numerical integrator DOP853. It consists in an explicit Runge-Kutta method with adaptative
step comparing the methods RK8, RK5 and RK3. The description of the algorithm can be found
in | ]

On the Figures 2.3, 2.4, 2.5 et 2.6, we display the evolution of the controls during the contin-
uation on the parameter o. We represent in black the controls for the problem of minimizing the
energy (OCP);, and in red the controls for the minimization of the consumption (OCP). We
also chose to display the controls at two intermediate stages of the continuation, for the values
a = 0.32 and a = 0.02. It appears clearly how the controls are deformed progressively from a
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1

Figure 2.2 — Principle of the continuation procdeure with linear
prediction. The solutions of the problem (OCP), and (OCP),1aq,
are used to initialize the shooting problem for o — Aas, doing an
affine extrapolation in order to get an approximation for Z,_aq,.

continuous command law (for (OCP);), to a bang-bang command law (for (OCP)).

On Figure 2.7, we also represent the trajectory for the minimization of the consumption in
(OCP). Physically, it corresponds to steering the launcher from a spinned state along its main
inertia axis (the roll velocity p is non zero, and the transverse angular velocities ¢ and r are zero)
to another spinned state in a different orientation ((0o, %0, vo) # (6f,%¢,¢f)). The angles (resp.
the angular velocities) are expressed in radians (resp. radians per second).

2.4.2 With a direct method

Now, we are going to illustrate how the attitude control problem with minimization of the
consumption can be tackled with a direct method. In order to insist on the fact that such a
method does not require a priori knowledge on the structure of the solution, yet allowing to
easily consider state constraints, we consider the optimal control problem (OCP)? to which we
add an additionnal constraint: during the maneuver, the transverse angular velocities ¢ and r

2. Solving directly (OCP) does not pose a problem. When we performed the numerical simulations, we
obtained the same controls and the same trajectory as those computed with the indirect method in the previous
Subsection.
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Figure 2.4 — Controls for the resolution of (OCP),, with a = 0.36.

are requested to stay below a certain level, namely

gl <, ] < e, (2.11)
We emphasize again that when using the interior-point solver IPOPT | ] (with the mod-
elling language AMPL | | or not), taking into account state constraints such as (2.11) does

not make the implementation harder.

We consider the same initial and final conditions as in the previous section, where the launcher
is controlled from a spinned state along its principal inertia axis to another spinned state, in a
different orientation. We chose the following numerical value for the constraint on the state
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max

Wy -

0.007 rad.s~ .

On Figure 2.8 are displayed the controls and on Figure 2.9 the trajectory of the launcher. A
remarkable fact appears clearly on those two figures: when the state of the system saturates the
constraint (2.11), the controls are not anymore bang-bang. In order to give an insight on this
fact, we quickly give some theoretical elements on control systems with a state constraint.

For the sake of simplicity, we restrict ourselves to the more simple system

9(t) = foly(t)) + ufi(y(t)),
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Figure 2.7 — Trajectory for the resolution of problem (OCP). The
attitude of the launcher is controlled from the initial state zg (¢) to
the final state z; (o).

with only one control u, and where the state y belongs to R™ (we denote y this state and not
x as in the rest of the chapter in order to insist on the fact that it is not the attitude control
system). Besides, we add a state constraint under the form

c(y) <0,

with ¢ : R® — R. Assume that the constraint is active between the times ¢; and t5. One gets
an expression for the control by differentiating the relation ¢(y(t)) = 0 on [t1, t2]. Differentiating
this relation once, we get

Ve(y(t)) - y(t) =0
Ve(y(®)) - (fo(y(®) + u(t) f1(y(1))) = 0

Thus, if Ve(y(¢)) - f1(y(t) # 0, the control can be expressed under the feedback form:

Ve(y(t)) - foly(t))
Ve(y(t) - f1(y(t)

Note that the terms Ve(y(t)) - fi(y(t) can be written under the form (f;c)(y(t)) if we consider
that the vector field f; acts as a derivation on c:

(fie)(y(t)) == Ve(y(t)) - fily(t)).

Let M be the number of times one needs to differentiate the relation ¢ — ¢(y(¢)) = 0 in order to
have fMc # 0 for the first time. By an easy iteration, it follows that

(fof" o) y(®) +u®)(fi ) (y(1) =0,

u(t) = —
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and the control can again be expressed under a feedback form

IO €3 1 0)

i
(fe)(y(®))
which is then not bang-bang.
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Figure 2.8 — Controls for the resolution of the problem (OCP) with a
state constraint.
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Figure 2.9 — Trajectory for the resolution of the problem (OCP)
with a constraint on the transverse angular velocities ¢ and 7.
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2.5 Conclusion of the chapter

In this chapter, we recalled the statement of Pontryagin maximum principle for a nonlinear
control system with constraints on the control but no state constraints, as well as some of the
usual methods in optimal control theory. In the following chapter, we will intensively use both
direct and indirect methods to solve numerically optimal control problems, chosing the most
adequate method depending on the problem at hand.

One of the key idea presented here is the use of a continuation procedure to solve a problem
deemed to be hard to solve. When implementing such a procedure, the initial control problem
is embedded in a family of problems depending on one (or several parameters). The aim is to
deform it in order to end up with an “easier” problem. In the next chapters of this thesis, we
will thoroughly use continuation procedures: each time we compute an optimal trajectory with
respect to the L! cost, it actually comes from a continuation L? — L' as the one we presented
in this chapter. Besides, in chapters 3 and 5, we will use such a procedure in various settings,
each time to solve numerically the optimal control problem under consideration.

The numerical examples displayed at the end of the chapter show how to compute an optimal
trajectory when only one satellite is to be separated. However, the indirect method we presented
here is deficient to tackle a more complex ballistic phase when several satellites are boarded on
the launcher. In the context of optimal control problems with intermediate constraints, this is
what we are going to study in the next chapter.
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In the previous chapter, we explained how a continuation procedure can be implemented to
solve an optimal control problem arising during a simple ballistic phase, when only one satellite
is put into orbit. During a complex ballistic phase, several bodies are successively put into orbit.
At the times of the separations, there may be in the description of the mission constraints on the
state of the system that do not concern the 6 components of the state. It can be also requested
during a ballistic phase to cancel at a given time the angular velocity of the launcher while not
constraining the angles 6, 1 and .

In this chapter, we will give a general numerical algorithm to solve an optimal control problem
with intermediate constraints by means of an indirect method. We write it in a general setting as
we believe it could be applied to a wide range of problems. However, we will also point out that
our procedure sometimes fails to converge when the number of intermediate constraints becomes
too important.

That is why, in Appendix A, we will also present the results given by an optimization software
designed for the CNES. The software tackles the question of finding the optimal solution for a
complex ballistic phase, with any number of separations, and in a general fashion, any number of
intermediate constraints. For this reason, this chapter and Appendix A are very complementary,
as they address the same problems with different approaches.

51
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3.1 Introduction of the chapter

Optimal control problems with intermediate constraints. Let n, m and p be positive
integers. In this chapter, we consider the general nonlinear control system

#(t) = f(t,2(t),u(t)), (3.1)

where the state z(t) € R™ and the control is subject to the constraint u(t) € Q = [0,1]"". Our
goal is to find a control u(-) and a final time ¢; that steer the control system (3.1) from an initial
point o to a final point ¢ (both fixed), while minimizing an integral cost

T(u) = /0 " P (), 2(t)) dt, (3.2)

and enforcing an intermediate constraint (or interior-point constraint) at some (fixed) interme-
diate time ¢; € (0,ty) that we write under the generic form :

g(t1,z(t1)) = 0, (3.3)

where g : R™ — RP? is a smooth function.

Note that this formulation (and all the results presented thereafter) can easily be extended
to a problem with several intermediate constraints. However, for the sake of simplicity, we will
only present first the case of one intermediate constraint.

The literature on control systems with intermediate constraints is abundant. Let us mention
[ |, a classical reference on optimization problems with interior-point constraints, and more
generally with state constraints along the path. It has been shown in | , | that our
problem can be seen as a particular instance of a hybrid control problem (see also [ ,

, , | for more details on hybrid control systems). The authors show how to
reduce the optimal control problem (3.1)-(3.2)-(3.3) with intermediate constraints (as well as
other general classes of hybrid optimal control problem) to a “classical” optimal control problem
to which one can apply the usual PMP of | ]. We will use their results to derive the
Propositions of Section 3.2. Recall that the PMP consits in a set of necessary conditions for
a control and a trajectory to be optimal. Recall also that in the context of indirect methods,
those conditions can be used to reduce the resolution of an optimal control problem to finding
the zeros of some shooting function. We will elaborate on this issue in more details in the core
of this chapter.

Let us denote (P)g the optimal control problem of steering the control system (3.1) from z
to xy, while minimizing the cost (3.2), without the intermediate constraint (3.3). Throughout
this chapter, we will assume that (P)p has at least one optimal solution, that we will denote
@), ().

A first idea to solve the initial problem with the intermediate constraint (3.3) is to introduce
the constraint by continuation, or homotopy, solving a sequence of problems that depend on a
parameter s € [0, 1], each problem containing a constraint:

g(t1,z(t1)) = s - g(t1,=(t1)). (3.4)

For s = 1, one can notice that (Z(-),@(-)) is a solution of the problem, and for s = 0, one finds our
initial problem. In the following, we will denote (P)yiq s the optimal control problem of steering
the system (3.1) from ¢ to 2y while minimizing the cost (3.2) and satisfying the constraint (3.4)
with a continuation parameter s. Therefore, the goal of this chapter is to propose a robust and
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efficient procedure to solve (P)yiq,0, based on a mathematically sound theory.

Numerical difficulty. Even though performing a continuation on the parameter s can some-
times be enough to solve (P)yiq,0, We experimentally noticed that in some cases, the procedure
fails to converge, even for values close to s = 1. Unfortunately, so far we have not been able to
identify clearly the reason for this failure. We give hereafter two possible reasons, that need to
be further investigated:

e because of a local loss of controllability around some value s; > 0. It could happen that the
problem (P)yiq,s, admits a solution, but that the problem (P),;4,s does not for values s < s;
close enough to s;. In that case, there is a barrier somewhere during the continuation.

e because of the presence of singular trajectories along the path, that forbids convergence of
the underlying shooting method

In | ] conditions ensuring local and global convergence of numerical continuation methods
in optimal control are given.

Penalizing the intermediate constraint. To avoid this numerical difficulty, we consider
another optimal control problem, counsisting of steering the control system (3.1) from z¢ to 7 in
some time ¢; while minimizing the cost functional:

ty

Je(u) = ; FOt u(t), ot ))dt+ lg(tr, 2 ()] (3.5)
Here, the intermediate constraint has been dropped and replaced by some penalization term
included in the cost functional. It is therefore much less restraining than imposing a constraint
of the form g(t1,2(t1)) = s - g(t1,%(t1)). Note that the penalization term is not completely
standard since it is at the intermediate time t;. Let us denote (P)pen, the optimal control
problem of steering the system (3.1) from zg to 2y while minimizing the cost (3.5), that depends
on the parameter e. When ¢ > 1, the cost J.(u) can be approximated (at least formally)

ty
Je(u) = ; FOt u(t),x(t)) dt

and one recovers (P)o. When e < 1, the solution of (P),en, . is expected to be close to a solution
of (P)via,0- Note that with this formulation, one can not ensure exactly that g(t1,z(t1)) = 0.
Besides, if € becomes too small, one could face the numerical pitfall of dividing by €. However, we
will see that when ¢ is small enough, the solution of (P)pen, . provides a good enough initialization
to solve the initial problem (P)yiq.0-

Before going further, let us recall here the expressions of the two optimal control problems of
interest in this chapter.

min fo(t,u( ), z(t)) dt,
() = F(t, (), u(t)),

&
Vi € [1,m], <wui(t) <1 p.p. on [0;¢y],

(P)via,s (E(O) = o, (36)
x(ty) =z,
g(t1,2(t1)) = s - g(t1,Z(t1))
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min [ fO(t,u(t), x(8)) dt + Llg(ty, z(t2))|
CE(t) = f(t,x(t),u(t)),

(P)pene§ Vie[l,m], 0<wu;(t)<1 p.p.on [0;tf], (3.7)
x(0) = xp,
.T(tf) = xf.

Outline of the chapter. Initially, our goal was to solve problems coming from aerospace and
involving intermediate constraints, as we will do in Section 3.3. However, we believe it is worth
writing the theoretical results in the general setting presented in this introduction, as our method
might well also be used in a various range of domains. The paper is organized as follows. In
Section 3.2, we state and prove two Pontryagin maximum principles for the general problems
(P)via,s and (P)pen. In addition to the classical statement of the PMP, the adjoint vector
is not anymore continuous, and presents jumps at the intermediate points. In Section 3.3, we
apply the theoretical results of Section 3.2 to the attitude control problem of a three dimensional
rigid body, a problem of importance in aerospace. Section 3.4 contains numerical examples to
illustrate our procedure.

3.2 Optimal control formulation

As presented in Section 3.1, we suggest in this chapter two optimal control formulations to
account for the intermediate constraint of our problem. (P)y;q s consists in steering the system
(3.1) from =z to x; while minimizing the cost (3.2) and satisfying a constraint

g(t1,x(t1)) = sg(t1,@(t1)),

whereas in (P)pen,e, we penalize it in the cost

T = [ £z (0)dt + < gt )]

Let us emphasize once again that solving (P)pen,. up to small values of ¢ enables us to
circumvent the numerical difficulties that come up when solving (P)yiq,s-

In this section, we present two Pontryagin maximum principles for our two problems but first,
we need to recall a statement of an hybrid maximum principle as in | I

3.2.1 Hybrid maximum principle.

First, we state the main result of | |, that we are going to use to prove both propositions.
Let tg < t; < --- <t,. Given a trajectory z : [to,t,] = R™, we define the vector

v =((to,2(to)); (t1, 2(t1)); - - -5 (ty, x(t,,))) € RUFDOHD,
Let us consider the hybrid optimal control problem (£ is a subset of R™):

J = @o(v) — min,

B(t) = [t x(t),u(t)) we L=([0;t7],9Q),
n;(v) =0 j=1....p,
wi(v) <0 i=1,...,q,
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Note that if v = 1, there are no intermediate constraints, and the problem can be solved using the
classical Pontryagin maximum principle. The problem contains some equality and/or inequality
constraints, including for instance constraints on the initial and final states like

x(to) —x0 =0, x(ty) — x5 = 0.

THEOREM 3.1 (HYBRID MAXIMUM PRINCIPLE). — Assume that (Z(-),a(-),D) is an
optimal solution of the previous hybrid optimal control problem. Then, there exists a tuple
(a0, By Au(+), At () where o = (ap, a1,...,04) € RITL B = (B1,...,Bp) € RP such that, if we
define the applications

H(t, @, u, Ap, At) = (g, f(E,2,0)) + At

) = aipi(v) + > Bin;(v),
i=0 j=1

then the following conditions hold:

o (a,)# 0;
For alli € [0,q], a; 20 ;

For alli € [1,q], cipi(d) =0 ;

e Almost everywhere on [tg,t,],
: oH , _ . _
)‘af(t) = _E(t x(t)’ U(t), >‘x<t)7 /\t(t))a
0H

)'\t (t) = (t7 i'(t)’ ﬂ“(t)a Az (t)a /\t(t))§

St

The transversality conditions at initial and final time stand:
Xelto) = gy (0) Aul(ty) = — 523 (0),

Adlto) = g5 (1) Milt) = — 5, (0);

o At every intermediate point, one has the following discontinuity condition : for all k €
[[la V= 1]]7
M) = Aally) = 50— (3)
k k Ox(ty) "’
_ ol ,_
Mlt) = Aelt) = 750

Almost everywhere on [to,t,], H(t,Z(t), u(t), Az (t), A\e(t)) = 0;

The following maximisation condition holds:

H<t7 z(t), ﬂ’(t)’ )‘z(t)’ )‘t(t)) = g}lgé(H(t, jj(t)? w, )\a:(t>7 )‘t<t))

In | |, the proof of this result is given considering each part of the time interval [tg, tg41]
for k € [1,v — 1], and doing a transformation allowing to apply the usual PMP.
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3.2.2 PMP for (P)yins and (P)pen.c
In view of the following, let us define here the Hamiltonian:
H(t,x,u,p,p°) = (p, f(t, 2, ) + p"fO(t, 2, ).
We also recall that the initial point x and the final point z; are fixed.

PRrROPOSITION 3.1 (PMP FOR (P)yias). — Let (z(-),u(-)) be a solution of (P)yia,s- Then
there exists a non-trivial tuple (p(-),p°, 8), with B € RP, such that:

o i(t) = Gt 2(t), u(t), p(t),°);
o B(t) = =G (t,2(t), u(t), p(t), p°);
o H(t,z(t),u(t),p(t),p’) = max,ey H(t, z(t),v,p(t),p°) a.e. on [0,ty];

o At time t1, the adjoint vector presents a discontinuity:
_ dg
p(t7) = p(t7) = 5 (b, 2(0))" B;

® max,cn H(tf,x(tf),v,p(tf),po) =0.

PROPOSITION 3.2 (PMP FOR (P)penc). — Let (z(-),u(-)) be a solution of (P)pen,s. Then
there exists a non-trivial tuple (p(-),p°) such that:

b (p(')7p0) 7é (070)7

SC(t) = a—H(t,.T(t),u(t),p(t),pO);

P(t) = = GE (¢, x(t), u(t), p(1), p°);

H(t,x(t),u(t),p(t),po) = maXyey H(t71'(t),’l),p(t),p0) a.e. on [Oatf];'

e At time t1, the adjoint vector presents a discontinuity:
+ _ p° 9y T
p(ty) —p(ty) = — - %(tlax(h)) gt x(t1));

e max,cq H(ts, z(ts),v,p(ts),p’) = 0.

Proof of Proposition 3.2. First, we start by rewriting (P)pen, in order to apply the hybrid max-
imum principle 3.1. Let us introduce the augmented system

{ o(t) = f(t,x(t),u(t)), x(0)=1xo
(t) fO( ) ( ),’U,(t)), y(O) =0
)

Let v := ((x(0), y(0)); (t1, z(t1), y(t1)); (tr, z(tr), y(ts))). We also introduce the notation:
(s, w(0) = = lglts, o(t2)

The cost can then be written under the form

J(v) = h(ti,z(t1)) +y(ts).
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Recall that the intermediate time ¢, is fixed, say to some #;. We introduce the equality con-
straints:

m(v) :=z(0) —z9 =0,
n2(v) == y(0) =0,

n3(v) == a(ty) —xy =0,
na(v) :==to =0,

15 (v) =ty — t1.

Assume that (x(-),y(-),u(-)) is a solution of the augmented optimal control problem. Then,
according to Theorem 3.1, there exists (a, 8, Az (+), Ay (+), \e(+)) with B = (B4, B2, B3, Ba, B5) € RS,
such that if we define the functions H(x,u, Az, Ay, At) = (Ag, f(z,0)) + Ay fO(z,u) + A\ and
l(v) = aJ(v) + Bim (v) + Banz(v) + B30z (v) + Bana(v) + Bsns(v), we have

(%, 8) #0, (3.8)
a’>0. 3.9
The dynamics of the adjoint vector is given by
5 o) 5 ) ; d )
fo= =B, S, =B =0, A= =0, (310

and we have the transversality condition at initial time

Ae(to) = %(0) =B1, Ay(to) = %(U) = B2, M(to) = aaTlO(U) = Ba; (3.11)
and at final time
ol
o(ty) =— = B3, 12
ol oJ
Ay(tr) = — v) = —a’ v) = —a’, 3.13
ol
Ae(ty) = —8—tf(v) =0. (3.14)
Finally, the discontinuity condition writes
_ aJ oh ap Og
M () = 0a(17) = 0 5 (0) = oo (1) = 2 S0 a() Tglora(t) - (.15)
A (t) = N (t]) = i(v) =0; (3.16)
A== Gy = O
n _ ol
M(t7) = Me(ty) = ﬁ(v) = PBs; (3.17)
1
(from which we get that 85 = —f34). Combining Equations (3.10), (3.13), (3.14), (3.16) and
(3.17), we get that the function ), is constant on [0,%¢], A, = —a?, and ), is piecewise constant

on [0,tf], satisfying

At = B4 on[0,t4]
M =0 on [t,ty]
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Let us set p° := —a% We get, exploiting the discontinuity condition (3.15), the jump on the
adjoint vector :

Ao (t) = Aa(ty) = —p"Vh(z(tr)).
We obtain Proposition 3.2 by setting p(¢) = A\ (t). O

Proof of Proposition 3.1. The sketch of the proof is similar to the previous one. We use the same
trick of considering the augmented system

{ @(t) = f(tx(t),u(t), =(0) = o,
() = fO(t,2(t),u(t), x(ty) =z

Let v = ((to, z(to), y(to)); (t1, z(t1),y(t1)); (tr, x(ts),y(ts))). (P)via,s consists in minimizing the

cost
J(v) = y(ty)
under the following constraints:
mo(v) = g(z(t1)) — sg((t1)),
m(v) = 2(0) —zo =0,
n2(v) = y(0) =0,
ns(v) = a(ty) —xp =0,
na(v) :==to =0,
ns(v) ==t — b

Let (z(-),y(-),u(:)) be a solution of this optimization problem. Then, applying Theorem 3.1,
there exists a tuple

(aoa 67 )‘w<>7 )\y()a )‘t())’
with 8 = (Bo, B1, B2, B3, Ba, Bs) € RP xR such that, if we define the function H as in the previous
proof and [ by:

1(v) = a®J(v) + (Bo, 1m0 (v)) + Bim1(v) + Banz(v) + Bsnz(v) + Bana(v) + Bsns (v),

we have

(@,8)#0, a’>0.

The dynamics of the adjoint vector is given by

\.— _9H \ _ _0H _ \, — _9H _
A = oz’ )\y_ ay_o’ Ap = at_o

The transversality conditions at initial and final time are the same as in the previous proof, and
the jump on the adjoint vector is given by

ol
Aae(t) = Aa(t]) = = dg(z(t1))" -
(1) = Ault) = s (0) = dala(en))” -y
M) = A7) = 50(0) = 0
Y Y dy(ty)
and we also have that \;(t]) — \((t]) = B5. One can then conclude the proof as before, the
function A, being constant, and A\; being piecewise constant. Letting p? = —a® and B := 3y €

RP, we get the formulation of Proposition 3.1. O
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Remark 3.1: Via-point constraint.

An important case in practice is when the intermediate constraint consists in prescribing some
components of the state = at time ¢;. Let P : R™ — R? (with p < n) be a projection such that
P(z1,...,2n) = (T5(1), - - -, To(p)), Where o is a permutation of {1,...,n}. In that particular
case, the intermediate constraint can be written

P(x(tl)) = Yvia,

where 1, is some fixed point in R, and is sometimes referred to as a via-point constraint. In
this situation, the constraint in (P)yq,s writes

P(z(t1)) = sP(Z(t1)) + (1 — 8)Yvias

and the cost in (P)pen, writes

s
Je(u) = / Ot ul®), 2(1) dt + | P(2(t1) =y /e.
0
Besides, the jump on the adjoint vector in Proposition 3.1 becomes (component-wise)

Po(i) (tii_) — Po(4) (tl_) = ﬂz for all i € [[17p]]7
pg(i)(tf) —Po(iy(t7) =0 for all i € [p+1,n],

and the jump in Proposition 3.2 becomes

Po(i) ) — Po(iy(t7) = —20%(zo() —ws) /e for all i € [1,p],
Do) () — Po)(t7) =0 for all i € [p + 1,n].

A variant is to choose penalization parameters ; depending on the indices under consideration.
Here, for simplicity, we keep the same penalization parameter € for all indices.

3.2.3 Shooting functions for (P),i.s and (P)pen.c

Propositions 3.1 and 3.2 state that the optimal solutions of the problems (P)yiq,s and (P)pen,e
must be sought over the set of trajectories satisfying the necessary conditions of the Pontryagin
maximum principle. We will now explain in detail how it can be reduced to finding the zeros of
some shooting function.

Shooting function for (P),e,.. In Proposition 3.2 the maximisation condition implies that,
under some conditions!, the control can be written as a function of the time, the state = and
the costate p : u(t) = u(t, z(t),p(t)). Let us denote z = (z,p). The dynamics of z can therefore
be written under the form 2(t) = F(t,2(t)). Let z(¢, z0) = (x(¢,20), p(t, 20)) be the solution of
the Cauchy problem 2(t) = F'(¢, 2(¢)) with the initial condition z(0, z9) = 2o and a jump at time

1. A usual assumption is to assume that a Legendre condition is satisfied, namely that the hessian matrix
2
%(t,m,u,p, p°) is negative definite. Such a condition enables to express the control (at least locally), as a
function of z and p.
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t; given by

x(ti_v ZO) - $(t1_, ZO) =0,
0

(et 20) — (i 20) =~ 22 (01, a(0) g, (1)

For short, let us denote H (t7) = maxyey H(tf,v, z(ts, (x0,p(0))),p°) and let us define the func-
tion

R*"xR — Rr+1
G po)ty) x(tf’(f”%}f(?t(f))))*mf (3.18)

Finding a trajectory satisfying the necessary conditions of Pontryagin maximum principle boils
down to finding a zero of the function G, that is an initialization of the costate p(0) and a final
time ¢y (n + 1 unknowns) such that the terminal condition z(¢;) = x; and the transversality
condition H (g, xz(ts),u(ty),p(ts),p°) = 0 are satisfied (n + 1 equations).

Shooting function for (P),;, s . Note that in the Pontryagin maximum principle for (P)pen, e,
the jump at time ¢ is given by

(1)~ plt7) = 2 - Byg(tr.2(t0) glt1.2(11)).

Hence, once the initialization of the costate p(0) is made, the dynamics of z = (, p) is determined
up to the final time.

In (P)yia,s, the jump at time t; is given by p(t]) — p(t]) = dg(t1,z(t1))T 8, where 3 € RP is
a new unknown of the problem. However, there are also p additional equations to fulfill to find
a trajectory satisfying Pontraygin’s necessary conditions, namely

g(t1,x(t1)) = sg(t1,%(t1)).

As explained in Chapter 2, solving an optimal control problem by an indirect method boilds
down to finding the zeros of a shooting function. In that case, the shooting problem consists in
finding a zero of a shooting function G4. More precisely, it consists in finding an initialization of
the costate p(0), a final time t¢ and a vector 5 € RP (n+ 1+ p unknowns) such that z(t;) = zy,
the transversality condition H(t¢) = 0 and the intermediate constraint g(t1,2(t1)) = sg(t1,Z(¢1))
are satisfied (n + 1 + p equations).

3.3 Application to the attitude control of a rigid body

3.3.1 The attitude control problem

Let us recall first the attitude equations for a rigid body, as expressed in the Introduction

0 = ZEBa) + 55 Q)

(1) = cosp(t) -q(t) —sine(t) -r(1)

Q1) = p(t) +sine(t) tan (1) - (1) + cos (1) tan () - ()
P = mg(nr(t) + X7 u(0b)

i(t) = asp(t)r(t) + X7, (1)t

i) = asp(®)alt) + X, us(0)b)-
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In what follows, we will denote w the (euclidian) norm of the angular velocity vector @ = (p, ¢, 7).
Therefore w is zero if and only if the three components p, ¢ and r are zero.

Our goal is to steer the system from an initial state xo to a final state ; while minimizing
a combination of the fuel consumption and the final time

u):/of2|uj(t)|dt—|—%f, (3.19)

and cancelling the angular velocity at some fixed intermediate time ¢1, i.e., w(t;) = 0. We will
explain at the beginning of Section 3.4 why this may be of interest in practice. Note that in that
example, the constraint writes as a via-point constraint as in Remark 3.1.

3.3.2 Continuation procedure

Computation of (Z(-),u(-)). A first difficulty, not mentionned so far, is that the resolution of
(P)o by an indirect method can already be hard. For instance, when considering a L' cost, as in
(3.19), the underlying shooting function is known to have a very small domain of convergence,
as explained in Chapter 2.

In chapter 2, we introduced the continuation parameter a € [0, 1], and for each a € [0, 1], we

defined the cost
/ Zuj V2 dt + ( 1704/ Z|u3 |dt+

When a = 0, one recognizes the cost (3.19). When « = 1, the cost is stricly convex in the

controls, and writes
ty M
/ Z o+

for which the initialization of the induced shooting method is much easier, see Chapter 2 for
more details on this issue.

We perform a first continuation, solving a sequence of optimal control problems, for values
of a decreasing from 1 to 0.

Resolution of (P)yiq0. Once (Z(-),a(-)), a solution of (P)o, is computed with the first contin-
uation on the parameter «, it can be used to initialize the second continuation on ¢, considering
the penalized cost

& ty 1 2
= [ D lw®)ldt+ 5+ - et (3.20)
I —— €

starting from a high value e,,x, and decreasing progressively € until we reach a threshold e;y,.
For each € € [emin; Emax], the resolution of (P)pen. is done by finding a zero of the shooting
function G, of Equation (3.18).

Once (P)pen,em 18 solved, provided emiy is small enough, it provides a good enough initializa-
tion to tackle the original problem of interest (P)yiq,0, and we end up our procedure by solving
a last shooting problem with the continuation parameter s taken equal to 0.

Figure 3.1 summarizes the numerical procedure we just described.
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L? norm L1 norm

a = 1 o
(P)pen,emax
a = 0
&. — Emax

min
&

(P)ma O

«
S

Figure 3.1 — Continuation procedure to solve (P)yiq.0-

Remark 3.2: Order of the continuations

The procedure schematized on Figure 3.1 performs first a continuation on the parameter «
and then a continuation on the parameter . We also tried to perform first the continuation on
¢ and then on «, but experimentally observed that the whole procedure was slower to finish.

A convergence result. To justify that our procedure is theoretically sound, we give now a
convergence result. Namely, we show that, for the attitude control problem with the L' cost
(3.19), the solutions of (P)yen.e converge to a solution of (P)yiq,0 when € goes to 0.

PROPOSITION 3.3. — Assume that (P)yiqa,0 has a unique solution (Z,4) defined on the time
interval [0,tf]. Let (u®,2%) be a sequence of solutions for (P)pen.e, defined on [0,t%]. Then, when
€ goes to 0,

e 1% converges to ty,
e uf converges weakly to u,
e ¢ converges uniformly to T
Proof. First, we show that the sequence t is bounded. By optimality of the trajectory (uf,z®),

one has

Je(u®) < Je (1),
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that is,

R e t; 1 e 2 R ~ Ef L, 2
[l L Dl < [ ol L el
L € 0 €

Jj=1

Exploiting the fact that &(t1) = 0, we get that

/ Z|u |dt+ ||w / Z\uj \dt+ (3.21)

Hence, the sequence 15 is bounded, and up to a subsequence, it converges to some 7.

The sequence (u®) is bounded in L*([0,77,[0,1]™) (if t3 < T, we extend u® to 0 on the
interval [tfc,T], if t3 > T, we restrict u® to [0,7T]), and therefore, up to a subsequence, (u°)

converges weakly in L?([0, 77, [0,1]™) to some control u*. For all ¢ > 0, u® belongs to the set
V= {veL*([0,T],R™) s.t. Vi € [1,m], v;(-) € [0,1] ae.}

This set is strongly closed and convex, and is therefore weakly closed. Thus, u* € V, and is
admissible for the system (3.1). Let us denote x* its associated trajectory. It is a classical
result (see for instance [ |) that for a control-affine system, if a control sequence (u®) con-
verges weakly in L%([0,7],R™) to a control u*, then the associated sequence of trajectories (z¢)
converges uniformly to z*, associated to u*.

Besides, for all € > 0, we have z.(0) = 2o and z.(t7) = zy, hence, taking the limit when ¢
goes to 0, we have
z*(0) =z, z*(T) = xy.

From (3.21), we also get

t
< s t))? < /Zm Dldt+ L)

and taking the limit when ¢ goes to 0, we get that ||w*(1f1)||2 = 0. Hence, (u*,z*) is a solution
of (P)via,0, and by uniqueness, we have u* = 4, z* =7 and T = ty.

O

Actually, when initializing the resolution of the optimal control (P)yiq,0, We also use the
adjoint vector p®(-) coming from the resolution of (P)pen,. when € goes to zero to initialize the
initial value p(0) and the Lagrange multiplier 5. Indeed, as explained previously, the shooting
function for (P)yia,s, Gs=0, takes a Lagrange multiplier 8 as an argument. Following Remark
3.1, we use the heuristic that an approximation for g8; can be —2p0(x§(i) —y;)/e.

Of course, in order to have a complete justification of the procedure, we should also show a
convergence property for the adjoint vector p®(-) and for the jump at time ¢;. This study is more
difficult than the proof of Proposition 3.3, and has yet to be undertaken.
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3.4 Numerical results

In this section, we are going to illustrate the procedure previously introduced. For the sake of
continuity, we will take the same numerical values that in the last section of Chapter 2, namely

(00, 1/)07 %0, Po, 490, TO) = (0047 0067 7.7, _00277 07 O)a
(Qf, 77/}f, (pf,pf, qf7 ’I"f) = (063, 082, 70, —0008, 0, 0)

We also chose the time ¢; to be equal to 8.5 seconds. Indeed, in practice, the state of the launcher
at the beginning of the ballistic flight is inherited from the previous phases of the flight, and the
angular velocity may take high values. It can therefore be useful to start the ballistic phase by
controlling the three angular velocities to zero, while letting the orientation angles 6, 1 and ¢
evolve freely.

On Figure 3.2, we display the evolution of the angular velocity (in degrees per second) at
different stages of the procedure. In black, we plot the angular velocity for the solution of
(P)pen,emax. As e™®* (we started at e™** = 100) is chosen large enough, it is so close to the
L'-optimal angular velocity @ that both curves would overlap. In dark red, we show the angular
velocity at the end of the continuation on e, and with a dotted style, the angular velocity
at some intermediate stage of the continuation on . When ¢ reaches ¢™" (taken equal to
2 x 1079), the solution of (P)pen,emin provides a good enough starting point to initialize the
shooting problem (P), o with success. The angular velocity for (P)s, is plotted in light red.
Note that except during the first seconds, the curves corresponding to (P),ep cmin and (P)s o are
almost indistinguishable.

_— (a,e) = (1,e™*") (a,e) = (1,e™™)
-------- () =(1,4x107°)  —— (OCP)uia0
............. t=1t

1.5

20 30 40 50 60
t

Figure 3.2 — Evolution of the angular velocity during the
continuation.
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On Figure 3.3, we also display the evolution of the 6 components of the optimal solution of
(P)s,0, and on Figure 3.4 we show the associated control. Note that compared to the controls
for the resolution of (OCP) (represented on Figure 2.6), the number of switching times has
increased. They were 6 switchings for the controls corresponding to the resolution of (OCP),
and 16 switchings for the controls of Figure 3.4. This is one of the numerical difficulty in the

resolution of (P)s o, as switching times can be hard to catch with an indirect method.

7.6

74

721

Figure 3.3 — Solution of (P)yiq,0, steering the system from xg ()
from x (o), satisfying a via-point constraint (o).

0.5 41 05 -4 05 -4 05 A
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0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
1P T " =] 1T p—— = 17 T ‘7U7F lwiua;“ T =
0.5 - 4 05 - 05 - 05 B
b oL m—————————— 0L T T = 0L T T =
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
1F = = T — 0 T 1 \ T = 1F
0.5 41 05 -4 05 4 05
(U= = (= = (= = (=
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Figure 3.4 — Controls for the resolution of (P)yiq,0.

Numerical difficulty. The numerical procedure described so far, relying on the combination of
continuation techniques and indirect methods, allows us to solve with high accuracy the problem
(P)s,0. We emphasize again that solving numerically this problem would be too hard to be

tackled directly.
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We tried to apply the same procedure to an attitude control problem with more than one
intermediate constraint: at times ¢; and t5, we wish to enforce constraints under the form

g1(t1,z(t1)) = 0, ga(t2, z(t2)) = 0.
A natural generalization of our approach would be to penalize the constraints in the cost

tr
[ P20 de+ (@) + iz atia)) P
and let the pair € = (e1,e2) go to zero.

However, because of the increasing number of switching times arising when enforcing such
constraints, even the continuation on ¢ sometimes failed to reach a satisfactory level.

In order to be able to generically optimize any complete ballistic flight, it was crucial for the
CNES to have a tool dealing with any given number of intermediate constraints. This is the
focus of Appendix A, where we give the description of a software, designed and implemented for
the CNES, combining a direct method with an interior-point algorithm.

3.5 Conclusion of this chapter

No matter the way the intermediate constraint is taken into account, the maximum principle
on which the indirect method relies states that the adjoint vector is discontinuous at the time
of the constraint. A continuation procedure has been designed in order to exactly enforce the
constraint. The procedure benefits from the high accuracy of the underlying Newton method.
However, when we experimentally tried to apply the procedure to the attitude control problem
with more than one via-point constraint, the aforementioned procedure sometimes failed to
converge.

For this reason, in the software that we designed for the CNES (see Appendix A), we pro-
ceeded in a slightly different way by combining direct methods with an interior-point algorithm
able to tackle any given ballistic phase where the number of via-point constraints is up to the
choice of the user.

Note that in the theoretical study we undertook in Section 3.2 and Section 3.3, two open
problems remain:

e It is still unclear why the continuation procedure on the parameter ¢ gives much better
results than the continuation on s.

e The convergence result of Proposition 3.3 is conjectured to be true as well for the sequence
of adjoint vectors (p®)e>o-

These two issues are left open.
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In the previous chapters, we applied optimal control theory to several attitude control prob-
lems. In those chapters, the dynamics of the state was given by a differential equation coming
from physical laws that did not account for the presence of uncertainties, model errors or per-

turbations.

However, in view of aerospace applications, being able to design a control system that deals
with uncertainties is of crucial importance. It is the main concern of this chapter, where we give
an algorithm to control a system even with deviations from the target, identify a criterion to
measure the robustness of a control and suggest a way to make a nominal control more robust.
Note that our approach applies to any given nonlinear control system with a cost resulting in a

bang-bang control.
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4.1 Introduction of the chapter

4.1.1 Overview of the method

To introduce the subject, we explain our approach on the control problem consisting of
steering the finite-dimensional nonlinear control system

o(t) = f(t,z(t), u(t)), (4.1)

from a given z(0) = z to the target point x(ty) = xf, with a scalar control u that can only
switch between two values, say 0 and 1. The general method, as well as all assumptions, will be
written in details in a further section.

Let E(zo,ts,u) = z(ts) be the end-point mapping, where z(-) is the solution of (4.1) starting
at 2(0) = z¢ and associated with the control u. One aims at finding a bang-bang control u,
defined on [0, tf] for some final time ¢ty > 0, such that E(zo,tf,u) = xy.

Many problems impose to implement only bang-bang controls, i.e., controls saturating the
constraints but not taking any intermediate value. These are problems where only external
actions of the kind on/off can be applied to the system.

Of course, such bang-bang controls can usually be designed by using optimal control theory
(see | , , ). For instance, solving a minimal time control problem, or a
minimal L! norm as in | |, is in general a good way to design bang-bang control strategies.
However, due to their optimality status, such controls often suffer from a lack of robustness
with respect to uncertainties, model errors, deviations from the target. Moreover, when the
Pontryagin maximum principle yields bang-bang controls, such controls have in general a minimal
number of switchings: in dimension 3 for instance, it is proved in [ , , | (see also
[ , , | for more details on this issue) that, locally, minimal time trajectories
of single-input control-affine systems have generically two switchings. Taking into account the
free final time, this makes three degrees of freedom, which is the minimal number to generically
make the trajectory reach a target point in R3, i.e., to solve three (nonlinear) equations.

In these conditions, a natural idea is to add redundancy to such bang-bang strategies, by
enforcing the control to switch more times than necessary. These additional switching times
are introduced by needle-like variations, as in the classical proof of the Pontryagin maximum
principle (see [ , D-

We recall that a needle-like variation m = (¢1,0t1,u1) of a given control u is the perturbation
of the control u given by

Uy

U1 if te tl,t1+5t1 s
Ur, (1) = { u(t) otherwise, | | (4.2)
where t; € [0,tf] is the time at which the spike variation is introduced, d0t; is a real number of
small absolute value that stands for the duration of the variation, and u; € [0, 1] is some arbitrary
element of the set of values of controls. When §t; < 0, one replaces the interval [ty, 1 + dt1] with
[t1 + 0t1,t1] in (4.2). We represent on the Figure 4.1 a needle-like variation.

It is well known that, if |0¢1| is small enough, the control u,, is admissible (that is, the
associated trajectory solution of (4.1) is well-defined on [0,t¢]) and generates a trajectory z, (-),
which can be viewed as a perturbation of the nominal trajectory z(-) associated with the control
u, and which steers the control system to the final point

E(xO?tf7uTF1) = E(!L‘o,tf,’u) + |6t1| Uy (tf) + O((Stl)v (43)
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“m(')

0.4 ~ " :

I
(9]
e

Figure 4.1 — Needle-like variation u,, of a control u.

where the so-called variation vector v, (-) is the solution of some Cauchy problem related to a
linearized system along x(-) (see [LMG7h, PBGM62, ST10b| and Proposition 4.1). Recall that
the first Pontryagin cone K (ts) is the smallest closed convex cone containing all variation vectors
vx, (tf); it serves as a local convex estimate of the set of reachable points at time ¢ (with initial
point xg).

Assume that the nominal control u, which steers the system from z to the target point =, is
bang-bang and switches N times between the extreme values 0 and 1 over the time interval [0, ¢].
We denote by 7 = (t1,...,tn) the vector consisting of its switching times 0 < t; < --- <ty < ty.
Then the control v can equivalently be represented by the vector 7, provided one makes precise
the value of u(t) for t € (0,¢1). One can also add new switching times: for instance if u(t) = 0
for ¢t € (0,¢1), given any s; € (0,11), the needle-like variation m; = (s, ds1,1) (with |ds1| small
enough) is a bang-bang control having two new switching times at s; and s1 + ds1.

In what follows, we designate a bang-bang control either by w or by the set 7 = (¢,...,tnx) of
its switching times. This is with a slight abuse because we should also specify the value of u along
the first bang arc. But we will be more precise, rigorous and general in a further section. The end-
point mapping is then reduced to the switching times, and one has E(zo,ts,7) = xy. A variation
0T = (0t1,...,0tn) of the switching times generates N variation vectors (vi(tf),...,vn(ts)),
and the corresponding bang-bang trajectory reaches at time ¢; the point (see Figure 4.2, where
two variations vectors are displayed, for two switching times ¢; and ¢5)

E (mo,tf,T-i- (57—) =xf+ oty - ’Ul(tf) + -+ 0ty - ’UN(tf) + O(||(5T||)

Therefore the end-point mapping F is differentiable with respect to 7, and

oL
oT

Notice that compared to (4.3), the absolute values disappear. We will prove this result in details
further in the chapter. In particular, the range of this differential is the first Pontryagin cone

(.T(),tf,T) -0T = 6ty -Ul(tf) + - 4Oty -UN<tf). (4.4)
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t t1 + 0ty

toy + Oto

Figure 4.2 — Changing the switching times induces a displacement at
the final time.

K(ty) (see also [ST10b]). Obviously, the more switching times (i.e., degrees of freedom), the
more accurate the approximation of the reachable set.

We now add redundant switching times (sq,..., s;) for some ¢ € N in order to generate more
degrees of freedom to solve the control problem

E(xo,tf,(tl,...,tN,Sl,...,Sg)) = fEf.

We order the times in the increasing order and we still denote by 7 the vector of all switching
times.

Redundancy creates robustness. We will see further that these redundant switching times
contribute to make the trajectory robust to external disturbances or model uncertainties, we will
develop a method to tune the switching times in order to absorb these perturbations and steer
the system to the desired target x; € R".

Here, in this still informal introduction, we show how to use the additional switching times
to make the system reach targets xy + dzy in a neighborhood of z. The idea is to solve the
nonlinear system of equations

E(xo, ty, T+ 0T) = xf+0xf.
Using (4.4), we propose to solve, at the first order,

oE
oT

which makes n equations with N + ¢ degrees of freedom. We assume that N + ¢ is (possibly
much) larger than n and that the matrix in (4.5) is surjective. Then one can solve (4.5) by using

(z0,t7,T) - 6T = by, (4.5)
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the Moore-Penrose pseudo-inverse (g—fﬁ)T of g—g (see | | and Appendix C, or see | ,

| for a theory in infinite dimension), which yields the solution of minimal Euclidean norm

OE\"

d
o7, < 1220, (4.6)

min

and we have

where o, is the smallest positive singular value of g—f_. This estimate gives a natural measure
for robustness, that we will generalize.

The two main contributions of this chapter are:

e the idea of adding redundant switching times in order to make a nominal bang-bang control
more robust, while keeping it as being bang-bang;

e the design of a practical tracking algorithm, consisting of solving an overdetermined non-
linear system by least-squares, thus identifying a robustness criterion that we optimize.

They are developed in a rigorous and general context in the core of the chapter.

4.1.2 State of the art on robust control design

There is an immense literature on robust control theory, with many existing methods in order
to efficiently control a system subjected to uncertainties and disturbances. Whereas there are
many papers on Hy and H, methods, except a few contributions in specific contexts, we are
not aware of any general theory allowing one to tackle perturbations by using only bang-bang
controls. This is the focus of this chapter.

Let us however shortly report on robustness methods when one is not bound to design bang-
bang controls. In [ |, a path-tracking algorithm with bang-bang controls is studied, for a
double integrator and a wheeled robot. The technique relies heavily on the expression of the
equations and does not apply to more general systems. In | |, the authors build a robust
minimal time control for spacecraft’s attitude maneuvers by canceling the poles of some transfer
function. A remarkable fact is that the robustified control presents more switchings than the
minimal time control. In this case, the robustness is evaluated as the maximum amplitude on a
Bode diagram (see also | | and | | for similar works). In [ |, the authors observe
that bang-bang controls are intrinsically not robust, and use pieces of singular trajectories (hence,
not bang-bang) to overcome this issue.

In the Ho and H, theories, control systems are often written in the frequency domain using
the Laplace transform. For a transfer matrix G(s), the two classical measures for performance
are (see | , ]) the Hz norm and the Ho norm respectively:

Loo 1/2
||G|2=(1 / Trace<c<jw>0<jw>*>dw) and Gl = sup (G,

2 J_ o
where (G) is the largest singular value of G.

In the linear quadratic theory, the question of optimal tracking has been widely addressed:
given a reference trajectory &£(-), we track it with a solution of some control system #(t) =
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f(z(t),u(t)), minimizing a cost of the form

/0 " (le(t) — €DIZ + [u(t)2) dt -+ la(ty) — ()3,

with weighted norms (see [ , , ). The first term in the integral measures how
close one is to the reference trajectory, the second one measures a L? norm of the control (energy),
and the third one accounts for the distance at final time between the reference trajectory £(-) and
z(+). Then, the control can be expressed as a feedback function of the error z(t) — £(t), involving
the solution of some Riccati equation. In | , ], the authors investigate the question
of stabilizing around a slowly time-varying trajectory. They also introduce uncertainties on the
model and study the sensitivity of the system to those uncertainties. In the case of the existence

of a delay on the input, a feedback law is proposed. In [ , |, uncertainties p are
introduced in a linear system @(t) = A(p)z(t) + Bu(t), and a tracking algorithm is suggested,
under matching conditions on the uncertainties or not (see also | | for a survey on robust

control for rigid robots).

In the late 1970’s, Hoo control theory developed. The control system is often described by
a plant G and a controller K. Then, the dependency of the error z (to be minimized) on the
input v can be written as z = F(G, K)v. The Hs control problem consists of finding the
best controller K such that the 7, norm of the matrix F (G, K) is minimized: ||F(G,K)| =
sup,er 0(F (G, K)(jw)). It can be interpreted as the maximum gain from the input v to the
output z. This criterion was introduced in order to deal with uncertainties on the model (on
the plant G). In | |, the author introduced the notion and highlighted the connection
with robustness. In | |, a link is shown between the existence of such a controller and
conditions on the solutions of two Riccati equations. Following a notion introduced in [ I,
the linear matrix inequality (LMI) approach was introduced in | ], and used in | )
] to solve the H ., synthesis. The Riccati equations are replaced with Riccati inequalities,
whose set of solutions parameterizes the H., controllers (see also [ | for the use of LMIs
in control theory). The papers | , , | present design procedures in this context
to elaborate the feedback controller K. In [ |, the theory is extended to systems with
parameters uncertainties and state delays, as well as in | |, with stochastic uncertainty.

In many optimal control problems, the application of the Pontryagin maximum principle
leads to bang-bang control strategies, and the classical Hs and H, theories were not designed
for such a purpose. But the optimal trajectories are in general not robust. Adding needle-like
variations is therefore a way to improve robustness, and is the main motivation of this chapter.
Of course, the method applies to any bang-bang control strategy, not necessarily optimal.

The approach that we suggest in this chapter combines an off-line treatment of the control
strategies, with a feedback algorithm based on the structure of the control. We emphasize here
that this algorithm preserves the bang-bang structure of the control. It consists of applying a
nominal control strategy (that needs to be computed a priori), and adjusting it in real time,
allowing one to track a nominal trajectory. The off-line method takes a solution of the control
problem and makes it more robust by adding additional switching times (i.e., redundancy), which
can be seen as additional degrees of freedom. Note that our analysis is done in the state space,
without needing to consider the frequency domain. A key ingredient to the method is the use of
needle-like variations.
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4.1.3 Structure of this chapter

The chapter is organized as follows. In Section 4.2, we develop an algorithm to steer a
perturbed system to the desired final point. The method is similar to the one presented in
Section 4.1.1, except that we need to consider a backward problem. Indeed, the final point is
fixed, and perturbations appear all along the trajectory. Besides, our measure for robustness
comes out naturally in view of (4.6). Having identified the robustness criterion, we show in
Section 4.3 how to add redundant switching times, leading one to solve a finite-dimensional
nonlinear optimization problem. In Section 4.4, we provide some numerical illustrations on the
attitude control problem of a 3-dimensional rigid body.

4.2 Tracking algorithm

Setting. In this chapter, we consider the control system

m(t) = f(t’ .’L’(t), u(t))’ (4-7)

where f is a smooth function R x R™ x R™ — R", the state z(-) € R", the control u(:) €
L>([0,t£];9), and  is the subset of R™: [aq,b1] X -+ X [@m,br]. We make two additional
hypothesis: the controls we consider are “bang-bang”’, with a finite number of switching times:

(Hy) Vie[l,m], u(t) € {a;,b;}, a.e.
(Hz) Vi€ [1,m], u; does not chatter.

A control is chattering when it switches infinitely many times over a compact time interval (see
[ , ). Therefore, our method does not apply to those controls. However, when the
solution of an optimal control problem chatters, provided that it is possible, one could consider
a sub-optimal solution, with only a finite number of switching times.

In the context of optimal control, we will denote the cost under the form

Ctu) = [ 1(t.a0)u(e) . (4.8)

We recalled in the introduction the (classical) definitions of the end-point mapping, of a
needle-like variation (4.2) and the expansion of the end-point mapping subject to a needle-like
variation (4.3).

4.2.1 Reduced end-point mapping

In this subsection, we give the definition of the reduced end-point mapping, and show a
differentiability property.

Let us consider a bang-bang control u(-), and its associated trajectory z(-). For the sake of
simplicity, we make the additional assumption that for every switching time ¢;, one and only
one component, of the control commutes. Therefore, provided we specify the initial value of each
component, the control u is entirely characterized by the switching times of its components and
can be represented by a vector:

((ulo, . ,umo), (tl,il) Sy (tN,iN) ,tf) €0 x R2N+1,

where u;o € {a;,b;} is the initial value for the control u;(-) (i € [1,m]), N is the total number
of switching times, ¢y is the final time, and i; is the component of the control that switches
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at time t;. As this representation entirely characterizes the control, we will use indistinctly
the notation u and ((w10,...,umo), (t1,%1),...,(tn,in),tf) to speak about the control whose
components switch at the times ¢;. In the literature, ((t1,%1),...,(tn,in)) is often called a
switching sequence.

Remark 4.1:

Had we wanted to allow simultaneous switching of multiple components, we would need to
consider controls represented by:

((UIOa-“7um0)7(t171-1)a"'a(tNaIN) 7tf)7

where Z; C [1, m] represents the set of components that switch at time ¢;.

DEFINITION 4.1 (REDUCED END-POINT MAPPING). — We define the reduced end-point
mapping by

E(-TOa (U/107 sy um0)7 (tla Zl) yeey (tN7 ZN) 7tf) = J}u($0, tf)a
where u is the control represented by ((u10, ..., Umo), (t1,91),.- ., (En,in),tr), and z,(zo,ts) is
the associated state at time ty, starting at xo.

Note that in [MBIIK05, MOO04], the authors also reduce a bang-bang control to its switching
points, in order to formulate an optimization problem in finite-dimension.

In the following, when writing this reduced end-point mapping, we may consider that the
initial point xg is fixed, as well as the way the components of the control switch (i.e., we consider
that the N-tuple (i1, ...,4n) is fixed), the initial values u;o and the final time ¢¢. In this context,
we may forget them in the notations, and denote the reduced end-point mapping by

E(t1,...,tn) = zu(ty).

A remarkable fact is that the reduced end-point-mapping is differentiable. Compared to the
expansion (4.3) with respect to a needle-like variation, the sign of ¢ does not matter. For the
sake of completeness, we give the proof at the end of the chapter.

PROPOSITION 4.1. — The reduced end-point mapping is differentiable, and

dE(ty,...,tn) = (vi(ty) -+ wvn(ty)) € My n(R),
where v;(-) (j € [1,N]) is the solution of the Cauchy problem, defined fort >t;:

(1) = 9 (1 (0), w0 (1)

P flty,x(ty), (.o aq,,...) — f(t;,o(t;), u(tj)) if u;; switches from a;; to by, .
vilt) = { flty,2(ty), (o by enn)) — f(tj,:z:(tj),u(t;-")) if ug; switches from b;; to a;;.

The notation (..., a;;,...) (resp. (...,bi;,...)) is used to show a difference with u(tj) (resp.
u(t;)) on the ij-th component only.
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Remark 4.2:

In the special case of a control-affine system, as the attitude control system (3.3.1) studied in
this thesis

m
() = fo(x(t)) + D () fi(x(?)),
j=1
the initial condition on v; can be written much more easily:

‘(t ) . (aij — bl])fz] (i‘(tj)) if Ui, switches from Ay ; to bij-
Yilti) = (bi; — ai;) fi; (x(t;)) if u;; switches from b;; to a;;.

4.2.2 Absorbing perturbations

As explained in the introduction of the chapter, we present here a closed-loop method to
actually steer the system towards a point xy, with bang-bang controls, even in the presence of
perturbations.

First, for the sake of simplicity, we will explain how to control the system to some point
x¢ + 6xy. We will see that this idea can be adapted for our purpose of controlling a perturbed
trajectory, by simply reversing the time.

Perturbations on the final point. We briefly generalize the problem introduced in the
introduction. Let

u= ((ulo, cee ,umo), (l_fl,il) gee ey (EN,iN) ,tf) €0 x R2N+1

be a control such that xz(ty) = xy. That is, using the definition of Subsection 4.2.1, we have
that

E(an (uloa' . 7um0)7 (flail) D) (fNaZN) atf) =Tf.
Or, considering that the final time t¢, the initial point x, the components (i1,...,iy5) and the
initial values (u1q, ..., umo) are fixed,

E(fl, o tn) = Ty

Let dx ¢ be some perturbation of the final point zy. We look for a vector 67 = (t1,...,dtn) so
that the system reaches the target point x; + dxy:

E(ﬁ + 0ty ...ty +0ty) = T¢+0xf.

As we have shown in Proposition 4.1 the differentiability of the reduced end-point mapping, we
can write

E(ty +6t1,...,tn +0tn) = E(t1,...,tn) +dE(t1,...,tn) - 6T + o(||0T1).
At order one, the solution is given by the solution of the linear equation
dE(Zl, ces ,EN) S0T = (51‘f.

It is natural to target the final point z; + dxy while shifting the switching times as little as
possible. That is, we look for the solution of minimal euclidian norm of the previous equation,
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which is given by 6T = dE(fy,...,In)" - 6y.

Therefore, we have shown how to compute, at order one, the correction to apply to control
the system to some point x¢ + dzs: it boils down to solving a least-squares problem. Let us
keep in mind that our definitive goal is to control systems that are perturbed all along their
trajectory, to a fixed final point ¢. In other words, from a perturbed point x(t) + dx(t) at some
time ¢ € [0,ty), we want to absorb the perturbation dz(¢) and still reach the final point 5. Even
if this is a slightly different setting, we show that we can apply the same idea if we look at a
backward problem.

Absorbing a perturbation at time ¢. Let (Z(-),u(:)) be a nominal solution of the control
system (4.7). We assume that when applying in practice the control @ = T, because of model
uncertainties and perturbations, we observe a perturbed trajectory pe.(t) = Z(t) + dz(t).

Let t € [0,ty]. Starting from the perturbed point Z(t) + dx(t), which stands as a new initial
point, we want to reach the final point x; in time ¢t; —¢. Hence, we look for a control & + du
such that

E(T(t) + 0x(t),u + du,ty —t) = xy.

Assume for a moment that the perturbation of the control du is small in L°° norm. Then, at
least formally, one can write

(@(t),u,ty—t)-0x(t) + aﬂ(f(t),ﬂ, tr—1t)-du+o(||0z(t)] + ||ou||) = z;.

OF
E(E(t)a u, tf - t) +t a5 u

8‘%0
Therefore, at order one, we look for a solution of the (linear) equation

oE

08 @(t), 1y — 1) -0nlt) + o0
To

S (@(t) Tty — 1) - u = 0. (4.9)

However, we do not want, in this chapter, to apply small perturbations in the L°° norm,
as they would not result in bang-bang controls (However, this is similar to what is done while
performing a Ricatti procedure to stabilize a system or track a reference trajectory). Nevertheless,
reducing the end-point mapping to the switching times enables us to preserve the bang-bang
structure: in the formalism previously introduced, we need to solve the nonlinear system of
equations

E(Z(t) + 0x(t), T +0T,ty —t) = xy.
The equation (4.9) becomes

g—,]E,(E(t),T, ty—1t) 6T = —g—E(E(t),T, ty—t)-ox(t), (4.10)

Zo

where the expression OE /0T is given by Proposition 4.1.

A backward problem. Solving this equation requires the computation of the partial differ-
ential 0F/9x( at the initial point Z(t). We will see now that it can be overcome by introducing
a backward problem. Of course, the two formulations are equivalent.

DEFINITION 4.2 (BACKWARD END-POINT MAPPING). — Let u = (t1,...,tn) be a bang-
bang control, and t € [0,ty]. We define the backward end-point mapping by

E(tty, ... ty) =&ty —t),
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where &(-) is the solution to the Cauchy problem

(t) = _f(tf - tv‘%(t%u(tf - t))a
(0) =Tf.

10

IS

Note that for the nominal trajectory (Z(-),u(-)), we have that

E(t,t1,...,tx) =T(1).

Indeed, we have in this case that T(t) = Z(t; —t): if we integrate the nominal system backward,
starting from the point z; during a time period t; — ¢, we end up at point Z(t).

Remark 4.3:

Let t € [0,tf], and j be the smallest index such that ¢; > ¢ (with the convention that j =
N +1if t > ty). Then, note that ¢,...,t;_1 do not play any role in the computation of

E(t,1,,...,ty). The differential of E can be computed with the Proposition 4.1. It is a matrix
of size n x (N — j + 1).

In this context, the problem of adjusting the system back towards z; writes: at time ¢, find
(tj,...,tn) such that
E(t,tl,...,t]\]) :a:p”(t). (4.11)
We see that reversing the time, we place ourselves in the setting previously described of
aiming at a perturbed final point. Therefore, we have the following proposition.

PROPOSITION 4.2. — At order one in 0z, the solution of minimal norm of the problem (4.11)
is given by T + 0T, with

OT =dE(t, T)! - dx(t), (4.12)
where dE(t, T)" denotes the pseudo-inverse of dE(t, T). Moreover, we have the estimate
1
< — , 4.1
19T, < o (e (1.13

where owmin(t) is the smallest positive singular value of dE(t,T).

Proof. The scheme of the proof has already been exposed previously in the chapter. However,
we write it extensively here. Let 7 =7 — 7. The problem writes

E(t,T 4 0T) = zper(t).

According to Proposition 4.1, the backward end-point mapping is differentiable (and we also
know how to compute its derivative), so

E(t,T+6T)=E{t,T)+dE®,T) 0T +o(|6T|)
=Z(t) + dEt,T) - 0T + o(||0T]).

So, at order one, the problem writes
dE(t,T) - 6T = dx(t). (4.14)

It is well known (see [AIL02] for instance), that the solution of minimal norm of this equation
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is 0T = dE(t, T) - 0x(t). Besides, let opmax(t) > -+ > omin(t) > 0 denote the positive singular
values of dE(t, T). We have that HdE(t, il H2 = 1/0min(t) (||-]|5 for a matrix denotes the induced
norm corresponding to the euclidean norm), so that

16711, = [dE T - oa(t)|

2

< |[dB. T, - ozl
< 6zl

)
Omin

which concludes the proof. O

Remark 4.4: Relative error estimate

In Proposition 4.2, we show the absolute error estimate

1
Umm( )

where §7 is a solution of the equation (4.12). However, one may want in some cases to have
instead a relative error estimate. It holds

19T Mly  omaa(t) [62(E)]l;
[Ty = omin(®)  [z(@)]l;

The quantity % is the condition number (with respect to the Euclidian norm) of the

matrix dE(t,7_’). We give in Appendix C more details on the condition number of a matrix.

Remark 4.5:

We have the relation that, for all vector of switching times 7

1671, < 162l

E(E@t,T), Tty —t)=
Differentiating this equality with respect to 7, we have that, for all §7

aE( E(t,T), Tty —t)-dE(t,T) - 6T+6—E( E@t,T), Tty —t)-6T =0.

81’0 5‘7'

Replacing the second term by its value in (4.10), it follows that

aE( Et,T), Tty —t)-dE®,T)- 0T = 6E( E(t,T), Tty —t)-dx(t).

Oxg 0z

It is easy to show that OFE/Oxo can be expressed as the resolvent of a linearized system.
Therefore, the matrix dE /0y is invertible, and the equations (4.10) and (4.14) are equivalent.
But solving (4.14) only requires to compute the derivative of E. This is what we do in the
following.
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Remark 4.6:

Note that it might not always be possible to find a solution to the equation dE(t,T') 0T =
0x(t). This may happen for instance if ¢ > ty_,11, i.e., we do not have enough degrees of
freedom left to absorb the perturbation dz(t) € R™. However, we can still give a meaning to
the equation dE - 67 = dz(t). We look for a solution to the least-square problem:

. 2
in B2, ... Bxn) - 6T — 62(t H :
min_ B, T) 2()|
for which 67 = dE(t,t1,...,tx)"-6z(t) is still the solution of minimal norm (see [A1X02]). We
see here emerging the idea that the number of switching times (i.e., degree of freedom) left at
time ¢, is going to be an important factor to track the system back towards the final point .

Numerical algorithm. At time ¢, Equation (4.12) provides us with a formula to adjust the
control so that the perturbed trajectory eventually reaches x¢. But it certainly does not enable us
to face perturbations that would happen after time ¢. In order to absorb perturbations all along
the trajectory, we suggest the following algorithm: Let 7 be an initial control. Given an integer
s and a subdivision 0 < 7y < --- < 75 < ty of the interval [0,;], we adjust the control at each 7;
for all i € [1,s]. That is, for each i € [1,s], we measure the drift 0z (7;) = Zper(Ti) — Tref (7)),
and compute the differential of the backward end-point mapping dE(7;, 14, ...,Ix). We deduce
from (4.12) that the correction to apply is then 67 = dE(7;,t1,...,tx)t-02(7;). We then update
the control by considering the new vector of switching times 7 + 67

Algorithm 2 Tracking algorithm to absorb perturbations

1: Choose an integer s and a subdivision (7, ..., 7s).

2: Set t = 0.

3: Set Trep0 = To > Initial conditions
4: T > Initial switching times

5. fori=0,7<N,i=1+1do

6: Integrate the ideal system f from ¢ to 7;, with initial conditions ¢ f.o.

7 Measure the drift 02(7;) = Zper(7;) — Tref(Ti).

8 Compute the differential of the backward end-point mapping dE(Ti,fl, e N
9: Compute the correction 67 = dE(7;,%1,...,In) - 627:).

10: Apply the correction T < T + 67

11: if 3j s.t. {41 <{; then

12: “Stop”. Interchanging of switching times.
13: end if

14: Tref,0 — Tper (Tl)

15: t < 7.

16: end for
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Remark 4.7:

When computing the correction 7 + §7, it may happen that the new switching times are
not ordered, i.e., there exists some integer j € [1, N — 1] such that ¢;,1 < ¢;. In this case,
we consider that the correction is not physically acceptable, and we reject it at line 12 of
Algorithm 2. (Note that in some cases, we may want to continue the integration of the system
even if two switching times are not ordered. In that case, we can always use the last admissible
control, where all the switching times are ordered.)

Remark 4.8:

The computation of the differential dE(t,Zl, ...,tn) is done via the integration of a system
of ordinary differential equations, which can be done efficiently and quickly using numeri-
cal integrators. However, the size of the system (as well as the time required to compute
the pseudo-inverse) directly depends on the number of switching times N and on the state
dimension n.

4.3 Promoting robustness

Intuitively, we want to say that a control is robust whenever the correction §7 required to ab-
sorb the perturbation dz(t) is small. Since we have shown the estimate |07 ||, < [|02(t)]] /omin(t),
arobust trajectory is then one for which the values of 1/0m;, (t) remain small along the trajectory.

DEFINITION 4.3. — We define the following cost, that we will use to characterize the robustness
of a trajectory
tN 1
Colts,. ..t :/ - at. 4.15
7‘( 1 N) 0 Umin(t)2 ( )

Remark 4.9: Variations of the cost

In the previous definition, the upper bound in the integral is ¢5, because for ¢t > ¢y, the
backward end-point mapping derivative dE(t,t1, . ..,ty) is not defined, and neither is oy (t).
For some reason, we may only want to have robustness up until some time t* < tn. Then the
previous definition would become fot* 1/0min (t)2dt.

Note also that following Remark 4.4, one may have wished to define the cost

N omax(t)?
Cr(tl,...,tN)—A mdt

In this section, we show how the switching times of a trajectory can be chosen to build one that
is more robust. We also suggest a new way to design a trajectory, by adding redundant switching
times, that give us more degrees of freedom. Note also that we will start from a solution of an
optimal control problem, because it is of high importance in practice, but the method generally
applies when starting from any control, as long as it satisfies the hypothesis (H;) and (Hs).
Starting from an initial control such that E(t1,...,tn) = xy, we look for redundant switching
times (s1,...,s;) such that E(t1,...,tn,51,...,5) = &y, while minimizing the cost (4.15) that
accounts for robustness:

Cr(tl, ce ,tN,Sl, . .,Sl).
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4.3.1 An auxiliary optimization problem

Let us consider a bang-bang trajectory (satisfying the hypothesis (H;) and (Hz)) of the control
system (4.7), optimal for the cost (4.8). That is, W = ((u10, .-, Umo), (f1,%1) .-, (En,in) , ty)
is an optimal solution of the optimization problem

min(il,wiN) min(tl,m’tN) C(tl, e ,tN).
s.t. B(ty,...,tn) = ay (4.16)

Let us emphasize the fact that reducing the control to its switching times enables us to reduce
a problem in infinite dimension

Minyero(o,t,;0) C(u)
s.t. E(u) =xy

to a finite number of non-linear problems under non-linear constraints in finite dimension, pro-
vided we set N, as we left aside chattering trajectories.

In order to make the control more robust we suggest to solve the following problem. We
fix the components of the control (i1,...,ix), and we introduce the cost that accounts for the
robustness of a trajectory:

min(th__.7tN) AlC(tl, R ,tN) + )\QCT(tl, ce ,tN),
st. E(t1,...,ty) = Ty

where A\; and Ay are two parameters, chosen to give more or less importance to the different
costs. For instance, if A; >> A2, the solution is close to the initial one (Z1,...,¢xN).

4.3.2 Redundancy creates robustness

Let us consider a control v = ((u10,---,Umo), (t1,41) ..., (N, in),ts). In order to reduce
the optimization space, we will consider in the following subsection that the initial control values
(¢10, - - -, Umo), the components (i1, ...,ix) and the final time ¢ are fixed, so we will forget them
in the notations.

We propose here to go further in order to improve the robustness of the corresponding
trajectory. We do so by adding needles to some components of the control. By needle, we
mean a short impulse on one of the control. Let us denote by [ the number of needles we are
willing to add. It means that we look for additional switching times [(s1,82), ..., (S21—1, $21)]
and components of the control (j1,...,7;), so that for all ¢ € [1,{], (s2;-1, $2;) are switching
times for the j;-th components of the control (see Figure 4.3). It aims at giving us more
degrees of freedom while trying to absorb perturbations dz by moving the switching times
(T,S)=(t1,...,tn,(s1,82),...,(S21-1, S21)). Thus, we are solving the optimization problem

ming, ..j,) minr s) MCO(T,8) + X0 (T, S).

st. BE(T,S) =y (4.17)

Remark 4.10:

If the original bang-bang control strategy @ does not come from an optimization process, that
is there is no cost C associated with it, we can still consider problem (4.17) but with A\; = 0.
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(a) Initial control. (b) Adding four switching times i.e., 2 needles.

Figure 4.3 — Principle of adding needles.

Let us denote by 7T the solution of problem (4.16), and by (7*,S*) the solution of problem
(4.17). Then, we have that -
C(T)<C(T*,89).

It means that the solution (7*,S8*) is sub-optimal with respect to the initial cost C. However,
this sub-optimality comes with a gain in terms of robustness. Besides, the loss of optimality (and
therefore gain in robustness) can be controlled by the choice of the coefficients A; and .

This problem is a mixed problem, with integer variables (the components (ji,...,7;)), and
continuous variables (the switching times (¢1,...,tn, (51, 52),...,(S21-1, $21))). However, if the
components are fixed, we only have to solve a non-linear problem subject to non-linear constraints
in finite dimension

min(T,S) AIC(Ta S) + )\QC’I‘(T7 S) (4 18)

st. E(T,S) =uxy '
We used an interior-point algorithm to solve (4.18). In | , |, gradient-based algorithms
are shown to be effective to solve such problems, when the sequence of indices (j1,. .., ;) is fixed.

Therefore a “naive” way to proceed, if m denotes the number of components of the control, is
to solve m! optimization problems, which is extremely costly if m or [ is big. A compromise
has to be found between the potential benefit in robustness and the computational cost. Such a
compromise will however depend on the particular problem at hand, so we do not elaborate too
much on this issue and give an example in Section 4.4. Let us cite [ |, where
the authors parametrize an optimal control problem (for the time-minimal and L1 problem) with
the switching times of the controls. They simplify its complex structure by fixing the number
of switching times, and wonder how many switching times are required to obtain a cost close to
the optimal one : the result is striking as 2 or 3 may be enough. However, they know from an
a priori study the value of the optimal L! or time-minimal cost, and therefore can stop adding
switching times when reaching a given percentage of this optimal value of the criterion. In our
problem, we do not know what is the optimal value of the criterion we identified to quantify the
robustness of a trajectory. It becomes necessary to find another way to decide how many needles
to add.

One could consider tackling directly Problem 4.17, a combinatorial optimization problem
(which is a class of problem known to be hard to solve). Recent years have seen the development
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of advanced numerical procedures to deal with the combinatorial nature of those problem at a
reasonable computational cost. We give more details on this issue at the end of this section.

Remark 4.11:

Let us make here a remark on the ordering of the switching times. In the vector (7,S) are
stored the switching times ¢; and s; that represent the control u. Those swicthing times are not
necessarily ordered during or after the optimization process, so let T = (71,...,7ny+2;) denote
the ordered equivalent to (7,S). So far, we have made the implicit assumption that when we
perform the numerical integration of the system, the switching times are ordered: 7,41 —7; > 0
for all ¢ € [0, N + 2] —1]. We recall that our goal is to absorb perturbations éz. As explained
in Subsection 4.2.2, we compute at order one the correction to apply 6T = dE(T)"-§z. At this
point, we could have that T + 6T does not satisfy this ordering property. Then, we consider
that T + T is not admissible, and an estimate like (4.13) would not hold.

In the following, in order to guarantee that we do not have an interchanging of the switching
times (at least for small perturbations), we add an additional constraint whilst elaborating the
robustified trajectory (u(-),z(-)) at (4.17):

Tiv1—71i=2n forall ie[0,N+20—1], (4.19)

for some n > 0, where T = (71,...,7n+2;) denotes the re-ordering of the vector (7,S). In that
way, we ensure that two consecutive switching times (7 and S combined) are at least distant of
n. Thus, if 6z is small enough, the elements of the vector T + dE(T)! - 6z remain in ascending
order. Besides, such a constraint is often highly justified in practice, for instance if a physical
system has to spend some minimum time 7 before it switches to another mode. For example,
in Section 4.4, the attitude control of a rigid body is studied. In real life, because of robustness
issues and mechanical constraints, nozzles on a space launcher have indeed a minimum activation
time.

Remark 4.12:

Let t; denote the final time. If 7 is the minimal time between two switchings in (4.19), then
the total number of switchings N + 2I has an upper bound of [t¢/7n].

The elaboration of a robust trajectory in (4.17) can be seen as an optimal control problem of
switched-mode dynamical system. A recent survey on switched systems can be found in [ZA15].
This theory deals with control systems where the dynamics can only take a finite number of
modes. To determine the command law, one has to determine the switching times, as well
as the different modes of the system. If the modes are fixed (in our case, it means that the
components (i1,...,in,71,.-.,J1) are fixed), it is often called a timing-optimization problem ;
if not, a scheduling optimization problem. In [Pic99, Sus00], necessary conditions are derived,
for trajectories of hybrid systems considering a fixed sequence of modes of finite length (in our
setting, it corresponds to the Problem (4.18)). In [AE14, Warl2], the authors develop numerical
algorithms to solve both the timing and the scheduling problems. Their techniques rely heavily
on gradient-like methods. However, the latter problem is much more complex because of its
discrete nature: indeed the procedure needs to account for both continuous and discrete control
variables, and can therefore be seen as a combinatorial optimization problem. Note that the
paper [AE14] deals with dwell time constraints. It consists in imposing a threshold 7 between two
consecutive switching times which is the constraint we introduced at (4.19). Let us also mention
other techniques to solve scheduling optimization problems, like zoning algorithms [SCO05], or
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relaxation methods, where discrete variables are temporarly relaxed into continuous variables

[BDO5)].

4.4 Numerical results

In order to illustrate the results of Sections 4.2 and 4.3, we consider the problem of interest
in this thesis : the attitude control of a rigid body. However, in order to keep a reasonnable
run-time, we will only consider the part for the angular velocity in (3.3.1), and for thrusters on
the launcher.

Let W = (p,q,7) be the angular velocity of the body with respect to a frame fixed on the
body. We recall the Euler’s equation (established in the Introduction chapter) for the angula
velocity of a rigid body, subjected to torques (b',...,b™), writes:

I—J:mA7+§:bk.
k=1

In the case when the axes of the body frame are the axes of inertia of the body, the matrix
I is diagonal: I = diag(I,, I, I.). The controlled Euler’s equations can then be reduced to

T(t) = F(D(t),ult),

where for 1 < k < m, ug(t) € {0,1} almost everywhere, and the function f describing the
dynamics writes:
g+ X1 g
F(p,q,r ur, ug,us, ug) = & copr+ >0 by, (4.20)
aspq + 3oy biun

with oy = (I, — I.) /I, as = (I. — I;) /I, and ag = (I, — I,)/I.. This is with a slight abuse in
the notations, because we still denote by b* the normalized vector (b%/I,,b%/1,,b5/1,).

The controllability of such a system has been studied in Chapter 1. Let us mention here
the papers | , , ], that implement, in the special case of the stabilization of a
rigid spacecraft, methods to stabilize the spacecraft towards the point (0,0,0), but once again,
the controls used are not bang-bang. Note that (4.20) is a control-affine system, and therefore,
Remark 4.2 applies.

In the following, we consider the numerical values a; = 1, as = —1, ag = 1, bt = [2,1,0.3],
b? = [-2,—-1,-0.3], b3 = [0,0, 1] and b* = [0, 0, —1], and initial and final conditions x¢ = (0,0, 0)
and z; = (0.4,—-0.3,0.4).

We start by building an optimal trajectory for the L' cost Otf 2?21 |u;(t)|dt + tg/2 (the
presence of ¢; ensures us not to obtain a trajectory with infinite final time). It amounts to
minimizing the consumption of the launcher. The resolution of such a problem with a L! cost
can be numerically challenging. We explained in Chapter 2 how a continuation procedure can be
implemented to tackle this numerical difficulty. In the following subsection we recall very briefly
the principle of such a method.

4.4.1 Computing the nominal trajectory

The nominal trajectory, optimal for the L' cost, is computed with a continuation procedure.
The idea of such a procedure is to solve first an “easier” problem, and deform it step by step to
solve the targeted problem. We introduce the continuation parameter A € [0, 1], and we consider
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the optimal control problem (Py) of steering the system (4.20) from z to ¢, by minimizing the

cost
tf 4 tf 4
A/ Z\uj(t)\th—l—(l—/\)/ S s (1) dt + .
0 =1 0 =1

When A = 0, we recognize our problem. For some A € [0, 1], solving problem (P,) is done by
finding the zeros of a shooting function that results from the application of Pontryagin maximum
principle. Solving a shooting problem is done with Newton like methods. Such methods are
highly sensitive to their initialization, that can be very difficult, especially in the case of the
minimization of the L' norm fg ? |u(t)|dt. The continuation procedure is introduced to overcome
this difficulty.

For A\ = 1, the cost is stricly convex in the controls, and writes

ty 4
|3 iR a
0 =1

for which the initialization of the induced shooting method is much easier. Therefore, we solve
a sequence of optimal control problems, for values of A decreasing from 1 to 0. The result of the
shooting problem for some A €]0, 1] serves as the initialization of another problem with A < A.

4.4.2 Robustifying the nominal trajectory

From this L! - minimal trajectory, represented on Figure 4.4, with three switching times that
we denote (t1, t2,t3) we build a new trajectory by solving the problem (4.17) with 3 needles (i.e.,
1 =3), A1 = Ay = 1, and taking n = 0.05 in Equation (4.19). As explained in Remark 4.6, we
see that it is worthwile to have the additional switching times available as long as possible. That
is, we force the additional switchings to occur after ¢3. Keeping in mind Equation (4.19), this
constraint can be written:

ti+1 —ti=n (VZ S H1,3H)7 s1—t3 =2, Si+1 — S =1 (VZ S [[1,6]]).

We find that the optimal triplet is (j1,jo,j3) = (1,4,2), for which we have C' = 0.77 and
C, = 2.22. We found this optimal triplet by exploring the 43 = 64 possibilities. We then used
the heuristic that this solution would make a good choice to start looking for the solution with
4 needles (as it would have been to costly to examine the 4* = 256 possibilities). However we
could not make the cost dicrease significantly (the best cost we found was C, = 2.07). This
heuristic is very similar to what is used in Branch and Bound methods. Besides, as an element
of comparison, the optimal couple when adding only two needles is (j1,j2) = (1,4), for which
C, = 4.25, and the optimal solution when adding only on needle is j; = 2, for which C). = 30.28.
Thus, we notice a substantial improvement when increasing the number of needles from 1 to 2
and from 2 to 3, whereas it seems less profitable to add a fourth one. We therefore stopped at
3 needles. The controls are displayed on Figure 4.4, and the components 1, 2 and 4, on which
needles have been added, are represented in red.

In order to represent perturbations, we consider that the principal moments of inertia can
vary, causing the coefficients oy, as and ag to vary. Thus we consider the perturbed dynamics

oA (Bar + X4 b
fper(tapa q,7r,u1, U2, U3, ’LL4) = Olger’g(t)]?r + Z{i:l bguk ) (421)
a5 ()pg + Y bsuy,
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(a) Controls for the minimal L trajectory. C' = 0.49
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(b) Controls with three needles. C = 0.77, C; = 2.22

Figure 4.4 — Improving the robustness of a trajectory adding needles. We lose optimality with
respect to the consumption in order to gain robustness.

so that € models the size of the perturbation. More precisely, we take of“"(t) = a; + h;(t),
where h;(-) is some periodic function satisfying ||h;||., < 1 (note that the exact expression of h;
is not relevant here, as it is supposed to model any perturbation of the a;). We denote by xp.e,

the solution of the Cauchy problem

#(t) = fper(t, x(t), u(t)),

We denote by ., the corrected trajectory computed with our algorithm. We show, on
Figure 4.6, the three trajectories, for ¢ = 0.78 and a cost C,. = 2.22. We can see the perturbed
trajectory xpe, drifting away from the reference trajectory x,.; and away from the final point
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xy, whereas the corrected trajectory z.,, eventually reaches a point very close to 2¢. Actually,
for the trajectories represented on Figure 4.6, we have that ||zcor(tf) — x| / |z¢] = 5.5 x 1073,
whereas ||zper(tr) — z¢]l / |zl = 1.3 x 1071, Our algorithm has indeed been able to adjust the
perturbed trajectory back towards x .

One may wonder how this method behaves with respect to the choice of €. As explained in
Remark 4.7, we stop if two switching times are interchanged, that is, if §7 is too big, as the initial
vector of switching times satisfies a gap property (4.19). Actually, this is not strictly true, as we
could have a “big” correction that does not change the ascending order of the switching times,
for instance if we shift all the switching times in the same direction. However, we experimentally
notice that the cost C,. has an impact on the size of the perturbation we are able to absorb.

We build several trajectories, for which we apply our algorithm for increasing values of ¢,
until the algorithm fails as explained in Remark 4.7, for some &,,,,. We plot on Figure 4.5 the
value of €,,4, with respect to the cost C,. (that is, for a given cost C;., emayx is the smallest value
for which there is an interchanging of switching times). Even if the curve is not decreasing (for
the reason explained above), we can see that having a low cost C, enables us to absorb bigger
perturbations.

08 :

Emax

Figure 4.5 — Size of the maximal perturbation absorbed with respect
to the robustness of a trajectory

On Figure 4.7, we show the relative error ||z(ty) — x¢||/||zf|| for the perturbed zp, and
corrected .., trajectories, for several values of . As we apply order one corrections, we see that
our method shows better results for small values of ¢, but also gives very satisfactory results for
larger values of «.

4.5 Proof of Proposition 4.1

In order to prove the differentiability of the end-point mapping, we start with the differentia-
bility with respect to one component. The proof relies heavily on the expansion (4.3), that we
recall first. For the sake of completness, we will also give the proof of this result.
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Figure 4.6 — Reference, perturbed and corrected trajectories for

£=0.78, C, = 2.22.



4.5. Proof of Proposition 4.1

oo
NeJ

101

102

103

104

le(ts) = sl /llzs

10—°

—— Tper

106

'CECOT'
| | | | | | \

0 0.1 0.2 0.3 0.4 0.5 0.6
€

Figure 4.7 — Tracking results for several values of €.

LEMMA 4.1. — Let t; € [0,tf], and let ur, (-) be a needle-like variation of u(-), with m =
(thétl,ul). Then
r (tr) = 2(tf) + |0t vm, (t5) + 0(0t1),

where vy, (+) s the solution of a Cauchy problem on [t1,ty]

b (1) = S (020, (), (),

Uy (81) = f(t1, 2(tr),ur) — f(tr, z(t1), u(tr)).

Proof. Let m; = (t1,dt1,u1) be a needle-like variation. The trajectory x, () is a solution of the
equation

i (t5) = 2(0) + [ F(t 2y () (1)) dt

0
— 2(0) + / "t (), u(t)) dt + / " (b (8), i, (1)) d

ty

t1+9ty
= a(ty) + / F (e (£), i, (1)) di + / F (1), i, (1)) d

t1 t1+5t;
=A =B
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For almost very point ¢; € [0,t¢],

t14+0t,
A= / F (s (1), (1))t

t1

=8ty - f(@T(t1),u1) + o(n)

For the second term, splitting the integral,

B— / T Fam () un (1)) d

146t

- / " fam (8),u(t)) dt

140t
ty

t1+0ty
= [ Fn (1), ult))dt / F(m (£), u(t)) dt

t1 tl
ty

= F (@, (), u(t)) dt — 51 - f(x(t1),u(t1)) + o(dt1)

t1
Thus,

2y (1) = 2(ta) + 0t1 (F(e(t), ) — F@(t) u(t) + [ Flam (0. u(®)dt +o(st)

t1

= a(ty) + Otrvm, (1) + / " (Pl (8), u(t)) — F((t), ult))) dt + o(5ty).

t1

But also, following the definition of Lemma 4.1,

ty af

¢, Ox (@(t), u(t))vr, () dt.

Ury (tf) = Umy (tl) +

Joining the previous inequalities together, we get that

/tf (f(wm (1), u®)) — flz(t),ut)) Of

om (ty) —a(ty) = S (@ (t), u(t))vn, (t)) dt + 0(1)’

oty

- 17)] =

tf
g /t]

Let € > 0. For §t; small enough, we have

T, (ty) — z(ty) /tf
MmN\t N <
5t Ur, (tf) L<e+ \ C

o5
S )

%;1’“) —vn, (t)) ‘ dt + o(1)

Then, thanks to Gronwall inequality,

Ty (ty) — x(ty)
0ty

C(ty—t1)

1) <

which is equivalent to ., (t7) = x(ty) + 0t1vx, (tf) + 0(0t1). O

PROPOSITION 4.3. — We denote by u the control (ti,...,tn,ty) and z(-) the associated tra-
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jectory of the control system. Let dt1 € R be small enough. Then
E(tl + 5151,1527 A ,tN,tf) = E(tl, - ,tN,tf) —+ 5t1 . Ul(tf) —+ o(étl),
where v1(-) is the solution of the Cauchy problem on [t1,tf]:

() = 5L 0,000, u()),

£ — ft,2t), (. yaiy,...) — f(ty,o(t),u(t])) if u;, switches from a;, to b;, .
vi(t) = flt,x(t), (cooybiy, o)) — f(t, x(ty), u(ty))  if wiy, switches from by, to a;,.

(a) 6t1 > 0. (b) 0t1 < 0.

Figure 4.8 — Shifting an opening time is equivalent to add a needle.

Proof. Assume that at time ¢; the control u;, switches from a;, to b;,, and that d¢; > 0. Let us
define the needle-like variation m = (¢1, 0t1, a;, ) for the i1-th component of the control. Then, the
control u, is represented by the vector (¢1 + 6t1,...,tn,ty) (figure 4.8): adding the needle-like
variation 7 to the i;-th component, with value a;, and length §t; is equivalent to shifting the
opening time to t; + dt;. Thus, we have that u(¢]);, = b;, and u.(t]);, = a;,. Hence, we obtain
that, according to lemma 4.1

xx(ty) = a(ty) + 06t1 - vi(ty) + o(dt), (4.22)
where vy (+) is the solution of the Cauchy problem:

i(0) = 5L (620, u()n (),

vi(t) = f(t,2(t), ue(t])) = f(tr, 2(t1), u(t]))
- f(tl,z(tl)’ ( <oy Qg - )) - f(tlax(tl)a ( e abiu' : ))

(Between u, (t]) and u(t]), only the i;-th component differs.)

If 6t1 < 0, define the variation = = (1, dt1,1) for the é;-th component of the control. Then
again, the control u, is represented by the vector (t; + dt1,...,tn,t¢) (figure 4.8). Thus, we
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have that u(t;); = a;, and u.(t] );; = 1. Thanks to lemma 4.1, we obtain that
zr(ty) = x(ty) — 6ty - wi(ty) + o(dt1), (4.23)
where w1 (+) is the solution of the Cauchy problem:

0 (0) = 920, u®)n 1),

wi(ty) = f(t, (), ur(ty)) — f(tr, z(ta), u(ty))
= f(tl,.’E(tl), ( vey bip .. )) — f(tl,],‘(tl), ( ey gy - ))
== —Ul(tl).

Thus, by uniqueness we have w; = —vq, and from (4.22) and (4.23), we obtain:
$ﬂ—(tf) = .Z‘(tf) + Oty - Ul(tf) + 0((5t1).
We can proceed the exact same way if at ¢;, the control u;, switches from b;, to a;, O

The general result at proposition 4.1 follows by an immediate iteration.

4.6 Conclusion of the chapter and perspectives

Starting with the expansion of the end-point mapping with respect to a needle like variation,
we have shown in this chapter how redundant switching times can be added in order to make
a control more robust, for general control systems of the form #(t) = f(¢,z(t),u(t)). Those
additional switching times can be seen as extra degrees of freedom used to absorb perturbations.
A potential application is to start from a bang-bang solution of an optimal control problem, that
is usually not robust, and make it more robust. A compromise is then to be found between loss
of optimality and gain of robustness. This is why we have designed a measure of robustness, as
follows.

In the presence of a perturbation dx, the correction to apply to the switching times is the
solution of an equation dFE - §7 = dx. It is natural to try to solve this equation while shifting
the switching times as little as possible. The least-squares problem formulation is then the
appropriate setting to find the solution of minimal (euclidian) norm of the previous equation,
and it is given by 07 = dET - §z, for which we have the norm estimation ||§7 |, < ||6z, /omin-
This enabled us to identify the measure for robustness:

1
——dt.
/ Ulnin(t)2

The numerical example studied in Section 4.4 remains academic, and was used to legitimize
the theoretical ideas explained previously. In a future work, we aim at applying the method
to the complete (and more complex) attitude control system of a three-dimensional rigid body
presented in the Introduction, for which we wish to control the angular velocity, as well as the
orientation with respect to a fixed reference frame as written at equation (3.3.1). To the three
velocity variables will be added three angles to parametrize the orientation of the body. Thus, a
challenge will come from the dimension of the state space (6), as well as the potentially bigger
number of needle-like variations required to robustify a trajectory.
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The setting of this chapter differs from the previous ones, and we will consider an optimal
control problem in infinite dimension modelling the evolution of cell populations. We will use two
elements previously introduced in this work, namely direct methods and continuation techniques,
and combine them to solve the problem at hand.

Even if it does not directly concern aerospace applications, we claim that our approach could
be used quite generically, each time it is possible to simplify enough a control problem to start
the numerical resolution.
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5.1 Introduction of the chapter

The motivation for this work is the article [ ], itself initiated by [ ]. In the for-
mer, the subject was the theoretical and numerical analysis of an optimal control problem coming
from oncology. Through chemotherapy, it consists of minimizing the number of cancer cells at
the end of a given therapeutic window. The underlying model was an integro-differential system
for the time-evolution of densities of cancer and healthy cells, structured by their continuous
level of resistance to chemotherapeutic drugs. The model took into account cell proliferation
and death, competition between the cells, and the effect of chemotherapy on them. The optimal
control problem also incorporated constraints on the doses of the drugs, as well as constraints
on the tumor size and on the healthy tissue.

In | |, the numerical resolution of the optimal control problem was made through a
direct method, thanks to a discretization both in time and in the phenotypic variable. It led to a
complex nonlinear constrained optimization problem, for which even efficient algorithms will fail
for large discretization parameters because they require a good initial guess. To overcome this, the
idea was to perform (with AMPL and TPOPT, see below) a continuation on the discretization
parameters, starting from low values (i.e., a coarse discretization) for which the optimization
algorithm converges regardless of the starting point.

A clear optimal strategy emerged from these numerical simulations when the final time was
increased. It roughly consists of first using as few drugs as possible during a long first phase to
avoid the emergence of resistance. Cancer cells would hence concentrate on a sensitive phenotype,
allowing for an efficient short second phase with the maximum tolerated doses.

The model of [ | did not include epimutations, namely heritable changes in DNA
expression which are passed from one generation of cells to the others, which are believed to be
very frequent in the life-time of a tumor. Our aim here is to numerically address the optimal
control problem with the epimutations modeled through diffusion operators (Laplacians), in order
to test the robustness of the optimal strategy.

However, the previous numerical technique already failed (even without Laplacians) to get
fine discretizations when the final time is very large : the optimization stops converging when the
discretization parameters are large. The values reached for the discretization in time were enough
to observe the optimal structure, in particular all the arcs that were expected for theoretical
reasons.

The addition of Laplacians significantly increases the run-time and again fails to work once
the discretization parameters are too large when the final time itself is large, and some arcs
become difficult to observe. We thus have to find an alternative method to see whether the
optimal strategy found in [ ] is robust with respect to adding the effect of epimutations.

This chapter is devoted to the presentation of a method which, up to our knowledge, is new.
In our case, it provides a significant improvement in run-time and precision, and shows that the
optimal strategy keeps an analogous structure when epimutations are considered. The method
relies on the two following steps :

e first, simplify the optimal control problem up to a point where we can show that, thanks
to a Pontryagin Maximum Principle (PMP) in infinite dimension, the optimal controls
are bang-bang and thus can be reduced to their switching times, which are very easy to
estimate numerically. This is equivalent to setting several coefficients to 0 in the model.

e second, perform a continuation on these parameters on the optimization problems obtained
with a direct method, starting from the simplified problem all the way back to the full
optimal control problem.

It allows us to start the homotopy method on this simplified optimization problem with an
already fine discretization, actually much finer than the maximal values which could be obtained
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with the previous homotopy method. We also believe that the theoretical result obtained for the
simplified optimal control problem can serve as the starting step for many other optimal control
problems of related models in mathematical biology.

Numerical optimal control and novelty of the approach. Discretizing the time variable,
control and state variables to approximate a control problem for an ODE (which is an optimiza-
tion problem in infinite dimension) by a finite-dimensional optimization problem has now become
the most standard way of proceeding. These so-called direct methods thus lead to using efficient
optimization algorithms, for example through the combination of automatic differentiation soft-
wares (such as the modeling language AMPL, see | ) and expert optimization routines
(such as the open-source package IPOPT, see | -

Another approach is to use indirect methods, where the whole process relies on a PMP, leading
to a shooting problem on the adjoint vector. Numerically, one thus needs to find the zeros of an
appropriate function, which is usually done through a Newton-like algorithm. For a comparison
of the advantages and drawbacks of direct and indirect methods, we refer to the survey | ]

For both direct and indirect methods, the numerical problem shares at least the difficulty
of finding an initial guess leading to convergence of the optimization algorithm or the Newton
algorithm, respectively (it is well known that Newton algorithms can have a very small domain
of convergence). To tackle this issue in the case of indirect methods, it is very standard to use
homotopy techniques, for instance to simplify the problem so that one can have a good idea for
a starting point as in | , |, or to change the cost in order to benefit from convexity
properties, as in | , |. Besides, when studying optimal control problem for ODE
systems, a common approach is the use of so-called hybrid methods, in order to take advantage
from the better convergence properties of the direct method and the high accuracy provided by
the indirect method. We refer to [ , , , ] for further developments on
this subject.

We have found the combination of direct methods and continuation (such as the one done
in [ ) to be much less common in the literature, see however | |. For a mathe-
matical investigation of why continuation methods are mathematically valid, see | |

It is however believed that direct methods typically lead to optimization problems with several
local minima [ |, as it could happen for the starting problem (with low discretization),
which has yet no biological meaning. This implies one important drawback of a continuation
on discretization parameters with direct methods : although the algorithm will quickly converge
in such cases, one cannot a priori exclude that one will get trapped in local minima that are
meaningless, with the possibility for such trapping to propagate through the homotopy procedure.

Our approach of simplifying the optimal control problem so that it can be analyzed with
theoretical tools such as a PMP is a way to address the previous problem and to decrease the
computation time. The simplified optimal control problem, once approximated by a direct me-
thod, will indeed efficiently be solved even with a very refined discretization. Therefore, another
original aspect of our work, due to the complex PDE structure of the model, is the use of the PMP
in view of building an initial guess for the direct method, in contrast with the hybrid approach
we described for ODE systems, where direct methods serve to initialize shooting problems.

More generally, we advocate for the strategy of trying to simplify the problem, testing whether
a PMP can provide a good characterization of the optimal controls. Then continuation with direct
methods are performed to get back to the original and more difficult one. We believe that this
can always be tried as a possible strategy to solve any optimal control problem (ODE or PDE)
numerically.
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Outline of the chapter. The chapter is organized as follows. Section 5.2 is devoted to a detai-
led presentation of the optimal control problem and the results that were obtained in | ]
Section 5.3 presents the simplified optimal control problem together with the application of a
Pontryagin Maximum Principle in infinite dimension which almost completely determines the op-
timal controls. In Section 5.4, we thoroughly explain how direct methods for the optimal control
of PDEs and continuations can be combined to solve a given PDE optimal control problem.
We then combine these techniques and the result of Section 5.3 to build an algorithm solving
the complete optimal control problem. In Section 5.5 the numerical simulations obtained thanks
to the algorithm are presented. Finally, we will give some perspectives in Section 5.6 before
concluding in Section 5.7.

5.2 Modeling Approach and Optimal Control Problem

5.2.1 Modeling Approach

Let us first explain the modeling approach, which is based on the classical logistic ODE

dN

T (r—dN)N.
In this setting, individuals N (¢) have a net selection rate r, together with an additional death term
dN increasing with N : the more individuals, the more death due to competition for resources
and space.

If the individuals have different selection and death rates r(x) and d(z) depending on a
continuous variable z which we will call phenotype (the size of the individual, for example),
then a natural extension to the previous model is to study the density of individuals n(t, z) of
phenotype x, at time ¢, satisfying the integro-differential equation

O 1,2) = (r(a) — dw)p(t)) i, ),

where
p(t) == /n(t,x) dx.

At this stage, individuals do not change phenotype over time, nor can they give birth to
offspring with different phenotypes. Accounting for such a possibility consists in modeling random
mutations (respectively random epimutations), i.e., heritable changes in the DNA (respectively
heritable changes in DNA expression). The model is complemented with a diffusion term and
takes the form

O (1,2) = (r(2) — d@)p()n(t,7) + BOn(t,2),

together with Neumann boundary conditions if z lies in a bounded domain, thus becoming a
non-local partial differential equation because of the integral term p.

Such so-called selection-mutation models are actively studied as they represent a suitable ma-

thematical framework for investigating how selection occurs in various ecological scenarios | ,

, |, thus belonging to the branch of mathematical biology called adaptive dynamics.

When 5 = 0, the previous model indeed leads to asymptotic selection : n converges to a sum of

Dirac masses located on the set of phenotypes on which % reaches its maximum | , .
TL(t,~)
p(t)

In particular, if this set is reduced to a singleton xg it holds that
Dirac at xg as t goes to +o0.

weakly converges to a
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5.2.2 The Optimal Control Problem

The model considered in this chapter is an extension of the one studied in [ | by the
addition of epimutations (it is believed that mutations occur on a too long time-scale and are
consequently neglected [ ). It describes the dynamics of two populations of cells, heal-
thy and cancer cells, which are both structured by a trait « € [0, 1] representing resistance to
chemotherapy, which ranges from sensitiveness (z = 0) to resistance (x = 1). x is taken to be
a continuous variable because resistance to chemotherapy can be correlated to biological cha-
racteristics which are continuous, see | | for more details. Chemotherapy is modeled by
two functions of time w; and wug, standing for the rate of administration of cytotoxic drugs and
cytostatic drugs, respectively. The first type of drug actively kills cancer cells, while the second
slows down their proliferation.

The system of equations describing the time-evolution of the density of healthy cells ny (¢, x)
and cancer cells nc(t, z) is given by

6;;‘7’{(@ z) = [m — dp () I (t) — ul(t),uH(x)} n(t,x) + B Ang (t, z),
agif(t, z) = [Hrsc(z(t) —de(2)Io(t) — ul(t)uc(x)} ne(t, z) + BeAnc(t, o),

starting from an initial condition (n%,n%) in C([0,1])?, with Neumann boundary conditions in
r=0and z = 1.

Let us describe in more details the different terms and parameters appearing above, with the
functions ry, r¢, du, do, pg pe all continuous and non-negative on [0, 1], with rgy, ro, dg, do
positive on [0, 1].

ru(x) re(z)
1+apgusz(t)’ 1+acua(t)
cytostatic drugs, with

e The terms stand for the selection rates lowered by the effect of the

oag < oac.
e The non-local terms dy(x)Ig(t), do(x)Ilco(t) are added death rates to the competition

inside and between the two populations, with

Iy == agupn +agcpc, Ic == accpc + acupu

and as before .
pi(t) :/ ni(t,x)dx, i = H,C.
0

We make the important assumption that the competition inside a given population is
greater than between the two populations :

agc < aHH, GcH <acc-

o The terms pg (z)us (), ue(z)us(t) are added death rates due to the cytotoxic drugs. Owing
to the meaning of xt =0 and =z = 1, uy and puc are taken to be decreasing functions of x.

e The terms By Ang (¢, x) and ScAnc(t, z) model the random epimutations, with their rates
Bu, Bc such that
ﬁH < BCa
because cancer cells mutate faster than healthy cells.
Finally, for a fixed final time T we consider the optimal control problem (denoted in short by
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(OCPPDE;)) of minimizing the criterion

T
= / po(s) ds + (1 - Ao)po(T) (5.1)

as a function of the L™ controls w1, us subject to L>° constraints for the controls and two state
constraints on (pg, pc), forall 0 < ¢ < T :

e The maximum tolerated doses cannot be exceeded :
0 <up(t) <ul™™, 0< ug(t) < ud®®.

e The tumor cannot be too big compared to the healthy tissue :

pr(t)
pu(t) + pc(t) et (5:2)

with 0 < 0g¢c < 1.

e Toxic side-effects must remain controlled :

pu(t) = 0upn(0), (5.3)

with 0 < 0y < 1.

Optimal control problems applied to cancer therapy have started being considered long ago,
see [SL15] for a complete presentation. However, the usual way of taking resistance into account
is to consider that cells are either resistant or sensitive, leading to ODE models, as for example
in [CBB92, KS06, LS06, LS14, Carl7]. Considering both a continuous modeling of resistance and
the effect of chemotherapy is more recent, as in [PCTT17, CLC16, LLH 13, GLGL14, LCDH15].
We also mention some cases where an additional space variable is considered [LLC 13, LLC T 15].

Note that in the definition of the cost (5.1), the choice of Ay depends on the relative importance
one wishes to give to the terms po(T) and fOT pc(s)ds/T. By chosing A\g =0 as in [PCLT17],
the criterion to minimize becomes pc(7T') and can be of interest in practice. In that case, even
if the cost does no longer account for the evolution of po(-) over the time interval [0, 7], the
size of the tumour cannot be too big as it remains controlled by the constraint (5.2) :

> 0uc.

5.2.3 Previous Results for \j =0

In [PCLT17], we studied this system and the optimal control problem both theoretically and
numerically in the case of selection exclusively, namely for 5y = S¢ = 0, while minimizing the
number of tumour cells at final time, i.e. with Ao = 0 in the cost (5.1).

First, we proved that for constant controls (i.e., constant doses), the generic behavior is
the convergence of both densities to Dirac masses. When these doses are high, the model thus
reproduces the clinical observation that high doses usually fail at controlling the tumor size on
the long run. They might indeed initially lead to a decrease of the overall cancerous population.
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However, this is the consequence of only the sensitive cells being killed, while the most resistant
cells are selected (in our mathematical framework, this corresponds to the cancer cell density
concentrating on a resistant phenotype). Further treatment is then inefficient and the tumor
starts growing again.

As for the optimal control problem which is our focus in this work, the main findings without
diffusion were the following : when the final time T becomes large, the optimal controls acquire
some clear structure which is made of two main phases.

e First, there is a long phase with low doses of drugs (u; = 0 with our parameters), along
which the constraint (5.2) quickly saturates. At the end of this first long arc, both densities
have concentrated on a sensitive phenotype.

e Then, there is a second short phase, which is the concatenation of two arcs. The first one is
a free arc (no state constraint is saturated) along which u; = «7*** and uy = u5***, with a
quick decrease of both cell numbers py and peo, up until the constraint on the healthy cells
(5.3) saturates. The last arc is constrained on (5.3) with boundary controls (ug = u3***

with our parameters), allowing for a further decrease of pc.

In other words, the optimal strategy is to let the cell densities concentrate on sensitive phe-
notypes so that the full power of the drugs can efficiently be used. This strategy is followed as
long as the healthy tissue can endure it, and then lower doses are used to keep on lowering pc
while still satisfying the toxicity constraint.

5.3 Resolution of a Simplified Model

5.3.1 Simplified Model for one Population with no State Constraints

We here introduce the simpler optimal control problem. Its precise link with the initial optimal
control (OCPPDE;) will be explained in Section 5.4. It is based on the equation

8nc ro (I’)
W(ta x) = T+ acu() de(@)pc(t) — pe(@)ui(t) | ne(t, ), (5.4)
starting from nd,, where pc(t) = fol ne(t, ) de. We denote by (OCPPDEy) the optimal control

problem
i T 5.5
o po(T) (5.5)

where U is the space of admissible controls
U :={(u1,u2) € L*([0,T],R) such that 0 < u; < u*, 0 < uz < uy"®, a.e.on [0,7]}.

Note that we choose A\g = 0 in the cost (5.1), in order for the Pontryagin Maximum Principle to
yield an exploitable result.

5.3.2 A Maximum Principle in Infinite Dimension

General statement. Let T be a fixed final time, X be a Banach space and ng € X, U
be a separable metric space. We also consider two mappings f : [0,7] x X x U — X and
0000, T x X x U — R.
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We consider the optimal control problem of minimizing an integral cost, with a free final state
n(T) :
T
inf J(u()i= [ (), u(0)
0

ueU

where y(-) is the solution ! of

n(t) = [t n(t), u(t)), n(0) = no.

In [LY12, Chapter 4], necessary conditions for optimality are presented, for such problems
(they are actually presented in [LY12] in a more general setting, but for the sake of simplicity, we
restrict ourselves to the material required to solve (OCPPDEy)). The set of these conditions is
referred to as a Pontryagin Maximum Principle (PMP).

Under appropriate regularity assumptions on f and fY, it states that any optimal pair
(n(+),u(-)) must be such that there exists a nontrivial pair (p°,p(-)) € R x C([0, T], X) satisfying

P’ <0, (5.6)
5(0) = =5 (), (), 8, (1), (57
(70, 5(0), 17, (1)) = mma H (1, 7(0), .8, (1) 69

where the Hamiltonian H is defined as H(t,n,u,p,p°) := p* fO(t,n,u) + (p, f(t,n,u)).

If the final state is free, (5.6) can be improved to py < 0% and we have the additional trans-

versality condition :
p(T) =0. (5.9)

Besides, if the final state were fixed, there would be additional assumptions to check in order
to apply the PMP, assumptions that are automatically fulfilled whenever n(T) is free. We refer
to [LY12, Chapter 4 - Section 5] for more details on this issue.

a. An extremal in the PMP is said to be normal (resp. abnormal) whenever p° # 0 (resp. p° = 0). Here, it
means that there is no abnormal extremal.

Application to the problem (OCPPDE,). By applying the PMP, we derive the following
theorem on the optimal control structure.

THEOREM 5.1. — Let (nc(+),u(:)) be an optimal solution for (OCPPDEy). There exists t1 €
[0,T] and ty € [0, T such that

uy(t) = uP Ly, 1y, ua(t) = us @y, -

Démonstration. Let us define U := {u = (u1,u2) such that 0 < w3 < u**®, 0 < ug < uh**}. Gi-
ven a function v € L*([0,7T],U), the associated solution of the equation (5.4) belongs to

1. Note that the evolution equation has to be understood in the mild sense

t
n(t) = ng +/0 f(s,n(s),u(s))ds.
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C([0,T],C(0,1)), which can be seen as a subset of C([0,T], L?(0,1)). We define X := L?(0,1).
First, as the initial number of cells is prescribed, we notice that minimizing the cost po(T) is
equivalent to minimizing the cost pc(T) — pc(0), and it can be written under the integral form :

pelT) = pel0) = [ sty

/ / One(t,x) dx dt

/ / L Facus(t) do(x)po(t) — uc(x)ul(t)] ne(t,z)dr dt

Thus, in view of applying the PMP, we define the function f°: X x U — R by

Pl )= [ 1 [C(“’) —do(x)p - m(x)ul] n(z) da,

1+ acus

where p := fol n, and the Hamiltonian is then defined by

1
H(n,uy, ug,p,p°) := p° fO(n, u1, up) +/0 p(x) [13& —dc(z)p — ﬂc(:r)ul] n(z) dw.

Since (nc(-),u(+)) is optimal, there exists a non trivial pair (p°,p(+)) € R x C([0,77], X), such
that the adjoint equation (5.7) writes :

i) =~ |79 el - o] [p(e.a) 4171+ [ oo oo + 7] do

Owing to Remark 5.2, we know that p° < 0.
Let us set p := p + p°, which satisfies

%(t,x) = - {7"0(1") —dco(z)p — ,UC(a?)u1(t):| p(t, ) +/O d(z)n(t, z)p(t, z) da.

1+ acus(?)

The transversality equation (5.9) yields p(7T,-) = 0, i.e., p(T) = p°.
Then, in order to exploit the maximisation condition (5.8), we can split the Hamiltonian as
0 ' P2(1)
H(ta nC(t)v ’U/l(t), u2(t)7p(t)7p ) = - p(t’ x)dc(x)p(t)nc(t, x) dr — Ul(t)¢1 (t) o,
0 1+ acusa(t)

where the two switching functions are defined as

bi(t) = / e (@)ne t,2)p(t, ) d,

P2(t) 1:/0 ro(x)ne(t, 2)p(t, x) da.

Thus, we derive the following rule to compute the controls :
o If ¢1(t) > 0 (resp. ¢2(t) > 0), then uy(t) = 0 (resp. uz(t) = 0).
o If ¢1(t) <0 (resp. ¢2(t) < 0), then uy(t) = u"*® (resp. us(t) = uj**®).



102 CHAPITRE 5. Combination of direct methods and homotopy

We compute the derivative of the switching function :

oy (1) = / e () Oune (t 2)p(t, ) + ne(t, 2)dyp(t, 2)) da

- ( /O 1 pe(z)ne(t, z) dm) : ( /0 1 de(@)ne(t, z)p(t, o) dx) .

We know that fol pe(x)ne(t, ) de > 0, so that the sign of ¢ (¢) is given by the sign of :

1
/0 do(x)ne(t, z)p(t, x) de.

Let us set 91 (t) := fol de(z)ne(t, )p(t, x) de. The same computation as before yields

wi(t) = ( / Cdo(@mnolt.) dx) bi(t).

Therefore, the sign of ¥ (t) is constant, given by the sign of
1
(1) = [ do(@)no(T,2)p(T. ) ds
0

1

:/ dc(ac)nc(T,ac)podx
0

<0

since p® < 0. This implies that the function ¢; is decreasing on [0,7T]. Since at the final time,
¢1(T) < 0, we deduce the existence of a time ¢; € [0,7) such that ¢1(¢) > 0 on [0,%1], and
¢1(t) < 0 on [t1,T]. The same computation yields the same result for ¢q, for some time to €
[0,T7. O

5.4 The Continuation Procedure

5.4.1 General Principle

We here recall the principle of direct methods and of continuations for optimization problems.
Together with Theorem 5.1, we then derive an algorithm to solve the problem (OCPPDE;,).

On direct methods for PDEs. Let us give an informal presentation of the principle of a
direct method for the resolution of the optimal control of a PDE. Assume that we have some
evolution equation written in a general form on [0,7] x [0,1] as

0

S (t.2) = F(tn(t), u(t) + Ant, 2), n(0) = n,

where T is a fixed time, A is some operator on the state space, f some function which might
depend non-locally on n, u a scalar control, ¢t € [0,T], and x € [0, 1] is the space or phenotype
variable. The possible boundary conditions are contained in the operator A, which in our case
will be the Neumann Laplacian.
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Consider the optimal control problem

inf g(n(T)),

ueU
where T is fixed, as a function of u € U := {u € L*>°([0,T],R), 0 < u(t) < u™* on [0,T]}.

Further assume that we have discretized this PDE both in time and space through uniform
meshes 0 < top <t; < ...<ty, =T,0=29 <21 < ... <zpn, := 1, and that we are given
some discretizations of the operator A (resp. the function f, g) denoted by Ay (resp. frn, gn),
where h := Ni With a Euler scheme in time, if one writes formally n(t;,z;) = n; j, u(t;) =~ w;

and n; := (nz‘,;)ogjgNI; we are faced with the optimization problem

inf n(nN
uivogi@wg( ok

subject to the constraints

Nip1,; = Nijj + hfnj(ti,nij, i) + RAR(ng), nio = n’(x;), 0 < uy < u™
for all 0 <@ < Ny, 0 < j < N,. Note that fy, ;(¢;,n;;,u;) stands for the function f,(t;, n; ;,u;)
evaluated at x;.

On continuation methods for optimization problems. The optimal control problem of
a PDE becomes a finite-dimensional optimization problem once approximated through a direct
method, such as the one presented above. Let us denote P; this problem. As already mentioned
in the introduction, the numerical resolution of such a problem requires a good initial guess for
the optimal solution. The idea of a continuation is to deform the problem to an easier problem
Po for which we either have a very good a priori knowledge of the optimal solution, or expect
the problem to be solved efficiently.

One then progressively transforms the problem back to the original one thanks to a conti-
nuation parameter A, thus passing through a series of optimization problems (Py). At each step
of the procedure, the optimization problem Py 4y is solved by taking the solution to P, as an
initial guess.

5.4.2 From (OCPPDE;) to (OCPPDE,)

Let us consider (OCPPDE;) and formally set the following coefficients to 0 :

5H7 56'7 acH, 9H7 QHC'

Note that by setting Sy and S¢ to 0, we also imply that the Neumann boundary conditions are
no longer enforced.

When doing so, the equations on n¢ and ng are no longer coupled since the constraints do
not play any role and the interaction itself (through acg) is switched off. Consequently, the
optimal control problem with all these coefficients set to 0 is precisely (OCPPDEy).

We now define a family of optimal control problems (OCPPDE)) where A\ € R® has each
of its components between 0 and 1. It is a vector because several consecutive continuations will
be performed (in an order to be chosen) on the different parameters. For A = (A;)5¢; <4, we use
the subscript A for the parameters associated to the optimal control problem (OCPPDE) ), and
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they are defined by :

A A A A A

W = MB, B = MBe, aly = Aeacm, 059 = Mo, 05 = MO,

In other words, A1, A2, A3 and A4 stand for the continuations on the epimutations rates, the
interaction coefficient acr, the constraint (5.2) and the constraint (5.3), respectively. Ag accounts
for the balance between the terms in the cost (5.1). Note that the parameters A1, A2, A3 and Ay

are meant to be brought from 0 to 1, whereas the value of A\g may at the end lie in the interval
[0, 1].

5.4.3 General Algorithm

Let us now explain the general approach based on the previous considerations.

Final objective and discretization. Our final aim is to solve (OCPPDE; ) numerically, with
T large, and a very fine discretization in time (NNVy is taken to be large) : T, Ny and N, are thus
fixed to certain given values. To do so, we will solve successively several problems (OCPPDE))
with the same discretization paremeters. Following the general method introduced about direct
methods for PDEs, numerically solving an intermediate optimal control problem (OCPPDE))
for a given A will mean solving the resulting optimization problem. To be more specific, we briefly
explain below how the different terms are discretized. Recall that our discretization is uniform
both in time ¢ and in phenotype x, with respectively N; and N, points.

e The non-local terms pg, pc are discretized with the rectangle method :

1 1 N,—1
p(t;) :/O n(t;, ) de =~ N ];0 NG ;.

x

e The Neumann Laplacian is discretized by its classical discrete explicit counterpart :

Mij+1 — 2045+ Nij—1

An(tia ‘TJ) ~ (A{I})2

We manage to take IV; large enough to make sure that the CFL

(V) _ 1

T
Be N, 5

is verified. Using an implicit discretization could allow us to get rid of the CFL condition
but an implicit scheme happens to be more time-consuming. Therefore, we preferred using
an explicit discretization, as our procedure enables us to discretize the equations finely
enough to satisfy the CFL.

e The selection term (whose sign can be both positive or negative) is discretized through an
implicit-explicit scheme to ensure unconditional stability.

Sketch of the algorithm.

Step 1. We start the continuation by solving (OCPPDE). Thanks to the result 5.1, finding the
minimizer of the end-point mapping (u1,us) — pc(T) is equivalent to finding the minimizer
of the application (t1,t2) — pc(T) where t; (resp. to) are the switching times of u; (resp. us)
from 0 to uf*** (resp. u3***), as introduced in Theorem 5.1.
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Numerically, we can use an arbitrarily refined discretization of (OCPPDEy), since the re-
sulting optimization problem has to be made on a R?-valued function, which leads to a quick
and efficient resolution.

Step 2. Once (OCPPDE() has been solved numerically, we get an excellent initial guess to
start performing the continuation on the parameter \. Its different components will successively
be brought from 0 to 1 (except for Ay which will be brought from 0 to its final desired value),
either directly or, when needed, through a proper discretization of the interval [0, 1]. The order
in which the successive coefficients are brought to their actual values is chosen so as to reduce
the run-time of the algorithm. The precise order and way in which the continuation has been
carried out are detailed together with the numerical results in Section 5.4.

Let us make one remark on a possible further continuation : since the goal is to take large
values for T', one might think of performing a continuation on the final time. We again emphasize
that the interest and coherence of the method requires to start with a fine discretization at Step
1, but we note that it is also possible to further refine the discretization after Step 2.

5.5 Numerical Results

Let us now apply the algorithm with AMPL | | and IPOPT | |
For our numerical experiments, we will use the following values, taken from | |:
3 1.5
rel) =g =T

do(z) = %(1 —0.32), du(z) = %(1 —0.12),

aQgH = 1, acc — 1, agCc = 0.07, AecH — 0.01

ag = 0.017 ac = 17

0.2 0.9 1.0
=— =max (| ——— — 1,0,
M=o g2 1O 0.72 1 0.622
ut =2, uy® =5.
One can find in | | a discussion on the choice of the functions pg and pe. Also, we

consider the initial data :

w00~ gm0 nct0) = iogenn (-0, o

with e = 0.1 and Kg, and K¢ are chosen such that :
pr(0) =2.7, pc(0) =0.5.

The rest of the parameters (namely By, B¢, 0y and g ¢) will depend on the case we consider,
and we will specify them in what follows.
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Note that the initial condition (5.10) for the healthy and cancer cells - a Gaussian density
centered at 0.5 - models a highly heterogeneous tumor, where resistance to the treatment
is already present. Such a choice has been made because in the clinic, cytotoxic drugs are
often given upfront. Our optimal strategy would therefore take place after this automatic
administration of drugs.

Remark 5.4:

Note also that we have taken u*** and u3'®® to be slightly below their values chosen

in [PCLT17] (which makes the problem harder from the applicative point of view). This is
because we are here able to let T take larger values, for which the final cost obtained with the
optimal strategy pc(T) becomes too small, see below for the related numerical difficulties.
As for the epimutations rates, we have proceeded as follows : we have simulated the effect
of constant doses and observed the long-time behavior. In the case g = Bc = 0, we know
by [PCLT17] that both cell densities must converge to Dirac masses. With mutations, we expect
some Gaussian-like approximation of these Diracs, the variance of which was our criterion to
select a suitable epimutation rate in terms of modeling. It must be large enough to observe a
real variability due to the epimutations, but small enough to avoid seeing no selection effects
(diffusion dominates and the steady state looks almost constant).

Test case 1 : T = 60 and \y = 0. We recall that this case corresponds to the example presented
in [PCLT17], to which we add a diffusion term. We set the parameters for the diffusion to
Br = 0.001 and B¢ = 0.0001. The coefficients for the constraints are g = 0.4 and 05 = 0.6. For
such numerical values, the optimal cost satisfies pc(T) << 1, which can be source of numerical
difficulties. To overcome this, we introduce the following trick : let us define u}**** = 1 and
u Y = 4. We apply the procedure described in Section 5.3 with the values u/"**® and u}"**"°,
We then add another continuation step by raising them to the original desired values ui*** = 2
and u5*® = 5. In the formalism previously introduced, it amounts to adding two continuation
parameters A5 and Ag to the vector A = (\;)1<i<4 (as we are interested in solving the problem for
Ao = 0 in the cost (5.1), we forget it in the notation of the vector A). The parameters associated
to the optimal control problem (OCPPDE,) are then defined as :

u ) = (1= A0 g N = (1= M)l 4 Aguer

More precisely, we perform the continuation in the following way, summarized in Figure 5.1 :
e First, we solve (OCPPDEy), with u]"**" =1 and u5***° = 4.
e Second, we add the interaction between the two populations, the diffusion parameters, and

the constraint on the number of healthy cells. That is, the parameters acy, By, B¢ and
0y are set to their values.

e Then, we add the constraint measuring the ratio between the number of healthy cells and
the total number of cells, that is 0g¢.

e Lastly, we raise the maximum values for the controls from u/"**"* to u™** (i € {1,2}), and
we solve (OCPPDE,) for T' = 60.

Actually, for this set of parameters, only four consecutive resolutions are required to solve
(OCPPDE,) starting from (OCPPDE). That is, the components of the continuation vector
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\
acg = 0.01
Bo = 1073
(OCPO) /6H — 10—3
0g = 0.6
/
N
upes = 2
ug“”” =5 0[—10 = 04
(OCPq)
/

FIGURE 5.1 — Continuation procedure to solve (OCPPDE;) for T' = 60.

A = (Mi)igige are brought directly from 0 to 1, taking no intermediate value, in the order
schematized on Figure 5.1. We will study further in the chapter a case for a larger final time, for
which having a more refined discretization is mandatory.

On Figure 5.2, we plot the optimal controls u; and ug at the four steps of the continuation
procedure. We also display the evolution of the constraint on the size of the tumor compared
to the healthy tissue (5.2). We can clearly identify the emergence of the expected structure for
the controls, namely a long phase along which the constraint (5.2) saturates, followed by a bang
arc with w3 = v and up = uJ**, and a last boundary arc along which the constraint (5.3)
saturates. Throughout this section, we will use a red solid line in our figures for (OCPPDE}),
a light green solid line for (OCPPDE() and colors varying from green to blue for anything
referring to (OCPPDE,).

We would like to emphasize here that our procedure enables us to use a much more refined
discretization of the problem than what was done in [PCLT17]. More precisely, we discretize
with Ny = 500 and N, = 20 points in our direct method. For such a discretization, directly
tackling (OCPPDE;) with the direct method fails.

Remark 5.6:

Note that the constraint pr/pm(0) > 0.6 does not saturate until the last step of the conti-
nuation, when raising the maximal value of the controls. Therefore, when we add it at the
beginning of the procedure, it is not actually active.

Test case 2 : T'= 80 with A\g = 0. Whereas one could believe that raising the final time from
T = 60 to T = 80 does not much increase the difficulty of the problem, we noticed that several
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F1GURE 5.2 — Intermediate steps of the continuation procedure for the test case 1.

numerical obstacles appeared. In the following, we consider a discretization with N; = 250 and
N, = 12 points, in order to keep the optimization run-time reasonable. Besides, in order to test
the robustness of our procedure, we consider more restrictive constraints on the density of cells :
we choose 0 = 0.75 in (5.3) (0.6 in the first example), and we also consider ¢ = 0.6 in (5.2)
(0.4 in the first example). Note that setting a higher value for ¢ means that the density of
cancer cells is to be maintained below a lower level during the treatment.

First, we use the same numerical trick as explained in our first example, reducing the maximal

value for the controls to u}***° = 0.7 and uJ"**? = 3.5. For given values of u7"* and u}"**, the

. . .. 0
optimal cost pc(T') decreases when T increases. This is why we now use smaller values of u]"**’
max,0

and us , compared to the first example where we set them to respectively 1 and 4.
We performed the continuation in the following way, summarized in Figure 5.3 :

e First, we solve (OCPPDEy), with v/"**® = 0.7 and u5"*** = 3.5.

e Second, we add the interaction between the two populations (via the parameter acp),
and the constraint measuring the ratio between the number of healthy cells and the total

number of cells (5.2) is introduced at the intermediate value 9;}% =0.3.
e We then raise it to its final value of g = 0.6.

e As a fourth step, we simultaneously add the constraint (5.3) on the healthy cells and raise
the maximal values for the controls from u/"*** to u%* (i € {1,2}).
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FIGURE 5.3 — Continuation procedure to solve (OCPPDE;) for T' = 80.

e Lastly, we add diffusion to the model, via the parameters Sy and (¢, and we solve
(OCPPDE;) for T = 80.

At this point, we need to make two important remarks concerning this continuation procedure.

The order in which we make the components of the continuation vector A = (\;)1<ig¢ vary
from 0 to 1 is different from the order we presented for 7' = 60. For instance, we noticed
that the diffusion makes the problem significantly harder to solve, although the Laplacians
where discretized using the simplest explicit finite-difference approximation. Therefore, we
only added it at the last step of the continuation.

Whereas for T = 60, raising the (\;)1<i<e directly from 0 to 1 was enough to solve (OCPPDE, ),
it became necessary to use a more refined discretization for T' = 80. This fact justifies the prin-
ciple of our continuation procedure, as each step is necessary to solve the next one, and thus
(OCPPDE,) in the end. For instance, on Figure 5.4, we display the evolution of the constraint
(5.2) :

pH(t)
pc(t) + pu(t)
when raising the continuation parameter A3 from 0 to 1. For values of A3 increasing from 0 to 1,
the constraint (5.2) becomes more and more restrictive, but the continuation procedure enables

> Ms0pc
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FIGURE 5.4 — Evolution of the constraint (5.2) during the continuation.

2 711;"(”7')\ —0. R 51 7u;na.r)\ =35 — B
—u“t =11 —uf = 4.1
sl _u71na17,>\ — 1.7 | s _ugmLA — 4.7 i
— uanu,m.)\ —9 _ uénaz,)\ =5
i 3 |
U 1 = | w
2 - -
0.5 i
11 B
ol i
L L L L L L L L L oL L L L L L L L L L |
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
t t

FIGURE 5.5 — Raising the maximal values u7"**, u5*** for the controls.

us to reach the final value o = 0.6. A noticeable fact is that compared to the test case 1, higher
doses of cytostatic drugs are administered during the first phase. That is because, as pointed out
before, the constraint (5.2) becomes more restrictive.

On Figure 5.5, we display the evolution of the controls u; and us when raising their maximal
allowed values from (u]"**°, u5**"%) to (u***, ug'**). For the sake of readability, we do not show
all the steps of the continuation, but only some of them. It clearly shows how the structure of
the optimal solution evolves from the simple one of (OCPPDE) to the much more complex

one of (OCPPDE;).

Finally, we display on Figure 5.6 the evolution of n¢, when applying the optimal strategy we
found solving (OCPPDE;,). One clearly sees that the optimal strategy has remained the same :
the cancer cell population concentrates on a sensitive phenotype, around = = 0.2, which is the
key idea to then use the maximal tolerated doses. In other words, the strategy identified in the
previous work [PCLT17] is robust with respect to addition of epimutations. An important remark
is that the cost obtained with the optimal strategy is higher with the mutations than without
them : this is because we cannot have convergence to a Dirac located at a sensitive phenotype,
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nc

FIGURE 5.6 — Evolution of n¢ for the optimal solution of (OCPPDE4). In
black with a thick line, the initial condition n¢(0,-), with lighter shades of
red, the evolution of nc(t, x) as time increases. At final time, the
population of cancer cells is drawn with a thick red line.

but to a smoothed (Gaussian-like) version of that Dirac. There will always be residual resistant
cells which will make the second phase less successful.

Further comments on the continuation principle. A continuation procedure can be used
in a wide range of applications, and one can easily imagine ways to generalize the ideas we have
previously introduced. Let us illustrate our point with an example : we have presented a procedure
to solve (OCPPDE;,), for some initial conditions n% and noc. Suppose that we wish to solve
(OCPPDE; ) for some different initial conditions n% and n. Biologically, this could correspond
to finding a control strategy for a different tumor. A natural idea is then to use a continuation
procedure to deform the problem from the initial conditions (n%;,nd) to (a%,ng), rather than
applying again the whole procedure to solve (OCPPDE;) with 7%, and fz%. We successfully
performed some numerical tests to validate this idea : if we dispose of a set of initial conditions
for which we want to solve (OCPPDE;, ), it is indeed faster to solve (OCPPDE;,) for one of
them and then perform a continuation on the initial data, rather than solving (OCPPDE,) for
each of the initial conditions. More generally, any parameter in the model could lend itself to a
continuation.

Test case 3 : T = 60, for different values of \g. The optimal strategy obtained with the
previous objective function po(7") might seem surprising, in particular because it advocates for
very limited action at the beginning : giving no cytotoxic drugs and low loses of cytostatic drugs.
To further investigate the robustness of this strategy, let us also consider the objective function
Ao fOT pco(s)ds+ (1 — Xo)pc(T) as introduced in Remark 5.1, for different values of Ag. To ease
numerical computations, we take 8y = Bc = 0, u"*® = 2, uy'* = 5, and finally N, = 20,
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FIGURE 5.7 — Adding a term accounting for the L' norm [ p¢ in the cost.

N; = 100. The results are reported on Figure 5.7.

For \g = 0.5 (in purple) and \g = 0.9 (in blue), the L! term is dominant in the optimization
and the variations of pc are smaller over the interval |0, T[. However, although there is a signifi-
cant change in the control uy which is always equal to u5**®, u; has kept the same structure : an
arc with no drugs, a short arc with maximal doses and a final arc with intermediate doses. The
only (though important) difference is that the first arc is not a long one as before : for A\g = 0.9,
the maximum dose of cytotoxic drugs is given earlier, around ¢ = 35, in order to have a low L'
term in the cost. However, in this case, cytotoxic drugs are given during a longer time period,
making the tumor cells more resistant. This is supported by the representation of pc on the
fourth graph of Figure 5.7, where pc increases during the last from ¢ = 65 up to the end, because
of the emergence of drug-resistant cells.

We infer from these numerical simulations that the optimal structure is inherent in the equa-
tions : there is no choice but to let the cancer cell density concentrate on a sensitive phenotype.
Since at Ay = 0.5 and Ag = 0.9, the integral term dominates, we also consider other convex com-
binations with smaller values of Ag, namely for A\g = 0 (in red) and Ay = 0.05 (in light purple)
for which wus takes intermediate values (and even the maximum tolerated value during a short

time when Ag = 0.05) before being equal to u5'**, while u; = 0 on a longer arc.

5.6 Perspectives

Theoretical perspectives. A theoretical analysis of the problem (OCPPDE,) is completely
open. The first step in [ | in the absence of Laplacians was to analyse the asymptotic
behavior for constant infusion of drugs, in which case the limit is the sum of Dirac masses on the
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fittest phenotypes (depending on the drug). With Laplacians, however, the asymptotic analysis
of the system

ag—f(t, ) = [% — dp () I (t) — uluH(x)} nu(t,z) + BuAng(t, o),
8%?(15’90) = [% —dc(x)lc(t) - U1uc($)] no(t, z) + feAnc(t, x),

with constant controls (@, us) below is not known, up to our knowledge. Actually, even the
asymptotic analysis of a single equation of that type has not been tackled. Note that results are
available when the functions dy and d¢ are independent of x, as in | |- The theoretical
optimal control of a such a system with state constraints seems out of reach for the moment.

For epimutations with rates in reasonable ranges, we found that the optimal strategy obtained
in | | is preserved, which is a proof of its robustness. We believe that robustness can further
be tested for more complicated models, with the same strategy.

For example, one may want to model longer-range mutations by a non-local alternative to
the Laplacian, either through a mutation term through a Kernel | ], or through a non-
local operator like a fractional Laplacian | ]. These could both be added by continuation,
on the Kernel starting from the integro-differential model, or on the fractional exponent for the
fractional Laplacian, starting from the case of the (classical) Laplacian.

Another (local) possibility is to choose a more general elliptic operator. In particular, one
can think of putting a drift term to model the stress-induced adaptation | , |, namely
epimutations that occur because cells actively change their phenotype in a certain direction
depending on the environment created by the drug.

Finally, other objective functions can also be considered through a continuation as already
introduced in the present paper : one minimizes a convex combination of pc(T) and the objective
function of interest.

We refer to [ | for other possible generalizations of the model that might be of interest.

Numerical perspectives. For the numerics presented in this chapter, we used the modeling
language AMPL with the interior-point solver IPOPT. Most of the time, like displayed on Figure
5.4, we were able to perform the continuation with a constant step (on Figure 5.4, two successive
values of A3fpc differ by 0.5). For computational efficiency, one may wish to use a refined
procedure. For instance, in the case of convergence, one may try to increase the step in the
continuation procedure. On the other hand, when solving the next optimization problem fails,
the step can be decreased.

Dealing with this variability of the step could benefit from the use of the solver IPOPT with
an efficient programming language, like C or C++. Note that there exist interfaces to use IPOPT
designed for the following programming language : C++, C, Fortran, Java, R, Matlab. We refer
to the official documentation of the IPOPT project for more details on this issue.

Besides, one could try and use a higher-order method to discretize the dynamics, for instance
with Runge-Kutta schemes, and using the trapezoidal rule to discretize the terms pc and pg.
Again, implementing such a complex numerical method could benefit from the use of one of the
previously mentionned programming languages.
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5.7 Conclusion of the chapter

The objective of the present work was to numerically solve an optimal control generalizing the
one studied in the article [ ], in which epimutations were neglected. We have developed an
approach which significantly reduces the computation time and improves precision, even without
mutations. More precisely, by setting enough parameters to 0 in the original optimal control
problem, we arrive to a situation where the problem can be tackled by a Pontryagin Maximum
Principle in infinite dimension. Direct methods and continuation then allow to solve the problem
of interest, with the strong improvement that we actually start the continuation with a very
refined discretization.

We advocate that this approach is suitable for many complicated optimal controls problems.
This would be the case as soon as an appropriate simplification leads to a problem for which pre-
cise results can be obtained by a PMP. In particular, this approach is an option to be investigated
for optimal control problems which have a high-dimensional discretized counterpart.



Conclusion and perspectives

The main goal of this PhD dissertation was to develop a mathematical framework and conceive
a portable software to tackle and solve the problem of optimizing the ballistic phase for an Ariane
5 launcher. A code in C, described in Appendix A, based on a direct method and the use of
an interior-point algorithm, was developed for the CNES in order to compute the solution of an
optimal control problem with a L' cost, where the number of body separations and via-point
constraints is up to the choice of the user. As a consequence of our process, we also studied in
Chapter 3 how to combine continuation techniques and indirect methods to solve a problem with
only one intermediate constraint.

Throughout this manuscript, we have made an intensive use of continuation techniques. Ac-
tually, each time we had to deal with a problem too hard to be addressed directly, we tried to
find a deformation of the problem ending with an easier one. Therefore, we exploited the power
of continuation techniques in various contexts, depending on the problem at hand. In Chapter
2, we showed how a (now classical) L? — L' continuation could be used to solve the attitude
control problem with minimization of the consumption. In Chapter 3, the heart of our proce-
dure to enforce an intermediate constraint (when using an indirect method) was to penalize the
constraint in the cost and do a continuation on the penalization parameter. The intention of
Chapter 5 was to carry the expertise gained while applying continuation procedures to aerospace
problems to the resolution of an optimal control problem in infinite dimension. We studied an
integro-differential system modelling the evolution of cells populations structured by a pheno-
typical trait, the resistance to chemotherapeutic drugs. Again, the original control problem is
highly simplified in order to apply a PMP in infinite dimension, yielding controls with a simple
structure over time. From their wide range of applications, we claim that continuation techniques
are robust, and can be used quite generically. Besides, the parametric deformation can take a
variety of forms including change in the cost, introduction of constraints, increase in the level of
discretization, modulation on the set of parameters in the differential system...

Because of flight conditions in real life, it is crucial for the Ariane 5 pilot to be based on
a robust control algorithm. Perturbations, model errors can always cause the system to drift
away from a planned trajectory. We found the literature on robust algorithms preserving the
bang-bang structure of a control to be elusive. In Chapter 4, starting from the intuition that the
switching times of a bang-bang command can be considered as degrees of freedom, we suggested
an algorithm preserving this structure. Our main idea was to add bang arcs in the form of
needle-like variations of the control. In this context, steering the control system to some given
target starting form a perturbed point amounts to solving an overdetermined nonlinear shooting
problem, what we do by developing a least-square approach. In turn, we design a criterion to
measure the quality of robustness of any given bang-bang strategy, based on the singular values
of some end-point mapping, and which we optimize.
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Some perspectives. We shall now finish by giving some perspectives to this work. In Chapter
3 we already mentionned two possible continuations of the work undertaken. A deeper study of
why the homotopy on & gives far better results that the homotopy on s should be carried. A
first step could be to focus on the accessibility set at time ¢;, in order to diagnose a potential
loss of controllability. Besides, the proof of a convergence result for the sequence of adjoint
vectors (p°(+))eso is still missing. Such a result would complete the theoretical justification of
the procedure of Chapter 3.

Besides, the optimization software presented in Chapter 3 could be subject to many improve-
ments depending on the needs of the CNES. One major axis of developement could be to include
in the attitude equations the position and the velocity of the launcher. This would enable the
user of the software to take into account constraints ensuring a minimal distance between bodies
after a separation, which is of high importance in practice when designing a ballistic phase. This
would double the dimension of the system, passing it from R® to R'2. Therefore, the size of the
data in any underlying optimization algorithm would double as well.

As for Chapter 4, the ultimate perspective would be to test our procedure on some real-life
system. Recall that in this chapter, we applied our algorithm to the reduced attitude equations
in R3, with only the three angular velocities. Implementing the method on the complete attitude
system in RS, or even on the system with the kinematic variables in R'2, would surely be a
source of challenges coming from the increased dimension, as well as from the potentially higher
number of needle-like variations of the control required to robustify a given trajectory.

On the complete attitude system with position and velocity, let us mention the works | ,

|, where it is shown that optimal trajectories for the time-optimal control problem contain
singular arcs, and at the connection between bang arcs and a singular arc, the control chatters:
on a compact time interval, the control switches an inifinite number of times. In [ I,
the authors suggest a sub-optimal control strategy, with only a finite numer of switchings. Our
approach could be combined with their work in order to design a robust way to place those
switchings.



Appendix

A software to solve a complete ballistic
phase

As announced in the Introduction and earlier in Chapter 3, one of the goals of this thesis was
to design an optimization software able to optimize the trajectory of a launcher during any given
ballistic flight. Because of the limitations that appeared with the procedure previously presented
in Chapter 3 as soon as the number of intermediate constraints becomes greater than one, we
took the decision to implement this software with a direct method. It calls an open source library
based on an interior-point algorithm. Therefore, we had to implement all the routines for the
cost and the constraints, as well as for their derivatives.

Description of the software. The details of the software are classified and are the property of
the CNES. We shall however give some general elements to explain our approach. The following
data has to be provided by the user of the software:

e General elements on the geometry of the launcher, that do not change during the whole
ballistic phase, such as the location of the thrusters.

e An integer v and the times ¢1,ts,...,t, of the intermediate constraints, ¢, being also the
final time.

e For each k € [1,v], the number of constrained components of the state at time ¢, x(t),
and for each constrained component, the value of the constraint.

e For each k € [1,v], the values of the inertia coefficients and for the position of the center of
mass at times tz and t, . As we will emphasize in Remark A.1, when a time t;, corresponds
to the separation of a body, the inertia coefficients and the position of the center of mass
change. When planning a ballistic phase, the knowledge of the geometry of the launcher
and the placement of the satellites allows to know a priori those values at any given moment
of the future mission.

Note that if v = 1, the software can be used to solve a simple ballistic phase with only one
separation, as we did in Chapter 2.
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Remark A.1: Consequence of a separation

Some of the times t;, (with & € [1,v]) can coincide with a rigid body being separated from
the launcher. Therefore, the inertia coeflicients I, I, and I, and the location of the center
of mass are discontinuous at such a time ¢;. Recall that the expression for the parameters

(ai)1<ixs 18
Ler N non e

I, ’

and the expression for the vectors (57 )igj<m (corresponding to a force ? produced at point

Aj) is
¥ =1"'B A AC.

Therefore, the numerical coefficients ai, as and as, as well as the torques vectors b (for
J € [1,m]) are also discontinuous at such a time t. It follows that the discretization of the
dynamics changes after each separation, and a routine computing those coefficients has to be
called after each separation.

We give on Figure A.1 a description of the software. After the data is read, an instance
of the optimization problem is created, using the routines for the cost (implemented in the file
cost.c), the constraints (constraint.c) and their derivatives (dcost.c and dconstraint.c).
This problem is then solved using an interior-point algorithm, and the output is displayed in the
output.txt file.

Numerical output. We shall now display the output of this software, when used to optimize
a ballistic phase with three separations: two satellites are put into orbit. Besides, between the
two droppings of the satellites, the dual launch system also has to be separated. Both satellites
are required to be separated in a spinned state, rotating at 1.5 degrees per second (0.027 radians
per second) about the principal axis of inertia and in both cases, the angle ¢ is left free at the
separation. For the separation of the dual launch system, all 6 components of the state are
prescribed.
The initial condition on the state of the launcher is

(907 ,(/)07 %0, Po, q0, TO) = (26a _0177 77a 0017 07 O)

We denote t1, t5 and t3 the times of the separations of the three bodies. Therefore, the
separations of the satellites happen at time ¢; and t¢3, and the separation of the dual launch
system happens at time ¢5. At time ¢; and t3, the angle ¢ is left free, and the following constraints
are enforced:

0(t1) = 6(t3) = 0.04,
Y(t1) = (ts) = 0.06,
p(t1) = p(t3) = —0.027,
q(t1) = q(t3) =0,

r(t1) =r(ts) =0

We also impose, in order to demonstrate the robustness of our method and as it could be of
interest in practice, to control the angular velocities to zero a few seconds before and after each
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{ data.txt }

v
[ read,data() }

[compute _parameters|()

[ constraint.c Hcrea‘ce problem() }4—[ cost.c }

dcost.c }

VS

[ dconstraint.c }

A 4
e M

solve_problem()
. J

v

e M

write_output()

v

output.txt

Figure A.1 — Description of the software to optimize a complete
ballistic phase. The previously mentionned data that has to be
provided by the user is given in the file data.txt.

separation. In other words, we chose times 74 for k € [1, 6], and enforce the following constraints:
p(e) = q(m) = r(m) =0, Vk€[1,6].

Altogether, there are 9 intermediate constraints in this problem.

On Figure A.3, we plot the trajectories for the 6 components of the state of the launcher.
We mark each separation with a blue diamond. Let us emphasize again that for each separation,
some components may be left free (here, ¢), imposing to treat the ballistic phase as a whole,
and not as three diferent problems.
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Figure A.2 — Trajectory for the optimization of a whole ballistic
phase, starting from ¢. Each ¢ stands for the separation of a body.
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Figure A.3 — Angular velocity for the optimization of a whole
ballistic phase, starting from ¢. Each ¢ stands for the separation of a
body. Each ¢ corresponds to the control of the angular velocity to 0.

On Figure A.3, we display the angular velocity of the launcher over time. The constraints
under the form w(r,) = 0 (k € [1,6]) are marked with a black diamond. In view of future
applications, it is important to mention that once the ballistic phase has been optimized leaving
some components free at each intermediate constraint, each part of the mission (for instance
between two successive separations) can be used separately.

Finally, we also display on Figure A.4 the corresponding controls. The large number of
switching times confirm a posteriori the choice to use an direct method, as it is a source of
numerical difficulty in the context of indirect methods. We point out that at some point, the
controls vy and w12 do not reach their maximal value. It is a sign of the lower numerical accuracy
of direct methods. Note also the presence of a singular arc on the control usg.
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Figure A.4 — Controls for the

optimization of a whole ballistic phase.
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Appendix

Liouville’s theorem

In this appendix, we are going to focus on differential systems ¢(t) = X (q(t)) whose flow
preserves the Lebesgue measure. Liouville’s theorem states that a sufficient condition is that the
vector field is divergence-free. Such a vector field is also sometimes named a solenoidal vector
field. We are first going to give a proof in the linear case, and then in the nonlinear case.

Linear case. Let 0(t) = A(t)v(t) be a linear differential equation. We denote R(t, o) the linear
mapping such that

R" — R",

Vo — U(t,to,vo),

R(t,to) : {

where v(t, tg, vo) stands for the solution to the differential equation with initial condition v(tg, to, vo) =
Vo-
Let us denote (v (t),...,v,(t)) the columns of R(t,tp), and consider the application

R — R,
T:{t s det R(t, to) = det(v1 (1), .. vn(t)).

The determinant is multilinear with respect to the columns, and we get the following expres-
sion for the derivative of 7"

j=1
n
- Z det(vl (t)v sy A(t)vj (t)7 y Un (t))
j=1
The application (vy,...,v,) — Z;;l det(vy,...,A(t)v),...,v,) also is an alternating multi-
linear function with respect to the columns. Therefore, it is proportional to the determinant:
there exists a constant K (t) such that for all (vy,...,v,),

Zdet(vl, LAYy, o) = K(t) det(v, .., vp).
j=1
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Taking in the previous relation (v1,...,v,) = (e1,...,e,) where (e1,...,e,) stands for the
canonical basis of R™, we get that K(t) = Tr A(¢t). We have shown that 7'(-) satisfies the

differential equation
T'(t) = Te(A@1)T(1),
T(ty) = 1

7

and the expression for the determinant of R(¢,tg) follows

t
det R(t,t9) = exp (/ A(s)ds) .
to
We can now deduce Liouville’s theorem, in the linear case.

PROPOSITION B.1 (LIOUVILLE’S THEOREM - LINEAR CASE). — Assume that for all t,
Tr A(t) = 0. Then the determinant of the matriz R(t,to,xo) is equal to 1, and the flow preserves
the Lebesgue measure.

Nonlinear case.

PROPOSITION B.2 (LIOUVILLE’S THEOREM - NONLINEAR CASE). — Let exp(tX) be the
flow of a nonlinear differential equation y(t) = X (y(t)) such that the field X is divergence-free,

V- X(y) =Tr(dX(y)) = 0.
Then the flow preserves the Lebesgue measure.

Proof. Let y € R™. We start by computing the time derivative of the flow exp(tX)(y). By the
very definition of the flow, we get that

%expm(y) = X (exp(tX)(y)).

Differentiating this equation with respect to y, and switching the order of the derivatives, we get
that

& dexp() () = dX (exp(X)(u)dexp(1X) ().

Besides, it holds that dexp(0X)(y) = Id. Therefore, we can apply the result in the linear case
to the mapping ¢ — dexp(tX)(y) and the linearized system

where A(t) = dX (exp(tX)(y)).
We get the expression for the determinant of dexp(tX)(y):

det(dexp(tX)(y)) = exp ( /0 t TrA(s)ds) .

By hypothesis, Tr A(s) = Tr(dX (exp(tX)(y))) = V - X(exp(tX)(y)) = 0 as the vector field is
divergence free. We get that
det(dexp(tX)(y)) = 1.

It follows easily that the flow exp(tX) preserves the Lebesgue measure: Let A be an open set
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of finite measure. Performing a change of variables in the integral yields:

exp(tX)(A)] = / dy

exp(tX)(A)

_ /A |det(d exp(tX) (3))| dy
=4|.
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Appendix

Linear Algebra

C.1 Singular value decomposition and pseudoinverse

Let A € M,, v(R). The matrix A*A is hermitian, and its eigenvalues are real and nonneg-
ative. Indeed, let A € C be an eigenvalue with an eigenvector z : Then ||Az||> = (Az, Az) =
(A*Az,z) = (Az,z) = X|z|>. The singular values of a matrix A € M, y(R) are the square
roots of the (real and nonnegative) eigenvalues of A*A.

This enables us to define the singular value decomposition (SVD) of a matrix :

DEFINITION C.1. — Let A € M, n(R) with r positive singular values. Then, there ezist
U e My(R) and V € My (R), unitary matrices, and ¥ € M, n(R) a diagonal matriz of the

form :

S D) On,Nfr

X = <Onr,r Onr,Nr)
with ¥ € M,(R) (with r = rank(A)) whose diagonal entries are the positive singular values of
A, such that A =UXV*

If ||-||, denotes the induced norm for matrices corresponding to the euclidian norm, we easily
get from the singular-value definition that || A|, = 0max, Where omax denotes the largest singular
value of A. The singular-value decomposition of a matrix enables us to define the pseudoinverse
of a matrix.

DEFINITION C.2. — Let A€ M, y(R), and A = USV* its SVD decomposition. The pseudo-
inverse of A is defined by AT = VETU* € My ,(R), with :

~ -1
st ( Z 0””> € My (R)

ON—T,T ON—T,T

We recall then a few properties of the pseudoinverse, that are needed to understand how to
solve a least-squares problem.

ProposiTION C.1. — (i) HATH2 = 1/0min where op,ip is the smallest positive singular value
of A.
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(ii) The operator AA' is the orthogonal projection on range A, and I — AA" is the orthogonal
projection on (range A)L.
(iii) The operator AT A is the orthogonal projection on (ker A)*, and I — AT A is the orthogonal
projection on ker A.
(iv) ker At = (range A)*.
(v) range AT = (ker A)~.

Proof. A straightforward computation yields

AAT =U < Ir Onn—r ) U*,

On—r,r On—r,n—r

which is the expression of an orthogonal projector. Besides, range(AA") C range(4), and from
the equality of dimensions, we get the equality between range(AA") and range(A). Thus, AAT
is the orthogonal projector on range(A), and it follows that I — AAT is the orthogonal projector
on range(A)= .

The proof for AT A is similar : we get from a simple computation that it represents an orthogonal
projector. Besides, ker A C ker(AfA), and they have same dimension (N — r), so ker(AfA) =
ker A, and we get that A'A is the orthogonal projector on (ker A)*.

We have that ker(AT) C ker(AAT). But we have just shown that AAT is the orthogonal projector
on range(A), therefore, ker(AAT) = range(A)*. Besides dim(ker(Af)) = dim(range(A)*) = n—r,
so we conclude by equality of the dimensions.

Finally, (ker A)* = range(AfA) C range AT, and we conclude again by equality of the dimensions
. dim((ker A)*) = N — dim(ker A) = N — (N —r) = r = rank AT O

C.2 A least-squares problem

In this section, we consider the following least-squares problem : Given a matrix A €
M, nv(R) and a vector b € R™, find a solution of the optimization problem :

min [|[Ay — b
i 4y 0]

The result we want to emphasize here is the link between the pseudo inverse and the solution
of the least-squares problem. Note that no assumption is made on N and n. That is, the following
result holds if the linear system is underdetermined (n > N), square (n = N) or overdetermined
(n < N).

PROPOSITION C.2. — The vector x, = Atb is a solution of the least-squares problem. More-
over, in the case where the problem has several solutions, it is the one with minimal norm (for
the euclidian norm): let x # xy, such that |Azy, — bl|, = ||Ax — b|,, then ||xp]|, < ||z,

Proof. We have Az —b = A(x — xp) + (AAT — )b, with A(z — 2;) € range A and (AAT —
I) € (range A)L (see proposition C.1). Thus, for all z € RY, Az —b|* = ||A(z — )| +
[(AAT — D)b||* = | Az — 2)]|* + || Az, — b]|. And we get that | Az, — b]|*> < || Az — b]%, so ap is
a solution of the least-squares problem. If the previous inequality is an equality for some x, we
get that |A(z — zp)|| = 0, and thus A(x —x3,) =0, i.e v — 1, € ker A. Let 2 = 2 — x, = v — A'b.
We get that (see proposition C.1)

= _z + Al
~~ ~—
€ker A g(ker A)L
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So, ||lz|* = ||2II> + HATsz = |lz|” + ll=]1%, and ||lz||> < ||#]]>. So a is indeed the solution of
minimal euclidian norm. O

Let A € M, n(R), with n < N, a matrix of maximal rank, i.e n (or, in other words, A is
surjective). Thus, A has exactly n positive singular values, which we will denote o7 > -+ > 0, >
0. Given b € R™, we know from the surjectivity of A that there is a solution to the equation
Axz = b. Moreover, according to proposition C.2, we know that Afb is the solution of minimal
norm (for the euclidian norm). And we get the following estimate (see Proposition C.1) :

lzolly = [| A%,
< [JAT, - 1ol
1
< o 16l

C.3 Condition number of a matrix

Case of a square matrix. In this section, we give some details on the condition number of a
matrix. Let A € M,,(R). Let = be the solution of some linear system

Az =b.
Let &b be a perturbation of the right hand term, and x + dx be the solution of
Az + 0z) = b+ 6b,
that is, dx is a solution of the equation Adx = 0b. It follows that
16ll, < [|A7]l, 16,

If one wishes to have a relative error estimate,

H533||2 < -1 ||5bH2
< ||A
[E4 [P 4~ [E4|
_ [|00]]
< HA 1||2 ' ||A||2 Hb||2

The relative error we make on the solution when having an error on the right-hand term is
controlled by the quantity ||A~| 5+ [[All5 : this is the condition number of the matrix A with
respect to the euclidian norm, denoted by conds(A). Note that this quantity is always greater
than 1, as

AT, - 14l > [[A A,

P
> | Lall,

The condition number of a matrix has a very elegant geometric interpretation : from the SVD
decomposition, it can be derived that the image of the unit sphere in R™ by an inversible matrix
is an ellipsoid, whose semi-major axis is oyax and whose semi-minor axis is oy, as displayed
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Urnax

Sl

Figure C.1 — In dimension 2, image by an inverible matrix of the unit sphere S!.

on Figure C.1 in dimension 2. Thus, the condition number of a matrix measures how close the
ellipsoid is to a sphere.

Case of a non square matrix. In Chapter 4, we give an algorithm to control a system even
in presence of perturbations, based on the computation of the solution of a linear system

dE - 6T = éx,

where dF is a matrix of dimension n x IV, with IV possibly larger than n. If the matrix dFE is of
full rank n, with the singular values o7 > --- > 0, > 0, then the image of the unit sphere of RN
by the matrix dF is, up to a rotation,

dE(SN1) = {x = (z1,...,22) | (2)2 T (i:f}
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CONTROLE OPTIMAL ET ROBUSTE DE L’ATTITUDE D’UN LANCEUR
Aspects Théoriques et Numériques

Résumé

L’objectif premier de cette thése est d’étudier certains aspects du contréle d’attitude d’un corps rigide,
afin d’optimiser la trajectoire d’un lanceur au cours de sa phase balistique. Nous y développons un
cadre mathématique permettant de formuler ce probléme comme un probléme de contréle optimal avec
des contraintes intermédiaires sur I’état. En paralléle de I’étude théorique de ce probléme, nous avons
mené I'implémentation d’un logiciel d’optimisation basé sur la combinaison d’une méthode directe et
d’un algorithme de point intérieur, permettant a 1'utilisateur de traiter une phase balistique quelconque.
Nous entendons par 1a qu'’il est possible de spécifier un nombre quelconque de contraintes intermédiaires,
correspondant & un nombre quelconque de largages de charges utiles.

En outre, nous avons appliqué les méthodes dites indirectes, exploitant le principe du maximum de
Pontryagin, a la résolution de ce probléme de contréle optimal. On cherche dans ce travail a trouver des
trajectoires optimales du point de vue de la consommation en ergols, ce qui correspond & un cotit L'.
Réputé difficile numériquement, ce critére peut étre atteint grace & une méthode de continuation, en se
servant d’un cott L? comme intermédiaire de calcul et en déformant progressivement ce probléme L2.
Nous verrons également d’autres exemples d’application des méthodes de continuation.

Enfin, nous présenterons également un algorithme de controle robuste, permettant de rejoindre un état
cible & partir d'un état perturbé, en suivant une trajectoire de référence tout en conservant la structure
bang-bang des contréles. La robustesse d’un controle peut également étre améliorée par I'ajout de va-
riations aiguilles, et un critére qualifiant la robustesse d’une trajectoire a partir des valeurs singuliéres
d’une certaine application entrée-sortie est déduit.

Mots clés : controle optimal, controle d’attitude, phase balistique, méthode de continuation, méthodes
directes, méthodes indirectes, controle robuste, contrainte intermédiaire

OPTIMAL AND ROBUST ATTITUDE CONTROL OF A LAUNCHER
Theoretical and numerical aspects

Abstract

The first objective of this work is to study some aspects of the attitude control problem of a rigid body,
in order to optimize the trajectory of a launcher during a ballistic flight. We state this problem in a
general mathematical setting, as an optimal control problem with intermediate constraints on the state.
Meanwhile, we also implement an optimization software that relies on the combination of a direct method
and of an interior-point algorithm to optimize any given ballistic flight, with any number of intermediate
constraints, corresponding to any number of satellite separations.

Besides, we applied the so-called indirect methods, exploiting Pontryagin maximum principle, to the
resolution of this optimal control problem. In this work, optimal trajectories with respect to the con-
sumption are looked after, which corresponds to a L' cost. Known to be numerically challenging, this
criterion can be reached by performing a continuation procedure, starting from a L? cost, for which it
is easier to provide a good initialization of the underlying optimization algorithm. We shall also study
other examples of applications for continuation procedures.

Eventually, we will present a robust control algorithm, allowing to reach a target point from a perturbed
initial point, following a nominal trajectory while preserving its bang-bang structure. The robustness of
a control can be improved introducing needle-like variations, and a criterion to measure the robustness
of a trajectory is designed, involving the singular value decomposition of some end-point mapping.

Keywords: optimal control, attitude control, ballistic phase, continuation method, direct methods,
indirect methods, robust control, intermediate constraint

Laboratoire Jacques Louis Lions
4 Place Jussieu — 75005, PARIS — France
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