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Résumé xi

Contrôle optimal et robuste de l'attitude d'un lanceur

Aspects Théoriques et Numériques

Résumé

L'objectif premier de cette thèse est d'étudier certains aspects du contrôle d'attitude d'un corps rigide,
a�n d'optimiser la trajectoire d'un lanceur au cours de sa phase balistique. Nous y développons un
cadre mathématique permettant de formuler ce problème comme un problème de contrôle optimal avec
des contraintes intermédiaires sur l'état. En parallèle de l'étude théorique de ce problème, nous avons
mené l'implémentation d'un logiciel d'optimisation basé sur la combinaison d'une méthode directe et
d'un algorithme de point intérieur, permettant à l'utilisateur de traiter une phase balistique quelconque.
Nous entendons par là qu'il est possible de spéci�er un nombre quelconque de contraintes intermédiaires,
correspondant à un nombre quelconque de largages de charges utiles.
En outre, nous avons appliqué les méthodes dites indirectes, exploitant le principe du maximum de
Pontryagin, à la résolution de ce problème de contrôle optimal. On cherche dans ce travail à trouver des
trajectoires optimales du point de vue de la consommation en ergols, ce qui correspond à un coût L1.
Réputé di�cile numériquement, ce critère peut être atteint grâce à une méthode de continuation, en se
servant d'un coût L2 comme intermédiaire de calcul et en déformant progressivement ce problème L2.
Nous verrons également d'autres exemples d'application des méthodes de continuation.
En�n, nous présenterons également un algorithme de contrôle robuste, permettant de rejoindre un état
cible à partir d'un état perturbé, en suivant une trajectoire de référence tout en conservant la structure
bang-bang des contrôles. La robustesse d'un contrôle peut également être améliorée par l'ajout de va-
riations aiguilles, et un critère quali�ant la robustesse d'une trajectoire à partir des valeurs singulières
d'une certaine application entrée-sortie est déduit.

Mots clés : contrôle optimal, contrôle d'attitude, phase balistique, méthode de continuation, méthodes
directes, méthodes indirectes, contrôle robuste, contrainte intermédiaire

Optimal and robust attitude control of a launcher

Theoretical and numerical aspects

Abstract

The �rst objective of this work is to study some aspects of the attitude control problem of a rigid body,
in order to optimize the trajectory of a launcher during a ballistic �ight. We state this problem in a
general mathematical setting, as an optimal control problem with intermediate constraints on the state.
Meanwhile, we also implement an optimization software that relies on the combination of a direct method
and of an interior-point algorithm to optimize any given ballistic �ight, with any number of intermediate
constraints, corresponding to any number of satellite separations.
Besides, we applied the so-called indirect methods, exploiting Pontryagin maximum principle, to the
resolution of this optimal control problem. In this work, optimal trajectories with respect to the con-
sumption are looked after, which corresponds to a L1 cost. Known to be numerically challenging, this
criterion can be reached by performing a continuation procedure, starting from a L2 cost, for which it
is easier to provide a good initialization of the underlying optimization algorithm. We shall also study
other examples of applications for continuation procedures.
Eventually, we will present a robust control algorithm, allowing to reach a target point from a perturbed
initial point, following a nominal trajectory while preserving its bang-bang structure. The robustness of
a control can be improved introducing needle-like variations, and a criterion to measure the robustness
of a trajectory is designed, involving the singular value decomposition of some end-point mapping.

Keywords: optimal control, attitude control, ballistic phase, continuation method, direct methods,
indirect methods, robust control, intermediate constraint

Laboratoire Jacques Louis Lions
4 Place Jussieu � 75005, PARIS � France
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Introduction générale au problème de

contrôle d'attitude

Positionnement du problème

L'accès autonome à l'espace est un axe de développement national et européen majeur depuis
la �n de la seconde guerre mondiale. Les enjeux géopolitiques sont plus importants que jamais.
Un élément clé de cette politique est la disponibilité d'un lanceur, c'est à dire d'un véhicule
ayant la capacité d'emporter des charges utiles (satellite commercial ou institutionnel, sonde
d'exploration, cargo vers la station spatiale internationale...) vers une orbite depuis laquelle elles
pourront réaliser leur mission.

La fonction principale d'un lanceur est alors d'injecter un satellite sur une orbite, avec un état
cinématique requis. Nous entendons par là qu'il est nécessaire de pouvoir assurer la séparation
du satellite dans une certaine orientation, avec une certaine vitesse angulaire. Ces données d'at-
titude 1 sont d'une importance cruciale dans la pratique ; citons quelques exemples de contraintes
qui imposent d'être capable de contrôler l'attitude au moment de la séparation :

• L'orientation par rapport au soleil pour des besoins thermiques, ou énergétiques en présence
de panneaux solaires.

• L'orientation par rapport à la terre, a�n d'assurer une visibilité depuis les stations au sol
recevant les données télémétriques.

• La mise en rotation des charges utiles lors de leur séparation. En e�et, sous certaines
conditions géométriques, un corps rigide tournant selon son axe principal présente des
propriétés de stabilité.

Géométrie générale d'un lanceur Ariane 5

Dans cette partie, on souhaite donner rapidement quelques éléments sur la géométrie d'un
lanceur Ariane. Le dernier vol du lanceur Ariane 4 ayant eu lieu en 2003, c'est actuellement le
programme d'Ariane 5 qui est exploité, et c'est sur celui ci que l'on se concentre. Ce programme
a été voté en 1987, pour un premier vol en 1996. Il est actuellement prévu que les lancements se
poursuivent jusqu'au début des années 2020. Ce lanceur ayant été conçu a�n de rester compétitif
au cours de cette longue période, plusieurs versions successives ont vu le jour. Mentionnons par
exemple (Source : CNES ) :

• Ariane 5 G,

• Ariane 5 G+,

1. Nous reviendrons dans la suite sur une dé�nition de ce terme d'attitude. Pour l'instant il est su�sant de
savoir qu'il désigne à la fois l'orientation du lanceur ou du satellite dans l'espace, ainsi que sa vitesse angulaire.

1



2 Introduction générale au problème de contrôle d'attitude

• Ariane 5 GS,

• Ariane 5 ES,

• Ariane 5 ECA.

Ces di�érentes versions ont permis l'introduction de modi�cations (allant du remplacement d'un
moteur au remplacement d'un étage complet) permettant par exemple d'augmenter la perfor-
mance du lanceur (i.e., d'augmenter sa capacité à envoyer des charges utiles de plus en plus
lourdes en orbite), ou d'acquérir de la versatilité pour l'étage supérieur (possibilité de rallumage
en orbite). Aujourd'hui, la performance mise en avant par le CNES et Arianespace est d'une
dizaine de tonnes en orbite géostationnaire pour la version �ECA� (Source : CNES ).

De part la grande variabilité au sein de cette famille de lanceur, nous nous contenterons de
donner des éléments de géométrie qui nous paraissent représentatifs du programme de dévelop-
pement Ariane 5, et permettent de donner une idée générale de la chronologie d'un lancement
Ariane. Sur la Figure 1, nous donnons une vue globale d'un lanceur Ariane 5. Dans les prochains
paragraphes, nous donnerons plus de détails sur les di�érents composants du lanceur.

EAP et EPC. Ariane 5, dans sa partie basse, est composée de son Étage Principal Cryotech-
nique au centre, entouré de deux Étages d'Accélération à Poudre (EAP), comme représenté sur
la Figure 2.

Les EAP fournissent 92% de la poussée au moment du décollage. Dotés d'une propulsion
solide, une de leurs particularités est de ne pas pouvoir être éteints après leur mise à feu. Lorsque
l'ordinateur de bord détecte une baisse signi�cative de la poussée, environ deux minutes après le
décollage, ils sont séparés du lanceur et retombent dans l'océan.

L'EPC quant à lui est allumé 7 secondes avant le décollage. Même s'il ne fournit que les 8% de
poussées restants au moment du décollage, le moteur Vulcain qui l'équipe assure seul l'essentiel
de la poussée du lanceur dès que les EAP sont séparés. Il fonctionne alors environ 7 minutes
supplémentaires, avant de s'éteindre et l'EPC peut être séparé à son tour.

Ces données proviennent du manuel utilisateur d'Ariane 5 [Ari16], qui contient largement
plus de détails sur la conception et la composition des EAP et de l'EPC.

Composite supérieur. Posée sur l'EPC, la partie supérieure d'Ariane 5 est représentée sur la
Figure 3 dans di�érentes versions. Ce composite est formé de l'étage supérieur (avec notamment
ses réservoirs et son moteur), la case à équipement du lanceur (contenant notamment toute
l'avionique d'Ariane 5), l'adaptateur de charges utiles, la ou les charge(s) utile(s), l'éventuel
système de lancement double (sur lequel nous nous attardons au paragraphe suivant) et la coi�e
protégeant tous ces éléments. Notons que bien que faisant partie du composite supérieur, la coi�e
est séparée avant l'EPC. En e�et, sa vocation est de protéger les charges utiles des frottements
avec l'atmosphère lors du décollage. Lorsque ces frottements deviennent su�samment faibles, la
coi�e est larguée a�n d'alléger le lanceur. L'un des organes essentiels de l'étage supérieur pour
ce travail de thèse est le système de contrôle d'attitude du lanceur. Nous reviendrons plus en
détails dans la section suivante.

Lancement double Ariane. Dans ce paragraphe, on souhaite insister sur un élément par-
ticulier du composite supérieur, le SYstème de Lancement Double Ariane (SYLDA), qui a été
utilisé pour la première fois en 2000. Son introduction a été d'une grande importance pratique,
car il permet de réaliser de manière systématique des lancements doubles, en plaçant deux satel-
lites en orbite. En e�et, en plaçant deux charges utiles en orbite par vol d'Ariane 5, le coût de
lancement d'un satellite est diminué. Cela impose alors de concevoir des phases balistiques plus
complexes, avec plus de contraintes provenant, entre autres, des di�érents largages. Lorsqu'elle
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Figure 1 � Vue éclatée d'un lanceur Ariane 5 (Source : Manuel utilisateur Ariane 5 ).
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Figure 2 � Représentation de la partie basse d'Ariane 5, avec les deux EAP et l'EPC.
Source : CNES.

Figure 3 � Représentation de la partie haute d'Ariane 5. Source : CNES.

est utilisée, cette structure doit également être séparée, après le largage du premier satellite, et
avant d'entamer les man÷uvres menant à la séparation du second satellite. Ce système est bien
visible sous la coi�e d'Ariane 5 ECA, à la Figure 3.

Chronologie d'un lancement Ariane 5. La Figure 4 récapitule les di�érentes étapes de la
phase propulsée d'un lancement Ariane 5 (c'est-à-dire, jusqu'à l'extinction du moteur principal
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de l'étage supérieur). Il s'agit de valeurs moyennes, données pour un lancement vers une orbite
de transfert géostationnaire (GTO).

Figure 4 � Chronologie d'un vol Ariane 5 ECA. Source : CNES.

Cette phase de vol, dite phase propulsée, constitue en soit un sujet de recherche à part entière,
riche en questions mathématiques diverses. Néanmoins, le centre d'intérêt de cette thèse est la
phase de vol suivante, dite phase balistique, qui va permettre de séparer sur l'orbite souhaitée
les satellites. Nous nous attardons plus en détails sur cette phase balistique dans la sous-section
suivante.

Phase balistique

Rappelons pour commencer que la fonction d'un lanceur est de séparer une ou plusieurs
charges utiles sur une orbite donnée, dans un état d'attitude prescrit. L'atteinte de l'orbite visée
est assurée par les phases propulsées du vol. Il s'agit des phases où, successivement, les EAP,
le moteur principal de l'EPC, puis celui de l'étage supérieur sont actifs. Il suit une phase dite
balistique durant laquelle le contrôle de l'attitude du lanceur est assuré par le Système de Contrôle
d'Attitude (SCA), en vue de la séparation des charges utiles. Par opposition aux phases de
poussées, cette phase désigne la période pendant laquelle les moteurs principaux sont éteints. Le
rôle du SCA est donc d'orienter l'étage supérieur et ses charges utiles a�n d'atteindre une attitude
donnée permettant de satisfaire les di�érentes contraintes liées au lanceur ou au(x) satellite(s).

Le SCA est l'ensemble des composants assurant la génération de la poussée nécessaire à la
réalisation des objectifs de la phase balistique : le moteur principal du lanceur est éteint, et de



6 Introduction générale au problème de contrôle d'attitude

petites poussées sont réalisées par un ensemble de tuyères réparties sur l'engin.
Nous représentons sur la Figure 5 un schéma du SCA, comme considéré dans les travaux de

ce travail de thèse. Il est constitué d'un ensemble de tuyères (14 sur le schéma) dont le nombre
peut varier d'un lanceur à l'autre. L'alimentation du SCA di�ère également entre les di�érentes
versions du développement d'Ariane 5. Par exemple, pour Ariane 5 ECA, il est alimenté par
du dihydrogène gazeux ou du dioxygène gazeux ; sur Ariane 5 ES, de l'hydrazine est également
utilisée. Il est possible d'ouvrir ou de fermer chaque tuyère a�n de produire une force de poussée
et un couple, mais on n'en contrôle ni le débit, ni l'orientation. C'est donc le SCA qui nous permet
d'exercer un contrôle sur le système. Précisons que sur un lanceur de type Ariane 5, deux tuyères
sont généralement utilisées pour les contraintes d'éloignement entre les corps. Sur la Figure 5, il
s'agit des tuyères 13 et 14, représentées en rouge. Ces tuyères n'étant pas strictement utilisées
pour faire du contrôle d'attitude, nous les omettrons parfois dans la suite de la thèse.

Zl

Yl

T12

T10

T9

T11

T7

T8

T1 T4

T6

T2 T3

T5

T14

T13

(a) Vue du dessus

Xl

Zl

T12T11

T6T5

T13

T14

(b) Vue de pro�l

Figure 5 � Schéma du Système de Contrôle d'Attitude

C'est également lors de la phase balistique que sont réalisées les man÷uvres nécessaires aux
dispositions de �n de vie et de passivation du composite supérieur. Ces exigences sont liées à la
Loi sur les Opérations Spatiales, relatives notamment à la sécurité des personnes et au respect
de l'environnement orbital.

Objectifs de la thèse. La recherche d'une séquence d'activation des tuyères permettant
d'amener le lanceur dans les états d'attitude souhaités est conditionnée au respect d'un cer-
tain nombre de contraintes physiques provenant de la conception du lanceur. Par exemple, la
quantité d'ergols disponibles pour e�ectuer les man÷uvres est limitée. La durée d'ouverture des
tuyères ou la durée totale de la phase balistique sont également sujettes à des bornes que l'on
ne doit pas dépasser. Nous reviendrons, lors de la formulation du problème de contrôle optimal,
sur le choix d'un coût permettant d'intégrer ces contraintes.

Bien que conçue de façon spéci�que pour chaque analyse de mission, la phase balistique n'a
pas jusqu'à présent fait l'objet à notre connaissance d'une méthode d'élaboration systématique
et déposée, sa conception reposant essentiellement sur le savoir-faire des analystes de mission.

C'est donc la recherche de la trajectoire du lanceur au cours de la phase balistique que
l'on étudie dans cette thèse. Nous y développons un cadre mathématique précis permettant de
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formuler ce problème comme un problème de contrôle optimal. L'objectif de la thèse est de
concevoir et d'implémenter une méthode mathématique permettant d'automatiser et d'optimiser
l'élaboration et la plani�cation d'une phase balistique.

Modélisation du problème de contrôle d'attitude

Évolution de l'orientation d'un lanceur.

On se donne un repère mobile (
−→
X `(t),

−→
Y `(t),

−→
Z `(t)), attaché au lanceur en son centre de

gravité, ainsi qu'un repère inertiel (
−→
X i,
−→
Y i,
−→
Z i). Repérer l'attitude du lanceur revient à repérer

la position du repère mobile par rapport au repère inertiel, c'est-à-dire calculer l'expression de
la matrice de passage entre le repère mobile et le repère inertiel :

R(t) =

〈
−→
X `(t),

−→
X i〉 〈

−→
X `(t),

−→
Y i〉 〈

−→
X `(t),

−→
Z i〉

〈−→Y `(t),
−→
X i〉 〈

−→
Y `(t),

−→
Y i〉 〈

−→
Y `(t),

−→
Z i〉

〈−→Z `(t),
−→
X i〉 〈

−→
Z `(t),

−→
Y i〉 〈

−→
Z `(t),

−→
Z i〉

 ,

qui est un élément de SO3(R).
Le vecteur de vitesse angulaire du lanceur est dé�ni, en repère lanceur, par [−→ω ]l = (p, q, r).

C'est à dire que
−→ω = p

−→
X` + q

−→
Y` + r

−→
Z`.

Suivant ses caractéristiques géométriques, un lanceur présente généralement un axe principal
d'inertie : sur la Figure 5, il s'agit de l'axe

−→
X l. Dans la suite de ce travail de thèse, on appel-

lera parfois vitesse de roulis la vitesse angulaire suivant cet axe (c'est-à-dire p), et on utilisera
l'appellation vitesses angulaires transverses pour les composantes q et r.

L'équation décrivant l'évolution de l'orientation du lanceur est alors

Ṙ(t) =

 0 r −q
−r 0 p
q −p 0

R(t),

qui exprime la rotation du repère (
−→
X `(t),

−→
Y `(t),

−→
Z `(t)) à la vitesse angulaire [−→ω ]l = (p, q, r).

Évolution de la vitesse angulaire

Paramétrisation de SO3(R). Dans ce travail de thèse, on a choisit de repérer la position des
axes du lanceur par trois rotations, dont les angles sont parfois désignés angles de Cardan, et qui
constituent une variation des angles d'Euler. Le repère lanceur (

−→
X l,
−→
Y l,
−→
Z l) est obtenu à partir

du repère inertiel (
−→
X i,
−→
Y i,
−→
Z i) par la série suivante de rotations, représentée à la Figure 6 :

• d'angle θ autour de l'axe
−→
Z i, qui donne le repère (

−→
X 1,
−→
Y 1,
−→
Z 1),

• d'angle ψ autour de l'axe
−→
Y 1, qui donne le repère (

−→
X 2,
−→
Y 2,
−→
Z 2),

• et en�n d'angle ϕ autour de l'axe
−→
X 2, qui donne le repère (

−→
X l,
−→
Y l,
−→
Z l),

Rappelons que la vitesse angulaire est dé�nie, en repère lanceur, par −→ω = p
−→
X` + q

−→
Y` + r

−→
Z`.
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xI yI

zI = z1

θ θ

x1

y1 = y2
ψ

ψ

x2 = xl

z2

φ

φ yl

zl

Figure 6 � Séquence des trois angles d'attitude.

Or, en utilisant la séquence de rotations précédemment introduite, on a également

−→ω = θ̇
−→
Zi + ψ̇

−→
Y1 + ϕ̇

−→
X2

= θ̇
−→
Z1 + ψ̇

−→
Y1 + ϕ̇

−→
X2

= θ̇(− sinψ
−→
X2 + cosψ

−→
Z2) + ψ̇

−→
Y2 + ϕ̇

−→
X2

= (ϕ̇− θ̇ sinψ)
−→
X2 + ψ̇

−→
Y2 + θ̇ cosψ

−→
Z2

= (ϕ̇− θ̇ sinψ)
−→
X` + ψ̇(cosϕ

−→
Y` − sinϕ

−→
Z`) + θ̇ cosψ(sinϕ

−→
Y` + cosϕ

−→
Z`)

= (ϕ̇− θ̇ sinψ)
−→
X` + (θ̇ cosψ sinϕ+ ψ̇ cosϕ)

−→
Y` + (θ̇ cosψ cosϕ− ψ̇ sinϕ)

−→
Z`

Ainsi, en identi�ant les termes, on obtient l'expression suivante pour la vitesse angulairepq
r

 =

1 0 − sinϕ
0 cosϕ cosψ sinϕ
0 − sinϕ cosψ cosϕ

 ·
ϕ̇ψ̇
θ̇


Le calcul du déterminant de la matrice donne :

det

1 0 − sinϕ
0 cosϕ cosψ sinϕ
0 − sinϕ cosψ cosϕ

 = cos2 ϕ cosψ + sin2 ϕ cosψ = cosψ.

Cette représentation par des angles de Cardan introduit donc une singularité quand cosψ = 0,
i.e., ψ ≡ π/2 (mod π). Si ψ 6≡ π/2 (mod π) la matrice est inversible et on obtient les équations
d'évolution pour les angles θ, ψ et ϕ :ϕ̇ψ̇

θ̇

 =

1 sinϕ tanψ cosϕ tanψ
0 cosϕ − sinϕ

0 sinϕ
cosψ

cosϕ
cosψ

 ·
pq
r

 . (1)
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Remarque 0.1: Représentation de SO3(R)

Le choix de la série de rotations pour repérer la position des axes du lanceur n'est pas unique. La
matrice R(t) introduite au paragraphe précédent est un élément de SO3(R), une sous-variété
de M3(R) de dimension 3, et de manière plus générale, il existe plusieurs représentations
possibles pour SO3(R). Mentionnons par exemple les représentations classiques :

• avec trois paramètres, les angles d'Euler, les paramètres de Rodrigues.

• avec quatre paramètres, les quaternions, la représentation angle/axe.

Notons que les représentations à trois paramètres ne sont pas globales : par exemple, quelle que
soit la séquence choisie pour les angles d'Euler, une singularité apparaîtra. Quant aux repré-
sentations à quatre paramètres, elles ne présentent pas de propriété d'unicité : par exemple, si q
est un quaternion unitaire représentant une attitude R ∈ SO3(R), le quaternion −q représente
la même attitude.
L'article [Cea11] et le livre [BFT06] évoquent plus en détails le problème du choix d'une
représentation pour SO3(R).

Équations pour la vitesse angulaire. On va maintenant établir les équations d'évolution
pour la vitesse angulaire −→ω = (p, q, r), en s'inspirant de la présentation de [D.10]. Soit

−→
HG le

moment cinétique par rapport au centre de gravité du lanceur, qui s'exprime

−→
HG = I−→ω ,

où I désigne la matrice d'inertie du lanceur. Le théorème du moment cinétique a�rme que la
dérivée du moment cinétique est égale à la somme des moments (par rapport au centre de gravité)
des forces s'exerçant sur l'objet :

d

dt

−→
HG =

∑−→
MG(

−→
f ).

En outre, le repère lanceur étant attaché de manière rigide au lanceur, on peut également exprimer
la dérivée du moment cinétique

d

dt

−→
HG =

d

dt

∣∣∣∣
rel

−→
HG +−→ω ∧ −→HG.

Le premier terme du membre de droite désigne la dérivée dans le repère mobile du moment
cinétique, c'est-à-dire que

d

dt

∣∣∣∣
rel

−→
HG = I−̇→ω ,

et on obtient �nalement en regroupant les équations précédentes

I−̇→ω +−→ω ∧ I−→ω =
∑−→

MG(
−→
f ).

Une tuyère, placée au point Aj par rapport au centre de gravité G, et produisant à l'instant t

une force de poussée
−→
P (t) induit un couple sur le lanceur

−→
P (t)∧−−→AjG. Comme on ne contrôle ni

le débit d'ergols, ni l'orientation de la tuyère, la poussée peut s'écrire
−→
P = u(t)

−→
P , où

−→
P est un

vecteur constant de R3 et la fonction u(·) est une fonction constante par morceaux, avec u = 1
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si la tuyère est ouverte et u = 0 si la tuyère est fermée. Le couple peut alors se réécrire u
−→
bj , où−→

bj =
−→
P ∧−−→AjG est un vecteur constant de R3. En notant m le nombre de tuyères sur le lanceur,

l'équation d'évolution pour la vitesse angulaire s'écrit donc :

I−̇→ω (t) +−→ω (t) ∧ I−→ω (t) =

m∑
j=1

u(t)
−→
bj . (2)

En regroupant les équations (1) et (2), on obtient les équations d'Euler complètes pour l'at-
titude d'un corps rigide :

θ̇(t) = sinϕ(t)
cosψ(t)q(t) + cosϕ(t)

cosψ(t)r(t)

ψ̇(t) = cosϕ(t) · q(t)− sinϕ(t) · r(t)
ϕ̇(t) = p(t) + sinϕ(t) tanψ(t) · q(t) + cosϕ(t) tanψ(t) · r(t)

I−̇→ω (t) = I−→ω (t) ∧ −→ω (t) +
∑m
j=1 u(t)

−→
bj .

(3)

Dans la suite, on utilisera souvent la notation x = (θ, ψ, ϕ, p, q, r) pour désigner l'état du
lanceur, u = (ui)16i6m pour désigner le contrôle, et on notera la dynamique sous la forme
condensée

ẋ(t) = f(x(t), u(t)),

ou encore, a�n de faire apparaître le caractère a�ne par rapport aux contrôles,

ẋ(t) = f0(x(t)) +

m∑
j=1

uj(t)fj(x(t)),

où f0 correspond aux équations libres du mouvement, et pour j > 1, fj(x(t)) est un champ de

vecteurs constant, égal à (0R3 ,
−→
bj ).

Cas d'une matrice d'inertie diagonale. Si les axes du repère mobile sont alignés avec les
axes principaux du lanceur, la matrice d'inertie est diagonale

I =

Ix 0 0
0 Iy 0
0 0 Iz

 .

Dans ce cas, les équations pour la vitesse angulaire dans (3) deviennent

Ixṗ = (Iy − Iz)qr +

m∑
j=1

u(t)b1j

Iy q̇ = (Iz − Ix)pr +

m∑
j=1

u(t)b2j

Iz ṙ = (Ix − Iy)pq +

m∑
j=1

u(t)b3j .
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En introduisant les coe�cients numériques

a1 =
Iy − Iz
Ix

, a2 =
Iz − Ix
Iy

, a3 =
Ix − Iy
Iz

,

et avec un léger abus de notation, car on gardera l'écriture
−→
b j pour désigner le couple normalisé

I−1−→b j produit par une tuyère j, on peut écrire les équations sous la forme

ṗ = a1qr +

m∑
j=1

u(t)b1j

q̇ = a2pr +

m∑
j=1

u(t)b2j

ṙ = a3pq +

m∑
j=1

u(t)b3j .

Cette simpli�cation est justi�ée en pratique par la géométrie du lanceur, qui présente (presque)
une symétrie le long de son axe principal. Dans la suite de ce travail de thèse, et sauf mention
du contraire, c'est le cadre que l'on considère.

Équations d'attitude d'un corps rigide - Matrice d'inertie diagonale

θ̇(t) = sinϕ(t)
cosψ(t)q(t) + cosϕ(t)

cosψ(t)r(t)

ψ̇(t) = cosϕ(t) · q(t)− sinϕ(t) · r(t)
ϕ̇(t) = p(t) + sinϕ(t) tanψ(t) · q(t) + cosϕ(t) tanψ(t) · r(t)
ṗ(t) = a1q(t)r(t) +

∑m
j=1 u(t)b1j

q̇(t) = a2p(t)r(t) +
∑m
j=1 u(t)b2j

ṙ(t) = a3p(t)q(t) +
∑m
j=1 u(t)b3j .

(4)

Contrôle optimal.

Outre la recherche de trajectoires respectant les équations de la dynamique (3.3.1) et permet-
tant d'amener le lanceur dans l'état d'attitude souhaité, on cherche des trajectoires optimales
pour un certain critère. Le choix de ce critère revêt une importance particulière dans la modéli-
sation et la formulation d'un problème de contrôle optimal. En e�et, nous verrons au Chapitre 2
que l'expression des conditions nécessaires du principe du maximum de Pontryagin peut conduire
à des contrôles présentant des structures bien di�érentes.

Une des contraintes imposée par la conception du SCA est de ne permettre l'utilisation de
contrôles ne prenant que les valeurs 0 ou 1. Dans la littérature, de tels contrôles sont généralement
quali�és de bang-bang. Le coût que l'on cherche à minimiser lors de la phase balistique est la
consommation en ergols du lanceur, qui est proportionnelle à la durée d'ouverture totale des
tuyères (et dont nous verrons au Chapître 2 qu'il mène bien à des contrôles bang-bang) :∫ tf

0

m∑
i=1

|uj(t)| dt.
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Le temps �nal tf étant destiné à être laissé libre, la minimisation de ce seul critère peut conduire
à obtenir une suite de trajectoires en temps tendant vers +∞. A�n de s'en prévenir, on ajoute
une pondération ∫ tf

0

m∑
i=1

|uj(t)| dt+ λ0tf , (5)

où λ0 dépend de l'importance que l'on souhaite donner au temps �nal.
Le problème de contrôle optimal consiste alors, étant donné un point initial x0 et un point

�nal xf , à trouver un contrôle u(·), optimal pour le coût (5), tel que la trajectoire associée x(·)
véri�e x(0) = x0 et x(tf ) = xf :

(OCP)


min

∫ tf
0

∑m
i=1 |uj(t)| dt+ λ0tf ,

ẋ(t) = f(x(t), u(t)),
∀i ∈ J1,mK, 0 6 ui(t) 6 1 p.p. on [0; tf ],
x(0) = x0,
x(tf ) = xf .

On a beaucoup insisté dans l'introduction sur le fait que la conception du SCA impose d'avoir
des contrôles dans {0, 1}m. Or, dans l'écriture du problème (OCP), on donne la contrainte sur
les contrôles

∀i ∈ J1,mK, 0 6 ui(t) 6 1.

Cela se justi�e par le fait qu'il est commode de choisir un ensemble convexe pour appliquer les
résultats usuels du contrôle optimal. En outre, nous montrerons au Chapitre 2 que le choix d'un
critère L1 tel que (5) mène bien à des contrôles bang-bang.

Nous verrons aussi au Chapitre 3 que nous ajouterons à cette formulation des contraintes
intermédiaires sur l'état, qui s'écrivent génériquement sous la forme :

c(x(t1)) = 0.

Structure du manuscrit et description des contributions

Ce travail de thèse combine plusieurs études théoriques sur le contrôle optimal de systèmes non
linéaires en dimension �nie et la mise en ÷uvre numérique des algorithmes de résolution. Cette
partie numérique comprend entre autres le développement d'un logiciel à destination du CNES
capable d'optimiser la trajectoire d'un lanceur pour di�érentes situations de phase balistique, à
chaque fois par la méthode numérique la plus appropriée.

Les chapitres 1 et 2 serviront à présenter un état de l'art rapide sur des résultats déjà existants
de la théorie du contrôle.

Dans le chapitre 1, nous commencerons par rappeler en détails la preuve du résultat de
contrôlabilité pour les équations d'attitude d'un corps rigide. Cela signi�e que pour toute don-
née initiale et toute donnée �nale, et sous certaines hypothèses sur la géométrie du lanceur, et
notamment la disposition des tuyères, il existe un contrôle permettant de réaliser le transfert
entre ces deux états. De manière générale, des résultats de contrôlabilité existent lorsqu'il n'y a
pas de contraintes sur le contrôle. Citons par exemple les critères de Kalman pour des systèmes
de contrôle linéaires autonomes ou non autonomes, ou la méthode du retour [Cor92] pour des
systèmes non linéaires. Lorsqu'il y a des contraintes sur le contrôle (ce qui est le cas dans ce tra-
vail de thèse), la question de la contrôlabilité peut être plus délicate. Cependant, les techniques
du contrôle géométrique permettent de répondre à cette question lorsque le système présente
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une structure a�ne en les contrôles. La contrôlabilité d'un système de contrôle a�ne peut alors
s'obtenir par la combinaison de deux éléments : la stabilité au sens de Poisson introduite par
Poincaré dans [Poi90], et une condition de rang sur l'algèbre de Lie engendrée par les champs
de vecteurs constituant la dynamique. Ce chapitre suivra en grande partie la démonstration
présentée dans [BFT06].

Le chapitre 2 présentera les éléments théoriques usuels en théorie du contrôle optimal. On
cherche alors à trouver des contrôles qui sont optimaux vis à vis d'un certain critère. Dans cette
thèse, il s'agit d'une combinaison linéaire entre le temps mis pour e�ectuer la man÷uvre et la
consommation en ergols. Le résultat clé de la théorie du contrôle optimal est le Principe du
Maximum de Pontryagin (PMP) [PBGM62] qui énonce un ensemble de conditions nécessaires
pour qu'un contrôle soit optimal. Même si ces conditions ne sont pas su�santes, on se limite
souvent dans la pratique à la recherche de solutions les satisfaisant. Les méthodes dites indirectes
exploitent le PMP pour réduire le problème à la recherche des zéros d'une certaine fonction. Les
méthodes directes quant à elles reposent sur une discrétisation totale du problème de contrôle
optimal pour se ramener à un problème d'optimisation en dimension �nie. À la �n du chapitre 2 ,
nous montrerons comment nous avons eu recours à une méthode de continuation a�n de résoudre
le problème (OCP) par une méthode indirecte. L'utilisation d'une telle technique est désormais
un procédé standard, voir par exemple les travaux [CHT12, CHT17, GH06, CDG12, AG90]. Dans
le cas d'une phase balistique simple avec un seul largage de corps, nous avons développé pour
le CNES un logiciel en C implémentant cette méthode de continuation, a�n d'être capable de
résoudre génériquement ce type de problème de contrôle. Nous illustrerons également le principe
des méthodes directes en résolvant un problème de contrôle d'attitude avec des contraintes sur
l'état.

Lors du traitement de phases balistiques complexes, notamment avec plusieurs largages de
charges utiles, l'utilisation du logiciel précédemment mentionné n'est plus su�sant. En e�et,
les di�érents largages induisent des contraintes aux instants des séparations successives, qui ne
concernent pas nécessairement les 6 composantes décrivant l'état du lanceur. C'est par exemple
le cas lors d'une séparation d'un corps spiné selon son axe principal d'inertie : l'état ϕ est
généralement laissé libre.

Au chapitre 3, nous utiliserons le formalisme des systèmes de contrôle hybrides de [DK08,
DK11] pour résoudre un problème de contrôle optimal avec des contraintes dites intermédiaires.
Il s'agit de contraintes sur l'état à un certain instant au cours de la trajectoire. Nous y montrerons
des principes du maximum pour cette classe de problèmes. À la di�érence du PMP usuel présenté
au chapitre 2, le vecteur adjoint n'est plus absolument continu et présente des discontinuités aux
instants des contraintes intermédiaires. Même si on peut trouver des principes du maximum
similaires dans la littérature, par exemple dans [BH75], nous n'avons pas trouvé de travaux
généraux sur leur mise en ÷uvre numérique appliquée à des exemples non académiques. Nous
proposons dans ce chapitre une procédure numérique permettant de résoudre, avec la grande
précision o�erte par les méthodes indirectes, un problème de contrôle optimal avec une contrainte
intermédiaire. La contrainte intermédiaire est d'abord introduite par pénalisation dans le coût.
Une fois que la pénalisation est su�samment contraignante, la résolution d'un ultime problème
de tir permet de satisfaire de manière exacte une contrainte de type c(x(t1)) = 0.

Nous verrons également dans ce chapitre que lorsque le nombre de contraintes intermédiaires
devient trop important (c'est par exemple le cas lorsque le CNES traite une phase balistique
complexe) cette procédure peut ne plus su�re, et nous montrerons dans l'appendice A comment
les méthodes directes permettent de résoudre, relativement simplement mais au prix d'une perte
de précision, un tel problème. Un logiciel en C (qui utilise un algorithme de point intérieur) a
d'ailleurs été développé pour le CNES permettant de résoudre par une méthode directe et en
toute généralité une phase balistique complète, avec un nombre quelconque de séparations, et
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également un nombre quelconque de contraintes intermédiaires à chaque largage. L'appendice A
est ainsi complémentaire du chapitre 3, ces deux parties du manuscrit s'adressant aux mêmes
classes de problèmes, mais par des approches di�érentes.

Les techniques présentées aux chapitres 2 et 3 permettent de donner des stratégies de contrôle
pour des systèmes idéalisés. On entend par là qu'il n'y a pas d'incertitudes dans la dynamique,
ni de perturbations au cours du mouvement. Dans le cas du système de contrôle d'attitude
étudié avec le CNES dans cette thèse, les conditions réelles de vol ne sont jamais nominales,
et appliquer en boucle ouverte une stratégie de contrôle préalablement calculée ne permettrait
pas de contrer une éventuelle dérive au cours de la mission. Au chapitre 4, nous proposons un
algorithme de contrôle robuste, permettant de faire face à des perturbations. L'originalité de notre
approche réside dans la préservation de la structure bang-bang des contrôles par cet algorithme.
Nous identi�ons également un critère permettant de quanti�er la robustesse d'un contrôle bang-
bang. Alors que la littérature sur les systèmes de contrôle robustes est extrêmement riche 2,
nous n'avons pas connaissance d'une théorie générale permettant de traiter des perturbations
par des variations du contrôle qui préservent sa structure bang-bang. Découle également de
notre approche une stratégie pouvant permettre de rendre un contrôle nominal plus robuste. De
manière informelle, les temps de commutation des contrôles peuvent être vus comme des degrés
de liberté dans la commande du système. Avec cette vision, plus il y a de degrés de liberté dans
la commande, plus le pilote a de possibilités pour lutter contre les perturbations. Nous verrons
d'ailleurs que notre stratégie pour �robusti�er� les contrôles consiste à ajouter des temps de
commutation additionnels.

En�n, au chapitre 5 nous présenterons les résultats de travaux avec Camille Pouchol. L'ori-
ginalité de ce chapitre est la combinaison d'une méthode de continuation, comme celles pré-
sentées aux chapitres 2 et 3, avec une méthode directe. On y étudie un système d'équations
intégro-di�érentielles structurées en phénotype représentant l'évolution au cours du temps de
populations de cellules saines et cancéreuses. Dans ce système, le contrôle est l'administration ou
non de deux types de médicaments, cytotoxiques ou cytostatiques, et on cherche à minimiser le
nombre de cellules cancéreuses. L'étude théorique de ce type de système est di�cile et il n'existe
pas actuellement (à notre connaissance) de résultats dans le cas le plus général. La di�culté
vient notamment de la présence de plusieurs contraintes sur l'état, qui rendent d'ailleurs l'uti-
lisation de méthodes indirectes délicate. Dans le cas sans di�usion, des résultats ont cependant
été obtenus dans [PT17]. On propose dans ce chapitre une procédure permettant de résoudre
numériquement le problème de contrôle optimal correspondant. Le système est d'abord grande-
ment simpli�é pour permettre d'appliquer un principe du maximum en dimension in�nie, puis
on se ramène au problème initial par une continuation. Même si le cadre de ce chapitre s'éloigne
du problème de contrôle d'attitude, nous souhaitons insister sur le fait que la technique générale
s'appliquerait à une classe beaucoup plus vaste de problèmes, par exemple en aérospatial, quand
le système est trop compliqué pour permettre une initialisation du programme d'optimisation
sous-jacent.

Nous conclurons cette thèse en donnant quelques perspectives et en mentionnant certains
problèmes ouverts.

2. Mentionnons par exemple les approches H2 et H∞, ou la théorie linéaire quadratique permettant de �suivre�
des trajectoires. Il existe également des papiers où l'algorithme de contrôle robuste préserve bien la structure bang-
bang des contrôles, mais pour des systèmes bien particuliers pour lesquels la démarche ne se généralise pas. Nous
ferons un état de l'art plus détaillé sur le sujet au début du Chapitre 4.
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Contributions principales de la thèse

Résumons ici les contributions principales qui ont été apportées dans ce travail de thèse :

• Au chapitre 3, l'étude d'une procédure numérique permettant de résoudre par une mé-
thode indirecte un problème de contrôle optimal avec des contraintes intermédiaires.

• Au chapitre 4, la conception d'un algorithme de contrôle robuste permettant de traiter
des perturbations tout en préservant la structure bang-bang des contrôles. Nous y pro-
posons également un critère pour quanti�er la robustesse des trajectoires, ainsi qu'une
heuristique pour �robusti�er� un contrôle de référence.

• Au chapitre 5, la combinaison de méthodes directes et d'une continuation pour résoudre
un problème de contrôle optimal pour une équation aux dérivées partielles. Pour initiali-
ser la continuation, nous y montrons un résultat sur la structure des contrôles optimaux
en appliquant un PMP en dimension in�nie.

• En parallèle à ces travaux �théoriques�, la conception et l'écriture d'un logiciel en C pour
le CNES, n'utilisant que des librairies �open source�. Il permet :

� pour une phase balistique simple avec un seul largage, de calculer la trajectoire opti-
male du point de vue de la consommation. Il implémente la méthode de continuation
présentée à la �n du chapitre 2.

� pour une phase balistique complexe, avec un nombre quelconque de largages et de
contraintes intermédiaires, de trouver par une méthode directe la solution optimale
du point de vue de la consommation. C'est l'objet de l'appendice A.
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Chapter 1
Controllability of the attitude for a rigid

spacecraft
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In this �rst chapter, we shall start by showing that the problem of interest in this thesis is well
posed, that is, the attitude equations for a rigid body are controllable. It means that for every
initial condition x0 = (θ0, ψ0, ϕ0, p0, q0, r0) and every �nal condition xf = (θf , ψf , ϕf , pf , qf , rf ),
there exist a �nal time tf and a control u(·) de�ned on [0, tf ] such that the associated trajectory,
solution to the Cauchy problem {

ẋ(t) = f(x(t), u(t)),
x(0) = x0,

is well-de�ned on [0, tf ] and satis�es x(tf ) = xf .
To do so, we follow the presentation made in [BFT06], where controllability is shown for

an attitude control system equiped with opposite gaz jets. Mathematically, it means that the
control can take the values {−1, 0, 1}.

Recall that in the setting of this thesis, the controls in the attitude equations (3.3.1) can only
take the values {0, 1}. However, the results presented in this chapter will still be su�cient to
conclude to the controllability of this system, as some thrusters are placed in order to produce
opposite torques. On Figure 1.1, we give again a representation of the �SCA�, drawing in red the
pairs of thrusters that yield a control taking its values in the set {−1, 0, 1}.

17
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Figure 1.1 � Scheme of the SCA. Some pairs of thrusters create opposite torques.

Note also that we are going to show the controllability of the system (3.3.1) while considering
the attitude of the launcher as an element R(t) ∈ SO3(R), and the dynamics as a di�erential
system on the submanifold SO3(R) × R3 (of dimension 6) of R12. In that case, the di�erential
equations describing the evolution of the state y(t) = (R(t),−→ω (t)) ∈ R12 is

Ṙ(t) = S(−→ω (t))R(t),
Ixṗ(t) = (Iy − Iz)qr +

∑m
j=1 uj(t)b

1
j ,

Iy q̇(t) = (Iz − Ix)p(t)r(t) +
∑m
j=1 uj(t)b

2
j ,

Iz ṙ(t) = (Ix − Iy)p(t)q(t) +
∑m
j=1 uj(t)b

3
j ,

(1.1)

where

S(−→ω ) =

 0 r −q
−r 0 p
q −p 0

 .

(In this chapter, we will denote the state of the system with the letter y, in order to emphasize
the fact that it belongs to the space SO3(R) × R3, and is therefore di�erent from the state
x = (θ, ψ, ϕ, p, q, r) ∈ R6.)

Note that this system is a control-a�ne system that can be written under the form

ẏ(t) = f0(y(t)) +

m∑
j=1

uj(t)fj(y(t)). (1.2)

The vector �eld f0 gives the dynamics for the free (uncontrolled) system ẏ(t) = f0(y(t)), and for
each j ∈ J1,mK, the vector �eld fj is constant, equal to (0R9 ,~bj).

The proof for the controllability of this system is based on the combination of two elements:

• The Poisson stability of the vector �eld f0, corresponding to the uncontrolled dynamics.
This stablity means that for almost every initial condition, the free system will come back
arbitrarily close to the initial condition, in a time arbitrarily long.
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• A rank condition on the Lie algebra spaned by the vector �elds (f0, f1, . . . , fm).

1.1 Poisson stability of a vector �eld

Let us start by de�ning the Poisson stability for a vector �eld, for which we make the as-
sumption that the associated trajectories, solutions to the di�erential equation ẏ(t) = X(y(t))
are well-de�ned on R.

Definition 1.1 (Poisson stability for a vector field). � Let X(·) be a vector
�eld. We say that X is Poisson stable if for almost every initial condition y0, every neighborhood
V of y0 and every time T > 0, there exist times t1, t2 > T such that y(t1, y0) ∈ V and y(−t2, y0) ∈
V .

In the previous de�nition, we denoted y(t, y0) the solution at time t to the Cauchy problem:{
ẏ(t) = X(y(t)),
y(0) = y0.

This notion was introduced by H. Poincaré, following a work by S. D. Poisson, in his paper
Sur le problème des trois corps et les équations de la dynamique [Poi90], where he undertook a
study of the trajectories of the planets in the solar system.

The ingredients to have a Poisson stable vector �eld are the following:

• A �nite measure µ on the phase space Y .

• A �ow ϕ that preserves the measure µ, that is, for every A ∈ Y , µ(ϕ(A)) = µ(A).

For the free part of the attitude equations
Ṙ(t) = S(−→ω (t))R(t),

Ixṗ(t) = (Iy − Iz)q(t)r(t),
Iy q̇(t) = (Iz − Ix)p(t)r(t),
Iz ṙ(t) = (Ix − Iy)p(t)q(t),

(1.3)

that we write under the condensed form

ẏ(t) = f0(y(t)),

The kinetic energy I = (Ixp
2 + Iyq

2 + Izr
2)/2 remains constant over time. Indeed,

İ(t) = Ixp(t)ṗ(t) + Iyq(t)q̇(t) + Izr(t)ṙ(t)

= (Iy − Iz)p(t)q(t)r(t) + (Iz − Ix)p(t)q(t)r(t) + (Ix − Iy)p(t)q(t)r(t)

= 0,

Besides, the term R(t) remains bounded as well. Let us de�ne

J(t) := Tr(R(t)R(t)T ) = ‖R(t)‖F ,
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where ‖·‖F denotes the Frobenius norm of the matrix R(t). It holds

J̇(t) = Tr(Ṙ(t)R(t)T +R(t)Ṙ(t)T )

= Tr(S(−→ω (t))R(t)R(t)T +R(t)R(t)TS(−→ω (t))T )

= Tr
(
((S(−→ω (t)) + S(−→ω (t))T )R(t)R(t)T

)
= 0,

as the matrix S(ω) is skew-symmetric, and the Frobenius norm of the matrix R(t) is constant.
Therefore, the trajectories of the di�erential equations (1.3) remain bounded over time.
We now show that the �ow associated to the dynamics (1.3) preserves the Lebesgue measure.

Definition 1.2 (Flow of a vector field). � Let X be a vector �eld. Under regularity
assumptions on X, for all initial condition y0 ∈ Rn there exist a unique solution y(t, y0) to the
Cauchy problem {

ẏ(t) = X(y(t)),
y(0) = y0,

that we denote exp(tX)(y0) := y(t, y0).

In order to show that the �ow preserves the Lebesgue measure, we are going to use a more
general result, stating that the �ow associated to a di�erential system ẏ(t) = X(y(t)) preserves
this measure as soon as the divergence of the vector �eld X is zero. In the literature, this result
is known as Liouville's Theorem. We state this theorem now and give the proof in Appendix B.

Proposition 1.1 (Liouville's Theorem). � Let exp(tX) be the �ow of a non-linear
di�erential equation ẏ(t) = X(y(t)) such that the divergence of the vector �eld X is zero:

∇ ·X(y) = Tr(dX(y)) = 0.

Then the �ow preserves the Lebesgue measure.

It is then easy to check that the vector �eld f0 corresponding to the uncontrolled dynamics
(1.3) has zero divergence. Indeed, in the expression of the di�erential df0(y), all the diagonal
coe�cients are zero. It follows that the �ow associated to the free part of the attitude equations
preserves the Lebesgue measure.

We are now set to show the Poisson stability for the vector �eld f0, which is sometimes stated
as Poincaré's recurrence Theorem.

Theorem 1.1 (Poincaré's recurrence theorem). � The vector �eld f0 in the
system (1.2) is Poisson stable.

Proof. Let exp(tf0) be the �ow for the uncontrolled equations (1.3). We already know that
this �ow preserves the Lebesgue measure, as it has zero divergence. Let A be a connected and
bounded open set in R12. As the trajectories are bounded, there exists a compact set Y such
that every trajectory starting from A (in positive or in negative time) remains in Y .

As Y is compact, his Lebesgue measure is �nite:

|Y | < +∞.

For p ∈ N, let Up := ∪+∞
k=p exp(−kf0)(A). Then, as Up is a subset of Y , his Lebesgue measure is

also �nite:
|Up| < +∞.
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Besides, we have that Up ⊂ U0 = A ∪ (∪+∞
k=1 exp(−kf0)(A)). But il also stands true that

Up = exp(−pf0)(U0) and the preservation of the Lebegue measure by the �ow exp(−pf0) yields

|Up| = |U0| .

From this, we deduce that
|Up\U0| = 0,

that is,
|{y ∈ U0, y /∈ Up}| = 0.

As A is a subset of U0, it follows that

|{y ∈ A, y /∈ Up}| = 0,

|{y ∈ A,∀k > p, y /∈ exp(−kf0)(A)}| = 0,

|{y ∈ A,∀k > p, exp(kf0)(y) /∈ A}| = 0.

Taking the countable reunion of those sets for p ∈ N, the measure remains zero. Thus, we have
shown that for almost every point q ∈ A and for all p ∈ N, there exists an integer k1 > p such
that exp(k1f0)(y) ∈ A. With the same reasonning, for almost every y ∈ A we can construct an
integer k2 > p such that exp(−k2f0)(y) ∈ A: it is exactely the Poisson stability of the vector
�eld f0.

1.2 Lie algebra spanned by vector �elds and controllability

In this section, we are going to detail geometric conditions on the vector �elds f0, f1, . . . , fm,
that are necessary and su�cient to conclude to the controllability of a control-a�ne system under
the form (1.2), as in [BFT06]:

ẏ(t) = f0(y(t)) +

m∑
j=1

uj(t)fj(y(t))

= f(y(t), u(t)),

on a connected submanifoldM.
Let us start by introducing some de�nitions, that will be useful to study the controllability

of the system ẏ(t) = f(y(t), u(t)). We de�ne the set of vector �elds D by

D := {f(·, u) | ∀i ∈ J1,mK, ui ∈ {−1, 0, 1}} . (1.4)

We also de�ne

S(D) = {exp t1X1 ◦ · · · ◦ exp tkXk | k ∈ N, ti > 0, Xi ∈ D} . (1.5)

With this de�nition, the set of reachable points starting from y0 is S(D)(y0). The system will
be controllable if for all y0 ∈M, S(D)(y0) =M.

Intuitively, in order to have results for global controllability, it is necessary to be able to move
in every direction of the tangent space of the submanifoldM. In the case of the attitude control
problem, it means being able to move in every direction of the tangent space of SO3(R) × R3.
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Of course, it is possible to move in the directions given by

f0 +

m∑
j=1

ujfj ,

where uj ∈ {−1, 0, 1}. However, we will now see that other directions are also available, combin-
ing properly the previous vector �elds.

1.2.1 Lie bracket and Lie algebra

Given two vector �elds X and Y , the main notion to describe the directions available when
moving along the vector �elds X and Y is the Lie bracket of X and Y . We now give a de�nition
and a property of this object.

Proposition 1.2 (Lie bracket). � The Lie bracket for the vector �elds X and Y is the
vector �eld, denoted by [X,Y ], such that

e−tX ◦ e−tY ◦ etX ◦ etY (y0) =t→0 y0 + t2[X,Y ](y0) + o(t2).

Besides, we have
[X,Y ](y0) = dY (y0) ·X(y0)− dX(y0) · Y (y0).

If follows from this de�nition that [X,Y ] = 0 if the vector �elds X and Y commute locally.
In the de�nition, it appears clearly that one needs to be able to move in the direction X and
−X (and Y and −Y ) in order to be able to move in the direction of the Lie bracket [X,Y ], as
shown on Figure 1.2.

•
y0

•
etY (y0)

•
etX ◦ etY (y0)

•
e−tY ◦ etX ◦ etY (y0)

•
e−tX ◦ e−tY ◦ etX ◦ etY (y0)

t2[X,Y ](y0)
ẏ(t) = Y (y(t))

ẏ(t) = X(y(t))

ẏ(t) = −Y (y(t))

ẏ(t) = −X(y(t))

Figure 1.2 � Crochet de Lie [X,Y ] de deux champs de vecteurs X et Y .
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Given the di�erential system ẏ(t) = f(y(t), u(t)), we recall the de�nition 1.4 of the set of
vector �elds D,

D = {f(·, u) | ∀i ∈ J1,mK, ui ∈ {−1, 0, 1}} ,
which corresponds to the set of vector �elds one gets by applying constant controls. We can then
de�ne the Lie algebra spanned by D.

Definition 1.3 (Lie algebra). � The Lie algebra spanned by D, denoted by Lie(D), is
the set of vector �elds such that

• For all X ∈ D, X ∈ Lie(D).

• For all X,Y ∈ Lie(D), [X,Y ] ∈ Lie(D).

We are now able to give a �rst controllability result, as soon as the Lie algebra spanned by
D is of maximal dimension, that is, for all y0 ∈ M, Lie(D)(y0) = Ty0M, and D is symmetric,
that is for all X ∈ D, −X ∈ D.

Theorem 1.2 (Symmetric case). � Assume that the Lie algebra spanned by D is of
maximal dimension, and that D is symmetric. Then the system is controllable.

Proof. The proof of this result is easy whenM = R3 and D contains two vector �elds X and Y ,
and can give a good insight to the proof in the general case. Assume that the vector �elds X,
Y and [X,Y ] are linearly independent at every point q ∈ R3. Let λ ∈ R, y0 ∈ R3 and ϕ be the
application:

ϕ : (t1, t2, t3) 7→ exp(λX) ◦ exp(t3Y ) ◦ exp(−λX) ◦ exp(t2Y ) ◦ exp(t1X)(y0).

Then, using the Baker-Campbell-Haussdor� formula, we get that

ϕ(t1, t2, t3) = exp(t1X + (t2 − t3)Y + λt3[X,Y ] + . . .)(y0)

Thus,

∂ϕ

∂t1

∣∣∣∣
t1=0

= X(y0),
∂ϕ

∂t2

∣∣∣∣
t2=0

= Y (y0),
∂ϕ

∂t3

∣∣∣∣
t3=0

= λ[X,Y ](y0)− Y (y0) + o(λ),

and when λ is small enough, those three vectors are linearly independant and the di�erential
dϕ(t1, t2, t3) is invertible. From this, we deduce that S(D)(y0) is a neighborhood of y0. Besides,
as we will soon see it the following, the set S(D)(y0) is closed, and asM = R3 is connected, we
get that S(D)(y0) = R3.

This proof can be generalized ifM is any connected submanifold.

Let us end this section by giving a local result on the set of reachable points from y0, which
does not assume a symmetry hypothesis on the set D. The proof of this result can be found
in [BFT06].

Proposition 1.3. � Assume that the Lie algebra spanned by D is of maximal rank. Then,
for every y0 ∈M and all neighborhood V of y0, there exists an non-empty open set U+ contained
in V ∩ S(D)(y0).

Note that in the previous proposition, S(D)(y0) stands for the reachable points from y0, in
positive time. We could give a similar result replacing this set by the set of reachable points in
negative time S−(D)(y0). Then for every neighborhood V of y0, there exists a non empty open
set U− contained in V ∩ S−(D)(y0).
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1.2.2 Results in the non-symmetric case

The controllability result in Proposition 1.2 assumes a strong symmetry hypothesis on the
system, namely that if a vector X belongs in D, then −X also belongs to D. This hypothesis is
not satis�ed in the case of a control-a�ne system with drift

ẏ(t) = f0(y(t)) +

m∑
j=1

uj(t)fj(y(t)),

because of the drift term f0 corresponding to the uncontrolled movement. Indeed, the vector
�elds f0+f1 or f0−f1 are in the setD, but the vector �eld −f0−f1 is not inD. The controllability
of the system can however be obtained thanks to the Poisson stability of the vector �eld f0.

Enlargement of the set D

Let us start by giving an important corollary of the Proposition 1.3: the system is controllable
if and only if S(D)(y0) = M for every y0 ∈ M. Indeed, saying that the system is controllable
means that S(D)(y0) = M, and we then also have that S(D)(y0) = M. Reciprocally, assume
that S(D)(y0) = M. Let y ∈ M. Following Proposition 1.3, for every neighborhood V of q,
there exists a non-empty open set U− such that U− ⊂ V ∩ S−(D)(y). As S(D)(y0) = M,
we get that the intersection S(D)(y0) ∩ U− is not empty: there exists a point y1 such that
y1 ∈ S(D)(y0)∩U−. Thus y1 is reachable in positive time from y0, and in negative time from y,
i.e., y is reachable is positive time from y1. We deduce that y is reachable in positive time from
y0, that is, S(D)(y0) =M and the system is controllable.

With that in mind, we denote D the bigger (in the sense of the inclusion) set of vector �elds
such that

S(D)(y0) = S(D)(y0).

It consists in the reunion of all the sets of vector �elds D′ such that S(D)(y0) = S(D′)(y0). The
following result shows how the Poisson stability compensates for the lack of symmetry in the
family D.

Proposition 1.4. � (i) If X ∈ D and X is Poisson stable, then −X ∈ D.

(ii) If X,Y ∈ D, then X + Y ∈ D.

Proof. Let us start by proving (i). Let X be a vector �eld that is Poisson stable. We wish to
show that

S(D ∪ {−X})(y0) = S(D)(y0).

The sense ⊃ is clear, and we have to show that S(D ∪ {−X})(y0) ⊂ S(D)(y0). It is enough to
show that S(D ∪ {−X})(y0) ⊂ S(D)(y0). Let y ∈ S(D ∪ {−X})(y0). First, we assume that y is
obtained from y0 as

y = exp(−tX)y0,

with t > 0. Let V be a neighborhood of y. As X is Poisson stable, there exists a time T > t
such that exp(TX)y ∈ V . It follows that

exp(TX) ◦ exp(−tX)y0 ∈ V
exp((T − t)X)y0 ∈ V.

It means that y ∈ S(D)(y0). The general case, when there exist an integer k ∈ N, non-negative
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times ti > 0 and vector �elds Xi ∈ D ∪ {−X} such that

y = exp(t1X1) ◦ · · · exp(tkXk)y0

can be obtained by applying the same reasoning to each piece of the trajectory where the vector
�eld Xi is equal to −X.

Finally, to show (ii), we use the Baker-Campbell-Haussdor� that leads to

exp(
t

n
X) ◦ exp(

t

n
Y ) = exp(

t

n
(X + Y ) +O(

1

n2
)).

Composing this relation n times, it follows that∏
16i6n

exp(
t

n
X) ◦ exp(

t

n
Y ) = exp(t(X + Y ) +O(

1

n
)).

Letting n→ +∞, we get that X + Y ∈ D.

Controllability of a control-a�ne system

Theorem 1.3. � On the submanifoldM, let us consider the control-a�ne system

ẏ(t) = f0(y(t)) +

m∑
j=1

uj(t)fj(y(t)).

Assume that the vector �eld f0 is Poisson stable, ant that the Lie algebra Lie(f0, f1, . . . , fm) is
of maximal rank. Then the system is controllable

Proof. The vector �eld f0 is Poisson stable and belongs to the set D, therefore, according to
Proposition 1.4, −f0 ∈ D. Besides, for all j ∈ J1,mK, f0 ± fj ∈ D thus, also according to
Proposition 1.4,

f0 ± fj + (−f0) ∈ D,
i.e., ±fj ∈ D. It follows that D contains the set of vector �elds {±f0,±f1, . . . ,±fm}, which
is symmetric and satis�es the rank condition : Lie(±f0,±f1, . . . ,±fm) is of maximal rank.
According to Theorem 1.2, we get that the control-a�ne system is controllable.

Remark 1.1: Analytic case

In the case when the system is analytic, this condition is also necessary accroding to Sussmann's
theorem [SJ72]. We will use this fact in the next section.
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1.3 Controllability of the attitude of a rigid body

In this section, we are going to apply the result of Theorem 1.3 to the attitude control system
equiped with opposite gaz jets (1.1)

Ṙ(t) = S(−→ω (t))R(t),
Ixṗ(t) = (Iy − Iz)q(t)r(t) +

∑m
j=1 uj(t)b

1
j ,

Iy q̇(t) = (Iz − Ix)p(t)r(t) +
∑m
j=1 uj(t)b

2
j ,

Iz ṙ(t) = (Ix − Iy)p(t)q(t) +
∑m
j=1 uj(t)b

3
j .

We are going to show that, under some geometric conditions on the placement of the thrusters,
the system can be controlled with only one thruster producing a torque ~b. Therefore, we start
by considering the case m = 1:

ẏ(t) = f0(y(t)) + u(t)f1(y(t)),

with y = (R,−→ω ),

f0 = (S(−→ω )R,
Iy − Iz
Ix

qr,
Iz − Ix
Iy

pr,
Ix − Iy
Iz

pq),

and f1 is the constant vector �eld (0R9 ,~b), where we still denote ~b the normalized torque I−1~b.
We have shown in Theorem 1.1 that the vector �eld f0 is Poisson stable. Thus, following

Theorem 1.3, the system is controllable if and only if the Lie algebra Lie(f0, f1) is of dimension
6 at every point y ∈ SO3(R)×R3. For this condition to hold, it is necessary that the Lie algebra
spanned by the vector �elds ((Iy − Iz)/Ixqr, (Iz − Ix)/Iypr, (Ix− Iy)/Izpq) and ~b is of dimension
3 at every point of R3.

Let us set

a1 =
Iy − Iz
Ix

, a2 =
Iz − Ix
Iy

, a3 =
Ix − Iy
Iz

,

and let us de�ne the vector �eld Q = (a1qr, a2pr, a3pq). Note that when chosing the order of
the axis, without loss of generality, one may always chose to have Ix > Iy > Iz. In that case,
it follows that a1, a3 > 0 and a2 6 0. In what follows, we are actually going to assume that
Ix > Iy > Iz, which yields a1, a3 > 0 and a2 < 0. At the end of the chapter, we will make a
remark on what may happen when some of the inertia coe�cients are identical. Geometrically,
it corresponds to the case of a body with symmetry properties.

1.3.1 Dimension of Lie(Q,~b)

Let us point out �rst that Q(0) = 0R3 and dQ(0) = 0M3(R), and that each component of Q is

a polynomial of degree 2. Thus, the Lie algebra Lie(Q,~b) is of dimension 3 if and only if the Lie
algebra spanned by the constant vector �elds is itself of dimension 3. With a formal calculation
software, like Maple or Mathematica, we can compute the constant vector �elds:

g1 := ~b = (b1, b2, b3), (1.6)

g2 := [[Q, g1], g1] =
(
2a1b

2b3, 2a2b
1b3, 2a3b

1b2
)
, (1.7)

g3 := [[Q, g1], g2]

=
(
2a1b

1(a2(b3)2 + a3(b2)2), 2a2b
2(a1(b3)2 + a3(b1)2), 2a3b

3(a1(b2)2 + a2(b1)2)
)
.

(1.8)
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and the next Lie brackets do not span new directions in R3:

[[Q, g1], g3] = 2

a1b
3b2
(
a1a2(b3)2 + 2a2a3(b1)2 + a1a3(b2)2

)
a2b

1b3
(
a1a2(b3)2 + a2a3(b1)2 + 2a1a3(b2)2

)
a3b

1b2
(
2a1a2(b3)2 + a2a3(b1)2 + a1a3(b2)2

)
 ,

= λg3 + 2a1a2a3b
1b2b3~b,

= λg3 + 2a1a2a3b
1b2b3g1,

with λ = a1a2(b3)2 + a2a3(b1)2 + a1a3(b2)2.

[[Q, g2], g2] = 8a1a2a3b
1b2b3g1.

[[Q, g2], g3] = 4a1a2a3

b1 ((b2)2(a1(b3)2 + a3(b1)2) + (b3)2(a1(b2)2 + a2(b1)2)
)

b2
(
(b1)2(a2(b3)2 + a3(b2)2) + (b3)2(a1(b2)2 + a2(b1)2)

)
b3
(
(b1)2(a2(b3)2 + a3(b2)2) + (b2)2(a1(b3)2 + a3(b1)2)

)
 ,

= µ1g1 + µ2g2,

with µ1 = 4a1a2a3(a1(b2b3)2 + a2(b1b3)2 + a3(b1b2)2) and µ2 = 4a1a2a3b
1b2b3.

[[Q, g3], g3] = 8a1a2a3

b2b3 (a1(b3)2 + a3(b1)2
) (
a1(b2)2 + a2(b1)2

)
b1b3

(
a1(b2)2 + a2(b1)2

) (
a2(b3)2 + a3(b2)2

)
b1b2

(
a1(b3)2 + a3(b1)2

) (
a2(b3)2 + a3(b2)2

)
 ,

= µ3g1 + µ4g2 + µ5g3,

with µ3 = 8a1a2a3b
1b2b3(a1a2(b3)2+a2a3(b1)2+a1a3(b2)2), µ4 = 4a1a2a3(a1(b2b3)2+a2(b1b3)2+

a3(b1b2)2) and µ5 = −4a1a2a3b
1b2b3.

Besides, thanks to Jacobi identity,

[[Q, g2], g1] = −[[g2, g1], Q]− [[g1, Q], g2]

= [[Q, g1], g2]

= g3,

[[Q, g3], g2] = −[[g3, g2], Q]− [[g2, Q], g3]

= [[Q, g2], g3].

Those computations show that the Lie algebra Lie(Q,~b) has the same dimension than the
space spanned by the vectors g1, g2 and g3. The determinant of those three vectors is

det(g1, g2, g3) = 4
(
a3(b1)2 − a1(b3)2

) (
a2

2(b1)2(b3)3 − a2a3(b2)2(b1)2 − a1a2(b2)2(b3)2 + a1a3(b2)4
)
.

Therefore, the determinant is equal to zero if and only if a3(b1)2 = a1(b3)2, or

a2
2(b1)2(b3)3 − a2a3(b2)2(b1)2 − a1a2(b2)2(b3)2 + a1a3(b2)4 = 0.

We have made the assumption that a1 and a3 are positive and a2 is negative. Thus, this last
quantity is equal to zero when

a2
2(b1)2(b3)3 = a2a3(b2)2(b1)2 = a1a2(b2)2(b3)2 = a1a3(b2)4 = 0,
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i.e.,
(b1)2(b3)3 = (b2)2(b1)2 = (b2)2(b3)2 = (b2)4 = 0,

that is when b2 = 0, and one of the real numbers b1 and b3 is zero.

We have therefore shown that the vectors g1, g2 and g3 are linearly independant unless
a3(b1)2 = a1(b3)2, or b2 = 0 and one of the real numbers b1 and b3 is zero. We have found the
condition for the Lie algebra Lie(Q,~b) to be of dimension 3 at every point of R3, that we give in
the following lemma.

Lemma 1.1. � The Lie algebra Lie(Q,~b) is of dimension 3 at every point of R3 unless
√
a1b

3 =
±√a3b

1, or b2 = 0 and one of the real numbers b1 et b3 is zero.

1.3.2 Dimension de Lie(f0, f1)

Let us now study the dimension of the Lie algebra Lie(f0, f1), under the geometric condi-
tions of Lemma 1.1, that is when the vectors g1, g2 and g3 previously introduced are linearly
independant.

A �rst computation yields the expression of the following constant vector �elds:

f1 = (0R9 , g1) , [[f0, f1], f1] = (0R9 , g2) , [[f0, f1], [[f0, f1], f1]] = (0R9 , g3).

Thus, as soons as the vectors g1, g2 and g3 are linearly independant, the constant vector �elds
f1, [[f0, f1], f1] and [[f0, f1], [[f0, f1], f1]] are also linearly independant, and the space they span
matches Vect((0R9 , E1), (0R9 , E2), (0R9 , E3)) where (E1, E2, E3) stands for the canonical basis of
R3.

Let us then compute the following vector �elds, denoting by (rij)16i,j63 the components of
the orientation matrix R.

[f0, (0R9 , E1)] = −



0
0
0
r31

r32

r33

−r21

−r22

−r23

0
a2r
a3q



, [f0, (0R9 , E2)] = −



−r31

−r32

−r33

0
0
0
r11

r12

r13

a1r
0
a3p



, [f0, (0R9 , E3)] = −



r21

r22

r23

−r11

−r12

−r13

0
0
0
a1q
a2p
0



.

Those vector �elds are linearly independant at every point of SO3(R) × R3 if and only if the
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vector �elds 

0
0
0
r31

r32

r33

−r21

−r22

−r23


,



−r31

−r32

−r33

0
0
0
r11

r12

r13


,



r21

r22

r23

−r11

−r12

−r13

0
0
0


are linearly independant at every point of SO3(R), which is indeed the case.

We deduce from the following computations that under the conditions of Lemma 1.1, the
vector �elds f1, [[f0, f1], f1], [[f0, f1], [[f0, f1], f1]], [f0, (0R9 , E1)], [f0, (0R9 , E2)] and [f0, (0R9 , E3)]
are linearly independant at each point of SO3(R). It follows that the Lie algebra Lie(f0, f1) is
of dimension 6.

1.3.3 Controllability condition

The vector �eld f0 is Poisson stable, and using Theorem 1.3 we can conclude to the control-
lability of the attitude equations by means of opposite gaz jets.

Theorem 1.4 (Case m = 1). � The attitude equations are controllable by means of one
pair of opposite gaz jets except when

√
a1b

3 = ±√a3b
1, or b2 = 0 and one of the real numbers b1

and b3 is zero.

Let us now analyse what the condition of non-controllability in Theorem 1.4 means. If two of
the real numbers bi (including b2) are zero, for instance b1 and b2, the equations for the angular
velocity become  ṗ = a1qr,

q̇ = a2pr,
ṙ = a3pq + b3u,

and the line {p = q = 0} is invariant under the action of any control u.

If
√
a1b

3 = ±√a3b
1, for instance

√
a1b

3 =
√
a3b

1, then the vector ~b belongs to the plane of
equation {√a1r =

√
a3p}. It is then easy to check that if −→ω = (p, q, r) belongs to this plane,

then the vector Q(−→ω ) also belongs to this plane, that is, this plane is invariant. In that case,
whatever the control u may be, the plane of equation

{√
a1r =

√
a3p
}
is invariant.

We now have everything to state the controllability condition for the attitude equations in
the general case, when m > 1.

Theorem 1.5 (Case m > 1). � The attitude equations are controllable by means of

opposite gaz jets producing the torques {−→b 1, . . . ,
−→
b m} unless the space spanned by the vec-

tors (
−→
b i)16i6m matches one of the invariant line of equation {p = q = 0}, {p = r = 0} or

{q = r = 0}, or matches one of invariant the plane of equation
{√

a1r = ±√a3p
}
.
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Remark 1.2:

Implicitely, when making the assumption I1 > I2 > I3, we used several times in the proof of
Theorem 1.4 the coupling between the equations for the angular velocity. Indeed, it implies
that a1, a3 > 0 and a2 < 0, and it enabled us to give a simple condition for the vectors g1, g2

and g3 to be linearly independant. The fact that a1, a2 and a3 are non-zero enables to use the
coupling in  ṗ = a1qr,

ẏ = a2pr,
ṙ = a3pq.

If the three coe�cients are zero (i.e., Ix = Iy = Iz), we easily get from the equations (1.6), (1.7)
and (1.8) that only the vector g1 is non zero. At least three torques (linearly independant)
are thus required to control the attitude equations.
If one of the coe�cient ai is zero, for instance a1 = 0, a2 < 0 and a3 > 0, then

det(g1, g2, g3) = (b1)4a2a3

(
a2(b3)2 − a3(b2)2

)
.

As a3 > 0 and a2 < 0, this determinant is zero if and only if b1 = 0 or b3 = b2 = 0. Thus, as
soon as two of the real numbers bi (including b1) are non zero, the attitude equations remain
controllable by means of only one torque.

1.4 Conclusion of the chapter

In this chapter, we recalled the result of Theorem 1.5 which gives necessary and su�cient
conditions to be able to control the attitude equations by means of pairs of opposite thrusters.
Under some geometric hypothesis on the placement of the thrusters, the attitude can be controlled
with only one pair of opposite gaz jets.

For the system presented in this thesis, the design of the SCA schematized on Figure 1.5
allows to consider some pairs of thrusters as opposite jets. The controllability of the equations
presented in this thesis follows.

Nevertheless, the proof of the controllability is not constructive, and no e�ective control
strategy has yet been exhibited. The proof uses the Poisson stability of some vector �elds, which
can yield very long transfer times. In the following chapter, in the setting of optimal control
theory, we will study ways to numerically compute control strategies.
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The purpose of this chapter is to give a brief insight of optimal control theory in �nite
dimension. The term ��nite dimension� refers to the fact that the state vector x(·) belongs
to the �nite dimensional space Rn. However, it is important to keep in mind that solving an
optimal control problem in �nite dimension like (OCP) requires being able to solve an in�nite-
dimensional optimization problem.

In chapter 1, we have shown that the attitude equations studied in this thesis are controllable.
We are now interested in computing e�ectively control strategies, asking also for them to be
optimal with respect to a given criterion.

We will �rst recall a classical result in optimal control theory, namely Pontryagin Maximum
Principle, and we will then focus on numerical methods. At the end of the chapter, we will
show how those methods can be implemented to solve numerically an attitude control problem
corresponding to the separation of one satellite.

31
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2.1 General setting

In this chapter, we wil consider the following general control problem: given M0 and M1

two submanifolds of Rn we aim at controlling the nonlinear system

ẋ(t) = f(t, x(t), u(t)) on [0; tf ], (2.1)

while minimizing the cost

C(tf , u) =

∫ tf

0

f0(t, x(t), u(t)) dt+ g(tf , x(tf )), (2.2)

and such that
x(0) ∈M0, x(tf ) ∈M1.

In this description, f is an application R × Rn × Rm → Rn, f0 : R × Rn × Rm → R and
g : R × Rn → R. It is usual to assume the applications f , f0 and g to be of class C1, even if
this assupmtion can be weakened. The control u(·) belongs to the set L∞([0; tf ],Ω) where Ω is
a convex subset of Rm and the �nal time tf can be left free or not. In the following we will use
the notation tf when it is free, and T when it is �xed.

We will say that a control u(·) de�ned on [0; tf ] is admissible when the associated trajectory
of the control system (2.1) is well-de�ned on [0; tf ].

Remark 2.1: Existence of an optimal solution

It is far from obvious that there exists a solution to the previous optimal control problem. In
the literature, the general existence results depend in particular on the compacity of the set Ω
in which the control takes its values. In the case of the attitude control problem, the set Ω is
compact. With that in mind, let us denote U the set of admissible controls u ∈ L∞([0; tf ],Ω)
that steer the system from M0 to M1 in time t(u). We assume that regularity assumptions
on the applications f , f0 and g are ful�lled, and that the following assumptions hold:

(i) There exists C1 > 0 such that for all u ∈ U , t(u) 6 C1,

(ii) There exists C2 > 0 such that for all u ∈ U , ‖xu(·)‖∞ 6 C2,

(iii) For all (t, x) ∈ R× Rn, the set

V (t, x) =

{(
f(t, x, u)

f0(t, x, u) + γ

)
| u ∈ Ω, γ > 0

}
is convex.

Then there exists a solution u? de�ned on an interval [0, t(u?)] to the optimal control problem.
The proof of this result, as well as some extensions can be found in [Tré05a, LM67a, BC03a].
Hypotheses (i)− (ii) ensure enough compacity to be able to extract converging (for the weak-
star topology) subsequences in L∞([0; tf ],Ω). Hypothesis (iii) allows to use the fact that
closed (for the strong topology) convex sets are also weakly closed. Let us mention that this
result can be generalized to the case of a control problem with state constraints.
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2.2 Pontryagin Maximum Principle

In this section, we give a statement of Pontryagin Maximum Principle. It expresses necessary
conditions for a pair (x(·), u(·)) to be optimal.

Analogy with optimization in �nite dimension. It is crucial to keep in mind that the
conditions in Pontryagin Maximum Principle are a set of necessary conditions: they consist in
conditions of order 1. In a similar way, Lagrange Theorem, when applied to an optimization
problem in �nite dimension gives a set of necessary conditions. To be more speci�c, let us
simplify the general optimal control stated in the previous section 2.1 before going further in the
analogy. We assume that the submanifolds are singletons

M0 = {x0} , M1 = {x1},

and that the �nal time T is �xed.
Given two applications in �nite dimension J : Rd → R and g : Rd → Rk, Lagrange Theorem

states that if a point x? is a solution to the �nite-dimensional optimization problem

min
s.t. g(x)=0

J(x), (2.3)

then there exists a pair (λ0, λ) ∈ R× Rk of Lagrange multipliers such that

λ0∇J(x?) + 〈λ, g(x?)〉 = 0.

We shall now introduce the de�nition of the end-point mapping, that we will use again further
in the thesis (notably in chapter 4). It allows us to rewrite the optimal control under a form
close to (2.3).

Definition 2.1 (End-point mapping). � Let u(·) ∈ L∞([0; tf ],Ω) be an admissible
control. The end-point mapping is de�ned as the response of the system to the control u:

Ex0,T (u) = xu(T ),

where xu(·) is the solution to the ordinary di�erential equation (2.1) with initial condition xu(0) =
x0.

Therefore, solving the previous optimal control problem amounts to solving the optimization
problem in in�nite dimension

min
s.t. Ex0,T (u)=x1

C(T, u). (2.4)

In a similar way to Lagrange Theorem in �nite dimension, if a control u? is optimal, then there
exists a pair (ψ0, ψ) ∈ R× Rm such that

ψ0 ∂C

∂u
(T, u?) + ψ · dEx0,T (u?) = 0.

Pontryagin Maximum Principle, that we we will present in details in the following paragraph,
can be seen as a development of this last equality.

Statement of the PMP. Let us now give a precise statement of the PMP. A proof of this
result can be found in [LM67b, PBGM62, BFT06, ST10a]. Before going forward, let us point
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out that a key ingredient in the proof is the use of needle-like variations of the control, an idea
that we will use again in Chapter 4.

Definition 2.2 (Hamiltonian). � The Hamiltonian of the system is de�ned in the fol-
lowing way

H =

{
R× Rn × Rm × Rn × R −→ R

(t, x, u, p, p0) 7→ 〈p, f(t, x, u)〉+ p0f0(t, x, u)

Theorem 2.1 (Pontryagin maximum principle). � Let (x(·), u(·)) be a trajectory
of the system (2.1), optimal with respect to the cost (2.2). Then there exists a non-trivial pair
(p(·), p0) such that :

• p0 6 0.

• p(·) is absolutely continous on [0; tf ].

• For almost every t ∈ [0; tf ],

ẋ(t) =
∂H

∂p
(t, x(t), u(t), p(t), p0), (2.5)

ṗ(t) = −∂H
∂x

(t, x(t), u(t), p(t), p0). (2.6)

• For almost every t ∈ [0; tf ], the control u(t) maximizes the Hamiltonian H :

H(t, x(t), u(t), p(t), p0) = max
v∈Ω

H(t, x(t), v, p(t), p0). (2.7)

• The adjoint vector p(·) satis�es the transversality conditions.

p(0) ⊥ Tx(0)M0, (2.8)

p(tf )− p0 ∂g

∂x
(tf , x(tf )) ⊥ Tx(tf )M1, (2.9)

where TxM is the notation for the tangent space of the submanifoldM at point x.

• If the �nal time tf is free, there is an additional transversality condition

max
v∈Ω

H(tf , x(tf ), v, p(tf ), p0) = −p0 ∂g

∂t
(tf , x(tf )). (2.10)

Definition 2.3 (Extremal). � We call extremal a tuple (x(·), u(·), p(·), p0) that is solution
to the equations (2.5), (2.6) and (2.7). If p0 < 0, the extremal is said to be normal, and abnormal
if p0 = 0.

Note that the couple (p(·), p0) in the statement of Theorem 2.1 is de�ned up to a positive
multiplicative constant. Therefore, if p0 < 0, i.e., if the extremal is normal, one can always set
p0 = −1.
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Remark 2.2: Su�cient conditions for optimality

We wish to emphasize once more that the PMP gives a set of necessary conditions. If one
wants to check the optimality status (at least locally) of a given extremal (x(·), u(·), p(·), p0),
the following condition, known as the strong Legendre condition, is su�cient : there exists
α > 0 such that for each v ∈ Rm,

∂2H

∂u2
(t, x(t), u(t), p(t), p0) · (v, v) 6 −α ‖v‖2 .

From a practical point of view, it can be satisfactory to �nd a trajectory satisfying the necessary
conditions of the PMP. This is what we will do in the sequel.

There exists in the literature a wide variety of variations for the PMP, for more general control
systems than the one in the statement of Theorem 2.1. Let us mention for instance the following
generalizations:

• In [AS04], the author shows a maximum principle for a control system where both the state
and the control belong to submanifolds, that is when the dynamics can be written under
the form

ẋ(t) = f(x(t), u(t)),

where f : M×N → TM, with M (resp. N ) a submanifold of Rn (resp. Rm). In this
setting, the adjoint vector p(t) is an element of the dual space of Tx(t)M, in order to give
a meaning to the quantity 〈p(t), f(x(t), u(t)〉. Note that in the case of the attitude control
problem for a rigid body, the result may be of importance when considering the dynamics
as a di�erential equation on SO3(R)× R3, as we did in Chapter 1.

• The papers [DK08, DK11, GP05a] state maximum principles for hybrid control systems,
where the dynamics can change over time. Inequality or equality constraints at times when
the dynamics changes can also be dealt with in this setting.

• In [Cla90], Clarke considers state-constrained control problems, where the constraint on
the state is written under the form

c(x) 6 0 almost everywhere on [0, tf ].

A major di�culty arises when solving such problems: the adjoint vector p(·) becomes
a measure and is not anymore absolutely continuous. There are jumps in the evolu-
tion of the adjoint vector every time the state meets the fronteer of the allowed domain,
{x ∈ Rn | c(x) = 0}. Numerically, one way to tackle this issue may be to penalize the state
constraint in the cost.

• Finally, let us mention the existence of maximum principles for control systems in in�nite
dimension. In [LLY95], a statement is given for an evolution equation

ẏ(t) = Ay(t) + f(t, y(t), u(t)),

where for each t, y(t) ∈ X and u(t) ∈ U , with X a Banach space and U a separable metric
space. In chapter 5, it is the setting we will consider to derive the structure of the controls
for an evolution problem for populations of cells structured in phenotype.

In chapter 3, we will show two maximum principles for a control problem with via-point
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constraints, as in [BH75]. It will consist in ponctual constraints under the form

c(x(t1)) 6 0,

with t1 ∈ [0; tf ]. We will see that such constraints can be dealt with using the formalism
of [DK08, DK11] for hybrid control systems.

2.3 Numerical methods in optimal control

Amongst the existing numerical methods to solve an optimal control problem, it is usual to
make the distinction between direct methods and indirect methods. Indirect methods exploit the
necessary conditions stated by the PMP to reduce the problem of �nding an optimal trajectory
to �nding the zeros of some function in �nite dimension. This is then often done by Newton-like
methods. Direct methods, for their part, consist in discretizing totally the state and the control
to end up with an optimization problem in �nite dimension. Such a problem can then be solved
by means of the usual optimization techniques.

We will now give more details on this two families of numerical methods, starting �rst with
the direct methods and moving on then to the indirect ones. The survey paper [Tré12] gives a
state of the art for numerical methods in optimal control, putting the emphasis on aerospace
applications.

2.3.1 Direct methods

The main idea behind a direct method is to undertake a complete discretization of the op-
timization space: let 0 = t0 < t1 < · · · < tN = tf be a subdivision of the time interval [0; tf ]
(for the sake of simplicity, we will consider here that the discretization is uniform. We de-
note h := t1 − t0 = tf/N the step of this subdivision. The dynamics is also discretized using
some numerical scheme. In our case, we have considered an explicit/implicit scheme: for each
i ∈ J0, N − 1K,

x(ti+i) ≈ x(ti) +
h

2
(f(ti, x(ti), u(ti)) + f(ti+1, x(ti+1), u(ti+1)) .

Let us denote xi ∈ Rn (resp. ui ∈ Rm) an approximation of x(ti) (resp. u(ti)), and let xh ∈
Rn×(N+1) be the vector (x0, x1, . . . , xN ), and uh ∈ Rm×(N+1) be the vector (u0, u1, . . . , uN ). We
also consider some discretization of the integral cost (2.2), for instance thanks to the rectangle
method:

C(tf , u) ≈ Ch(tf , u
h) := h ·

N−1∑
i=0

f0(ti, xi, ui).

Numerically, solving the optimal control problem amounts to solving the �nite-dimensional
optimization problem:

minimize Ch(tf , u
h)

under the constraints

xi+i = xi + h
2 (f(ti, xi, ui) + f(ti+1, xi+1, ui+1)) , ∀i ∈ J0, N − 1K,

ui ∈ Ω, ∀i ∈ J0, NK,
x0 ∈M0,
xN ∈M1.
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Numerical aspects. Eventually, when performing a direct method, one is left with solving
some optimization problem in �nite dimension under the form

min
g(X) = 0
h(X) 6 0

f(X).

(Assuming that the constraints on the control u ∈ Ω and on x0 and xN can be written under
the form of an equality or an inequality constraint.)

The literature is full of various numerical methods to tackle such a problem. To perform the
numerical simulations in this thesis, we chose the open-source solver IPOPT [WB06a], based on
the implementation of some interior-point algorithm.

Let us mention that the solver IPOPT can be used jointly with the modelling language
AMPL [FGK93]. The interface provided by AMPL allows for a very easy implementation of the
optimization problem, with an intuitive syntax. For instance, AMPL uses automatic di�erenti-
ation to compute the derivatives of the constraints and of the cost function. In constrast, if one
wishes to solve e�ciently an optimal control problem using only the solver IPOPT (for instance
through the C, C++ or Fortran interfaces), it is required to implement as well the methods
computing the derivatives.

Remark 2.3:

When compared to the indirect methods we are going to present hereafter, direct methods
o�er the possibility to tackle, at a low computational cost, constraints on the state variable.
This can be of importance in practice, for instance if the CNES wishes to forbid some angular
domain during the whole ballistic phase, or control the transverse angular velocities, as we
will show at the end of the chapter.

2.3.2 Indirect methods

In contrast with direct methods where a full discretization of the optimal control problem is
undertaken �rst, indirect methods exploit the duality and the necessary conditions stated in the
PMP.

We denote z := (x, p) the pair formed by the state variable x and the adjoint vector p. Under
usual regularity assumptions, the maximization condition (2.7) allows to express the control u as
a function of z: u = u(x, p), and the dynamics (2.5)-(2.6) can then be written under the closed
form ż(t) = F (t, z(t)). We will denote z(t, z0) the solution at time t to the Cauchy problem{

ż(t) = F (t, z(t)),
z(0) = z0.

We also denote R(z0, z(tf )) the transversality conditions stated in the PMP, as well as the
initial and �nal constraints on the state. Finding an extremal satisfying the set of equations of
the PMP amounts to �nding an initialization z0 and a �nal time tf (if it is not �xed) such that
R(z0, z(z0, tf )) = 0.

We denote G(z0, tf ) := R(z0, z(z0, tf )). It follows that �nding an extremal satisfying the set
of equations of the PMP boilds down to �nding a zero of the function G. In the literature, the
function G is often named a shooting function, and looking for a zero of this function is a shooting
problem.
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Remark 2.4: Resolution of a shooting problem

Solving a shooting problem, i.e., �nding a zero of the shooting function is usually done by
means of a Newton-like method. Those methods are famous for having very fast convergence
rates, while having a potentially small convergence domain. It means that the initialization
of the shooting problem can be very intricate. Therefore, being able to design a good enough
initialization ensuring the convergence of the Newton method is a challenge when solving an
optimal control problem with an indirect method. In Section 2.4.1 we will detail a numerical
procedure to adress this issue, deforming continuously the optimal control problem at hand.

2.3.3 Comparison between the methods

We are now concluding this section by putting together some of the elements of the previous
paragraphs, in order to give some elements of comparison between direct and indirect methods.
The survey paper [Tré12] also compares those two families of methods.

Based on a full discretization of the optimization problem, direct methods are often described
as robust methods, in the sense that they do not require much knowledge a priori on the structure
of the solution, (even if obviously, carefully chosing the initialization of the optimization algorithm
can increase the speed of convergence). Besides, they allow to take into account all type of
constraints, including state constraints. However, the discretization of the optimization problem
can be a cause for the apparition of local minima, and the user of the optimization software can
not have the guarantee to obtain a global solution. Such a problem may arise for instance when
the discretization is too �ne. Moreover, when compared with indirect methods, the numerical
accuracy obtained with direct methods may be not as good. Aerospace is a �eld often put forth
as a domain of application requiring high-level of numerical precision.

As for indirect methods, they rely on writing a maximum principle and solving some shooting
problem. This resolution is often done by means of Newton-like methods, and therefore indirect
methods inherit from the strengths and weaknesses of Newton methods: the rate of convergence
is quadratic, and the method is both fast to converge and very precise. Note also that the
integration of the di�erential system in the shooting function can be done using a numerical
integrator, which can be very precise. However, the domain of convergence of the method can
be very small, making its initialization di�cult. It is therefore often required to have a priori
knowledge on the structure of the solution (for instance the number of switchings of the control,
or the number of fronteer arcs, as in [BFLT03]). Besides, using an indirect method to solve an
optimal control problem with state constraints imply to use a PMP including such constraints,
which can be very intricate.

Roughly speaking, it is often said that direct methods discretize the problem �rst before
applying a dual method, whereas indirect methods �rst exploit the duality in the PMP before
discretizing the problem.

Let us mention the existence of a large family of methods, namely hybrid methods, based on
the combination of direct and indirect methods. For instance, when an optimal control problem
is solved with the solver IPOPT, the output contains the value of the Lagrange multipliers for
the underlying �nite-dimensional optimization problem. Up to the sign, those multipliers are an
approximation of the adjoint vector p(·) in the statement of the PMP. Therefore, they can be
used to build the initialization of the adjoint vetor p(0). With such a procedure, one can hope
to bene�t from the strength of both direct methods - little knowledge a priori on the structure
of the solution - and indirect methods with a fast and precise convergence.



2.4. Application to the attitude control problem for a rigid body 39

2.4 Application to the attitude control problem for a rigid

body

In this section, we aim at showing how the two families of numerical methods presented in the
previous Section 2.3 can be implemented to solve the attitude control problem with minimization
of the consumption (OCP) we stated in the Introduction:

(OCP)


min

∫ tf
0

∑m
i=1 |uj(t)| dt+ λ0tf ,

ẋ(t) = f0(x(t)) +
∑14
j=1 uj(t)fj(x(t)),

∀i ∈ J1,mK, 0 6 ui(t) 6 1 p.p. on [0; tf ],
x(0) = x0,
x(tf ) = xf .

Note that the term accounting for the �nal time in the cost can be written under the form

λ0tf = λ0

∫ tf

0

1 dt

if one wishes to have no function g in the general cost (2.2). This is what we do in the following.

2.4.1 With an indirect method

As explained in Remark 2.4, one of the di�culty when solving a shooting problem is the
initialization of the underlying Newton-like method to �nd a zero of the shooting function. It is
well-known that the problem of minimizing the consumption is part of the problems for which
this initialization is indeed di�cult, as in [CGN03, HMG04, GH06, CDG12].

Continuation procedure

A common technique to overcome this di�culty is the use of a continuation procedure (some-
times also named homotopy procedure). The idea is to introduce a parametrization in the
expression of the optimal control problem, in order to deform the initial problem, deemed to be
hard to solve, into an easier problem for which an initialization can easily be provided, either
because one has a priori knowledge on the structure of the solution, or because the convergence
domain of the Newton method is wide enough.

This deformation can be introduced as a change in the expression of the cost, in order to
bene�t from convexity properties. This is what is done for instance in [CGN03, HMG04, GH06,
CDG12]. In our case, for α ∈ [0, 1], we introduce the optimal control problem (OCP)α :

(OCP)α


min α

∫ tf
0

∑m
j=1 uj(t)

2 dt+ (1− α)
∫ tf

0

∑m
j=1 |uj(t)| dt+ λ0tf ,

ẋ(t) = f0(x(t)) +
∑m
j=1 uj(t)fj(x(t)),

∀i ∈ J1,mK, 0 6 ui(t) 6 1 p.p. on [0; tf ],
x(0) = x0,
x(tf ) = xf .

Thus, when α = 0, one recognizes the initial problem (OCP), and when α = 1, it consists in the
problem of minimizing the energy:

minimize
∫ tf

0

m∑
j=1

uj(t)
2 dt+ λ0tf .
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We recall that in order to be exploitable by the �SCA� of Ariane 5, the control has to be
bang-bang, i.e., has to take its values in {0, 1}. However, it is not obvious at �rst that the above
control problems yield bang-bang controls. We will see in the following that it is not the case
when α 6= 0. However the computation of those regular controls will allow us to eventually solve
(OCP). At the end, the procedure will result in bang-bang controls.

Application of the PMP to (OCP)α

We shall start by detailing the application of the PMP to the optimal control problem
(OCP)α. The Hamiltonian of the system writes

H(x, u, p, p0) = 〈p, f(x, u)〉+ p0

α m∑
j=1

uj(t)
2 + (1− α)

m∑
j=1

|uj(t)|+ λ0

 ,

We denote p = (pθ, pψ, pϕ, pp, pq, pr) the adjoint vector. If a trajectory (x(·), u(·)) is optimal,
then there exists a non trivial pair (p(·), p0) with p0 6 0 such that the dynamics of p(·) are given
by

ṗθ = 0,

ṗψ = −pθ
(

sinϕ sinψ
cos2 ψ q + cosϕ sinψ

cos2 ψ r
)
− pϕ (sinϕq + cosϕr)

(
1 + tan2 ψ

)
,

ṗϕ = −pθ
(

cosϕ
cosψ q −

sinϕ
cosψ r

)
− pψ(− sinϕq − cosϕr)− pϕ(cosϕ tanψq − sinϕ tanψr),

ṗp = −a2pqr − a3prq − pϕ,
ṗq = −a1ppr − a3prp− pθ sinϕ

cosψ − pψ cosϕ− pϕ sinϕ tanψ,

ṗr = −a1ppq − a2pqp− pθ cosϕ
cosψ − pψ sinϕ− pϕ cosϕ tanψ.

Besides, because of the maximization condition (2.7), for all j ∈ J1,mK, each component uj
of the control maximizes almost everywhere the quantity

uj(t)〈p(t), fj〉+ p0
(
αuj(t)

2 + (1− α)uj(t)
)
.

In what follows, we restrict ourselves to �nding normal extremals, i.e., extremals with p0 < 0. It
can then be assumed that p0 = −1.

Case α 6= 0. In that case, the control maximizes almost everywhere the quadratic function

uj(t)〈p(t), fj〉 − αuj(t)2 − (1− α)uj(t),

over the interval [0, 1]. This function reaches its maximum at the unique point where its derivative
vanishes, or on the boundary of the interval. We get that, for almost every time t,

uj(t) = max

(
0,min

(
1,
〈p(t), fj〉 − (1− α)

2α

))
.

Therefore the control has the same regularity as the adjoint vector p(·). In particular, as soon
as p is continuous, the control is a continuous function of the time. However, such a control does
not ful�ll the requirement, imposed by the design of the �SCA�, to be bang-bang.
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Case α = 0. In that case, each component uj of the control can be obtained by minimizing
the a�ne function

uj(t)〈p(t), fj〉 − uj(t).
It follows that

uj(t) = sign (〈p(t), fj〉 − 1) ,

where sign(·) is the sign function de�ned by:

sign(x) =

{
1 if x > 0,
0 if x < 0.

The function t 7→ 〈p(t), fj〉−1 can sometimes be found under the name switching function in the
literature, as its sign will decide if the thruster j is to be closed or opened. Let us point out that
uj is undetermined when the switching function vanishes. If it happens on a countable subset of
the time interval, it has no e�ect as the maximization condition (2.7) of the Hamiltonian stands
almost everywhere. However, when there exists a time interval [t1, t2] on which the switching
function vanishes, the control uj can not be computed directly 1. Such a control is then often
said to be singular.

Algorithmic procedure

First, recall that solving an optimal control problem with an indirect method as explained in
Subsection 2.3.2 boils down to �nding the zeros of some shooting function 2.3.2. For the optimal
control problem (OCP)α, the transversality conditions (2.10) on the �nal time in the PMP and
the constraints on the state at �nal time write

max
v∈Ω

Hα(tf , x(tf ), v, p(tf ), p0) = 0,

x(tf )− xf = 0.

As the initial and terminal submanifolds are singletonsM0 = {x0} andM1 = {xf}, the transver-
sality equations on the adjoint vector (2.8) and (2.9) are trivial.

In the problem of interest, the initial state of the launcher is �xed, with x(0) = x0. Therefore,
the switching function only depends on the initialization of the adjoint vector p(0) and on the
�nal time tf , and we denote it Gα(p0, tf ). We will also denote Z the variable of the function
Gα, and Z̃α a zero of the function Gα. We emphasize that the dimension of the variable Z is 7
(6 components for p0 and one for tf ), and the function Gα also has 7 components (one equation
for the transversality condition on the �nal time, and 6 equations for the constraint on the �nal
state x(tf )− xf = 0). Therefore, the shooting problem is well-posed.

Simple continuation procedure. Our �nal goal is therefore to �nd a zero of the function
G0, which corresponds to the shooting function for the problem (OCP), with minimization of
the consumption. To do so, we look for a sequence of parameters (αk)k∈J0,NK such that α0 = 1

and αN = 0, and such that for each k ∈ J0, NK, we know a zero Z̃αk of the shooting function
Gαk . The interest of the procedure lies in the fact that for each k ∈ J0, N − 1K, we can use the
solution Z̃αk of the problem (OCP)αk to initialize the search for a zero of the shooting function
Gαk+1

. An implicit assumption is made that we are able to compute the solution at the �rst step

1. The usual technique to derive the expression of the control is to di�erentiate the relation 〈p(t), fj〉 − 1 = 0
a number of times su�cient for the control uj to appear explicitely. Generically, the resulting controls are not
bang-bang, and can not be used to solve the control problem at hand in this thesis
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of the continuation procedure, namely a zero Z̃1 of G1, the shooting function for the problem
(OCP)1. Hereafter at Algorithm 1, we give in pseudo-code the algorithmic principle of a simple
continuation, and the Figure 3.1 schematizes this procedure.

Algorithm 1 General principle of the continuation procedure

1: Z = Z̃1 . Initialization for α = 1
2: step ∈ [0, 1] . Reference step
3: stepm ∈ [0, step] . Minimal step
4: while α > 0 et step > stepm do
5: step← min(step, α)
6: α = α− step . α decreases
7: Look for Z̃, zero of the function Gα̃(Z), with Z serving as an initialization.
8: if success then
9: α← α
10: Z ← Z̃ . We move on
11: else
12: step← step

2 . We decrease the step and start again
13: end if
14: end while

This algorithm could be improved in many ways. For instance, in case of a success in the
resolution, it can be decided to increase the step in order to improve the speed of convergence of
the algorithm. We refer to the book [AG90] for more details on the numerical implementation
of a continuation procedure. Besides, they are many existing softwares available online, as the
open source HamPath [CCG12].

In the next paragraph, we will present an improvement of the Algorithm 1, introduced to
decrease its runtime.

Continuation procedure with linear prediction. Behind this method is the idea that we
can do better than just using Z̃α as an approximation of Z̃α−∆α when initializing the shooting
problem. Assume that we have already made two successive resolutions, yielding Z̃α+∆α1

and Z̃α,
for two values α+ ∆α1 and α. Assuming some regularity on the path of zeros, an approximation
of Z̃α−∆α2 for a new value α−∆α2 is given by

Z̃α−∆α2 ≈ Z̃α −
∆α2

∆α1

(
Z̃α+∆α1 − Z̃α

)
,

as displayed on Figure 2.2.

This is the procedure we used throughout this thesis each time a continuation is performed
(in the context of indirect methods), as we could experimentally witness an improvement in the
runtime of the algorithm.

Numerical results

We give here some numerical results of the implementation of the continuation procedure
with linear prediction applied to the attitude control problem. We used the following numerical
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α = 1
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Z̃α •

Z̃α−∆α •

�

Figure 2.1 � General principle of the continuation procedure. The
resolution of (OCP)α is used to initialize the resolution for α−∆α.

values for the initial and �nal conditions

(θ0, ψ0, ϕ0, p0, q0, r0) = (0.04, 0.06, 7.7,−0.027, 0, 0),

(θf , ψf , ϕf , pf , qf , rf ) = (0.63, 0.82, 7.0,−0.008, 0, 0),

and we chose the following expression for the cost

Jα(u) = α

∫ tf

0

m∑
j=1

uj(t)
2 dt+ (1− α)

∫ tf

0

m∑
j=1

|uj(t)| dt+
tf
2
,

i.e., we set the parameter λ0 = 1/2. Note that the angles are expressed in radians, and the
angular velocity in radians per second.

The integration of the di�erential system to compute the shooting function Gα is done using
the numerical integrator DOP853. It consists in an explicit Runge-Kutta method with adaptative
step comparing the methods RK8, RK5 and RK3. The description of the algorithm can be found
in [HNW08].

On the Figures 2.3, 2.4, 2.5 et 2.6, we display the evolution of the controls during the contin-
uation on the parameter α. We represent in black the controls for the problem of minimizing the
energy (OCP)1, and in red the controls for the minimization of the consumption (OCP). We
also chose to display the controls at two intermediate stages of the continuation, for the values
α = 0.32 and α = 0.02. It appears clearly how the controls are deformed progressively from a
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Z̃α+∆α1 •

Z̃α •
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�

∆α1∆α2

Figure 2.2 � Principle of the continuation procdeure with linear
prediction. The solutions of the problem (OCP)α and (OCP)α+∆α1

are used to initialize the shooting problem for α−∆α2, doing an
a�ne extrapolation in order to get an approximation for Zα−∆α2

.

continuous command law (for (OCP)1), to a bang-bang command law (for (OCP)).

On Figure 2.7, we also represent the trajectory for the minimization of the consumption in
(OCP). Physically, it corresponds to steering the launcher from a spinned state along its main
inertia axis (the roll velocity p is non zero, and the transverse angular velocities q and r are zero)
to another spinned state in a di�erent orientation ((θ0, ψ0, ϕ0) 6= (θf , ψf , ϕf )). The angles (resp.
the angular velocities) are expressed in radians (resp. radians per second).

2.4.2 With a direct method

Now, we are going to illustrate how the attitude control problem with minimization of the
consumption can be tackled with a direct method. In order to insist on the fact that such a
method does not require a priori knowledge on the structure of the solution, yet allowing to
easily consider state constraints, we consider the optimal control problem (OCP) 2 to which we
add an additionnal constraint: during the maneuver, the transverse angular velocities q and r

2. Solving directly (OCP) does not pose a problem. When we performed the numerical simulations, we
obtained the same controls and the same trajectory as those computed with the indirect method in the previous
Subsection.
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Figure 2.3 � Controls for the resolution of (OCP)1.
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Figure 2.4 � Controls for the resolution of (OCP)α with α = 0.36.

are requested to stay below a certain level, namely

|q| 6 ωmaxt , |r| 6 ωmaxt . (2.11)

We emphasize again that when using the interior-point solver IPOPT [WB06a] (with the mod-
elling language AMPL [FGK93] or not), taking into account state constraints such as (2.11) does
not make the implementation harder.

We consider the same initial and �nal conditions as in the previous section, where the launcher
is controlled from a spinned state along its principal inertia axis to another spinned state, in a
di�erent orientation. We chose the following numerical value for the constraint on the state
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Figure 2.5 � Controls for the resolution of (OCP)α with α = 0.02.
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Figure 2.6 � Controls for the resolution of (OCP).

(2.11)
ωmax
t = 0.007 rad.s−1.

On Figure 2.8 are displayed the controls and on Figure 2.9 the trajectory of the launcher. A
remarkable fact appears clearly on those two �gures: when the state of the system saturates the
constraint (2.11), the controls are not anymore bang-bang. In order to give an insight on this
fact, we quickly give some theoretical elements on control systems with a state constraint.

For the sake of simplicity, we restrict ourselves to the more simple system

ẏ(t) = f0(y(t)) + uf1(y(t)),
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Figure 2.7 � Trajectory for the resolution of problem (OCP). The
attitude of the launcher is controlled from the initial state x0 (�) to

the �nal state xf (�).

with only one control u, and where the state y belongs to Rn (we denote y this state and not
x as in the rest of the chapter in order to insist on the fact that it is not the attitude control
system). Besides, we add a state constraint under the form

c(y) 6 0,

with c : Rn → R. Assume that the constraint is active between the times t1 and t2. One gets
an expression for the control by di�erentiating the relation c(y(t)) ≡ 0 on [t1, t2]. Di�erentiating
this relation once, we get

∇c(y(t)) · ẏ(t) = 0

∇c(y(t)) · (f0(y(t)) + u(t)f1(y(t))) = 0

Thus, if ∇c(y(t)) · f1(y(t) 6= 0, the control can be expressed under the feedback form:

u(t) = −∇c(y(t)) · f0(y(t))

∇c(y(t)) · f1(y(t))
.

Note that the terms ∇c(y(t)) · fi(y(t) can be written under the form (fic)(y(t)) if we consider
that the vector �eld fi acts as a derivation on c:

(fic)(y(t)) := ∇c(y(t)) · fi(y(t)).

Let M be the number of times one needs to di�erentiate the relation t 7→ c(y(t)) ≡ 0 in order to
have fM1 c 6= 0 for the �rst time. By an easy iteration, it follows that

(f0f
M−1
1 c)(y(t)) + u(t)(fM1 c)(y(t)) = 0,
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and the control can again be expressed under a feedback form

u(t) = − (f0f
M−1
1 c)(y(t))

(fM1 c)(y(t))
,

which is then not bang-bang.
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Figure 2.8 � Controls for the resolution of the problem (OCP) with a
state constraint.
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Figure 2.9 � Trajectory for the resolution of the problem (OCP)
with a constraint on the transverse angular velocities q and r.
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2.5 Conclusion of the chapter

In this chapter, we recalled the statement of Pontryagin maximum principle for a nonlinear
control system with constraints on the control but no state constraints, as well as some of the
usual methods in optimal control theory. In the following chapter, we will intensively use both
direct and indirect methods to solve numerically optimal control problems, chosing the most
adequate method depending on the problem at hand.

One of the key idea presented here is the use of a continuation procedure to solve a problem
deemed to be hard to solve. When implementing such a procedure, the initial control problem
is embedded in a family of problems depending on one (or several parameters). The aim is to
deform it in order to end up with an �easier� problem. In the next chapters of this thesis, we
will thoroughly use continuation procedures: each time we compute an optimal trajectory with
respect to the L1 cost, it actually comes from a continuation L2 → L1 as the one we presented
in this chapter. Besides, in chapters 3 and 5, we will use such a procedure in various settings,
each time to solve numerically the optimal control problem under consideration.

The numerical examples displayed at the end of the chapter show how to compute an optimal
trajectory when only one satellite is to be separated. However, the indirect method we presented
here is de�cient to tackle a more complex ballistic phase when several satellites are boarded on
the launcher. In the context of optimal control problems with intermediate constraints, this is
what we are going to study in the next chapter.
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In the previous chapter, we explained how a continuation procedure can be implemented to
solve an optimal control problem arising during a simple ballistic phase, when only one satellite
is put into orbit. During a complex ballistic phase, several bodies are successively put into orbit.
At the times of the separations, there may be in the description of the mission constraints on the
state of the system that do not concern the 6 components of the state. It can be also requested
during a ballistic phase to cancel at a given time the angular velocity of the launcher while not
constraining the angles θ, ψ and ϕ.

In this chapter, we will give a general numerical algorithm to solve an optimal control problem
with intermediate constraints by means of an indirect method. We write it in a general setting as
we believe it could be applied to a wide range of problems. However, we will also point out that
our procedure sometimes fails to converge when the number of intermediate constraints becomes
too important.

That is why, in Appendix A, we will also present the results given by an optimization software
designed for the CNES. The software tackles the question of �nding the optimal solution for a
complex ballistic phase, with any number of separations, and in a general fashion, any number of
intermediate constraints. For this reason, this chapter and Appendix A are very complementary,
as they address the same problems with di�erent approaches.
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3.1 Introduction of the chapter

Optimal control problems with intermediate constraints. Let n, m and p be positive
integers. In this chapter, we consider the general nonlinear control system

ẋ(t) = f(t, x(t), u(t)), (3.1)

where the state x(t) ∈ Rn and the control is subject to the constraint u(t) ∈ Ω = [0, 1]
m. Our

goal is to �nd a control u(·) and a �nal time tf that steer the control system (3.1) from an initial
point x0 to a �nal point xf (both �xed), while minimizing an integral cost

J(u) =

∫ tf

0

f0(t, u(t), x(t)) dt, (3.2)

and enforcing an intermediate constraint (or interior-point constraint) at some (�xed) interme-
diate time t1 ∈ (0, tf ) that we write under the generic form :

g(t1, x(t1)) = 0, (3.3)

where g : Rn → Rp is a smooth function.
Note that this formulation (and all the results presented thereafter) can easily be extended

to a problem with several intermediate constraints. However, for the sake of simplicity, we will
only present �rst the case of one intermediate constraint.

The literature on control systems with intermediate constraints is abundant. Let us mention
[BH75], a classical reference on optimization problems with interior-point constraints, and more
generally with state constraints along the path. It has been shown in [DK08, DK11] that our
problem can be seen as a particular instance of a hybrid control problem (see also [BBM98,
GP05b, SC07, Sus99] for more details on hybrid control systems). The authors show how to
reduce the optimal control problem (3.1)-(3.2)-(3.3) with intermediate constraints (as well as
other general classes of hybrid optimal control problem) to a �classical� optimal control problem
to which one can apply the usual PMP of [PBGM62]. We will use their results to derive the
Propositions of Section 3.2. Recall that the PMP consits in a set of necessary conditions for
a control and a trajectory to be optimal. Recall also that in the context of indirect methods,
those conditions can be used to reduce the resolution of an optimal control problem to �nding
the zeros of some shooting function. We will elaborate on this issue in more details in the core
of this chapter.

Let us denote (P)0 the optimal control problem of steering the control system (3.1) from x0

to xf , while minimizing the cost (3.2), without the intermediate constraint (3.3). Throughout
this chapter, we will assume that (P)0 has at least one optimal solution, that we will denote
(x(·), u(·)).

A �rst idea to solve the initial problem with the intermediate constraint (3.3) is to introduce
the constraint by continuation, or homotopy, solving a sequence of problems that depend on a
parameter s ∈ [0, 1], each problem containing a constraint:

g(t1, x(t1)) = s · g(t1, x(t1)). (3.4)

For s = 1, one can notice that (x(·), u(·)) is a solution of the problem, and for s = 0, one �nds our
initial problem. In the following, we will denote (P)via,s the optimal control problem of steering
the system (3.1) from x0 to xf while minimizing the cost (3.2) and satisfying the constraint (3.4)
with a continuation parameter s. Therefore, the goal of this chapter is to propose a robust and
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e�cient procedure to solve (P)via,0, based on a mathematically sound theory.

Numerical di�culty. Even though performing a continuation on the parameter s can some-
times be enough to solve (P)via,0, we experimentally noticed that in some cases, the procedure
fails to converge, even for values close to s = 1. Unfortunately, so far we have not been able to
identify clearly the reason for this failure. We give hereafter two possible reasons, that need to
be further investigated:

• because of a local loss of controllability around some value s1 > 0. It could happen that the
problem (P)via,s1 admits a solution, but that the problem (P)via,s does not for values s < s1

close enough to s1. In that case, there is a barrier somewhere during the continuation.

• because of the presence of singular trajectories along the path, that forbids convergence of
the underlying shooting method

In [Tré12] conditions ensuring local and global convergence of numerical continuation methods
in optimal control are given.

Penalizing the intermediate constraint. To avoid this numerical di�culty, we consider
another optimal control problem, consisting of steering the control system (3.1) from x0 to x1 in
some time tf while minimizing the cost functional:

Jε(u) =

∫ tf

0

f0(t, u(t), x(t)) dt+
1

ε
‖g(t1, x(t1))‖2 . (3.5)

Here, the intermediate constraint has been dropped and replaced by some penalization term
included in the cost functional. It is therefore much less restraining than imposing a constraint
of the form g(t1, x(t1)) = s · g(t1, x(t1)). Note that the penalization term is not completely
standard since it is at the intermediate time t1. Let us denote (P)pen,ε the optimal control
problem of steering the system (3.1) from x0 to xf while minimizing the cost (3.5), that depends
on the parameter ε. When ε� 1, the cost Jε(u) can be approximated (at least formally)

Jε(u) ≈
∫ tf

0

f0(t, u(t), x(t)) dt

and one recovers (P)0. When ε� 1, the solution of (P)pen,ε is expected to be close to a solution
of (P)via,0. Note that with this formulation, one can not ensure exactly that g(t1, x(t1)) = 0.
Besides, if ε becomes too small, one could face the numerical pitfall of dividing by ε. However, we
will see that when ε is small enough, the solution of (P)pen,ε provides a good enough initialization
to solve the initial problem (P)via,0.

Before going further, let us recall here the expressions of the two optimal control problems of
interest in this chapter.

(P)via,s



min
∫ tf

0
f0(t, u(t), x(t)) dt,

ẋ(t) = f(t, x(t), u(t)),
∀i ∈ J1,mK, 0 6 ui(t) 6 1 p.p. on [0; tf ],
x(0) = x0,
x(tf ) = xf ,
g(t1, x(t1)) = s · g(t1, x(t1)).

(3.6)
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(P)pen,ε


min

∫ tf
0
f0(t, u(t), x(t)) dt+ 1

ε ‖g(t1, x(t1))‖2 ,
ẋ(t) = f(t, x(t), u(t)),
∀i ∈ J1,mK, 0 6 ui(t) 6 1 p.p. on [0; tf ],
x(0) = x0,
x(tf ) = xf .

(3.7)

Outline of the chapter. Initially, our goal was to solve problems coming from aerospace and
involving intermediate constraints, as we will do in Section 3.3. However, we believe it is worth
writing the theoretical results in the general setting presented in this introduction, as our method
might well also be used in a various range of domains. The paper is organized as follows. In
Section 3.2, we state and prove two Pontryagin maximum principles for the general problems
(P)via,s and (P)pen,ε. In addition to the classical statement of the PMP, the adjoint vector
is not anymore continuous, and presents jumps at the intermediate points. In Section 3.3, we
apply the theoretical results of Section 3.2 to the attitude control problem of a three dimensional
rigid body, a problem of importance in aerospace. Section 3.4 contains numerical examples to
illustrate our procedure.

3.2 Optimal control formulation

As presented in Section 3.1, we suggest in this chapter two optimal control formulations to
account for the intermediate constraint of our problem. (P)via,s consists in steering the system
(3.1) from x0 to xf while minimizing the cost (3.2) and satisfying a constraint

g(t1, x(t1)) = sg(t1, x(t1)),

whereas in (P)pen,ε, we penalize it in the cost

Jε(u) =

∫ tf

0

f0(t, u(t), x(t)) dt+
1

ε
· ‖g(t1, x(t1))‖2 .

Let us emphasize once again that solving (P)pen,ε up to small values of ε enables us to
circumvent the numerical di�culties that come up when solving (P)via,s.

In this section, we present two Pontryagin maximum principles for our two problems but �rst,
we need to recall a statement of an hybrid maximum principle as in [DK11].

3.2.1 Hybrid maximum principle.

First, we state the main result of [DK11], that we are going to use to prove both propositions.
Let t0 < t1 < · · · < tν . Given a trajectory x : [t0, tν ]→ Rn, we de�ne the vector

v = ((t0, x(t0)); (t1, x(t1)); . . . ; (tν , x(tν))) ∈ R(ν+1)(n+1).

Let us consider the hybrid optimal control problem (Ω is a subset of Rm):
J = ϕ0(v)→ min,
ẋ(t) = f(t, x(t), u(t)) u ∈ L∞([0; tf ],Ω),
ηj(v) = 0 j = 1, . . . , p,
ϕi(v) 6 0 i = 1, . . . , q,
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Note that if ν = 1, there are no intermediate constraints, and the problem can be solved using the
classical Pontryagin maximum principle. The problem contains some equality and/or inequality
constraints, including for instance constraints on the initial and �nal states like

x(t0)− x0 = 0 , x(tf )− xf = 0.

Theorem 3.1 (Hybrid maximum principle). � Assume that (x̃(·), ũ(·), ṽ) is an
optimal solution of the previous hybrid optimal control problem. Then, there exists a tuple
(α, β, λx(·), λt(·)) where α = (α0, α1, . . . , αq) ∈ Rq+1, β = (β1, . . . , βp) ∈ Rp such that, if we
de�ne the applications

H(t, x, u, λx, λt) = 〈λx, f(t, x, u)〉+ λt,

l(v) =

q∑
i=0

αiϕi(v) +

p∑
j=1

βjηj(v),

then the following conditions hold:

• (α, β) 6= 0 ;

• For all i ∈ J0, qK, αi > 0 ;

• For all i ∈ J1, qK, αiϕi(ṽ) = 0 ;

• Almost everywhere on [t0, tν ],

λ̇x(t) = −∂H
∂x

(t, x̃(t), ũ(t), λx(t), λt(t)),

λ̇t(t) = −∂H
∂t

(t, x̃(t), ũ(t), λx(t), λt(t));

• The transversality conditions at initial and �nal time stand:

λx(t0) = ∂l
∂x(t0) (ṽ) λx(tν) = − ∂l

∂x(tν) (ṽ),

λt(t0) = ∂l
∂t0

(ṽ) λt(tν) = − ∂l
∂tν

(ṽ);

• At every intermediate point, one has the following discontinuity condition : for all k ∈
J1, ν − 1K,

λx(t+k )− λx(t−k ) =
∂l

∂x(tk)
(ṽ),

λt(t
+
k )− λx(t−k ) =

∂l

∂tk
(ṽ);

• Almost everywhere on [t0, tν ], H(t, x̃(t), ũ(t), λx(t), λt(t)) = 0;

• The following maximisation condition holds:

H(t, x̃(t), ũ(t), λx(t), λt(t)) = max
w∈Ω

H(t, x̃(t), w, λx(t), λt(t)).

In [DK11], the proof of this result is given considering each part of the time interval [tk, tk+1]
for k ∈ J1, ν − 1K, and doing a transformation allowing to apply the usual PMP.
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3.2.2 PMP for (P)via,s and (P)pen,ε
In view of the following, let us de�ne here the Hamiltonian:

H(t, x, u, p, p0) = 〈p, f(t, x, u)〉+ p0f0(t, x, u).

We also recall that the initial point x0 and the �nal point xf are �xed.

Proposition 3.1 (PMP for (P)via,s). � Let (x(·), u(·)) be a solution of (P)via,s. Then
there exists a non-trivial tuple (p(·), p0, β), with β ∈ Rp, such that:

• ẋ(t) = ∂H
∂p (t, x(t), u(t), p(t), p0);

• ṗ(t) = −∂H∂x (t, x(t), u(t), p(t), p0);

• H(t, x(t), u(t), p(t), p0) = maxv∈U H(t, x(t), v, p(t), p0) a.e. on [0, tf ];

• At time t1, the adjoint vector presents a discontinuity:

p(t+1 )− p(t−1 ) =
∂g

∂x
(t1, x(t1))Tβ;

• maxv∈ΩH(tf , x(tf ), v, p(tf ), p0) = 0.

Proposition 3.2 (PMP for (P)pen,ε). � Let (x(·), u(·)) be a solution of (P)pen,ε. Then
there exists a non-trivial tuple (p(·), p0) such that:

• (p(·), p0) 6= (0, 0);

• ẋ(t) = ∂H
∂p (t, x(t), u(t), p(t), p0);

• ṗ(t) = −∂H∂x (t, x(t), u(t), p(t), p0);

• H(t, x(t), u(t), p(t), p0) = maxv∈U H(t, x(t), v, p(t), p0) a.e. on [0, tf ];

• At time t1, the adjoint vector presents a discontinuity:

p(t+1 )− p(t−1 ) = −p
0

ε
· ∂g
∂x

(t1, x(t1))T g(t1, x(t1));

• maxv∈ΩH(tf , x(tf ), v, p(tf ), p0) = 0.

Proof of Proposition 3.2. First, we start by rewriting (P)pen,ε in order to apply the hybrid max-
imum principle 3.1. Let us introduce the augmented system{

ẋ(t) = f(t, x(t), u(t)), x(0) = x0

ẏ(t) = f0(t, x(t), u(t)), y(0) = 0

Let v := ((x(0), y(0)); (t1, x(t1), y(t1)); (tf , x(tf ), y(tf ))). We also introduce the notation:

h(t1, x(t1)) :=
1

ε
‖g(t1, x(t1))‖2 .

The cost can then be written under the form

J(v) = h(t1, x(t1)) + y(tf ).
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Recall that the intermediate time t1 is �xed, say to some t̃1. We introduce the equality con-
straints:

η1(v) := x(0)− x0 = 0,

η2(v) := y(0) = 0,

η3(v) := x(tf )− xf = 0,

η4(v) := t0 = 0,

η5(v) := t1 − t̃1.

Assume that (x(·), y(·), u(·)) is a solution of the augmented optimal control problem. Then,
according to Theorem 3.1, there exists (α0, β, λx(·), λy(·), λt(·)) with β = (β1, β2, β3, β4, β5) ∈ R5,
such that if we de�ne the functions H(x, u, λx, λy, λt) = 〈λx, f(x, u)〉 + λyf

0(x, u) + λt and
l(v) = α0J(v) + β1η1(v) + β2η2(v) + β3η3(v) + β4η4(v) + β5η5(v), we have

(α0, β) 6= 0, (3.8)

α0 > 0. (3.9)

The dynamics of the adjoint vector is given by

λ̇x = −∂H∂x , λ̇y = −∂H∂y = 0, λ̇t = −∂H∂t = 0; (3.10)

and we have the transversality condition at initial time

λx(t0) = ∂l
∂x(t0) (v) = β1, λy(t0) = ∂l

∂y(t0) (v) = β2, λt(t0) = ∂l
∂t0

(v) = β4; (3.11)

and at �nal time

λx(tf ) = − ∂l

∂x(tf )
(v) = β3, (3.12)

λy(tf ) = − ∂l

∂y(tf )
(v) = −α0 ∂J

∂y(tf )
(v) = −α0, (3.13)

λt(tf ) = − ∂l

∂tf
(v) = 0. (3.14)

Finally, the discontinuity condition writes

λx(t+1 )− λx(t−1 ) = α0 ∂J

∂x(t1)
(v) = α0

∂h

∂x(t1)
(x(t1)) =

α0

ε
· ∂g
∂x

(t1, x(t1))T g(t1, x(t1)) (3.15)

λy(t+1 )− λy(t−1 ) =
∂l

∂y(t1)
(v) = 0; (3.16)

λt(t
+
1 )− λt(t−1 ) =

∂l

∂t1
(v) = β5; (3.17)

(from which we get that β5 = −β4). Combining Equations (3.10), (3.13), (3.14), (3.16) and
(3.17), we get that the function λy is constant on [0, tf ], λy ≡ −α0, and λt is piecewise constant
on [0, tf ], satisfying {

λt ≡ β4 on [0, t1]
λt ≡ 0 on [t1, tf ]
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Let us set p0 := −α0. We get, exploiting the discontinuity condition (3.15), the jump on the
adjoint vector :

λx(t+1 )− λx(t−1 ) = −p0∇h(x(t1)).

We obtain Proposition 3.2 by setting p(t) = λx(t).

Proof of Proposition 3.1. The sketch of the proof is similar to the previous one. We use the same
trick of considering the augmented system{

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,
ẏ(t) = f0(t, x(t), u(t)), x(tf ) = xf .

Let v = ((t0, x(t0), y(t0)); (t1, x(t1), y(t1)); (tf , x(tf ), y(tf ))). (P)via,s consists in minimizing the
cost

J(v) = y(tf )

under the following constraints:

η0(v) = g(x(t1))− sg(x(t1)),

η1(v) = x(0)− x0 = 0,

η2(v) = y(0) = 0,

η3(v) = x(tf )− xf = 0,

η4(v) := t0 = 0,

η5(v) := t1 − t̃1.

Let (x(·), y(·), u(·)) be a solution of this optimization problem. Then, applying Theorem 3.1,
there exists a tuple

(α0, β, λx(·), λy(·), λt(·)),
with β = (β0, β1, β2, β3, β4, β5) ∈ Rp×R5 such that, if we de�ne the function H as in the previous
proof and l by:

l(v) = α0J(v) + 〈β0, η0(v)〉+ β1η1(v) + β2η2(v) + β3η3(v) + β4η4(v) + β5η5(v),

we have
(α0, β) 6= 0, α0 > 0.

The dynamics of the adjoint vector is given by

λ̇x = −∂H∂x , λ̇y = −∂H∂y = 0, λ̇t = −∂H∂t = 0

The transversality conditions at initial and �nal time are the same as in the previous proof, and
the jump on the adjoint vector is given by

λx(t+1 )− λx(t−1 ) =
∂l

∂x(t1)
(v) = dg(x(t1))T · β0

λy(t+1 )− λy(t−1 ) =
∂l

∂y(t1)
(v) = 0

and we also have that λt(t
+
1 ) − λt(t−1 ) = β5. One can then conclude the proof as before, the

function λy being constant, and λt being piecewise constant. Letting p0 := −α0 and β := β0 ∈
Rp, we get the formulation of Proposition 3.1.
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Remark 3.1: Via-point constraint.

An important case in practice is when the intermediate constraint consists in prescribing some
components of the state x at time t1. Let P : Rn → Rp (with p 6 n) be a projection such that
P (x1, . . . , xn) = (xσ(1), . . . , xσ(p)), where σ is a permutation of {1, . . . , n}. In that particular
case, the intermediate constraint can be written

P (x(t1)) = yvia,

where yvia is some �xed point in Rp, and is sometimes referred to as a via-point constraint. In
this situation, the constraint in (P)via,s writes

P (x(t1)) = sP (x(t1)) + (1− s)yvia,

and the cost in (P)pen,ε writes

Jε(u) =

∫ tf

0

f0(t, u(t), x(t)) dt+ ‖P (x(t1))− y1‖2 /ε.

Besides, the jump on the adjoint vector in Proposition 3.1 becomes (component-wise)

pσ(i)(t
+
1 )− pσ(i)(t

−
1 ) = βi for all i ∈ J1, pK,

pσ(i)(t
+
1 )− pσ(i)(t

−
1 ) = 0 for all i ∈ Jp+ 1, nK,

and the jump in Proposition 3.2 becomes

pσ(i)(t
+
1 )− pσ(i)(t

−
1 ) = −2p0(xσ(i) − yi)/ε for all i ∈ J1, pK,

pσ(i)(t
+
1 )− pσ(i)(t

−
1 ) = 0 for all i ∈ Jp+ 1, nK.

A variant is to choose penalization parameters εi depending on the indices under consideration.
Here, for simplicity, we keep the same penalization parameter ε for all indices.

3.2.3 Shooting functions for (P)via,s and (P)pen,ε
Propositions 3.1 and 3.2 state that the optimal solutions of the problems (P)via,s and (P)pen,ε

must be sought over the set of trajectories satisfying the necessary conditions of the Pontryagin
maximum principle. We will now explain in detail how it can be reduced to �nding the zeros of
some shooting function.

Shooting function for (P)pen,ε. In Proposition 3.2 the maximisation condition implies that,
under some conditions 1, the control can be written as a function of the time, the state x and
the costate p : u(t) = u(t, x(t), p(t)). Let us denote z = (x, p). The dynamics of z can therefore
be written under the form ż(t) = F (t, z(t)). Let z(t, z0) = (x(t, z0), p(t, z0)) be the solution of
the Cauchy problem ż(t) = F (t, z(t)) with the initial condition z(0, z0) = z0 and a jump at time

1. A usual assumption is to assume that a Legendre condition is satis�ed, namely that the hessian matrix
∂2H
∂u2 (t, x, u, p, p0) is negative de�nite. Such a condition enables to express the control (at least locally), as a
function of x and p.
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t1 given by

x(t+1 , z0)− x(t−1 , z0) = 0,

p(t+1 , z0)− p(t−1 , z0) = −p
0

ε
· ∂g
∂x

(t1, x(t1))T g(t1, x(t1)).

For short, let us denote H(tf ) = maxv∈U H(tf , v, z(tf , (x0, p(0))), p0) and let us de�ne the func-
tion

Gε :

 Rn × R → Rn+1

(p(0), tf ) 7→
[
x(tf , (x0, p(0)))− xf

H(tf )

]
(3.18)

Finding a trajectory satisfying the necessary conditions of Pontryagin maximum principle boils
down to �nding a zero of the function Gε, that is an initialization of the costate p(0) and a �nal
time tf (n + 1 unknowns) such that the terminal condition x(tf ) = xf and the transversality
condition H(tf , x(tf ), u(tf ), p(tf ), p0) = 0 are satis�ed (n+ 1 equations).

Shooting function for (P)via,s . Note that in the Pontryagin maximum principle for (P)pen,ε,
the jump at time t1 is given by

p(t+1 )− p(t−1 ) = −p
0

ε
· ∂xg(t1, x(t1))T g(t1, x(t1)) .

Hence, once the initialization of the costate p(0) is made, the dynamics of z = (x, p) is determined
up to the �nal time.

In (P)via,s, the jump at time t1 is given by p(t+1 )− p(t−1 ) = dg(t1, x(t1))Tβ, where β ∈ Rp is
a new unknown of the problem. However, there are also p additional equations to ful�ll to �nd
a trajectory satisfying Pontraygin's necessary conditions, namely

g(t1, x(t1)) = sg(t1, x(t1)).

As explained in Chapter 2, solving an optimal control problem by an indirect method boilds
down to �nding the zeros of a shooting function. In that case, the shooting problem consists in
�nding a zero of a shooting function Gs. More precisely, it consists in �nding an initialization of
the costate p(0), a �nal time tf and a vector β ∈ Rp (n+ 1 + p unknowns) such that x(tf ) = xf ,
the transversality condition H(tf ) = 0 and the intermediate constraint g(t1, x(t1)) = sg(t1, x(t1))
are satis�ed (n+ 1 + p equations).

3.3 Application to the attitude control of a rigid body

3.3.1 The attitude control problem

Let us recall �rst the attitude equations for a rigid body, as expressed in the Introduction

θ̇(t) = sinϕ(t)
cosψ(t)q(t) + cosϕ(t)

cosψ(t)r(t)

ψ̇(t) = cosϕ(t) · q(t)− sinϕ(t) · r(t)
ϕ̇(t) = p(t) + sinϕ(t) tanψ(t) · q(t) + cosϕ(t) tanψ(t) · r(t)
ṗ(t) = a1q(t)r(t) +

∑m
j=1 uj(t)b

1
j

q̇(t) = a2p(t)r(t) +
∑m
j=1 uj(t)b

2
j

ṙ(t) = a3p(t)q(t) +
∑m
j=1 uj(t)b

3
j .
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In what follows, we will denote ω the (euclidian) norm of the angular velocity vector −→ω = (p, q, r).
Therefore ω is zero if and only if the three components p, q and r are zero.

Our goal is to steer the system from an initial state x0 to a �nal state xf while minimizing
a combination of the fuel consumption and the �nal time

J(u) =

∫ tf

0

m∑
j=1

|uj(t)| dt+
tf
2
, (3.19)

and cancelling the angular velocity at some �xed intermediate time t1, i.e., ω(t1) = 0. We will
explain at the beginning of Section 3.4 why this may be of interest in practice. Note that in that
example, the constraint writes as a via-point constraint as in Remark 3.1.

3.3.2 Continuation procedure

Computation of (x(·), u(·)). A �rst di�culty, not mentionned so far, is that the resolution of
(P)0 by an indirect method can already be hard. For instance, when considering a L1 cost, as in
(3.19), the underlying shooting function is known to have a very small domain of convergence,
as explained in Chapter 2.

In chapter 2, we introduced the continuation parameter α ∈ [0, 1], and for each α ∈ [0, 1], we
de�ned the cost

α

∫ tf

0

m∑
j=1

uj(t)
2 dt+ (1− α)

∫ tf

0

m∑
j=1

|uj(t)| dt+
tf
2

When α = 0, one recognizes the cost (3.19). When α = 1, the cost is stricly convex in the
controls, and writes ∫ tf

0

m∑
j=1

uj(t)
2 dt+

tf
2
,

for which the initialization of the induced shooting method is much easier, see Chapter 2 for
more details on this issue.

We perform a �rst continuation, solving a sequence of optimal control problems, for values
of α decreasing from 1 to 0.

Resolution of (P)via,0. Once (x(·), u(·)), a solution of (P)0, is computed with the �rst contin-
uation on the parameter α, it can be used to initialize the second continuation on ε, considering
the penalized cost

Jε(u) =

∫ tf

0

m∑
j=1

|uj(t)| dt+
tf
2

+
1

ε
‖ω(t1)‖2 , (3.20)

starting from a high value εmax, and decreasing progressively ε until we reach a threshold εmin.
For each ε ∈ [εmin, εmax], the resolution of (P)pen,ε is done by �nding a zero of the shooting
function Gε of Equation (3.18).

Once (P)pen,εmin
is solved, provided εmin is small enough, it provides a good enough initializa-

tion to tackle the original problem of interest (P)via,0, and we end up our procedure by solving
a last shooting problem with the continuation parameter s taken equal to 0.

Figure 3.1 summarizes the numerical procedure we just described.
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L2 norm
α = 1

L1 norm
α = 0

(P)pen,εmax

α = 0
ε = εmax

(P)pen,εmin

α = 0
ε = εmin

(P)via,0
α = 0
s = 0

Figure 3.1 � Continuation procedure to solve (P)via,0.

Remark 3.2: Order of the continuations

The procedure schematized on Figure 3.1 performs �rst a continuation on the parameter α
and then a continuation on the parameter ε. We also tried to perform �rst the continuation on
ε and then on α, but experimentally observed that the whole procedure was slower to �nish.

A convergence result. To justify that our procedure is theoretically sound, we give now a
convergence result. Namely, we show that, for the attitude control problem with the L1 cost
(3.19), the solutions of (P)pen,ε converge to a solution of (P)via,0 when ε goes to 0.

Proposition 3.3. � Assume that (P)via,0 has a unique solution (x̃, ũ) de�ned on the time
interval [0, t̃f ]. Let (uε, xε) be a sequence of solutions for (P)pen,ε, de�ned on [0, tεf ]. Then, when
ε goes to 0,

• tεf converges to t̃f ,

• uε converges weakly to ũ,

• xε converges uniformly to x̃

Proof. First, we show that the sequence tεf is bounded. By optimality of the trajectory (uε, xε),
one has

Jε(u
ε) 6 Jε(ũ),
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that is, ∫ tf

0

m∑
j=1

|uεj(t)| dt+
tεf
2

+
1

ε
‖ωε(t1)‖2 6

∫ tf

0

m∑
j=1

|ũj(t)| dt+
t̃f
2

+
1

ε
‖ω̃(t1)‖2 .

Exploiting the fact that ω̃(t1) = 0, we get that∫ tf

0

m∑
j=1

|uεj(t)| dt+
tεf
2

+
1

ε
‖ωε(t1)‖2 6

∫ tf

0

m∑
j=1

|ũj(t)| dt+
t̃f
2
. (3.21)

Hence, the sequence tεf is bounded, and up to a subsequence, it converges to some T .

The sequence (uε) is bounded in L∞([0, T ], [0, 1]m) (if tεf 6 T , we extend uε to 0 on the
interval [tεf , T ], if tεf > T , we restrict uε to [0, T ]), and therefore, up to a subsequence, (uε)

converges weakly in L2([0, T ], [0, 1]m) to some control u?. For all ε > 0, uε belongs to the set

V =
{
v ∈ L2([0, T ],Rm) s.t. ∀i ∈ J1,mK, vi(·) ∈ [0, 1] a.e.

}
This set is strongly closed and convex, and is therefore weakly closed. Thus, u? ∈ V, and is
admissible for the system (3.1). Let us denote x? its associated trajectory. It is a classical
result (see for instance [Tré00]) that for a control-a�ne system, if a control sequence (uε) con-
verges weakly in L2([0, T ],Rm) to a control u?, then the associated sequence of trajectories (xε)
converges uniformly to x?, associated to u?.

Besides, for all ε > 0, we have xε(0) = x0 and xε(tεf ) = xf , hence, taking the limit when ε
goes to 0, we have

x?(0) = x0, x?(T ) = xf .

From (3.21), we also get

0 6 ‖ωε(t1)‖2 6 ε

∫ tf

0

m∑
j=1

|ũj(t)| dt+
t̃f
2

 ,

and taking the limit when ε goes to 0, we get that ‖ω?(t1)‖2 = 0. Hence, (u?, x?) is a solution
of (P)via,0, and by uniqueness, we have u? = ũ, x? = x̃ and T = t̃f .

Actually, when initializing the resolution of the optimal control (P)via,0, we also use the
adjoint vector pε(·) coming from the resolution of (P)pen,ε when ε goes to zero to initialize the
initial value p(0) and the Lagrange multiplier β. Indeed, as explained previously, the shooting
function for (P)via,s, Gs=0, takes a Lagrange multiplier β as an argument. Following Remark
3.1, we use the heuristic that an approximation for βi can be −2p0(xεσ(i) − yi)/ε.

Of course, in order to have a complete justi�cation of the procedure, we should also show a
convergence property for the adjoint vector pε(·) and for the jump at time t1. This study is more
di�cult than the proof of Proposition 3.3, and has yet to be undertaken.
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3.4 Numerical results

In this section, we are going to illustrate the procedure previously introduced. For the sake of
continuity, we will take the same numerical values that in the last section of Chapter 2, namely

(θ0, ψ0, ϕ0, p0, q0, r0) = (0.04, 0.06, 7.7,−0.027, 0, 0),

(θf , ψf , ϕf , pf , qf , rf ) = (0.63, 0.82, 7.0,−0.008, 0, 0).

We also chose the time t1 to be equal to 8.5 seconds. Indeed, in practice, the state of the launcher
at the beginning of the ballistic �ight is inherited from the previous phases of the �ight, and the
angular velocity may take high values. It can therefore be useful to start the ballistic phase by
controlling the three angular velocities to zero, while letting the orientation angles θ, ψ and ϕ
evolve freely.

On Figure 3.2, we display the evolution of the angular velocity (in degrees per second) at
di�erent stages of the procedure. In black, we plot the angular velocity for the solution of
(P)pen,εmax . As εmax (we started at εmax = 100) is chosen large enough, it is so close to the
L1-optimal angular velocity ω that both curves would overlap. In dark red, we show the angular
velocity at the end of the continuation on ε, and with a dotted style, the angular velocity
at some intermediate stage of the continuation on ε. When ε reaches εmin (taken equal to
2 × 10−6), the solution of (P)pen,εmin provides a good enough starting point to initialize the
shooting problem (P)s,0 with success. The angular velocity for (P)s,0 is plotted in light red.
Note that except during the �rst seconds, the curves corresponding to (P)pen,εmin and (P)s,0 are
almost indistinguishable.
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Figure 3.2 � Evolution of the angular velocity during the
continuation.
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On Figure 3.3, we also display the evolution of the 6 components of the optimal solution of
(P)s,0, and on Figure 3.4 we show the associated control. Note that compared to the controls
for the resolution of (OCP) (represented on Figure 2.6), the number of switching times has
increased. They were 6 switchings for the controls corresponding to the resolution of (OCP),
and 16 switchings for the controls of Figure 3.4. This is one of the numerical di�culty in the
resolution of (P)s,0, as switching times can be hard to catch with an indirect method.
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Figure 3.3 � Solution of (P)via,0, steering the system from x0 (�)
from xf (�), satisfying a via-point constraint (�).
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Figure 3.4 � Controls for the resolution of (P)via,0.

Numerical di�culty. The numerical procedure described so far, relying on the combination of
continuation techniques and indirect methods, allows us to solve with high accuracy the problem
(P)s,0. We emphasize again that solving numerically this problem would be too hard to be
tackled directly.
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We tried to apply the same procedure to an attitude control problem with more than one
intermediate constraint: at times t1 and t2, we wish to enforce constraints under the form

g1(t1, x(t1)) = 0, g2(t2, x(t2)) = 0.

A natural generalization of our approach would be to penalize the constraints in the cost∫ tf

0

f0(t, u(t), x(t)) dt+
1

ε1
‖g1(t1, x(t1))‖2 +

1

ε2
‖g2(t2, x(t2))‖2 ,

and let the pair ε = (ε1, ε2) go to zero.
However, because of the increasing number of switching times arising when enforcing such

constraints, even the continuation on ε sometimes failed to reach a satisfactory level.
In order to be able to generically optimize any complete ballistic �ight, it was crucial for the

CNES to have a tool dealing with any given number of intermediate constraints. This is the
focus of Appendix A, where we give the description of a software, designed and implemented for
the CNES, combining a direct method with an interior-point algorithm.

3.5 Conclusion of this chapter

No matter the way the intermediate constraint is taken into account, the maximum principle
on which the indirect method relies states that the adjoint vector is discontinuous at the time
of the constraint. A continuation procedure has been designed in order to exactly enforce the
constraint. The procedure bene�ts from the high accuracy of the underlying Newton method.
However, when we experimentally tried to apply the procedure to the attitude control problem
with more than one via-point constraint, the aforementioned procedure sometimes failed to
converge.

For this reason, in the software that we designed for the CNES (see Appendix A), we pro-
ceeded in a slightly di�erent way by combining direct methods with an interior-point algorithm
able to tackle any given ballistic phase where the number of via-point constraints is up to the
choice of the user.

Note that in the theoretical study we undertook in Section 3.2 and Section 3.3, two open
problems remain:

• It is still unclear why the continuation procedure on the parameter ε gives much better
results than the continuation on s.

• The convergence result of Proposition 3.3 is conjectured to be true as well for the sequence
of adjoint vectors (pε)ε>0.

These two issues are left open.
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In the previous chapters, we applied optimal control theory to several attitude control prob-
lems. In those chapters, the dynamics of the state was given by a di�erential equation coming
from physical laws that did not account for the presence of uncertainties, model errors or per-
turbations.

However, in view of aerospace applications, being able to design a control system that deals
with uncertainties is of crucial importance. It is the main concern of this chapter, where we give
an algorithm to control a system even with deviations from the target, identify a criterion to
measure the robustness of a control and suggest a way to make a nominal control more robust.
Note that our approach applies to any given nonlinear control system with a cost resulting in a
bang-bang control.
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4.1 Introduction of the chapter

4.1.1 Overview of the method

To introduce the subject, we explain our approach on the control problem consisting of
steering the �nite-dimensional nonlinear control system

ẋ(t) = f(t, x(t), u(t)), (4.1)

from a given x(0) = x0 to the target point x(tf ) = xf , with a scalar control u that can only
switch between two values, say 0 and 1. The general method, as well as all assumptions, will be
written in details in a further section.

Let E(x0, tf , u) = x(tf ) be the end-point mapping, where x(·) is the solution of (4.1) starting
at x(0) = x0 and associated with the control u. One aims at �nding a bang-bang control u,
de�ned on [0, tf ] for some �nal time tf > 0, such that E(x0, tf , u) = xf .

Many problems impose to implement only bang-bang controls, i.e., controls saturating the
constraints but not taking any intermediate value. These are problems where only external
actions of the kind on/o� can be applied to the system.

Of course, such bang-bang controls can usually be designed by using optimal control theory
(see [LM67b, PBGM62, Tré05b]). For instance, solving a minimal time control problem, or a
minimal L1 norm as in [CFPT13], is in general a good way to design bang-bang control strategies.
However, due to their optimality status, such controls often su�er from a lack of robustness
with respect to uncertainties, model errors, deviations from the target. Moreover, when the
Pontryagin maximum principle yields bang-bang controls, such controls have in general a minimal
number of switchings: in dimension 3 for instance, it is proved in [KS89, Kup87, Sch88] (see also
[BC03b, BFT05, Tré12] for more details on this issue) that, locally, minimal time trajectories
of single-input control-a�ne systems have generically two switchings. Taking into account the
free �nal time, this makes three degrees of freedom, which is the minimal number to generically
make the trajectory reach a target point in R3, i.e., to solve three (nonlinear) equations.

In these conditions, a natural idea is to add redundancy to such bang-bang strategies, by
enforcing the control to switch more times than necessary. These additional switching times
are introduced by needle-like variations, as in the classical proof of the Pontryagin maximum
principle (see [LM67b, PBGM62]).

We recall that a needle-like variation π1 = (t1, δt1, u1) of a given control u is the perturbation
uπ1 of the control u given by

uπ1
(t) =

{
u1 if t ∈ [t1, t1 + δt1],

u(t) otherwise,
(4.2)

where t1 ∈ [0, tf ] is the time at which the spike variation is introduced, δt1 is a real number of
small absolute value that stands for the duration of the variation, and u1 ∈ [0, 1] is some arbitrary
element of the set of values of controls. When δt1 < 0, one replaces the interval [t1, t1 + δt1] with
[t1 + δt1, t1] in (4.2). We represent on the Figure 4.1 a needle-like variation.

It is well known that, if |δt1| is small enough, the control uπ1
is admissible (that is, the

associated trajectory solution of (4.1) is well-de�ned on [0, tf ]) and generates a trajectory xπ1
(·),

which can be viewed as a perturbation of the nominal trajectory x(·) associated with the control
u, and which steers the control system to the �nal point

E(x0, tf , uπ1
) = E(x0, tf , u) + |δt1| vπ1

(tf ) + o(δt1), (4.3)
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Figure 4.1 � Needle-like variation uπ1 of a control u.

where the so-called variation vector vπ1
(·) is the solution of some Cauchy problem related to a

linearized system along x(·) (see [LM67b, PBGM62, ST10b] and Proposition 4.1). Recall that
the �rst Pontryagin cone K(tf ) is the smallest closed convex cone containing all variation vectors
vπ1(tf ); it serves as a local convex estimate of the set of reachable points at time tf (with initial
point x0).

Assume that the nominal control u, which steers the system from x0 to the target point xf , is
bang-bang and switches N times between the extreme values 0 and 1 over the time interval [0, tf ].
We denote by T = (t1, . . . , tN ) the vector consisting of its switching times 0 < t1 < · · · < tN < tf .
Then the control u can equivalently be represented by the vector T , provided one makes precise
the value of u(t) for t ∈ (0, t1). One can also add new switching times: for instance if u(t) = 0
for t ∈ (0, t1), given any s1 ∈ (0, t1), the needle-like variation π1 = (s1, δs1, 1) (with |δs1| small
enough) is a bang-bang control having two new switching times at s1 and s1 + δs1.

In what follows, we designate a bang-bang control either by u or by the set T = (t1, . . . , tN ) of
its switching times. This is with a slight abuse because we should also specify the value of u along
the �rst bang arc. But we will be more precise, rigorous and general in a further section. The end-
point mapping is then reduced to the switching times, and one has E(x0, tf , T ) = xf . A variation
δT = (δt1, . . . , δtN ) of the switching times generates N variation vectors (v1(tf ), . . . , vN (tf )),
and the corresponding bang-bang trajectory reaches at time tf the point (see Figure 4.2, where
two variations vectors are displayed, for two switching times t1 and t2)

E (x0, tf , T + δT ) = xf + δt1 · v1(tf ) + · · ·+ δtN · vN (tf ) + o(‖δT ‖).

Therefore the end-point mapping E is di�erentiable with respect to T , and

∂E

∂T (x0, tf , T ) · δT = δt1 · v1(tf ) + · · ·+ δtN · vN (tf ). (4.4)

Notice that compared to (4.3), the absolute values disappear. We will prove this result in details
further in the chapter. In particular, the range of this di�erential is the �rst Pontryagin cone
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Figure 4.2 � Changing the switching times induces a displacement at
the �nal time.

K(tf ) (see also [ST10b]). Obviously, the more switching times (i.e., degrees of freedom), the
more accurate the approximation of the reachable set.

We now add redundant switching times (s1, . . . , s`) for some ` ∈ N in order to generate more
degrees of freedom to solve the control problem

E (x0, tf , (t1, . . . , tN , s1, . . . , s`)) = xf .

We order the times in the increasing order and we still denote by T the vector of all switching
times.

Redundancy creates robustness. We will see further that these redundant switching times
contribute to make the trajectory robust to external disturbances or model uncertainties, we will
develop a method to tune the switching times in order to absorb these perturbations and steer
the system to the desired target xf ∈ Rn.

Here, in this still informal introduction, we show how to use the additional switching times
to make the system reach targets xf + δxf in a neighborhood of xf . The idea is to solve the
nonlinear system of equations

E(x0, tf , T + δT ) = xf + δxf .

Using (4.4), we propose to solve, at the �rst order,

∂E

∂T (x0, tf , T ) · δT = δxf , (4.5)

which makes n equations with N + ` degrees of freedom. We assume that N + ` is (possibly
much) larger than n and that the matrix in (4.5) is surjective. Then one can solve (4.5) by using
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the Moore-Penrose pseudo-inverse
(
∂E
∂T
)†

of ∂E∂T (see [GVL13] and Appendix C, or see [Beu65a,
Beu65b] for a theory in in�nite dimension), which yields the solution of minimal Euclidean norm

δT =

(
∂E

∂T

)†
· δxf ,

and we have

‖δT ‖2 6
‖δxf‖2
σmin

, (4.6)

where σmin is the smallest positive singular value of ∂E∂T . This estimate gives a natural measure
for robustness, that we will generalize.

The two main contributions of this chapter are:

• the idea of adding redundant switching times in order to make a nominal bang-bang control
more robust, while keeping it as being bang-bang;

• the design of a practical tracking algorithm, consisting of solving an overdetermined non-
linear system by least-squares, thus identifying a robustness criterion that we optimize.

They are developed in a rigorous and general context in the core of the chapter.

4.1.2 State of the art on robust control design

There is an immense literature on robust control theory, with many existing methods in order
to e�ciently control a system subjected to uncertainties and disturbances. Whereas there are
many papers on H2 and H∞ methods, except a few contributions in speci�c contexts, we are
not aware of any general theory allowing one to tackle perturbations by using only bang-bang
controls. This is the focus of this chapter.

Let us however shortly report on robustness methods when one is not bound to design bang-
bang controls. In [KC99], a path-tracking algorithm with bang-bang controls is studied, for a
double integrator and a wheeled robot. The technique relies heavily on the expression of the
equations and does not apply to more general systems. In [SV94], the authors build a robust
minimal time control for spacecraft's attitude maneuvers by canceling the poles of some transfer
function. A remarkable fact is that the robusti�ed control presents more switchings than the
minimal time control. In this case, the robustness is evaluated as the maximum amplitude on a
Bode diagram (see also [LW92] and [WSL93] for similar works). In [YL00], the authors observe
that bang-bang controls are intrinsically not robust, and use pieces of singular trajectories (hence,
not bang-bang) to overcome this issue.

In the H2 and H∞ theories, control systems are often written in the frequency domain using
the Laplace transform. For a transfer matrix G(s), the two classical measures for performance
are (see [DGKF89, ZDG96]) the H2 norm and the H∞ norm respectively:

‖G‖2 =

(
1

2π

∫ +∞

−∞
Trace(G(jω)G(jω)∗)dω

)1/2

and ‖G‖∞ = sup
ω∈R

σ(G(jω)),

where σ(G) is the largest singular value of G.
In the linear quadratic theory, the question of optimal tracking has been widely addressed:

given a reference trajectory ξ(·), we track it with a solution of some control system ẋ(t) =
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f(x(t), u(t)), minimizing a cost of the form∫ tf

0

(
‖x(t)− ξ(t)‖2W + ‖u(t)‖2U

)
dt+ ‖x(tf )− ξ(tf )‖2Q,

with weighted norms (see [AM71, KS72, Tré05b]). The �rst term in the integral measures how
close one is to the reference trajectory, the second one measures a L2 norm of the control (energy),
and the third one accounts for the distance at �nal time between the reference trajectory ξ(·) and
x(·). Then, the control can be expressed as a feedback function of the error x(t)− ξ(t), involving
the solution of some Riccati equation. In [dNDL13, Kha92], the authors investigate the question
of stabilizing around a slowly time-varying trajectory. They also introduce uncertainties on the
model and study the sensitivity of the system to those uncertainties. In the case of the existence
of a delay on the input, a feedback law is proposed. In [Lin07, TSL09], uncertainties p are
introduced in a linear system ẋ(t) = A(p)x(t) + Bu(t), and a tracking algorithm is suggested,
under matching conditions on the uncertainties or not (see also [ADDJ91] for a survey on robust
control for rigid robots).

In the late 1970's, H∞ control theory developed. The control system is often described by
a plant G and a controller K. Then, the dependency of the error z (to be minimized) on the
input v can be written as z = F (G,K)v. The H∞ control problem consists of �nding the
best controller K such that the H∞ norm of the matrix F (G,K) is minimized: ‖F (G,K)‖∞ =
supω∈R σ(F (G,K)(jω)). It can be interpreted as the maximum gain from the input v to the
output z. This criterion was introduced in order to deal with uncertainties on the model (on
the plant G). In [Zam81], the author introduced the notion and highlighted the connection
with robustness. In [DGKF89], a link is shown between the existence of such a controller and
conditions on the solutions of two Riccati equations. Following a notion introduced in [Gah92],
the linear matrix inequality (LMI) approach was introduced in [GA94], and used in [ANTT04,
AN06] to solve the H∞ synthesis. The Riccati equations are replaced with Riccati inequalities,
whose set of solutions parameterizes the H∞ controllers (see also [BGFB94] for the use of LMIs
in control theory). The papers [DS81, MG92, XdSC92] present design procedures in this context
to elaborate the feedback controller K. In [GFL96], the theory is extended to systems with
parameters uncertainties and state delays, as well as in [XSCZ06], with stochastic uncertainty.

In many optimal control problems, the application of the Pontryagin maximum principle
leads to bang-bang control strategies, and the classical H2 and H∞ theories were not designed
for such a purpose. But the optimal trajectories are in general not robust. Adding needle-like
variations is therefore a way to improve robustness, and is the main motivation of this chapter.
Of course, the method applies to any bang-bang control strategy, not necessarily optimal.

The approach that we suggest in this chapter combines an o�-line treatment of the control
strategies, with a feedback algorithm based on the structure of the control. We emphasize here
that this algorithm preserves the bang-bang structure of the control. It consists of applying a
nominal control strategy (that needs to be computed a priori), and adjusting it in real time,
allowing one to track a nominal trajectory. The o�-line method takes a solution of the control
problem and makes it more robust by adding additional switching times (i.e., redundancy), which
can be seen as additional degrees of freedom. Note that our analysis is done in the state space,
without needing to consider the frequency domain. A key ingredient to the method is the use of
needle-like variations.
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4.1.3 Structure of this chapter

The chapter is organized as follows. In Section 4.2, we develop an algorithm to steer a
perturbed system to the desired �nal point. The method is similar to the one presented in
Section 4.1.1, except that we need to consider a backward problem. Indeed, the �nal point is
�xed, and perturbations appear all along the trajectory. Besides, our measure for robustness
comes out naturally in view of (4.6). Having identi�ed the robustness criterion, we show in
Section 4.3 how to add redundant switching times, leading one to solve a �nite-dimensional
nonlinear optimization problem. In Section 4.4, we provide some numerical illustrations on the
attitude control problem of a 3-dimensional rigid body.

4.2 Tracking algorithm

Setting. In this chapter, we consider the control system

ẋ(t) = f(t, x(t), u(t)), (4.7)

where f is a smooth function R × Rn × Rm → Rn, the state x(·) ∈ Rn, the control u(·) ∈
L∞([0, tf ]; Ω), and Ω is the subset of Rm: [a1, b1] × · · · × [am, bm]. We make two additional
hypothesis: the controls we consider are �bang-bang�, with a �nite number of switching times:

(H1) ∀i ∈ J1,mK, ui(t) ∈ {ai, bi}, a.e.
(H2) ∀i ∈ J1,mK, ui does not chatter.

A control is chattering when it switches in�nitely many times over a compact time interval (see
[ZTC16a, Ful63]). Therefore, our method does not apply to those controls. However, when the
solution of an optimal control problem chatters, provided that it is possible, one could consider
a sub-optimal solution, with only a �nite number of switching times.

In the context of optimal control, we will denote the cost under the form

C(u) =

∫ tf

0

f0(t, x(t), u(t)) dt. (4.8)

We recalled in the introduction the (classical) de�nitions of the end-point mapping, of a
needle-like variation (4.2) and the expansion of the end-point mapping subject to a needle-like
variation (4.3).

4.2.1 Reduced end-point mapping

In this subsection, we give the de�nition of the reduced end-point mapping, and show a
di�erentiability property.

Let us consider a bang-bang control u(·), and its associated trajectory x(·). For the sake of
simplicity, we make the additional assumption that for every switching time tj , one and only
one component of the control commutes. Therefore, provided we specify the initial value of each
component, the control u is entirely characterized by the switching times of its components and
can be represented by a vector:

((u10, . . . , um0), (t1, i1) , . . . , (tN , iN ) , tf ) ∈ Ω× R2N+1,

where ui0 ∈ {ai, bi} is the initial value for the control ui(·) (i ∈ J1,mK), N is the total number
of switching times, tf is the �nal time, and ij is the component of the control that switches
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at time tj . As this representation entirely characterizes the control, we will use indistinctly
the notation u and ((u10, . . . , um0), (t1, i1) , . . . , (tN , iN ) , tf ) to speak about the control whose
components switch at the times tj . In the literature, ((t1, i1) , . . . , (tN , iN )) is often called a
switching sequence.

Remark 4.1:

Had we wanted to allow simultaneous switching of multiple components, we would need to
consider controls represented by:

((u10, . . . , um0), (t1, I1) , . . . , (tN , IN ) , tf ) ,

where Ij ⊂ J1,mK represents the set of components that switch at time tj .

Definition 4.1 (Reduced end-point mapping). � We de�ne the reduced end-point
mapping by

E(x0, (u10, . . . , um0), (t1, i1) , . . . , (tN , iN ) , tf ) = xu(x0, tf ),

where u is the control represented by ((u10, . . . , um0), (t1, i1) , . . . , (tN , iN ) , tf ), and xu(x0, tf ) is
the associated state at time tf , starting at x0.

Note that in [MBKK05, MO04], the authors also reduce a bang-bang control to its switching
points, in order to formulate an optimization problem in �nite-dimension.

In the following, when writing this reduced end-point mapping, we may consider that the
initial point x0 is �xed, as well as the way the components of the control switch (i.e., we consider
that the N-tuple (i1, . . . , iN ) is �xed), the initial values ui0 and the �nal time tf . In this context,
we may forget them in the notations, and denote the reduced end-point mapping by

E(t1, . . . , tN ) = xu(tf ).

A remarkable fact is that the reduced end-point-mapping is di�erentiable. Compared to the
expansion (4.3) with respect to a needle-like variation, the sign of δt does not matter. For the
sake of completeness, we give the proof at the end of the chapter.

Proposition 4.1. � The reduced end-point mapping is di�erentiable, and

dE(t1, . . . , tN ) =
(
v1(tf ) · · · vN (tf )

)
∈Mn,N (R),

where vj(·) (j ∈ J1, NK) is the solution of the Cauchy problem, de�ned for t > tj:

v̇j(t) =
∂f

∂x
(t, x(t), u(t))vj(t)

vj(tj) =

{
f(tj , x(tj), (. . . , aij , . . .))− f(tj , x(tj), u(t+j )) if uij switches from aij to bij .

f(tj , x(tj), (. . . , bij , . . .))− f(tj , x(tj), u(t+j )) if uij switches from bij to aij .

The notation (. . . , aij , . . .) (resp. (. . . , bij , . . .)) is used to show a di�erence with u(t+j ) (resp.

u(t−j )) on the ij-th component only.
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Remark 4.2:

In the special case of a control-a�ne system, as the attitude control system (3.3.1) studied in
this thesis

ẋ(t) = f0(x(t)) +

m∑
j=1

uj(t)fj(x(t)),

the initial condition on vj can be written much more easily:

vj(tj) =

{
(aij − bij )fij (x(tj)) if uij switches from aij to bij .
(bij − aij )fij (x(tj)) if uij switches from bij to aij .

4.2.2 Absorbing perturbations

As explained in the introduction of the chapter, we present here a closed-loop method to
actually steer the system towards a point xf , with bang-bang controls, even in the presence of
perturbations.

First, for the sake of simplicity, we will explain how to control the system to some point
xf + δxf . We will see that this idea can be adapted for our purpose of controlling a perturbed
trajectory, by simply reversing the time.

Perturbations on the �nal point. We brie�y generalize the problem introduced in the
introduction. Let

u =
(
(u10, . . . , um0),

(
t1, i1

)
, . . . ,

(
tN , iN

)
, tf
)
∈ Ω× R2N+1

be a control such that xu(tf ) = xf . That is, using the de�nition of Subsection 4.2.1, we have
that

E(x0, (u10, . . . , um0),
(
t1, i1

)
, . . . ,

(
tN , iN

)
, tf ) = xf .

Or, considering that the �nal time tf , the initial point x0, the components (i1, . . . , iN ) and the
initial values (u10, . . . , um0) are �xed,

E(t1, . . . , tN ) = xf .

Let δxf be some perturbation of the �nal point xf . We look for a vector δT = (δt1, . . . , δtN ) so
that the system reaches the target point xf + δxf :

E(t1 + δt1, . . . , tN + δtN ) = xf + δxf .

As we have shown in Proposition 4.1 the di�erentiability of the reduced end-point mapping, we
can write

E(t1 + δt1, . . . , tN + δtN ) = E(t1, . . . , tN ) + dE(t1, . . . , tN ) · δT + o(‖δT ‖).

At order one, the solution is given by the solution of the linear equation

dE(t1, . . . , tN ) · δT = δxf .

It is natural to target the �nal point xf + δxf while shifting the switching times as little as
possible. That is, we look for the solution of minimal euclidian norm of the previous equation,
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which is given by δT = dE(t1, . . . , tN )† · δxf .
Therefore, we have shown how to compute, at order one, the correction to apply to control

the system to some point xf + δxf : it boils down to solving a least-squares problem. Let us
keep in mind that our de�nitive goal is to control systems that are perturbed all along their
trajectory, to a �xed �nal point xf . In other words, from a perturbed point x(t) + δx(t) at some
time t ∈ [0, tf ), we want to absorb the perturbation δx(t) and still reach the �nal point xf . Even
if this is a slightly di�erent setting, we show that we can apply the same idea if we look at a
backward problem.

Absorbing a perturbation at time t. Let (x(·), u(·)) be a nominal solution of the control
system (4.7). We assume that when applying in practice the control u = T , because of model
uncertainties and perturbations, we observe a perturbed trajectory xper(t) = x(t) + δx(t).

Let t ∈ [0, tf ]. Starting from the perturbed point x(t) + δx(t), which stands as a new initial
point, we want to reach the �nal point xf in time tf − t. Hence, we look for a control u + δu
such that

E(x(t) + δx(t), u+ δu, tf − t) = xf .

Assume for a moment that the perturbation of the control δu is small in L∞ norm. Then, at
least formally, one can write

E(x(t), u, tf − t) +
∂E

∂x0
(x(t), u, tf − t) · δx(t) +

∂E

∂u
(x(t), u, tf − t) · δu+ o(‖δx(t)‖+ ‖δu‖) = xf .

Therefore, at order one, we look for a solution of the (linear) equation

∂E

∂x0
(x(t), u, tf − t) · δx(t) +

∂E

∂u
(x(t), u, tf − t) · δu = 0. (4.9)

However, we do not want, in this chapter, to apply small perturbations in the L∞ norm,
as they would not result in bang-bang controls (However, this is similar to what is done while
performing a Ricatti procedure to stabilize a system or track a reference trajectory). Nevertheless,
reducing the end-point mapping to the switching times enables us to preserve the bang-bang
structure: in the formalism previously introduced, we need to solve the nonlinear system of
equations

E(x(t) + δx(t), T + δT , tf − t) = xf .

The equation (4.9) becomes

∂E

∂T (x(t), T , tf − t) · δT = − ∂E
∂x0

(x(t), T , tf − t) · δx(t), (4.10)

where the expression ∂E/∂T is given by Proposition 4.1.

A backward problem. Solving this equation requires the computation of the partial di�er-
ential ∂E/∂x0 at the initial point x̄(t). We will see now that it can be overcome by introducing
a backward problem. Of course, the two formulations are equivalent.

Definition 4.2 (Backward end-point mapping). � Let u = (t1, . . . , tN ) be a bang-
bang control, and t ∈ [0, tf ]. We de�ne the backward end-point mapping by

Ẽ(t, t1, . . . , tN ) = x̃(tf − t),
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where x̃(·) is the solution to the Cauchy problem

˙̃x(t) = −f(tf − t, x̃(t), u(tf − t)),
x̃(0) = xf .

Note that for the nominal trajectory (x(·), u(·)), we have that

Ẽ(t, t1, . . . , tN ) = x(t).

Indeed, we have in this case that x(t) = x̃(tf − t): if we integrate the nominal system backward,
starting from the point xf during a time period tf − t, we end up at point x(t).

Remark 4.3:

Let t ∈ [0, tf ], and j be the smallest index such that tj > t (with the convention that j =
N + 1 if t > tN ). Then, note that t1, . . . , tj−1 do not play any role in the computation of
Ẽ(t, t1, . . . , tN ). The di�erential of Ẽ can be computed with the Proposition 4.1. It is a matrix
of size n× (N − j + 1).

In this context, the problem of adjusting the system back towards xf writes: at time t, �nd
(tj , . . . , tN ) such that

Ẽ(t, t1, . . . , tN ) = xper(t). (4.11)

We see that reversing the time, we place ourselves in the setting previously described of
aiming at a perturbed �nal point. Therefore, we have the following proposition.

Proposition 4.2. � At order one in δx, the solution of minimal norm of the problem (4.11)
is given by T + δT , with

δT = dẼ(t, T )† · δx(t), (4.12)

where dẼ(t, T )† denotes the pseudo-inverse of dẼ(t, T ). Moreover, we have the estimate

‖δT ‖2 6
1

σmin(t)
‖δx(t)‖2 , (4.13)

where σmin(t) is the smallest positive singular value of dẼ(t, T ).

Proof. The scheme of the proof has already been exposed previously in the chapter. However,
we write it extensively here. Let δT = T − T . The problem writes

Ẽ(t, T + δT ) = xper(t).

According to Proposition 4.1, the backward end-point mapping is di�erentiable (and we also
know how to compute its derivative), so

Ẽ(t, T + δT ) = Ẽ(t, T ) + dẼ(t, T ) · δT + o(‖δT ‖)
= x(t) + dẼ(t, T ) · δT + o(‖δT ‖).

So, at order one, the problem writes

dẼ(t, T ) · δT = δx(t). (4.14)

It is well known (see [AK02] for instance), that the solution of minimal norm of this equation
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is δT = dẼ(t, T )† · δx(t). Besides, let σmax(t) > · · · > σmin(t) > 0 denote the positive singular

values of dẼ(t, T ). We have that
∥∥∥dẼ(t, T )†

∥∥∥
2

= 1/σmin(t) (‖·‖2 for a matrix denotes the induced

norm corresponding to the euclidean norm), so that

‖δT ‖2 =
∥∥∥dẼ(t, T )† · δx(t)

∥∥∥
2

6
∥∥∥dẼ(t, T )†

∥∥∥
2
· ‖δx(t)‖2

6
‖δx(t)‖2
σmin

,

which concludes the proof.

Remark 4.4: Relative error estimate

In Proposition 4.2, we show the absolute error estimate

‖δT ‖2 6
1

σmin(t)
‖δx(t)‖2 ,

where δT is a solution of the equation (4.12). However, one may want in some cases to have
instead a relative error estimate. It holds

‖δT ‖2
‖T ‖2

6
σmax(t)

σmin(t)
· ‖δx(t)‖2
‖x(t)‖2

.

The quantity σmax(t)
σmin(t) is the condition number (with respect to the Euclidian norm) of the

matrix dẼ(t, T ). We give in Appendix C more details on the condition number of a matrix.

Remark 4.5:

We have the relation that, for all vector of switching times T

E(Ẽ(t, T ), T , tf − t) = xf .

Di�erentiating this equality with respect to T , we have that, for all δT

∂E

∂x0
(Ẽ(t, T ), T , tf − t) · dẼ(t, T ) · δT +

∂E

∂T (Ẽ(t, T ), T , tf − t) · δT = 0.

Replacing the second term by its value in (4.10), it follows that

∂E

∂x0
(Ẽ(t, T ), T , tf − t) · dẼ(t, T ) · δT =

∂E

∂x0
(Ẽ(t, T ), T , tf − t) · δx(t).

It is easy to show that ∂E/∂x0 can be expressed as the resolvent of a linearized system.
Therefore, the matrix ∂E/∂x0 is invertible, and the equations (4.10) and (4.14) are equivalent.
But solving (4.14) only requires to compute the derivative of Ẽ. This is what we do in the
following.
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Remark 4.6:

Note that it might not always be possible to �nd a solution to the equation dẼ(t, T ) · δT =
δx(t). This may happen for instance if t > tN−n+1, i.e., we do not have enough degrees of
freedom left to absorb the perturbation δx(t) ∈ Rn. However, we can still give a meaning to
the equation dẼ · δT = δx(t). We look for a solution to the least-square problem:

min
δT ∈RN

∥∥∥dẼ(t, t1, . . . , tN ) · δT − δx(t)
∥∥∥2

2
,

for which δT = dẼ(t, t1, . . . , tN )† · δx(t) is still the solution of minimal norm (see [AK02]). We
see here emerging the idea that the number of switching times (i.e., degree of freedom) left at
time t, is going to be an important factor to track the system back towards the �nal point xf .

Numerical algorithm. At time t, Equation (4.12) provides us with a formula to adjust the
control so that the perturbed trajectory eventually reaches xf . But it certainly does not enable us
to face perturbations that would happen after time t. In order to absorb perturbations all along
the trajectory, we suggest the following algorithm: Let T be an initial control. Given an integer
s and a subdivision 0 < τ1 < · · · < τs < tf of the interval [0, tf ], we adjust the control at each τi
for all i ∈ J1, sK. That is, for each i ∈ J1, sK, we measure the drift δx(τi) = xper(τi) − xref (τi),
and compute the di�erential of the backward end-point mapping dẼ(τi, t1, . . . , tN ). We deduce
from (4.12) that the correction to apply is then δT = dẼ(τi, t1, . . . , tN )† ·δx(τi). We then update
the control by considering the new vector of switching times T + δT .

Algorithm 2 Tracking algorithm to absorb perturbations

1: Choose an integer s and a subdivision (τ1, . . . , τs).
2: Set t = 0.
3: Set xref,0 = x0 . Initial conditions
4: T . Initial switching times
5: for i = 0, i < N , i = i+ 1 do
6: Integrate the ideal system f from t to τi, with initial conditions xref,0.
7: Measure the drift δx(τi) = xper(τi)− xref (τi).
8: Compute the di�erential of the backward end-point mapping dẼ(τi, t1, . . . , tN ).
9: Compute the correction δT = dẼ(τi, t1, . . . , tN )† · δxτi).
10: Apply the correction T ← T + δT .
11: if ∃j s.t. tj+1 < tj then
12: �Stop�. Interchanging of switching times.
13: end if
14: xref,0 ← xper(τi).
15: t← τi.
16: end for
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Remark 4.7:

When computing the correction T + δT , it may happen that the new switching times are
not ordered, i.e., there exists some integer j ∈ J1, N − 1K such that tj+1 < tj . In this case,
we consider that the correction is not physically acceptable, and we reject it at line 12 of
Algorithm 2. (Note that in some cases, we may want to continue the integration of the system
even if two switching times are not ordered. In that case, we can always use the last admissible
control, where all the switching times are ordered.)

Remark 4.8:

The computation of the di�erential dẼ(t, t1, . . . , tN ) is done via the integration of a system
of ordinary di�erential equations, which can be done e�ciently and quickly using numeri-
cal integrators. However, the size of the system (as well as the time required to compute
the pseudo-inverse) directly depends on the number of switching times N and on the state
dimension n.

4.3 Promoting robustness

Intuitively, we want to say that a control is robust whenever the correction δT required to ab-
sorb the perturbation δx(t) is small. Since we have shown the estimate ‖δT ‖2 6 ‖δx(t)‖2 /σmin(t),
a robust trajectory is then one for which the values of 1/σmin(t) remain small along the trajectory.

Definition 4.3. � We de�ne the following cost, that we will use to characterize the robustness
of a trajectory

Cr(t1, . . . , tN ) =

∫ tN

0

1

σmin(t)2
dt. (4.15)

Remark 4.9: Variations of the cost

In the previous de�nition, the upper bound in the integral is tN , because for t > tN , the
backward end-point mapping derivative dẼ(t, t1, . . . , tN ) is not de�ned, and neither is σmin(t).
For some reason, we may only want to have robustness up until some time t? < tN . Then the
previous de�nition would become

∫ t?
0

1/σmin(t)2dt.
Note also that following Remark 4.4, one may have wished to de�ne the cost

Cr(t1, . . . , tN ) =

∫ tN

0

σmax(t)2

σmin(t)2
dt.

In this section, we show how the switching times of a trajectory can be chosen to build one that
is more robust. We also suggest a new way to design a trajectory, by adding redundant switching
times, that give us more degrees of freedom. Note also that we will start from a solution of an
optimal control problem, because it is of high importance in practice, but the method generally
applies when starting from any control, as long as it satis�es the hypothesis (H1) and (H2).
Starting from an initial control such that E(t1, . . . , tN ) = xf , we look for redundant switching
times (s1, . . . , sl) such that E(t1, . . . , tN , s1, . . . , sl) = xf , while minimizing the cost (4.15) that
accounts for robustness:

Cr(t1, . . . , tN , s1, . . . , sl).
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4.3.1 An auxiliary optimization problem

Let us consider a bang-bang trajectory (satisfying the hypothesis (H1) and (H2)) of the control
system (4.7), optimal for the cost (4.8). That is, u = ((u10, . . . , um0),

(
t1, i1

)
, . . . ,

(
tN , iN

)
, tf )

is an optimal solution of the optimization problem

min(i1,...,iN ) min(t1,...,tN ) C(t1, . . . , tN ).
s.t. E(t1, . . . , tN ) = xf

(4.16)

Let us emphasize the fact that reducing the control to its switching times enables us to reduce
a problem in in�nite dimension

minu∈L∞([0,tf ];Ω) C(u)
s.t. E(u) = xf

to a �nite number of non-linear problems under non-linear constraints in �nite dimension, pro-
vided we set N , as we left aside chattering trajectories.

In order to make the control more robust we suggest to solve the following problem. We
�x the components of the control (i1, . . . , iN ), and we introduce the cost that accounts for the
robustness of a trajectory:

min(t1,...,tN ) λ1C(t1, . . . , tN ) + λ2Cr(t1, . . . , tN ),
s.t. E(t1, . . . , tN ) = xf

where λ1 and λ2 are two parameters, chosen to give more or less importance to the di�erent
costs. For instance, if λ1 � λ2, the solution is close to the initial one (t1, . . . , tN ).

4.3.2 Redundancy creates robustness

Let us consider a control u = ((u10, . . . , um0), (t1, i1) , . . . , (tN , iN ) , tf ). In order to reduce
the optimization space, we will consider in the following subsection that the initial control values
(u10, . . . , um0), the components (i1, . . . , iN ) and the �nal time tf are �xed, so we will forget them
in the notations.

We propose here to go further in order to improve the robustness of the corresponding
trajectory. We do so by adding needles to some components of the control. By needle, we
mean a short impulse on one of the control. Let us denote by l the number of needles we are
willing to add. It means that we look for additional switching times [(s1, s2), . . . , (s2l−1, s2l)]
and components of the control (j1, . . . , jl), so that for all i ∈ J1, lK, (s2i−1, s2i) are switching
times for the ji-th components of the control (see Figure 4.3). It aims at giving us more
degrees of freedom while trying to absorb perturbations δx by moving the switching times
(T ,S) = (t1, . . . , tN , (s1, s2), . . . , (s2l−1, s2l)). Thus, we are solving the optimization problem

min(j1,...,jl) min(T ,S) λ1C(T ,S) + λ2Cr(T ,S).
s.t. E(T ,S) = xf

(4.17)

Remark 4.10:

If the original bang-bang control strategy ū does not come from an optimization process, that
is there is no cost C associated with it, we can still consider problem (4.17) but with λ1 = 0.
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(a) Initial control. (b) Adding four switching times i.e., 2 needles.

Figure 4.3 � Principle of adding needles.

Let us denote by T the solution of problem (4.16), and by (T ?,S?) the solution of problem
(4.17). Then, we have that

C(T ) 6 C(T ?,S?).
It means that the solution (T ?,S?) is sub-optimal with respect to the initial cost C. However,
this sub-optimality comes with a gain in terms of robustness. Besides, the loss of optimality (and
therefore gain in robustness) can be controlled by the choice of the coe�cients λ1 and λ2.

This problem is a mixed problem, with integer variables (the components (j1, . . . , jl)), and
continuous variables (the switching times (t1, . . . , tN , (s1, s2), . . . , (s2l−1, s2l))). However, if the
components are �xed, we only have to solve a non-linear problem subject to non-linear constraints
in �nite dimension

min(T ,S) λ1C(T ,S) + λ2Cr(T ,S).
s.t. E(T ,S) = xf

(4.18)

We used an interior-point algorithm to solve (4.18). In [XA00, ZA15], gradient-based algorithms
are shown to be e�ective to solve such problems, when the sequence of indices (j1, . . . , jl) is �xed.
Therefore a �naïve� way to proceed, if m denotes the number of components of the control, is
to solve ml optimization problems, which is extremely costly if m or l is big. A compromise
has to be found between the potential bene�t in robustness and the computational cost. Such a
compromise will however depend on the particular problem at hand, so we do not elaborate too
much on this issue and give an example in Section 4.4. Let us cite [CHSC08, CHS+09], where
the authors parametrize an optimal control problem (for the time-minimal and L1 problem) with
the switching times of the controls. They simplify its complex structure by �xing the number
of switching times, and wonder how many switching times are required to obtain a cost close to
the optimal one : the result is striking as 2 or 3 may be enough. However, they know from an
a priori study the value of the optimal L1 or time-minimal cost, and therefore can stop adding
switching times when reaching a given percentage of this optimal value of the criterion. In our
problem, we do not know what is the optimal value of the criterion we identi�ed to quantify the
robustness of a trajectory. It becomes necessary to �nd another way to decide how many needles
to add.

One could consider tackling directly Problem 4.17, a combinatorial optimization problem
(which is a class of problem known to be hard to solve). Recent years have seen the development
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of advanced numerical procedures to deal with the combinatorial nature of those problem at a
reasonable computational cost. We give more details on this issue at the end of this section.

Remark 4.11:

Let us make here a remark on the ordering of the switching times. In the vector (T ,S) are
stored the switching times ti and si that represent the control u. Those swicthing times are not
necessarily ordered during or after the optimization process, so let T = (τ1, . . . , τN+2l) denote
the ordered equivalent to (T ,S). So far, we have made the implicit assumption that when we
perform the numerical integration of the system, the switching times are ordered: τi+1−τi > 0
for all i ∈ J0, N + 2l− 1K. We recall that our goal is to absorb perturbations δx. As explained
in Subsection 4.2.2, we compute at order one the correction to apply δT = dE(T)† ·δx. At this
point, we could have that T + δT does not satisfy this ordering property. Then, we consider
that T + δT is not admissible, and an estimate like (4.13) would not hold.

In the following, in order to guarantee that we do not have an interchanging of the switching
times (at least for small perturbations), we add an additional constraint whilst elaborating the
robusti�ed trajectory (u(·), x(·)) at (4.17):

τi+1 − τi > η for all i ∈ J0, N + 2l − 1K, (4.19)

for some η > 0, where T = (τ1, . . . , τN+2l) denotes the re-ordering of the vector (T ,S). In that
way, we ensure that two consecutive switching times (T and S combined) are at least distant of
η. Thus, if δx is small enough, the elements of the vector T + dE(T)† · δx remain in ascending
order. Besides, such a constraint is often highly justi�ed in practice, for instance if a physical
system has to spend some minimum time η before it switches to another mode. For example,
in Section 4.4, the attitude control of a rigid body is studied. In real life, because of robustness
issues and mechanical constraints, nozzles on a space launcher have indeed a minimum activation
time.

Remark 4.12:

Let tf denote the �nal time. If η is the minimal time between two switchings in (4.19), then
the total number of switchings N + 2l has an upper bound of btf/ηc.

The elaboration of a robust trajectory in (4.17) can be seen as an optimal control problem of
switched-mode dynamical system. A recent survey on switched systems can be found in [ZA15].
This theory deals with control systems where the dynamics can only take a �nite number of
modes. To determine the command law, one has to determine the switching times, as well
as the di�erent modes of the system. If the modes are �xed (in our case, it means that the
components (i1, . . . , iN , j1, . . . , jl) are �xed), it is often called a timing-optimization problem ;
if not, a scheduling optimization problem. In [Pic99, Sus00], necessary conditions are derived,
for trajectories of hybrid systems considering a �xed sequence of modes of �nite length (in our
setting, it corresponds to the Problem (4.18)). In [AE14, War12], the authors develop numerical
algorithms to solve both the timing and the scheduling problems. Their techniques rely heavily
on gradient-like methods. However, the latter problem is much more complex because of its
discrete nature: indeed the procedure needs to account for both continuous and discrete control
variables, and can therefore be seen as a combinatorial optimization problem. Note that the
paper [AE14] deals with dwell time constraints. It consists in imposing a threshold η between two
consecutive switching times which is the constraint we introduced at (4.19). Let us also mention
other techniques to solve scheduling optimization problems, like zoning algorithms [SC05], or
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relaxation methods, where discrete variables are temporarly relaxed into continuous variables
[BD05].

4.4 Numerical results

In order to illustrate the results of Sections 4.2 and 4.3, we consider the problem of interest
in this thesis : the attitude control of a rigid body. However, in order to keep a reasonnable
run-time, we will only consider the part for the angular velocity in (3.3.1), and for thrusters on
the launcher.

Let −→ω = (p, q, r) be the angular velocity of the body with respect to a frame �xed on the
body. We recall the Euler's equation (established in the Introduction chapter) for the angula
velocity of a rigid body, subjected to torques (b1, . . . , bm), writes:

I−̇→ω = I−→ω ∧ −→ω +

m∑
k=1

bk.

In the case when the axes of the body frame are the axes of inertia of the body, the matrix
I is diagonal: I = diag(Ix, Iy, Iz). The controlled Euler's equations can then be reduced to

−̇→ω (t) = f (−→ω (t), u(t)) ,

where for 1 6 k 6 m, uk(t) ∈ {0, 1} almost everywhere, and the function f describing the
dynamics writes:

f(p, q, r, u1, u2, u3, u4) =

 α1qr +
∑m
k=1 b

k
1uk

α2pr +
∑m
k=1 b

k
2uk ,

α3pq +
∑m
k=1 b

k
3uk

(4.20)

with α1 = (Iy − Iz)/Ix, α2 = (Iz − Ix)/Iy and α3 = (Iy − Ix)/Iz. This is with a slight abuse in
the notations, because we still denote by bk the normalized vector (bk1/Ix, b

k
2/Iy, b

k
3/Iz).

The controllability of such a system has been studied in Chapter 1. Let us mention here
the papers [KT99, OS92, Win63], that implement, in the special case of the stabilization of a
rigid spacecraft, methods to stabilize the spacecraft towards the point (0, 0, 0), but once again,
the controls used are not bang-bang. Note that (4.20) is a control-a�ne system, and therefore,
Remark 4.2 applies.

In the following, we consider the numerical values α1 = 1, α2 = −1, α3 = 1, b1 = [2, 1, 0.3],
b2 = [−2,−1,−0.3], b3 = [0, 0, 1] and b4 = [0, 0,−1], and initial and �nal conditions x0 = (0, 0, 0)
and xf = (0.4,−0.3, 0.4).

We start by building an optimal trajectory for the L1 cost
∫ tf

0

∑4
j=1 |uj(t)|dt + tf/2 (the

presence of tf ensures us not to obtain a trajectory with in�nite �nal time). It amounts to
minimizing the consumption of the launcher. The resolution of such a problem with a L1 cost
can be numerically challenging. We explained in Chapter 2 how a continuation procedure can be
implemented to tackle this numerical di�culty. In the following subsection we recall very brie�y
the principle of such a method.

4.4.1 Computing the nominal trajectory

The nominal trajectory, optimal for the L1 cost, is computed with a continuation procedure.
The idea of such a procedure is to solve �rst an �easier� problem, and deform it step by step to
solve the targeted problem. We introduce the continuation parameter λ ∈ [0, 1], and we consider
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the optimal control problem (Pλ) of steering the system (4.20) from x0 to xf , by minimizing the
cost

λ

∫ tf

0

4∑
i=1

|uj(t)|2 dt+ (1− λ)

∫ tf

0

4∑
i=1

|uj(t)| dt+ tf .

When λ = 0, we recognize our problem. For some λ ∈ [0, 1], solving problem (Pλ) is done by
�nding the zeros of a shooting function that results from the application of Pontryagin maximum
principle. Solving a shooting problem is done with Newton like methods. Such methods are
highly sensitive to their initialization, that can be very di�cult, especially in the case of the
minimization of the L1 norm

∫ tf
0
|u(t)|dt. The continuation procedure is introduced to overcome

this di�culty.
For λ = 1, the cost is stricly convex in the controls, and writes∫ tf

0

4∑
i=1

|uj(t)|2 dt+ tf ,

for which the initialization of the induced shooting method is much easier. Therefore, we solve
a sequence of optimal control problems, for values of λ decreasing from 1 to 0. The result of the
shooting problem for some λ ∈]0, 1] serves as the initialization of another problem with λ′ < λ.

4.4.2 Robustifying the nominal trajectory

From this L1 - minimal trajectory, represented on Figure 4.4, with three switching times that
we denote (t1, t2, t3) we build a new trajectory by solving the problem (4.17) with 3 needles (i.e.,
l = 3), λ1 = λ2 = 1, and taking η = 0.05 in Equation (4.19). As explained in Remark 4.6, we
see that it is worthwile to have the additional switching times available as long as possible. That
is, we force the additional switchings to occur after t3. Keeping in mind Equation (4.19), this
constraint can be written:

ti+1 − ti > η (∀i ∈ J1, 3K), s1 − t3 > η, si+1 − si > η (∀i ∈ J1, 6K).

We �nd that the optimal triplet is (j1, j2, j3) = (1, 4, 2), for which we have C = 0.77 and
Cr = 2.22. We found this optimal triplet by exploring the 43 = 64 possibilities. We then used
the heuristic that this solution would make a good choice to start looking for the solution with
4 needles (as it would have been to costly to examine the 44 = 256 possibilities). However we
could not make the cost dicrease signi�cantly (the best cost we found was Cr = 2.07). This
heuristic is very similar to what is used in Branch and Bound methods. Besides, as an element
of comparison, the optimal couple when adding only two needles is (j1, j2) = (1, 4), for which
Cr = 4.25, and the optimal solution when adding only on needle is j1 = 2, for which Cr = 30.28.
Thus, we notice a substantial improvement when increasing the number of needles from 1 to 2
and from 2 to 3, whereas it seems less pro�table to add a fourth one. We therefore stopped at
3 needles. The controls are displayed on Figure 4.4, and the components 1, 2 and 4, on which
needles have been added, are represented in red.

In order to represent perturbations, we consider that the principal moments of inertia can
vary, causing the coe�cients α1, α2 and α3 to vary. Thus we consider the perturbed dynamics

fper(t, p, q, r, u1, u2, u3, u4) =


αper,ε1 (t)qr +

∑4
k=1 b

k
1uk

αper,ε2 (t)pr +
∑4
k=1 b

k
2uk ,

αper,ε3 (t)pq +
∑4
k=1 b

k
3uk

(4.21)
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(a) Controls for the minimal L1 trajectory. C = 0.49
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(b) Controls with three needles. C = 0.77, Cr = 2.22

Figure 4.4 � Improving the robustness of a trajectory adding needles. We lose optimality with
respect to the consumption in order to gain robustness.

so that ε models the size of the perturbation. More precisely, we take αper,εi (t) = αi + εhi(t),
where hi(·) is some periodic function satisfying ‖hi‖∞ 6 1 (note that the exact expression of hi
is not relevant here, as it is supposed to model any perturbation of the αi). We denote by xper
the solution of the Cauchy problem

ẋ(t) = fper(t, x(t), u(t)),

x(0) = x0.

We denote by xcor the corrected trajectory computed with our algorithm. We show, on
Figure 4.6, the three trajectories, for ε = 0.78 and a cost Cr = 2.22. We can see the perturbed
trajectory xper drifting away from the reference trajectory xref and away from the �nal point
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xf , whereas the corrected trajectory xcor eventually reaches a point very close to xf . Actually,
for the trajectories represented on Figure 4.6, we have that ‖xcor(tf )− xf‖ / ‖xf‖ = 5.5× 10−3,
whereas ‖xper(tf )− xf‖ / ‖xf‖ = 1.3× 10−1. Our algorithm has indeed been able to adjust the
perturbed trajectory back towards xf .

One may wonder how this method behaves with respect to the choice of ε. As explained in
Remark 4.7, we stop if two switching times are interchanged, that is, if δT is too big, as the initial
vector of switching times satis�es a gap property (4.19). Actually, this is not strictly true, as we
could have a �big� correction that does not change the ascending order of the switching times,
for instance if we shift all the switching times in the same direction. However, we experimentally
notice that the cost Cr has an impact on the size of the perturbation we are able to absorb.

We build several trajectories, for which we apply our algorithm for increasing values of ε,
until the algorithm fails as explained in Remark 4.7, for some εmax. We plot on Figure 4.5 the
value of εmax with respect to the cost Cr (that is, for a given cost Cr, εmax is the smallest value
for which there is an interchanging of switching times). Even if the curve is not decreasing (for
the reason explained above), we can see that having a low cost Cr enables us to absorb bigger
perturbations.

2 3 4 5 6 7 8 9 10 11

0.2

0.4

0.6

0.8

Cr

ε m
a
x

Figure 4.5 � Size of the maximal perturbation absorbed with respect
to the robustness of a trajectory

On Figure 4.7, we show the relative error ‖x(tf ) − xf‖/‖xf‖ for the perturbed xper and
corrected xcor trajectories, for several values of ε. As we apply order one corrections, we see that
our method shows better results for small values of ε, but also gives very satisfactory results for
larger values of ε.

4.5 Proof of Proposition 4.1

In order to prove the di�erentiability of the end-point mapping, we start with the di�erentia-
bility with respect to one component. The proof relies heavily on the expansion (4.3), that we
recall �rst. For the sake of completness, we will also give the proof of this result.
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Figure 4.6 � Reference, perturbed and corrected trajectories for
ε = 0.78, Cr = 2.22.
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Figure 4.7 � Tracking results for several values of ε.

Lemma 4.1. � Let t1 ∈ [0, tf [, and let uπ1
(·) be a needle-like variation of u(·), with π1 =

(t1, δt1, u1). Then
xπ1(tf ) = x(tf ) + |δt1| vπ1(tf ) + o(δt1),

where vπ1(·) is the solution of a Cauchy problem on [t1, tf ]

v̇π1
(t) =

∂f

∂x
(t, x(t), u(t))vπ1

(t),

vπ1(t1) = f(t1, x(t1), u1)− f(t1, x(t1), u(t1)).

Proof. Let π1 = (t1, δt1, u1) be a needle-like variation. The trajectory xπ1
(·) is a solution of the

equation

xπ1
(tf ) = x(0) +

∫ tf

0

f(t, xπ1
(t), uπ1

(t)) dt

= x(0) +

∫ t1

0

f(t, xπ1
(t), u(t)) dt+

∫ tf

t1

f(t, xπ1
(t), uπ1

(t)) dt

= x(t1) +

∫ t1+δt1

t1

f(xπ1
(t), uπ1

(t)) dt︸ ︷︷ ︸
:=A

+

∫ tf

t1+δt1

f(xπ1(t), uπ1(t)) dt︸ ︷︷ ︸
:=B



90 CHAPTER 4. Redundancy implies robustness for bang-bang control strategies

For almost very point t1 ∈ [0, tf [,

A =

∫ t1+δt1

t1

f(xπ1
(t), uπ1

(t))dt

= δt1 · f(x(t1), u1) + o(η1)

For the second term, splitting the integral,

B =

∫ tf

t1+δt1

f(xπ1(t), uπ1(t)) dt

=

∫ tf

t1+δt1

f(xπ1
(t), u(t)) dt

=

∫ tf

t1

f(xπ1
(t), u(t))dt−

∫ t1+δt1

t1

f(xπ1
(t), u(t)) dt

=

∫ tf

t1

f(xπ1
(t), u(t)) dt− δt1 · f(x(t1), u(t1)) + o(δt1)

Thus,

xπ1(tf ) = x(t1) + δt1 (f(x(t1), u1)− f(x(t1), u(t1))) +

∫ tf

t1

f(xπ1(t), u(t))dt+ o(δt1)

= x(tf ) + δt1vπ1
(t1) +

∫ tf

t1

(f(xπ1
(t), u(t))− f(x(t), u(t))) dt+ o(δt1).

But also, following the de�nition of Lemma 4.1,

vπ1
(tf ) = vπ1

(t1) +

∫ tf

t1

∂f

∂x
(x(t), u(t))vπ1

(t) dt.

Joining the previous inequalities together, we get that∣∣∣∣xπ1(tf )− x(tf )

δt1
− vπ1(tf )

∣∣∣∣ =

∣∣∣∣∫ tf

t1

(
f(xπ1(t), u(t))− f(x(t), u(t))

δt1
− ∂f

∂x
(x(t), u(t))vπ1(t)

)
dt+ o(1)

∣∣∣∣
6
∫ tf

t1

∣∣∣∣∂f∂x (x(t), u(t)) ·
(
xπ1

(t)− x(t)

δt1
− vπ1

(t)

)∣∣∣∣ dt+ o(1)

Let ε > 0. For δt1 small enough, we have∣∣∣∣xπ1(tf )− x(tf )

δt1
− vπ1

(tf )

∣∣∣∣ 6 ε+

∫ tf

t1

C

∣∣∣∣xπ1(t)− x(t)

δt1
− vπ1

(t)

∣∣∣∣ dt
Then, thanks to Grönwall inequality,∣∣∣∣xπ1

(tf )− x(tf )

δt1
− vπ1(tf )

∣∣∣∣ 6 εeC(tf−t1)

which is equivalent to xπ1
(tf ) = x(tf ) + δt1vπ1

(tf ) + o(δt1).

Proposition 4.3. � We denote by u the control (t1, . . . , tN , tf ) and x(·) the associated tra-
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jectory of the control system. Let δt1 ∈ R be small enough. Then

E(t1 + δt1, t2, . . . , tN , tf ) = E(t1, . . . , tN , tf ) + δt1 · v1(tf ) + o(δt1),

where v1(·) is the solution of the Cauchy problem on [t1, tf ]:

v̇1(t) =
∂f

∂x
(t, x(t), u(t))vi(t),

v1(t1) =

{
f(t1, x(t1), (. . . , ai1 , . . .))− f(t1, x(t1), u(t+1 )) if ui1 switches from ai1 to bi1 .
f(t1, x(t1), (. . . , bi1 , . . .))− f(t1, x(t1), u(t−1 )) if ui1 switches from bi1 to ai1 .

δt > 0

(a) δt1 > 0.

δt < 0

(b) δt1 < 0.

Figure 4.8 � Shifting an opening time is equivalent to add a needle.

Proof. Assume that at time t1 the control ui1 switches from ai1 to bi1 , and that δt1 > 0. Let us
de�ne the needle-like variation π = (t1, δt1, ai1) for the i1-th component of the control. Then, the
control uπ is represented by the vector (t1 + δt1, . . . , tN , tf ) (�gure 4.8): adding the needle-like
variation π to the i1-th component, with value ai1 and length δt1 is equivalent to shifting the
opening time to t1 + δt1. Thus, we have that u(t+1 )i1 = bi1 and uπ(t+1 )i1 = ai1 . Hence, we obtain
that, according to lemma 4.1

xπ(tf ) = x(tf ) + δt1 · v1(tf ) + o(δt1), (4.22)

where v1(·) is the solution of the Cauchy problem:

v̇1(t) =
∂f

∂x
(t, x(t), u(t))v1(t),

v1(t1) = f(t1, x(t1), uπ(t+1 ))− f(t1, x(t1), u(t+1 ))

= f(t1, x(t1), (. . . , ai1 , . . .))− f(t1, x(t1), (. . . , bi1 , . . .)).

(Between uπ(t+1 ) and u(t+1 ), only the i1-th component di�ers.)

If δt1 < 0, de�ne the variation π = (t1, δt1, 1) for the i1-th component of the control. Then
again, the control uπ is represented by the vector (t1 + δt1, . . . , tN , tf ) (�gure 4.8). Thus, we
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have that u(t−1 )j = ai1 and uπ(t−1 )i1 = 1. Thanks to lemma 4.1, we obtain that

xπ(tf ) = x(tf )− δt1 · w1(tf ) + o(δt1), (4.23)

where w1(·) is the solution of the Cauchy problem:

ẇ1(t) =
∂f

∂x
(t, x(t), u(t))w1(t),

w1(t1) = f(t1, x(t1), uπ(t−1 ))− f(t1, x(t1), u(t−1 ))

= f(t1, x(t1), (. . . , bi1 , . . .))− f(t1, x(t1), (. . . , ai1 , . . .))

= −v1(t1).

Thus, by uniqueness we have w1 = −v1, and from (4.22) and (4.23), we obtain:

xπ(tf ) = x(tf ) + δt1 · v1(tf ) + o(δt1).

We can proceed the exact same way if at t1, the control ui1 switches from bi1 to ai1

The general result at proposition 4.1 follows by an immediate iteration.

4.6 Conclusion of the chapter and perspectives

Starting with the expansion of the end-point mapping with respect to a needle like variation,
we have shown in this chapter how redundant switching times can be added in order to make
a control more robust, for general control systems of the form ẋ(t) = f(t, x(t), u(t)). Those
additional switching times can be seen as extra degrees of freedom used to absorb perturbations.
A potential application is to start from a bang-bang solution of an optimal control problem, that
is usually not robust, and make it more robust. A compromise is then to be found between loss
of optimality and gain of robustness. This is why we have designed a measure of robustness, as
follows.

In the presence of a perturbation δx, the correction to apply to the switching times is the
solution of an equation dE · δT = δx. It is natural to try to solve this equation while shifting
the switching times as little as possible. The least-squares problem formulation is then the
appropriate setting to �nd the solution of minimal (euclidian) norm of the previous equation,
and it is given by δT = dE† · δx, for which we have the norm estimation ‖δT ‖2 6 ‖δx‖2 /σmin.
This enabled us to identify the measure for robustness:∫

1

σmin(t)2
dt.

The numerical example studied in Section 4.4 remains academic, and was used to legitimize
the theoretical ideas explained previously. In a future work, we aim at applying the method
to the complete (and more complex) attitude control system of a three-dimensional rigid body
presented in the Introduction, for which we wish to control the angular velocity, as well as the
orientation with respect to a �xed reference frame as written at equation (3.3.1). To the three
velocity variables will be added three angles to parametrize the orientation of the body. Thus, a
challenge will come from the dimension of the state space (6), as well as the potentially bigger
number of needle-like variations required to robustify a trajectory.
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The setting of this chapter di�ers from the previous ones, and we will consider an optimal
control problem in in�nite dimension modelling the evolution of cell populations. We will use two
elements previously introduced in this work, namely direct methods and continuation techniques,
and combine them to solve the problem at hand.

Even if it does not directly concern aerospace applications, we claim that our approach could
be used quite generically, each time it is possible to simplify enough a control problem to start
the numerical resolution.
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5.1 Introduction of the chapter

The motivation for this work is the article [PCLT17], itself initiated by [LLC+13]. In the for-
mer, the subject was the theoretical and numerical analysis of an optimal control problem coming
from oncology. Through chemotherapy, it consists of minimizing the number of cancer cells at
the end of a given therapeutic window. The underlying model was an integro-di�erential system
for the time-evolution of densities of cancer and healthy cells, structured by their continuous
level of resistance to chemotherapeutic drugs. The model took into account cell proliferation
and death, competition between the cells, and the e�ect of chemotherapy on them. The optimal
control problem also incorporated constraints on the doses of the drugs, as well as constraints
on the tumor size and on the healthy tissue.

In [PCLT17], the numerical resolution of the optimal control problem was made through a
direct method, thanks to a discretization both in time and in the phenotypic variable. It led to a
complex nonlinear constrained optimization problem, for which even e�cient algorithms will fail
for large discretization parameters because they require a good initial guess. To overcome this, the
idea was to perform (with AMPL and IPOPT, see below) a continuation on the discretization
parameters, starting from low values (i.e., a coarse discretization) for which the optimization
algorithm converges regardless of the starting point.

A clear optimal strategy emerged from these numerical simulations when the �nal time was
increased. It roughly consists of �rst using as few drugs as possible during a long �rst phase to
avoid the emergence of resistance. Cancer cells would hence concentrate on a sensitive phenotype,
allowing for an e�cient short second phase with the maximum tolerated doses.

The model of [PCLT17] did not include epimutations, namely heritable changes in DNA
expression which are passed from one generation of cells to the others, which are believed to be
very frequent in the life-time of a tumor. Our aim here is to numerically address the optimal
control problem with the epimutations modeled through di�usion operators (Laplacians), in order
to test the robustness of the optimal strategy.

However, the previous numerical technique already failed (even without Laplacians) to get
�ne discretizations when the �nal time is very large : the optimization stops converging when the
discretization parameters are large. The values reached for the discretization in time were enough
to observe the optimal structure, in particular all the arcs that were expected for theoretical
reasons.

The addition of Laplacians signi�cantly increases the run-time and again fails to work once
the discretization parameters are too large when the �nal time itself is large, and some arcs
become di�cult to observe. We thus have to �nd an alternative method to see whether the
optimal strategy found in [PCLT17] is robust with respect to adding the e�ect of epimutations.

This chapter is devoted to the presentation of a method which, up to our knowledge, is new.
In our case, it provides a signi�cant improvement in run-time and precision, and shows that the
optimal strategy keeps an analogous structure when epimutations are considered. The method
relies on the two following steps :

• �rst, simplify the optimal control problem up to a point where we can show that, thanks
to a Pontryagin Maximum Principle (PMP) in in�nite dimension, the optimal controls
are bang-bang and thus can be reduced to their switching times, which are very easy to
estimate numerically. This is equivalent to setting several coe�cients to 0 in the model.

• second, perform a continuation on these parameters on the optimization problems obtained
with a direct method, starting from the simpli�ed problem all the way back to the full
optimal control problem.

It allows us to start the homotopy method on this simpli�ed optimization problem with an
already �ne discretization, actually much �ner than the maximal values which could be obtained
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with the previous homotopy method. We also believe that the theoretical result obtained for the
simpli�ed optimal control problem can serve as the starting step for many other optimal control
problems of related models in mathematical biology.

Numerical optimal control and novelty of the approach. Discretizing the time variable,
control and state variables to approximate a control problem for an ODE (which is an optimiza-
tion problem in in�nite dimension) by a �nite-dimensional optimization problem has now become
the most standard way of proceeding. These so-called direct methods thus lead to using e�cient
optimization algorithms, for example through the combination of automatic di�erentiation soft-
wares (such as the modeling language AMPL, see [FGK02]) and expert optimization routines
(such as the open-source package IPOPT, see [WB06b]).

Another approach is to use indirect methods, where the whole process relies on a PMP, leading
to a shooting problem on the adjoint vector. Numerically, one thus needs to �nd the zeros of an
appropriate function, which is usually done through a Newton-like algorithm. For a comparison
of the advantages and drawbacks of direct and indirect methods, we refer to the survey [Tré12].

For both direct and indirect methods, the numerical problem shares at least the di�culty
of �nding an initial guess leading to convergence of the optimization algorithm or the Newton
algorithm, respectively (it is well known that Newton algorithms can have a very small domain
of convergence). To tackle this issue in the case of indirect methods, it is very standard to use
homotopy techniques, for instance to simplify the problem so that one can have a good idea for
a starting point as in [CHT12, CHT17], or to change the cost in order to bene�t from convexity
properties, as in [GH06, CDG12]. Besides, when studying optimal control problem for ODE
systems, a common approach is the use of so-called hybrid methods, in order to take advantage
from the better convergence properties of the direct method and the high accuracy provided by
the indirect method. We refer to [Tré12, BNPvS93, Pes94, vSB92] for further developments on
this subject.

We have found the combination of direct methods and continuation (such as the one done
in [PCLT17]) to be much less common in the literature, see however [BNPvS93]. For a mathe-
matical investigation of why continuation methods are mathematically valid, see [Tré12].

It is however believed that direct methods typically lead to optimization problems with several
local minima [Tré12], as it could happen for the starting problem (with low discretization),
which has yet no biological meaning. This implies one important drawback of a continuation
on discretization parameters with direct methods : although the algorithm will quickly converge
in such cases, one cannot a priori exclude that one will get trapped in local minima that are
meaningless, with the possibility for such trapping to propagate through the homotopy procedure.

Our approach of simplifying the optimal control problem so that it can be analyzed with
theoretical tools such as a PMP is a way to address the previous problem and to decrease the
computation time. The simpli�ed optimal control problem, once approximated by a direct me-
thod, will indeed e�ciently be solved even with a very re�ned discretization. Therefore, another
original aspect of our work, due to the complex PDE structure of the model, is the use of the PMP
in view of building an initial guess for the direct method, in contrast with the hybrid approach
we described for ODE systems, where direct methods serve to initialize shooting problems.

More generally, we advocate for the strategy of trying to simplify the problem, testing whether
a PMP can provide a good characterization of the optimal controls. Then continuation with direct
methods are performed to get back to the original and more di�cult one. We believe that this
can always be tried as a possible strategy to solve any optimal control problem (ODE or PDE)
numerically.
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Outline of the chapter. The chapter is organized as follows. Section 5.2 is devoted to a detai-
led presentation of the optimal control problem and the results that were obtained in [PCLT17].
Section 5.3 presents the simpli�ed optimal control problem together with the application of a
Pontryagin Maximum Principle in in�nite dimension which almost completely determines the op-
timal controls. In Section 5.4, we thoroughly explain how direct methods for the optimal control
of PDEs and continuations can be combined to solve a given PDE optimal control problem.
We then combine these techniques and the result of Section 5.3 to build an algorithm solving
the complete optimal control problem. In Section 5.5 the numerical simulations obtained thanks
to the algorithm are presented. Finally, we will give some perspectives in Section 5.6 before
concluding in Section 5.7.

5.2 Modeling Approach and Optimal Control Problem

5.2.1 Modeling Approach

Let us �rst explain the modeling approach, which is based on the classical logistic ODE

dN

dt
= (r − dN)N.

In this setting, individualsN(t) have a net selection rate r, together with an additional death term
dN increasing with N : the more individuals, the more death due to competition for resources
and space.

If the individuals have di�erent selection and death rates r(x) and d(x) depending on a
continuous variable x which we will call phenotype (the size of the individual, for example),
then a natural extension to the previous model is to study the density of individuals n(t, x) of
phenotype x, at time t, satisfying the integro-di�erential equation

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x),

where

ρ(t) :=

∫
n(t, x) dx.

At this stage, individuals do not change phenotype over time, nor can they give birth to
o�spring with di�erent phenotypes. Accounting for such a possibility consists in modeling random
mutations (respectively random epimutations), i.e., heritable changes in the DNA (respectively
heritable changes in DNA expression). The model is complemented with a di�usion term and
takes the form

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x) + β∆n(t, x),

together with Neumann boundary conditions if x lies in a bounded domain, thus becoming a
non-local partial di�erential equation because of the integral term ρ.

Such so-called selection-mutation models are actively studied as they represent a suitable ma-
thematical framework for investigating how selection occurs in various ecological scenarios [D+04,
DJMP05, Per06], thus belonging to the branch of mathematical biology called adaptive dynamics.
When β = 0, the previous model indeed leads to asymptotic selection : n converges to a sum of
Dirac masses located on the set of phenotypes on which r

d reaches its maximum [PCLT17, Per06].

In particular, if this set is reduced to a singleton x0 it holds that n(t,·)
ρ(t) weakly converges to a

Dirac at x0 as t goes to +∞.
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5.2.2 The Optimal Control Problem

The model considered in this chapter is an extension of the one studied in [PCLT17] by the
addition of epimutations (it is believed that mutations occur on a too long time-scale and are
consequently neglected [CLC16]). It describes the dynamics of two populations of cells, heal-
thy and cancer cells, which are both structured by a trait x ∈ [0, 1] representing resistance to
chemotherapy, which ranges from sensitiveness (x = 0) to resistance (x = 1). x is taken to be
a continuous variable because resistance to chemotherapy can be correlated to biological cha-
racteristics which are continuous, see [CLC16] for more details. Chemotherapy is modeled by
two functions of time u1 and u2, standing for the rate of administration of cytotoxic drugs and
cytostatic drugs, respectively. The �rst type of drug actively kills cancer cells, while the second
slows down their proliferation.

The system of equations describing the time-evolution of the density of healthy cells nH(t, x)
and cancer cells nC(t, x) is given by

∂nH
∂t

(t, x) =

[
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x) + βH∆nH(t, x),

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)IC(t)− u1(t)µC(x)

]
nC(t, x) + βC∆nC(t, x),

starting from an initial condition (n0
H , n

0
C) in C([0, 1])2, with Neumann boundary conditions in

x = 0 and x = 1.
Let us describe in more details the di�erent terms and parameters appearing above, with the

functions rH , rC , dH , dC , µH µC all continuous and non-negative on [0, 1], with rH , rC , dH , dC
positive on [0, 1].

• The terms rH(x)
1+αHu2(t) ,

rC(x)
1+αCu2(t) stand for the selection rates lowered by the e�ect of the

cytostatic drugs, with
αH < αC .

• The non-local terms dH(x)IH(t), dC(x)IC(t) are added death rates to the competition
inside and between the two populations, with

IH := aHHρH + aHCρC , IC := aCCρC + aCHρH

and as before

ρi(t) =

∫ 1

0

ni(t, x) dx, i = H,C.

We make the important assumption that the competition inside a given population is
greater than between the two populations :

aHC < aHH , aCH < aCC .

• The terms µH(x)u1(t), µC(x)u1(t) are added death rates due to the cytotoxic drugs. Owing
to the meaning of x = 0 and x = 1, µH and µC are taken to be decreasing functions of x.

• The terms βH∆nH(t, x) and βC∆nC(t, x) model the random epimutations, with their rates
βH , βC such that

βH < βC ,

because cancer cells mutate faster than healthy cells.

Finally, for a �xed �nal time T we consider the optimal control problem (denoted in short by
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(OCPPDE1)) of minimizing the criterion

λ0
1

T

∫ T

0

ρC(s) ds+ (1− λ0)ρC(T ) (5.1)

as a function of the L∞ controls u1, u2 subject to L∞ constraints for the controls and two state
constraints on (ρH , ρC), for all 0 6 t 6 T :

• The maximum tolerated doses cannot be exceeded :

0 6 u1(t) 6 umax1 , 0 6 u2(t) 6 umax2 .

• The tumor cannot be too big compared to the healthy tissue :

ρH(t)

ρH(t) + ρC(t)
> θHC , (5.2)

with 0 < θHC < 1.

• Toxic side-e�ects must remain controlled :

ρH(t) > θHρH(0), (5.3)

with 0 < θH < 1.

Optimal control problems applied to cancer therapy have started being considered long ago,
see [SL15] for a complete presentation. However, the usual way of taking resistance into account
is to consider that cells are either resistant or sensitive, leading to ODE models, as for example
in [CBB92, KS06, LS06, LS14, Car17]. Considering both a continuous modeling of resistance and
the e�ect of chemotherapy is more recent, as in [PCLT17, CLC16, LLH+13, GLGL14, LCDH15].
We also mention some cases where an additional space variable is considered [LLC+13, LLC+15].

Remark 5.1:

Note that in the de�nition of the cost (5.1), the choice of λ0 depends on the relative importance
one wishes to give to the terms ρC(T ) and

∫ T
0
ρC(s) ds/T . By chosing λ0 = 0 as in [PCLT17],

the criterion to minimize becomes ρC(T ) and can be of interest in practice. In that case, even
if the cost does no longer account for the evolution of ρC(·) over the time interval [0, T ], the
size of the tumour cannot be too big as it remains controlled by the constraint (5.2) :

ρH(t)

ρH(t) + ρC(t)
> θHC .

5.2.3 Previous Results for λ0 = 0

In [PCLT17], we studied this system and the optimal control problem both theoretically and
numerically in the case of selection exclusively, namely for βH = βC = 0, while minimizing the
number of tumour cells at �nal time, i.e. with λ0 = 0 in the cost (5.1).

First, we proved that for constant controls (i.e., constant doses), the generic behavior is
the convergence of both densities to Dirac masses. When these doses are high, the model thus
reproduces the clinical observation that high doses usually fail at controlling the tumor size on
the long run. They might indeed initially lead to a decrease of the overall cancerous population.
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However, this is the consequence of only the sensitive cells being killed, while the most resistant
cells are selected (in our mathematical framework, this corresponds to the cancer cell density
concentrating on a resistant phenotype). Further treatment is then ine�cient and the tumor
starts growing again.

As for the optimal control problem which is our focus in this work, the main �ndings without
di�usion were the following : when the �nal time T becomes large, the optimal controls acquire
some clear structure which is made of two main phases.

• First, there is a long phase with low doses of drugs (u1 = 0 with our parameters), along
which the constraint (5.2) quickly saturates. At the end of this �rst long arc, both densities
have concentrated on a sensitive phenotype.

• Then, there is a second short phase, which is the concatenation of two arcs. The �rst one is
a free arc (no state constraint is saturated) along which u1 = umax1 and u2 = umax2 , with a
quick decrease of both cell numbers ρH and ρC , up until the constraint on the healthy cells
(5.3) saturates. The last arc is constrained on (5.3) with boundary controls (u2 = umax2

with our parameters), allowing for a further decrease of ρC .

In other words, the optimal strategy is to let the cell densities concentrate on sensitive phe-
notypes so that the full power of the drugs can e�ciently be used. This strategy is followed as
long as the healthy tissue can endure it, and then lower doses are used to keep on lowering ρC
while still satisfying the toxicity constraint.

5.3 Resolution of a Simpli�ed Model

5.3.1 Simpli�ed Model for one Population with no State Constraints

We here introduce the simpler optimal control problem. Its precise link with the initial optimal
control (OCPPDE1) will be explained in Section 5.4. It is based on the equation

∂nC
∂t

(t, x) =

[
rC(x)

1 + αCu2(t)
− dC(x)ρC(t)− µC(x)u1(t)

]
nC(t, x), (5.4)

starting from n0
C , where ρC(t) =

∫ 1

0
nC(t, x) dx. We denote by (OCPPDE0) the optimal control

problem
min

(u1,u2)∈U
ρC(T ) (5.5)

where U is the space of admissible controls

U := {(u1, u2) ∈ L∞([0, T ],R) such that 0 6 u1 6 umax1 , 0 6 u2 6 umax2 , a.e. on [0, T ]} .

Note that we choose λ0 = 0 in the cost (5.1), in order for the Pontryagin Maximum Principle to
yield an exploitable result.

5.3.2 A Maximum Principle in In�nite Dimension

General statement. Let T be a �xed �nal time, X be a Banach space and n0 ∈ X, U
be a separable metric space. We also consider two mappings f : [0, T ] × X × U → X and
f0 : [0, T ]×X × U → R.
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We consider the optimal control problem of minimizing an integral cost, with a free �nal state
n(T ) :

inf
u∈U

J(u(·)) :=

∫ T

0

f0(t, n(t), u(t)) dt,

where y(·) is the solution 1 of

ṅ(t) = f(t, n(t), u(t)), n(0) = n0.

In [LY12, Chapter 4], necessary conditions for optimality are presented, for such problems
(they are actually presented in [LY12] in a more general setting, but for the sake of simplicity, we
restrict ourselves to the material required to solve (OCPPDE0)). The set of these conditions is
referred to as a Pontryagin Maximum Principle (PMP).

Under appropriate regularity assumptions on f and f0, it states that any optimal pair
(n(·), u(·)) must be such that there exists a nontrivial pair (p0, p(·)) ∈ R×C([0, T ], X) satisfying

p0 6 0, (5.6)

ṗ(t) = −∂H
∂n

(t, n(t), u(t), p0, p(t)), (5.7)

H(t, n(t), u(t), p0, p(t)) = max
v∈U

H(t, n(t), v, p0, p(t)), (5.8)

where the Hamiltonian H is de�ned as H(t, n, u, p, p0) := p0f0(t, n, u) + 〈p, f(t, n, u)〉.
Remark 5.2:

If the �nal state is free, (5.6) can be improved to p0 < 0 a and we have the additional trans-
versality condition :

p(T ) = 0. (5.9)

Besides, if the �nal state were �xed, there would be additional assumptions to check in order
to apply the PMP, assumptions that are automatically ful�lled whenever n(T ) is free. We refer
to [LY12, Chapter 4 - Section 5] for more details on this issue.

a. An extremal in the PMP is said to be normal (resp. abnormal) whenever p0 6= 0 (resp. p0 = 0). Here, it
means that there is no abnormal extremal.

Application to the problem (OCPPDE0). By applying the PMP, we derive the following
theorem on the optimal control structure.

Theorem 5.1. � Let (nC(·), u(·)) be an optimal solution for (OCPPDE0). There exists t1 ∈
[0, T [ and t2 ∈ [0, T [ such that

u1(t) = umax1 1[t1,T ], u2(t) = umax2 1[t2,T ].

Démonstration. Let us de�ne U := {u = (u1, u2) such that 0 6 u1 6 umax1 , 0 6 u2 6 umax2 }. Gi-
ven a function u ∈ L∞([0, T ], U), the associated solution of the equation (5.4) belongs to

1. Note that the evolution equation has to be understood in the mild sense

n(t) = n0 +

∫ t

0
f(s, n(s), u(s)) ds.
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C([0, T ], C(0, 1)), which can be seen as a subset of C([0, T ], L2(0, 1)). We de�ne X := L2(0, 1).
First, as the initial number of cells is prescribed, we notice that minimizing the cost ρC(T ) is

equivalent to minimizing the cost ρC(T )− ρC(0), and it can be written under the integral form :

ρC(T )− ρC(0) =

∫ T

0

ρ′C(t) dt

=

∫ T

0

∫ 1

0

∂tnC(t, x) dx dt

=

∫ T

0

∫ 1

0

[
rC(x)

1 + αCu2(t)
− dC(x)ρC(t)− µC(x)u1(t)

]
nC(t, x) dx dt

Thus, in view of applying the PMP, we de�ne the function f0 : X × U → R by

f0(n, u1, u2) :=

∫ 1

0

[
rC(x)

1 + αCu2
− dC(x)ρ− µC(x)u1

]
n(x) dx,

where ρ :=
∫ 1

0
n, and the Hamiltonian is then de�ned by

H(n, u1, u2, p, p
0) := p0f0(n, u1, u2) +

∫ 1

0

p(x)

[
rC(x)

1 + αCu2
− dC(x)ρ− µC(x)u1

]
n(x) dx.

Since (nC(·), u(·)) is optimal, there exists a non trivial pair (p0, p(·)) ∈ R × C([0, T ], X), such
that the adjoint equation (5.7) writes :

∂p

∂t
(t, x) = −

[
rC(x)

1 + αCu2(t)
− dC(x)ρ− µC(x)u1(t)

]
·
[
p(t, x) + p0

]
+

∫ 1

0

d(x)n(t, x)
[
p(t, x) + p0

]
dx.

Owing to Remark 5.2, we know that p0 < 0.
Let us set p̃ := p+ p0, which satis�es

∂p̃

∂t
(t, x) = −

[
rC(x)

1 + αCu2(t)
− dC(x)ρ− µC(x)u1(t)

]
p̃(t, x) +

∫ 1

0

d(x)n(t, x)p̃(t, x) dx.

The transversality equation (5.9) yields p(T, ·) = 0, i.e., p̃(T ) = p0.
Then, in order to exploit the maximisation condition (5.8), we can split the Hamiltonian as

H(t, nC(t), u1(t), u2(t), p(t), p0) = −
∫ 1

0

p(t, x)dC(x)ρ(t)nC(t, x) dx− u1(t)φ1(t) +
φ2(t)

1 + αCu2(t)
,

where the two switching functions are de�ned as

φ1(t) :=

∫ 1

0

µC(x)nC(t, x)p̃(t, x) dx,

φ2(t) :=

∫ 1

0

rC(x)nC(t, x)p̃(t, x) dx.

Thus, we derive the following rule to compute the controls :

• If φ1(t) > 0 (resp. φ2(t) > 0), then u1(t) = 0 (resp. u2(t) = 0).

• If φ1(t) < 0 (resp. φ2(t) < 0), then u1(t) = umax1 (resp. u2(t) = umax2 ).
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We compute the derivative of the switching function :

φ′1(t) =

∫ 1

0

µC(x) (∂tnC(t, x)p̃(t, x) + nC(t, x)∂tp̃(t, x)) dx

=

(∫ 1

0

µC(x)nC(t, x) dx

)
·
(∫ 1

0

dC(x)nC(t, x)p̃(t, x) dx

)
.

We know that
∫ 1

0
µC(x)nC(t, x) dx > 0, so that the sign of φ′1(t) is given by the sign of :∫ 1

0

dC(x)nC(t, x)p̃(t, x) dx.

Let us set ψ1(t) :=
∫ 1

0
dC(x)nC(t, x)p̃(t, x) dx. The same computation as before yields

ψ′1(t) =

(∫ 1

0

dC(x)nC(t, x) dx

)
ψ1(t).

Therefore, the sign of ψ1(t) is constant, given by the sign of

ψ1(T ) =

∫ 1

0

dC(x)nC(T, x)p̃(T, x) dx

=

∫ 1

0

dC(x)nC(T, x)p0 dx

< 0

since p0 < 0. This implies that the function φ1 is decreasing on [0, T ]. Since at the �nal time,
φ1(T ) < 0, we deduce the existence of a time t1 ∈ [0, T ) such that φ1(t) > 0 on [0, t1], and
φ1(t) < 0 on [t1, T ]. The same computation yields the same result for φ2, for some time t2 ∈
[0, T ].

5.4 The Continuation Procedure

5.4.1 General Principle

We here recall the principle of direct methods and of continuations for optimization problems.
Together with Theorem 5.1, we then derive an algorithm to solve the problem (OCPPDE1).

On direct methods for PDEs. Let us give an informal presentation of the principle of a
direct method for the resolution of the optimal control of a PDE. Assume that we have some
evolution equation written in a general form on [0, T ]× [0, 1] as

∂n

∂t
(t, x) = f(t, n(t), u(t)) +An(t, x), n(0) = n0,

where T is a �xed time, A is some operator on the state space, f some function which might
depend non-locally on n, u a scalar control, t ∈ [0, T ], and x ∈ [0, 1] is the space or phenotype
variable. The possible boundary conditions are contained in the operator A, which in our case
will be the Neumann Laplacian.
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Consider the optimal control problem

inf
u∈U

g(n(T )),

where T is �xed, as a function of u ∈ U := {u ∈ L∞([0, T ],R), 0 6 u(t) 6 umax on [0, T ]}.

Further assume that we have discretized this PDE both in time and space through uniform
meshes 0 < t0 < t1 < . . . < tNt := T , 0 =: x0 < x1 < . . . < xNx := 1, and that we are given
some discretizations of the operator A (resp. the function f , g) denoted by Ah (resp. fh, gh),
where h := 1

Nx
. With a Euler scheme in time, if one writes formally n(ti, xj) ≈ ni,j , u(ti) ≈ ui

and ni := (ni,j)06j6Nx , we are faced with the optimization problem

inf
ui, 06i6Nt

gh (nNt) ,

subject to the constraints

ni+1,j = ni,j + hfh,j(ti, ni,j , ui) + hAh(ni), ni,0 = n0(xi), 0 6 ui 6 umax

for all 0 6 i 6 Nt, 0 6 j 6 Nx. Note that fh,j(ti, ni,j , ui) stands for the function fh(ti, ni,j , ui)
evaluated at xj .

On continuation methods for optimization problems. The optimal control problem of
a PDE becomes a �nite-dimensional optimization problem once approximated through a direct
method, such as the one presented above. Let us denote P1 this problem. As already mentioned
in the introduction, the numerical resolution of such a problem requires a good initial guess for
the optimal solution. The idea of a continuation is to deform the problem to an easier problem
P0 for which we either have a very good a priori knowledge of the optimal solution, or expect
the problem to be solved e�ciently.

One then progressively transforms the problem back to the original one thanks to a conti-
nuation parameter λ, thus passing through a series of optimization problems (Pλ). At each step
of the procedure, the optimization problem Pλ+dλ is solved by taking the solution to Pλ as an
initial guess.

5.4.2 From (OCPPDE1) to (OCPPDE0)

Let us consider (OCPPDE1) and formally set the following coe�cients to 0 :

βH , βC , aCH , θH , θHC .

Note that by setting βH and βC to 0, we also imply that the Neumann boundary conditions are
no longer enforced.

When doing so, the equations on nC and nH are no longer coupled since the constraints do
not play any role and the interaction itself (through aCH) is switched o�. Consequently, the
optimal control problem with all these coe�cients set to 0 is precisely (OCPPDE0).

We now de�ne a family of optimal control problems (OCPPDEλ) where λ ∈ R5 has each
of its components between 0 and 1. It is a vector because several consecutive continuations will
be performed (in an order to be chosen) on the di�erent parameters. For λ = (λi)06i64, we use
the subscript λ for the parameters associated to the optimal control problem (OCPPDEλ), and
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they are de�ned by :

β
(λ)
H := λ1βH , β

(λ)
C := λ1βC , a

(λ)
CH := λ2aCH , θ

(λ)
CH := λ3θCH , θ

(λ)
H := λ4θH ,

In other words, λ1, λ2, λ3 and λ4 stand for the continuations on the epimutations rates, the
interaction coe�cient aCH , the constraint (5.2) and the constraint (5.3), respectively. λ0 accounts
for the balance between the terms in the cost (5.1). Note that the parameters λ1, λ2, λ3 and λ4

are meant to be brought from 0 to 1, whereas the value of λ0 may at the end lie in the interval
[0, 1].

5.4.3 General Algorithm

Let us now explain the general approach based on the previous considerations.

Final objective and discretization. Our �nal aim is to solve (OCPPDE1) numerically, with
T large, and a very �ne discretization in time (Nt is taken to be large) : T , Nt and Nx are thus
�xed to certain given values. To do so, we will solve successively several problems (OCPPDEλ)
with the same discretization paremeters. Following the general method introduced about direct
methods for PDEs, numerically solving an intermediate optimal control problem (OCPPDEλ)
for a given λ will mean solving the resulting optimization problem. To be more speci�c, we brie�y
explain below how the di�erent terms are discretized. Recall that our discretization is uniform
both in time t and in phenotype x, with respectively Nt and Nx points.

• The non-local terms ρH , ρC are discretized with the rectangle method :

ρ(ti) =

∫ 1

0

n(ti, x) dx ≈ 1

Nx

Nx−1∑
j=0

ni,j .

• The Neumann Laplacian is discretized by its classical discrete explicit counterpart :

∆n(ti, xj) ≈
ni,j+1 − 2ni,j + ni,j−1

(∆x)2
.

We manage to take Nt large enough to make sure that the CFL

βCT
(Nx)

2

Nt
<

1

2
,

is veri�ed. Using an implicit discretization could allow us to get rid of the CFL condition
but an implicit scheme happens to be more time-consuming. Therefore, we preferred using
an explicit discretization, as our procedure enables us to discretize the equations �nely
enough to satisfy the CFL.

• The selection term (whose sign can be both positive or negative) is discretized through an
implicit-explicit scheme to ensure unconditional stability.

Sketch of the algorithm.

Step 1. We start the continuation by solving (OCPPDE0). Thanks to the result 5.1, �nding the
minimizer of the end-point mapping (u1, u2) 7−→ ρC(T ) is equivalent to �nding the minimizer
of the application (t1, t2) 7−→ ρC(T ) where t1 (resp. t2) are the switching times of u1 (resp. u2)
from 0 to umax1 (resp. umax2 ), as introduced in Theorem 5.1.
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Numerically, we can use an arbitrarily re�ned discretization of (OCPPDE0), since the re-
sulting optimization problem has to be made on a R2-valued function, which leads to a quick
and e�cient resolution.

Step 2. Once (OCPPDE0) has been solved numerically, we get an excellent initial guess to
start performing the continuation on the parameter λ. Its di�erent components will successively
be brought from 0 to 1 (except for λ0 which will be brought from 0 to its �nal desired value),
either directly or, when needed, through a proper discretization of the interval [0, 1]. The order
in which the successive coe�cients are brought to their actual values is chosen so as to reduce
the run-time of the algorithm. The precise order and way in which the continuation has been
carried out are detailed together with the numerical results in Section 5.4.

Let us make one remark on a possible further continuation : since the goal is to take large
values for T , one might think of performing a continuation on the �nal time. We again emphasize
that the interest and coherence of the method requires to start with a �ne discretization at Step
1, but we note that it is also possible to further re�ne the discretization after Step 2.

5.5 Numerical Results

Let us now apply the algorithm with AMPL [FGK02] and IPOPT [WB06b].

For our numerical experiments, we will use the following values, taken from [LLC+13] :

rC(x) =
3

1 + x2
, rH(x) =

1.5

1 + x2
,

dC(x) =
1

2
(1− 0.3x), dH(x) =

1

2
(1− 0.1x),

aHH = 1, aCC = 1, aHC = 0.07, acH = 0.01

αH = 0.01, αC = 1,

µH =
0.2

0.72 + x2
, µC = max

(
0.9

0.72 + 0.6x2
− 1, 0

)
,

umax1 = 2, umax2 = 5.

One can �nd in [PCLT17] a discussion on the choice of the functions µH and µC . Also, we
consider the initial data :

nH(0, x) = KH,0 exp

(
− (x− 0.5)2

ε

)
, nC(0, x) = KC,0 exp

(
− (x− 0.5)2

ε

)
, (5.10)

with ε = 0.1 and KH,0 and KC,0 are chosen such that :

ρH(0) = 2.7, ρC(0) = 0.5.

The rest of the parameters (namely βH , βC , θH and θHC) will depend on the case we consider,
and we will specify them in what follows.
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Remark 5.3:

Note that the initial condition (5.10) for the healthy and cancer cells - a Gaussian density
centered at 0.5 - models a highly heterogeneous tumor, where resistance to the treatment
is already present. Such a choice has been made because in the clinic, cytotoxic drugs are
often given upfront. Our optimal strategy would therefore take place after this automatic
administration of drugs.

Remark 5.4:

Note also that we have taken umax1 and umax2 to be slightly below their values chosen
in [PCLT17] (which makes the problem harder from the applicative point of view). This is
because we are here able to let T take larger values, for which the �nal cost obtained with the
optimal strategy ρC(T ) becomes too small, see below for the related numerical di�culties.
As for the epimutations rates, we have proceeded as follows : we have simulated the e�ect
of constant doses and observed the long-time behavior. In the case βH = βC = 0, we know
by [PCLT17] that both cell densities must converge to Dirac masses. With mutations, we expect
some Gaussian-like approximation of these Diracs, the variance of which was our criterion to
select a suitable epimutation rate in terms of modeling. It must be large enough to observe a
real variability due to the epimutations, but small enough to avoid seeing no selection e�ects
(di�usion dominates and the steady state looks almost constant).

Test case 1 : T = 60 and λ0 = 0. We recall that this case corresponds to the example presented
in [PCLT17], to which we add a di�usion term. We set the parameters for the di�usion to
βH = 0.001 and βC = 0.0001. The coe�cients for the constraints are θHC = 0.4 and θH = 0.6. For
such numerical values, the optimal cost satis�es ρC(T ) << 1, which can be source of numerical
di�culties. To overcome this, we introduce the following trick : let us de�ne umax,01 = 1 and
umax,02 = 4. We apply the procedure described in Section 5.3 with the values umax,01 and umax,02 .
We then add another continuation step by raising them to the original desired values umax1 = 2
and umax2 = 5. In the formalism previously introduced, it amounts to adding two continuation
parameters λ5 and λ6 to the vector λ = (λi)16i64 (as we are interested in solving the problem for
λ0 = 0 in the cost (5.1), we forget it in the notation of the vector λ). The parameters associated
to the optimal control problem (OCPPDEλ) are then de�ned as :

u
max,(λ)
1 := (1− λ5)umax,01 + λ5u

max
1 , u

max,(λ)
2 := (1− λ6)umax,02 + λ6u

max
2 .

More precisely, we perform the continuation in the following way, summarized in Figure 5.1 :

• First, we solve (OCPPDE0), with umax,01 = 1 and umax,02 = 4.

• Second, we add the interaction between the two populations, the di�usion parameters, and
the constraint on the number of healthy cells. That is, the parameters aCH , βH , βC and
θH are set to their values.

• Then, we add the constraint measuring the ratio between the number of healthy cells and
the total number of cells, that is θHC .

• Lastly, we raise the maximum values for the controls from umax,0i to umaxi (i ∈ {1, 2}), and
we solve (OCPPDE1) for T = 60.

Actually, for this set of parameters, only four consecutive resolutions are required to solve
(OCPPDE1) starting from (OCPPDE0). That is, the components of the continuation vector
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(OCP0)

aCH = 0.01
βC = 10−3

βH = 10−3

θH = 0.6

θHC = 0.4

umax1 = 2
umax2 = 5
(OCP1)

Figure 5.1 � Continuation procedure to solve (OCPPDE1) for T = 60.

λ = (λi)16i66 are brought directly from 0 to 1, taking no intermediate value, in the order
schematized on Figure 5.1. We will study further in the chapter a case for a larger �nal time, for
which having a more re�ned discretization is mandatory.

On Figure 5.2, we plot the optimal controls u1 and u2 at the four steps of the continuation
procedure. We also display the evolution of the constraint on the size of the tumor compared
to the healthy tissue (5.2). We can clearly identify the emergence of the expected structure for
the controls, namely a long phase along which the constraint (5.2) saturates, followed by a bang
arc with u1 = umax1 and u2 = umax2 , and a last boundary arc along which the constraint (5.3)
saturates. Throughout this section, we will use a red solid line in our �gures for (OCPPDE1),
a light green solid line for (OCPPDE0) and colors varying from green to blue for anything
referring to (OCPPDEλ).

Remark 5.5:

We would like to emphasize here that our procedure enables us to use a much more re�ned
discretization of the problem than what was done in [PCLT17]. More precisely, we discretize
with Nt = 500 and Nx = 20 points in our direct method. For such a discretization, directly
tackling (OCPPDE1) with the direct method fails.

Remark 5.6:

Note that the constraint ρH/ρH(0) > 0.6 does not saturate until the last step of the conti-
nuation, when raising the maximal value of the controls. Therefore, when we add it at the
beginning of the procedure, it is not actually active.

Test case 2 : T = 80 with λ0 = 0. Whereas one could believe that raising the �nal time from
T = 60 to T = 80 does not much increase the di�culty of the problem, we noticed that several
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Figure 5.2 � Intermediate steps of the continuation procedure for the test case 1.

numerical obstacles appeared. In the following, we consider a discretization with Nt = 250 and
Nx = 12 points, in order to keep the optimization run-time reasonable. Besides, in order to test
the robustness of our procedure, we consider more restrictive constraints on the density of cells :
we choose θH = 0.75 in (5.3) (0.6 in the �rst example), and we also consider θHC = 0.6 in (5.2)
(0.4 in the �rst example). Note that setting a higher value for θHC means that the density of
cancer cells is to be maintained below a lower level during the treatment.

First, we use the same numerical trick as explained in our �rst example, reducing the maximal
value for the controls to umax,01 = 0.7 and umax,02 = 3.5. For given values of umax1 and umax2 , the
optimal cost ρC(T ) decreases when T increases. This is why we now use smaller values of umax,01

and umax,02 , compared to the �rst example where we set them to respectively 1 and 4.
We performed the continuation in the following way, summarized in Figure 5.3 :

• First, we solve (OCPPDE0), with umax,01 = 0.7 and umax,02 = 3.5.

• Second, we add the interaction between the two populations (via the parameter aCH),
and the constraint measuring the ratio between the number of healthy cells and the total
number of cells (5.2) is introduced at the intermediate value θ(λ)

HC = 0.3.

• We then raise it to its �nal value of θHC = 0.6.

• As a fourth step, we simultaneously add the constraint (5.3) on the healthy cells and raise
the maximal values for the controls from umax,0i to umaxi (i ∈ {1, 2}).
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(OCP0)
aCH = 0.01
θHC = 0.3

θHC = 0.6

umax1 = 2
umax2 = 5
θH = 0.75

(OCP1)
βH = 10−3

βC = 10−4

Figure 5.3 � Continuation procedure to solve (OCPPDE1) for T = 80.

• Lastly, we add di�usion to the model, via the parameters βH and βC , and we solve
(OCPPDE1) for T = 80.

At this point, we need to make two important remarks concerning this continuation procedure.

Remark 5.7:

The order in which we make the components of the continuation vector λ = (λi)16i66 vary
from 0 to 1 is di�erent from the order we presented for T = 60. For instance, we noticed
that the di�usion makes the problem signi�cantly harder to solve, although the Laplacians
where discretized using the simplest explicit �nite-di�erence approximation. Therefore, we
only added it at the last step of the continuation.

Whereas for T = 60, raising the (λi)16i66 directly from 0 to 1 was enough to solve (OCPPDE1),
it became necessary to use a more re�ned discretization for T = 80. This fact justi�es the prin-
ciple of our continuation procedure, as each step is necessary to solve the next one, and thus
(OCPPDE1) in the end. For instance, on Figure 5.4, we display the evolution of the constraint
(5.2) :

ρH(t)

ρC(t) + ρH(t)
> λ3θHC

when raising the continuation parameter λ3 from 0 to 1. For values of λ3 increasing from 0 to 1,
the constraint (5.2) becomes more and more restrictive, but the continuation procedure enables
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Figure 5.4 � Evolution of the constraint (5.2) during the continuation.
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Figure 5.5 � Raising the maximal values umax1 , umax2 for the controls.

us to reach the �nal value θHC = 0.6. A noticeable fact is that compared to the test case 1, higher
doses of cytostatic drugs are administered during the �rst phase. That is because, as pointed out
before, the constraint (5.2) becomes more restrictive.

On Figure 5.5, we display the evolution of the controls u1 and u2 when raising their maximal
allowed values from (umax,01 , umax,02 ) to (umax1 , umax2 ). For the sake of readability, we do not show
all the steps of the continuation, but only some of them. It clearly shows how the structure of
the optimal solution evolves from the simple one of (OCPPDE0) to the much more complex
one of (OCPPDE1).

Finally, we display on Figure 5.6 the evolution of nC , when applying the optimal strategy we
found solving (OCPPDE1). One clearly sees that the optimal strategy has remained the same :
the cancer cell population concentrates on a sensitive phenotype, around x = 0.2, which is the
key idea to then use the maximal tolerated doses. In other words, the strategy identi�ed in the
previous work [PCLT17] is robust with respect to addition of epimutations. An important remark
is that the cost obtained with the optimal strategy is higher with the mutations than without
them : this is because we cannot have convergence to a Dirac located at a sensitive phenotype,
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Figure 5.6 � Evolution of nC for the optimal solution of (OCPPDE1). In
black with a thick line, the initial condition nC(0, ·), with lighter shades of

red, the evolution of nC(t, x) as time increases. At �nal time, the
population of cancer cells is drawn with a thick red line.

but to a smoothed (Gaussian-like) version of that Dirac. There will always be residual resistant
cells which will make the second phase less successful.

Further comments on the continuation principle. A continuation procedure can be used
in a wide range of applications, and one can easily imagine ways to generalize the ideas we have
previously introduced. Let us illustrate our point with an example : we have presented a procedure
to solve (OCPPDE1), for some initial conditions n0

H and n0
C . Suppose that we wish to solve

(OCPPDE1) for some di�erent initial conditions ñ0
H and ñ0

C . Biologically, this could correspond
to �nding a control strategy for a di�erent tumor. A natural idea is then to use a continuation
procedure to deform the problem from the initial conditions (n0

H , n
0
C) to (ñ0

H , ñ
0
C), rather than

applying again the whole procedure to solve (OCPPDE1) with ñ0
H and ñ0

C . We successfully
performed some numerical tests to validate this idea : if we dispose of a set of initial conditions
for which we want to solve (OCPPDE1), it is indeed faster to solve (OCPPDE1) for one of
them and then perform a continuation on the initial data, rather than solving (OCPPDE1) for
each of the initial conditions. More generally, any parameter in the model could lend itself to a
continuation.

Test case 3 : T = 60, for di�erent values of λ0. The optimal strategy obtained with the
previous objective function ρC(T ) might seem surprising, in particular because it advocates for
very limited action at the beginning : giving no cytotoxic drugs and low loses of cytostatic drugs.
To further investigate the robustness of this strategy, let us also consider the objective function
λ0

∫ T
0
ρC(s) ds + (1 − λ0)ρC(T ) as introduced in Remark 5.1, for di�erent values of λ0. To ease

numerical computations, we take βH = βC = 0, umax1 = 2, umax2 = 5, and �nally Nx = 20,
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Figure 5.7 � Adding a term accounting for the L1 norm
∫
ρC in the cost.

Nt = 100. The results are reported on Figure 5.7.
For λ0 = 0.5 (in purple) and λ0 = 0.9 (in blue), the L1 term is dominant in the optimization

and the variations of ρC are smaller over the interval ]0, T [. However, although there is a signi�-
cant change in the control u2 which is always equal to umax2 , u1 has kept the same structure : an
arc with no drugs, a short arc with maximal doses and a �nal arc with intermediate doses. The
only (though important) di�erence is that the �rst arc is not a long one as before : for λ0 = 0.9,
the maximum dose of cytotoxic drugs is given earlier, around t = 35, in order to have a low L1

term in the cost. However, in this case, cytotoxic drugs are given during a longer time period,
making the tumor cells more resistant. This is supported by the representation of ρC on the
fourth graph of Figure 5.7, where ρC increases during the last from t = 65 up to the end, because
of the emergence of drug-resistant cells.

We infer from these numerical simulations that the optimal structure is inherent in the equa-
tions : there is no choice but to let the cancer cell density concentrate on a sensitive phenotype.
Since at λ0 = 0.5 and λ0 = 0.9, the integral term dominates, we also consider other convex com-
binations with smaller values of λ0, namely for λ0 = 0 (in red) and λ0 = 0.05 (in light purple)
for which u2 takes intermediate values (and even the maximum tolerated value during a short
time when λ0 = 0.05) before being equal to umax2 , while u1 = 0 on a longer arc.

5.6 Perspectives

Theoretical perspectives. A theoretical analysis of the problem (OCPPDE1) is completely
open. The �rst step in [PCLT17] in the absence of Laplacians was to analyse the asymptotic
behavior for constant infusion of drugs, in which case the limit is the sum of Dirac masses on the
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�ttest phenotypes (depending on the drug). With Laplacians, however, the asymptotic analysis
of the system

∂nH
∂t

(t, x) =

[
rH(x)

1 + αH ū2
− dH(x)IH(t)− ū1µH(x)

]
nH(t, x) + βH∆nH(t, x),

∂nC
∂t

(t, x) =

[
rC(x)

1 + αC ū2
− dC(x)IC(t)− ū1µC(x)

]
nC(t, x) + βC∆nC(t, x),

with constant controls (ū1, ū2) below is not known, up to our knowledge. Actually, even the
asymptotic analysis of a single equation of that type has not been tackled. Note that results are
available when the functions dH and dC are independent of x, as in [LMM14]. The theoretical
optimal control of a such a system with state constraints seems out of reach for the moment.

For epimutations with rates in reasonable ranges, we found that the optimal strategy obtained
in [PCLT17] is preserved, which is a proof of its robustness. We believe that robustness can further
be tested for more complicated models, with the same strategy.

For example, one may want to model longer-range mutations by a non-local alternative to
the Laplacian, either through a mutation term through a Kernel [BCL15], or through a non-
local operator like a fractional Laplacian [CR13]. These could both be added by continuation,
on the Kernel starting from the integro-di�erential model, or on the fractional exponent for the
fractional Laplacian, starting from the case of the (classical) Laplacian.

Another (local) possibility is to choose a more general elliptic operator. In particular, one
can think of putting a drift term to model the stress-induced adaptation [Cov13, CLL16], namely
epimutations that occur because cells actively change their phenotype in a certain direction
depending on the environment created by the drug.

Finally, other objective functions can also be considered through a continuation as already
introduced in the present paper : one minimizes a convex combination of ρC(T ) and the objective
function of interest.

We refer to [PCLT17] for other possible generalizations of the model that might be of interest.

Numerical perspectives. For the numerics presented in this chapter, we used the modeling
language AMPL with the interior-point solver IPOPT. Most of the time, like displayed on Figure
5.4, we were able to perform the continuation with a constant step (on Figure 5.4, two successive
values of λ3θHC di�er by 0.5). For computational e�ciency, one may wish to use a re�ned
procedure. For instance, in the case of convergence, one may try to increase the step in the
continuation procedure. On the other hand, when solving the next optimization problem fails,
the step can be decreased.

Dealing with this variability of the step could bene�t from the use of the solver IPOPT with
an e�cient programming language, like C or C++. Note that there exist interfaces to use IPOPT
designed for the following programming language : C++, C, Fortran, Java, R, Matlab. We refer
to the o�cial documentation of the IPOPT project for more details on this issue.

Besides, one could try and use a higher-order method to discretize the dynamics, for instance
with Runge-Kutta schemes, and using the trapezoidal rule to discretize the terms ρC and ρH .
Again, implementing such a complex numerical method could bene�t from the use of one of the
previously mentionned programming languages.
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5.7 Conclusion of the chapter

The objective of the present work was to numerically solve an optimal control generalizing the
one studied in the article [PCLT17], in which epimutations were neglected. We have developed an
approach which signi�cantly reduces the computation time and improves precision, even without
mutations. More precisely, by setting enough parameters to 0 in the original optimal control
problem, we arrive to a situation where the problem can be tackled by a Pontryagin Maximum
Principle in in�nite dimension. Direct methods and continuation then allow to solve the problem
of interest, with the strong improvement that we actually start the continuation with a very
re�ned discretization.

We advocate that this approach is suitable for many complicated optimal controls problems.
This would be the case as soon as an appropriate simpli�cation leads to a problem for which pre-
cise results can be obtained by a PMP. In particular, this approach is an option to be investigated
for optimal control problems which have a high-dimensional discretized counterpart.



Conclusion and perspectives

The main goal of this PhD dissertation was to develop a mathematical framework and conceive
a portable software to tackle and solve the problem of optimizing the ballistic phase for an Ariane
5 launcher. A code in C, described in Appendix A, based on a direct method and the use of
an interior-point algorithm, was developed for the CNES in order to compute the solution of an
optimal control problem with a L1 cost, where the number of body separations and via-point
constraints is up to the choice of the user. As a consequence of our process, we also studied in
Chapter 3 how to combine continuation techniques and indirect methods to solve a problem with
only one intermediate constraint.

Throughout this manuscript, we have made an intensive use of continuation techniques. Ac-
tually, each time we had to deal with a problem too hard to be addressed directly, we tried to
�nd a deformation of the problem ending with an easier one. Therefore, we exploited the power
of continuation techniques in various contexts, depending on the problem at hand. In Chapter
2, we showed how a (now classical) L2 → L1 continuation could be used to solve the attitude
control problem with minimization of the consumption. In Chapter 3, the heart of our proce-
dure to enforce an intermediate constraint (when using an indirect method) was to penalize the
constraint in the cost and do a continuation on the penalization parameter. The intention of
Chapter 5 was to carry the expertise gained while applying continuation procedures to aerospace
problems to the resolution of an optimal control problem in in�nite dimension. We studied an
integro-di�erential system modelling the evolution of cells populations structured by a pheno-
typical trait, the resistance to chemotherapeutic drugs. Again, the original control problem is
highly simpli�ed in order to apply a PMP in in�nite dimension, yielding controls with a simple
structure over time. From their wide range of applications, we claim that continuation techniques
are robust, and can be used quite generically. Besides, the parametric deformation can take a
variety of forms including change in the cost, introduction of constraints, increase in the level of
discretization, modulation on the set of parameters in the di�erential system...

Because of �ight conditions in real life, it is crucial for the Ariane 5 pilot to be based on
a robust control algorithm. Perturbations, model errors can always cause the system to drift
away from a planned trajectory. We found the literature on robust algorithms preserving the
bang-bang structure of a control to be elusive. In Chapter 4, starting from the intuition that the
switching times of a bang-bang command can be considered as degrees of freedom, we suggested
an algorithm preserving this structure. Our main idea was to add bang arcs in the form of
needle-like variations of the control. In this context, steering the control system to some given
target starting form a perturbed point amounts to solving an overdetermined nonlinear shooting
problem, what we do by developing a least-square approach. In turn, we design a criterion to
measure the quality of robustness of any given bang-bang strategy, based on the singular values
of some end-point mapping, and which we optimize.
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Some perspectives. We shall now �nish by giving some perspectives to this work. In Chapter
3 we already mentionned two possible continuations of the work undertaken. A deeper study of
why the homotopy on ε gives far better results that the homotopy on s should be carried. A
�rst step could be to focus on the accessibility set at time t1, in order to diagnose a potential
loss of controllability. Besides, the proof of a convergence result for the sequence of adjoint
vectors (pε(·))ε>0 is still missing. Such a result would complete the theoretical justi�cation of
the procedure of Chapter 3.

Besides, the optimization software presented in Chapter 3 could be subject to many improve-
ments depending on the needs of the CNES. One major axis of developement could be to include
in the attitude equations the position and the velocity of the launcher. This would enable the
user of the software to take into account constraints ensuring a minimal distance between bodies
after a separation, which is of high importance in practice when designing a ballistic phase. This
would double the dimension of the system, passing it from R6 to R12. Therefore, the size of the
data in any underlying optimization algorithm would double as well.

As for Chapter 4, the ultimate perspective would be to test our procedure on some real-life
system. Recall that in this chapter, we applied our algorithm to the reduced attitude equations
in R3, with only the three angular velocities. Implementing the method on the complete attitude
system in R6, or even on the system with the kinematic variables in R12, would surely be a
source of challenges coming from the increased dimension, as well as from the potentially higher
number of needle-like variations of the control required to robustify a given trajectory.

On the complete attitude system with position and velocity, let us mention the works [ZTC16a,
ZTC16b], where it is shown that optimal trajectories for the time-optimal control problem contain
singular arcs, and at the connection between bang arcs and a singular arc, the control chatters:
on a compact time interval, the control switches an ini�nite number of times. In [ZTC16b],
the authors suggest a sub-optimal control strategy, with only a �nite numer of switchings. Our
approach could be combined with their work in order to design a robust way to place those
switchings.



Appendix A
A software to solve a complete ballistic

phase

As announced in the Introduction and earlier in Chapter 3, one of the goals of this thesis was
to design an optimization software able to optimize the trajectory of a launcher during any given
ballistic �ight. Because of the limitations that appeared with the procedure previously presented
in Chapter 3 as soon as the number of intermediate constraints becomes greater than one, we
took the decision to implement this software with a direct method. It calls an open source library
based on an interior-point algorithm. Therefore, we had to implement all the routines for the
cost and the constraints, as well as for their derivatives.

Description of the software. The details of the software are classi�ed and are the property of
the CNES. We shall however give some general elements to explain our approach. The following
data has to be provided by the user of the software:

• General elements on the geometry of the launcher, that do not change during the whole
ballistic phase, such as the location of the thrusters.

• An integer ν and the times t1, t2, . . . , tν of the intermediate constraints, tν being also the
�nal time.

• For each k ∈ J1, νK, the number of constrained components of the state at time tk, x(tk),
and for each constrained component, the value of the constraint.

• For each k ∈ J1, νK, the values of the inertia coe�cients and for the position of the center of
mass at times t+k and t−k . As we will emphasize in Remark A.1, when a time tk corresponds
to the separation of a body, the inertia coe�cients and the position of the center of mass
change. When planning a ballistic phase, the knowledge of the geometry of the launcher
and the placement of the satellites allows to know a priori those values at any given moment
of the future mission.

Note that if ν = 1, the software can be used to solve a simple ballistic phase with only one
separation, as we did in Chapter 2.
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118 APPENDIX A. A software to solve a complete ballistic phase

Remark A.1: Consequence of a separation

Some of the times tk (with k ∈ J1, νK) can coincide with a rigid body being separated from
the launcher. Therefore, the inertia coe�cients Ix, Iy and Iz and the location of the center
of mass are discontinuous at such a time tk. Recall that the expression for the parameters
(ai)16i63 is

a1 =
Iy − Iz
Ix

, a2 =
Iz − Ix
Iy

, a3 =
Ix − Iy
Iy

,

and the expression for the vectors (~bj)16j6m (corresponding to a force
−→
P produced at point

Aj) is
~bj = I−1−→P ∧ −−→AjG.

Therefore, the numerical coe�cients a1, a2 and a3, as well as the torques vectors ~bj (for
j ∈ J1,mK) are also discontinuous at such a time tk. It follows that the discretization of the
dynamics changes after each separation, and a routine computing those coe�cients has to be
called after each separation.

We give on Figure A.1 a description of the software. After the data is read, an instance
of the optimization problem is created, using the routines for the cost (implemented in the �le
cost.c), the constraints (constraint.c) and their derivatives (dcost.c and dconstraint.c).
This problem is then solved using an interior-point algorithm, and the output is displayed in the
output.txt �le.

Numerical output. We shall now display the output of this software, when used to optimize
a ballistic phase with three separations: two satellites are put into orbit. Besides, between the
two droppings of the satellites, the dual launch system also has to be separated. Both satellites
are required to be separated in a spinned state, rotating at 1.5 degrees per second (0.027 radians
per second) about the principal axis of inertia and in both cases, the angle ϕ is left free at the
separation. For the separation of the dual launch system, all 6 components of the state are
prescribed.

The initial condition on the state of the launcher is

(θ0, ψ0, ϕ0, p0, q0, r0) = (2.6,−0.17, 7.7, 0.01, 0, 0).

We denote t1, t2 and t3 the times of the separations of the three bodies. Therefore, the
separations of the satellites happen at time t1 and t3, and the separation of the dual launch
system happens at time t2. At time t1 and t3, the angle ϕ is left free, and the following constraints
are enforced:

θ(t1) = θ(t3) = 0.04,

ψ(t1) = ψ(t3) = 0.06,

p(t1) = p(t3) = −0.027,

q(t1) = q(t3) = 0,

r(t1) = r(t3) = 0.

We also impose, in order to demonstrate the robustness of our method and as it could be of
interest in practice, to control the angular velocities to zero a few seconds before and after each
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data.txt

read data()

compute parameters()

create problem()

solve problem()

write output()

output.txt

cost.c

dcost.c

constraint.c

dconstraint.c

Figure A.1 � Description of the software to optimize a complete
ballistic phase. The previously mentionned data that has to be

provided by the user is given in the �le data.txt.

separation. In other words, we chose times τk for k ∈ J1, 6K, and enforce the following constraints:

p(τk) = q(τk) = r(τk) = 0 , ∀k ∈ J1, 6K .

Altogether, there are 9 intermediate constraints in this problem.

On Figure A.3, we plot the trajectories for the 6 components of the state of the launcher.
We mark each separation with a blue diamond. Let us emphasize again that for each separation,
some components may be left free (here, ϕ), imposing to treat the ballistic phase as a whole,
and not as three diferent problems.
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Figure A.2 � Trajectory for the optimization of a whole ballistic
phase, starting from �. Each � stands for the separation of a body.
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Figure A.3 � Angular velocity for the optimization of a whole
ballistic phase, starting from �. Each � stands for the separation of a
body. Each � corresponds to the control of the angular velocity to 0.

On Figure A.3, we display the angular velocity of the launcher over time. The constraints
under the form ω(τk) = 0 (k ∈ J1, 6K) are marked with a black diamond. In view of future
applications, it is important to mention that once the ballistic phase has been optimized leaving
some components free at each intermediate constraint, each part of the mission (for instance
between two successive separations) can be used separately.

Finally, we also display on Figure A.4 the corresponding controls. The large number of
switching times con�rm a posteriori the choice to use an direct method, as it is a source of
numerical di�culty in the context of indirect methods. We point out that at some point, the
controls u11 and u12 do not reach their maximal value. It is a sign of the lower numerical accuracy
of direct methods. Note also the presence of a singular arc on the control u8.
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Figure A.4 � Controls for the optimization of a whole ballistic phase.
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Appendix B
Liouville's theorem

In this appendix, we are going to focus on di�erential systems q̇(t) = X(q(t)) whose �ow
preserves the Lebesgue measure. Liouville's theorem states that a su�cient condition is that the
vector �eld is divergence-free. Such a vector �eld is also sometimes named a solenoidal vector
�eld. We are �rst going to give a proof in the linear case, and then in the nonlinear case.

Linear case. Let v̇(t) = A(t)v(t) be a linear di�erential equation. We denote R(t, t0) the linear
mapping such that

R(t, t0) :

{
Rn −→ Rn,
v0 7→ v(t, t0, v0),

where v(t, t0, v0) stands for the solution to the di�erential equation with initial condition v(t0, t0, v0) =
v0.

Let us denote (v1(t), . . . , vn(t)) the columns of R(t, t0), and consider the application

T :

{
R −→ R,
t 7→ detR(t, t0) = det(v1(t), . . . , vn(t)).

The determinant is multilinear with respect to the columns, and we get the following expres-
sion for the derivative of T :

T ′(t) =

n∑
j=1

det(v1(t), . . . , v′j(t), . . . , vn(t))

=

n∑
j=1

det(v1(t), . . . , A(t)vj(t), . . . , vn(t)).

The application (v1, . . . , vn) 7→∑n
j=1 det(v1, . . . , A(t)vj , . . . , vn) also is an alternating multi-

linear function with respect to the columns. Therefore, it is proportional to the determinant:
there exists a constant K(t) such that for all (v1, . . . , vn),

n∑
j=1

det(v1, . . . , A(t)vj , . . . , vn) = K(t) det(v1, . . . , vn).
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Taking in the previous relation (v1, . . . , vn) = (e1, . . . , en) where (e1, . . . , en) stands for the
canonical basis of Rn, we get that K(t) = TrA(t). We have shown that T (·) satis�es the
di�erential equation {

T ′(t) = Tr(A(t))T (t),
T (t0) = 1,

and the expression for the determinant of R(t, t0) follows

detR(t, t0) = exp

(∫ t

t0

A(s)ds

)
.

We can now deduce Liouville's theorem, in the linear case.

Proposition B.1 (Liouville's theorem - linear case). � Assume that for all t,
TrA(t) = 0. Then the determinant of the matrix R(t, t0, x0) is equal to 1, and the �ow preserves
the Lebesgue measure.

Nonlinear case.

Proposition B.2 (Liouville's theorem - nonlinear case). � Let exp(tX) be the
�ow of a nonlinear di�erential equation ẏ(t) = X(y(t)) such that the �eld X is divergence-free,

∇ ·X(y) = Tr(dX(y)) = 0.

Then the �ow preserves the Lebesgue measure.

Proof. Let y ∈ Rn. We start by computing the time derivative of the �ow exp(tX)(y). By the
very de�nition of the �ow, we get that

d

dt
exp(tX)(y) = X(exp(tX)(y)).

Di�erentiating this equation with respect to y, and switching the order of the derivatives, we get
that

d

dt
d exp(tX)(y) = dX(exp(tX)(y))d exp(tX)(y).

Besides, it holds that d exp(0X)(y) = Id. Therefore, we can apply the result in the linear case
to the mapping t 7→ d exp(tX)(y) and the linearized system

v̇(t) = A(t)v(t),

where A(t) = dX(exp(tX)(y)).
We get the expression for the determinant of d exp(tX)(y):

det(d exp(tX)(y)) = exp

(∫ t

0

TrA(s)ds

)
.

By hypothesis, TrA(s) = Tr(dX(exp(tX)(y))) = ∇ · X(exp(tX)(y)) = 0 as the vector �eld is
divergence free. We get that

det(d exp(tX)(y)) = 1.

It follows easily that the �ow exp(tX) preserves the Lebesgue measure: Let A be an open set
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of �nite measure. Performing a change of variables in the integral yields:

|exp(tX)(A)| =
∫

exp(tX)(A)

dy

=

∫
A

|det(d exp(tX)(y))| dy

= |A| .
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Appendix C
Linear Algebra

C.1 Singular value decomposition and pseudoinverse

Let A ∈ Mn,N (R). The matrix A∗A is hermitian, and its eigenvalues are real and nonneg-
ative. Indeed, let λ ∈ C be an eigenvalue with an eigenvector x : Then ‖Ax‖2 = 〈Ax,Ax〉 =

〈A∗Ax, x〉 = 〈λx, x〉 = λ ‖x‖2. The singular values of a matrix A ∈ Mn,N (R) are the square
roots of the (real and nonnegative) eigenvalues of A∗A.

This enables us to de�ne the singular value decomposition (SVD) of a matrix :

Definition C.1. � Let A ∈ Mn,N (R) with r positive singular values. Then, there exist

U ∈ Mn(R) and V ∈ MN (R), unitary matrices, and Σ̃ ∈ Mn,N (R) a diagonal matrix of the
form :

Σ̃ =

(
Σ 0n,N−r

0n−r,r 0n−r,N−r

)
with Σ ∈ Mr(R) (with r = rank(A)) whose diagonal entries are the positive singular values of
A, such that A = U Σ̃V ∗

If ‖·‖2 denotes the induced norm for matrices corresponding to the euclidian norm, we easily
get from the singular-value de�nition that ‖A‖2 = σmax, where σmax denotes the largest singular
value of A. The singular-value decomposition of a matrix enables us to de�ne the pseudoinverse
of a matrix.

Definition C.2. � Let A ∈Mn,N (R), and A = U Σ̃V ∗ its SVD decomposition. The pseudo-

inverse of A is de�ned by A† = V Σ̃†U∗ ∈MN,n(R), with :

Σ̃† =

(
Σ−1 0r,n−r

0N−r,r 0N−r,r

)
∈MN,n(R)

We recall then a few properties of the pseudoinverse, that are needed to understand how to
solve a least-squares problem.

Proposition C.1. � (i)
∥∥A†∥∥

2
= 1/σmin where σmin is the smallest positive singular value

of A.
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(ii) The operator AA† is the orthogonal projection on rangeA, and I − AA† is the orthogonal
projection on (rangeA)⊥.

(iii) The operator A†A is the orthogonal projection on (kerA)⊥, and I −A†A is the orthogonal
projection on kerA.

(iv) kerA† = (rangeA)⊥.

(v) rangeA† = (kerA)⊥.

Proof. A straightforward computation yields

AA† = U

(
Ir 0r,n−r

0n−r,r 0n−r,n−r

)
U∗,

which is the expression of an orthogonal projector. Besides, range(AA†) ⊂ range(A), and from
the equality of dimensions, we get the equality between range(AA†) and range(A). Thus, AA†

is the orthogonal projector on range(A), and it follows that I −AA† is the orthogonal projector
on range(A)⊥.
The proof for A†A is similar : we get from a simple computation that it represents an orthogonal
projector. Besides, kerA ⊂ ker(A†A), and they have same dimension (N − r), so ker(A†A) =
kerA, and we get that A†A is the orthogonal projector on (kerA)⊥.
We have that ker(A†) ⊂ ker(AA†). But we have just shown that AA† is the orthogonal projector
on range(A), therefore, ker(AA†) = range(A)⊥. Besides dim(ker(A†)) = dim(range(A)⊥) = n−r,
so we conclude by equality of the dimensions.
Finally, (kerA)⊥ = range(A†A) ⊂ rangeA†, and we conclude again by equality of the dimensions
: dim((kerA)⊥) = N − dim(kerA) = N − (N − r) = r = rankA†.

C.2 A least-squares problem

In this section, we consider the following least-squares problem : Given a matrix A ∈
Mn,N (R) and a vector b ∈ Rn, �nd a solution of the optimization problem :

min
y∈RN

‖Ay − b‖

The result we want to emphasize here is the link between the pseudo inverse and the solution
of the least-squares problem. Note that no assumption is made on N and n. That is, the following
result holds if the linear system is underdetermined (n > N), square (n = N) or overdetermined
(n 6 N).

Proposition C.2. � The vector xb = A†b is a solution of the least-squares problem. More-
over, in the case where the problem has several solutions, it is the one with minimal norm (for
the euclidian norm): let x 6= xb such that ‖Axb − b‖2 = ‖Ax− b‖2, then ‖xb‖2 6 ‖x‖2
Proof. We have Ax − b = A(x − xb) + (AA† − I)b, with A(x − xb) ∈ rangeA and (AA† −
I) ∈ (rangeA)⊥ (see proposition C.1). Thus, for all x ∈ RN , ‖Ax− b‖2 = ‖A(x− xb)‖2 +∥∥(AA† − I)b

∥∥2
= ‖A(x− xb)‖2 + ‖Axb − b‖. And we get that ‖Axb − b‖2 6 ‖Ax− b‖2, so xb is

a solution of the least-squares problem. If the previous inequality is an equality for some x, we
get that ‖A(x− xb)‖ = 0, and thus A(x− xb) = 0, i.e x− xb ∈ kerA. Let z = x− xb = x−A†b.
We get that (see proposition C.1)

x = z︸︷︷︸
∈kerA

+ A†b︸︷︷︸
∈(kerA)⊥
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So, ‖x‖2 = ‖z‖2 +
∥∥A†b∥∥2

= ‖z‖2 + ‖xb‖2, and ‖xb‖2 6 ‖x‖2. So xb is indeed the solution of
minimal euclidian norm.

Let A ∈ Mn,N (R), with n 6 N , a matrix of maximal rank, i.e n (or, in other words, A is
surjective). Thus, A has exactly n positive singular values, which we will denote σ1 > · · · > σn >
0. Given b ∈ Rn, we know from the surjectivity of A that there is a solution to the equation
Ax = b. Moreover, according to proposition C.2, we know that A†b is the solution of minimal
norm (for the euclidian norm). And we get the following estimate (see Proposition C.1) :

‖xb‖2 =
∥∥A†b∥∥

2

6
∥∥A†∥∥

2
· ‖b‖2

6
1

σn
· ‖b‖2

C.3 Condition number of a matrix

Case of a square matrix. In this section, we give some details on the condition number of a
matrix. Let A ∈Mn(R). Let x be the solution of some linear system

Ax = b.

Let δb be a perturbation of the right hand term, and x+ δx be the solution of

A(x+ δx) = b+ δb,

that is, δx is a solution of the equation Aδx = δb. It follows that

‖δx‖2 6
∥∥A−1

∥∥
2
‖δb‖2 .

If one wishes to have a relative error estimate,

‖δx‖2
‖x‖2

6
∥∥A−1

∥∥
2

‖δb‖2
‖x‖

6
∥∥A−1

∥∥
2
· ‖A‖2

‖δb‖2
‖b‖ .

The relative error we make on the solution when having an error on the right-hand term is
controlled by the quantity

∥∥A−1
∥∥

2
· ‖A‖2 : this is the condition number of the matrix A with

respect to the euclidian norm, denoted by cond2(A). Note that this quantity is always greater
than 1, as ∥∥A−1

∥∥
2
· ‖A‖2 >

∥∥A−1A
∥∥

2

> ‖In‖2
= 1

The condition number of a matrix has a very elegant geometric interpretation : from the SVD
decomposition, it can be derived that the image of the unit sphere in Rn by an inversible matrix
is an ellipsoid, whose semi-major axis is σmax and whose semi-minor axis is σmin, as displayed
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S1

x

y

σmax

σmin

Figure C.1 � In dimension 2, image by an inverible matrix of the unit sphere S1.

on Figure C.1 in dimension 2. Thus, the condition number of a matrix measures how close the
ellipsoid is to a sphere.

Case of a non square matrix. In Chapter 4, we give an algorithm to control a system even
in presence of perturbations, based on the computation of the solution of a linear system

dE · δT = δx,

where dE is a matrix of dimension n×N , with N possibly larger than n. If the matrix dE is of
full rank n, with the singular values σ1 > · · · > σn > 0, then the image of the unit sphere of RN
by the matrix dE is, up to a rotation,

dE(SN−1) =

{
x = (x1, . . . , xn) |

(
x1

σ1

)2

+ . . .+

(
xn
σn

)2
}
.
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Contrôle optimal et robuste de l'attitude d'un lanceur

Aspects Théoriques et Numériques

Résumé

L'objectif premier de cette thèse est d'étudier certains aspects du contrôle d'attitude d'un corps rigide,
a�n d'optimiser la trajectoire d'un lanceur au cours de sa phase balistique. Nous y développons un
cadre mathématique permettant de formuler ce problème comme un problème de contrôle optimal avec
des contraintes intermédiaires sur l'état. En parallèle de l'étude théorique de ce problème, nous avons
mené l'implémentation d'un logiciel d'optimisation basé sur la combinaison d'une méthode directe et
d'un algorithme de point intérieur, permettant à l'utilisateur de traiter une phase balistique quelconque.
Nous entendons par là qu'il est possible de spéci�er un nombre quelconque de contraintes intermédiaires,
correspondant à un nombre quelconque de largages de charges utiles.
En outre, nous avons appliqué les méthodes dites indirectes, exploitant le principe du maximum de
Pontryagin, à la résolution de ce problème de contrôle optimal. On cherche dans ce travail à trouver des
trajectoires optimales du point de vue de la consommation en ergols, ce qui correspond à un coût L1.
Réputé di�cile numériquement, ce critère peut être atteint grâce à une méthode de continuation, en se
servant d'un coût L2 comme intermédiaire de calcul et en déformant progressivement ce problème L2.
Nous verrons également d'autres exemples d'application des méthodes de continuation.
En�n, nous présenterons également un algorithme de contrôle robuste, permettant de rejoindre un état
cible à partir d'un état perturbé, en suivant une trajectoire de référence tout en conservant la structure
bang-bang des contrôles. La robustesse d'un contrôle peut également être améliorée par l'ajout de va-
riations aiguilles, et un critère quali�ant la robustesse d'une trajectoire à partir des valeurs singulières
d'une certaine application entrée-sortie est déduit.

Mots clés : contrôle optimal, contrôle d'attitude, phase balistique, méthode de continuation, méthodes
directes, méthodes indirectes, contrôle robuste, contrainte intermédiaire

Optimal and robust attitude control of a launcher

Theoretical and numerical aspects

Abstract

The �rst objective of this work is to study some aspects of the attitude control problem of a rigid body,
in order to optimize the trajectory of a launcher during a ballistic �ight. We state this problem in a
general mathematical setting, as an optimal control problem with intermediate constraints on the state.
Meanwhile, we also implement an optimization software that relies on the combination of a direct method
and of an interior-point algorithm to optimize any given ballistic �ight, with any number of intermediate
constraints, corresponding to any number of satellite separations.
Besides, we applied the so-called indirect methods, exploiting Pontryagin maximum principle, to the
resolution of this optimal control problem. In this work, optimal trajectories with respect to the con-
sumption are looked after, which corresponds to a L1 cost. Known to be numerically challenging, this
criterion can be reached by performing a continuation procedure, starting from a L2 cost, for which it
is easier to provide a good initialization of the underlying optimization algorithm. We shall also study
other examples of applications for continuation procedures.
Eventually, we will present a robust control algorithm, allowing to reach a target point from a perturbed
initial point, following a nominal trajectory while preserving its bang-bang structure. The robustness of
a control can be improved introducing needle-like variations, and a criterion to measure the robustness
of a trajectory is designed, involving the singular value decomposition of some end-point mapping.

Keywords: optimal control, attitude control, ballistic phase, continuation method, direct methods,
indirect methods, robust control, intermediate constraint

Laboratoire Jacques Louis Lions
4 Place Jussieu � 75005, PARIS � France
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